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Chapter 6
Geosmartness for Personalized
and Sustainable Future Urban Mobility

Martin Raubal, Dominik Bucher, and Henry Martin

Abstract Urban mobility and the transport of people have been increasing in
volume inexorably for decades. Despite the advantages and opportunities mobility
has brought to our society, there are also severe drawbacks such as the transport
sector’s role as one of the main contributors to greenhouse-gas emissions and traffic
jams. In the future, an increasing number of people will be living in large urban
settings, and therefore, these problems must be solved to assure livable environ-
ments. The rapid progress of information and communication, and geographic infor-
mation technologies, has paved the way for urban informatics and smart cities, which
allow for large-scale urban analytics as well as supporting people in their complex
mobile decision making. This chapter demonstrates how geosmartness, a combina-
tion of novel spatial-data sources, computational methods, and geospatial technolo-
gies, provides opportunities for scientists to perform large-scale spatio-temporal
analyses of mobility patterns as well as to investigate people’s mobile decision
making. Mobility-pattern analysis is necessary for evaluating real-time situations
and for making predictions regarding future states. These analyses can also help
detect behavioral changes, such as the impact of people’s travel habits or novel travel
options, possibly leading to more sustainable forms of transport. Mobile technolo-
gies provide novel ways of user support. Examples cover movement-data analysis
within the context of multi-modal and energy-efficient mobility, as well as mobile
decision-making support through gaze-based interaction.
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6.1 Introduction

Urban mobility and the transport of people have been rising inexorably for decades.
Despite the many advantages and opportunities, mobility has brought to our society,
there are also severe drawbacks such as the transport sector’s role as one of the main
contributors to CO2 emissions, traffic jams, and mass event catastrophes (Elliott and
Urry 2010; Taaffe et al. 1996). Forecasts show that by 2030, the world will have
41 megacities each with more than 10 million inhabitants (UN 2014), and by the
year 2050, approximately 80% of the European population will be living in urban
areas (Caragliu et al. 2011). Therefore, these challenging problems must be solved
to assure livable environments for future generations.

The rapid progress of information and communication technologies (ICT) and
geographic information technologies has paved the way for urban informatics and
smart cities, which allow for large-scale urban analytics as well as supporting people
in their complex mobile decision making. This chapter demonstrates how geosmart-
ness, a combination of novel spatial-data sources, computational methods, and
geospatial technologies, provides ample opportunities for scientists to perform large-
scale spatio-temporal analyses of mobility patterns as well as investigate people’s
mobile decision making. This application of novel methods and technologies with
spatial big data will allow for unprecedented possibilities of evaluating current states
of urban systems including their citizens in real time, and making predictions and
forecasts of future states.

Mobility-pattern analysis is necessary for evaluating real-time situations but also
for making short- and longer-term predictions regarding the transportation network.
In addition, these analyses can help detect behavioral changes, such as the impact of
people’s travel habits or novel travel options, possibly leading to more sustainable
forms of transport. Sustainable urban mobility will become ever more important in
order to curb greenhouse-gas emissions in the future. Long-term decarbonization
of transport will not solely be achievable through new technology, such as vehicle
efficiencymeasures, powertrain technology, and new energy carriers, but will require
people’s efforts in containing demand and shifting to lower-emission transportmodes
(Boulouchos et al. 2017).

Mobile technologies help to identify individual-oriented problems and provide
novel ways of personalized user support. Spatial Big Data can be utilized to support
people in their location-based decision making, in combination with novel tech-
nologies and interaction concepts, such as location-based services and gaze-based
interaction. This will lead to more effective and efficient spatio-temporal decision
making, and, hopefully, contribute to sustainable urban mobility of the future.

This chapter starts by introducing geosmartness and its major enablers,
namely geospatial technologies, spatial, big data and spatio-temporal computational
methods. We then investigate the analysis of urban-mobility patterns, including data,
prediction, and labeling methods. The section is complemented by an overview
of mobility studies and a detailed example focusing on multi-modal and energy-
efficient mobility. In the next section, we elaborate on the potential of geospatial
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Fig. 6.1 Methods and tools enabling geosmartness

and persuasive technologies to support people in sustainable mobility. This includes
motivational aspects and methods for detecting and supporting behavioral change.
The section also includes an overview of studies in this area and the description of a
recent study targeting the change of mobility behavior. In the penultimate section, we
explain the specificities ofmobile decisionmaking, introduce the technique ofmobile
eye-tracking and the concept of gaze-based interaction, and demonstrate how their
combination can enable personalized gaze-based decision support. The final section
presents conclusions and directions for future work.

6.2 Geosmartness

Geosmartness relates to the vast opportunities of utilizing novel geospatial tech-
nologies, spatial big data, and spatio-temporal computational methods for solving
many of the world’s challenging problems in the domains of mobility, transport,
and climate. It has been made possible through the rapid progress of computing,
communication, and information technologies, but also by theoretical advancements
in fields such as geographic information science (or to bemore encompassing, spatial
data science including its representations, models, and analysis methods) (Goodchild
1992; Raubal 2019; Reitsma 2012).

Geosmartness is essential for successfully transforming traditional cities and
urban areas into smart cities, which are in essence digitally integrated urban spaces
based on a real-time sensor-based control system. Such a system comprises tech-
nology, people, and community (Nam and Pardo 2011), and its major goal and
challenge is to solve key problems of growing cities through integration of tech-
nology and environment (Batty et al. 2012). Ratti and Claudel (2016) provide an
overview of future smart-city concepts, emphasizing also the value of open data
and platforms, and the necessity for smart citizens. Concrete efforts and lessons
learned when building a smart city have been demonstrated and described, such as
for Barcelona (Gasco-Hernandez 2018).

The various methods and tools enabling geosmartness (Fig. 6.1) cover the tradi-
tional stages of aGIS (geographic information system) process, including spatial data
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modeling, representation, analysis, and presentation (Longley et al. 2011), but on a
much wider scale, involving novel interfaces, cutting-edge information technology,
and real-time sensor data (not only at the geographic scale; Montello 1993).

Spatial big data results from the ever-increasing progress in computing, communi-
cation, and information technologies. They come in the form of massive movement-
trajectory datasets, fine-resolution environmental data, or specific user-behavior data
(e.g., from eye-tracking), often in real time. Li et al. (2016) characterize geospatial
big data by the following dimensions:

• Volume: Exabytes (or more) of imagery, sensor, and location-based social-media
data raise both storage and analysis issues.

• Variety: relating to the various types of geospatial data, such as raster, vector,
network, structured, and unstructured data and their integration.

• Velocity:Real-time trajectory and social-media data, andother continuous streams
of sensor data require data processing at the same speed as data acquisition.

• Veracity: Depending on the sources, geospatial big data vary in accuracy and
precision, and impact reliability and trust. Quality assessment may therefore be
difficult.

• Visualization: on the one hand providing procedures to impose human reasoning
on big data analysis, and on the other hand facilitating the communication of
patterns and relationships as the results from such analysis.

• Visibility: Geospatial big data can nowadays be efficiently accessed and processed
through cloud-computing technologies.

In order to pursue knowledge discovery from these complex and massive spatial
data, traditional spatio-temporal analysis methods are now extended and comple-
mented on a large scale by machine-learning approaches (Raubal et al. 2018).
Machine learning is applied to spatial big data in CyberGIS analytics, for spatio-
temporal outlier and anomaly detection, and for predicting human spatial behavior.
Spatial data science enhances machine learning by proposing methods for spatio-
temporalmodeling and context integration to achieve better results and higher perfor-
mance. In the area of mobility and transport, it has recently been demonstrated how
graph convolutional neural networks (GCNs) can be used for imputing human activity
purposes fromGPS trajectory data (Martin et al. 2018).Multiple personalized graphs
were utilized to model human mobility behavior and to embed a large variety of
spatio-temporal information and structure in the graphs’ weights and connections.
These graphs served as input to the GCNs, which in turn exploited such structure.

Geographic information technologies encompass systems and services that exploit
geoinformation to support people’s spatio-temporal decision making (Raubal 2018).
They utilize data related to locations in space and time, and process these data with
respect to spatial locations, which results in increased complexity during reasoning
and data analysis. Nowadays, geographic information technologies not only include
desktop GIS for acquiring, representing, analyzing, and visualizing spatio-temporal
data, but also location-based services (LBS), which support people in their mobile
decision-making by providing spatial information based on their current locations,
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typically by relying on GPS (Global Positioning System) technology built into them
(Brimicombe and Li 2009). LBS can be further enhanced by other context informa-
tion, such as the user’s gaze. This allows taking the user’s viewing direction into
account (Anagnostopoulos et al. 2017), leading, for example, to personalized audio
guides that help users to find objects in the environment, and adapting the audio
content to what has previously been looked at (Kwok et al. 2019). This directly
relates to geographic human–computer interaction, i.e., people’s interaction with
geographic information technologies (Hecht et al. 2011). Novel interaction modal-
ities and paradigms, and context-aware user interfaces, are available nowadays. In
addition to traditional user interfaces through which people can interact with text-
based information or cartographic maps, novel interaction modes, such as audio,
gesture, gaze, or vibration (Gkonos et al. 2017), and displays integrating augmented
and virtual reality exist (Rudi et al. 2016).

6.3 Analyzing Urban-Mobility Patterns

Mobility has always been a crucial part of urban life. As cities grow larger, moving
millions of people for work, errands, or leisure activities becomes increasingly
complicated, and when unmanaged, mobility has severe negative effects such as
greenhouse-gas emissions, air pollution, health problems (Krzyżanowski et al. 2005),
and traffic congestion.

To mitigate these negative effects, system-level actions must be combined with
actions that empower mobility behavior change of individuals (Banister 2011).
Examples for system-level interventions are the implementation of smart traffic
management systems, or adaptive and attractive public transport systems. Individual
mobility changemay be achieved by enabling new forms ofmobility, such asmobility
as a service (MaaS), on-the-fly ride sharing or on-demand last-mile buses. These
novel mobility concepts are all manifestations of geosmartness as they are ways to
optimally allocate spatial resources, for which they require detailed knowledge of
individual and aggregated city-wide mobility behavior.

6.3.1 Data

With the proceeding digitalization of our society, cities have become amelting pot for
data from many different sources. This development bears new and unprecedented
potential of gaining detailed knowledge about people’s mobility behavior that can
be used to enable sustainable mobility concepts. From the perspective of movement
analysis, all available data can be divided into two groups: tracking data and context
data.

Quantitative movement analysis is based on tracking data, which can be described
as sequentially recorded and time-stamped locations. In the past, the elicitation of
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these datawas based on paper or telephone surveys, but over the past decade the diver-
sity of tracking-data sources multiplied and today, a manifold of different types of
tracking data are available. Examples are global navigation satellite system (GNSS)
tracking data (Zheng et al. 2008), location data based on the proximity to WiFi
hotspots (Sapiezynski et al. 2015), location data from social networks (Hasan et al.
2013), public transport smart card data (Zhong et al. 2016), call detail record (CDR)
data (González et al. 2008; Yuan andRaubal 2016b; Yuan et al. 2012), and credit-card
transactions (Clemente et al. 2018).

These sources offer newpossibilities to analyzemovementwithin cities. However,
themany possibilities to record urbanmovement create a heterogeneous landscape of
tracking data sets. Four factors are particularly important when comparing different
data sets:

• Tracking style (e.g., fixed versusmoving tracking devices as in the Eulerian versus
Lagrangian tracking style concept; Laube 2014)

• Spatio-temporal resolution (i.e., sampling rate)
• Spatio-temporal distribution (track point distribution, e.g., regular vs. burst

patterns)
• Sample biases (e.g., daily urban mobility vs. mobility of tourists).

Due to these differences, it is difficult to compare results across different data sets
and to develop data-agnostic methods. These are still open research challenges to be
addressed in the near future in order to ensure the success of urban movement data
analytics.

The second part of the data that are available in an urban setting does not describe
the movement of people itself but the context in which people are moving. These
context data are important for the analysis of humanmobility patterns because human
movement is always set in and influenced by its spatio-temporal context (Sharif and
Alesheikh 2018). For example, when driving, ourmovement is restricted by the street
network, when using public transportation, we depend on fixed schedules; we walk
faster when it rains (Knoblauch et al. 1996), and we move differently depending on
the urban or suburban setting (Yuan and Raubal 2016a).

In the past, only a few sources of context data, usually with a coarse spatio-
temporal resolution, were available. This changed with progress in the digitalization
of cities, and today many different context data sources with fine spatio-temporal
resolution are available. Among the most important ones, urban movement analytics
are volunteered geographic information (VGI) platforms such as OpenStreetMap,
which provides easy access to road networks and point-of-interest data. A more
recent trend inspired by the success of the open-data community is the open-data
movement at the city level. Today many cities have open-data policies and publish
their data on open-data platforms. Sensor networks provide another important source
for context data, such as temperature, noise, pedestrian counts, or air quality. Exam-
ples for sensor networkswith publicly available data areVGI-based platforms such as
OpenSenseMap or luft-daten.info for air-quality data. There are also sensor networks
operated by the cities themselves such as the Array of Things project in Chicago.
Other context data include photogrammetry or street imagery data such as Google
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Street View. The latter has been used to automatically assess the well-being of
neighborhoods (Suel et al. 2019) and to develop image-based navigation systems
(Mirowski et al. 2019).

6.3.2 Computational Methods for Large-Scale
Spatio-temporal Mobility-Pattern Analysis

Movement and context data generated by smart cities offer unprecedented possibili-
ties for analyzing urban-mobility patterns (see also Chaps. 28 and 29). However, the
large data volume, the variety of the new urban data sources, and the large bandwidth
of tasks require the enhancement of traditional GIS methods known from classical
movement analytics (Long and Nelson 2013; Zheng 2015).

6.3.2.1 Data Preparation and Data Fusion

Especially for the preparation of the data and for the combination of different spatial
datasets, well-established GIS methods are of great importance. Important prepro-
cessing steps are GPS-trajectory segmentation, map matching, spatial filtering or
movement-trajectory compression. In the same way, proven GIS methods can be
used to combine different spatial datasets and to enrich trajectories with context data
(Jonietz and Bucher 2017).

However, with the growing data volume, manual processing will not be an option
in the future. Therefore, scalability of workflows must always be kept in mind. This
includes the choice of efficient algorithms, their efficient implementation, and the
possibility of processing using distributed frameworks (e.g., big data frameworks).

6.3.2.2 Prediction and Labeling

The following tasks are of great importance when analyzing urban-mobility patterns:
adding semantic information to unlabeled data and predicting urban mobility for a
short forecast horizon (e.g., hours or days).

Adding semantic information is important because even though digital cities
provide large volumes of data, large-scale tracking data sets are usually recorded
passively (e.g., without interaction of the user) and are therefore unlabeled (Bauer
et al. 2016). In order to interpret and understand urban mobility, these datasets must
be enriched with semantic information such as activity labels or mode of transport.

The prediction of movement and mobility is important to optimize future states of
the mobility system and to create flexible and personalized mobility offers. Knowing
the future mobility demand within a city allows for optimizing the schedule of public
transport systems, taxi placements, or timings of traffic lights. On the other hand,
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knowing about the subsequent places, an individual wants to visit helps in identifying
potential ride-sharing partners.

The current state-of-the-art to solve these prediction and labeling tasks is the usage
of machine-learning methods (Toch et al. 2018). The usual approach is to extract
meaningful features from the available movement and context data, and to use them
for training a classifier for label-prediction tasks or a regressor for predicting future
mobility demand. Here, the random-forest algorithm (Breiman 2001) is especially
worth mentioning, as it is very robust with regard to the distribution of the input data,
has generally a very good performance, and does not require extensive hyper-tuning
of parameters.

An important research direction is to create spatially aware machine-learning
methods (Gilardi and Bengio 2000; Hengl et al. 2018). One problem is that general-
purpose machine-learning algorithms do usually not consider spatial dependencies
(e.g., spatial autocorrelation present in the input or output data; Cracknell and
Reading 2014). Another recent research direction is to avoid the explicit feature
extraction step altogether, because it usually implies the assumption of independent
and identically distributed data. An alternative is the use of neural networks and
learning feature maps directly from the data. However, here, it is often difficult to
find a meaningful data representation that is suitable for neural networks. Possible
representations are image representations (Chen et al. 2016a) or more recently graph
representations (Martin et al. 2018).

6.3.3 Studies

In practice, studies based on tracking data are scarce and usually not publicly avail-
able. The most important reason for this is that personal tracking data are extremely
privacy sensitive (Keßler and McKenzie 2018). This implies that on the one hand, it
is difficult to find participants who are willing to share their geodata due to privacy
concerns, and on the other hand, that datasets are unavailable for other research
groups once they were collected. Resulting from this situation, there are two types
of mobility studies: user studies based on participants that were recruited for the
purpose of the study by a research group, and mobility studies based on data that
were already collected for different purposes and contained the locations of users as
a byproduct. The first type of study are also called active-tracking studies because
users in these studies commonly provide feedback that can be used to label the data
and to answer the underlying research questions. The second type of study is called
passive-tracking studies because users are commonly unaware that they participate
in a study and that their location is collected passively in the background without
any possibility for the user to provide feedback. Some notable examples of mobility
studies based on passive-tracking data sets include:

Brockmann et al. (2006)were among the first to use already-collected data (sight-
ings of dollar bills from www.wheresgeorge.com) that contained information about
human mobility as a byproduct. The analysis of this dataset with more than a million

http://www.wheresgeorge.com
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displacements uncovered fundamental statistical properties of human movement,
such as a power-law distribution of traveling distances.

González et al. (2008) developed an early large mobility study based on CDR
data collected for billing purposes by the mobile-phone provider, which also allowed
for the reconstruction of human mobility patterns. These data allowed one to analyze
the movement of individual persons over a time span of six months and revealed a
high spatio-temporal regularity of human movement patterns.

Both studies are early representatives of large-scale empirical studies and are
rather descriptive and general. Studies in later years became more specific:

Hasan et al. (2013) used data from smart cards utilized in public transportation
systems to specifically analyze human mobility within a city. Among other results,
this study reproduced the already known general mobility characteristics in an urban
setting.

Yuan and Raubal (2016a) used CDR data that were enriched with demographic
information to empirically analyze the spatial distribution of different demographic
groups within a city.

Clemente et al. (2018) used credit card records in combination with CDR data
from the same users to analyze urban mobility. This allowed them to cluster the users
utilizing the semantically rich credit-card data and to interpret these clusters spatially
using the CDR data.

The second type of study is significantly different as it involves only a small
number of people but with very detailed data about these persons:

Eagle and Pentland (2006) conducted one of the first larger studies using mobile
phones as wearable sensors. They collected information such as call logs, Bluetooth
proximity data, and the current cell phone tower ID as a proxy for location. The
goal of the study was to study not the mobility of the participants but rather their
social interactions. This so-called reality-mining dataset is one of the first publicly
available datasets that includes tracking data.

Zheng et al. (2008) introduced GeoLife, one of the first large GPS tracking
studies, with 65 users being tracked for varying timespans within a ten-month period.
These data were used to analyze individual mobility patterns. This dataset is publicly
available and can be used for research purposes.

Alessandretti et al. (2018) used different publicly available datasets such as
the reality-mining dataset and proprietary datasets such as the CNS dataset from
Stopczynski et al. (2014) to show that persons only have a limited number of regularly
visited locations and that, while the locations change slowly over time, the total
number of locations stays constant.
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6.3.4 SBB Green Class (Multi-modal and Energy-Efficient
Mobility)

This section presents one case study in greater detail, the SBB Green Class pilot
studies. In 2016 and 2017, the Swiss federal railways (SBB) carried out two large,
one-year pilot tests of a MaaS concept. In these studies, customers received access
to comprehensive mobility options for a fixed yearly fee. The first pilot study had
150 participants from Switzerland, who received a Swiss-wide public transport pass,
a battery electric vehicle, a parking space at their local train station, and credit for
carsharing and bikesharing services. The second pilot study had 50 participants and
included an e-bike instead of the e-car. As part of the pilot study, all participants
installed a tracking app on their phone and agreed to label the recorded and segmented
GPS tracks with the user mode of transport and a high-level description of the trip
purpose. The most interesting characteristic of the SBB Green Class pilot studies is
a flat rate for mobility, where almost all costs are covered by the subscription fee,
making it the first study of this size that can be used to test the impact of MaaS offers.

To evaluate the mobility behavior of the participants the tracking data had to be
prepared using different preprocessing steps, such as the fusion of different data
sources, imputation of missing labels, map matching, grouping movement into trips
and tours, and the detection of anomalies. Subsequently the participants’ mobility
behavior could be compared to a pseudo-control group generated from the Swiss
mobility and transport microcensus (MTMC). The most important results were:

• Especially the Green Class e-car pilot study participants traveled more than
the average Swiss person and were particularly frequently multimodal. These
differences can be partially explained by the SBB Green Class offer: on the one
hand, there are available parking facilities near the railway station, which clearly
promote combined travel, and on the other hand the lower marginal costs for
mobility invite passengers to longer and more frequent journeys.

• A comparison with the control group revealed that the electric car primarily
replaced journeys with a conventional vehicle; the proportion of train journeys
differed only slightly between Green Class customers and the control group.

• The analysis of the longitudinal tracking data showed that the CO2 emissions
of most participants decreased significantly shortly after the start of the project.
This can primarily be attributed to the electric vehicle, which has lower average
CO2 emissions than a car with a combustion engine (especially when taking into
account the Swiss electricity mix). The overall development of the Green Class
e-car users’ CO2 emissions and the possible impact of a MaaS offer can be seen
in Fig. 6.2.

• A result that is particularly noteworthy is that the e-car established itself in the
mobility mix of the participants in the long term while primarily replacing the
conventional car.



6 Geosmartness for Personalized and Sustainable Future … 69

Fig. 6.2 Comparison of SBB Green Class 1 users’ average CO2 emissions during a six-week pre-
project tracking phase and their emissions after they got access to the new mobility tools (public
transport pass, e-car, etc.). Most participants (indicated in green) were able to reduce their CO2
emissions significantly and only few participants (indicated in red) increased their average CO2
emissions compared to before the project

6.4 Behavioral Change and Sustainable Mobility

It is often argued that making mobility ecologically sustainable requires a wide
range of technical, institutional, and societal innovations, in particular in the short
term (Banister 2008; Holden 2016; Kemp and Rotmans 2004). These innovations
are related to the optimization and extension of public transport networks, to the
electrification of car fleets alongside an increased renewable energy production, and
also to various shifts in our use ofmobility, for example fromcars to alternativemeans
of transport. The latter is commonly referred to as changing one’s mobility behavior,
and a substantial body of research concerns the effects of mobility behavior changes
on a large scale (Bucher et al. 2019; Taniguchi and Fujii 2007), how ICT impacts
people in their mobility planning and choices (Chen et al. 2016b; Cohen-Blankshtain
and Rotem-Mindali 2016), how persuasive technologies can be used to nudge people
toward certain desired behaviors (Gabrielli et al. 2014; Weiser et al. 2016), and how
and where critical support infrastructure should be built to maximize its impact on
mobility behavior (Buffat et al. 2018; Huétink et al. 2010). Here, we will focus on the
potentials of novel geospatial and persuasive technologies alongside contextualized
and personalized computational methods to help people travel sustainably.
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6.4.1 Motivation

Behavior is strongly driven by motivation, which in turn arises from two groups of
base needs (Deci and Ryan 2004; Reeve 2014): Psychological needs form the most
innate group and include the desire for autonomy, competence and relatedness. They
describe the facts that humans like to be in control of their actions, that these actions
must be challenging yet doable, and that people need to interact with others within
meaningful relationships. Social needs are similarly about the cultivation of rela-
tionships but are learned over the course of our lives. They encompass achievement,
affiliation, intimacy, and a desire for leader- and follower-ship.

Individual actions (such as choosing a particular mode of transport) are usually
spurred by either external or internal motivational sources. External sources include
monetary incentives, rewards, or simply promises by other people. In stark contrast,
intrinsic motivation is generated by one’s own goals, expectations, beliefs, and
perceptions.At its core is the perceptionwehaveof ourselves, subconsciously built by
inspecting the effects of our behavior on other people. Based on this, we develop atti-
tudes and beliefs, onwhichwe relywhen formulating certain goals or building expec-
tations. Intrinsic motivation correlates with the satisfaction of the above-mentioned
base needs (Van den Broeck et al. 2016). If a human does not manage to live up to his
or her core beliefs, a state of cognitive dissonance is entered, which forms a strong
internal motivational source that can be used to induce behavior change.

Such a change of behavior can be modeled using the trans-theoretical model
(Prochaska and Velicer 1997). On a high level, we can classify behavior change into
two phases: discovery and maintenance (Li et al. 2011). The trans-theoretical model
splits discovery into a pre-contemplation, a contemplation, and a preparation phase,
which are characterized by a transition from being unaware of a certain behavior
to starting to form plans on how to change it. The transition into maintenance is
performed once a person starts taking actions, which are prompted by triggers, for
example, receiving a notification about an upcoming appointment (Fogg 2009). After
reaching a certain level of competence, people have to be kept from relapsing until
the behavior is truly internalized and a new habit is formed. Smart geographic ICT
must thus be aware of the different motivational factors and phases that influence
individuals in varying ways and provide adapted support for people in different
circumstances and contexts.

6.4.2 Detecting and Supporting Behavioral Change

A substantial amount of research focuses on using ICT to detect and identify activ-
ities related to movement and mobility (Feng and Timmermans 2013; Gong et al.
2012; Montini et al. 2014), in particular the motives for traveling somewhere as
they heavily influence transport-mode choices. This identification of activities and
transport modes becomes increasingly accurate as researchers get easier access to
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large ground-truth datasets that can be effectively used for machine learning and thus
automated inference at scale.

Once the activities are known, their change over time can be analyzed to detect
sudden or gradual changes in behavior and support users adequately throughout
differentmotivational stages. Jonietz andBucher (2018) continuouslymined trajecto-
ries with the aim of identifying behavioral patterns and anomalies. They summarized
daily and weekly mobility usage by computing characteristic features; for example,
the number of trips taken or the total distance traveled with a certain mode of trans-
port. An anomalous deviation of these features from oneweek to another can indicate
a transition from one phase of behavior change to another and should be reflected
within the supporting ICT. Additionally, identifying people in similar behavioral
transition phases can be used for analytical purposes or to target individual groups
with specific incentives (Zhao et al. 2019).

Depending on the motivational phase, people have different needs for support:
someone (pre-)contemplating change is well served by information about the exis-
tenceof alternative transport options; someone taking action requires externalmotiva-
tors andwell-timed and appropriate triggers (Weiser et al. 2015). If a trigger manages
to increase our motivation (e.g., by giving additional external rewards) or to decrease
the difficulty of the action (e.g., by providing a meaningful sustainable mobility
alternative), a user is much more likely to exhibit the desired behavior (Fogg 2009).
To provide alternative mobility plans, ICT has to generate and evaluate them, taking
into account sustainability as well as the user’s context (e.g., the planned activity
at the destination, or past and future trips). Based on a wealth of (multi-modal)
transport planning systems (Bast et al. 2016), heuristic methods (Bucher et al. 2017),
and approaches based on previously recorded movement (Arentze 2013; Campigotto
et al. 2016) were developed to generate meaningful routes. The resulting alternatives
are scored using the primary feature of interest, e.g., the total CO2 emissions, the
distance, or the duration.

An often employed persuasive method is gamification, i.e., using game design
elements in non-gamecontexts (Deterding et al. 2011).Gamification canbeused as an
external source of motivation by employing mechanisms such as feedback, rewards,
challenges, competition, or cooperation (Weiser et al. 2015). These should follow a
set of general design principles, such as offering meaningful suggestions, providing
guidance, supporting user choices, or personalizing experiences. It needs to be noted
that the use of common gamification elements for feedback on mobility behavior is
not as straightforward as in other domains. As mobility is highly individual, simply
offering rewards for taking the bicycle to work might be completely unfeasible for
some while extremely easy for others. Similarly, rewarding points for taking public
transport may lead to people trying to travel more, while the most ecologically
friendly choice would likely be not to travel at all (Froehlich et al. 2009).
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6.4.3 Studies

Among the well-known early studies on the effects of persuasive ICT on mobility,
choices and behavior are applications that feature a combination of movement
tracking and technology-assisted feedback, commonly by showing users the impact
of the CO2 emissions caused by their trips (Anagnostopoulou et al. 2018; Gössling
2018). UbiGreen (Froehlich et al. 2009) uses a combination of a mobile sensing
platform, GSM cell tower localization, and information entered by users to record
mobility patterns. It features a visual representation involving either a tree or an
iceberg that indicates the effect of trips taken during a week. While there was no
quantitative analysis of behavior change performed (due to the small sample size
of 14 people and the short tracking duration of three weeks), interview responses
demonstrated the viability of such eco-feedback applications. Similarly, MatkaHupi
(Jylhä et al. 2013), tripzoom (Bie et al. 2012), the THELMA project (Bauer et al.
2016), or the Streetlife EU project (Kazhamiakin et al. 2015) featured smartphone
applications that were used both as a tracker as well as for providing feedback to the
mobility consumer.

Typically, these studies were performed with a smaller sample of participants
(approximately 10–50) over the course of up to two months (Anagnostopoulou et al.
2018).Recently, several studies have tried to replicate their resultswith larger samples
over longer periods of time. Research by Semanjski et al. (2016) involved a six-
month data collection and intervention period with 3400 participants. During this
time, movement data were collected and feedback given via a Web platform. Their
results showed that eco-feedback can be used to initiate behavioral changes but the
outcomes vary depending on the attitudinal profiles. Ebermann and Brauer (2016)
similarly enrolled 248 participants to use a Web site during a three-week period and
explored the influence of different goals (“self-exploration,” “competition,” “climate
protection,” etc.) on the use of various gamification elements. An additional large
body of work emphasizes the use of persuasive technologies to improve personal
health—which often leads to more ecologically sustainable travel behavior as well.
Consolvo et al. (2008) explored the potential of early smartphones in combination
with mobile sensing platforms to promote healthy lifestyles. Similarly, Harries et al.
(2013) enrolled 152 participants for their study that used an app to promote walking
behavior. They found that the appmanages to increase the step count by around 64%,
but that comparative social feedback did not improve this value.

The latter also indicates that not all persuasive strategies work well in a mobility
context. Gabrielli et al. (2014) summarize these challenges associated with inducing
a mobility behavior change for more sustainable future urban mobility. They found
that changingmobility behavior is a lengthy process and that it is very difficult to find
motivational features that engage a wide range of users. In contrast to the personal
health domain, collective mechanisms (i.e., social influence) tend to have a stronger
influence on behavior than individual ones. Their findings corresponded to research
by Nicholson (2012) and Weiser et al. (2015), who stressed that eco-feedback must
be timely and meaningful.
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6.4.4 GoEco!

For a more in-depth account of a study targeting the change of mobility behavior, the
example of GoEco! is chosen (Cellina et al. 2019). In contrast to previous studies,
GoEco! targeted around 200 people from two diverse geographic regions; they were
asked to participate in the experiment over the duration of a year. Within this year,
three periods were chosen during which participants had to install an application on
their smartphone that would simply record their movement in the first phase, give
them additional eco-feedback (using gamification elements) in the second phase, and
resort back to simple movement tracking for the third one (to determine potential
long-term effects of the intervention in the second phase; Cellina et al. 2019).

The application used a naïve Bayes classifier to identify transport modes from
several features, such as travel speed, journey distance, or the distance to public
transport stops in the vicinity (Bucher et al. 2019). This transport-mode identification
was then given to users for verification, after which several potential (and feasible)
alternatives were computed for each trip. These alternatives were presented as feed-
back to people, together with an assessment of potential CO2 emission reductions
stemming from transitions to different transport modes. In addition, the gamified
feedback included personal goals, weekly challenges, badges as rewards for desir-
able behavior (e.g., taking the bicycle towork, or completing a certain challenge), and
a leaderboard that ranked people according to the number of badges they collected
(Fig. 6.3; Cellina et al. 2019b).

Studying the long-termeffects, itwas found that people in rural areas changed their
behavior on systematic routes. This was partially due to the selection of participants,
who came from the city of Zürich (where people are often already eco-friendly
travelers due to artificially created impediments for car drivers) and the canton of
Ticino (where public transport is less developed, and the private car is the primary
means of transport). The fact that people changed their behavior on systematic routes
(e.g., from home to work and back) is likely due to having more options on those (as
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one is potentially less restricted by context, such as the need to drive the whole family
or carry shopping goods) and due to only having to find good alternatives a limited
number of times (in contrast to non-systematic routes, where a suitable alternative
has to be searched for every time).

6.5 Mobile Decision Making

Mobile geospatial technologies support people in their location-based decision-
making, and at the same time acquire spatial big data, which can be utilized for
urban planning and the enhancement of urban infrastructure resilience (Heinimann
and Hatfield 2017). Mobile location-based decision-making encompasses a variety
of spatio-temporal constraints, which relate not only to people’s spatio-temporal
behavior in large-scale space (Kuipers and Levitt 1988) but also to their interac-
tion with mobile devices, and perceptual, cognitive, and social processes (Raubal
2015). People often need to make fast decisions on the spot, which requires both
fast access to spatial memory and immediate system responsiveness. Furthermore,
mobile devices such as mobile phones limit the communication process to their
users, for example through small screen size, which makes it challenging to present
information to someone on the move (Montello and Raubal 2012).

6.5.1 Mobile Eye-Tracking and Gaze-Based Interaction

Asdescribed earlier, geosmartness is also enabled by novel interactionmodalities and
paradigms, and one of these concerns gaze-based interaction. Gaze-based interaction
is made possible by eye-tracking technology, and it is regarded as a particularly
efficient and intuitive interaction modality (Majaranta and Bulling 2014), especially
when interacting with space and visual-spatial representations (Kiefer et al. 2017).
In explicit gaze-based interaction, the user deliberately triggers an interaction by
looking at a certain position in the stimulus, whereas implicit gaze-based interaction
refers to the automatic interpretation of eye movements for recognizing cognitive
states, such as search activities on maps.

The ability to track gaze movements with eye-tracking technology allows
measuring the current point of regard on a specific stimulus. There exist remote and
mobile eye-tracking devices, and nowadays, most of them are video-based corneal
reflection systems (Duchowski 2017). Mobile eye trackers measure a person’s visual
attention on a stimulus in the wild instead of the laboratory. The basic recordings
are called gazes, and it is generally assumed that perception takes place only if gaze
remains almost still for a minimum amount of time. Gazes are therefore often aggre-
gated spatio-temporally to fixations. A transition between two fixations is called
a saccade, which is caused by a rapid movement of the eye. Eye-tracking data
can be used for investigating cognitive processes, such as self-localization during
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wayfinding (Kiefer et al. 2014), for activity recognition (Kiefer et al. 2013), and as
input for gaze-based assistants. Many eye-tracking systems allow for real-time data
access, which is the principle behind such gaze-assistive systems.

6.5.2 Personalized Gaze-Based Decision Support

Urbanmobility andnavigation of the futurewill becomemore complex for people due
to the variety of combined transport modes offered by mobility-as-a-service options,
increased environmental complexity (especially in megacities), and the multifaceted
decision-making process of how to engage in sustainable mobility. Smart city envi-
ronments, as described here, in combination with gaze-assistive systems, will allow
personalized navigation support for their users.

Nowadays, navigation instructions are typically displayed as turn-by-turn instruc-
tions on a digital map presented on small mobile screens (Hirtle and Raubal 2013).
Visual attention switches between display and environment can lead to high cognitive
load (Bunch and Lloyd 2006) and distraction, such as in busy traffic situations. These
problems can be avoided by utilizing gaze-based interaction concepts. An example is
GazeNav (Fig. 6.4), which enables gaze-based interaction for pedestrian navigation
(Giannopoulos et al. 2015). Gaze is utilized to inform the wayfinder whether the road
that he or she is gazing at is the correct one to follow. To use this system, the userwears
mobile eye-tracking glasses, which capture the current point of regard. When a deci-
sion point with different options is approached, the user starts to examine the possible
ones to follow. At the moment when the user’s gaze is aligned with the correct street,
the system automatically provides feedback to convey this, for example through a
vibrotactile belt or, more effectively, its combination with gaze information (Gkonos
et al. 2017). Systems for real-time gaze tracking in outdoor environments, whichmap
the gazes from a mobile eye tracker to a georeferenced view using computer vision
methods, allow for such personalized gaze-based decision support (Anagnostopoulos
et al. 2017).

The example of GazeNav illustrates how novel interaction modalities will impact
our spatio-temporal decision-making in the future, leading to more personalized

Gaze input Naviga on service Model of surroundings

Fig. 6.4 Gaze-based pedestrian navigation
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information that can facilitate and improve people’s decision processes. In addition,
such technologies will also provide an enormous amount of spatial big data, in this
case user-behavior data, which can be utilized by both the private and public sectors
to improve old services and offer new ones. This implies that our locations will
be shared with a multitude of different services, and therefore, the protection of
geoprivacy in combination with other types of personal information will become an
even more important issue in smart city environments (Keßler and McKenzie 2018;
see Chap. 32).

6.6 Conclusions and Future Work

The ever-increasing urban mobility and transport of people has led to an increase
of greenhouse-gas emissions and traffic jams. In this chapter, we demonstrated how
geosmartness, a combination of novel spatial-data sources, computational methods,
and geospatial technologies made possible through major advances in ICT helps
to make urban mobility of the future more sustainable and personalized. On the
one hand, novel movement-analytics methods including machine learning can be
applied to massive volumes of tracking and context data, in order to make short- and
longer-term predictions of transportation network states. This will help to optimize
future states of the mobility system and to create flexible and personalized mobility
offers. An overview of recent mobility studies and SBB Green Class, a detailed
case study of multi-modal and energy-efficient mobility, served as examples. On the
other hand, mobility-pattern analysis will help detect people’s behavioral changes,
and the impact of their travel habits and alternative travel modes, which in turn
should pave the way toward more sustainable forms of transport. Sustainable urban
mobility will be one contributor to the reduction of CO2 emissions in the future. We
introduced methods for detecting and supporting behavioral change, related studies,
and GoEco! as a concrete study targeting the change of mobility behavior through
tracking data analysis and eco-feedback. Finally, from a user perspective peoplemust
also be directly supported in their complex mobile decision making. We proposed
mobile eye tracking as a novel data source, which allows personalized gaze-based
decision support in urban navigation. GazNav illustrated how gaze-based pedestrian
navigation facilitates people’s decisionmaking based on the integration of gaze input,
a navigation service, and a representative model of the environment.

Further research is necessary in all three of the discussed aspects of geosmart-
ness, that is, spatial big data, spatio-temporal analysis methods, and geographic
information technologies, in order to achieve a fully personalized and sustainable
urban mobility of the future. For various states it will be important to have true
real-time data from different sources—for example tracking, context, and social-
media data—available, in order to evaluate a particular situation comprehensively
and to detect the causes of a potential problem. The sheer data volume, and data
integration and accuracy issues present obvious challenges. From a data analysis
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perspective, most machine-learning methods do not account for spatial autocorrela-
tion; therefore, further research on how to make machine-learning methods spatially
aware is required. In addition, most machine-learning models come as black boxes,
which hinders interpretability and explanation of results. Machine-learning model
interpretability is therefore a pressing issue (Hohman et al. 2019). Finally, future
advancements in the area of urban informatics will continue to be technology driven.
We expect novel geographic information technologies that will enhance both urban
system evaluations and predictions, as well as mobile decision-making support for
the individual user.
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