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NUMERICAL SOLUTION OF SCALAR CONSERVATION LAWS

WITH RANDOM FLUX FUNCTIONS

SIDDHARTHA MISHRA, NILS HENRIK RISEBRO, CHRISTOPH SCHWAB,

AND SVETLANA TOKAREVA

Abstract. We consider scalar hyperbolic conservation laws in several space

dimensions, with a class of random (and parametric) flux functions. We pro-
pose a Karhunen–Loève expansion on the state space of the random flux. For
random flux functions which are continuosly differentiable with respect to the

state variable u, we prove the existence of a unique random entropy solution.
Using a Karhunen–Loève spectral decomposition of the random flux into prin-

cipal components with respect to the state variables, we introduce a family
of parametric, deterministic entropy solutions on high-dimensional parameter
spaces. We prove bounds on the sensitivity of the parametric and of the ran-
dom entropy solutions on the Karhunen–Loève parameters. We also outline the
convergence analysis for two classes of discretization schemes, the Multi-Level
Monte-Carlo Finite-Volume Method (MLMCFVM) developed in [21, 23, 22],
and the stochastic collocation Finite Volume Method (SCFVM) of [29].

1. Introduction

Many problems in physics and engineering are modeled by hyperbolic systems
of conservation or balance laws. As examples for these equations, we mention only
the Shallow Water Equations of hydrology, the Euler Equations for inviscid, com-
pressible flow and the Magnetohydrodynamic (MHD) equations of plasma physics,
see, e.g. [7, 12].

The simplest example for a system of hyperbolic conservation laws is the scalar
(single) conservation law:

(1.1)
∂u

∂t
+

d∑

j=1

∂

∂xj
(fj(u)) = 0, x = (x1, . . . , xd) ∈ R

d, t > 0 .

Here the unknown is u : Rd 7→ R and fj is the flux function in the j-th dimension.
Solutions of (1.1) develop discontinuities in finite time even when the initial data

is smooth and must be interpreted in the weak sense. Weak solutions to (1.1) are
not unique, so (1.1) is augmented with additional admissibility criteria, or entropy
conditions, [7, 28]. Well-posedness of entropy solutions in the scalar case in several
space dimensions was obtained by Kruzkhov.

Numerical methods for approximating entropy solutions of systems of conserva-
tion laws have undergone extensive development and many efficient methods are
available, see [9, 12, 13, 19] and the references therein. In particular, finite volume
methods are frequently employed to approximate systems of conservation laws.

Date: September 12, 2014.
1991 Mathematics Subject Classification. 65N30,65M06,35L65.
Acknowledgement. This work is performed as part of ETH interdisciplinary research grant

CH1-03 10-1. The work of CS was supported in part by ERC FP7 grant no. AdG 247277. The
work of NHR was performed while visiting SAM during a sabbatical in the academic year 2011/12.

1



2 S. MISHRA, N. H. RISEBRO, C. SCHWAB, AND S. TOKAREVA

This classical paradigm for designing efficient numerical schemes assumes that
data i.e., initial data and flux function for the system are known exactly.

In many situations of practical interest, however, these data are not known
exactly due to inherent uncertainty in modelling and measurements of physical
parameters such as, for example, the specific heats in the equation of state for
compressible gases, resistivity in MHD etc. Often, the initial data and the flux
function are known only up to certain statistical quantities of interest like the mean,
variance, higher moments, and in some cases, the law of the stochastic initial data.
In such cases, a mathematical formulation of (1.1) is required which allows for
random problem data. The problem of random initial data was considered in [21],
and the existence and uniqueness of a random entropy solution was shown, and
a convergence analysis for MLMC FV discretizations was given. Efficient MLMC
discretization of balance laws with random source terms was investigated in [22].

We mention that the present work as well as [21, 22] considered correlated random
inputs which typically occur in engineering applications; SCLs with random inputs
have been considered before, but generally with white noise, i.e., spatially and
temporally uncorrelated random inputs in [16, 15, 8, 32, 33].

The first aim of this paper is to develop an appropriate mathematical framework
of random entropy solutions for scalar hyperbolic conservation laws with random
flux functions with correlated random perturbations. As well-posedness results in
the deterministic case appear to be available only in the scalar case, we focus our
discussion on this particular case for our theoretical development. We define ran-
dom entropy solutions and prove well-posedness result, significantly extending [21]
where the initial data was the only random input and underpinning the extensive
numerical results reported in [23, 22].

The second aim of this paper is the analysis and implementation of efficient de-
terministic numerical solution methods for scalar conservation laws with uncertain
flux functions in multiple space dimensions . We remark that the efficient numerical
solution of systems of conservation laws with random source terms by multilevel
Monte-Carlo methods has been addressed in [22].

We propose and analyze two methods to this end: first, statistical sampling
techniques of Monte Carlo (MC) and of Multilevel Monte Carlo (MLMC) type and,
second, a deterministic “stochastic collocation Finite Volume Method” (SCFVM
for short).

Both of these methods are “non-intrusive”, very easy to code and to parallelize,
and well suited for random solutions with low spatial regularity. This situation is
typical in conservation laws where discontinuities are generic. This low regularity
poses serious challenges to the design of efficient so-called stochastic Galerkin meth-
ods which are based on generalized Polynomial Chaos (gPC for short) expansions of
the random solution. Although these methods have been extensively developed, see
[1, 4, 20, 30, 24, 31] and other references therein, they are more intrusive, generally
harder to implement and more difficult to parallelize than MC methods. Due to the
limited smoothness of parametric solutions (shocks forming in physical space will
propagate into the parameter domain), convergence rates achieved with stochastic
Galerkin approximations as proposed in [24] and references therein, are limited.

Efficient statistical sampling methods of the Multi-level Monte Carlo (MLMC)
type were proposed in [21] for SCLs with random initial data. This family of
methods was introduced by Heinrich for numerical quadrature [14] and by Giles
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in the context of path simulations for stochastic ordinary differential equations
[10, 11]. More recently, MLMC finite element methods for elliptic problems with
stochastic coefficients were introduced by Barth, Schwab and Zollinger in [2]. More
recent papers [21, 23, 22] propose MLMC algorithms for systems of conservation
laws and systems of balance laws, with uncertain initial data and with uncertain
source terms. One of the aims of the current paper is to extend and analyse the
MLMC algorithm for scalar conservation laws with random flux functions. The
existence result of random entropy solutions for SCL with bounded random flux
functions shown in the present paper is the basis for the recent convergence analysis
of Multilevel Monte-Carlo Front-tracking solvers for SCL with bounded random flux
functions in [25].

Another class of non-intrusive algorithms for random conservation laws are of
the stochastic collocation finite volume method (SCFVM) type proposed in [3],
see also [29]. We will consider discretization of SCLs with bounded random flux
functions using SCFVM in this paper. Based on a-priori sensitivity estimates in
the present paper, we propose a novel anisotropic mesh selection procedure in the
stochastic coordinates that serves to reduce the computational complexity of the
stochastic FV method considerably.

The remainder of this paper is organized as follows: in Section 2, we introduce
some preliminary notions from probability theory and functional analysis. The
concept of random entropy solutions is introduced and the scalar hyperbolic con-
servation law with random initial data and random flux function is shown to be
well-posed in Section 3. The MLMCFVM schemes are designed and analyzed in
Section 4 SCFVM schemes are presented in Section 5. Finally, illustrative numerical
experiments are discussed in Section 6.

2. Random fields

Our mathematical formulation of scalar conservation laws with random data and
fluxes will use the concept of random variables taking values in function spaces. For
the sake of completeness, we recapitulate basic concepts from Chapter 1 of [6], and
then add several remarks on spatial and on temporal correlation functions which
will become useful in the ensuing developments. The presentation follows our earlier
work [21].

Let (Ω,F) be a measurable space, with Ω denoting the set of all elementary
events, and F a σ-algebra of all possible events in our probability model. If (E,G)
denotes a second measurable space, then an E-valued random variable (or random
variable taking values in E) is any mapping X : Ω → E such that the set {ω ∈ Ω:
X(ω) ∈ A} = {X ∈ A} ∈ F for any A ∈ G, i.e., such that X is a G-measurable
mapping from Ω into E.

Assume now that E is a metric space; with the Borel σ-field B(E), (E,B(E))
is a measurable space and we shall always assume that E-valued random variables
X : Ω → E will be (F ,B(E)) measurable. If E is a separable Banach-space with
norm ‖ ◦ ‖E and (topological) dual E∗, then B(E) is the smallest σ-field of subsets
of E containing all sets

(2.1) {x ∈ E : ϕ(x) ≤ α}, ϕ ∈ E∗, α ∈ R .
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Hence if E is a separable Banach space, X : Ω → E is an E-valued random variable
iff for every ϕ ∈ E∗, ω 7−→ ϕ(X(ω)) ∈ R

1 is an R
1-valued random variable.

Moreover, we have

Lemma 2.1. Let E be a separable Banach-space and let X : Ω → E be an E-
valued random variable on (Ω,F). Then the mapping Ω ∋ ω 7−→ ‖X(ω)‖E ∈ R

1 is
measurable.

Proof. Since E is separable, there exists a sequence {ϕn} ⊂ E∗ such that for all
x ∈ E holds

(2.2) ‖x‖E = sup
n∈N

|ϕn(x)| .

Hence we find

(2.3) ∀ω ∈ Ω : ‖X(ω)‖E = sup
n∈N

|ϕn(X(ω))|

which implies that ω 7−→ ‖X(ω)‖E is an R
1-valued random variable. �

The random variable X : Ω → E is called Bochner integrable if, for any proba-
bility measure P on the measurable space (Ω,F),

(2.4)

∫

Ω

‖X(ω)‖E dP(ω) < ∞ .

Here, a probability measure P on (Ω,F) is any σ-additive set function from Ω into
[0, 1] such that P(Ω) = 1, and the resulting measure space (Ω,F ,P) is a probability
space. We shall always assume, unless explicitly stated, that (Ω,F ,P) is complete.

If X : (Ω,F) → (E, E) is a random variable, L(X) denotes the law of X under
P, i.e.,

(2.5) L(X)(A) = P({ω ∈ Ω : X(ω) ∈ A}) ∀A ∈ E .

The image measure µX = L(X) on (E, E) is called law or distribution of X.
A random variable taking values in E is called simple if it can take only finitely

many values, i.e., if it has the explicit form (with χA the indicator function of
A ∈ F)

(2.6) X =

N∑

i=1

xi χAi
, Ai ∈ F , xi ∈ E, N < ∞ .

We set, for simple random variables X taking values in E and for any B ∈ F ,

(2.7)

∫

B

X(ω) dP(ω) =

∫

B

XdP :=

N∑

i=1

xi P(Ai ∩B) .

By density, for such X(·), and all B ∈ F ,

(2.8)
∥∥∥
∫

B

X(ω) dP(ω)
∥∥∥
E
≤

∫

B

‖X(ω)‖E dP(ω) .

For any random variable X : Ω → E which is Bochner integrable, there exists a
sequence {Xm}m∈N of simple random variables such that, for all ω ∈ Ω, ‖X(ω) −
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Xm(ω)‖E → 0 as m → ∞. Therefore, (2.7) and (2.8) extend in the usual fashion
by continuity to any E-valued random variable. We denote the integral

(2.9)

∫

Ω

X(ω) dP(ω) = lim
m→∞

∫

Ω

Xm(ω) dP(ω) ∈ E

by E[X] (“expectation” of X). �

We shall require for 1 ≤ p ≤ ∞ Bochner spaces of p-summable random variables
X taking values in the Banach-space E. By L1(Ω,F ,P;E) we denote the set of all
(equivalence classes of) integrable, E-valued random variables X. We equip it with
the norm

(2.10) ‖X‖L1(Ω;E) =

∫

Ω

‖X(ω)‖E dP(ω) = E(‖X‖E) .

More generally, for 1 ≤ p < ∞, we define Lp(Ω,F ,P;E) as the set of p-summable
random variables taking values E and equip it with norm

(2.11) ‖X‖Lp(Ω;E) := (E(‖X‖pE))1/p, 1 ≤ p < ∞ .

For p = ∞, we denote by L∞(Ω,F ,P;E) the set of all E-valued random variables
which are essentially bounded. This set is a Banach space equipped with the norm

(2.12) ‖X‖L∞(Ω;E) := ess sup
ω∈Ω

‖X(ω)‖E .

If T < ∞ and Ω = [0, T ], F = B([0, T ]), we write Lp([0, T ];E). Note that for any
separable Banach-space E, and for any r ≥ p ≥ 1,

(2.13) Lr(0, T ;E), C0([0, T ];E) ∈ B(Lp(0, T ;E)) .

3. Hyperbolic Conservation Laws with random flux

We review classical results on SCLs with deterministic data, and develop a theory
of random entropy solutions for SCLs with a class of random flux flunctions, proving
in particular the existence and uniqueness of a random entropy solution with finite
second moments.

We also propose a novel spectral decomposition of the random entropy solutions
which is based on a Karhunen–Loève expansion in state space.

3.1. Deterministic scalar hyperbolic conservation laws. We consider the
Cauchy problem for scalar conservation laws (SCL) such as (1.1). Introducing
the flux function f(u)

(3.1) f(u) = (f1(u), . . . , fd(u)) ∈ C1(R;Rd) , div f(u) =

d∑

j=1

∂

∂xj
fj(u) ,

we may rewrite (1.1) succinctly as

(3.2)
∂u

∂t
+ div (f(u)) = 0 for (x, t) ∈ R

d × R+.

We supply the SCL (3.2) with initial condition

(3.3) u(x, 0) = u0(x), x ∈ R
d .
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3.2. Entropy Solution. It is well-known that the deterministic Cauchy problem
(3.2), (3.3) admits, for each u0 ∈ L1(Rd) ∩BV (R), a unique entropy solution (see,
e.g., [12, 28, 7]). Moreover, for every t > 0, u(·, t) ∈ L1(Rd) and the (nonlinear)
data-to-solution operator

(3.4) S : u0 7−→ u(·, t) = S(t)u0, t > 0

has several properties which will be crucial for our subsequent development. To
state the properties of {S(t)}t≥0, we introduce some additional notation: for a
Banach-space E with norm ‖ ◦ ‖E , and for 0 < T ≤ +∞, denote by C([0, T ];E)
the space of bounded and continuous functions from [0, T ] with values in E, and by
Lp(0, T ;E), 1 ≤ p ≤ +∞, the space of strongly measurable functions from (0, T )
to E such that for 1 ≤ p < +∞

(3.5) ‖v‖Lp(0,T ;E) =
(∫ T

0

‖v(t)‖pE dt
) 1

p

,

respectively, if p = ∞,

(3.6) ‖v‖L∞(0,T ;E) = ess sup
0≤t≤T

‖v(t)‖E

are finite. The following existence result is classical (we refer to, e.g., [12, 13, 18,
9, 19] for a proof).

Theorem 3.1.

1) For every u0 ∈ L∞(Rd), (3.1) - (3.3) admits a unique entropy solution
u ∈ L∞(Rd × (0, T )) := L∞(0, T ;L∞(Rd)).

2) For every t > 0, the (nonlinear) data-to-solution map S(t) given by

u(·, t) = S(t)u0

satisfies
i) S(t) : L1(Rd) → L1(Rd) is a (contractive) Lipschitz map, i.e.,

(3.7) ‖S(t)u0 − S(t)v0‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) .

ii) S(t) maps (L1 ∩BV )(Rd) into (L1 ∩BV )(Rd) and

(3.8) TV (S(t)u0) ≤ TV (u0) ∀u0 ∈ (L1 ∩BV )(Rd) .

iii) For every u0 ∈ (L∞ ∩ L1)(Rd),

‖S(t)u0‖L∞(Rd) ≤ ‖u0‖L∞(Rd) ;(3.9)

‖S(t)u0‖L1(Rd) ≤ ‖u0‖L1(Rd) .(3.10)

iv) The mapping S(t) is a uniformly continuous mapping from L1(Rd)
into C([0,∞);L1(Rd)), and

(3.11) ‖S(·)u0‖C([0,T ];L1(Rd)) = max
0≤t≤T

‖S(t)u0‖L1(Rd) ≤ ‖u0‖L1(Rd) .

In our analysis of SCLs with random flux, we will require in particular results
on the continuous dependence of entropy solutions on the flux function. In the
statement of the following theorem, the (separable) Banach space C1(R,Rd) denotes
the space of continuously differentiable functions from R to R

d, equipped with the
norm ‖f‖C1 = supv∈R ‖f(v)‖ + supv∈R ‖f ′(v)‖, with ‖ ◦ ‖ denoting some vector-
norm on R

d. We write |f |C1 when only the supremum of the derivative is meant.
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Theorem 3.2. ([17, Thm. 4.3]). Assume u0, v0 ∈ BV (Rd) ∩ L1(Rd), and f(·),
g(·) ∈ C1(R;Rd).

Then the unique entropy solutions u and v of the SCL with initial data u0, v0
and with flux functions f and g satisfy the Kružkov entropy conditions, and the
a-priori continuity estimate

(3.12) ‖u(·, t)− v(·, t)‖L1(Rd)

≤ ‖u0 − v0‖L1(Rd) + tmin{TV (u0), TV (v0)}‖f − g‖C1(R;Rd)

for every 0 ≤ t ≤ T .

3.3. Random Flux. We are in particular interested in the case that the initial data
u0 and the flux functions fj in (1.1) are uncertain. Since the case of random u0 was
considered in detail in [21], so that we address now in detail the case of random
flux. To avoid technicalities, we first address spatially homogeneous random flux
functions whose realizations are elements of the space E = C1(R;Rd). This space
being separable, we define random flux functions in the usual fashion.

Definition 3.3. A (spatially homogeneous) random flux for the SCL (3.1) - (3.3)
is a random field taking values in the separable Banach space E = C1(R;Rd), i.e., a
measurable mapping from (Ω,F) to the measurable space (C1(R;Rd);B(C1(R;Rd))).
A bounded random flux is a random flux whose C1(R1;Rd)-norm is bounded P-a.s.,
i.e.,

(3.13) ∃0 < B(f) < ∞ : ‖f(ω; ·)‖C1(R1;Rd) ≤ B(f) P− a.s. .

We observe that a bounded random flux has finite statistical moments of any
order. Of particular interest will be the second moment of a bounded random flux
(i.e., its “two-point correlation in state-space”).

Lemma 3.4. Let f be a bounded random flux as in Definition 3.3 which belongs to
L2(Ω;C1(R;Rd)). Then its covariance function, i.e., its centered second moment
defined by

(3.14) Cov[f ](v, v′) := E [(f(·; v)− E[f(·; v)])⊗ (f(·; v′)− E[f(·; v′)])]
is well-defined for all v, v′ ∈ R and there holds

(3.15) Cov[f ] ∈ C1(R× R;Rd×d
sym)

Proof. As a bounded random flux has by definition finite second moments and is,
P-a.s. a Lipschitz continuous function on R, its expectation R ∋ v 7→ E[f(·; v)] ∈
C1(R;Rd). We have that

‖E[f(·; v)]− E[f(·; v′)]‖2 ≤ B(f)|v − v′| , v, v′ ∈ R .

In particular, therefore, f(ω; v) − E[f(·; v)] ∈ L2(Ω;C1(R;Rd)). This implies, de-
noting f̄(v) = E[f(·; v)], F = R

d×d
sym, (recalling our convention that all vectors are

column vectors), that for every v, v′ ∈ R holds

‖Cov[f ](v, v′)‖2F =
∥∥∥
∫

Ω

(f(ω; v)− f̄(v))(f(ω; v′)− f̄(v′))⊤dP(ω)
∥∥∥
2

F

=
d∑

i,j=1

(∫

Ω

(fi − f̄i)(ω; v)(fj − f̄j)(ω; v
′)dP(ω)

)2
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≤
∫

Ω

∥∥f(ω; v)− f̄(v)
∥∥2
2
dP(ω)

∫

Ω

∥∥f(ω; v′)− f̄(v′)
∥∥2
2
dP(ω).

Therefore Cov[f ](v, v′) is well-defined on R × R. Consider now arbitrary states
u, u′ ∈ R and v, v′ ∈ R. Then we may write
∥∥Cov[f ](u, v)− Cov[f ](u′, v′)

∥∥
F

= ‖Cov[f ](u, v)− Cov[f ](u, v′) + Cov[f ](u, v′)− Cov[f ](u′, v′)‖F
≤ ‖Cov[f ](u, v)− Cov[f ](u, v′)‖F + ‖Cov[f ](u, v′)− Cov[f ](u′, v′)‖F .

We estimate the first term in this bound as above

‖Cov[f ](u, v)− Cov[f ](u, v′)‖2F =
(∫

Ω

(f(ω;u)− f̄(u)))(f(ω; v)− f̄(v))⊤

− (f(ω;u)− f̄(u)))(f(ω; v′)− f̄(v′))⊤ dP(ω)
)2

=
(∫

Ω

(f(ω;u)− f̄(u)))

×
[
f(ω; v)− f(ω; v′)− (f̄(v)− f̄(v′))

]⊤
dP(ω)

)2

≤ 2

∫

Ω

∥∥f(ω;u)− f̄(u)
∥∥2
2
dP(ω)

×
(∫

Ω

‖f(ω; v)− f(ω; v′)‖22 dP(ω) +
∥∥f̄(v)− f̄(v′)

∥∥2
2

)

≤ 4B(f)2
∫

Ω

∥∥f(ω;u)− f̄(u)
∥∥2
2
dP(ω)|v − v′|2.

Proceeding in the same way with the second term, we obtain

‖Cov[f ](u, v)− Cov[f ](u′, v)‖2F ≤ 4B(f)2
∫

Ω

∥∥f(ω; v)− f̄(v)
∥∥2
2
dP(ω)|u− u′|2.

Let now

C(u, v) = max
{(∫

Ω

∥∥f(ω;u)− f̄(u)
∥∥2
2
dP(ω)

)1/2

,
(∫

Ω

∥∥f(ω; v)− f̄(v)
∥∥2
2
dP(ω)

)1/2}
.

Taking square roots and adding the bounds, we obtain

‖Cov[f ](u, v)− Cov[f ](u′, v′)‖F ≤ 2B(f)C(u, v) (|u− u′|+ |v − v′|) .

which implies (3.15). �

Remark 3.5. The previous theorem addressed the covariance function for a spa-
tially homogeneous random flux function f(ω;u). Spatially inhomogeneous flux
functions f(ω;x, u) can be defined analogously, provided their dependence on the
spatial coordinate is Lipschitz: they are measurable mappings from (Ω,F) into
(E,B(E)) where E = Lip(Rd+1;Rd). If f ∈ L2(Ω;E), its covariance function

Cov[f ](x, v;x′, v′) := E [(f(·;x, v)− E[f ](x, v))⊗ (f(·;x′, v′)− E[f ](x′, v′))]

is well-defined as an element of C1(Rd+1 × R
d+1;Rd×d

sym) .
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3.4. Parametric, deterministic flux. Often, in applications, rather than a bounded
random flux function as in Definition 3.3 one is given a deterministic, parametric
flux function f(y;u) which depends on a vector y = (yj)j≥1 of (finitely or infinitely
many) parameters in a set U of admissible parameter values.

Definition 3.6. A parametric, deterministic flux function is a function f(y;u)
which, for every parameter instance y ∈ U , belongs to C1(R;Rd) and for which
there exists a constant B(f) < ∞ such that

(3.16) sup
y∈U

‖f(y; ·)‖C1(R;Rd) ≤ B(f) .

We give several examples of parametric, deterministic flux functions.

Example 3.7. Consider a parametric, deterministic flux function which depends
on a parameter vector y ∈ R

J . Let y0 ∈ R
J denote a nominal parameter value and

denote, for r > 0, U = Br(y0) := {y ∈ R
J ||y − y0| < r} denote the ball in R

J of
radius r > 0 centered at the nominal parameter value y0.

Then, for f ∈ C2(Br(y0);C
1(R;Rd)) with some r > 0 there holds, by Taylor’s

theorem, for every u ∈ R, and every y ∈ Br(y0)

(3.17) f(y;u) = f(y0;u) + (y − y0)
⊤(∂yf)(y0;u) +O(r2)

so that we may introduce the approximate flux function

(3.18) g(y;u) := f̄(u) + y⊤(∂yf)(y0;u)

with the nominal flux f̄(u) := f(y0;u)− y⊤0 (∂yf)(y0;u).

We remark that in Example 3.7 we did not require a structural hypothesis (apart
from differentiability at the nominal parameter vector y0) any particular functional
form for the dependence of the parametric flux f on the parameter vector y. The
approximate flux g(y;u) in (3.18), on the other hand, depends on y in an affine
fashion.

Example 3.8. (Karhunen–Loève expansion of bounded random flux) Consider a
bounded random flux f(ω;u) in the sense of Definition 3.3. By Lemma 3.4, its
covariance function Cov[f ] is well-defined; for 0 < R < ∞ we denote by CR

f the

integral operator with bi-Lipschitz kernel Cov[f ](u, v), defined on L2(−R,R) by

(3.19) CR
f [Φ](u) :=

∫

|v|≤R

Cov[f ](u, v)Φ(v)dv .

We remark that CR
f describes the covariance structure of the random flow on the

bounded set [−R,R] of states: as it is well-known from the theory of determin-
istic scalar conservation laws, given initial data u0 ∈ L∞(Rd), by the a-priori
bound (3.11) the unique entropy solution S(t)u0 of (3.1) - (3.3) will take values
in [−‖u0‖L∞(Rd), ‖u0‖L∞(Rd)]. For random flux and random initial data, therefore,
choosing

(3.20) R > ess sup
ω∈Ω

‖u0(ω; ·)‖L∞(Rd)

will ensure that CR
f will “capture” all possible states, P-almost surely, for the class

of initial data under consideration.
For every positive finite constant R, the integral operator Cf is a compact, self-

adjoint operator on L2(−R,R). By the spectral theorem, it admits for every fixed
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value 0 < R < ∞ a sequence (λR
j ,Φ

R
j )j≥1 of real eigenvalues λR

j , which assume
enumerated in decreasing magnitude and repeated according to multiplicity, which
accumulate only at zero, and a corresponding set ΦR

j of eigenfunctions; to exlude

trivial degeneracies, we shall assume throughout that the sequence (ΦR
j )j≥1 is a

complete, orthonormal base of L2(−R,R).
It follows from the continuous differentiability (3.15) of covariance function of

the random flux, Cov[f ], and from the eigenvalue equation

(3.21) (CR
f ΦR

j )(u) = λR
j Φ

R
j (u) , |u| ≤ R ,

that ΦR
j ∈ C1([−R,R];Rd): for any u, u′ ∈ [−R,R], there holds by Lemma 3.4 and

by the eigenvalue equation (3.21)

∣∣ΦR
j (u)− ΦR

J (u
′)
∣∣ = 1

λR
j

∣∣∣
∫ R

−R

(Cov[f ](u, v)− Cov[f ](u′, v)) ΦR
j (v) dv

∣∣∣

≤ 1

λR
j

sup
|v|≤R

‖Cov[f ](u, v)− Cov[f ](u′, v)‖F
√
2R

≤ 2B(f)
√
2R

λR
j

sup
|v|≤R

(∫

Ω

∥∥f(ω, v)− f̄(v)
∥∥2
2
dP(ω)

)1/2

|u− u′| .

Any bounded random flux f(ω;u) therefore admits, for every fixed 0 < R < ∞, a
Karhunen–Loève expansion

(3.22) f(ω;u) = f̄(u) +
∑

j≥1

Y R
j (ω)ΨR

j (u), |u| ≤ R ,

which converges in L2(Ω;L2(−R,R)d). We emphasize that the expansion (3.22)
is, for R > 0 as in (3.20), on the bounded subset [−R,R] of the state space R,
rather than on a physical domain of definition of the solution (compare, however,
Remark 3.9 ahead). In (3.22), the nominal flux f̄(u) = E[f(·;u)] and the sequence
(Y R

j )j≥1 is a sequence of independent random variables given by

∀j ∈ N : Y R
j (ω) :=

√
λR
j

∫

|v|<R

f(ω; v)ΦR
j (v) dv.

and

∀j ∈ N : ΨR(u) :=
1√
λR
j

ΦR
j (u).

We remark that under suitable smoothness conditions on the two-point correlation
function Cov[f ] of the random flux the convergence of the expansion (3.22) is a)
pointwise with respect to u, and b) the convergence rates increase with increasing
smoothness of Cov[f ] (see, e.g. [26]). For our ensuing numerical analysis, it will
be useful to relate the Karhunen–Loève expansion to a parametric, deterministic
representation of the random flux, in terms of the principal components of its co-
variance. To this end, let us denote by yj ∈ [−1, 1] the values of rescaled realizations

of Y R
j (ω) which we denote by Y R

j (ω). Note that |yj | ≤ 1 can always be achieved

by rescaling the functions ΨR
j in the Karhunen–Loève expansion (3.22) to functions

ΨR
j , so that (3.22) takes the form

(3.23) f(y;u) = f̄(u) +
∑

j≥1

Y R
j (ω)ΨR

j (u), |u| ≤ R , y ∈ U .
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Here, we denote (by slight abuse of notation) by f(y;u) the random flux f(ω;u)
expressed in terms of the parameters yj = Y R

j , i.e.,

(3.24) f(ω;u) = f(y;u)|
yj=Y R

j
(ω)

, |u| < R .

By (3.23), we associate the parametric, deterministic representation

(3.25) f(y;u) = f̄(u) +
∑

j≥1

yjΨR
j (u), |u| ≤ R , y ∈ U = [−1, 1]N .

We will use the parametric, deterministic form (3.25) of the flux to build determin-
istic numerical solution methods for the random scalar conservation law, instead of
sampling methods such as Monte-Carlo Methods as considered in [23, 22]. Before
doing so, we present a concrete construction of a probability distribution on the
space of all flux functions.

3.5. Probability Measure. On the parameter domain U = [−1, 1]N, we define
a probability measure as follows. Let Θ be the σ-algebra defined on U which is
generated from the sets of the form

∏∞
j=1 Sj where Sj are subintervals of [−1, 1]

and only a finite number of them are proper subsets of [−1, 1]. On the product
sigma algebra Θ, we define the product probability measure

dρ(y) := ⊗j≥1dyj/2 .

This construction renders (U,Θ, ρ) is a probability space. As the random coor-
dinates yj are by assumption independent, identically uniformly distributed, for
S =

∏∞
j=1 Sj ,

ρ(S) =

∞∏

j=1

P{ω : yj(ω) ∈ Sj} .

Remark 3.9. The Karhunen–Loève expansion (3.23) has been developed for the
spatially homogeneous random flux. In the case of spatially inhomogeneous random
flux indicated in Remark 3.5, an expansion analogous to (3.23) is available. Here,

the principal components ΨR
j depend on both, the spatial coordinate x and the state

u. The parametric, deterministic expansion then takes the form

(3.26) f(y;x, u) = f̄(x, u) +
∑

j≥1

yjΨR
j (x, u), |u| ≤ R , y ∈ U = [−1, 1]N .

3.6. Random Entropy Solution. Based on Theorem 3.1, we will now formulate
the SCL (3.1) - (3.3) for random initial data u0(ω; ·) and random flux f(ω; ·). To
this end, we denote (Ω,F ,P) a probability space. We assume given a Lipschitz
continuous random flux f(ω;u) as in Definition 3.3 and random initial data u0, i.e.,
a L1(Rd)-valued random variable which is a L1(Rd) measurable map

(3.27) u0 : (Ω,F) 7−→
(
L1(Rd), B(L1(Rd))

)
.

We assume further that

(3.28) u0(ω; ·) ∈ L∞(Rd) ∩BV (Rd) P-a.s.,

which is to say that

(3.29) P({ω ∈ Ω : u0(ω; ·) ∈ (L∞ ∩BV )(Rd)}) = 1.
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Since L1(Rd) and C1(Rd;Rd) are separable, (3.27) is well defined and we may
impose for k ∈ N the k-th moment condition

(3.30) ‖u0‖Lk(Ω;L1(Rd)) < ∞,

where the Bochner spaces with respect to the probability measure are defined in
Section 2. Then we are interested in random solutions of the random scalar con-
servation law (RSCL)

(3.31)

{
∂tu(ω;x, t) + divx(f(ω;u(ω;x, t))) = 0, t > 0,

u(ω;x, 0) = u0(ω;x),
x ∈ R

d.

Definition 3.10. A random field u : Ω ∋ ω → u(ω;x, t), i.e., a measurable mapping
from (Ω,F) to C([0, T ];L1(Rd)), is a random entropy solution of the SCL (3.31)
with random initial data u0 satisfying (3.27) - (3.30) for some k ≥ 2 and with a
spatially homogeneous random flux f(ω;u) as in Definition 3.3 that is statistically
independent of u0, if it satisfies the following,

(i.) Weak solution:
For P-a.e ω ∈ Ω, u(ω; ·, ·) satisfies the following integral identity,

(3.32)

T∫

0

∫

Rd

(
u(ω;x, t)ϕt(x, t) +

d∑

j=1

fj(ω;u(ω;x, t))
∂

∂xj
ϕ(x, t)

)
dxdt

+

∫

Rd

u0(x, ω))ϕ(x, 0) dx = 0,

for all test functions ϕ ∈ C1
0 (R

d × [0, T )).
(ii.) Entropy condition:

For any pair of (deterministic) entropy η and (stochastic) entropy flux
Q(ω; ·) i.e., η,Qj with j = 1, 2, . . . , d are functions such that η is convex
and such that Q′

j(ω; ·) = η′f ′
j(ω; ·) for all j, and for P-a.e ω ∈ Ω, u satisfies

the following inequality

(3.33)

T∫

0

∫

Rd

(
η(u(ω;x, t))ϕt(x, t) +

d∑

j=1

Qj(ω;u(ω;x, t))
∂

∂xj
ϕ(x, t)

)
dxdt

+

∫

Rd

η(u0(ω;x)ϕ(x, 0) dx ≥ 0,

for all deterministic test functions 0 ≤ ϕ ∈ C1
0 (R

d × [0, T )), P-a.s.

We remark that it is equivalent to assume that (3.33) holds for all Kružkov
entropy functions η(u) = |u− k|, where k is any constant. Therefore, throughout
what follows, we assume that η(u) = |u− k|. One main result of the present paper
is

Theorem 3.11. Consider the SCL (3.1) - (3.3) with spatially homogeneous, bounded
random flux f : Ω → C1(R;Rd) as in Definition 3.3 and with (independent of f)
random initial data u0 : Ω → L1(Rd) satisfying (3.28), (3.29) and the k-th moment
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condition (3.30) for some integer k ≥ 2. In particular, then, there exists a constant
R̄ < ∞ such that

(3.34) ‖u0(ω; ·)‖L∞(Rd) ≤ R̄ P− a.e. ω ∈ Ω.

Assume moreover that the random flux admits the representation (3.24) with (3.25)

where the Lipschitz-continuous scaled flux components ΨR
j have Lipschitz constants

BR
j such that BR := (BR

j )j≥1 ∈ ℓ1(N) with some R ≥ R̄ as in (3.34).

Then there exists a random entropy solution u : Ω ∋ ω → C([0, T ];L1(Rd)) which
is “pathwise” unique, i.e., for P − a.e.ω ∈ Ω, described in terms of a nonlinear
random mapping S(ω; t) which depends on ω only through the random flux, such
that

(3.35) u(ω; ·, t) = S(ω; t)u0(ω; ·), t > 0, P− a.e.ω ∈ Ω

such that for every k ≥ m ≥ 1, for every 0 ≤ t ≤ T < ∞, and for P-ae. ω ∈ Ω

‖u‖Lk(Ω;C(0,T ;L1(Rd))) ≤ ‖u0‖Lk(Ω;L1(Rd)) ,(3.36)

‖S(ω; t)u0(ω; ·)‖(L1∩L∞)(Rd) ≤ ‖u0(ω; ·)‖(L1∩L∞)(Rd)(3.37)

(3.38) TV (S(ω; t)u0(ω; ·)) ≤ TV (u0(ω; ·)).
and, with R̄ as in (3.34),

(3.39) sup
0≤t≤T

‖u(ω; ·, t)‖L∞(Rd) ≤ R̄ P− a.e. ω ∈ Ω .

Proof. We proceed in several steps.
Step 1: We construct candidates for random entropy solution in a “pathwise” fash-
ion, i.e., for P-a.e. realization of the random flux f(ω; ·), and for given initial con-
dition u0(ω; ·), there exists a unique entropy solution u(ω;x, t) ∈ C([0, T ];L1(Rd))
of the Cauchy problem (3.2), (3.3) with this realization of the random flux by the
existence and uniqueness result Theorem 3.1. By (3.34) and by (3.9), there holds
(3.39).

The parametric family of entropy solutions

{u(ω; ·, ·) : P− a.e. ω ∈ Ω}
is well-defined P-a.s. by Theorem 3.1 and satisfies (3.39) (which is basis for the
Monte-Carlo Finite-Volume approximation to be discussed in the next section). To
justify this, it remains to verify that this parametric family of entropy solutions
is measurable, i.e., is a random variable taking values in C([0, T ];L1(Rd)). To
do so, we first consider a parametric, deterministic family of SCLs obtained by
J-term truncations of the Karhunen–Loève parametrizations (3.22), (3.25) of the
random flux. Again by the deterministic existence result, the Cauchy problems
(3.2), (3.3) with these parametric, deterministic flux functions will admit unique
random entropy solutions.

Moreover, by Theorem 3.2, for truncation to any finite number J of terms,
these parametric, deterministic families of entropy solutions will be seen to depend
Lipschitz continuously on the parameter vectors yj ∈ [−1, 1]J , as mappings from
[−1, 1]J 7→ C([0, T ];L1(Rd)). Moreover, the Lipschitz constant will be shown to
be uniform with respect to the number J of parameters, which follows from our
assumption that BR ∈ ℓ1(N) for some R ≥ R̄ with R̄ as in (3.34).
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Step 2: Parametric, deterministic SCL. By assumption the bounded random flux in
(3.2) admits the representation (3.24) with the parametric, deterministc flux f(y;u)
as in (3.25). For any y ∈ U = [−1, 1]N, the series (3.25) converges in C1(R;Rd)
and its limit is, by the completeness of C1(R;Rd), a continuously differentiable flux
function since the sequence {fJ}J≥1 of J-term truncated partial sums, defined by

(3.40) fJ(y;u) := f̄(u) +

J∑

j=1

yjΨR
j (u), |u| ≤ R , y ∈ U

is a (uniformly w.r. to the parameter sequence y ∈ U) Cauchy sequence in
C1(R;Rd).

By Theorem 3.1, for each finite truncation order J of the parametric flux function
(3.26) there exists a unique entropy solution uJ(y;x, t) of the parametric, determin-
istic SCL (3.2), i.e., of (3.2) with the parametric, deterministic flux fJ(y;u). The
same also holds for the limiting problem, where the parametric, deterministic flux
f(y;u) is given by (3.23). We denote this parametric entropy solution by u(y;x, t).
With the corresponding parametric solution operators SJ(y; t) and S(y; t) as in
(3.4), we may write for J ∈ N

(3.41) u(y; ·, t) = S(y; t)u0(·) , uJ(y; ·, t) = SJ(y; t)u0(·) , t > 0 , y ∈ U .

By Theorem 3.2 for every y ∈ U and every t > 0

(3.42)
∥∥u(y; t)− uJ(y; t)

∥∥
L1(Rd)

≤ Ct
∑

j>J

‖ΨR
j ‖C1([−R,R];Rd) ≤ Ct

∑

j>J

BR
j

which tends to zero for J → ∞ uniformly with respect to y ∈ U due to our
assumption that BR ∈ ℓ1(N). By Theorem 3.2, in particular, by the estimate
(3.12), uJ → u in C([0, T ];L1(Rd)) as J → ∞.
Step 3: Candidate random entropy solution.

Motivated by (3.24), we define a candidate for the random entropy solution of
the SCL (3.2) with bounded random flux by setting, for every J ∈ N,

(3.43) uJ(ω;x, t) := uJ(y;x, t)|
yj=Y R

j
(ω), j=1,2,...,J

and then passing to the limit J → ∞.
Step 4: Measurability.

We verify that the mapping Ω ∋ ω → u(ω;x, t) defined in (3.43) is measurable
as a mapping from the probability space (U,Θ, ρ) introduced in Example 3.8 into the
(separable) space E = C([0, T ];L1(Rd)) equipped with its (natural) sigma algebra
of Borel sets B(E).

By Theorem 3.1, for every J ∈ N the parametric, deterministic SCL (3.2) with
the (Lipschitz) flux fJ(y;u) defined in (3.40) admits a unique parametric, deter-

ministic entropy solution uJ(y;x, t). Upon inserting here yj = Y R
j (ω) for j =

1, 2, . . . , J , the resulting random function uJ(ω;x, t) := uJ(y;x, t)|
yj=Y R

j
(ω) j=1,2,...,J

is measurable and, by uniqueness, coincides P-a.s. with the unique entropy solu-
tion of the SCL (3.2), with the random flux fJ(ω;u) := fJ(y;u)|

yj=Y R
j

(ω) j=1,2,...,J
.

Since the sequence {fJ}J≥1 of J-term truncations of the Karhunen–Loève expan-
sion (3.25) is Cauchy in C1(R;Rd) uniformly with respect to the parameter vector
y ∈ U = [−1, 1]N, the continuous dependence result Theorem 3.2 implies that the
corresponding sequence {uJ(y;x, t)}J≥1 of (unique) entropy solutions is likewise
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Cauchy in C([0, T ];L1(Rd)). Since C([0, T ];L1(Rd)) is a (separable) Banach space,
for each y ∈ U there exists a unique limit ū(y; ·, ·) ∈ C([0, T ];L1(Rd)), and the
dependence of this limit on the parameter vector y ∈ U (equipped with the ℓ∞(N)
norm) is Lipschitz. We may therefore define

ū(ω;x, t) := ū(y;x, t)|yj=Y R
j

(ω) , j≥1 .

Since ū(y;x, t) is the uniform limit (with respect to y ∈ U) in E = C([0, T ];L1(Rd))
of the sequence {uJ}J≥1, the function ū(ω;x, t) is the uniform in E strong limit
of a family of measurable random variables taking values in E, therefore ū(ω;x, t)
is strongly measurable as mapping from (Ω,F) into (E,B(E)), hence a random
function.
Step 5: Verification of the entropy condition.

Having verified measurability of ū(ω;x, t), it remains to show that it satisfies
the entropy conditions (3.32), (3.33), P-a.s. To this end, we first observe that for
every J < ∞, by construction of the approximate parametric solutions uJ(y;x, t),
these solutions satisfy the entropy conditions (3.32), (3.33) pointwise for every y ∈
[−1, 1]J . Therefore, the random functions uJ(ω;x, t) := uJ(y;x, t)|

yj=Y R
j

(ω) j=1,2,...,J

satisfy (3.32), (3.33), P-a.s., for every J . Since the entropy conditions (3.32), (3.33)
are stable under strong limits in the space E = C([0, T ];L1(Rd)), it follows that the
limiting functions ū(y;x, t) and ū(ω;x, t) satisfy (3.32), (3.33) for all y ∈ U resp.
P-a.s.
Step 6: Identification ū(ω; ·, ·) = u(ω;x, t).

By the uniqueness of the entropy solution, for every J < ∞ the random function
uJ(ω;x, t) coincides, in the space E = C([0, T ];L1(Rd)), P-a.s. with the “pathwise”
entropy solutions of the SCL (3.2), (3.3) with truncated flux functions fJ(y;u) in
(3.40). The stability under passage to the limit in E and the uniqueness of entropy
solutions complete the proof. �

Theorem 3.11 generalizes the existence result of [21] where the flux function in
(3.2) was assumed to be deterministic. It ensures the existence of a unique random
entropy solution u(ω;x, t) with finite k-th moments for bounded random flux and
for independent random initial data u0 provided that u0 ∈ Lk(Ω,F ,P;L1(Rd)).

4. Multilevel Monte Carlo Finite Volume Method

4.1. Monte-Carlo Method. The Monte-Carlo Method is a “discretization” of
the SCL random data f(ω;u), u0(ω;x) as in (3.27) - (3.29) with respect to ω. We
also assume (3.30), i.e., the existence of k-th moments of u0 for some k ∈ N, to be
specified later. We shall be interested in the statistical estimation of the first and
higher moments of u, ie., of Mk(u) ∈ (L1(Rd))(k). For k = 1 we obtain the mean
field M1(u) = E[u]. The MC approximation of E[u] is defined as follows: given M
independent, identically distributed samples ûi

0, i = 1, . . . ,M , of initial data, the
MC estimate of E[u(·; ·, t)] at time t is given by

(4.1) EM [u(·, t)] := 1

M

M∑

i=1

ûi(·, t)
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where ûi(·, t) denotes the M unique entropy solutions of the M Cauchy Problems

(3.1) - (3.3) with initial data ûi
0 and flux samples f̂ i(·). We observe that by

(4.2) ûi(·, t) = Ŝi(t) ûi
0

we have from (3.8) - (3.10) for every M and for every 0 < t < ∞, by (3.10),

(4.3)

‖EM [u(ω; ·, t)]‖L1(Rd) =
∥∥∥ 1

M

M∑

i=1

Ŝi(t)ûi
0(·;ω)

∥∥∥
L1(Rd)

≤ 1

M

M∑

i=1

∥∥∥Ŝi(t) ûi
0(ω; ·)

∥∥∥
L1(Rd)

≤ 1

M

M∑

i=1

∥∥ûi
0(ω; ·)

∥∥
L1(Rd)

.

Using the i.i.d. property of the samples {ûi
0}Mi=1 of the random initial data u0,

Lemma 2.1 and the linearity of the expectation E[·], we obtain the bound

(4.4) E

[
‖EM [u(·; ·, t)]‖L1(Rd)

]
≤ E

[
‖u0‖L1(Rd)

]
= ‖u0‖L1(Ω;L1(Rd)) < ∞.

As M → ∞, the MC estimates (4.1) converge in L2(Ω;C([0, T ];L1(Rd))) and the
convergence result from [21] holds as well.

Theorem 4.1. Assume that in the SCL (3.1) - (3.3) the random initial data u0

satisfies

(4.5) u0 ∈ L2(Ω;L1(Rd))

and that the flux f(ω;u) is a random flux in the sense of Definition 3.3. Assume
further that (3.28), (3.29) hold.

Then the MC estimates EM [u(·, t)] in (4.1) converge as M → ∞, to M1(u(·, t)) =
E[u(·, t)] and, for any M ∈ N, 0 < t < ∞, we obtain the error bound

(4.6) sup
0<t<T

‖E[u(·, t)]− EM [u(·, t)]‖L2(Ω;L1(Rd)) ≤ 2M−1/2 ‖u0‖L2(Ω;L1(Rd)) .

4.2. Finite Volume Method. So far, we considered the MCM under the assump-
tion that the entropy solutions ûi(ω;x, t) = S(ω; t) ûi

0(ω;x) for the Cauchy prob-
lem (3.1) - (3.3) with the random flux samples f(ωi;u) and initial data samples
ûi
0 = u0(ωi;x) are available exactly. In practice, however, numerical approxima-

tions of S(t)ûi
0 must be computed by FVM. In [21], we analyzed the error of the

combined MC-FVM approximations. We recapitulate the classical Kuznetsov type
error bounds for first order FVM for the deterministic SCL (3.2); these will be
required for the convergence statement of the MLMC FVM and also for parametric
collocation FVM in the subsequent chapters.

The FVM is based on a time step ∆t > 0 and a triangulation T of the spatial
domain D ⊂ R

d of interest. Here, a triangulation T will be understood as a set of
open, convex polyhedra K ⊂ R

d with plane faces such that the following conditions
hold: the triangulation T is shape regular: if K ∈ T denotes a generic volume, we
define the volume parameter

(4.7) ρK = ρ(K) = max{diam(Br) : Br ⊂ K}
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i.e., the maximum diameter of balls Br of radius r > 0 that can be inscribed into
volume K for K ∈ T and define, in addition, for a generic mesh T , the shape
regularity constants (where ∆xK := diamK)

(4.8) κ(T ) := sup{∆xK/ρ(K) : K ∈ T }, T ∈ M .

We also denote by ∆x(T ) := max{∆xK : K ∈ T } the mesh width of T . For any
volume K ∈ T , we define the set N (K) of neighboring volumes

(4.9) N (K) := {K ′ ∈ T : K ′ 6= K ∧measd−1(K ∩K ′) > 0} .

We assume that the triangulation T are regular in the sense that there exists
a constant B > 0 independent of ∆x(T ) such that the support size of the FV
“stencil” at any element K ∈ T is uniformly bounded i.e,

(4.10) σ(T ) := sup
K∈T

#(N (K)) ≤ B .

We introduce the CFL-number

(4.11) λ = ∆t/∆x(T ) .

where we implied a uniform discretization in time with constant time step ∆t and
set tn = n∆t. The CFL constant λ is determined by a standard CFL condition
(see e.g. [12]) based on the maximum wave speed.

To approximate (3.1)-(3.3), we use a time-explicit, first order FV scheme on T .
It has the general form

(4.12) vn+1
K = H({vnK′ : K ′ ∈ N (K) ∪K}), K ∈ T

where H : R(2k+1)d → R, with k denoting the size of the stencil of the finite volume
scheme, is continuous and where vnK denotes an approximation to the cell average
of u at time tn = n∆t).

In our subsequent developments, we write the FVM in operator form. To this
end, we introduce the operator HT (v) which maps a sequence v = (vK)K∈T into
HT ((vK)K∈T ). Then the FVM (4.12) takes the abstract form

(4.13) vn+1 = HT (v
n), n = 0, 1, 2, . . . .

For the ensuing convergence analysis, we shall assume and use several properties of
the FV scheme (4.13); these properties are satisfied by many commonly used FVM
of the form (4.13), on regular or irregular meshes T in R

d.
To state the assumptions, we introduce further notation: for any initial data

u0(x) ∈ L1(Rd), we define the FVM approximation (v0K)K∈T by the cell averages

(4.14) v0K =
1

|K|

∫

K

u0(x) dx, where K ∈ T .

With a vector v = (vK)K∈T ∈ R
#T , we associate the piecewise constant function

vT (x, t) defined a.e. in R
d × (0,∞) by

(4.15) vT (x, t)
∣∣
K

:= vnK , K ∈ T , t ∈ [tn, tn+1) .

We denote space of all piecewise constant functions on T (i.e., the “simple” or “step”
functions on T ) by S(T ). Given any vT ∈ S(T ), we define the (mesh-dependent)
norms:

‖v‖L1(T ) =
∑

K∈T

|K| |vK | = ‖vT ‖L1(Rd) ,(4.16)
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‖v‖L∞(T ) = sup
K∈T

|vK | = ‖vT ‖L∞(Rd) .(4.17)

We denote the meshwidth of triangulation T by

(4.18) ∆x(T ) = sup{diam(K) : K ∈ T } .

We shall assume the following properties of the FVM schemes used in the MC-FVM
algorithms.

Assumption 4.2. We shall assume that the abstract FV scheme (4.13) satisfies

1. Stability: ∀t ≥ 0

‖vT (·, t)‖L∞(Rd) ≤ ‖vT (·, 0)‖L∞(Rd) ,(4.19)

‖vT (·, t)‖L1(Rd) ≤ ‖vT (·, 0)‖L1(Rd) ,(4.20)

TV (vT (·, t)) ≤ TV (vT (·, 0)),(4.21)

2. Lipschitz continuity: For any two sequences v = (vK)K∈T , w = (wK)K∈T

we have

(4.22) ‖HT (v)−HT (w)‖L1(T ) ≤ ‖v − w‖L1(T )

or, equivalently,

(4.23) ‖HT (vT )−HT (wT )‖L1(Rd) ≤ ‖vT − wT ‖L1(Rd) .

3. Convergence: If the CFL bound λ = ∆t/∆x(T ) is kept constant as ∆x(T ) →
0, the approximate solution vT (x, t) generated by (4.12) - (4.15) converges to the
unique entropy solution u of the scalar conservation laws (3.1) - (3.3) at rate 0 <
s ≤ 1, i.e., there exists C > 0 independent of ∆x such that, as ∆x → 0, for every
t such that, for (∆t)s ≤ t ≤ T , it holds

(4.24) ‖u(·, t)− vT (·, t)‖L1(Rd) ≤ ‖u0 − v0T ‖L1(Rd) + C tTV (u0)∆ts .

Let us mention that (4.19), (4.20) and (4.21) do hold for monotone schemes
on Cartesian meshes, see [12, 18]. Furthermore, the analysis of Kuzsnetsov, see
e.g. [9], implies that the optimal convergence rate is s = 1/2 in (4.24). In case of
monotone schemes on general finite volume meshes, one might lose control of the
total variation of the approximations, and the convergence rate, i.e., the s in (4.24)
drops accordingly, see [5].

Let us also mention that the work for the realization of scheme (4.12) - (4.15)
on a bounded domain D ⊂ R

d as (using the CFL stability condition (4.11), i.e.,
∆t/∆x(T ) ≤ λ = const.)

(4.25) WorkT = O
(
∆t−1 ∆x−d

)
= O

(
∆x−(d+1)

)
.

4.3. MC-FVM. In the Monte Carlo Finite Volume Methods (MC-FVMs), we
combine MC sampling of the random initial data with the FVM (4.13). In the
convergence analysis of these schemes, we shall require the application of the FVM
(4.13) to random initial data u0 ∈ L∞(Ω;L1(Rd)). Given a draw u0(x;ω) of u0,
the FVM (4.13) - (4.15) defines a family vT (x, t;ω) of random grid functions.
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Proposition 4.3. Consider the FVM (4.13) - (4.15) for the approximation of the
entropy solution corresponding to a draw u0(ω;x) of the random initial data and a
draw f(ω;u) of the random flux.

Then, if the FVM satisfies Assumption 4.2, the random grid functions Ω ∋ ω 7→
vT (ω;x, t) defined by (4.11) - (4.15) satisfy, for every 0 < t < ∞, 0 < ∆x < 1, and
every k ∈ N ∪ {∞}, the stability bounds

∥∥vT (·; ·, t)
∥∥
Lk(Ω;L∞(Rd))

≤ ‖u0‖Lk(Ω;L∞(Rd)) ,(4.26)
∥∥vT (·; ·, t)

∥∥
Lk(Ω;L1(Rd))

≤ ‖u0‖Lk(Ω;L1(Rd)) .(4.27)

These bounds hold for all ω. We also have the error bounds

(4.28)
∥∥u(·; ·, t)− vT (·; ·, t)

∥∥
Lk(Ω;L1(Rd))

≤
∥∥u0(·; ·)− v0T (·; ·)

∥∥
Lk(Ω;L1(Rd))

+ Ct∆ts ‖TV (u0(·; ·))‖Lk(Ω) .

We next define and analyze the MC-FVM scheme. It is based on the straight-
forward idea of generating, possibly in parallel, independent samples of the random
initial data and then, for each sample of the random initial data, to perform one
FV simulation. The error of this procedure is bound by two contributions: a (sta-
tistical) sampling error and a (deterministic) discretization error. We express the
asymptotic efficiency of this approach (in terms of overall error versus work). It
will be seen that the efficiency of the MC-FVM is, in general, inferior to that of
the deterministic scheme (4.13). The present analysis will constitute a key tech-
nical tool in our subsequent development and analysis of the multilevel MC-FVM
(“MLMC-FVM” for short) which does not suffer from this drawback.

4.3.1. Definition of the MC-FVM Scheme. We consider once more the initial value
problem (3.1) - (3.3) with random initial data u0 satisfying ((3.27) - (3.30) for
sufficiently large k ∈ N (to be specified in the convergence analysis). The MC-
FVM scheme for the MC estimation of the mean of the random entropy solutions
then consists in the following:

Definition 4.4. (MC-FVM Scheme) Given M ∈ N, generate M i.i.d. samples
{ûi

0}Mi=1 of initial data. Let {ûi(·, t)}Mi=1 denote the unique entropy solutions of the
scalar conservation laws (3.1) - (3.3) for these data samples, i.e.,

(4.29) ûi(·, t) = S(t)ûi
0(·), i = 1, . . . ,M.

Let HT (·) be a FVM scheme (4.12) - (4.15) satisfying Assumption 4.2. Then the
MC-FVM approximations of Mk(u(·, t)) are defined as statistical estimates from
the ensemble

(4.30) {v̂iT (·, t)}Mi=1

obtained by (4.13) from the FV approximations v̂iT (·, 0) of the initial data {ûi
0(x)}Mi=1

samples by (4.14): specifically, the first moment of the random solution u(ω; ·, t) at
time t > 0, is estimated as

(4.31) M1(u(·, t)) ≈ EM [vT (·, t)] :=
1

M

M∑

i=1

v̂iT (·, t).
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4.3.2. Convergence Analysis of MC-FVM. We next address the convergence of
EM [vT ] to the mean E(u) .

Theorem 4.5. Assume that

(4.32) u0 ∈ L∞(Ω, L1(Rd))

and that (3.27) - (3.29) hold. Assume further that we are given a FVM (4.12)
- (4.15) such that (4.11) holds and such that Assumption 4.2 is satisfied; in par-
ticular, assume that the deterministic FVM scheme converges at rate s > 0 in
L∞([0, T ];L1(Rd)) for every 0 < T < ∞. Then the MC estimate EM [vT (·, t)]
defined in (4.31) satisfies, for every M , the error bound

(4.33)

‖E[u(·, t)]− EM [vT (ω; ·, t)]‖L2(Ω;L1(Rd))

≤ C
[
M− 1

2 ‖u0‖L2(Ω;L1(Rd))

+
∥∥u0 − v0T

∥∥
L∞(Ω;L1(Rd))

+ t∆ts ‖TV (u0(ω; ·))‖L∞(Ω)

]

where C > 0 is independent of M and of ∆t as M → ∞ and as λ∆x = ∆t ↓ 0.
The convergence rate ∆xs > 0 is as in (4.24).

Theorem 4.5 was proved (for deterministic flux functions) in [?]. The proof
for random flux functions is a straightforward modification of the corresponding
arguments presented in [?].

4.3.3. Work estimates. For computational purposes, we have to assume that the
computational domain D ⊂ R

d is bounded and suitable boundary conditions are
specified on ∂D. Noting that in a bounded domain D, the work for one time step
(4.12), (4.13) is of order O

(
∆x−d

)
(with O (·) depending on the size of the domain),

we find from the CFL condition (4.11) that the total computational work to obtain
{vT (·, t)}0<t≤T in D is by (4.25)

(4.34) Work(T ) = O
(
∆x−d−1

)
, as λ∆x = ∆t ↓ 0,

which implies that the work for the computation of the MC estimate EM [vT (·, t)]
is

(4.35) Work(M, T ) = O
(
M∆x−d−1

)
, as ∆t = λ∆x ↓ 0,

so that we obtain from (4.33) the convergence order in terms of work: to this end
we equilibrate in (4.33) the two bounds by choosing M−1/2 ∼ ∆ts, i.e., M = ∆t−2s.
Inserting in (4.35) yields

(4.36) Work(T ) = O
(
∆t−2s ∆x−(d+1)

)
(4.11)
= O

(
∆x−(d+1)−2s

)

so that we obtain from (4.33)

(4.37) ‖E[u(·, t)]− EM [vT (·, t)]‖L2(Ω;L1(Rd)) ≤ C∆ts ≤ C(Work(T ))−s/(d+1+2s) .

We sum up the foregoing considerations.

Remark 4.6. (Work vs. accuracy of MC-FVM) Let us add some comments on the
exponent in (4.37). In the deterministic FV scheme, we obtain

Work(T ) = O
(
∆t−1 ∆x−d

) (4.11)
= O

(
∆x−(d+1)

)
,

and the error in terms of work bound (4.24) becomes
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(4.38)
∥∥u(·, t)− vT (·, t)

∥∥
L1(Rd)

≤
∥∥u0 − v0T

∥∥
L1(Rd)

+ CtTV (u0) (Work(T ))−s/(d+1) .

Assuming exact representation of the initial data, we obtain the exponent −s/(d+1)
for the deterministic FVM as compared to −s/(d + 1 + 2s) for the MC-FVM. We
see in particular in the (typical) situation of low order s of convergence and space
dimension d = 2, 3 a considerably reduced rate of convergence of the MC-FVM, in
terms of accuracy vs. work, is obtained. On the other hand, for high order schemes
(i.e., when s ≫ d + 1) the MC error dominates and we recover in (4.38) the rate
1/2 in terms of work which is typical of MC methods.

4.4. Multilevel MC-FVM. Next, we present and analyze a scheme that allows us
to achieve almost the accuracy versus work bound (4.38) of the deterministic FVM
also for the stochastic initial data u0 and stochastic flux function f , rather than
the single level MC-FVM error bound (4.37). The key ingredient in the Multilevel
Monte Carlo Finite Volume (MLMC-FVM) scheme is simultaneous MC sampling
on different levels of resolution of the FVM, with level dependent numbers Mℓ of
MC samples. To define these, we introduce some notation.

4.4.1. Notation. The MLMC-FVM is defined as a multilevel discretization in x and
t with level dependent numbers Mℓ of samples. To this end, we assume we are
given a family {Tℓ}∞ℓ=0 of nested triangulations of Rd such that the mesh width

(4.39) ∆xℓ = ∆x(Tℓ) = sup{diam(K) : K ∈ Tℓ} = O
(
2−ℓ∆x0

)
, ℓ ∈ N0,

where K denotes a generic finite volume cell K ∈ T . We also assume the family
M = {Tℓ}∞ℓ=0 of meshes to be shape regular; if K ∈ Tℓ denotes a generic cell, we
recall, for a generic mesh T ∈ M, the shape regularity constants κ(T ) defined in
(4.8). We say that the family M of meshes is κ-shape regular, if there exists a
constant κ(M) < ∞ such that with ρK denoting the diameter of the largest ball
insribed into K

(4.40) κ(M) = sup
T ∈M

κ(T ) = sup
T ∈M

sup
K∈T

diam(K)

ρK
.

For a mesh hierarchy M = {Tℓ}∞ℓ=0, we denote

(4.41) ∆xℓ := ∆x(Tℓ), Tℓ ∈ M, ℓ = 0, 1, . . . .

4.4.2. Derivation of MLMC-FVM. As in plain MC-FVM, our aim is to estimate,
for 0 < t < ∞, the expectation (or “ensemble average”) E[u(·, t)] of the random
entropy solution of the SCL (3.1) - (3.3) with random initial data u0(ω; ·), ω ∈ Ω,
satisfying (3.27) - 3.30 for sufficiently large values of k (to be specified in the sequel).
As in the previous section, E[u(·, t)] will be estimated by replacing u(·, t) by a FVM
approximation. For ℓ ∈ N0, we denote in the present section the FV approximation
vT by vℓ(·, t) on mesh Tℓ ∈ M, where we assume that the CFL condition (4.11)
takes the form

(4.42) ∆tℓ ≤ λ∆xℓ, ℓ = 0, 1, 2, . . . ,

with a constant λ > 0 which is independent of ℓ.
By the stability of the FVM scheme, we generate a sequence {vℓ(·, t)}∞ℓ=0 of

stable FV approximations on triangulation Tℓ for time steps of sizes ∆tℓ which
satisfy the CFL condition (4.42) with respect to grid Tℓ ∈ M. We set in what
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follows v−1(·, t) := 0. Then, given a target level L ∈ N of spatial resolution, we
may use the linearity of the expectation operator to write

(4.43) E[vL(·, t)] = E

[ L∑

ℓ=0

(vℓ(·, t)− vℓ−1(·, t))
]
.

We next estimate each term in (4.43) statistically by a multi-level Monte-Carlo
method with a level-dependent number of samples, Mℓ; this gives the MLMC-FVM
estimator

(4.44) EL[u(·, t)] =
L∑

ℓ=0

EMℓ
[vℓ(·, t)− vℓ−1(·, t)]

where EM [vT (·, t)] is as in (4.31), and where vℓ(·, t) denotes the grid-function on
mesh Tℓ, computed under the assumption (4.42), i.e., that the time steps ∆tℓ are
chosen subject to the CFL constraint (4.11).

4.4.3. Convergence Analysis. The MLMC-FVM mean field error

(4.45)
∥∥E[u(·, t)]− EL[u(·, t)]

∥∥
L2(Ω;L1(Rd))

for 0 < t < ∞ and L ∈ N was analyzed in [21] for the SCL (3.2) with random
initial data and deterministic flux. Analogous results hold for the more general
SCL with random flux (3.31): The choice of the sample sizes {Mℓ}∞ℓ=0 such that,
for every L ∈ N, the MLMC error (4.45) is of order (∆tL)

s, where s is the order of
convergence in the Kuznetsov type error bound (4.24). The principal issue in the
design of MLMC-FVM is the optimal choice of {Mℓ}∞ℓ=0 such that, for each L, an
error (4.45) is achieved with minimal total work given by (based on (4.35))

(4.46) WorkL =
L∑

ℓ=0

MℓO
(
∆x−d−1

ℓ

)
= O

( L∑

ℓ=0

Mℓ∆x−d−1
ℓ

)
.

As in [?], we arrive at the error bound

‖(vℓ − vℓ−1)(·, t)‖L2(Ω;L1(Rd)) ≤ C
{
t ‖TV (u0)‖L2(Ω) +∆xs

ℓ ‖u0‖L2(Ω;W s,1(Rd))

}
.

Summing this error bound over all discretization levels ℓ = 0, . . . , L, we obtain

Theorem 4.7. Assume (3.1) - (3.3), (3.27) - (3.30) and (4.40) - (4.42). Then, for
any sequence {Mℓ}∞ℓ=0 of sample sizes at mesh level ℓ, we have for the MLMC-FVM
estimate EL[u(·, t)] in (4.44) the error bound

(4.47)

∥∥E[u(·, t)]− EL[u(·, t)]
∥∥
L2(Ω;L1(Rd))

≤ C
{
t∆xs

L ‖TV (u0)‖L1(Ω) +∆xs
L ‖u0‖L∞(Ω;W s,1(Rd))

}

+ C
{ L∑

ℓ=0

M
− 1

2

ℓ ∆xs
ℓ

}{
‖u0‖L2(Ω;W s,1(Rd)) + t ‖TV (u0)‖L2(Ω)

}
,

where C is a constant independent of L and s.

Theorem 4.7 was proved (for deterministic flux functions) in [21]. The proof
for random flux functions is a straightforward modification of the corresponding
arguments presented in [21]. It is the basis for an optimization of the numbers Mℓ

of MC samples across the mesh levels which yields the same result for random flux
and random initial data, as for the case of deterministic flux and random initial
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data considered in [21]. The level dependent selection of the Monte Carlo sample
sizes Mℓ proposed in [21] is based on the last term in the error bound (4.47): we
select in (4.47) the Mℓ such that as ∆t ↓ 0, all terms equal the Kusznetsov bound
∆tsL in (4.24) at the finest level L resulting in

(4.48) M
− 1

2

ℓ ∆xs
l = Ĉ∆xs

L, ℓ = 0, . . . , L− 1.

Here, Ĉ is some positive integer constant that is independent of l and of L.
As in [21] and under the assumption that s < d+1

2 , we obtain the following error
estimate in terms of work
(4.49)∥∥E[u(·, t)]− EL[u(·, t)]

∥∥
L1(Rd)

≤ C (Work(ML; TL))−s/(d+1)
log (Work(ML; TL))

5. Stochastic Collocation FVM

We now describe an alternative, deterministic approach to the numerical solution
of the SCL with random flux. It is based on deterministic collocation approximation
of the parametric, deterministic SCL

(5.1) ∂tu(y;x, t) + divx(f(y;u(y;x, t))) = 0 for (x, t) ∈ R
d × [0, T ] and y ∈ U ,

where the parametric flux function f(y;u) is as in (3.25). We note that the pa-
rameter space U = [−1, 1]N is, in general, infinite-dimensional. Moreover, by The-
orem 3.11 the parametric SCL (5.1) admits, for every y ∈ U , a unique random
entropy solution u(y;x, t). The parametric SCL (5.1) is equivalent to the RSCL
(3.31) via the identification

(5.2) u(ω;x, t) = u(y;x, t)|yj=Y R
j

(ω).

5.1. Regularity of the random entropy solution. Given a finite Karhunen–
Loève truncation index J ∈ N and t > 0, the random entropy solution uJ(·, t;ω) can
be determined, according to (3.43), by the numerical solution of the deterministic,
parametric SCL

(5.3)
∂uJ

∂t
+ divxf

J(y;u) = 0 in R
d × R+ and y ∈ U .

To quantify the parameter dependence of uJ we fix y ∈ U and denote, for 1 ≤ j ≤
J < ∞, by ỹ(j) a perturbation of y in the jth component only, i.e., y

(j)
i = yi for all

i 6= j. Then

∀u ∈ R
d : fJ(ỹ(j);u)− fJ(y;u) = (ỹj − yj)ΨR

j

and by Theorem 3.2 estimate (3.12), we find the a-priori bound

∀t > 0, y ∈ U :
∥∥∥uJ(ỹ(j); ·, t)− uJ(y; ·, t)

∥∥∥
L1(Rd)

≤ Ct |yj − ỹj |BR
j

which implies that the random entropy solution depends Lipschitz-continuously on
the parameter yj and that

(5.4) ∀t > 0 :
∥∥∂yj

uJ(·; ·, t)
∥∥
L∞([−1,1]J ;L1(Rd))

≤ CtBR
j , j = 1, 2, . . . , J .

Here C > 0 depends only on u0 and the Lipschitz constant of the random flux, but
is independent of j, J, t.

We remark that estimate (5.4) could be used to scale the meshwidths in coor-
dinate yj in the sFVM, in terms of the (bounds on) principal components of the
flux.
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5.2. Stochastic Collocation. We now propose a collocation type approximation
of the parametric SCL (5.3). Since we work under mere Lipschitz continuity of
the random flux, the dependence of the entropy solution of (5.3) on the parameter
vector y is, in general, not better than Lipschitz; in particular, under the Lipschitz
assumptions on the random flux, we do not have at our disposal in general a so-
called “mixed regularity” of the parametric entropy solution which is necessary for
high convergence rates of sparse tensor collocation approximations. We therefore
now propose and analyze an anisotropic, full-tensor collocation approximation in
the parameter domain [−1, 1]J for Lipschitz functions with a sequence B = (Bj)j≥1

of coordinate-wise Lipschitz constants Bj which we assume to be enumerated in
decreasing magnitude, i.e.,

(5.5) 1 = B1 ≥ B2 ≥ · · · . , B = (Bj)j≥1 ∈ ℓ1(N) .

We start the construction of our interpolation in one dimension. Consider a stepsize
h > 0 and a function g ∈ C1([(−h, h]). Then the constant “interpolant” Ih[g] = g(0)
of g satisfies for every x ∈ [−h, h]:

|g(x)− Ih[g]| = |g(x)− g(0)| ≤ 2hC1(g).

Here, C1(g) denotes the Lipschitz constant of g. Taking the supremum over x ∈
[−h, h] in this inequality, we find

(5.6) ‖g − Ih[g]‖L∞(−h,h) ≤ 2C1(g)h.

Translation of this estimate implies

Lemma 5.1. Assume that g ∈ C1([−1, 1]). For h = 1/N with N ∈ N denote by
Ih[g] the step-function approximation of g obtained by collocating g at the midpoints
of the N subintervals of [−1, 1] of length 2h, i.e., at −1+(2j−1)h, j = 1, 2, . . . , N .
The operator Ih[·] is bounded

(5.7) ∀g ∈ C1([−1, 1]) ∀h : ‖Ih[g]‖L∞(−1,1) ≤ ‖g‖L∞(−1,1) ,

and we have the error estimate

(5.8) ‖g − Ih[g]‖L∞(−1,1) ≤ h ‖g′‖L∞(−1,1) .

In the multivariate domain [−1, 1]J with J > 1, we interpolate analogously, but
in an anisotropic fashion: to this end, we denote by Ij the univariate interpolation
operator Ih from Lemma 5.1, applied to a function g(y) ∈ C1([−1, 1]J) with respect
to coordinate yj , for 1 ≤ j ≤ J and with stepsize hj . We can and will assume in the
following that the stepsizes hj can differ between coordinate directions. We also
denote by h = (h1, .., hJ) the vector of coordinate-wise stepsizes, and by

(5.9) Ih =
⊗

1≤j≤J

Ij

the interpolation operator on the axiparallel, tensor product interpolation grid with
stepsizes h in [−1, 1]J . It will be convenient at times to interpolate functions g(y)
of countably many variables y = (yj)j≥1. In this case, we assume that only finitely
many stepsizes hj in h are strictly less than 1, say h1, h2, .., hJ for some J ∈ N,
and that hj = 1 for all j > J . Then, for all parameters j > J , we understand
collocation with respect to co-ordinate yj to require only one collocation point given
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by yj = 0. With this understanding, the number of interpolation points is still
finite and given by

(5.10) N(h) =
∏

j≥1

h−1
j

where the formally infinite product is well-defined as

(5.11) ∀j > J : hj = 1 ⇒ ∀j > J : yj = 0 .

We now present an error bound for Ih.
Lemma 5.2. Assume that g ∈ C1(U) , U = [−1, 1]N, and that the sequence B =
(Bj)j≥1 of coordinate-wise Lipschitz constants defined by

Bj = sup
(yj)j≥1∈U

|(∂1
yj
g)(y1, y2, ...)|, j = 1, 2, ...,

of g satisfies 1 = B1 ≥ B2 ≥ · · · and B ∈ ℓ1(N).
Then for any vector h of stepsizes hj ∈ (0, 1] with hj = 1 for all j > J for some

J ∈ N there holds the error bound

‖g − Ih[g]‖L∞(U) ≤
∑

j≥1

hjBj .

This is proved by using the univariate error bound (5.8) and induction on the
number of dimensions.

The stochastic collocation approximation of the random SCL (3.31) will be based
on applying the interpolation operator Ih to the (or equivalently by (5.2)) paramet-
ric SCL (5.3). Note that (5.3) is formally obtained by truncating the parametric
random flux f(y;u) in (3.25) to J terms. However, it is easily verified that the
interpolation Ih achieves the J-term truncation by (5.11). Application of the ten-
sor product interpolant Ih defined in (5.9) to the parametric SCL (5.3) is effected
by solving it numerically with the FVM from Section 4.2 such that (4.11) - (4.15)
hold, with the same mesh T and identical timestep ∆t for each collocation point
(y1, . . . , yJ , 0, 0, . . .).

Under Assumption 4.2, this choice of collocation points and time steps results
in a discretization error bound (4.24) which is uniform for all collocation points
and in work O(∆x−d−1) per collocation point. To estimate the total complexity of
this procedure, it remains to multiply by the number N(h) in (5.10) of collocation
points. We next estimate N(h). To do so, we recall (5.4) and fix a tolerance
0 < h ≤ 1. We equilibrate the coordinate contributions to the error bound by
choosing Bj = CtBR

j and by requiring

∀j ≥ 1 : h = hjBj = CtBR
j hj .

Based on Assumption 4.2 we choose h = ∆xs. This implies

(5.12) hj := h/BR
j ∧ 1 ⇒ h−1

j = 1 ∧ h−1BR
j , j ≥ 1.

Since the sequence (BR
j )j≥1 is related to the covariance function of the random flux,

it is decreasing to zero with rate which depends on the smoothness of this covariance
as a function of the states u, u′. We analyze complexity under two scenarios: i)
exponential decay: BR

j = exp(−b̄j) and ii) algebraic decay: BR
j = j−β for j ≥ 1

and some β > 1. In case i) we find from (5.12) that

hj = 1 for j > J(h;B) = |log h| /b̄ .
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Inserting this into (5.10) we find that

N(h) =
∏

1≤j≤J

h−1 exp
(
−b̄j

)
= h−J exp

(
−b̄

J∑

j=1

j
)
∼ exp

(
J |log h| − b̄J2/2

)
.

Using J = |log h| /b̄ we find in case i) (exponential Karhunen–Loève eigenvalue
decay)

N(h) ∼ exp
(
| log h|2/2b̄

)
.

In case ii), a similar analysis using Stirling’s formula yields

N(h) ∼ exp
(
βh−1/β

)
.

These bounds indicate that in both cases the curse of dimensionality is present, but
also that large parameters b̄ and β indicate a weak dependence on the dimension
as the discretization parameter h ↓ 0.

6. Numerical Experiments

Next, we test both the Multi-level Monte Carlo (MLMC) and the Stochastic
collocation finite volume (SFV) methods, developed in the last sections with a
series of numerical tests.

6.1. One-dimensional case. To this end, we consider the following one-dimensional
scalar conservation law:

∂u

∂t
+

∂f(ω;u)

∂x
= 0, x ∈ (0, L), t > 0;(6.1)

u(x, 0) = u0(x),(6.2)

with random flux function,

(6.3) f(ω;u) =
u2

2
+ δ

(∑

j≥1

Yj(ω)
√

λjΦj(u)
)
,

where Φj(u) and λj are the eigenfunctions and eigenvalues of an integral operator
defined on D = [−R,R] by a covariance kernel CY (u1, u2), i.e,

∫

D

CY (u1, u2)Φ(u1) du1 = λΦ(u2) , u2 ∈ D .

For definiteness, we choose the following exponential covariance kernel,

CY (u1, u2) = σ2
Y e

−|u1−u2|/η,

the corresponding eigenvalues and eigenfunctions are given by,

(6.4) λj =
2ησ2

Y

η2w2
j + 1

, Φj(u) =
1√

(η2w2
j + 1)L/2 + η

[ηwj cos(wju) + sin(wju)],

where wj are the roots of

(η2w2 − 1) sin(wL) = 2ηw cos(wL)

Furthermore, we choose the random variables Yj to be uniformly distributed i.e,

Yj ∈ U(0, 1),
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and reparametrize the random sequence by y = (y1, y2, . . . ) = Y(ω) =
(
Y1(ω), Y2(ω), . . .

)

to obtain the following parametric conservation law, Then

f(ω;u) = f(y;u)
∣∣∣
y=Y(ω)

=
u2

2
+ δ

(∑

j≥1

yj
√
λjΦj(u)

)
.

Furthermore, the coefficients λj in the expansion (6.4) decay quickly w.r.t. j as
λj ∼ j−k with k ≈ 2.5 (see Figure 1).
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Figure 1. Eigenvalues in linear (left) and doubly logarithmic
(right) axes

Therefore the expansion (6.3) can be truncated at moderate number of terms
(q = 2, 3) without losing too much information about the stochastic process. Hence,
the resulting flux function is

f(y;u) =
u2

2
+ δ

( q∑

j=1

yj
√
λjΦj(u)

)
.

In the ensuing numerical experiments, we assume δ = 0.2 which ensures strict
convexity of the flux function for all possible realizations. This is used, in partic-
ular, to easily compute reference solutions for sufficiently small time (before shock
formation) via the method of characteristics. It should be emphasized that strict
convexity is not necessary for our theory to apply or our numerical methods to
work. A typical path-wise flux function, used in our computation, is plotted in
Fig. 2.

We also choose the deterministic initial data,

u0(x) = 1 + sin(πx)

and periodic boundary conditions.
We compute the approximate random entropy solutions with the stochastic col-

location finite volume method of the previous section. The results at time t = 0.1
are shown in figure 3. A typical path wise solution is shown in the left. As seen
from the figure, the path wise solution is still smooth at this early time as the wave
has not yet steepened to form a shock. The mean of the solution (as well as mean
± standard deviation) are shown in the right of figure 3. Given the smoothness of
pathwise solutions at this early time, the mean remains smooth. Furthermore, the
variance is quite low and is concentrated in the middle region of the sign wave.
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Figure 3. Typical sample path of the random solution (left) and
mean and mean ± standard deviation of the random solution
(right) at t = 0.1 for the uniformly distributed random flux func-
tion.

Numerical results for the approximate random entropy solutions at time T = 0.5
are shown in figure 4. A typical path wise solution is shown in the left of this
figure. At this late time, the wave has steepened to form a shock wave in the
middle, bordered by rarefactions and this structure is reflected in the path wise
solution. The mean is shown in the right of figure 4. The mean appears to more
regular than a typical path wise solution. Furthermore, the variance has increased
considerably. It is non-trivial throughout the domain but has a larger amplitude
near the shock. The regularity of mean might be attributed to the subtle smoothing
of stochastic shock profiles, see [27].

In Fig. 5 (left), we plot the error for the mean of the random entropy solution in
L1(R) at time T = 0.1 with a third-order WENO3 method as the choice of spatial
discretization. The results show the correct rate of convergence of the method.
Further, to illustrate the anisotropic mesh selection procedure of the last section,
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Figure 4. Typical sample path of the random solution (left) and
mean and mean ± standard deviation of the random solution
(right) at t = 0.5 for the uniformly distributed random flux func-
tion.

we choose an anisotropic (weighted according to the expansion weights, as proposed
in the last section) and present the corresponding L1(R) error as a function of mesh
resolution. As seen in the figure, the adapted method (based on anisotropic mesh
selection) performs as well (in terms of spatial resolution) as the method based on
uniform mesh in the stochastic variables. However, the substantial efficiency gain
is visible when inspecting the CPU time, shown in Fig. 5 (right). This gain in
efficiency demonstrates the utility of the anisotropic mesh selection procedure.
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Figure 5. L1(R) Error in mean vs .resolution (left) and vs. com-
putational time (right)

In the next example, we retain the previous set-up but change the random coef-
ficients in the expansion (6.3) to be normally distributed , i.e,

Yj ∼ N (0, 1), E[Yj Yk] = δjk.

We remark that in this case, the random flux function is no longer uniformly
bounded. Hence, the theory developed in the paper is no directly applicable to
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this case. However, we would like to investigate whether the numerical methods
developed by us apply to this rather difficult configuration. To this end, we apply
the stochastic collocation finite volume method and present results in Fig. 6 where
we illustrate one typical configuration of the path-wise solution and the solution
mean at time t = 0.2. For this computation, we have used a 5-th order WENO
solver in the spatial variable and a third-order strong stability preserving (SSP)
Runge-Kutta solver for time integration, on a uniform mesh of 64 cells. Note that
the time step is determined by the standard CFL condition. The figure shows a
pathwise solution that is still smooth. The initial sinus wave is steepening but has
not yet steepened into a shock wave. In Fig. 7, we demonstrate the convergence
results for the solution mean. We plot the error vs. resolution as well as the error
vs. computational time in this figure. The spatial discretizations considered are first
order finite volume, second order ENO and third and fifth order WENO schemes.
The numerical results clearly show that increasing the order of the underlying spa-
tial discretization increases the efficieny (by reducing CPU time while maintaining
numerical accuracy) of the method. In figure 8, we present convergence results for
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Figure 6. Typical sample path of the random solution (left) and
mean and mean ± standard deviation of the random solution
(right) at t = 0.2

the variance of the solution. Note that the stochastic collocation method is able to
approximate the variance quite well too.

Fig. 9 illustrates a discontinuous path-wise solution and the solution mean at
t = 0.5, i.e. after shock formation. As in previous case, we note that the solution
mean in this case is a smooth function.

The results with an anisotropic mesh selection are presented in Figures. 10 and
11. The time of comparison in Figure 10 is t = 0.1. At this time, most of the path-
wise solutions are smooth and the shock is yet to be formed. The same spatial and
temporal solvers are used for both calculations– the only difference being the com-
parison between the anisotropic mesh (selected by the Karhunen–Loève expansion
of the flux) and an isotropic mesh. As predicted by the theory and observed for the
previous numerical experiment, the anisotropic mesh selection increases efficiency
considerably by reducing the computational time (to compute a similar error level)
by at least one order of magnitude, when compared with the isotropic mesh. Fur-
thermore, in Figure 11, we show the convergence results at time t = 0.5 (well after
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Figure 9. Typical sample path of the random solution (left) and
mean and mean ± standard deviation of the random solution
(right) at t = 0.5

shock formation) and demonstrate that the presence of shocks does not impede the
efficiency gained by using the anisotropic mesh selection procedure. Even at this
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later time, anisotropic mesh selection offers an order of magnitude speedup over
the isotropic mesh.
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Figure 10. Efficiency of the Karhunen–Loève -based mesh adap-
tation at t = 0.1 (smooth solution): L1(R)-error vs. number of
cells in space (left) and vs. CPU time (right)
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Figure 11. Efficiency of the KL-based mesh adaptation at t = 0.5
(shock solution): L1(R)-error vs. number of cells in space (left) and
vs. CPU time (right)

So far, we have presented numerical results only with stochastic collocation Fi-
nite Volume (FV) method. Next, we compare this method with the Multi-level
Monte Carlo (MLMC) FV method that was proposed in section 4. Again the same
initial data and flux function are used as in the previous numerical experiment. The
following four schemes are compared: i) a MLMC approximation with first order
spatio-temporal discrectization, ii) a MLMC approximation with a second order
spatio-temporal discretization, iii) a stochastic collocation approximation with first
order finite volume spatio-temporal discrectization, iv) a stochastic collocation ap-
proximation with a second order finite volume spatio-temporal discretization. All
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the four schemes are compared with respect to error vs. resolution as well as error
vs. computational time at t = 0.1 (time before shock formation, P almost surely) in
Figure 12. The figure shows that the second order spatio-temporal discretizations
have better resolution than the first-order discretizations. Furthermore, the MLMC
FV approximation is more accurate at the resolutions that we consider. However,
given the empirical convergence rates one can expect at finer mesh resolutions the
stochastic collocation approximation will be more accurate. We emphasize that
these findings are based on the anisotropic mesh version of the stochastic colloca-
tion method. The MLMC FV method is clearly more efficient in terms of compu-
tational time when compared with the stochastic collocation FV method. While
some of this efficiency gain can be attributed to the fact that different codes are
used for different methods with the MLMC code being optimized, the very nature
of Multi level Monte Carlo type methods do suggest that they are computationally
efficient for problems with low spatial regularity. Similar efficiency gains are also
observed with the MLMC FV method when the approximate solutions are com-
pared at a later time t = 0.5 (well past shock formation). These results are shown
in Figure 13. In the CPU-time versus error comparisons of the MLMC FV in these
figures it is to be borne in mind that these results were obtained with two different
implementations, and also on different computing hardware.
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Figure 12. Convergence of stochastic collocation FV and MLMC
methods at t = 0.1: L1(R)-error vs. number of cells in space (left)
and vs. CPU time (right)

Two-dimensional scalar conservation law. We consider the two-dimensional
scalar conservation law with random fluxes and deterministic initial data:

∂u

∂t
+

∂f(ω;u)

∂x1
+

∂g(ω;u)

∂x2
= 0, (x1, x2) ∈ (0, L1)× (0, L2), t > 0;(6.5)

u(x1, x2, 0) = u0(x1, x2),(6.6)

where the fluxes are

f(ω;u) =
|u|p1(ω)

p1(ω)
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Figure 13. Convergence of stochastic collocation FV and MLMC
methods at t = 0.5: L1(R)-error vs. number of cells in space (left)
and vs. CPU time (right)

with p1(ω) ∼ U [1, 3] and

g(ω;u) =
|u|p2(ω)

p2(ω)

with p2(ω) ∼ U [1, 3].
We choose u0(x1, x2) as follows:

u0(x1, x2) =





1, if |x1 − xs
1| < 0.4, |x2 − xs

2| < Rs;

−1, if (x1 − xc
2)

2 + (x2 − xc
2)

2 < R2
c ;

0, otherwise.

We apply the stochastic collocation FV method based on 5th order WENO
solver in the physical space to solve (6.5)–(6.6) with L1 = L2 = 2.0, xs

1 = xs
2 = 0.5,

Rs = 0.4, xc
1 = xc

2 = 1.5 and R2
c = 0.4 on the 64 × 64 Cartesian grid. The

computational results for t = 1.0 are presented in Fig. 14 and show that the SCFVM
approximates the pathwise solution as well as statistical moments of the random
solution in a robust manner.

7. Conclusion

Scalar conservation laws with random initial data as well as random flux func-
tions are considered in this paper. An appropriate notion of random entropy so-
lutions is proposed and these solutions are shown to exist under the assumption
that the random flux function is (almost surely in the probability space) bounded
as well as continuously differentiable. A novel Karhunen–Loève expansion on the
state space is proposed and used to generate approximate (parametric, determinis-
tic) solutions for the random conservation law. Two sets of numerical methods are
analysed i) a Multi-level Monte Carlo finite volume method (MLMCFVM) and ii)
a stochastic collocation finite volume method (SCFVM). Both methods are shown
to converge and numerical experiments demonstrating them are presented. In par-
ticular, the sensitivity analysis of the solution for the random conservation law
suggests a novel anistropic mesh selection strategy that improves the complexity
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Figure 14. Computed sample path (upper left), mean (upper
right) and variance (bottom) of the random solution to (6.5)–(6.6)
at t = 0.5

of the SCFVM. Extensions of these numerical methods to systems of conservation
laws with random fluxes with detailed numerical experiments can be found in [29]
and in [22].
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[24] G. Poëtte, B. Després, and D. Lucor. Uncertainty quantification for systems of conservation
laws. J. Comput. Phys., 228(7):2443–2467, 2009.

[25] N. H. Risebro, C. Schwab, and F. Weber. Multilevel monte-carlo front tracking for random
scalar conservation laws. Research Report 2012-17, Seminar for Applied Mathematics, ETH
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