
DISS. ETH NO. 26683

Optimization of
bimodular integer programs and

feasibility for
three-modular base block IPs

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by
STEPHAN ARTMANN

MSc ETH Mathematics, ETH Zurich

born on August 25, 1987
citizen of Austria

accepted on the recommendation of
Prof. Dr. Robert Weismantel
Prod. Dr. Friedrich Eisenbrand

2020

Acknowledgement

I want to thank Robert Weismantel for introducing me to this fascinating
topic, providing me this exciting research question, investing as much of his
time as he did for countless explanations and valuable suggestions whenever
I got stuck, and for his overall commitment and enthusiasm for the project. I
am grateful that he was always available whenever I needed help and allowed
me to profit from his experience and creativity to tackle the problems I
encountered. Without him, this thesis would not have been possible.

I also wish to thank Christoph Glanzer, who is working on a similar topic,
for many hints and discussions that were both fun and had a great influence
on this work.

Many thanks also to Rico Zenklusen, who put much work and effort into the
bimodular case.

Finally, I am grateful to all the members of the IFOR institute for contribut-
ing towards an extremely productive and enjoyable workplace.

i

ii

Abstract

We consider the optimization problem maxtcTx : Ax ď b, x P Znu, called
an integer linear optimization problem (ILP), where A P Zmˆn, b P Zm and
c P Zn. We study the special case that all pn ˆ nq´sub-determinants of A
are, in absolute value, bounded by a constant Δ.

This thesis presents results for several special cases which indicate that such
integer optimization problems are poly-time solvable.

Veselov and Chirkov [41] found an efficient algorithm for this problem in
the bimodular case, that is, if Δ “ 2, under the additional assumption that
all pn ˆ nq´sub-determinants are non-zero. We generalize this result by
providing a strongly-polynomial algorithm for the binomial case. This is
based on solving an odd-parity constrained TU problem.

Furthermore, we consider the strictly 3-modular case when all pn ˆ nq-sub-
determinants are in t0,˘3u. We give an equivalent TU-description with one
congruence constraint. We show, for important special cases, how to decide
feasibility, and that the underlying TU-problem admits a flat direction of
width 1 if it is infeasible.

Finally, we conclude by giving a Python implementation of the core ingredi-
ents of our bimodular optimization algorithm.

iii

iv

Zusammenfassung

Wir untersuchen das Optimierungsproblem maxtcTx : Ax ď b, x P Znu,
bekannt unter dem Namen ‘integer linear optimization problem (ILP)’, wobei
A P Zmˆn, b P Zm und c P Zn. Vor allem der Spezialfall in dem alle
pn ˆ nq´sub-Determinanten von A im Absolutwert durch eine Konstante
Δ beschränkt sind, ist für uns von Interesse.

In dieser Dissertation stellen wir Ergebnisse für diverse Spezialfälle vor, welche
einen Hinweis geben, dass solche ILPs in polynomieller Laufzeit gelöst werden
können.

Veselov und Chirkov [41] fanden einen effizienten Algorithmus für den bimod-
ularen Fall, in dem Δ “ 2, unter der zusätzlichen Annahme, dass alle pnˆnq-
sub-Determinanten nicht null sind. Wir verallgemeinern dieses Resultat mit
einem Algorithmus mit strongly-polynomial Laufzeit für den bimodularen
Fall. Dieser basiert auf der Reduktion des Problems auf ein ungeradzahliges
TU-Problem.

Zusätzlich studieren wir den strikt 3-modularen Fall, in dem alle pn ˆ nq-
sub-Determinanten in t0,˘3u liegen. Auch hier existiert eine äquivalente
TU-Beschreibung mit einer Kongruenz-Bedingung. Wir zeigen, für wichtige
Spezialfälle, wie man tx P Rn : Ax ď b, x P Znu “ H entscheiden kann,
und dass das zugrundelegende TU-Problem eine flache Richtung von Weite
1 besitzt, wenn obige Menge leer ist.

Zum Ende der Arbeit wird eine Implementierung des Hauptbestandteils des
Algorithmus für den bimodularen Fall in der Programmiersprache Python
vorgestellt.

v

vi

Contents

1 Introduction 1
1.1 Motivation and overview . 1
1.2 Contribution . 2
1.3 Preliminaries . 3

1.3.1 Notation . 3
1.3.2 Complexity and polyhedral theory 4
1.3.3 Linear and integer linear problems 6

1.4 The problem setting: ILPs with bounded sub-determinants . . . 7
1.4.1 Related results and observations 7

1.5 Seymour’s TU decomposition 11

2 A strongly polynomial-time algorithm for (BIP) 17
2.1 Introduction . 17
2.2 Outline of our Approach . 17
2.3 Reductions between (BIP), (PTU), and (CPTU) 21
2.4 Solving (CPTU) via TU-Decompositions 25

2.4.1 Decomposition Approach for 1-Sums 25
2.4.2 Decomposition Approach for 2-Sums 26
2.4.3 Decomposition Approach for 3-Sums 32
2.4.4 Pivoting . 36

2.5 Solving Base Block (CPTU)s . 37
2.5.1 Solving (CPTU)s with T Being a Network Matrix 37
2.5.2 Solving (CPTU)s with T Being the Transpose of a Net-

work Matrix . 40
2.5.3 Solving (CPTU) with constraint matrix of small core . . 43

2.6 Proof of Main Theorem . 44

3 Strictly 3-modular base block ILPs 49
3.1 Flat direction in infeasible base block (C3TU) problems 51

3.1.1 Network matrix . 52
3.1.2 Transposed network matrix 55
3.1.3 Constant-size matrices 58

3.2 Feasibility in congruence-3-constrained base block TU problems 60
3.2.1 Transposed Network Matrix 60

viii Contents

3.2.2 Network Matrix . 62

4 Implementation of the bimodular ILP algorithm 69

Bibliography 71

A Copyright 75

B Deferred proofs of Chapter 2 77
B.1 Deferred proofs for the equivalence of (BIP), (CPTU) and (PTU) 77

B.1.1 LP relaxations of (BIP) 77
B.1.2 Further deferred proofs of Section 2.3 78

B.2 Deferred statements and proofs on our variant of Seymour’s TU-
decomposition . 80

B.3 Deferred proofs on (CPTU) decompositions 84

Chapter 1

Introduction

In this chapter, we will introduce integer linear problems and give some context
on them. Parts of it have appeared in [6]1 and [5].

1.1 Motivation and overview

This thesis is concerned with integer linear optimization problems (ILP) with
bounded sub-determinants. We postpone details and a formal introduction to
Section 1.3, and mention only that integer linear problems can be stated as

maxtcTx : Ax ď b, x P Znu,
where A P Zmˆn, b P Zm, and c P Zn.

Such problems have been studied extensively (see, e.g.,[36]) and occur in many
interesting discrete optimization problems, see [37] for an overview.

The wealth of problems that can be stated as ILPs comes at a cost, though:
Solving ILPs is NP-hard. This motivates the search for further assumptions
which we can place on integer linear problems such that they can still be used
on a wide variety of problems, yet be solved efficiently. A breakthrough in this
direction was made by [32], who showed that the polyhedron’s dimension serves
as a parameter of the problem’s complexity: When kept fixed, the problem can
be solved efficiently.

Another parameter is the maximal minor, also known as maximal sub-deter-
minant, of the constraint matrix. There are many hints in the literature that
it might serve a similar purpose as the dimension. These include geometric
observations: If, for example, a polyhedron contains a vertex, then the sub-
determinants define a grid in Rn which contains it. Furthermore, there is a
proximity result for integer-feasible polyhedra (cf. [36], Theorem 17.2, see Sec-
tion 1.4.1 for details). It states that for every optimal point x in the polyhe-
dron there is an optimal integer point y whose distance, with respect to the

1 c� Artmann, Weismantel, Zenklusen, ACM 2017. This is the author’s version of the
work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in [6], https://doi.org/10.1145/3055399.3055473.

2 Chapter 1. Introduction

infinity-norm, to x is bounded by a function in the dimension and the maximal
sub-determinant.

It is well-known that when all minors are bounded in absolute value by 1, for
example, solving ILPs reduces to solving linear problems, which is due to a
simple reduction to linear programming, exploiting that the LP relaxation that
corresponds to the ILP is integral. There are numerous discrete optimization
problems that are naturally described by an ILP with a TU constraint matrix.
This includes problems like finding maximum flows, minimum cost flows, maxi-
mum bipartite matching, and interval packing and covering, just to name a few
(we refer the interested reader to [38] for a much more extensive account).

In the bimodular case, that is, when all pn ˆ nq-sub-determinants of A are at
most two in absolute value, [41] showed that full-dimensionality of the polytope
implies feasibility, and that an optimal integer point can be found along an edge
containing the optimal fractional vertex. They also argued how a bimodular
integer linear problem can be solved in the special case that there are no sub-
determinants of a certain kind which are zero. We postpone the details to
Section 1.4.1.

Interestingly, bimodular ILPs already capture some classical combinatorial op-
timization problems, like finding a minimum odd s-t cut in a graph, which is
an s-t cut containing an odd number of vertices. Also the problem of finding a
minimum T -cut can be solved through bimodular integer programming, where
the minimum T -cut problem is defined as follows. Given is an undirected graph
G “ pV,Eq with edge weights w : E Ñ ZEě0, and T Ď V with |T | even. The
goal is to find a set S Ď V such that |S X T | is odd, and the total weight of
edges crossing the cut S is as small as possible. These reductions follow from the
fact that bimodular ILPs allow for solving any ILP with a totally unimodular
constraint matrix A and an additional parity constraint, which requires thatř

iPS xi is odd for some subset S of the components of x; we will come back to
this observation later and expand on it. Another interesting problem naturally
captured by bimodular ILPs regards the odd cycle packing number of an undi-
rected graph G, which is the maximum number of vertex-disjoint odd cycles in
G. The problem of finding a maximum weight independent set in a graph with
an odd cycle packing number of 1 can be modeled as a bimodular ILP. This
follows by an observation in [25], showing that the maximum subdeterminant of
the vertex-edge incidence matrix of a graph G is equal to 2ocppGq, where ocppGq
is the odd cycle packing number of G. Prior to our work, it was open whether
this problem can be solved efficiently, and a PTAS was known for finding the

maximum weight independent set in G if G satisfies ocppGq “ Op
b

logn
log logn

q,
where n is the number of vertices of G [11].

1.2 Contribution

In this thesis we add to the growing list of hints that sub-determinants may be
a parameter that, when being fixed, allows for efficient algorithms for ILPs.

1.3. Preliminaries 3

In Chapter 2, we describe an efficient algorithm for bimodular IPs which is based
on two things: First, on the observations that a bimodular IP can equivalently
be stated as a conic odd-parity constrained TU problem, and second, that the
latter can recursively be solved using Seymours’s TU decomposition [39].

Next, in Chapter 3, we prove that when a strictly 3-modular base block IP is
infeasible, it has a flat direction of width 1. Furthermore, we give polynomial-
time algorithms to test feasibility in certain special cases.

Finally, in Chapter 4, we conclude by providing a Python implementation of the
main routine of the bimodular optimization algorithm.

1.3 Preliminaries

This section provides the background and concepts used throughout this thesis.

1.3.1 Notation

We will use the following notation throughout this thesis.

¨q For an integer n ě m ě 1, denote by m : n, the set tm, . . . , nu, and by rns
the set 1 : n.

¨q For a matrix X P Qmˆn, and a set S Ď t1, . . . ,mu, let AS,¨ P Q|S|ˆn be
the matrix consisting of the rows of A indexed by S. The same notation
x P Qn is used for vectors, where bS P Q|S| consists of the components of x
indexed by S. Similarly, for a set T Ď t1, . . . , nu, let A¨,T P Qmˆ|T | consist
of the rows of A indexed by T .

¨q For a matrix X P Qmˆn, the entry in row i and column j is denoted by
Xij. The ith entry of a vector x P Qn is denoted by xi.

¨q We compare vectors element-wise: We write, for two vectors x and y in
Rn,

x ď y :ô @i P t1, . . . , nu : xi ď yi.

A strict inequality x ă y is defined element-wise as well.

¨q Let }x} denote the 2-norm of a vector x, i.e., }x} “ ařn
i“1 x

2
i .

¨q 0 shall be the all-zero vector of appropriate dimension, and ei P Rn, 1 ď
i ď n, the ith standard unit vector, i.e., eij “ 0, for all 1 ď j ď n with
j ‰ i, and eii “ 1.

¨q Let X, Y be finite sets. If the rows and columns of a matrix A are indexed
by the elements in X and Y , we write A P RXˆY , and Ax,y for the entry
in A that is indexed by x P X and y P Y . We use similar notation for row
and column selections and vectors.

¨q Let x P RZ , for some finite set Z, and Y Ď Z. We denote by xpY q :“ř
yPY xy.

Finally, we define the maximal sub-determinant:

4 Chapter 1. Introduction

¨q ΔmaxpAq :“ maxt|δ| : δ is the determinant of an pn ˆ nq´sub-matrix of Au.

1.3.2 Complexity and polyhedral theory

To begin with, let us recapitulate some essentials of complexity theory and basic
polyhedral theory. For a more extensive discussion, the reader is referred to [36],
for example.

Let F be a family of functions from Rn to R and X a family of subsets of Rn.
An optimization problem is the task of finding

max fpxq
s. t. x P X

for any given f P F and X P X .

pf,Xq is called an instance of the optimization problem, where f is often re-
ferred to as the objective function and X as the set of feasible solutions.
We call a point x feasible if x P X, and an x˚ achieving the optimum, i.e.,
x˚ P X and fpx˚q “ maxtfpxq : x P Xu, is optimal, or an optimal solution.
An instance is bounded if suptfpxq : x P Xu ă 8. It is feasible if it has a
solution, or infeasible otherwise.

An algorithm solves an optimization problem if given f P F and X P X ,
it returns an optimal point if such a point exists, and decides that there is no
such point, otherwise. The encoding size of an instance pf,Xq is the number of
bits necessary to describe f P F and X P X . We call an algorithm efficient if
its running time is bounded by a polynomial in the encoding size of f and X.

Let p be a parameter of a problem pP q (for example the maximal pn ˆ nq´sub-
determinant ΔmaxpAq in an integer linear program, as described in Section 1.4).
Sometimes, pP q can be solved efficiently with p fixed, or equivalently, with p a
constant. This means that pP q is solved by an algorithm with running time
bounded by a polynomial in the other parameters of pP q, and p is assumed
to be a constant. For some input data D P Zmˆn, m,n P Ną0, denote by
xDy :“ max1ďiďm,1ďjďn | log2 Dij| its encoding size, to which we will also refer
to as input size.

It will suffice for our purposes to say that a problem pP q can be reduced to
a problem pQq if the existence of an efficient algorithm that solves pQq implies
the existence of an efficient algorithm to solve pP q. This is a special case of the
more general notion of a Cook-reduction (cf. Chapter 2.2.1. in [22]).

Let x, y P Rn be two vectors. In what follows, we write x ď y if for all i P
t1, . . . , nu : xi ď yi. Analogously, the strict inequality x ă y shall be defined
element-wise as well.

A polyhedron is a subset of Rn which can be written as P “ tx P Rn : Ax ď bu
for a matrix A P Rmˆn and a vector b P Rm. We call A a constraint matrix
and each pair pAi,¨, biq, for i P t1, . . . ,mu, a constraint.

1.3. Preliminaries 5

A polyhedron is a rational polyhedron if A and b can be chosen to be in
Zmˆn and Zm, respectively. Note that Rn is a rational polyhedron itself and
that polyhedra are closed and convex. A polytope is a bounded polyhedron.

For a polyhedron P , convpP X Znq is the integer hull of P .

An extreme point x of a convex set P cannot be written as a convex combi-
nation of two different points of this set. Put differently, if x “ λx1 ` p1 ´ λqx2

for 0 ă λ ă 1 and x1, x2 P P , then x “ x1 “ x2.

For a polyhedron P “ tx P Rn : Ax ď bu and a point x P P , the set of tight
constraints at x is the subset I Ď t1, . . . ,mu such that @i P I : Ai,¨x “ bi. If
rankpAI,¨q “ n, x is called a vertex of P . This is the case if and only if x is an
extreme point of P (see [9], Theorem 2.3). A polyhedron which has an extreme
point is called pointed.

A polyhedron C “ tx P Rn : Ax ď 0u is called a polyhedral cone. We will
just refer to it as a cone in this thesis.

An element r ‰ 0 of a cone C that satisfies AI,¨r “ 0, for I Ď t1, . . . ,mu such
that AI,¨ has rank n´1 is called an extreme ray of C. As any positive multiple
of r is an extreme ray again, one usually scales r such that it is integral and
primitive (we call an integral vector x P Zn primitive if gcdp|x1|, . . . , |xn|q “ 1).

Caratheodory’s Theorem states that all elements of C can be written as a
non-negative linear combination of at most n extreme rays:

Theorem 1.1 (Caratheodory [14]). Let r1, . . . , rl be the extreme rays of a
cone C. Then for all x P C, there is i1, . . . , in such that

x “
nÿ

j“1

λjr
ij ,

where λj ě 0 for all j P t1, . . . , nu.

For a vertex v of a polyhedron P , the polyhedron C :“ tx P Rn : AI,¨x ď bIu,
where I is the set of tight constraints at v, is called the supporting cone at
v. C is a translated cone, as it can be written as C “ v ` tx P Rn : AI,¨x ď 0u.
An extreme ray of C is defined as an extreme ray of tx P Rn : AI,¨x ď 0u.
For a supporting cone C, take a subset J Ď I such that |J | “ n and detpAJ,¨q ‰ 0.
Then v is uniquely defined by the equation AJ,¨v “ bJ , and can be calculated by
Cramer’s rule as

vi “ detA
piq
J,¨

detAJ,¨
, (1.1)

where A
piq
J,¨ is the matrix that results from replacing column i in AJ,¨ by bJ .

The width of a polyhedron P is defined as

wpP q :“ min
dPZnzt0u

wpP, dq, where (1.2)

6 Chapter 1. Introduction

wpP, dq :“ maxtdTx | x P P u ´ mintdTx | x P P u.
We call a polyhedron flat if it has a small (which usually means bound by a
constant) width, and in this case we call a vector d achieving the maximum
in (1.2) a flat direction. The flatness theorem due to Khinchine [30] shows
that integer infeasible polyhedra in dimension n have a direction such that the
width along it is bounded by a function only of n, see [7] for a proof of Opn 5

2 q.

1.3.3 Linear and integer linear problems

We summarize the most important concepts and definitions in linear and integer
linear programming.

We consider the following type of problems, called integer linear program-
ming (ILP) problems:

max cJx
s. t. x P P, (1.3)

x P Zn,

where P “ tx : Ax ď bu Ď Rn, for A P Zmˆn, b P Zm, and c P Zn, is a rational
polyhedron. We will also refer to ILPs as integer programming problems or
integer problems.

If we drop the integrality constraints in (1.3), we arrive at a linear program-
ming (LP) problem:

max cJx
s. t. x P P. (1.4)

(1.4) is an LP-relaxation of (1.3). Analogously, we call an instance of (1.4) an
LP-relaxation of an instance of (1.3).

Similarly to the integer case, a synonym that we use for linear programming
problems is linear problem.

To be explicit, whenever we say that an algorithms solves a problem like (1.3)
or (1.4), or related problems to be introduced later, we mean the following.
The algorithm determines infeasibility if the problem is infeasible. It returns an
optimal solution if the problem has a finite optimum. Finally, if the problem is
unbounded, then a certificate of unboundedness is returned. In the case of (1.3)
or (1.4) – and similarly for related problems – this consists of a feasible point x
and a direction v P Zn such that

1. Av ď 0, and

2. cTv ą 0.

This clearly shows unboundedness since x ` λv will be feasible for any λ P Zě0,
and the objective value linearly increases with increasing lambda.

For linear problem (1.4) efficient algorithms exist, e.g. Khachiyan’s method [29].
Lenstra showed in [32] that (1.3) can be solved efficiently when n is fixed.

1.4. The problem setting: ILPs with bounded sub-determinants 7

The existence of polynomial-time algorithm for IP-problems seems unlikely, as
they are NP´hard [28].

1.4 The problem setting: ILPs with bounded

sub-determinants

We now introduce our problem setting.

We call the determinant of any square sub-matrix of A a sub-determinant. The
determinant of an pn ˆ nq´sub-matrix of A is an pn ˆ nq´sub-determinant of
A. We introduce the following definitions to abbreviate notation.

Definition 1.2. Let A P Zmˆn, then

i) the determinant of a square sub-matrix ofA as called a sub-determinant,

ii) the determinant of an pnˆnq´sub-matrix of A is called an pnˆnq´sub-
determinant of A,

iii) ΔmaxpAq :“ maxt|δ| : δ determinant of an pn ˆ nq´sub-matrix of Au and
iv) ΔminpAq :“ mint|δ| : δ determinant of an pn ˆ nq´sub-matrix of Au.

Throughout this thesis, we are interested in the maximization problem of finding

max cJx
s. t. x P P, (1.5)

x P Zn,

where P :“ tx P Rn : Ax ď bu is a rational polyhedron, A P Zmˆn, b P Zm and
c P Zn. If ΔmaxpAq ď 2, we call (1.5) a bimodular ILP. If all pn ˆ nq´sub-
determinants of A are zero or two in absolute value, we call the problem strictly
bimodular. Accordingly, we talk about a strictly k-modular ILP if all such
sub-determinants are 0 or ˘k, for some k P N.

Definition 1.3 (Bimodular integer linear problem). Let b P Zm, c P Zn,
and A P Zmˆn with rankpAq “ n and ΔmaxpAq “ 2. Find x P Rn attaining

maxtcTx : Ax ď b, x P Znu, (BIP)

or decide that no such x exists.

We remark that [42] contains a nice discussion of matrices with pn ˆ nq-sub-
determinants within t´k, 0, ku for k P Zą0.

1.4.1 Related results and observations

There are many results that link polyhedral properties to sub-determinants.

8 Chapter 1. Introduction

We know, for example (cf. [36], Theorem 17.2) that if y˚ achieves maxtcTx : x P
P u and an optimal solution to (1.3) exists, then there is an optimal solution

x˚ P Zn for (1.3) such that }y˚´x˚} ď nĆΔmaxpAq, where ĆΔmaxpAq is the maximal
absolute value of any square sub-determinant of A.

In addition, Bonifas et al. studied the polyhedral graph of P in [12]. This is
an undirected graph with the extreme points of P as vertices. It has an edge
between two vertices if the corresponding extreme points are connected by an
edge in P . Bonifas et al. [12] were interested in the diameter of P , that is the
smallest integral bound on the length of a shortest path between any pair of
vertices. They showed that it is bounded by Op ĆΔmaxpAq2n4 log2pnĆΔmaxpAqq.
There are also connections between integer feasibility and the width of a poly-
hedron. The flatness theorem due to Khinchine [30] shows that integer infeasi-
ble polyhedra in dimension n have a direction such that the width along it is
bounded by a function only of n, see [7] for a proof of Opn 5

2 q. Gribanov and
Veselov showed that if the width is larger than a function f that only depends on
Δ and n and is linear in n, then the polyhedron contains n`1 integer points [24,
Theorem 4]. It was shown in [23] that if P is strictly 3-modular and P XZn “ H,
then there exists c P Znzt0u such that maxtcTx | x P P u ´ mintcTx | x P P u ď
2pn ` 1q.
Optimization problems under bounded sub-determinants have been studied as
well. Linear programs with constraint matrices whose subdeterminants are
bounded by a constant Δ ą 0 can be solved in strongly polynomial time. This
follows by a seminal result of Tardos [40], which shows the existence of an efficient
linear programming algorithm whose runtime does not depend on the entries of
the right-hand side or the objective function. Clearly, if all sub-determinants of
the constraint matrix are bounded by Δ in absolute value, then so are all entries
of the constraint matrix.

Interest also arose in obtaining simplex-type linear programming algorithms with
similar guarantees as the one of Tardos. To this end, Bonifas et al. [12] showed an
important structural result, namely that polyhedra defined by a constraint ma-
trix that is totally Δ-modular have small diameter, i.e., the diameter is bounded
by a polynomial inΔ and the number of variables. Dyer and Frieze [16] presented
a strongly polynomial randomized simplex-type linear programming algorithm
when the constraint matrix is totally unimodular. Very recently, Eisenbrand
and Vempala [17] showed a randomized simplex-type linear programming algo-
rithm, whose running time is strongly polynomial even if all subdeterminants of
the constraint matrix are bounded by any constant. It remains open whether
strongly polynomial linear programming algorithms exist without restrictions
on the constraint matrix.

We further want to highlight prior work on integral binet matrices, which is a
generalization of a subclass of TU matrices, known as network matrices. Integral
binet matrices also lead to ILPs that can be solved efficiently by a reduction to
a matching problem (see [1, 2]). The class of binet matrices is not directly
comparable to bimodular matrices; more precisely, it neither contains the set of
bimodular matrices nor is it contained in it.

1.4. The problem setting: ILPs with bounded sub-determinants 9

In the totally unimodular (TU) case, when all sub-determinants of A lie in
t´1, 0, 1u, problem (1.3) can be solved efficiently. The reason is that then, P
has integral extreme points, and so (1.3) can be reduced to finding a point
achieving

maxtcTx : x lies on a minimal face of P u,
or deciding that no such point exists. This can be done efficiently, see, for
example, [9].

TU matrices have been studied extensively, as covered in [36], Sections 19 ´
21, for example. We will treat the TU decomposition theorem of [39] in greater
detail later as it is a key ingredient for our bimodular problem algorithm. An-
other result which we will use repeatedly in Chapter 3 extends the statement of
Caratheodory’s Theorem for TU matrices.

Theorem 1.4. Let C :“ tx P Rn : Tx ď 0u, for T P ZmˆnTU , be a totally
unimodular cone, r1, . . . , rk be its extreme rays. Then, for every z P C XZn,
there exist λ1, . . . ,λn P N such that

x “
nÿ

i“1

λir
ji ,

where j1, . . . , jn P t1, . . . , ku.

The proof follows from a similar statement in [20]. Alternatively, Theorem 1.4
can be shown using an inductive argument.

In [41], Veselov and Chirkov proved the existence of an efficient algorithm for
bimodular ILPs if all pn ˆ nq-sub-determinants are non-zero. This has later
been generalized in [4] to the case that all sub-determinants of A are nonzero
and bounded by a constant.

Another result in [41] concerns the feasibility of (BIP) and is treated in greater
detail here, as it is essential for our bimodular algorithm. It states that if
ΔpAq ď 2 and P is a full-dimensional pointed polyhedron, then P contains an
integer point.

The argument of Veselov and Chirkov goes along the following lines: First,
assume w.l.o.g. that P has a fractional vertex v, as otherwise, it clearly contains
an integer vertex, which can be found efficiently [29]. Let I Ď t1, . . . ,mu be
the set of tight constraints for v and consider the supporting cone C “ tx P
Rn : AI,¨x ď bIu. Then, in [41] an extreme ray r P Rn is written as

r “ ´B´1e1, (1.6)

where B is some invertible pn ˆ nq´sub-matrix of AI,¨ and e1 is the first unit
vector. Note that unlike it is often done, they do not scale r such that it is an
integral primitive vector.

Their feasibility result then is:

10 Chapter 1. Introduction

Lemma 1.5 ([41], Theorem 2). Let y be an extreme point of convpC XZnq.
Then, y P convpP X Znq and there exists a fractional extreme ray r of C
such that y “ v ` r.

For the purpose of proving Lemma 1.5, the following lemma is used in [41]
implicitly. We shall give a proof for it here.

Lemma 1.6 (cmp. [41]). Let Δ be the maximal pn ˆ nq-subdeterminant of
the constraint matrix A, v be a vertex and let r be an extreme ray of the
supporting cone C at v as in (1.6), where δ :“ detpBq. Then,
i)

ri “ ´1

δ
p´1qi`1 detpBpiqq for all i P t1, . . . , nu, (1.7)

where Bpiq is the sub-matrix of B obtained after removing the first row
and column i.

ii) If δ “ Δ, then for all i P t1, . . . ,mu
|Ai,¨r| ď 1. (1.8)

Proof.

i) We have

B´1
ij “ 1

detB
p´1qi`j detpB̄jiq,

where B̄ji is the matrix B without row j and column i. Thus, for j “ 1,

B´1
i1 “ 1

δ
p´1qi`1 detpBpiqq.

ii)

|Ai,¨r| “
ˇ̌
ˇ̌
ˇ

nÿ

j“1

Aijrj

ˇ̌
ˇ̌
ˇ “

ˇ̌
ˇ̌
ˇ

nÿ

j“1

´Aij

Δ
p´1qj`1 detpBpjqq

ˇ̌
ˇ̌
ˇ “ 1

Δ

ˇ̌
ˇ̌det

ˆ„
Ai,¨

rB

˙ˇ̌
ˇ̌

looooooomooooooon
ďΔ

ď 1,

where rB is the pn ´ 1 ˆ nq´sub-matrix obtained from B after deleting the
first row.

Proof of Lemma 1.5. Let r “ ´B´1e1 be an extreme ray of C (with B as in
(1.6)) which satisfies

@i s. t. Ai,¨y “ bi : Ai,¨r “ 0. (1.9)

Assume, for sake of contradiction, that r P Zn. Then,

1.5. Seymour’s TU decomposition 11

¨q @i P I s. t. Ai,¨y “ bi : Ai,¨r “ 0, and

¨q @i P I s. t. Ai,¨y ă bi : Ai,¨py ˘ rq ď bi,

which implies that y ˘ r P convpC X Znq, contradicting that y is a vertex of
convpC X Znq. Thus, r R Zn.

Consequently, | detpBq| “ 2. Consider the lattice L “ LpB´1q. detpLq “ 1
2
and

thus, L consists of two cosets, Zn and v ` Zn. As r P L but r R Zn, r P v ` Zn,
which in turn implies v ` r P Zn.

Additionally, y “ v ` r as for p :“ v ` r P Zn and q :“ 2y ´ p P Zn,

¨q |Ai,¨r| ď 1 implies that p P C,

¨q @i P I : Ai,¨q “ 2Ai,¨y ´ Ai,¨u ´ Ai,¨r ď Ai,¨y ´ Ai,¨r ď bi and thus q P C,
and

¨q y “ 1
2
p ` 1

2
q,

which by the fact that y is a vertex implies that y “ p “ q. Finally, by (1.8),
(1.9) and the integrality of y: @i P t1, . . . ,mu : Ai,¨y ď bi.

This statement can be extended a little.

Lemma 1.7 (cmp. [41]). Let P be a full-dimensional, pointed polyhedron,
c P Znzt0u, k P N. Then Dx, y P P X Zn s.t. cTx ı cTy pmod kq.

Proof. As P is full-dimensional, there exists l P N such that lP :“ tlx | x P P u
contains two integral points y, y1 of different congruence in its interior. Let
i P rns such that ci ı 0 pmod kq. Assume that there exists α P Z such that
for all x P P X Zn, cTx ” α pmod kq. Similarly as in [8], T being TU implies
that y “ řk

i“1 yi for y1, . . . , yk P P X Zn and y1 “ řk
i“1 y

1
i for y1

1, . . . , y
1
k P

P X Zn. Thus, α ” cTy pmod kq ” lα pmod kq ” cTy1 pmod kq ı α pmod kq, a
contradiction.

Analogous to totally bimodular ILPs, one can, for any Δ ą 0, consider ILPs
where the constraint matrix A is totally Δ-modular, i.e., all subdeterminants
of A are at most Δ in absolute value. Clearly, for large enough Δ, ILPs with
totally Δ-modular constraint matrices will become NP-hard, as we approach
the setting of general ILPs. More precisely, there are examples of NP-hard
ILPs with a constraint matrix that is a TU matrix with an additional t0, 1u-row
(see, e.g.,[13, 15]). Such a constraint matrix can easily be seen to be totally
n-modular. This implies that for any ε ą 0, ILPs with totally nε-modular
constraint matrices are NP-hard.

1.5 Seymour’s TU decomposition

We primarily follow Schrijver’s [36] excellent exposition of Seymour’s decompo-
sition.

12 Chapter 1. Introduction

If a matrix is TU, this allows for employing powerful structural and algorithmic
results about totally unimodular matrices. One of the most celebrated results
in this context is a technique by Seymour [39] to recursively decompose TU
matrices into simpler matrices, which are often called base blocks.

The smallest instances of TU matrices, which cannot be decomposed any fur-
ther, fall into three categories: so-called network matrices, transposed network
matrices, and two special types of constant-size matrices.

Definition 1.8 (Network matrix). AmatrixN is called a network matrix,
if there exists a directed graph pV,Aq and a directed tree pV, Uq satisfying
that the rows of N can be indexed by U and its columns by A such that the
following holds. Let a “ pv, wq P A and u P U , and let P be the unique v-w
path in U . Then

Nu,a “

$
’&
’%

`1 if P passes through u forwardly,

´1 if P passes through u backwardly,

0 if P does not pass through u.

(1.10)

We highlight that the arcs U of the directed tree do not need to be a subset of
A, and the directions of U can be arbitrary.

The decision problem of whether a TU matrix is a network matrix can be solved
efficiently.

Lemma 1.9 (see, for example, [36, Chapter 20.1]). One can efficiently rec-
ognize whether a given matrix is a network matrix, and if this is the case,
a directed graph and directed tree as in Definition 1.8 can be found in
polynomial-time.

The remaining non-decomposable matrices are, up to row-/column permutations
and sign changes,

»
————–

1 ´1 0 0 ´1
´1 1 ´1 0 0
0 ´1 1 ´1 0
0 0 ´1 1 ´1

´1 0 0 ´1 1

fi
ffiffiffiffifl
,

»
————–

1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1

fi
ffiffiffiffifl
. (1.11)

We refer to (transposed) network matrices and the constant-size matrices (1.11)
as the base blocks of Seymour’s TU decomposition.

Three key operations of Seymour’s decomposition are so-called k-sums, for k P
r3s, which are matrix operations defined as follows.

1.5. Seymour’s TU decomposition 13

Definition 1.10 (k-sums). Let L P t´1, 0, 1umLˆnL and letR P t´1, 0, 1umRˆnR

be two matrices, and let a P ZmL , d P ZnR , f P ZnL , and g P ZmR . Then

• 1-sum: L ‘1 R “
„
L 0
0 R


,

• 2-sum:
“
L a

‰ ‘2

„
dT

R


“

„
L adT

0 R


, and

• 3-sum:

„
L a a
fT 0 1


‘3

„
1 0 dT

g g R


“

„
L adT

gfT R


.

Another useful operation employed in TU-decompositions is pivoting, which is
defined as follows.

Definition 1.11 (Pivoting). Let T “ “
ε cT

b D

‰
be a TU matrix, where ε P

t´1, 1u, c P Zn, b P Zm, and D P Zmˆn. Then the matrix obtained from T
by pivoting on the element in the first row and first column is

p1,1pT q :“
„´ε εcT

εb D ´ εbcT


.

Analogously, pivoting is defined for an arbitrary entry pi, jq P rms ˆ rns of
the matrix that satisfies Ti,j ‰ 0. Formally, a pivot on pi, jq corresponds
to first exchanging rows 1 and i and columns 1 and j, applying the pivot
operation as defined above, and permuting the rows and columns back. We
denote the resulting matrix by pi,jpT q.

All of these operations preserve TU-ness:

Lemma 1.12 ([36], Section 19.4). The k-sum, for k P r3s, of two TU ma-
trices is totally unimodular. Moreover, applying a pivot operation to a TU
matrix results in a TU matrix.

Schrijver’s exposition [36] of Seymour’s decomposition is presented in the context
of recognizing whether a t´1, 0, 1u-matrix is TU. In this context, further simpli-
fication is achieved by applying successively the following simple TU-preserving
reductions whenever possible: deleting rows or columns with at most one non-
zero entry that is either 1 or ´1, and deleting a row or column that either
appears twice or whose negation is also contained in the matrix to be checked
for TU-ness. Unfortunately, these reductions will need some further consider-
ation in our context: When T is the constraint matrix of an IP or ILP, these
operations correspond to deleting variables and constraints, respectively. To
provide a clean way to go between a matrix after and before such reductions,
we define the following notion of a core of a TU-matrix, as a matrix obtained
after these reductions.

14 Chapter 1. Introduction

Definition 1.13 (Core of a TU-matrix). Let T P Zmˆn be totally unimod-
ular. We call a submatrix of T a core of T if it arises from T by iteratively
deleting

1. any row or column with at most one non-zero entry,

2. any row or column appearing twice or whose negation is also in the
matrix.

Observe that a core of a matrix is unique up to row and column permutations
and sign changes of rows and columns.

In the rest of this thesis, it makes no difference which core is chosen in case
there are multiple options. Therefore, we denote by corepT q any one such core
and, with a slight abuse of terminology, we will also refer to the core of a TU
matrix.

The following theorem can be seen as the backbone of Seymour’s TU decom-
position. It states that the core of any TU matrix is either a base block, or its
rows and columns can be permuted to obtain a matrix with a particular block
structure (case 3) that, as shown by Seymour, can be further decomposed by a
k-sum for k P r3s). Network matrices, and the constant-size matrices that are
referred to in point 2, are also called base blocks of Seymour’s decomposition.

Theorem 1.14 ([39], Schrijver [36] Corollary 19.6b and Theorem 20.2). Let
T be totally unimodular. Then, one of the following cases holds for corepT q:

1. corepT q or corepT qT is a network matrix.

2. corepT q is, possibly after row and column permutations and multipli-
cation of some rows and columns by ´1, one of the two matrices in
(1.11).

3. corepT q is, possibly after row and column permutations, of the form“
L D1
D2 R

‰
, where L P ZmLˆnL , R P ZmRˆnR , mL `nL ě 4, mR `nR ě 4,

and rankpD1q ` rankpD2q ď 2.

Moreover, there is a (strongly) polynomial algorithm to check which of the
above cases is true.

It is not hard to observe that corepT q is a network matrix if and only if T is a
network matrix (see, e..g, [36]). Hence, this first condition could equivalently be
stated in terms of T instead of corepT q. Still, we sometimes refer to the core in
such situations for clarity, to obtain statements only depending on the core of
T .

The third case can be distinguished even further:

Lemma 1.15 (Seymour [39], Schrijver [36], Proof of Theorem 20.2). Assume
that we are in case 3 of Theorem 1.14. Then, we can further distinguish the
following cases, where a, d, f and g are column vectors of appropriate size

1.5. Seymour’s TU decomposition 15

with entries in t0,˘1u:
1. rankpD1q “ rankpD2q “ 0: Then, corepT q “ L ‘1 R and mL ` nL,

mR ` nR ě 4.

2. rankpD1q “ 1, rankpD2q “ 0 and there are no row/column sign
changes and permutations after which corepT q can be written as a

1-sum: Then, D1 “ abT, D2 “ 0 and corepT q “ “
L a

‰ ‘2

„
dT

R


is the

2-sum of two TU-matrices, for which mL ` nL, mR ` nR ě 4, that we
can find efficiently.

3. rankpD1q “ rankpD2q “ 1 and there are no row/column sign changes
and permutations after which corepT q can be written as a 1- or 2-sum:

Then, D1 “ adT, D2 “ gfT and corepT q “
„
L a a
fT 0 1


‘3

„
1 0 dT

g g R



is the 3-sum of two TU-matrices that fulfill mL ` nL, mR ` nR ě 4
and that we can find efficiently.

4. rankpD1q “ 2, rankpD2q “ 0 and there are no row/column sign
changes and permutations after which corepT q can be written as a
1-, 2 or 3-sum: Then, with a single pivot operation, row and column
sign changes and row and column permutations, the resulting matrix
can be written as a 3-sum as in case 3.

Furthermore, there is a polynomial time algorithm to check which case we
are in, and find the corresponding k-sum decomposition.

Chapter 2

A strongly polynomial-time
algorithm for (BIP)

Generalizing the statement of Veselov and Chirkov [41], we answer the main
open question regarding (BIP), namely whether they can be solved efficiently,
in the affermative. This chapter appeared in [6]1, and its main result is the
following theorem.

Theorem 2.1 (cmp. [6]). There is an algorithm solving (BIP) in strongly
polynomial time.

2.1 Introduction

We provide an outline of our approach in Section 2.2, and present further details
in Section 2.3, 2.4, and 2.5, which cover three main steps of our approach,
namely the reduction of (BIP) to a better-structured problem, the recursive
decomposition of this well-structured problem into base block problems, and
the efficient resolution of these, respectively. Finally, Section 2.6 presents a
formal proof of how the different ingredients imply our main result.

2.2 Outline of our Approach

Our approach to solve (BIP) crucially exploits the elegant result of Veselov and
Chirkov [41] mentioned in the introduction, exhibiting a close relation between
(BIP) and its linear programming relaxation. In particular, the result essentially
shows that it suffices to only consider constraints of (BIP) that are tight at an
optimal vertex solution of the corresponding LP relaxation. Recall that for a
matrix A P Rmˆn and a row index i P rms – t1, . . . ,mu, we denote by Ai,¨ the
i-th row of A.

1 c� Artmann, Weismantel, Zenklusen, ACM 2017. This is the author’s version of the
work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in [6], https://doi.org/10.1145/3055399.3055473.

18 Chapter 2. A strongly polynomial-time algorithm for (BIP)

Theorem 2.2 ([41]). Consider a (BIP) problem, and assume that its natural
LP relaxation maxtcTx : Ax ď b, x P Rnu is feasible and bounded. Let v be
an optimal vertex solution to the LP relaxation of (BIP).

1. If (BIP) is feasible, then there is an optimal solution y for (BIP) such
that |Ai,¨py ´ vq| ď 1 @i P rms.

2. Moreover, if v is the unique optimal solution to the LP-relaxation of
(BIP), then the following holds. Let A1 be the submatrix of A only
consisting of the rows that are tight with respect to v. Then, if y is
an optimal solution to maxtcTx : A1x ď 0, v ` x P Znu, then y ` v is
optimal for (BIP).

Both of the above statements follow from Lemma 1.5 and its proof. More pre-
cisely, point 2 is a rephrasing of Lemma 1.5, and point 1 is shown in its proof.

In a first step of our approach, we show that Theorem 2.2 can be exploited to
reduce (BIP) to an ILP over a TU constraint matrix with an additional parity
constraint. For this we define two auxiliary problems that are defined by TU
matrices and, as we will show next, are equivalent to (BIP). Recall that we use
for any vector x P Rn and index set S Ď rns the shorthand xpSq :“ ř

iPS xi.

Parity TU-optimization: Given T P Zmˆn totally unimodular
with rankpT q “ n, b P Zm, c P Zn, α P t0, 1u, and S Ď rns, solve

maxtcTx : Tx ď b, x P Zn
ě0, xpSq ” α pmod 2qu. (PTU)

Conic parity TU-optimization: Given T P Zmˆn totally unimodular
with rankpT q “ n, b P Zm, c P Zn, and S Ď rns, solve

maxtcTx : Tx ď 0, x P Zn
ě0, xpSq oddu. (CPTU)

The following lemma shows the reducibility of the three problem (BIP), (PTU),
and (CPTU) to each other.

Lemma 2.3. Given an algorithm A for one of (BIP), (PTU) or (CPTU),
one can solve any of the other two problems using

1. operations taking strongly polynomial time, and

2. a single call to A.

Furthermore, when solving (PTU) with an algorithm A for (CPTU), the
call to A is on a (CPTU) problem whose constraint matrix T is a submatrix
of the one of the given (PTU) problem.

The TU structure we obtain by moving from (BIP) to (PTU) or (CPTU) al-
lows for employing powerful structural and algorithmic results about totally

2.2. Outline of our Approach 19

unimodular matrices. One of the most celebrated results in this context, which
is also a key element of our procedure, is a technique by Seymour [39] to re-
cursively decompose TU matrices into simpler matrices, which are often called
base blocks.

Our main focus is on solving (CPTU). A key technical step of our approach to
solve (CPTU) is that we will be able to show that Seymour’s TU-decomposition
can be used to reduce a (CPTU) problem to a constant number of smaller
instances of (PTU) and (CPTU) problems. Moreover, by Lemma 2.3, the (PTU)
problems we obtain can again be mapped to (CPTU) problems of no larger
size, which will leave us with a constant number of strictly smaller (CPTU)
problems. Recursively continuing this approach, we will end up with (CPTU)
problems whose constraint matrices are base blocks of Seymour’s decomposition.
We complete our approach by providing strongly polynomial algorithms to solve
a (CPTU) problem whose constraint matrix corresponds to a base block.

In the following we will fill in the details of this high-level approach. To be-
gin with, there are several technical hurdles to transform Theorem 1.14 and
Lemma 1.15 into a form that is useful to decompose (CPTU) problems. First,
as already mentioned, the above theorem is stated in terms of cores instead of
the full matrix. Moreover, to make sure that our decomposition approach de-
composes a (CPTU) problem into strictly smaller subproblems, we need that,
after a k-sum, the matrices L and R of the subproblems are sufficiently small.
It turns out that the conditions mL ` nL ě 4 and mR ` nR ě 4 as guaranteed
by Theorem 1.14 are not sufficient for us. However, we show that the decom-
position can be adjusted such that mL,mR ě 2, which is all we need for our
procedure to make progress and run efficiently.

We show that all these problems can be addressed. In particular, we obtain the
following refinement of Theorem 1.14. Apart form addressing the issue with the
core and the sizes of the submatrices L and R after a k-sum decomposition, the
points 3–6 of Theorem 2.4 are an expansion of point 3 of Theorem 1.14, where
we explicitly state how the matrix can be decomposed as a k-sum.

Theorem 2.4. Let T be totally unimodular. Then, one of the following
cases holds:

1. corepT q or corepT qT is a network matrix.

2. corepT q is, possibly after row and column permutations and multi-
plication of some rows and columns by ´1, one of the following two
matrices:

»
————–

1 ´1 0 0 ´1
´1 1 ´1 0 0
0 ´1 1 ´1 0
0 0 ´1 1 ´1

´1 0 0 ´1 1

fi
ffiffiffiffifl
,

»
————–

1 1 1 1 1
1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1

fi
ffiffiffiffifl
. (2.1)

20 Chapter 2. A strongly polynomial-time algorithm for (BIP)

3. T can, possibly after row and column permutations, be decomposed
into a 1-sum with mL, mR ě 2.

4. There are no row and column permutations such that T can be written
as a 1-sum, and T can after permuting rows and columns be decom-
posed into a 2-sum with mL, mR ě 2.

5. There are no row and column permutations such that T can be written
as a 1- or 2-sum, and T can after permuting rows and columns be
decomposed into a 3-sum with mL, mR ě 2.

6. There are no row and column permutations such that T can be written
as a 1-, 2- or 3-sum, and T can after pivoting once and row and column
permutations be written as a 3-sum where mL, mR ě 2.

Furthermore, we can efficiently decide in which case we are and, if we are in
one of the cases 3-6, find a corresponding k-sum decomposition efficiently.

The proof of Theorem 2.4 is deferred to the appendix, Section B.2.

Starting with a (CPTU) problem with constraint matrix T , we first check which
of the cases of Theorem 2.4 applies. For cases 1 and 2 we explicitly present
strongly polynomial time algorithms to solve the (CPTU) problem. This is
summarized in the following lemma, which is shown in Section 2.5.

Lemma 2.5. There exists a strongly polynomial algorithm for solving (CPTU)
if the core of the constraint matrix T P Zmˆn is a base block, i.e., the
core is either a network matrix, its transpose, or—up to sign changes of
rows/columns and row/column permutations—one of the two matrices shown
in (2.1).

The most involved case among (CPTU) problems on a constraint matrix T that
is base block, is when T is the transpose of a network matrix. As we show, this
problem can be reduced to a submodular function minimization problem with
a parity constraint, which is one of the few constraint classes over which it is
known how to efficiently minimize submodular functions (see [21]).

In the remaining cases, we show that the decomposition of T in terms of a k-sum
for k P r3s can be used to reduce (CPTU) to several strictly smaller versions
of the same problem, as stated in the following theorem, which is proven in
Section 2.4.

Theorem 2.6. Consider a (CPTU) problem with constraint matrix T such
that neither corepT q nor its transpose is a network matrix, and corepT q is
not, up to row/column permutations and sign changes, one of the constant
matrices in (2.1). Then we can solve (CPTU) by

1. solving at most 14 problem of type (CPTU) with at most m1 rows and
at most n ´ 1 columns,

2. solving 1 problem of type (CPTU) with at most m2 rows and at most

2.3. Reductions between (BIP), (PTU), and (CPTU) 21

n ` 13 columns, and

3. using further operations taking strongly polynomial time,

where m1,m2 satisfy m1 ď m2 ă m, and m1 ` m2 ď m ` 2.

Our main result, Theorem 2.1, is now obtained by combining the above results.
In particular, by Lemma 2.3, it suffices to show that (CPTU) can be solved in
strongly polynomial time to show that (BIP) can be solved in strongly polyno-
mial time. We then use Theorem 2.6 to break a (CPTU) problem into smaller
ones, until we end up with (CPTU) problems on constraint matrices whose cores
are either network matrices, their transposes, or are, up to row and column per-
mutations and sign changes of rows and columns, one of the two p5ˆ5q matrices
shown in (2.1). All these resulting (CPTU) problems, which we call base block
problems, in analogy to the base blocks in Seymour’s decomposition, can be
solved efficiently by Lemma 2.5. In Section 2.6, we present a formal proof of
Theorem 2.1, showing that the approach as sketched above indeed leads to a
strongly polynomial time algorithm for (BIP).

2.3 Reductions between (BIP), (PTU), and (CPTU)

The primary goal of this section is to prove Lemma 2.3. However, some of the
results we introduce here will also be useful later on. We will start with reducing
(BIP) to (CPTU). A key ingredient in this reduction will be Theorem 2.2,
which requires an optimal vertex solution of the LP relaxation of (BIP). The
following lemma shows that such an optimal LP vertex solution can be obtained
in strongly polynomial time. It is obtained by applying a linear transformation,
that transforms the linear program into one with bounded entries, which can
be solved in strongly polynomial time by a result of Tardos [40]. The proof is
deferred to the Appendix, Section B.1.

Lemma 2.7. The LP relaxation maxtcTx : Ax ď b, x P Rnu of (BIP) can
be solved in strongly polynomial time. More precisely:

1. If the LP relaxation has a finite optimum, an optimal vertex solution
can be determined in strongly polynomial time.

2. If the LP relaxation is unbounded, one can determine in strongly poly-
nomial time a feasible vertex v P Qn and an improving ray r P Zn,
i.e., v satisfies Av ď b, and r satisfies Ar ď 0 and cTr ą 0.

A technicality we have to deal with, is that the linear relaxation of (BIP) may be
unbounded, in which case (BIP) is either infeasible or unbounded. This allows
for an easy reduction of such a (BIP) instance to another one that is bounded.

Moreover, because we want to apply point 2 of Theorem 2.2, we also need to
take care of (BIP) problems with a corresponding LP relaxation that has multi-
ple optimal solutions. The following lemma, using mostly standard techniques,

22 Chapter 2. A strongly polynomial-time algorithm for (BIP)

shows that these cases can be reduced to another (BIP) problem with a different
objective function and a unique optimal solution.

Lemma 2.8. Consider a (BIP) problem whose LP relaxation is either un-
bounded or has multiple optimal solutions. Then we can reduce this problem
in strongly polynomial time to a (BIP) problem with the same constraint
matrix A and right-hand side b, whose LP relaxation has a unique optimum.

The proof is deferred to the appendix, Section B.1. Note, though, that a (not
necessarily strongly poly-time) way to check for feasibility is to use a polynomial
time procedure presented in [41] to check whether a (BIP) problem is feasible.
However, this procedure, as presented, is not strongly polynomial. Moreover, it
simplifies the presentation of our algorithm when we can always reduce to the
bounded case.

To reduce (BIP) to (CPTU) we will perform a transformation of variables,
through column operations, to obtain a TU constraint matrix. The following
basic property of the inverse of an integer matrix Q with | detpQq| “ 2 is crucial
in our reduction that comes next. It states that the half-integral values of Q´1

form a rectangle.

Lemma 2.9. Let Q P Znˆn be a matrix with | detpQq| “ 2. Then, its inverse
Q´1 has the following structure. There exist row indices I Ď rns and column
indices J Ď rns with I, J ‰ H, such that

• pQ´1qij P 1
2

` Z @pi, jq P I ˆ J , and

• pQ´1qij P Z @pi, jq R I ˆ J .

The proof can again be found in Section B.1.

We are now ready to prove the reduction from (BIP) to (CPTU), which is one
of the statements implied by Lemma 2.3.

Lemma 2.10. Given an algorithm A for (CPTU), one can solve any (BIP)
problem using operations taking strongly polynomial time and a single call
to A.

Proof. Using Lemma 2.7, we solve the LP relaxation of (BIP) in strongly poly-
nomial time. If it is infeasible, then so is (BIP) and we are done. Otherwise if the
LP relaxation of (BIP) is either unbounded or has multiple optimal solutions,
then we can invoke Lemma 2.8 to transform the problem to another one with
a bounded LP relaxation. Hence, we are left with the case of a (BIP) problem
whose LP relaxation has a unique optimum. In this case, let v be an optimal
vertex solution of the LP relaxation maxtcTx : Ax ď b, x P Rnu. If v P Zn, then
v is an optimal solution to (BIP) and we are done. Hence, assume v R Zn.

Let C P Zm1ˆn be the submatrix of A only consisting of the rows that are tight
with respect to v. By Theorem 2.2 we have that for any optimal solution y to

maxtcTx : Cx ď 0, v ` x P Znu , (2.2)

2.3. Reductions between (BIP), (PTU), and (CPTU) 23

the vector y ` v is an optimal solution to (BIP). Clearly, if (2.2) is infeasible,
then so is (BIP). Hence, the (BIP) problem is reduced to solving (2.2).

Let Q be a full-rank square submatrix of C, and let bQ be the part of b that
corresponds to the rows in Q. Hence,

v “ Q´1bQ . (2.3)

Because all pn ˆ nq-subdeterminants of A are bounded in absolute value by 2,
we have detQ P t´2,´1, 0, 1, 2u. Moreover v R Zn implies that | detQ| “ 2;
for otherwise Q´1 P Znˆn, and (2.3) would thus imply integrality of v, which
does not hold. Since Q is an arbitrary n ˆ n full-rank matrix of C we have the
following:

Each pn ˆ nq-subdeterminant of C is either ´2, 0, or 2. (2.4)

Consequently, the matrix C̄ :“ CQ´1 is a TU matrix (we remark that this also
follows from results in [42]), because:

1. by | detpQ´1q| “ 1
|detpQq| “ 1

2
and statement (2.4), the determinant of any

n ˆ n submatrix of C̄ is within t´1, 0, 1u, and
2. C̄ “ CQ´1 contains an identity matrix because Q is a submatrix of C.

We can thus transform the problem (2.2) into one with a TU matrix as follows,
where we set c̄ :“ pQ´1qTc, and use z :“ Qx:

maxtcTx : Cx ď 0, v ` x P Znu
“ maxtcTQ´1Qx : CQ´1Qx ď 0, v ` Q´1Qx P Znu
“ maxtc̄Tz : C̄z ď 0, Q´1pbQ ` zq P Znu
“ maxtc̄Tz : C̄z ď 0, Q´1pbQ ` zq P Zn, z P Znu . (2.5)

Notice that the condition z P Zn added in the expression after the last equation
is indeed redundant because

Q´1pbQ ` zq P Zn ùñ bQ ` z P Zn ðñ z P Zn,

where the first implication follows from Q P Znˆn and the second one from
bQ P Zn. Hence, there is a one-to-one relation between optimal solutions z
to (2.5) and optimal solutions x “ Q´1z of (2.2). We thus reduced (BIP)
to (2.5). It remains to reduce (2.5) to (CPTU).

By Lemma 2.9, there are sets of row and column indices I, J Ď rns, respectively,
such that the half-integral entries of Q´1 are precisely those entries Q´1

ij with
i P I and j P J . This leads to the following equivalence for any integer vector
y P Zn:

Q´1y P Zn ðñ ypJq :“
ÿ

jPJ
yj is even.

Because v “ Q´1bQ R Zn, we have that bQpJq is odd. Hence, for z P Zn we
obtain

Q´1pbQ ` zq P Zn ðñ pbQ ` zqpJq is even ðñ zpJq is odd,

24 Chapter 2. A strongly polynomial-time algorithm for (BIP)

implying that (2.5) can be rewritten as the problem:

maxtc̄Tz : C̄z ď 0, Q´1pbQ ` zq P Zn, z P Znu
“ maxtc̄Tz : C̄z ď 0, z P Zn, zpJq oddu.

To arrive at a (CPTU) problem, we need non-negativity constraints. A simple
way to achieve this is to replace z by the difference of two non-negative integer
vectors x`, x´ P Zně0, i.e., z “ x` ´ x´. Consequently, the objective c̄Tz thus
gets replaced by c̄Tx` ´ c̄Tx´ and the constraints become C̄x` ´ C̄x´ ď 0.

Finally, we remark that the presented reduction can be performed in strongly
polynomial time because finding a full-rank matrix Q in C and inverting it can
both be done in strongly polynomial time.

To complete the proof of the reductions claimed in Lemma 2.3 between any two
problems among (BIP), (PTU), and (CPTU), it suffices to present reductions
from (CPTU) to (PTU), and from (PTU) to (BIP), which are readily derived.
In particular, the reduction from (CPTU) to (PTU) immediately follows from
the fact that any (CPTU) problem is a (PTU) problem; it suffices to choose
α “ 1 and b “ 0 in the definition of (PTU). The following lemma shows the
remaining reduction.

Lemma 2.11. Given an algorithm A for (BIP), one can solve any (PTU)
problem using

1. operations taking strongly polynomial time, and

2. a single call to A.

Proof. Starting with a (PTU) problem maxtcTx : Tx ď b, x P Zně0, xpSq ”
α pmod 2qu, we define

Ā :“

»
—–

T 0

χS
T ´2

´χS
T 2

fi
ffifl P Zpm`2qˆpn`1q, c̄ :“

»
–
c
0
0

fi
fl , b̄ :“

»
–

b
α

´α

fi
fl P Zm`2,

where m is the number of rows of T as usual. The TU-ness of T easily implies
that all pnˆnq-subdeterminants of Ā are bounded by 2 in absolute value. Finally,
the (BIP) problem

max

"
c̄T

„
x
z


: Ā

„
x
z


ď b̄,´x ď 0, x P Zn, z P Z

*

is equivalent to the original (PTU) problem because, by using the definitions of
Ā, c̄, and b̄, it can be rewritten as

maxtcTx : Tx ď b, x P Zn
ě0, xpSq “ α ` 2z, z P Zu .

To complete the proof of Lemma 2.3, it remains to show the following statement,
whose proof is deferred to Section B.1 in the appendix.

2.4. Solving (CPTU) via TU-Decompositions 25

Lemma 2.12. One can solve any (PTU) problem with an algorithm A for
(CPTU) using

1. operations taking strongly polynomial time, and

2. a single call to A on a (CPTU) problem whose constraint matrix is a
submatrix of the one of the (PTU) problem.

2.4 Solving (CPTU) via TU-Decompositions

In this section, we show how to use Theorem 2.4, i.e., our slightly modified
version of Seymour’s TU matrix decomposition theorem, to break a (CPTU)
problem into smaller ones. Throughout this section we consider a (CPTU)
problem with a constraint matrix T that can be decomposed through a k-sum
for k P r3s, as stated in cases 3–6 of Theorem 2.4. After briefly discussing the
decomposition of a (CPTU) problem whose constraint matrix can be written as a
1-sum, which is straightforward, we explain our main decomposition techniques
first in the context of a 2-sum. The 3-sum then follows. It is technically more
involved, but follows similar ideas.

The following lemma implies that we can restrict ourselves to (CPTU) prob-
lems that are bounded. This simplifies the discussion of our decomposition
techniques. The proof is deferred to Section B.3 in the appendix.

Lemma 2.13. Let an instance of (CPTU) be given. Then, it can be strongly
polynomially reduced to a bounded (CPTU) problem that has the same
constraint matrix.

Hence, throughout this section, we furthermore assume that the (CPTU) prob-
lem we consider is bounded.

2.4.1 Decomposition Approach for 1-Sums

Assume that T can be written as a 1-sum, as stated in point 3 of Theorem 2.4,
i.e.,

T “ L ‘1 R “
„
L 0
0 R


,

where L P t´1, 0, 1umLˆnL , R P t´1, 0, 1umRˆnR with mL,mR ě 2. Clearly, the
(CPTU) problem immediately decomposes into one (CPTU) problem with con-
straint matrix L and one with constraint matrix R. Hence, an optimal solution
to the original problem is found by solving these two independent subproblems
and concatenating the resulting optimal solution vectors.

26 Chapter 2. A strongly polynomial-time algorithm for (BIP)

2.4.2 Decomposition Approach for 2-Sums

We now consider the case when T can be written as a 2-sum, as stated in point 4
of Theorem 2.4, i.e.,

T “ rL as ‘2

„
dT

R


“

„
L adT

0 R


,

for L P t´1, 0, 1umLˆnL , R P t´1, 0, 1umRˆnR with mL,mR ě 2. Our goal
is to decompose the (CPTU) problem into smaller subproblems such that op-
timal solutions to the subproblems allow for obtaining one particularly well-
structured optimal solution of the original (CPTU) problem. The following
lemma shows that there is an optimal solution with a very useful structure that
we will exploit later. A similar result in a slightly different context was also used
in [41].

Lemma 2.14. Consider a feasible and bounded (CPTU) problem with con-
straint matrix T P t´1, 0, 1umˆn. Then there exists an optimal solution x˚

to (CPTU) satisfying
wTx˚ P t´1, 0, 1u ,

for all vectors w P t´1, 0, 1um such that appending wT as an additional row
to T preserves TU-ness. For brevity, we call such an optimal solution x˚, a
well-structured optimal solution to the (CPTU) problem.

Proof. We show that any optimal solution x˚ to (CPTU) with minimum �1-norm
fulfills the claimed property. Assume for the sake of deriving a contradiction that
there is an optimal solution x˚ with minimum �1-norm violating the conditions
of the lemma. Hence, there is a vector w P t´1, 0, 1um such that

“
T
wT

‰
is TU,

and wTx˚ ě 2 (the case wTx˚ ď ´2 transforms to this case by replacing w by
´w). Consider the polytope

P :“ �
x P Rn : Tx˚ ď Tx ď 0,

1 ď wTx ď wTx˚ ´ 1, 0 ď x ď x˚(
.

Notice that P ‰ H because 1
2
x˚ P P . Moreover, the constraint matrix defining

P is TU, and all right-hand sides are integral. Thus, P is an integral non-
empty polytope and therefore there exists an integral point u P P X Zn. Let
v “ x˚ ´ u. Notice that both u and v fulfill all constraints of (CPTU) with the
possible exception of the parity constraint; this follows immediately from u P P .
Moreover, again using u P P , we have u, v ď x˚ and u, v ‰ x˚. More precisely,
u, v ď x˚ follows from 0 ď u ď x˚, and u ‰ x˚ follows from wTu ď wTx˚ ´ 1;
finally, v ‰ x˚ follows from u ‰ 0 which holds due to wTu ě 1. Hence, both
vectors u and v have strictly smaller �1-norm than x˚. Furthermore, x˚ “ u ` v
implies that either u or v has the correct parity, i.e., upSq or vpSq is odd. Assume
that upSq is odd (the case vpSq odd is analogous). Thus, u is a feasible solution
to (CPTU) with smaller �1-norm than x˚. Therefore, we must have cTu ă cTx˚,
which, due to x “ u ` v, implies cTv ą 0. However, the vector x˚ ` 2v is also
a feasible solution to (CPTU) with cTpx˚ ` 2vq ą cTx˚, violating optimality of

2.4. Solving (CPTU) via TU-Decompositions 27

x˚. Notice that the factor of 2 in front of v makes sure that x˚ ` 2v fulfills the
parity constraint of (CPTU) because px˚ `2vqpSq is odd since 2vpSq is even and
x˚pSq is odd.

Returning to the 2-sum, a key implication of Lemma 2.14 is that a well-structured

optimal solution x˚ “
”
x˚
L

x˚
R

ı
to our (CPTU) problem, where xL̊ are the first nL

coordinates of x˚ and xR̊ the last nR, satisfies

dTx˚
R P t´1, 0, 1u . (2.6)

This follows from Lemma 2.14 by observing that the row r0 dTs can be added to
T without violating TU-ness. One way to observe this is as follows. Let Q be
the matrix obtained from R by appending the row dT, and consider replacing the
matrix R by Q in the second summand of the 2-sum of T . Clearly,

“
dT
Q

‰
is TU,

because it is identical to the TU matrix
“
dT
R

‰
with the only difference that we

doubled a row. The resulting 2-sum with the new second summand leads to the
matrix T with an additional row that corresponds to r0 dTs. This new 2-sum is
TU, because the 2-sum of any two TU-matrices is TU (see Lemma 1.12). Hence,
adding r0 dTs as an additional row to T does not destroy TU-ness, as desired.

Equation 2.6 shows that there is only very limited interaction between xL̊ and
xR̊ within the constraints of our (CPTU) problem. This limited interaction is
what we exploit to decompose the problem. More precisely, we will solve several
versions of one of the two parts (corresponding to L or R) of the problem, one
for each possible interaction with the other part. These solutions will then be
integrated to solve a smaller problem on the other part that allows for recovering
an optimal solution. For our algorithm to be efficient, we have to make sure to
solve multiple subproblems only on the smaller (in terms of number of rows)
of the two parts L and R. We start by showing how to realize this idea when
mR ď mL, and then show how it can be adjusted when L is the smaller part,
i.e., mL ă mR.

Solving first the R-subproblem (case mR ď mL):

Consider the following family of (PTU) problems with constraint matrix R pa-
rameterized by β P t0, 1u and α P t´1, 0, 1u:

maxtcRTxR : RxR ď 0, dTxR “ α,

xR P ZnRě0, xRpSRq ” β pmod 2qu ,
(2.7)

where SR Ď S corresponds to all columns of S within the right problem, i.e.,
these are the columns of S within the last nR indices, and SL “ SzSR. Similarly,
we partition the coordinates of the objective c into a left and right part, i.e.,
c “ r cL

cR s. We solve (2.7) for all 6 combinations of α P t´1, 0, 1u and β P t0, 1u,
by a reduction to (CPTU) problems through Lemma 2.3. Let ρRpα, βq be the
optimal objective value of (2.7), where we set ρRpα, βq “ ´8 if (2.7) is infeasible
for this choice of α and β, and ρRpα, βq “ 8 if the problem is unbounded. We
now incorporate these optimal ways of solving the right part of our original
(CPTU) problem into the left part as follows. We define a modified version L̄

28 Chapter 2. A strongly polynomial-time algorithm for (BIP)

of the constraint matrix L, where, for every combination of α P t´1, 0, 1u and
β P t0, 1u with ρRpα, βq R t´8,8u, we add a column. The column we add
depends on the value of α, and is equal to α ¨ a. To simplify the exposition,
assume that ρRpα, βq R t´8,8u for all combinations of α P t´1, 0, 1u and
β P t0, 1u; hence, we will add 6 columns and obtain

L̄ :“ rL | ´a | 0 | a | ´a | 0 | as ,

where the first three added columns correspond to β “ 0 and the last three
to β “ 1. Let J correspond to the indices of the last three columns, those
corresponding to β “ 1. The extended objective c̄ is defined by

c̄T :“ `
cL

T | ρRp´1, 0q ρRp0, 0q ρRp1, 0q
ρRp´1, 1q ρRp0, 1q ρRp1, 1q˘

.

Again, in the general case if ρRpα, βq P t´8,8u for some values of α and β, we
do not add the corresponding entry to c̄. We then solve the following (CPTU)
problem with only mL rows:

max
`
c̄Tx : L̄x ď 0, x P ZnL`6

ě0 , xpSL Y Jq odd
˘

. (2.8)

Notice that (2.8) is indeed a (CPTU) problem because L̄ is TU, which follows
immediately from TU-ness of rL | as. Based on the fact that a well-structured
optimal solution x˚ satisfies (2.6), it is not hard to see that the optimal value
of (2.8) is at least as good as cTx˚. Conversely, we can transform any solution x
of (2.8) into one of the original problem of the same value. This is achieved by
interpreting the value xi, where i is one of the 6 added columns corresponding
to some α P t´1, 0, 1u and β P t0, 1u, as the number of times we use the
optimal solution to (2.7) for this pair α, β. The following lemma formalizes this
discussion.

Lemma 2.15.

1. Given optimal solutions to (2.7) for all α P t´1, 0, 1u and β P t0, 1u,
one can in strongly polynomial time transform any feasible solution
to (2.8) into a feasible solution of the original (CPTU) problem with
same objective value.

2. If the original (CPTU) problem is feasible and bounded, then (2.8)
is feasible and has the same optimal value as the original (CPTU)
problem.

Proof. We start by proving 1. Let

I “ tpα, βq : α P t´1, 0, 1u, β P t0, 1u, ρRpα, βq R t´8,8uu
be the pairs of parameters pα, βq for which (2.7) has a finite optimal solution.
Moreover, for pα, βq P I, let ypα, βq be an optimal solution to 2.7 for this choice
of α and β. Let z be a feasible solution to (2.8); hence z P ZnL`|I|, and we denote
its first nL coordinates by zL, and each remaining coordinate corresponds to a

2.4. Solving (CPTU) via TU-Decompositions 29

pair pα, βq P I, and we denote the z-value of this coordinate by zpα, βq. We now
define a feasible solution x for (CPTU) as follows

x :“
„
xL

xR


“

„
zLř

pα,βqPI zpα, βq ¨ ypα, βq


.

We start by showing that x is indeed a feasible solution to (CPTU). Clearly,
x ě 0 because z ě 0 and ypα, βq ě 0 for pα, βq P I. Moreover

LxL ` adTxR “ LzL ` a ¨
ÿ

pα,βqPI
zpα, βqdTypα, βq

“ LzL ` a
ÿ

pα,βqPI
zpα, βq ¨ α ď 0 ,

where the second equality follows from dTypα, βq “ α, which holds because
ypα, βq is a solution to (2.7), and the inequality follows from z being a solution
to (2.8). Furthermore,

RxR “ R

¨
˝ ÿ

pα,βqPI
zpα, βq ¨ ypα, βq

˛
‚“

ÿ

pα,βqPI
zpα, βqRypα, βq ď 0 ,

where the inequality follows from Rypα, βq ď 0 for pα, βq P I, because ypα, βq
is a solution to (2.7), and by using zpα, βq ě 0 for pα, βq P I. To show that x
is a feasible solution to (CPTU), it remains to prove that x fulfills the parity
constraint, which holds due to

xpSq “ xLpSLq ` xRpSRq
“ zLpSLq `

ÿ

αPt´1,0,1u
s.t. pα,1qPI

zpα, 1q ¨ ypα, 1q ” 1 pmod 2q ,

which holds because z fulfills the parity constraint of (2.8). Finally, the objective
value of x indeed matches the one of z because

cTx “ cTLzL ` cTR

ÿ

pα,βqPI
zpα, βq ¨ ypα, βq

“ cTLzL `
ÿ

pα,βqPI
zpα, βqρRpα, βq “ c̄Tz ,

where the second equality follows from ypα, βq being an optimal solution to (2.7),
and ρRpα, βq is by definition its optimal value. Notice that x is clearly obtained
in strongly polynomial time given z and ypα, βq for pα, βq P I.

We now show point 2. Hence, consider a (CPTU) problem that is feasible and
bounded. Point 1 implies that the optimal value of (CPTU) is at least as large
as the optimal value of (2.8). Hence, it remains to show that the optimal value

of (2.8) is least the one of (CPTU). Let x˚ “
”
x˚
L

x˚
R

ı
be a solution to (CPTU)

with α˚ :“ dTxR̊ P t´1, 0, 1u. Let β˚ P t0, 1u be the parity of xR̊pSRq, i.e.,

30 Chapter 2. A strongly polynomial-time algorithm for (BIP)

xR̊pSRq ” β˚ pmod 2q. We finish the proof by constructing a solution z to (2.8)
with the same objective value as x˚, i.e., c̄Tz “ cTx˚. Again, we define

I “ tpα, βq : α P t´1, 0, 1u, β P t0, 1u, ρRpα, βq R t´8,8uu .

First observe that pα˚, β˚q P I: Indeed, because xR̊ is a feasible solution to (2.7)
with parameters α “ α˚ and β “ β˚, we have ρRpα˚, β˚q ‰ ´8; moreover, we
cannot have ρRpα˚, β˚q “ 8 because this would imply that there is a solution
xR to (2.7) with cTxR ą cTxR̊, which would lead to a solution

“
x˚
L

xR

‰
to (CPTU)

with strictly better objective value than x˚, violating optimality of x˚.

We define z P ZnL`|I|
ě0 as follows. The first nL coordinates are set to be equal

to xL̊, i.e., zL “ xL̊. For the remaining coordinates, which correspond to the
pairs in I, we set all of them to 0 except for the pair pα˚, β˚q which is set to
1. Again, one can easily observe that z is a feasible solution to (2.8), which
follows immediately from feasibility of x˚ for (CPTU). Moreover, c̄Tz “ cTx˚ as
desired.

Solving first the L-subproblem (case mR ą mL):

We now discuss how a similar reduction can be performed by first solving the
L-part of our (CPTU) problem. This is what we will do if mR ą mL. We again
define subproblems for α P t´1, 0, 1u and β P t0, 1u:

maxtcLTxL : LxL ď α ¨ a, xL P ZnLě0, xLpSLq ” β pmod 2qu . (2.9)

As before, we denote by ρLpα, βq the optimal value of (2.9). To incorporate
these solutions of the L-part of our (CPTU) problem into the R-part, we will
add one additional constraint and up to one additional variable for each of the 6
combinations of α P t´1, 0, 1u and β P t0, 1u. Again, we only add a variable for
some pair α, β if ρLpα, βq R t´8,8u. For simplicity of exposition, we assume
that ρLpα, βq R t´8,8u for all 6 pairs α, β. The additional constraint we add
is defined by the following coefficient vector:

hT :“ `´1 0 1 ´1 0 1 | dT
˘

,

and, as before, we define an extended objective c̄ by

c̄T :“ `
ρLp´1, 0q ρLp0, 0q ρLp1, 0q

ρLp´1, 1q ρLp0, 1q ρLp1, 1q | cR
T

˘
.

The combined problem is now given by

max
�
c̄Tx : RxR ď 0, hTx “ 0, x P Z6`nRě0 , xpSR Y Jq oddu , (2.10)

where xR represents the components of x that correspond to the R-part, i.e.,
these are the last nR components of x. In this setting, we need the equal-
ity constraint to make sure that a solution to the combined problem can be
transformed into one of the original problem. This is due to the fact that the
interaction between the left and right problem is not as explicit anymore as in

2.4. Solving (CPTU) via TU-Decompositions 31

the case mR ď mL, where we first solved subproblems of the R-problem. In the
setting we have now, we must for example make sure that a solution xL to (2.9)
with α “ ´1, i.e, LxL ď ´a, gets combined with a solution xR to the right
problem with dTxR “ 1, which will lead to a contribution of adTxR “ a to the
constraints within the L-part of the (CPTU) problem. It is crucial that xL gets
combined with a R-solution satisfying dTxR “ 1, and not just say dTxR ď 1,
because a may have negative components.

Note that (2.10) is not yet a (CPTU) problem, because of the equality constraint.
Simply replacing the equality constraints by two inequalities does not work out,
because it would lead to a problem with mR ` 2 constraints, which may be as
large as the original number of constraints m, and we would not achieve our
goal to end up with a strictly smaller problem, which we need to make progress.
A standard approach would be to eliminate one variable through the equality
constraints. When doing so, one has to take care that we again end up with
a (CPTU) problem which, by definition, requires non-negativity constraints on
the variables. The following lemma shows that this is possible, by adding one
inequality constraint back after eliminating one variable. Its proof is deferred to
Section B.3 in the appendix.

Lemma 2.16. Consider a (CPTU) problem with a constraint matrix T of
the form

T “
»
–

hT

´hT

M

fi
fl .

Then, one can in strongly polynomial time reduce the (CPTU) problem to
another (CPTU) problem with one variable and one constraint less.

Even though this is technically not needed to obtain an efficient algorithm, we
note that Lemma 2.16 can also be used to reformulate a subproblem of type (2.7)
into a (CPTU) problem with only mR ` 1 many rows (instead of mR ` 2).

Finally, similarly to the case mR ď mL, we can show that the combined prob-
lem (2.10) is tightly linked to the original (CPTU) problem with constraint
matrix T . The proof of the following lemma is deferred to Section B.3.

Lemma 2.17.

1. Given optimal solutions to (2.9) for all α P t´1, 0, 1u and β P t0, 1u,
one can in strongly polynomial time transform any feasible solution
to (2.10) into a feasible solution of the original (CPTU) problem with
same objective value.

2. If the original (CPTU) problem is feasible and bounded, then (2.10)
is feasible and has the same optimal value as the original (CPTU)
problem.

We summarize our findings for both variants to decompose the (CPTU) problem,
i.e., either by first solving subproblems on the R-part or L-part, in the following
theorem.

32 Chapter 2. A strongly polynomial-time algorithm for (BIP)

Theorem 2.18. Consider a (CPTU) problem with a constraint matrix T P
t´1, 0, 1umˆn that can be written as a 2-sum, where the matrices L and R of
the 2-sum have each at least two rows. Then an optimal solution to (CPTU)
can be obtained by:

1. Solving up to 6 (CPTU) problems with a constraint matrix with m1

rows and n1 columns, and one (CPTU) problem with a constraint
matrix withm2 rows and n2 columns, wherem1 ď m2 ă m, m1`m2 ď
m ` 1, and n1, n2 ď n ` 5.

2. Further operations taking strongly polynomial time.

2.4.3 Decomposition Approach for 3-Sums

The decomposition approach for 3-sums follows similar ideas as the one for 2-
sums, but is technically more involved. We prove the following theorem, which,
together with our discussion for 1-sums and Theorem 2.18, and the discussion
of pivoting in the next section, implies Theorem 2.6, as desired.

Theorem 2.19. Consider a (CPTU) problem with a constraint matrix T P
t´1, 0, 1umˆn as in case 5 in Theorem 2.4, where the matrices L and R of
the 3-sum have each at least two rows. Then an optimal solution to (CPTU)
can be obtained by:

1. Solving up to 14 (CPTU) problems with a constraint matrix with
m1 rows and n1 columns, and one (CPTU) problem with a constraint
matrix wth m2 rows and n2 columns, where m1 ď m2 ă m, m1 `m2 ď
m ` 2, and n1, n2 ď n ` 13.

2. Further operations taking strongly polynomial time.

Proof. Let us lay out our proof plan first. We assume that we are in case 5 of
Theorem 2.4.

Recall from Definition 1.10 that the 3-sum looks as follows.

T :“
„
L a a
fT 0 1


‘3

„
1 0 dT

g g R


“

„
L adT

gfT R


,

with L P ZmLˆnL , R P ZmRˆnR and mL, mR, nR ě 2, and we assume that there
is no way of permuting rows and columns of T to write it as a 1- or 2-sum. We
wish to solve (CPTU), that is, maxtcTx : Tx ď 0, x P Zně0, xpSq oddu.
For the 3-sum, we will, similarly to the proof of Theorem 2.18, do the following:

1. Restate the problem as pairs of two smaller sub-problems.

a) Append rows to the summands preserving their total unimodularity.

b) Invoke Lemma 1.12 to show that a certain vector h is TU-appendable
to T , i.e., that

“
T
hT

‰
is TU.

2.4. Solving (CPTU) via TU-Decompositions 33

c) Invoke Lemma 2.14 to see that, given the problem is feasible, the
corresponding right-hand-sides are, for a well-structured solution x˚,
˘1 or zero.

For each of the cases mL ď mR and mL ą mR, we will then proceed as follows:

2. For each pair, solve the smaller (wrt. number of rows) problem. Then in-
corporate the optimal values into the larger problem by appending columns
to (a modified version of) its constraint matrix.

3. Argue why the new constraint matrix is TU.

4. Show how each feasible solution gives rise to a feasible solution for the
original problem (CPTU) of the same cost, and that the optimal value is
the same if both problems are feasible.

5. Argue that the new problem has a smaller number of rows (by invoking
Lemma B.2).

Let us now show how to do each of these steps.

1. By appending the row r0 0 dTs to the right summand, it stays totally
unimodular (this can, for example, be seen with Ghouila-Houri’s argu-
ment [19]). Thus we conclude by Lemma 2.14 that if a well-structured
optimal solution x˚ for the original (CPTU) problem exists, it fulfills
dTxR̊ P t´1, 0, 1u. By a similar argument with the left summand, fTxL̊ P
t´1, 0, 1u. Since gfTxL̊ ` RxR̊ ď 0, we have that RxR̊ ď ´gfTxL̊. Anal-
ogously, LxL̊ ď ´adTxR̊. By Ghouila-Houri, we see that also rfT 1 1s is
TU-appendable to the left summand. Thus,

rfT dTsx˚ P t´1, 0, 1u. (2.11)

We can then define the pairs of problems as

maxtcLTx : Lx ď αLa, fTx “ βL, xpSLq ” γ pmod 2qu, (2.12)

and

maxtcRTx : Rx ď βRg, dTx “ αR, xpSRq ” 1 ´ γ pmod 2qu, (2.13)

for α, β P t´1, 0, 1u2 and γ P t0, 1u. Note that any wL P ZnL that is
feasible for (2.12) for some αL, βL and γ, together with a feasible solution
wR for (2.13) with αR “ ´αL, βR “ ´βL and the same value of β as wL

had, yields a feasible solution

„
wL

wR


for the original (CPTU) problem.

First, assume that mL ě mR.

2. The constant number of smaller problems to solve are given by (2.13).
Recall that all of these can be reduced in polynomial time to a problem
of the form (CPTU). Denote by ρpαR, βR, γq, for αR, βR P t´1, 0, 1u and
γ P t0, 1u, the respective optimal values of those which are feasible and

34 Chapter 2. A strongly polynomial-time algorithm for (BIP)

bounded, set it to 8 for those which are unbounded, and to ´8 if one is
infeasible. As we did for the 2-sum, we first restrict ourselves to the case
that all of them are finite, and discuss how to solve the general case in the
end.

However, because of (2.11), there is, given the original (CPTU) problem
is feasible, an optimal solution x˚ with xL̊ feasible for (2.12), for some αL,
βL, and xR̊ feasible for (2.13), for some αR, βR, such that

|αR ` βL| ď 1. (2.14)

We may therefore restrict ourselves to pairs of problems which fulfill (2.14).
Define

X “ “
a a 0 0 0 ´a ´a

‰
,

and denote by hT and c̄T the following vectors:

hT “ `
1 0 1 0 ´1 0 ´1 | 1 0

1 0 ´1 0 ´1
˘

and

c̄ “ `
ρp1, 1, 0q, ρp1, 0, 0q, ρp0, 1, 0q, ρp0, 0, 0q, ρp0,´1, 0q, ρp´1, 0, 0q, ρp´1,´1, 0q,

ρp1, 1, 1q, ρp1, 0, 1q, ρp0, 1, 1q, ρp0, 0, 1q, ρp0,´1, 1q, ρp´1, 0, 1q, ρp´1,´1, 1q, cL
˘
T.

Denote by I “ t1, . . . , 14u the column indices corresponding to X in the
matrix r X X L s, and by Ic its complement. Let J denote the column
indices of the first seven columns in the above matrix. We then consider
the problem of finding

max
�
c̄Tx :

“
X X L

‰
x ď 0, rhT fTsx “ 0,

x P Zn`14
ě0 , xpSL Y Jq odd

(
.

(2.15)

3. Clearly, the new constraint matrix is TU, as we just appended standard

unit vectors or copies of the column

„
a
1


or its negative to

„
L
fT


.

4. We first show how to transform a feasible solution z to (2.15) into one for
the original (CPTU) problem in polynomial time.

For each of the problems (2.13), denote by ypαR, βR, γq an optimal solution,
i.e., one which achieves that cR

TypαR, βR, γq “ ρpαR, βR, γq. Similarly
as in the case for the 2-sum, define Y to be the matrix that contains
as columns the ypαR, βR, γq’s in the order corresponding to the objective
function vector in (2.15).

Consider the vector y :“
„
z15:pnL`14qř

iPI ziY¨,i


, which is feasible for the original

problem (CPTU) for the following reasons:

• y ě 0.

2.4. Solving (CPTU) via TU-Decompositions 35

• By our choice of z and Y , we have that for any ω P Z,

hTzI “ ω ñ R
ÿ

iPI
ziY¨,i ď ωg,

and therefore, since z fulfills hTzI “ ´fTz15:pnL`14q, we have that
R

ř
iPI ziY¨,i ď ´gfTz15:pnL`14q, and thus

gfTyL ` RyR “ gfTz15:pnL`14q ` R
ÿ

iPI
ziY¨,i ď 0.

• Also by our choice of z and Y , ´LyL “ ´Lz15:pnL`14q ě ahTz15:pnL`14q “
adT

ř
iPI z̄iY¨,i “ adTyR.

•

ypSq “yLpSLq ` yRpSRq “ z15:pnL`14qpSLq `
ÿ

iPI
ziY¨,ipSRq

”z15:pnL`14qpSLq `
ÿ

iPJ
zi pmod 2q ” 1 pmod 2q.

Let us now assume that the original (CPTU) problem is feasible. Denote
by x˚ an optimal solution that fulfills all the additional conditions on its

right-hand-side imposed above. We write it as x˚ “
”
x˚
L

x˚
R

ı
. xR̊ is a feasible

solution to (2.13) for αR “ fTxL, βR “ dTxR̊ and γ ” xRpSRq pmod 2q. Let
l be the index of this problem in rX X Ls, then “ el

x˚
L

‰
is feasible for (2.15)

and cTx˚ “ c̄T
“ eL
x˚
L

‰
.

Finally, let us discuss the case that some of the ρRpαR, βR, γq are ˘8.
Then, analogously as in the case for the 2-sum, we delete the corresponding
variables in (2.15), thus effectively constraining them to zero. This way, we
impose additional constraints and thus, we will still have that any solution
for (2.15) can be transformed into one of the same cost for the original
(CPTU) problem. On the other hand, let x˚ be an optimal solution for the
original (CPTU) problem, and choose l as above. Then the corresponding
problem (2.13) cannot have optimal value 8, since then, there would be a

w for which cR
Tw ą cR

TxR̊. But then,

„
xL̊

w


would also be feasible for the

original (CPTU)-problem and cT
„
xL̊

w


ą cTx˚, a contradiction.

5. We now wish to argue that this problem has a lesser number of rows.
Assume it did not, implying that mR “ 1. But this contradicts our choice
of the k-sum.

We may thus return the vector y from above as an optimal solution. Note that it
can be computed in polynomial running time. By symmetry, the case mL ď mR

is solved analogously.

36 Chapter 2. A strongly polynomial-time algorithm for (BIP)

2.4.4 Pivoting

Finally, we discuss how to efficiently reduce case 6 in Theorem 2.4 to the one
above. In the following lemma, we show how to obtain a (CPTU) problem whose
constraint matrix we can decompose.

Lemma 2.20. Consider a TU-matrix T and the matrix M obtained from
pivoting T at element Ti,j. Let xM be the matrix obtained from M by
multiplying column j by ´1. Assume that there exists an algorithm to solve
(CPTU) with constraint matrix xM that is efficient, i.e., whose running time
is polynomially bounded by m and n. Then, there also exists an efficient
algorithm for (CPTU) with constraint matrix T .

Proof of Lemma 2.20. Let us write the non-negativity constraints of the (CPTU)
problem explicitly, and restate the problem as solving

maxtcTx :
„
T

´I


ď 0, xpSq oddu,

where In is the pnˆnq-identity matrix. Without loss of generality, M arises from

T by pivoting at the element in the first row and column. Write T “
„
ε cT

b D


.

Consider the unimodular matrix Q P Znˆn which corresponds to columns oper-
ations such that pTQq1,¨ “ r´1, 0, . . . , 0s. Then,

„
T

´In


Q “

»
——–

ε cT

b D
´1 0
0 ´In´1

fi
ffiffiflQ “

»
——–

´1 0
´εb D ´ εbcT

ε εcT

0 ´In´1

fi
ffiffifl .

Thus, by column operations and a single swap of rows, we arrive at the matrix„
M̂

´In


, i.e., we can write M̂ “ PTQ for a permutation matrix P .

We can therefore reformulate our problem as follows, where χS P t0, 1un is the
characteristic vector of set S:

maxtcTx : Tx ď 0, xpSq odd, x P Zn
ě0u

“ maxtcTQQ´1x :

„
T

´In


QQ´1x ď 0, xpSq odd, x P Znu

“ maxtcTQQ´1x : P

„
T

´In


QQ´1x ď 0, χS

Tx odd, x P Znu
“ maxtcTQQ´1x : M̂Q´1x ď 0, χS

TQQ´1x odd, x P Zn
ě0u

“ maxtcTQx : M̂x ď 0, χS
TQx odd, x P Zn

ě0u,
which, with S̄ :“ �

i P t1, . . . , nu : pχS
TQqi ” 1 pmod 2q(

,

“maxtcTQx : M̂x ď 0, xpS̄q odd, x P Zn
ě0u.

2.5. Solving Base Block (CPTU)s 37

Consequently, we can find a 3-sum decomposition of M̂ defined as in the Lemma
above, apply our recursion strategy to solve the (CPTU) problem with constraint
matrix M̂ , and invoke Lemma 2.20 to solve the original problem.

We have thus shown the following Lemma.

Theorem 2.21. Consider a (CPTU) problem with a constraint matrix T P
t0,˘1umˆn as in case 5 or case 6 in Theorem 2.4, where the matrices L and
R of the 3-sum have each at least two rows. Then an optimal solution to
(CPTU) can be obtained by:

1. Solving up to 14 (CPTU) problems with a constraint matrix with
m1 rows and n1 columns, and one (CPTU) problem with a constraint
matrix wth m2 rows and n2 columns, where m1 ď m2 ă m, m1 `m2 ď
m ` 2, and n1, n2 ď n ` 13.

2. Further operations taking strongly polynomial time.

2.5 Solving Base Block (CPTU)s

In this section we provide details regarding the proof of Lemma 2.5 by pre-
senting strongly polynomial time algorithms to solve a (CPTU) problem with a
constraint matrix T that either falls in case 1 or 2 of Theorem 2.4, i.e., corepT q
is either a network matrix, the transpose of a network matrix, or is up to sign
changes and permutations of rows and columns one of the two matrices in (2.1).
As mentioned previously, corepT q is a network matrix or transpose thereof, if
and only if T is a network matrix or transpose thereof, respectively. Due to
Lemma 2.13, we can assume that all (CPTU) problems we consider in this sec-
tion are bounded, i.e., they either have a finite optimum or are infeasible.

In what follows in this section, we start by discussing in Section 2.5.1 how to
solve (CPTU) problems with a constraint matrix T being a network matrix.
Section 2.5.2 then deals with the case of T being a transpose of a network
matrix, and Section 2.5.3 with T being a matrix of constant core.

2.5.1 Solving (CPTU)s with T Being a Network Matrix

Consider a bounded (CPTU) problem

maxtcTx : Tx ď 0, x P ZA
ě0, xpSq oddu,

where T is a network matrix, and we assume to have a representation of T
as described in Definition 1.8 in terms of a graph pV,Aq and tree pV, Uq. In
particular, the rows of T are indexed by U and its columns by A, i.e., T P
t´1, 0, 1uUˆA. Consequently, we have c P ZA and S Ď A. We will first focus on
the LP relaxation

maxtcTx : Tx ď 0, x P RA
ě0u ,

which we rewrite as

mint´cTx : Tx ` y “ 0, x P RA
ě0, y P RU

ě0u . (2.16)

38 Chapter 2. A strongly polynomial-time algorithm for (BIP)

Let G “ pV,A Y Uq be the graph on the vertices V containing both arc sets V
and U . A key observation is that the linear program (2.16) describes a (flow)
circulation problem on G.

Lemma 2.22. Let x P RAě0, y P RUě0. Then the following two statements
are equivalent:

1. Tx ` y “ 0,

2. px, yq is a feasible circulation in G (without capacity constraints).

Proof. Consider any arc u “ pv, wq P U , and let Wu Ď V be all vertices in the
connected component of pV, Uztuuq that contains v. We now consider the entry
of Tx that corresponds to u. By (1.10), we have

pTxqu “ xpδ`
ApWuqq ´ xpδ´

ApWuqq ,

where δ`
ApWuq and δ´

ApWuq are all arcs of A that are leaving Wu and entering
Wu, respectively. Hence, Tx ` y “ 0 is equivalent to

xpδ`
ApWuqq ´ xpδ´

ApWuqq ` yu “ 0 @u P U ,

which implies that, when interpreting px, yq as a flow vector in G, there is no net
flow crossing the cut Wu, and this holds for all u P U . Because U is a spanning
tree in G (when disregarding orientations), this is easily seen to be equivalent
to px, yq being a circulation in G.

Hence, the considered (CPTU) problem can be rewritten as

mint´cTx : Tx ` y “ 0, x P ZA
ě0, y P ZU

ě0, xpSq oddu , (2.17)

and is equivalent to finding an integer circulation in G, minimizing ´cTx, and
satisfying xpSq odd. Let � P ZAYU be the vector obtained by extending ´c with
a zero-vector of dimension |U |, such that we have �Tr x

y s “ ´cTx. We continue
with the following observation.

Lemma 2.23. If (2.17) is feasible, then any circuit C Ď AYU in the graph
G satisfies �pCq ě 0.

Proof. If there was a circuit C P A Y U with �pCq ă 0, then one could strictly
decrease the value of any feasible solution to (2.17) by adding 2χC to it. This
would imply unboundedness of (2.17), and therefore also unboundedness of the
(CPTU) problem we started with, which is a contradiction with the assumption
of (CPTU) being bounded.

Lemma 2.24. If (2.17) is feasible, then there is an optimal solution px˚, y˚q P
ZAYU to (2.17) that corresponds to a single circuit, i.e., there is a circuit
C Ď A Y U in G such that px˚, y˚q “ χC , where χC is the characteristic

2.5. Solving Base Block (CPTU)s 39

vector of C.

Proof. We start with an arbitrary optimal solution rzT “ prxT, ryTq to (2.17) which,
by Lemma 2.22, corresponds to a circulation in G, and can thus be written as

rz “
kÿ

i“1

χCi ,

where Ci for i P rks are circuits in G, and we allow circuits to appear multiple
times. There must be at least one circuit j P rks such that |Cj X S| is odd for
rz to satisfy that rzpSq is odd. Hence, z˚ “ `

x˚
y˚

˘ “ χCj is feasible to (2.17),
and moreover, because all circuits have non-negative �-length by Lemma 2.23,
z˚ has objective value �Tz˚ ď �Trz, which shows optimality of z˚ and completes
the proof.

By Lemma 2.24, problem (2.17) thus reduces to the following combinatorial
optimization problem

mint�pCq : C Ď A Y U is a directed circuit in G with |C X S| oddu . (2.18)

We complete our discussion of how to solve a (CPTU) problem whose constraint
matrix is a network matrix with the following lemma.

Lemma 2.25. There is a strongly polynomial algorithm to solve (2.18).

Proof. We construct an auxiliary graph G1 :“ pV Y V 1, A1q, where V 1 is a copy
of the vertex set V . For v P V , denote by v1 its duplicate in V 1. We define
A1 in a way such that only the arcs in S connect V and V 1. To this end, let
A1 :“ A1 Y A2 Y A3, where

A1 :“ tpv, wq | pv, wq P pA Y UqzSu,
A2 :“ tpv1, w1q | pv, wq P pA Y UqzSu,
A3 :“ tpv, w1q Y pv1, wq | pv, wq P Su .

Moreover, we define lengths �1 : A1 Ñ Z on the arcs as follows: The length of any
arc pv, wq, pv1, wq, pv, w1q or pv1, w1q is set to �ppv, wqq. One can easily observe
that for any v P V , we have that v–v1 walks in G1 correspond one-to-one to
closed walks in G containing v and using the arcs in S an odd number of times.
Hence, the two duplicates V and V 1 of the original vertex set can be interpreted
as representing even and odd S-parities, respectively.

Observe that the edge lengths �1 in G1 are conservative, i.e., any circuit in G1

has non-negative length. This follows from the observation that any circuit in
G1 corresponds to a closed walk in G, which is a disjoint union of circuits in
G, all of which have non-negative length by Lemma 2.23. We can thus apply a
strongly polynomial shortest path algorithm for conservative lengths to G1, like
the Floyd-Warshall algorithm, or the Moore-Bellman-Ford Algorithm (see [31]
for an excellent exposition of these algorithms).

40 Chapter 2. A strongly polynomial-time algorithm for (BIP)

To solve (2.18), we compute for every v P V a shortest v–v1 path in G. Each
such path corresponds to a closed walk in G, which can be decomposed into
circuits, at least one of which uses the arcs of S an odd number of times. Let Cv

be such a circuit. Among all Cv for v P V , we return the one with the smallest
length �pCvq. This will indeed solve problem (2.18) because the optimal circuit
in G is a candidate solution to one of the shortest path problems that we solve
in G1.

2.5.2 Solving (CPTU)s with T Being the Transpose of a
Network Matrix

We now consider a bounded (CPTU) problem

maxtcTx : Tx ď 0, x P ZU
ě0, xpSq oddu, (2.19)

where T is the transpose of a network matrix. As before we assume to have a
representation of TT as described in Definition 1.8 in terms of a graph pV,Aq
and tree pV, Uq. Hence, the rows of T are indexed by A and its columns by U ,
i.e., T P t´1, 0, 1uAˆU , c P ZU , and S Ď U . This case is the most involved one
among the base cases. We present a solution relying on submodular function
minimization subject to parity constraints.

Consider a well-structured optimal solution x˚ for this (CPTU) problem, as
claimed by Lemma 2.14. Again, since every row of the identity matrix can
be appended to T without destroying TU-ness, and because x˚ must be non-
negative, we have that x˚ is binary. We can thus focus on solutions of (2.19)
that can be represented as arc-sets. In particular, we denote by X˚ Ď U the
arc-set corresponding to a well-structured optimal solution x˚, i.e., x˚ “ χX˚

,
and we also call X˚ Ď U a well-structured optimal solution to (2.19).

Lemma 2.26. Let X˚ be a well-structured solution. Then there are no two
arcs u1 “ pv1, w1q, u2 “ pv2, w2q P X˚ such that the unique (undirected)
v1–w2 path P Ď U in pV, Uq contains both u1, u2 but no other arc of X˚.

Proof. We will show that if such arcs u1, u2 exist, then X˚ cannot be a well-
structured solution. To this end we define a new constraint that can be added
to T without violating TU-ness. For this consider the way how T would expand
into a bigger transpose of a network matrix if we added a new arc a “ pv1, w2q
to the set A. The new constraint that corresponds to a has a coefficient of 1 in
both entries corresponding to the columns of u1 and u2, and it has 0-coefficients
for all other entries of X˚. Hence, the left-hand side value of this constraint
with respect to X˚ (or more precisely, χX˚

) is 2, which shows that X˚ cannot
be well-structured.

Lemma 2.27. Let Q Ď V such that δ`
U pQq “ H, δ´

ApQq “ H, and |δ´
U pQq X

S| is odd. Then χX , where X “ δ´
U pQq, corresponds to a feasible solution

2.5. Solving Base Block (CPTU)s 41

to (CPTU).

Proof. The parity constraint is clearly satisfied. It remains to check the con-
straints corresponding to arcs a “ pv, wq P A. Let P Ď U be the unique v–w
path in pV, Uq. If both v, w P Q or both v, w P V zQ, then P leaves Q the same
number of times as it enters it. Due to δ`

U pQq “ H, whenever a path enters
Q, it uses one of the arcs of X forwardly, and whenever it leaves Q, it uses one
arc of X backwardly. Hence, the left-hand side of the constraint corresponding
to a with respect to the solution X is 0, and the constraint is thus satisfied.
Moreover, if v P Q and w R Q then the same argument holds with the difference
that P leaves Q once more than it enters Q. Thus the constraint corresponding
to a is feasible with a slack of 1. Finally, v R Q and w P Q is not possible since
δ´
ApQq “ H.

The next lemma shows that there is also an optimal solution to (2.19) that
satisfies the conditions of Lemma 2.27. For any set of vertices Q Ď V , we use
the notation

U rQs :“ tu P U : u has both endpoints in Qu.

Lemma 2.28. If (2.19) is feasible, then any well-structured solution X˚ is
of the form X˚ “ δ´

U pQq for some Q Ď V with δ`
U pQq “ H, and δ´

ApQq “ H.

Proof. Observe first that any arc set F Ď U that is not of the form F “ δ´
U pQq

for some Q Ď V has two arcs u1, u2 as stated in Lemma 2.26, which is forbidden.
Hence, there is a vertex-set Q1 Ď V such that X˚ “ δ´

U pQ1q. We show how Q1

can be modified to obtain a set Q with the desired properties. Consider the
connected components of pQ1, U rQ1sq, where U rQ1s are all arcs of U with both
endpoints in Q1, and let Q1

1, . . . , Q
1
k Ď V be the corresponding vertex sets. We

have

δ´
U pQ1q “

kď

i“1

δ´
U pQ1

iq .

Notice that we can assume δ´
U pQ1

iq ‰ H for i P rks; for otherwise we can replace
Q1 by Q1zQ1

i. Now assume that there is an arc u “ pw1, w2q P δ`
U pQ1

iq for
some i P rks. Consider the vertex set Wu Ď V zQ1 of all vertices that are in
the same connected component as w2 in the graph pV zQ1, U rV zQ1sq. Observe
that δ`

U pWuq “ H; for otherwise any arc a1 P δ`
U pWuq, which must satisfy

a1 P δ´
U pQ1q due to our definition of Wu, forms together with any arc a2 P δ´

U pQiq
a configuration that is forbidden by Lemma 2.26. Hence, we can replace Q1

by Q1 Y Wu to obtain a bigger set Q2 Ď V satisfying δ´
U pQ2q “ δ´

U pQ1q and
u R δ`

U pQq. We can now iterate this approach to eliminate any arc of U that is
leaving Q2 until we end up with a set Q Ď V satisfying δ´

U pQq “ δ´
U pQ1q “ X˚

and δ`
U pQq “ H. We claim that this set also satisfies δ´

ApQq “ H. Indeed, any
arc a “ pw1, w2q P δ´

ApQq would be a violated constraint for X˚, because the
w1–w2 path P Ď U in pV, Uq would enter Q once more than it leaves it. This
completes the proof.

42 Chapter 2. A strongly polynomial-time algorithm for (BIP)

Hence, Lemma 2.28 shows that it suffices to restrict ourselves to (binary) solu-
tions to (2.19) that are characteristic vectors of sets δ´

U pQq where Q Ď V satisfies
δ`
U pQq “ H and δ´

ApQq “ H.

Our goal is to find an optimal solution to (2.19) by optimizing over such cuts
Q. For this we map the parity constraint, which is defined on a set S Ď U , to
the vertices V . More precisely, let K Ď V be defined as follows. For any vertex
v P V we have

v P K ðñ |pδUpvq X Sq| ” 1 pmod 2q ,

where δUpvq “ δ`
U pvq Y δ´

U pvq. The set K indeed allows for mapping the parity
constraint to the vertices as the following lemma shows.

Lemma 2.29. Let Q Ď V with δ`
U pQq “ H. Then the following two

statements are equivalent:

1. |δ´
U pQq X S| ” 1 pmod 2q, and

2. |Q X K| ” 1 pmod 2q.

Proof. Because δ`
U pQq “ H we have δ´

U pQq “ δUpQq. And hence,

|δ´
U pQq X S| ” |δUpQq X S| ”

ÿ

qPQ
|δUpqq X S| ” |Q X K| pmod 2q,

where the second equality holds because each arc u P S with both endpoints in
Q is counted twice in the above sum (thus having no impact mod 2), and each
u P δUpQq X S is counted once, as desired. Moreover, the third equality follows
from the definition of K.

Summarizing the above discussion we have the following.

Lemma 2.30. Assume that (2.19) is feasible, and let Q Ď V be a set that
maximizes cpδ´

U pQqq subject to

1. δ`
U pQq “ H,

2. |Q X K| ” 1 pmod 2q, and
3. δ´

ApQq “ H.

Then χδ´
U pQq is an optimal solution to (2.19).

Proof. Lemma 2.27 and Lemma 2.29 show that any set Q with the conditions
stated in Lemma 2.30 leads to a feasible solution X “ δ´

U pQq to (2.19). Finally,
Lemma 2.28 guarantees that there is an optimal solution that corresponds to a
set Q satisfying the conditions of the lemma.

Hence, it remains to solve the following problem, where we inverted the objective
to obtain a minimization problem for convenience.

mint´cpδ´
U pQqqq : Q Ď V, δ`

U pQq “ H,

δ´
ApQq “ H, |Q X K| ” 1 pmod 2qu (2.20)

2.5. Solving Base Block (CPTU)s 43

Notice that the above objective function, when restricted to sets Q with δ`
U pQq “

H, is modular due to

´cpδ´
U pQqq “ cpδ`

U pQqq ´ cpδ´
U pQqq “

ÿ

qPQ

`
cpδ`pqqq ´ cpδ´pqqq˘

.

Moreover, we can encode the constraints δ`
U pQq “ H and δ´

ApQq “ H using the
objective by introducing submodular penalty functions.Note that, alternatively,
one could also keep the objective modular, and optimize over a lattice family
which enforces the conditions δ`

U pQq “ H and δ´
ApQq “ H. We use submodular

penalties mostly for ease of presentation.

To encode δ`
U pQq “ H and δ´

ApQq “ H we choose a large value M ą 0. In par-
ticular, M “ 1 ` ř

uPU |cpuq| suffices. We now define two submodular functions
g1, g2 : V Ñ Zě0 as follows: For Q Ď V we set

g1pQq “ M ¨ |δ`
U pQq| , and

g2pQq “ M ¨ |δ´
ApQq| .

Both g1 and g2 are indeed submodular, because they are scaled versions of
directed cut functions. Problem (2.20) can now be rephrased as the following
submodular function minimization problem with a parity constraint:

min
! ÿ

qPQ

`
cpδ`pqqq ´ cpδ´pqqq˘ ` g1pQq ` g2pQq

: Q Ď V, |Q X K| ” 1 pmod 2q
)

.

(2.21)

Due to the large constant M , any optimal solution Q to problem (2.21) must
satisfy δ`

U pQq “ H and δ´
ApQq “ H, except if (2.20) is infeasible. Problem (2.21)

is a submodular minimization problem subject to a parity constraint. Efficient
algorithms are known to solve such problems (see [26, 21]). In particular, the
approach in [21] strongly polynomially reduces the problem to Op|V |2q many
submodular function minimization problems. Hence, by using a strongly poly-
nomial algorithm to minimize submodular functions (see [37, 27, 35]), we can
solve (2.21) in strongly polynomial time, and therefore also any (CPTU) problem
with a constraint matrix that is the transpose of a network matrix.

We remark that there are alternative ways to solve (2.21). In particular, (2.21)
can also be rephrased as a minimum T -cut problem. We chose the description
in terms of parity-constrained submodular minimization for clarity and ease of
presentation.

2.5.3 Solving (CPTU) with constraint matrix of small core

Lemma 2.31. There exists a strongly polynomial algorithm for solving
(CPTU) with constraint matrix T if corepT q is, up to sign changes of
rows/columns and row/column permutations, one of the two matrices in (1.11).

44 Chapter 2. A strongly polynomial-time algorithm for (BIP)

Proof. Let us divide the rows and columns of T into two parts, and reorder
the rows/columns of T accordingly: Let J be the index of columns which do
not originate from C :“ corepT q by iteratively copying columns and multiplying
columns by ´1 in corepT q, and I be the index of those rows which do originate
from C. Then we can, after row and column permutations, write T as

T “
„
T 1 C̄
T 2 T 3


,

where T 1 “ TI,J , T
2 “ TĪ ,J , C̄ “ TI,J̄ , T

3 “ TĪ ,J̄ , and Ī :“ rmszI, J̄ :“ rnszJ .
By Lemma 2.14, if the problem is feasible, there exists an optimal solution
x˚ P t0, 1un to the (CPTU) problem we consider because each row of the pnˆnq-
identity matrix can be appended to T without destroying TU-ness, which implies
that we can require x˚ P t´1, 0, 1un; moreover, x˚ must be non-negative.

Let Ji Ď rns be the column indeces of columns in C̄ that correspond to column
i in rC,´Cs. Then, since the p5 ˆ 5q-unit matrix is TU-appendable to C, each
row vector χJi

T P t0, 1un is TU-appendable to T . Thus, it suffices to look for a
solution x˚ P t0, 1un with x˚pJiq ď 1. For such x˚ there are at most polynomially
many possible values for x˚̄

J
. For each of these, we obtain a (PTU) problem in

at most n variables with constraint matrix
“
T 1

T 2

‰
.

Observe that
“
T 1

T 2

‰
is a network matrix: To see this, replace C̄ by any network

matrix of the same size as C̄, for example the all-zero matrix. T can be generated
from C̄ by iteratively appending standard unit vectors (or their negatives) as
well as all-zero vectors. Appending such vectors to a network matrix yields again
a network matrix, which implies that

“
T 1 0
T 2 T 3

‰
is a network matrix. Finally, a

sub-matrix of a network matrix is a network matrix, too, so that
“
T 1

T 2

‰
is a

network matrix.

By Lemma 2.12, we can strongly polynomially reduce this (PTU)-problem to
a (CPTU) problem whose constraint matrix is a sub-matrix of

“
T 1

T 2

‰
. Therefore,

we have at most
`
n
2

˘
many problems of type (CPTU) with a network matrix

as their constraint matrix, which we can solve in strongly polynomial time as
shown in Section 2.5.1.

2.6 Proof of Main Theorem

In this section, we provide a formal proof of our main theorem, Theorem 2.1.

Proof of Theorem 2.1. By Lemma 2.3, it suffices to show that (CPTU) can be
solved in strongly polynomial time. Hence, consider a (CPTU) problem with
constraint matrix T P t´1, 0, 1umˆn, right-hand side b P Zm, objective c P Zn,
and parity constraint xpSq ” 1 pmod 2q for some set S Ď rns. Primarily to
simplify the analysis, we will first simplify the problem by removing unnecessary
columns. More precisely, whenever there are two identical columns in T , say with
indices i, j P rms, such that either both i, j P S or both i, j R S, then we can
remove the column i if ci ď cj; otherwise we remove j. Clearly, if ci ď cj,
then column i is dominated by column j in the sense that any solution x to

2.6. Proof of Main Theorem 45

(CPTU) with xi ą 0 can be transformed into a new solution z such that zi “ 0,
zj “ xi`xj, and z� “ x� for � P rnszti, ju with objective value at least as good as
x. Hence, without loss of generality, we can assume that the (CPTU) we start
with has no dominated columns. For brevity, we call such a (CPTU) problem
slim. Slim (CPTU) problems have the property that each column appears at
most twice in T , once being part of S and once not being contained in S. This
allows us to bound the number of columns n of T in terms of m, its number
of rows, by using that any TU matrix on m rows without repeated columns
has at most m2 ` m ` 1 columns [10]. Because T is a TU matrix where each
column may appear twice, we have n ď 2pm2 ` m ` 1q. In what follows, we
will therefore bound running times in terms of m only, to show that there is a
strongly polynomial algorithm for (CPTU).

We will show by induction on the size of m that, for appropriately chosen con-
stants C, γ ě 1, one can solve any slim (CPTU) problem with a constraint matrix
with m rows in time bounded by C ¨ mγ. Theorem 2.6 covers the most impor-
tant case of our analysis, showing how the problem decomposes into smaller ones
when corepT q is neither a network matrix nor a transpose of it, and corepT q is,
up to sign changes of rows/columns and row/column permutations, not one of
the matrices in (2.1). In this case we talk about a non-base block (CPTU);
otherwise we talk about a base-block (CPTU). Let α, β ě 1 be constants such
that, for a slim non-base block (CPTU), one can in time at most α ¨mβ perform
all of the following operations:

1. decompose the (CPTU) problem into at most 15 smaller subproblems ac-
cording to Theorem 2.6,

2. making those subproblems slim, and

3. transforming optimal solutions of the subproblems to one of the original
(CPTU) problem.

Indeed, Theorem 2.6 guarantees that these operations can be performed in
strongly polynomial time; hence, such constants α, β ě 1 exist. We now specify
how the constants C, γ are chosen. We want C to be large enough to cover the
time to solve several small (constant-size) (CPTU) problems. To define small
problems, let

� “ max

"
200,

αβ

4
` 2, 2β

*
. (2.22)

The constants C and γ are chosen such that

1. One can, in time Cmγ, solve any slim base block (CPTU) with a constraint
matrix with m rows. Lemma 2.5 guarantees that this can be done in
strongly polynomial time;

2. One can, in time C, solve 14 (CPTU) problems, each having a constraint
matrix with at most � rows;

3. γ ě maxt4, β ` 1u;
4. C ě 2α.

46 Chapter 2. A strongly polynomial-time algorithm for (BIP)

We now start with the inductive proof that any slim (CPTU) problem with a
constraint matrix withm rows can be solved in time bounded by Cmγ. Clearly, if
m ď � or (CPTU) is a base block problem, then the problem can be solved in time
at most Cmγ, due to 2 and 1, respectively. Hence, from now on we assume to
deal with a non-base block (CPTU). By Theorem 2.6, this problem decomposes
into at most 14 problems with m1 rows and one problem with m2 rows, where
m1,m2 satisfy m1 ď m2 ă m and m1 ` m2 ď m ` 2. We make sure that these
subproblems are slim. As mentioned above, decomposing the problem, making
the subproblems slim, as well as all additional operations needed to recover an
optimal solution to the original (CPTU) take altogether time at most αmβ.
Hence, it remains to bound the time to solve the 15 slim (CPTU) subproblems.
We distinguish between m1 ă � and m1 ě �.

Case m1 ă �. By 2, we can solve the up to 14 slim (CPTU) problems with
constraint matrices with at most m1 rows in time C. Hence, what is left to show
is the following inequality:

αmβ ` Cmγ
2 ` C ď Cmγ .

This holds due to

αmβ ` Cmγ
2 ` C ď αmβ ` Cpm ´ 1qγ ` C

ď αmβ ` Cmγ ´ Cmγ´1 ` C

ď Cmγ ` αmβ ´ 2αpmγ´1 ´ 1q
ď Cmγ ´ αmγ´1 ` 2α

ď Cmγ ,

where the third inequality follows by 4, the forth by 3, and the last one by using
m ą � ě 2 and γ ě 4, which holds due to 3.

Case m1 ě �. We have to show

αmβ ` Cmγ
2 ` 14Cmγ

1 ď Cmγ .

Notice that m1 ď m
2

` 1, which follows from m1 ` m2 ď m ` 2 and m1 ď m2.

αmβ ` Cmγ
2 ` 14Cmγ

1

ď αmβ ` Cpm ` 2 ´ m1qγ ` 14Cmγ
1

ď αmβ ` C
´
max

!
pm ` 2 ´ �qγ ` 14�γ, 15

´m

2
` 1

¯γ)¯
,

where we use m2 ď m ` 2 ´ m1 for the first inequality, and the second one
follows from the fact that Cpm ` 2 ´ m1qγ ` 14Cmγ

1 is a convex function in
m1 for m1 ă m, and hence, its maximum is achieved for either the smallest or
largest possible value of m1. Since m1 satisfies � ď m1 ď m

2
` 1, we bounded the

function Cpm ` 2 ´ m1qγ ` 14Cmγ
1 by the maximum of the two values achieved

at m1 “ � and m1 “ m
2

` 1. Thus, it remains to show the following inequalities:

αmβ ` C ppm ` 2 ´ �qγ ` 14�γq ď Cmγ , and (2.23)

αmβ ` 15C
´m

2
` 1

¯γ ď Cmγ . (2.24)

2.6. Proof of Main Theorem 47

To show (2.23), observe that gpmq :“ Cmγ ´ C ppm ` 2 ´ �qγ ` 14�γq ´ αmβ is
monotone increasing in m. Indeed, the derivative g1pmq of gpmq satisfies

g1pmq “ Cγ
`
mγ´1 ´ pm ` 2 ´ �qγ´1

˘ ´ αβmβ´1

ě Cγmγ´2p� ´ 2q ´ αβmβ´1

ě mβ´1 p4Cp� ´ 2q ´ αβq
ě 0 ,

where the first inequality follows by using pm ` 2 ´ �qγ´1 ď mγ´2pm ` 2 ´ �q,
the second one by γ ě maxt4, β ` 1u due to 3, and the last one by C ě 1 and
� ě αβ

4
` 2.

Thus, it suffices to show (2.23) for the smallest possible value of m. Notice that
m ě m1 ` m2 ´ 2 ě 2� ´ 2. Hence, (2.23) reduces to

αp2� ´ 2qβ ` 15C�γ ď Cp2� ´ 2qγ ,

and the above inequality holds due to

Cp2� ´ 2qγ “ C2γ
ˆ
� ´ 1

�

˙γ

�γ

ě 15.5 ¨ C�γ (using � ě 200 and γ ě 4)

ě 15C�γ ` α�γ (C ě 2α by 4)

ě 15C�γ ` αp2�qβ (� ě 2β, and γ ě β ` 1 by 3)

ě 15C�γ ` αp2� ´ 2qβ .

Finally, it remains to show (2.24), which follows from

αmβ ` 15C
´m

2
` 1

¯γ

ď αmβ ` 15Cmγ2´γ

ˆ
� ` 2

�

˙γ

(using m ě �)

ď αmβ ` 15

16
Cmγ

ˆ
� ` 2

�

˙4

(γ ě 4 by 3)

ď αmβ ` 0.98Cmγ (� ě 200)

ď Cmγ `
ˆ
α ´ Cm

50

˙
mβ (γ ě β ` 1 by 3)

ď Cmγ ,

where the least inequality follows from m ě � ě 200 and C ě 2α due to 4.

Chapter 3

Strictly 3-modular base block
ILPs

The goal of this chapter is to contribute to extending parts of the theory for
Δ ď 2 to higher values of Δ. In Chapter 2 we showed that solving the bimodular
case essentially boils down to solving a TU-problem with one parity constraint.
One of the most straight-forward extensions is to consider TU-systems with one
congruence-3-constraint, where we focus on feasibility and flatness results.

Congruence-3 TU-feasibility: Given T P Zmˆn totally unimodular with
rankpT q “ n, b P Zm, c P t0, 1, 2un with c ı 0 pmod 3q, γ P t0, 1, 2u, and
P “ tx P Rn : Ax ď bu,

find x P P X Zn s.t. cTx ” γ pmod 3q, (C3TU)

or decide that no such x exists.

Denote by (CkTU) the generalization of (C3TU) for optimizing, and for general
prime integers k P N:

Congruence-k TU-optimization: Given T P Zmˆn totally unimodular
with rankpT q “ n, b P Zm, k P N prime, c P t0, . . . , k ´ 1un with c ı
0 pmod kq, γ P t0, . . . , k ´ 1u, d P Zn, and P “ tx P Rně0 : Tx ď bu, find x
maximizing

maxtdTx : Tx ď b, x P Zn, cTx ” γ pmod kqu (CkTU)

or decide that no such x exists.

Not surprisingly, solving ILPs with strictly k-modular constraint matrix can be
reduced to this setting, as the following lemma shows.

Lemma 3.1. Consider an ILP of the form (1.3), and assume that all pnˆnq-

50 Chapter 3. Strictly 3-modular base block ILPs

submatrices of the constraint matrix A have a determinant in t0,˘ku, for
k P N prime. Then, (1.3) can be reduced to (CkTU).

Proof. The proof goes along similar lines as the proof of the equivalence of (BIP)
and (PTU). The constraint matrix of P has full column rank, meaning that P ,
if it is non-empty, has a vertex v. W.l.o.g., assume that v R Zn, that A1:n,¨ is
invertible and that A1:n,¨v “ b1:n. Via column operations, we can bring A1:n,¨ in
Hermite Normal Form H, which can be done in polynomial time [18]. Call the
corresponding unimodular matrix U P Znˆn and let A1 :“ AU .

Next, we consider T “ A1H´1. Note that T1:n,¨ is the identity matrix, and that
since v R Zn, detpHq “ k and thus all pn ˆ nq-subdeterminants of T are in
t0,˘1u. As H is in HNF, there is a unique entry Hj,j on its diagonal which is
not 1. Then Hj,j “ k and H´1 is equal to the identity matrix, apart from row
j which is equal to

pH´1qj,l “
#

´ 1
k
Hj,l, if j ‰ l,

1
k
, otherwise

.

Then, H´1y P Zn ô H̃y ” 0 pmod 3q, where H̃ “ ´k ¨ pH´1qj,¨.
We can now write (1.3) as

maxtcTx : Ax ď b, x P Znu
“ maxtcTx : AUH´1HU´1x ď b, x P Znu
“ maxtcTUH´1x : Tx ď b, UH´1x P Znu
“ maxtcTUH´1x : Tx ď b,H´1x P Znu
“ maxtcTUH´1x : Tx ď b, H̃x ” 0 pmod 3qu.

We will, in the rest of this chapter, focus on the case where T in (C3TU) is a
matrix corresponding to one of the base blocks in Seymour’s TU-decomposition.
Recall that if T is a network matrix, it comes with a directed graph represen-
tation G “ pV,Eq, with a subset U Ď E of the edges forming a spanning tree.
If we denote the complement as A “ EzU , then the rows of T correspond to
the edges in U , while the columns correspond to the edges in A. Put differently,
T P ZUˆA.

Definition 3.2. If T in (C3TU) is a network matrix, a transposed network
matrix or, up to row/column sign changes/permutations, one of the matrices
in (1.11), we refer to the problem as a base block (C3TU) problem.

In Section 3.1, we show that if such a problem is infeasible, one of the constraints
defines a flat direction of width at most 1. In Section 3.2, we show that for a TU
system whose constraints are defined by a transposed network matrix or one of
the constant-size matrices, we can solve (C3TU).

The following proximity theorem will be useful for us later on.

3.1. Flat direction in infeasible base block (C3TU) problems 51

Lemma 3.3 (Proximity). Le x be a vertex of P in (C3TU). Then if (C3TU)
has a solution y, there exists a solution y˚ to (C3TU) s.t. }x ´ y˚}8 ď 2.

Proof. Let I :“ ti P rms | Ti,¨x ě Ti,¨yu and J :“ rmszI. Consider the cone
C :“ tx P Rn | TI,¨x ď 0, TJ,¨x ě 0u, so that y´x P C. Assume that }x´y}8 ą 2.
By Lemma 1.4, we can write y´x as the sum of integral extreme rays r1, . . . , rk

of C with }ri}8 ď 1 @i P rks. Note that since the extreme rays are orthant-
compatible, @S Ď rks : x ` ř

iPS r
i P P . If there exists an i such that cTri ” γ,

let y˚ :“ x ` ri, and note that x ` ri is a solution to (C3TU). Otherwise, pick
ri and rj, 1 ď i, j ď m with cTri ” cTrj ” ´γ and let y˚ :“ x ` ri ` rj.

3.1 Flat direction in infeasible base block (C3TU)

problems

The goal of this section is to develop the following flatness result. It states that
if a base block (C3TU) problem is infeasible, the underlying polyhedron P has
a flat direction of width at most 1 which is defined by one of the rows in T .

Theorem 3.4. Consider a base block (C3TU) problem. If it is infeasible,
then

Di P t1, . . . ,mu : P Ď tx P Rn : bi ´ 1 ď Ti,¨x ď biu.

Theorem 3.4 immediately gives us a polynomial-time algorithm to find a flat
direction when (C3TU) is infeasible: For each constraint Ti,¨x ď bi, 1 ď i ď m,
solve two LPs maxtTi,¨x : x P P u and mintTi,¨x : x P P u, which can be done
in polynomial time [29]. For some i, the two corresponding LPs will have an
optimal value differing by at most one, which means that Ti,¨ defines the flat
direction.

To simplify the setting when dealing with (transposed) network matrices, we
will assume that if P ‰ H, then 0 P P is a vertex. We can do so without loss of
generality, as the following lemma shows.

Definition 3.5. We call a (C3TU) problem pAq with underlying polyhedron
PpAq “ tx P Rn : TpAqx ď bAu an (sC3TU) problem if

• there are no duplicate rows in TpAq,

• all points in PpAq are non-negative, and

• 0 is a vertex of PpAq.

We call it a base block (sC3TU) problem if in addition the constraint matrix
is a base block in Seymour’s TU decomposition.

To shorten notation, we introduce the following definition: We call a point x P
P XZn congruence-3-feasible or pc, γq-feasible if it is feasible for (sC3TU).

52 Chapter 3. Strictly 3-modular base block ILPs

Lemma 3.6. Let pAq be a (C3TU) problem with underlying polyhedron
PpAq “ tx P Rn : TpAqx ď bAu and whose constraint matrix TpAq is a network
matrix (resp. transposed network matrix).

Then there is a base block (sC3TU) problem pBq with underlying polyhedron
PpBq “ tx P Rn : TpBqx ď bBu such that

• TpBq is a network matrix (resp. transposed network matrix) as well,
has the same number of columns and at most as many rows as TpAq,

• pAq is feasible if and only if pBq is,

• and both polyhedra PpAq and PpBq have the same width wpPpAqq “
wpPpBqq.

Proof. Since T has full column rank, if P is non-empty, it has a vertex q. Con-
sider an invertible sub-matrix T 1 of T corresponding to tight constraints at q.
Then we can apply a unimodular transformation to T that corresponds to col-
umn operations which turn T 1 into the pn ˆ nq-identity matrix, and adjust c
accordingly. Finally, we translate q to 0 by adapting b and γ.

Note that the resulting constraint matrix S is a (transposed) network matrix as
well. For transposed network matrices, the statement follows from the proof of
statement (36) in Example 4, Chapter 19.3 in [36]. For network matrices, this
follows from the fact that the pivot of a network matrix is a network matrix
again.

3.1.1 Network matrix

We show that (sC3TU) can be reduced to the combinatorial problem of finding
a feasible circulation of given congruence in a certain weighted digraph with
capacities. We begin by defining this graph.

Definition 3.7. Let pAq be an (sC3TU) problem whose constraint matrix
T is a network matrix represented by a directed graph G “ pV,Eq with
spanning tree U Ď E and A “ EzU . For an edge e “ pu, vq P E, denote
by ´e “ pv, uq its inverse arc. For a set S Ď E, denote by ´S the set of
reversed edges ´S :“ t´e : e P Su.

• We define the graph

rev ppAqq :“ pV,E Y ´Uq,
with capacities b̄ P Rě0 and weights c̄ P Rě0 for the edges, as follows:

c̄a “
#
0, if a P U Y ´U,

ca, if a P A
, b̄a “

#
b´a, if a P ´U,

8, otherwise
.

3.1. Flat direction in infeasible base block (C3TU) problems 53

• We call a circulation C in rev ppAqq simplified if for each pair pv, wq,
pw, vq P E Y ´U , Cppv, wqq “ 0 or Cppw, vqq “ 0.

Lemma 3.8. Let pAq be an (sC3TU) problem with T a network matrix.
Then:

1. There is a bijection M which maps points in P X Zn onto simplified
integral circulations in revppAqq while preserving congruence, i.e., for
all x P P X Zn, cTx ” c̄pMpxqq pmod 3q.

2. M maps extreme rays (of the supporting cone at 0) onto simplified
cycles.

3. pAq can be reduced to the following combinatorial problem: Given
revppAqq and γ P t0, 1, 2u, find a feasible circulation C such that
c̄pCq ” γ pmod 3q.

4. If pAq is infeasible, there is a constraint in Tx ď b of width at most 1.

At the first glimpse, it might be surprising that we go in this direction, as a very
similar problem is known to be NP-hard [3]: Given a graph G and γ P t1, 2u, is
there a cycle of length γ pmod 3q? Note, however, that we ask for any kind of
circulation of congruence γ here.

To simplify notation, in what follows we consider a cycle or a circulation to be
a vector C P REě0, rather than a subset of E.

Proof of Lemma 3.8. 1. We perform the proof by adapting proofs and state-
ments that appeared in Section 2.5.1. To shorten notation, we write
Ḡ :“ revppAqq.
Let x P P be given, and consider U` :“ tu P U : Tux ą 0u and U´ :“ tu P
U : Tux ď 0u. Note that „

TU´

´TU`


x ď 0,

that T̂ :“
„
TU´

´TU`


is a network matrix again, and that the graph Ĝ

representing T̂ can be obtained from G by replacing all edges in U` by
their inverse arcs, i.e., by replacing U` by ´U`. Let ẑ :“ ´T̂ x ě 0,
then by Lemma 2.22, px, ẑq is a circulation in Ĝ. Furthermore, for all
u P U`, ẑu ď bu. Since the edge set of Ḡ is a superset of the edge set of Ĝ,
we can, via the inclusion map, interpret px, ẑq as a simplified circulation
px, y, zq P RAě0 ˆ RUě0 ˆ R´U

ě0 in Ḡ. More precisely, px, y, zq is given by the
equations

zp´U`q “ ẑ

Tx ` y ´ z “ 0

@u P U : mintyu, z´uu “ 0. (3.1)

54 Chapter 3. Strictly 3-modular base block ILPs

Since @p´uq P ´U` : z´u ď bu, this circulation fulfills the capacity con-
straints, and since the congruence of px, y, zq only depends on x, c̄ppx, y, zqq “
cTx.

This defines an injective map. To see that it is also surjective, let px, y, zq
be any simplified circulation in ZAě0ˆZUě0ˆZ´U

ě0 . Since px, y, zq is simplified,
supppyqXsupppzq “ H, and thus is the unique solution to the equations in
(3.1). Furthermore, z ď b, which implies Tx ď b. Thus indeed, px, y, zq “
Mpxq.

2. Let us describe how M maps extreme rays onto cycles in Ḡ.

Denote by I :“ tu P U : bu “ 0u the index set of those constraints that
are tight at the vertex 0, and let GI be the graph resulting from G when
contracting all arcs in UzI. Furthermore, denote by C :“ tx P Rn : TI,¨ ď
0u the supporting cone at the vertex 0. Let r P t0, 1un be an extreme ray of
C. Mprq “ pr, yr, zrq is a circulation and since r is well structured, Mprq is
a circuit. It is therefore a sum of edge-disjoint cycles. Assume that there
was more than one cycle involved, i.e., that we can decompose pr, yr, zrq
into k many cycles pr1, y1r , z1r q, . . . , prk, ykr , zkr q. But then, r1, . . . , rk would
all be in C and r “ řk

i“1 r
i, contradicting the fact that r is an extreme

ray. We conclude that Mprq is a simplified cycle in Ḡ.

3. We have seen that there is a 1-on-1 correspondence between solutions to
(sC3TU) and simplified circulations in Ḡ. The statement follows from the
fact that we can modify any circulation in Ḡ to be simplified by subtracting
cycles of the form χe `χ´e, for some e P U , where necessary, and that this
operation does not change the weight of the circulation.

4. To shorten our exposition in the rest of the proof, whenever we speak of
cycles in Ḡ, we mean simplified cycles. Furthermore, we define for two
cycles C1 and C2, C1 X C2 as the vector χsupppC1qXsupppC2q in RpAY´Eq

ě0 , as
well as C1 Y C2 and C1zC2 accordingly.

For a vector x P RAYUY´U , denote by βpxq :“ te P supppxq X ´U : b̄e “ 1u.
Given two vertices v, w of C, let Cv,w denote the path from v to w along
C. Assume that no constraint as in the claim exists and that (sC3TU)
is infeasible. By Lemma 1.7, there is an integer point in P of non-zero
congruence. By Theorem 1.4, this point can be decomposed into extreme
rays, one of which is of non-zero congruence as well. Due to what we have
proven above, this implies that there is a cycle in Ḡ of non-zero congruence.

Let C and D be cycles in Ḡ (possibly C “ D) such that c̄pCq, c̄pDq ı
0 pmod 3q and |βpC X Dq| is minimal, cmp. Fig. 3.1. Since C ` D is
infeasible, there exists e “ pv, wq P βpCq X βpDq. As no constraint has
width 1, there has to be a point x˚ P P with Te,¨x˚ “ ´1. This implies
that in Ḡ, there is another simplified cycle F with F p´eq “ 1.

(i) Assume that F X pC Y Dq “ H. Then c̄pF q ı ´γ pmod 3q, since
otherwise FA ` CA is pc, γq-feasible. Thus, the cycle pC Y F qzpχe ` χ´eq
fulfills c̄ppC Y F qzpχe ` χ´eqq ” ´γ pmod 3q. Then, however, |βppC Y
F qzpχe ` χ´eq X Dq| ă |βpC X Dq|, contrary to our choice of C and D.

3.1. Flat direction in infeasible base block (C3TU) problems 55

v

w

s

g

qt

r

p

C D

Figure 3.1: Cycles C and D with βpC X Dq minimal. Brown arcs have capac-
ity 1, black/green arrows correspond to paths, blue arrows indicate (possibly
intersecting) parallel paths. The green paths belong to the cycle F .

(ii) F X pC Y Dq ‰ H. This implies that there exists a vertex r in C Y D
(w.l.o.g. r in C) such that Fv,r is a non-empty path. Let r be the first
such vertex in C. Denote by q the last vertex in F adjacent to an edge
in C or D (in Fig. 3.1 chosen to be in DzC). Note that also Fq,w is a
non-empty path. Let E P tC,Du be the cycle q belongs to. Note that
c̄pFv,rq` c̄pCr,vq ” 0 pmod 3q, since otherwise, c̄pFv,r Y Cr,vq “ ´γ pmod 3q
and |βppFv,r Y Cr,vq X Dq| ă |βpC X Dq|, contrary to our choice.

There is no cycle of congruence γ, which implies that

c̄pFv,rq ” ´c̄pCr,vq pmod 3q ” c̄pCv,rq ` γ pmod 3q
and

c̄pFq,wq ” ´c̄pEw,qq pmod 3q ” c̄pEq,wq ` γ pmod 3q.
We then derive a contradiction as follows: If q is a vertex of C, recall that
F “ Fv,r Y Cr,q Y Fq,v. Then c̄pF q ” c̄p´Cr,v ` Cr,q ´ Cv,qq pmod 3q ”
c̄p´χ

Cr,q

A ´ χ
Cq,v

A ` χ
Cr,q

A ´ χ
Cv,q

A q pmod 3q ” γ pmod 3q. Otherwise, if q is
not a vertex of C but a vertex of D, let p be the last vertex that C and
F share. Let g be the first vertex of F X D after p, and X :“ Cr,p Y
Fp,g YDg,q. Then c̄

`
Fv,r Y X Y Fq,w

˘ ” c̄
`
Cv,r Y X Y Fq,w

˘ ` γ pmod 3q ”
c̄
`
Cv,r Y X Y Dq,v

˘ ` 2γ pmod 3q, so one of these three cycles has congru-
ence γ pmod 3q.

3.1.2 Transposed network matrix

Let T be the transpose of a network matrix. While the high-level approach is
the same as in the section before, our combinatorial algorithm is quite different,
as it operates on vertex sets rather than on edge sets. In the rest of this section,
we will make use of the following graph Ḡ:

Let G “ pV,A Y Uq be the graph representing T . We define Ḡ as having the
same edge and vertex set as G, but the edges are, in addition, endowed with

56 Chapter 3. Strictly 3-modular base block ILPs

capacities b̄ : E Ñ Zě0 and weights c̄ : E Ñ Zě0 defined by

b̄paq “
#
ba if a P A,

8 otherwise
, c̄paq “

#
ca if a P U,

0 otherwise
.

We denote by Ai :“ ta P A : ba “ iu the subset of arcs corresponding to right-
hand side i. In particular, A0 are the edges corresponding to the constraints
that are tight at the vertex 0.

Definition 3.9. We call any set Q Ď V that fulfills δ`
U pQq “ δ´

A0
pQq “ H

simple feasible.

From Lemma 2.28 it follows that any extreme ray r of C can be written as
δ´
U pQq, for Q Ď V simple feasible. Note further that if Q is feasible, then for
all a P δ´

ApQq : Ta,¨δ´
U pQq “ 1, and that for all a P δ`

ApQq, Ta,¨δ´
U pQq “ ´1

(both follows by similar arguments as in the proof of Lemma 2.27), and that
δ´
U pQq P P X Zn.

Also note that if Q1, Q2 Ď V are simple feasible, then Q1 XQ2 and Q1 YQ2 are,
too, and δ´

U pQ1 YQ2q`δ´
U pQ1 XQ1q “ δ´

U pQ1q`δ´
U pQ2q, which can be seen from

counting edges and using the fact that δ`
U pQ1q “ δ`

U pQ2q “ H.

Lemma 3.10. Let pAq be an (sC3TU) problem with T a transposed network
matrix.

1. pAq can be reduced to the following combinatorial problem: Find

• a vertex set Q Ď V with δ`
U pQq “ δ´

A0
pQq “ H and cTδ´

U pQq ”
γ pmod 3q, or

• two sets Q1 Ă Q2 Ď V with δ`
U pQiq “ δ´

A0
pQiq “ H,

δ´
A1

pQ1q X δ´
A1

pQ2q “ H, and cTδ´
U pQiq ” ´γ pmod 3q, i “ 1, 2.

2. If pAq is infeasible, there is a constraint in Tx ď b of width at most 1.

Proof. For the ease of exposition, we write δ´
U pQq P RU , for Q Ď V , instead of

χδ´
U pQq P RU .

Recall that A0 denotes the set of tight constraints at 0, and consider the sup-
porting cone C :“ tx P Rn : TA0,¨x ď bA0u.
Let δ´

U pQ1q, . . . , δ´
U pQkq correspond to all extreme rays of C, such that any point

in P XZn is an integer conic combination of δ´
U pQ1q, . . . , δ´

U pQkq. Note that these
Qi, for 1 ď i ď k, are simple feasible.

To shorten notation a bit, we will at times, for two integers a, b, drop the
‘pmod 3q’ and say that a ” b or a ı b, when we mean that a ” b pmod 3q,
or a ı b pmod 3q, respectively.

1. Let a vector x “ řk
i“1 λiδ

´
U pQiq with λ P Zką0, be given. Rather than as a

conic combination, we write it as the sum of l many extreme rays (thereby

3.1. Flat direction in infeasible base block (C3TU) problems 57

possibly repeating some), x “ řl
i“1 δ

´
U pQiq, for some l P N. We have that

x P P ô @e “ pu, vq P A :

|ti P t1, . . . , lu : v P Qi, u R Qiu| ´ |ti P t1, . . . , lu : u P Qi, v R Qiu| ď be.

Assume that
řk

i“1 λi ą 2. First, we find a different way of writing x as a
sum based on a laminar family. If there are two sets Qi, Qj, Qi XQj ‰ H,
QizQj ‰ H and QjzQi ‰ H, we replace them by Qi YQj and Qi XQj. We
claim that δ´

U pQ1 X Q2q ` δ´
U pQ1 Y Q2q “ δ´

U pQ1q ` δ´
U pQ2q, which implies

that x remains unchanged:

Let a “ pu, vq, and let us distinguish two cases:

• Let neither a, nor ´a be an edge leaving Q1zQ2 and entering Q2zQ1.
Then, δ´

U pQ1 X Q2qa ` δ´
U pQ1 Y Q2qa “ δ´

U pQ1qa ` δ´
U pQ2qa.

• The remaining case cannot occur: W.l.o.g. assume that u P Q1zQ2

and v P Q2zQ1 (otherwise, relabel Q1 and Q2). But then, a P δ`
U pQ1q,

which is supposed to be the empty set, a contradiction.

Thus, w.l.o.g. the family of Qi’s in the representation of x is laminar.
If it contains a Qi with cTδ´

U pQiq ” γ pmod 3q, the proof is complete.
Otherwise, there are two sets Qi, Qj with cTδ´

U pQiq ” cTδ´
U pQjq pmod 3q ”

´γ pmod 3q. If Qi X Qj “ H, then Q :“ Q1 Y Q2 is pc, γq-feasible.
Otherwise, for all pairsQi, Qj of non-zero congruence we haveQiXQj ‰ H,
which implies that they form a chain of sets containing each other. Choose
two, Q1 and Q2, say, and let y “ δ´

U pQ1q ` δ´
U pQ2q.

Assume that for some a P A1, a P δ´pQ1q X δ´pQ2q, implying that Ta,¨y “
2 ą ba. But since x was in P , there has to be another set Qpaq in the
decomposition of x with a P δ`pQpaqq. Because of laminarity, Qpaq X Q2 “
H, and thus, cTδ´

U pQpaqq ” 0 pmod 3q.
Consider the laminar family L of all sets of this form, i.e., of all such Qpaq’s.
For each chain in L, choose a maximal set. Call this collection of disjoint
sets L̄. Denote by Q̄ the disjoint union Q̄ :“ Q2 Y ŤtQi : Qi P L̄u, and
then δ´

U pQ1q ` δ´
U pQ̄q is pc, γq-feasible.

Finally, any simple feasible set Q with δ´
U pQq ” γ pmod 3q, or two feasible

sets as in the statement of the lemma, lead to a pc, γq-feasible solution,
which implies the reduction, as claimed.

2. We will make use of the following facts repeatedly: As there is no simple
feasible set of congruence γ, one of the following may occur for two simple
feasible sets Q1, Q2:

(i) cTδ´
U pQ1q ” cTδ´

U pQ2q ” ´γ ñ cTδ´
U pQ1 Y Q2q ” cTδ´

U pQ1 X Q2q ”
´γ.

(ii) cTδ´
U pQ1q ” 0, cTδ´

U pQ2q ” ´γ ñ cTδ´
U pQ1 YQ2q ` cTδ´

U pQ1 XQ2q ”
´γ and either cTδ´

U pQ1 Y Q2q or cTδ´
U pQ1 X Q2q ” 0 .

58 Chapter 3. Strictly 3-modular base block ILPs

Without loss of generality, P is full-dimensional, as otherwise, one of the
constraints in the description of P will define a flat direction of width 0.
By Lemma 1.7, there is a maximal simple feasible set C with cut δ´

U pCq of
congruence ´γ (cmp. Fig. 3.2). Let D Ď C be a minimal simple feasible
subset with cTδ´

U pDq ” ´γ (possibly C “ D). Since δ´
U pCq ` δ´

U pDq R P ,
there is an arc pv, wq P A1 X δ´pCq X δ´pDq and a simple feasible F with
v P F zC, w P DzF , as otherwise δ´

U pCq ` δ´
U pDq is pc, γq-feasible.

We claim thatDXF ‰ H. Suppose not. Since pAq is infeasible, cTδ´
U pF q ı

γ. Furthermore, cTδ´
U pF q ı ´γ, as otherwise cTδ´

U pC YF q ” ´γ, contrary
to our choice of C being maximal. So cTδ´

U pF q ” 0 and cTδ´
U pCYF q ” ´γ,

again contrary to our choice of C.

By maximality of C, cTδ´
U pCYF q ” 0. Therefore, we are in case (ii) above

and thus cTδ´
U pC X F q ” ´γ. We obtain cTδ´

U pD Y pC X F qq ` cTδ´
U pD X

pC X F qq ” cTδ´
U pDq ` cTδ´

U pC X F q ” ´γ ´ γ ” γ. Since D X pC X F q “
D X F Ĺ D, cTδ´

U pD X pC X F qq ” 0. Then, cTδ´
U pD Y pC X F qq ” γ.

3.1.3 Constant-size matrices

Let T in (C3TU) be, up to row/column permutations and sign changes, one of
the matrices in (1.11).

Lemma 3.11. Consider P “ tx P Rn : e ď Tx ď b, l ď x ď uu, where
T is up to multiplication of columns with ´1 one of the matrices in (1.11),
e, l P pZ Y t´8uq5, b, l P pZ Y t8uq5. If P is congruence-infeasible for
p P t0,˘1u5, γ P t0,˘1u, then it admits a flat direction of width 1 that is
given by a standard unit vector or a row in T .

To prove Lemma 3.11, we will use a couple of technical results. Our proof plan
is as follows: First, we show that without loss of generality, all entries in the
right-hand sides are finite.

Lemma 3.12. Let T P Zmˆn be a TUmatrix, and t P Zn be TU-appendable.
Consider the polyhedra P “ tx P Rn : Tx ď bu and P̄ “ tx P Rn : Tx ď

w

v

C D

F

Figure 3.2: Sets C, D and F in the proof of Lemma 3.10.2.

3.1. Flat direction in infeasible base block (C3TU) problems 59

b, tx ď 2u. Then if 0 P P and ωpP q ą 1, also ωpP̄ q ą 1.

Proof. As in [23], we rewrite the width of P as follows, where for sake for brevity,
we denote by

T̄ :“
„
T
t



and b̄pγq :“
„
b
γ


, such that T̄ and b̄p2q are the matrix and vector describing P̄ :

Then

1 ă ωpP q “ min
cPZnzt0u

�
maxtcTx : Tx ď bu ´ mintcTx : Tx ď bu(

“ min
cPZnzt0u

�
maxtcTx : Tx ď bu ` maxt´cTx : Tx ď bu(

“ min
cPZnzt0u

�
mintbTy : yTT “ cT, y ě 0u`

mintbTz : zTT “ ´cT, z ě 0u(

“ min
cPZnzt0u

�
mintbTy ` bTz : yTT “ ´zTT P Znzt0u, y, z ě 0u(

“mintbTy ` bTz : yTT “ ´zTT P Znzt0u, y, z ě 0u
“mintb̄p2qTy ` b̄p2qTz : yTT̄ “ ´zTT̄ P Znzt0u, y, z ě 0,

ym`1 “ zm`1 “ 0u. (3.2)

A similar calculation yields

ωpP̄ q “ mintb̄p2qTy ` b̄p2qTz : yTT̄ “ ´zTT̄ P Znzt0u, y, z ě 0u.

Notice that every solution to the last term in (3.2) is also feasible for ωpP̄ q,
and that every py˚, z˚q with ym̊`1 ` zm̊`1 “ 0 which is feasible for ωpP̄ q is also
feasible for (3.2).

Furthermore, let py˚, z˚q be an optimal solution for ωpP̄ q with ym̊`1 ` zm̊`1 ą 0.
As T̄ is TU, we may assume py˚, z˚q to be integral. Since y˚, z˚ ě 0, this implies
that then, b̄p2qTpy˚ ` z˚q ě 2.

Taken together, this implies that ωpP̄ q ě 2.

Next, we show that Lemma 3.11 can be reduced to a simpler setting.

Lemma 3.13. Let P be as in Lemma 3.11. Then the statement of Lemma 3.11
follows if it holds for all of the polyhedra given by

tx P Rn : e ď Sx ď b, 0 ď x ď uu, (3.3)

with 0 as a vertex, where e, b, u P Z5 and S is one of the matrices in (1.11),
have width of at most 1.

60 Chapter 3. Strictly 3-modular base block ILPs

Proof of Lemma 3.13. First, we replace all infinite entries in e and l by ´2
and those of b and u by 2 and call the resulting polyhedron Q. Note that by
Lemma 3.12, if ωpP q ą 1, then also ωpQq ą 1. Observe that we may exchange
any constraint ei ď Ti,¨ ď bi by ´bi ď Ti,¨ ď ´ei and change the sign of any
column (and replacing the upper and lower bound for the corresponding variable
accordingly) without affecting width or congruence feasibility. Furthermore, we
may translate the polyhedron so that l become the all-zero vector.

We thus arrive at one of the polyhedra in (3.3), whose feasibility also implies
congruence-feasibility of P .

We are now ready to prove the lemma.

Proof of Lemma 3.11. By Lemma 3.13, it suffices to show the statement for a
polyhedron as given in (3.3).

Let us first assume that S is the matrix on the right in (1.11). Since S is non-
negative and 0 is a vertex, e “ 0. By assumption, b, u ě 2, and thus, we may
choose any j P rns such that pj ‰ 0. Then γ ¨ χtju is a congruence-feasible
solution.

If S is the matrix on the left in (1.11), then by non-negativity of the first three
rows of S, e1 “ e2 “ e3 “ 0. By assumption, u, b ě 2. As the following
case-by-case analysis shows, the constraints e4 ď S4,¨ ď b4 and e5 ď S5,¨ ď b5
allow for a congruence-feasible solution x˚ such that S1:3,¨x˚ ď 2. We perform
a case-by-case analysis: If p2 ‰ 0: Choose γ ¨ χ2. If p1 ‰ 0 : Either γ ¨ χ1 can
be chosen, or b5 ď γ ´ 1. But then, p2 ´ γqχ4 is feasible, implying b4 ě 1, so if
p4 ‰ 0, choose from variables 1 and 4. Otherwise, take γ ¨ pχ1 ` χ4q. If p3 ‰ 0 :
Can be reduced to the case above by switching rows 4 and 5, columns 1 and 3 as
well as columns 4 and 5. If p4 ‰ 0, p1, p2, p3 “ 0: If γ ¨ χ4 is not feasible, either
b4 ď γ ´ 1 or e5 ě ´γ ` 1. Depending on p5, we construct a solution from x4

and x5. If p5 ‰ 0 and p1 “ p2 “ p3 “ 0: Can be reduced to the case above by
switching rows 4 and 5, columns 1 and 3 as well as columns 4 and 5.

Since u, b ě 2, x˚ is also congruence-feasible with respect to all constraints.

3.2 Feasibility in congruence-3-constrained base

block TU problems

If T in (C3TU) is a base block of constant size, then feasibility for (C3TU) can
be checked using Lenstra’s algorithm [33].

We thus concentrate on T being a network matrix or a transposed network
matrix. In the latter case, we give an efficient algorithm, while in the first, we
give structural results for the associated graph in the hope that it will lead to
an efficient algorithm in future work.

3.2.1 Transposed Network Matrix

3.2. Feasibility in congruence-3-constrained base block TU problems 61

Theorem 3.14. Let T in (sC3TU) be a transposed network matrix. Then:

1. Given Q1 Ď V simple feasible, we can find a minimal/maximal simple
feasible superset Q Ľ Q1 of given congruence in polynomial time, or
decide that no such set exists.

2. (sC3TU) can be solved in polynomial time.

Proof. Again, to improve readibility, we drop ‘pmod 3q’ at times.

1. Let Si :“ te P U : c̄peq ” i pmod 3qu, i P r2s. Define the function k : 2V Ñ
Z by

kptvuq :“ |δ´
U pvq X S1| ´ |δ`

U pvq X S1| ` 2
`|δ´

U pvq X S2| ´ |δ`
U pvq X S2|˘,

and kpQq “ ř
vPQ kptvuq, for any Q Ď V .

Let Ri :“ tv P V : kpvq ” iu, i P r2s. Then, for all Q Ď V we have

kpQq “ c̄Tpδ´
U pQq ´ δ`

U pQqq “ |Q X R1| ` 2|Q X R2|.
We want to solve

mintε|Q| : Q Ľ Q1, δ`
U pQq “ δ´

A0
pQq “ H, cTδ´

U pQq ” α pmod 3qu,
for ε P t˘1u, α P r2s. We proceed similarly as in the bimodular case. For
v P V let Qv :“ Q1 Y tvu. Define the submodular functions g1pQq :“
M |δ`

U pQq|, g2pQq :“ M |δ´
A0

pQq| and gv3pQq :“ ´M |Q X Qv|, for M ą 0
large enough, yet polynomial in the input. It then suffices to solve the
following problems

min
�
ε|Q| ` g1pQq ` g2pQq ` gv3pQq : |Q X R1| ` 2|Q X R2| ” γ

(
,

or equivalently, the following 3|V | many problems, indexed by α P r2s,
v P V :

min
�
ε|Q| ` g1pQq ` g2pQq ` gv3pQq : |Q X R1| ” γ ´ 2α, |Q X R2| ” α

(
,

which can be done in polynomial-time [34].

2. We give a poly-time algorithm for the problem stated in Lemma 3.10.1.

To decide feasibility, we first check whether there is a simple feasible set
Q with cTδ´

U pQq ” γ. If there is one, the problem is feasible. In case that
no such set was found, we look for a minimal simple feasible set Q1 of
congruence ´γ. If we are not able to find such a set, either, the problem
is infeasible.

Otherwise, we claim that there can be no other simple feasible set S of con-
gruence ´γ that is crossing Q1 in the sense that SzQ1, Q1zS, S XQ1 ‰ H:
Assume there was, then by minimality of Q1, S X Q1 is of zero con-
gruence. But then, cTδ´

U pQ1 Y Sq ” cTδ´
U pQ1 Y Sq ` cTδ´

U pQ1 X Sq ”
cTδ´

U pQ1q ` cTδ´
U pSq ” ´γ ´ γ “ γ, a contradiction. We conclude that no

such S can exist.

Taken together, we observe that

62 Chapter 3. Strictly 3-modular base block ILPs

• there is no simple feasible set S of non-zero congruence crossing with
Q1, and

• there is no simple feasible set of non-zero congruence strictly con-
tained in Q1 (by minimality of Q1), and further, that

• there is no simple feasible set S of congruence ´γ with S X Q1 “ H
(since otherwise S Y Q1 is simple feasible with congruence γ).

If there is no arc in A1 entering Q1, we return 2 ¨ δ´
U pQ1q as a solution.

Otherwise, by the above bullet points, all sets of congruence ´γ contain
Q1. Using the algorithm described in the first part of this proof, we look for
a maximal simple feasible set Q2 Ľ Q1 with cTδ´

U pQ2q ” ´γ. Observe that
similarly as with Q1, there can be no feasible set S of non-zero congruence
that is crossing with Q2, for the following reason:

Assume there was a feasible set S with δ´
U pSq ” ´γ such that S X

Q2, SzQ2, Q2zS ‰ H. Then either one of S X Q2 and S Y Q2 has con-
gruence γ, or both have congruence ´γ, in contradiction to our choice of
Q2 being maximal.

Consequently, all feasible sets of congruence ´γ form a chain

Q1 Ă ¨ ¨ ¨ Ă Q2,

with Q1 being the minimal, and Q2 the maximal set in the chain.

If there is no arc in A1 entering Q1 and Q2, we return δ´
U pQ1q ` δ´

U pQ2q
as a solution. If there is, however, it enters all sets in the chain, and
consequently, we cannot choose any two sets to obtain a feasible solution.
The problem is thus infeasible.

3.2.2 Network Matrix

Again, to simplify notation, we consider a cycle or a circulation to be a vector
C P REě0, rather than a subset of E.

We begin this section with two observations: First, that given revppAqq, there
is an efficient algorithm that returns a cycle of non-zero congruence, and sec-
ond, that if an edge is contained in all circulations of non-zero congruence, the
(sC3TU) problem reduces to another of the same kind in a graph of strictly
fewer edges.

Lemma 3.15. Let G “ pV,Aq be a directed graph with edge weights c P
t0, 1, 2uAě0 and capacities b P ZAě0. Then we can find a cycle C with cpCq ı
0 pmod 3q in polynomial time, or decide that no such cycle exists.

Furthermore, if all cycles in G are of congruence 0 pmod 3q, then for all

3.2. Feasibility in congruence-3-constrained base block TU problems 63

s, t P V , k P t0, 1, 2u, a shortest s-t-path of given congruence k can be found
efficiently.

Proof. The following procedure is a generalization of the proof of Lemma 2.25.

We start with an auxiliary graph G1 :“ pV 0 Y V 1 Y V 2, A1q, where V 0, V 1, V 2

are three copies of the vertex set V . We denote, for each v P V , by v0, v1 and v2

the corresponding vertices in V 0, V 1 and V 2, respectively, and for each a P A,
we introduce three arcs pui, ui`caq, for i P t0, 1, 2u, each with the same capacity
as pu, vq.
Similarly as in the bimodular case, each vi–vj walk in G1 corresponds to precisely
one closed walk C in G with cpCq ” j ´ i pmod 3q. To solve the problem, it thus
suffices to compute shortest vi–vj paths, for all v P V , i ‰ j P t0, 1, 2u. If we
cannot find any such path, we know that no circulation of non-zero congruence
exists. If we do, we decompose the corresponding circulations in G into cycles,
one of which has non-zero congruence, and return this cycle.

To see that the second part is true, we make use of the same auxiliary graph,
and search for a si ´ ti`k-path, i P t0, 1, 2u. Such paths correspond precisely to
sums of one s-t-path and cycles in the original graph G. After subtracting the
cycles, all of which have congruence 0 pmod 3q by assumption, an s-t-path of
congruence k remains.

The next lemma provides us with an argument why we may, without loss of
generality, assume that there is no edge e in G that attains the same value for
all circulations of non-zero congruence.

Lemma 3.16. Consider a problem pAq of type (sC3TU) whose constraint
matrix T is a network matrix with corresponding graph Ḡ :“ revppAqq “
pV,EY´Uq. Assume that there is an edge a˚ P AY´U , and a value z P Ně0,
such that for all circulations C in Ḡ with cTC ı 0 pmod 3q, Cpa˚q “ z.

Then, we can reduce pAq to a (sC3TU) problem whose constraint matrix is
a network matrix with strictly fewer rows or columns.

Proof. Let a˚ be an edge in Ḡ “ pV,E Y ´Uq as in the statement of the lemma.
By the first part of Lemma 3.8, simplified integral circulations in Ḡ correspond
precisely to points in P X Zn. We claim that we can add an equality constraint
to pAq without affecting feasibility:

If a˚ P A, all x P P X Zn with cTx ı 0 pmod 3q fulfill xa˚ “ z. Appending this
constraint allows us to reduce pAq to deciding feasibility of

�
x P Rn´1 : T¨,rnszta˚ux ď b ´ zT¨,a˚ , crnszta˚uTx ” γ ´ zca˚ pmod 3q(

,

where the sub-matrix T¨,rnszta˚u of T is again a network matrix.

If a˚ P U , we append the constraint Ta˚,¨x “ z, if a˚ P ´U , Ta˚,¨x “ ´z. To
abbreviate notation, let z1 “ z in the first case, and z1 “ ´z in the second. This
way, we can consider both cases at once and write Ta˚,¨x “ z1: Via a unimodular

64 Chapter 3. Strictly 3-modular base block ILPs

operation Z we transform Ta˚,¨ into e1
T “ Ta˚,¨Z. Then z1 “ Ta˚,¨ZZ´1x “

e1Z
´1x “ pZ´1xq1, so that pAq was reduced to

!
x P Rn´1 : pTZqrmszta˚u,2:nx ď b ´ zpTZqrmszta˚u,1,

pZcq2:nTx ” γ ´ z1pZcq1 pmod 3q
)
.

From the fact that pivot operations preserve the property of a matrix being a
network matrix, TZ, and any of its sub-matrices, are network matrices again.

Lemma 3.17. Let pAq be an (sC3TU) problem with T a network matrix.
Then solving it can be reduced to finding a circulation of congruence γ in
Ḡ :“ revppAqq, where we can make the following additional assumptions on
Ḡ:

1. Each edge has capacity 1, and for each edge a, there is a circulation
C with c̄TC ı 0 pmod 3q and Ca “ 0.

2. We are given three cycles C1, C2, C3 of congruence ´γ with pairwise
non-empty intersection.

Proof of Lemma 3.17. By Lemma 3.8, a problem pAq of type (sC3TU) can be
reduced to finding a circulation of proper congruence in the directed graph Ḡ :“
revppAqq with edge weights c̄.

Let us simplify the problem: We replace each edge e “ pu, vq with capacity k by
k many parallel edges (all pointing from u to v), each with a weight of c̄e and
with a capacity of 1. This new graph has a circulation of congruence γ if and
only if the original did, and any such circulation can be transformed into one
in Ḡ. Therefore, in what follows we may without loss of generality assume that
each edge in Ḡ has a capacity of 1.

Next, we argue that without loss of generality, for each edge a there is a cir-
culation C with c̄TC ı 0 pmod 3q and Ca “ 0. Assume this was not the case,
and let a˚ be an edge such that for each circulation C of non-zero congruence,
Ca˚ ą 0. This implies that a˚ has no parallel edges, and thus, already in the
original graph Ḡ (before we duplicated edges) all circulations of non-zero con-
gruence contained a˚ in their support with a value of 1. By Lemma 3.16, pAq
can then be reduced to a smaller (sC3TU) problem with a network matrix as
its constraint matrix, proving the claim.

Next, we show that w.l.o.g., there are two cycles C1 and C2 with c̄pC1q ” c̄pC2q ”
´γ pmod 3q:
We apply Lemma 3.15 to check for a cycle C1 of non-zero congruence in Ḡ. If no
such cycle exists, pAq is infeasible, so we assume it does. If c̄pC1q ” γ pmod 3q,
pAq is feasible. Otherwise, let a be any edge in C1. By our assumption above,
there is a cycle C2 of non-zero congruence with C2paq “ 0. We can find such a
cycle by deleting a from Ḡ and running the algorithm from Lemma 3.15 again.
For the same reason as before, we may assume that c̄TC2 ” ´γ pmod 3q. If

3.2. Feasibility in congruence-3-constrained base block TU problems 65

supppC1q X supppC2q “ H, then C1 `C2 solves the problem and pAq is feasible,
so let us assume their support is not disjoint.

Let a P supppC1q X supppC2q. Similarly as above, we can delete a from Ḡ and
search for a cycle of non-zero congruence. If none is found, or if it has congruence
γ, or if one of supppC3qXsupppC1q, supppC3qXsupppC2q, or supppC3qXsupppC1`
C2q is empty, we are done. Otherwise, we found three cycles as claimed.

As it turns out, assuming more structure on just these three cycles greatly helps
us to deduce more properties of revppAqq, as the following lemma shows.

Lemma 3.18. Consider the three cycles C1, C2, C3 in Lemma 3.17. De-
note by C their union, i.e., C “ χsupppC1qYsupppC2qYsupppC3q. If supppC1q X
supppC2q X supppC3q “ H, the intersection of any two cycles forms a path
in Ḡ, and for each cycle, there is at least an edge between one intersect-
ing path and the other, then the problem can be reduced to the following
setting:

Find a feasible circulation of congruence γ in Ḡ, where the congruence of
an s-t-path, for s, t P Ci, that is internally vertex disjoint from C, depends
only on its starting and target vertices s and t.

Proof. Note first that if we assume that there is no cycle of non-zero congruence
that is edge-disjoint from C (in any case, the existence of such a cycle would im-
ply feasibility of the (sC3TU) problem), we can compute in polynomial time the
congruence of s-t-paths that are internally vertex disjoint from C by considering
the graph resulting from revpAq after deleting all edges in C.

Denote by sij, i, j P t1, 2, 3u, i ‰ j, the first vertex in the intersection path of Ci

and Cj, and by tij the last vertex of this path, as in the following illustration.

s12

t12

s13 t13 t23 s23

We first observe that we can form two additional cycles,

K1 :“ pC1qt13s13
` pC3qs23t13 ` pC2qt23s23

` pC2qs12t23 ` pC1qt12s12
` pC1qs13t12

and
K2 :“ pC2qt23s23

` pC3qs13t23 ` pC1qt13s13
` pC1qs12t13 ` pC2qt12s12

` pC2qs23t12 .

66 Chapter 3. Strictly 3-modular base block ILPs

K1 and K2 originate from C3 by replacing one path by a parallel one that
goes over C1 and C2. Let us make a calculation on how this detour affects the
congruence of K1 and K2. Note first that the circulation which results from
taking both detours is C1 ` C2. Thus, at least one of K1 or K2 has a different
congruence than C3. W.l.o.g., none of c̄TK1 and c̄TK2 are γ pmod 3q, which
implies that one of them is 0 pmod 3q. This means that one of said detours
increased the congruence of C3 by γ pmod 3q, and consequently, to arrive at
c̄TpC1 ` C2q ” γ pmod 3q, the other detour does the same. As a consequence,
both K1 and K2 fulfill c̄TK1 ” c̄TK2 ” 0 pmod 3q.
This in turn implies that every edge in C belongs to one cycle of congruence
´γ, and another of congruence 0. Let P be a path as given in the statement of
this lemma. Doing a case-by-case analysis, the claim follows from the following
two facts:

Case 1: P can be complemented with two paths P1 and P2, with c̄TP1 ı c̄TP2 pmod 3q,
to two cycles P ` P1 and P ` P2.

Then we can either immediately decide that the problem is feasible, or
the congruence of P is fixed to one possible value pmod 3q such that
c̄pP ` P1q,c̄pP ` P2q ı γ pmod 3q.

Case 2: There is an internally vertex disjoint path P that is anti-parallel to
a path Q in C such that the cycle P ` Q is disjoint from some Cj,
j P t1, 2, 3u.
Then, the problem can immediately be decided to be feasible, unless
c̄TpP ` Qq ” 0 pmod 3q ô c̄TP ” ´c̄TQ pmod 3q.

One of the two cases always occurs for P , as a case-by-case analysis shows.

To be able to immediately read off feasibility from such paths, the assumption
that there is no edge that is shared between the three cycles is indeed neces-
sary: In the following example, there is an edge shared by all cycles of non-zero
congruence. Only after a reduction to a smaller graph (via Lemma 3.17) we can
make more statements about the corresponding problem.

Example 3.19. Let us assume that γ “ 2, and consider the graph depicted
below, where the edges p5, 1q, p0, 1q, p0, 7q shall be endowed with a weight of 1,
while all others have a weight of zero. Assume further that all edges have a
capacity of 1. Then there is no circulation of congruence γ pmod 3q.

3.2. Feasibility in congruence-3-constrained base block TU problems 67

Note that for each choice of three cycles of congruence 1, they overlap at least in
p6, 5q. Consider a 5-1-path that it internally vertex disjoint to the above graph.
Setting its weight to either 0 or 1 yields no feasible circulation, either.

Chapter 4

Implementation of the
bimodular ILP algorithm

To further illustrate the bimodular ILP algorithm of Chapter 2, its main pro-
cedure has been implemented in the Python programming language. The main
function takes as its input:

• Data c P Zn, b P Zm, A P Zmˆn bimodular,

• an algorithm A to solve LPs, and return an optimal vertex if one exists,

• an algorithm B which returns, for a (transposed) network matrix, its graph
representation,

• an algorithm C which returns Seymour’s TU decomposition of a TU matrix
(see, e.g., [36] for an algorithm finding a k-sum decomposition),

• a sub-modular function minimization oracle,

• a shortest path algorithm,

• an algorithm which, given a network matrix, returns its graph representa-
tion,

• and an oracle which, given a matrix B P Zkˆn of full column rank, returns
an invertible pn ˆ nq-submatrix of B.

It returns an optimal solution, given it exists, ‘math.inf’ if the problem is un-
bounded, or ‘-math.inf’ if it is infeasible.

It can be found on the following link:
http://doi.org/10.5905/ethz-1007-247.

Note that the time complexity of this implementation also depends on the oracles
as well as the Python packages used and may therefore deviate from what is
theoretically possible.

Bibliography

[1] G. Appa and B. Kotnyek. Rational and integral k-regular matrices. Dis-
crete Mathematics, 275(1–3):1–15, 2004.

[2] G. Appa, B. Kotnyek, K. Papalamprou, and L. Pitsoulis. Optimization with
binet matrices. Operations Research Letters, 35(3):345–352, 2007.

[3] E. M. Arkin, C. H. Papadimitriou, and M. Yannakakis. Modularity of cycles
and paths in graphs. Journal of the ACM, 38(2):255–274, April 1991.

[4] S. Artmann, F. Eisenbrand, C. Glanzer, T. Oertel, S. Vempala, and R. Weis-
mantel. A Note on Non-Degenerate Integer Programs with Small Subde-
terminants. Operations Research Letters, 44(5):635–639, 2016.

[5] S. Artmann, T. Oertel, and R. Weismantel. Non-degenerate integer linear
programs with bounded sub-determinants. Master’s thesis, 2016.

[6] S. Artmann, R. Weismantel, and R. Zenklusen. A Strongly Polynomial Al-
gorithm for Bimodular Integer Linear Programming. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting, New York, NY, USA, 2017. ACM.

[7] A. Barvinok. A Course in Convexity. Graduate studies in mathematics.
American Mathematical Society, 2002.

[8] S. Baum and L. E. Trotter. Integer rounding and polyhedral decomposition
for totally unimodular systems. In Rudolf Henn, Bernhard Korte, and
Werner Oettli, editors, Optimization and Operations Research, pages
15–23, Berlin, Heidelberg, 1978. Springer Berlin Heidelberg.

[9] D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization.
Athena Scientific, 1997.

[10] R. E. Bixby and W. H. Cunningham. Short Cocircuits in Binary Matroids.
European Journal of Combinatorics, (8):213–225, 1987.

72 Bibliography

[11] A. Bock, Y. Faenza, C. Moldenhauer, and A. J. Ruiz-Vargas. Solving
the stable set problem in terms of the odd cycle packing number. In
Proceedings of the 34th IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science
(FSTTCS), pages 187–198, 2014.

[12] N. Bonifas, M. Di Summa, F. Eisenbrand, N. Hähnle, and M. Niemeier. On
sub-determinants and the diameter of polyhedra. Discrete & Computa-
tional Geometry, 52(1):102–115, 2014.

[13] C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips, and E. Sund-
berg. A decomposition-based pseudoapproximation algorithm for network
flow inhibition. In Network Interdiction and Stochastic Integer Pro-
gramming, chapter 3, pages 51–68. Springer, 2003.

[14] C. Carathéodory. Über den variabilitätsbereich der fourierschen konstanten
von positiven harmonischen funktionen. Rendiconti del Circolo Matem-
atico di Palermo (1884-1940), 32(1):193–217, 1911.

[15] S. Chestnut and R. Zenklusen. Interdicting structured combinatorial op-
timization problems with 0, 1-objectives. Mathematics of Operations
Research, 42(1):144–166, 2017.

[16] M. Dyer and A. Frieze. Random walks, totally unimodular matrices, and
a randomised dual simplex algorithm. Mathematical Programming,
64(1):1–16, 1994.

[17] F. Eisenbrand and S. Vempala. Geometric Random Edge, 2016. https:

//arxiv.org/abs/1404.1568v5.

[18] M. A. Frumkin. An algorithm for the reduction of a matrix of integers to
triangular form with power complexity of the computations (in Russian).
Ekonomika i Matematicheskie Metody, 12:173–178, 1976.

[19] A. Ghouila-Houri. Caractérisation des matrices totalement unimodulaires.
Comptes rendus hebdomadaires des séances de l’Académie des
Sciences, 1962.

[20] C. Glanzer, T. Oertel, and R. Weismantel. A combinatorial approach to-
wards integer programming with small sub-determinants. Master’s thesis,
2016.

[21] M. X. Goemans and V. S. Ramakrishnan. Minimizing submodular functions
over families of sets. Combinatorica, 15(4):499–513, 1995.

[22] O. Goldreich. Computational complexity - a conceptual perspec-
tive. Cambridge University Press, 2008.

[23] D. V. Gribanov and S. I. Veselov. On integer programming with bounded
determinants. Optimization Letters, 10(6):1169–1177, 2016.

Bibliography 73

[24] Dmitry Gribanov and Sergey Veselov. On integer programing with bounded
determinants. Arxiv:1505.03132, 2015.

[25] J. W. Grossman, D. M. Kulkarni, and I. E. Schochetman. On the minors
of an incidence matrix and its smith normal form. Linear Algebra and
its Applications, 218:213 – 224, 1995.

[26] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combi-
natorics. Springer, second corrected edition, 1993.

[27] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polyno-
mial algorithm for minimizing submodular functions. J. ACM, 48:761–777,
July 2001.

[28] R. M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of Computer Com-
putations, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972.

[29] L. G. Khachiyan. Polynomial algorithms in linear programming (in russian).
USSR Computational Mathematics and Mathematical Physics,
20(1):53–72, 1980.

[30] A. Y. Khinchine. A quantitative formulation of Kronecker’s theory of ap-
proximation. Izvestiya Akademii Nauk SSR Seriya Matematika.,
12(2):113–122, 1948.

[31] B. Korte and J. Vygen. Combinatorial Optimization, Theory and
Algorithms. Springer, 5th edition, 2012.

[32] H. W. Lenstra. Integer programming with a fixed number of variables.
Mathematics of operations research, 8(4):538–548, 1983.

[33] Hendrik W. Lenstra. Integer programming with a fixed number of variables.
Math. Oper. Res., 8:538–548, 1983.

[34] M. Nägele, B. Sudakov, and R. Zenklusen. Submodular minimization under
congruency constraints. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, pages
849–866, Philadelphia, PA, USA, 2018. Society for Industrial and Applied
Mathematics.

[35] J. B. Orlin. A faster strongly polynomial time algorithm for submodu-
lar function minimization. Mathematical Programming, 118:237–251,
2009.

[36] A. Schrijver. Theory of Linear and Integer Programming. John Wiley
and Sons, NY, 1986.

74 Bibliography

[37] A. Schrijver. A Combinatorial Algorithm Minimizing Submodular Func-
tions in Strongly Polynomial Time. Journal of Combinatorial Theory,
Series B, 80(2):346–355, November 2000.

[38] A. Schrijver. Combinatorial Optimization - Polyhedra and Effi-
ciency. Springer, 2003.

[39] P. D. Seymour. Decomposition of regular matroids. Journal of Combi-
natorial Theory, Series B, 28(3):305–359, 1980.

[40] E. Tardos. A Strongly Polynomial Algorithm to Solve Combinatorial Linear
Programs. Operations Research, 34(2):250–256, 1986.

[41] S. I. Veselov and A. J. Chirkov. Integer program with bimodular matrix.
Discrete Optimization, 6(2):220–222, 2009.

[42] V. A. Yemelichev, M. M. Kovalev, and M. K. Kravtsov. Polytopes,
Graphs and Optimisation. Cambridge University Press, New York, NY,
USA, 1986.

Appendix A

Copyright

Parts of the introduction appeared in [5].

Parts of the introduction and most of the bimodular chapter of this thesis was
previously published in [6]:

c� Artmann, Weismantel, Zenklusen, ACM 2017. This is the author’s version
of the work. It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in [6],
https://doi.org/10.1145/3055399.3055473.

Appendix B

Deferred proofs of Chapter 2

B.1 Deferred proofs for the equivalence of (BIP),

(CPTU) and (PTU)

When outlining how the three main problem types we deal with can be strongly
polynomially reduced to each other, we postponed some technical proofs to this
Section.

B.1.1 LP relaxations of (BIP)

We give proofs on how to find an optimal vertex solution for the LP-relaxation
of a (BIP)-problem, or a certificate for unboundedness, and how to reduce any
(BIP)-problem to one whose LP-relaxation has a unique optimal vertex solution.

Proof of Lemma 2.7. We find an invertible pnˆnq submatrix Q of A and, using
Gaussian elimination, which is strongly poly-time (see, for example, [36], Section
3.3), calculate Q´1. AQ´1 has the identity matrix as a submatrix, and all
pnˆnq-determinants of AQ´1 are bounded by 1 in absolute value. Furthermore,
| detpQq| ď 1, which implies that all non-zero entries of AQ´1 are 1{2 or 1 in
absolute value. We may now apply an LP-algorithm, such as the one given by
Tardos [40], that finds an optimum x˚ for maxtcTQ´1x : AQ´1x ď bu in strongly
polynomial time, or decides unboundedness or infeasibility. Strictly speaking,
Tardos does not specify whether, if a solution is returned by the algorithm, it
is a vertex solution, and whether a certificate of unboundedness is returned,
otherwise, both of which can be achieved using standard techniques:

1. If the LP is optimal and bounded, but the optimal solution x˚ is not a
vertex, we can restrict ourselves to a minimal face that x˚ is in. To this
end, denote by AI,¨Q´1x ď bI , for I Ď rms, the maximal sub-system of
inequalities that are tight at x˚. If I “ H, let d “ r1, 0, . . . , 0s. Otherwise,
using Gaussian elimination, we can in strongly polynomial time determine
the rank l of AI,¨ and a non-zero solution d P Zn to AI,¨Q´1x “ 0. Let

λ “ mint bi´Ai,¨Q´1x˚
Ai,¨Q´1d

u. Then x˚ ` λd fulfills all the constraints indexed

by I, as well as an additional constraint indexed by i˚, with equality, and

rankp
„
AI,¨
Ai˚,¨


q “ l ` 1. We re-iterate this procedure until l “ n.

2. If the LP-relaxation is unbounded, we first obtain a feasible solution by
replacing the objective function by another which is surely bounded, e.g.
by A1,¨, and obtain a feasible vertex as described above.

There exists an r1 P Zn in the recession cone such that cTQ´1r1 ą 0 and
AQ´1r1 ď 0. We can find such an r1 e.g. by solving the LP maxtcTx : AQ´1x ď
0, 0 ď x ď 1u. The improving ray r is then obtained from r1 as r “ Q´1r1.
If r is not integral, we rescale it, meaning that if we write each entry as
ri “ pi

qi
, for pi P Z, qi P Z‰0, we return maxt|qi| : i P t1, . . . , nuu ¨ r together

with the feasible solution.

Proof of Lemma 2.8. Let us assume first that the LP-relaxation is feasible and
bounded, but that there is not a unique optimal solution. By Lemma 2.7, we
can find an optimal vertex solution v. We replace the objective function vector
c by 2mc̄, where c̄T :“ cT ` 1

2m

ř
iPI Ai,¨, and I Ď t1, . . . ,mu denotes the set of

tight constraints at v. If v P Zn, we may return v as a solution for (BIP). So let
v R Zn. We now argue that every solution that is optimal for the new problem
also was optimal before. To this end, let z P Zn be a well-structured optimal
solution fulfilling |AIz| ď 1, and y be some feasible, but not optimal, solution.
Since z ‰ v, we have that AIz ‰ bI , and thus

c̄Tpz ´ vq “cTpz ´ vq ` 1

2m

ÿ

iPI
Ai,¨pz ´ vq ě cTpz ´ vq ´ 1

2
,

c̄Tpy ´ vq “ cTpy ´ vqloooomoooon
ďcTpz´vq´1

` 1

2m

ÿ

iPI
Ai,¨py ´ vqloooomoooon

ď0

ď cTpz ´ vq ´ 1,

and thus, c̄Ty ă c̄Tz.

Let us now consider the case that the LP is unbounded, which means that
by Lemma 2.8, we have a feasible vertex solution v and an improving ray r P
Zn. Then (BIP) is either infeasible or unbounded. To reduce the question of
feasibility to a bounded problem of type (BIP), we replace c by an objective
function vector such that the resulting problem is surely bounded. To this end,
we may choose to maximize A1,¨, and, if the problem is feasible with optimal
solution z, return z and r as a certificate for unboundedness of the original
(BIP)-problem.

B.1.2 Further deferred proofs of Section 2.3

In this Section, we first give the proof of Veselov and Chirkov [41] for their
theorem, give a technical result and then show how to strongly polynomially
reduce (PTU) with constraint matrix T to a problem (CPTU) whose constraint
matrix is a submatrix of T .

Proof of Lemma 2.9. The entries of Q´1 are half-integral. There exists a uni-
modular matrix U P Znˆn corresponding to elementary column operations on Q
such that QU is in Hermite Normal Form (HNF) [18]. In particular, we may
choose U such that QU ě 0 and that it is equal to the identity matrix with the
exception of one row i, where

pQUqi,j

$
’&
’%

ď 1, if j ă i,

“ 2, if j “ i,

“ 0, if j ą i

.

Thus, a single row of pQUq´1 contains all of its non-integral entries, and there
is at least one such entry. Since pQUq´1 “ Ū´1Q´1 is generated from Q´1 by
elementary row operations, there exists a submatrix of Q´1 consisting of all
of its non-integral entries. Put differently, there is I, J Ď t1, . . . , nu such that
Q´1

i,j R Z ô pi P I, j P Jq.
Proof of Lemma 2.12. We will reduce (PTU) to (CPTU) via (BIP) in a way
such that the resulting constraint matrix is a submatrix of T in (PTU).

Given a problem of form (PTU) with T as the constraint matrix, we reformulate
it as the (BIP) problem

max

$
&
%

ˆ
c

0

˙
T

„
x
y


:

»
–

T 0
χS 2

´χS ´2

fi
fl

„
x
y


ď

»
–

b
α

´α

fi
fl ,

„
x
y


P Zn`1

,
.
- .

By Theorem 2.2, we can solve the LP-relaxation of this problem in strongly
polynomial time. First, assume that the relaxed problem is bounded, and let
v be an optimal vertex solution. Note that by dividing the last column in the
constraint matrix by 2, we obtain a unimodular problem with a vertex equal to
v in all but the last variable. Thus, v1:n is integral.

If vn`1 is integral, we return v1:n. Otherwise, by Lemma 2.14 we may neglect all
but those constraints

rT :“
»
–

T̂ 0
χS 2

´χS ´2

fi
fl

that are tight with respect to v, where T̂ is a submatrix of T , and solve

max

$
&
%cTx : rT

„
x
y


ď

»
–

0
α

´α

fi
fl , v `

„
x
y


P Zn`1

,
.
- .

Since v1:n P Zn, we may reformulate the above as

maxtcTx : T̂ x ď 0, x P Zn, xpSq oddu,
where T̂ is now a submatrix of T .

If the LP-relaxation of the (BIP) problem is unbounded, then by Lemma 2.8,
we can reduce this to a (BIP) problem with the same constraint matrix and
right-hand-side that has a unique LP-optimum v. By the same arguments as
above, this problem can then be reduced to a (CPTU) problem.

B.2 Deferred statements and proofs on our vari-

ant of Seymour’s TU-decomposition

This subsection is dedicated to strengthening Theorem 1.14 so that it yields
Theorem 2.4.

We first want to examine in greater detail the case covered in Lemma 1.15 that
corepT q is neither a network matrix, nor one of the two matrices (2.1) of constant
size.

(CPTU) problems have non-negativity constraints. Reductions on other opti-
mization problems that involve sign changes are therefore inconvenient for us,
and so we find a way to decompose a constraint matrix as a k-sum without
applying sign changes of rows or columns.

Lemma B.1. If corepT q in Lemma 1.15 can, after row/column sign changes
and permutations, be written as a k-sum with mL ` nL, mR ` nR ě 4, then
we can in polynomial time find a way of writing it as a k-sum that also fulfills
mL ` nL ě 4, mR ` nR ě 4 after performing row and column permutations
only.

Proof. We apply Seymour’s decomposition as given in Lemma 1.15: We permute
rows and columns and perform sign changes of rows and columns of T and write
the resulting matrix as a k-sum, k P t1, 2, 3u, of two totally unimodular matrices.
We then find an alternative decomposition that does not involve sign changes
anymore, where the general plan is as follows: For all row sign changes, we
choose a corresponding row in one of the summands and change their signs. We
do the same for columns. Then these new summands will still be TU, and once
we show that their k-sum is (up to row- and column-permutations) the matrix
T , we are done.

We now give an inductive reasoning on how to find the correct sign changes
for the summands: assume that (possibly after row/column permutations) T “„
L D1

D2 R


and that after a single row or column sign change, it can be written

as a k-sum M1 ‘k M2 of two TU-matrices M1 and M2. Let us first assume
that the sign change involved affects a row Ti,¨ “ rLi,¨ | pD1qi,¨s in the first nL

rows of T . Depending on k, we have D1 “ 0 or D1 “ adT. If k “ 1 and
D1 “ 0, we change the sign of row i in M1. Call this new matrix xM1. Then,
T “ xM1 ‘1 M2, as desired. Otherwise, Ti,¨ “ rLi,¨ | aidTs. If k “ 2, replace row

i in the left summand by its negative, rLi,¨ | ais and call this new matrix xM1.

Then, T “ xM1 ‘2 M2. Analogously, if k “ 3, replace row i in the left summand
by its negative.

Let us treat the case that we change the sign of a row i, nL ` 1 ď i ď n,
next. Then Ti,¨ “ rpD2qi,¨ | Ri,¨s. If k “ 1 or k “ 2, D2 “ 0 and we obtain
a decomposition of T via a 1-sum by changing the sign of row i ´ nL in M2.

Otherwise, k “ 3 and Ti,¨ “ rgi´nL
fT | Ri,¨s. We change the sign of row i´nL`1

in

„
1 0 dT

g g R


to obtain a 3-sum decomposition of T .

The next case to be treated is that the sign change affects a column. In case of
the 1-sum, an analogous reasoning applies as above. If the column whose sign

we change is T¨,j “
„

L¨,j
pD2q¨,j


, we can replace, if k “ 2, L¨,j by ´L¨,j in the left

summand of the 2-sum, or, if k “ 3,

„
L¨,j
fjg

T


by its negative in the left summand

of the 3-sum. Finally, if T¨,j “
„
dj´nL

a
Rj´nL


, we can change the sign of the same

column in the right summand, which is in position j ´ nL for the 2-sum and
j ´ nL ` 2 for the 3-sum.

To make progress in the recursion, we need that the new (CPTU) problems
and (PTU) problems have strictly less rows. This will follow from the following
lemma, which says that both summands in the k-sum decomposition have a
minimum number of rows:

Lemma B.2. Under the assumptions of case 3 in Theorem 1.14, i.e. in the
setting of Lemma 1.15, we have that mL ě 2 and mR ě 2.

Proof of Lemma B.2. We show that there is a standard unit vector, its negative
(˘e) or two linearly dependent rows/columns in corepT q if the statement is
violated, contradicting the definition of a core.

1. k “ 1: If mL “ 1,

„
L
D2


consists of at least three standard unit vectors

(or their negatives), contradicting that corepT q is a core. The analogous
reasoning applies if mR “ 1.

2. k “ 2, mL “ 1: L has only one row and thus, all vectors

„
L
0


are (up to

signing) standard unit vectors.

3. k “ 2, mR “ 1: Write D1 “ adT. R consists of one row only, and can
thus R can be interpreted as a row vector with at least three entries (since

mR `nR ě 4). By TU-ness of corepT q, there can be no submatrix of

„
D1

R



of the form ˘
„
a ´a
1 1


, and since the matrix is a core, R has at most

one entry that is zero. Then, however, one of the following matrices is a
submatrix of corepT q, contradicting that it is a core:

˘
„
a ´a
1 ´1


, ˘

„
a a
1 1


.

4. k “ 3, mL “ 1: L has one row only, and by TU-ness of

„
L
gfT


, there is no

submatrix ˘
„
1 ´1
g g


of

„
L
gfT


. Since mL ` nL ě 4, there have to be at

least three columns in L and thus two that are linearly dependent.

5. k “ 3, mR “ 1: R has one row only, and by TU-ness of

„
adT

R


, there is no

submatrix ˘
„
a ´a
1 1


of

„
adT

R


. Since mR ` nR ě 4, there have to be at

least three columns in R and thus two that are linearly dependent.

So far, the matrix decompositions we considered only deal with the core of a
matrix. For our purposes, however, we need k-sum decomposition of the entire
constraint matrix T . The next lemma shows how to efficiently obtain one from
the decomposition of corepT q. We first show a statement for one row or column
only, which, when iterated, will yield the desired decomposition.

Lemma B.3. Let T P t0,˘1umˆn be a TU matrix which can be written as
a k-sum, T “ ML ‘k MR, k P t1, 2, 3u, such that mL ` nL, mR ` nR ě 4.
Consider a column vector r P t0,˘1um that is linearly dependent on one of
the columns of T , or has at most one non-zero entry. Then, the k-sum can in
polynomial time be extended onto

“
T r

‰
, i.e., we can (possibly after column

permutations) efficiently find another k-sum such that
“
T r

‰ “ NL ‘k NR

for two TU-matrices NL and NR such that ML and MR are submatrices of
NL and NR, respectively.

Furthermore, if s P t0,˘1un has at most one non-zero entry or is linearly
dependent of one of the rows of T , then the k-sum of T can (possibly after

row permutations) be efficiently extended to a k-sum of

„
T
sT


.

Proof. We find the new k-sum decomposition as follows: If r “ 0, we append an
all-zero column to the left summand. It will stay totally unimodular, the k sum
is up to column permutations equal to

“
T d

‰
. Analogously, if r has exactly one

non-zero entry di in position i, we do the following: If i ď mL, we truncate r
and append it as a column to the left summand. If i ą mL, we append a column
vector consisting of the last mR (if k “ 1, 2) or the last mR ` 1 (if k “ 3) entries
of r to the right summand. This way, the summands stay TU and their k-sum
is (up to column permutations) equal to T .

Assume now that r is linearly dependent of column i, 1 ď i ď nL. Then,

r “ αT¨,i “ α

„
L¨,i
σg


, where α P t˘1u and σ P t0,˘1u. By doubling the ith

column of the left summand and multiplying the new column by α, the matrix
stays TU, and the k-sum where the left summand is replaced with this modified
matrix yields (up to column permutations) T .

If r is linearly dependent of column i, nL ă i ď n, then T¨,i “ α

„
σa

R¨,pi´nLq


,

where α “ ˘1 and σ P t0,˘1u. We now append a (signed by α) copy of column
i ´ nL in the right summand.

Analogously, we find a new k-sum decomposition for
“

T
sT

‰
: If it is an all-zero

vector, we append an all-zero row to the left summand. If s has exactly one
non-zero entry in position i, we append its truncated counterpart to the left
summand if 1 ď i ď nL, and to the right one, otherwise. Finally, if s is linearly
dependent of another row Ti,¨ in T , we append a corresponding row to the left
summand if 1 ď i ď mL and to the right, otherwise.

By definition, T arises from corepT q by iteratively appending rows and columns
of the above type. We can therefore apply Lemma B.3 to obtain the k-sum
decomposition of T :

Lemma B.4. Let T P Zmˆn be a TU-matrix such that corepT q can be
written as a k-sum, corepT q “ ML ‘k MR, k P t1, 2, 3u, of two TU-matrices
ML and MR with mL ` nL ě 4 and mR ` nR ě 4. Then we can efficiently
find a way to write T (up to row and column permutations) as a k-sum
that extends the original one, i.e., we can write, possibly after row/column
permutations, T as NL ‘ NR, NL and NR TU, where ML is a submatrix of
NL and MR is a submatrix of NR.

Finally, we need to tackle case 4 in Lemma 1.15, where a pivot operation is
applied to the constraint matrix before it can be decomposed as a 3-sum. For
this we observe that in a certain sense, the core of a matrix is invariant under
pivoting, which will then enable us to prove Theorem 2.4 further below.

Lemma B.5 (Invariance of canonical and redundant columns under pivot-
ing). Let T P t0,˘1umˆn be a TU-matrix and d P t0,˘1um be a vector with
at most one non-zero entry that is ˘1, or correspond to (the negative of)
a column of T . Consider

“
T d

‰
, and let M be the matrix resulting from

a pivot operation at an element that is not in the last column of
“
T d

‰
.

Then, the last column of M still is a vector with only one non-zero entry
that is ˘1 or (the negative of) a copy of another column in M .

Proof. Recall that pivoting involves row and column permutations as well re-

placing a matrix
“
T d

‰ “
„
ε cT

b D


by M :“

„´ε εcT

εb D ´ εbcT


. Row and column

permutations preserve the support of d and linear dependence between columns,
and thus, we may assume that we perform a pivot at T1,1. Then, the column of

interest fulfills M¨,n “
„

εd1
d2:m ´ εd1b


.

Consider first the case that d has at most one non-zero entry. If d1 “ 0, M¨,n “ d
and the statement is true. Otherwise, dp2:mq “ 0 and d1 “ ˘1. This implies that

M¨,n “ d1

„
ε

´εb


“ ´d1M¨,1, and thereby linearly dependent of the first column.

Finally, assume that d is linearly dependent of some other column g “ T¨,i,
1 ď i ď n ´ 1. If i ‰ 1, d and g will remain linearly dependent after the

pivoting. Otherwise, i “ 1 and d “ α

„
ε
b


, for α P t˘1u. This becomes, after

the pivoting,

„
ε2

b ´ ε2b


“

„
1
0


.

Lemma B.6. Consider a TU-matrix T that can via pivoting be transformed
into a TU-matrix M , and let C be the submatrix of M that corresponds to
corepT q. Assume that we can write C “ ML ‘3 MR for two TU-matrices
ML and MR. Then we can efficiently find a 3-sum decomposition of M ,
M “ NL ‘3 NR, which extends the first, i.e., such that ML and MR are
submatrices of NL and NR, respectively.

Proof. Let I Ă t1, . . . ,mu be a subset of rows, J Ď t1, . . . , nu a subset of
columns such that corepT q “ TI,J . By Lemma B.5, canonical and redundant
columns, and, by symmetry, rows, remain canonical or redundant after piv-
oting. Therefore, the index sets specifying the core of M remain I and J ,
i.e., corepMq “ MI,J . By assumption, MI,J can be written as a 3-sum, and by
Lemma B.4, this can efficiently be extended to a 3-sum decomposition of M .

We now have all the ingredients in place to prove Theorem 2.4.

Proof of Theorem 2.4. The second case is a restatement of case 2 in Theo-
rem 1.14. The first case corresponds to the first in Theorem 1.14, in which
corepT q is a network matrix or its transpose is, where we made use of the fact
that if corepT q is a network matrix, or its transposed is, then so it T or TT,
respectively.

The next three cases resemble the first three in Lemma 1.15. However, we need
to get rid of sign changes, which we do by invoking Lemma B.1. This gives as
a k-sum decomposition of corepT q, and by Lemma B.2, it fulfills mL, mR ě 2.
We invoke Lemma B.4 to obtain a k-sum decomposition of the entire matrix T
in strongly polynomial time.

The final case in Theorem 2.4 corresponds to the last case in Lemma 1.15, namely
that corepT q can, after pivoting once, be written as a 3 sum with mL ` nL,
mR ` nR ě 4. By Lemma B.6, we can extend this 3-sum decomposition to
the entire matrix that we obtained from T after pivoting, and obtain mL ě 2,
mR ě 2 and remove the need for sign changes, as before.

B.3 Deferred proofs on (CPTU) decompositions

Proof of Lemma 2.13. First, we solve the LP-relaxation of the given (CPTU)
problem using the algorithm of Tardos [40], which runs in strongly polynomial
time since all entries of T are bounded by 1 in absolute value. If the LP is
bounded, we are done. Otherwise, we need to find out whether the original

problem is feasible. If so, it is unbounded as well. To check feasibility, we
exchange the objective function by one that is surely bounded. For example,
we might choose cT “ T1,¨. In case that this altered (CPTU) problem has a
feasible solution x˚, we provide a certificate for unboundedness as follows: We
solve the LP maxtcTx : Tx ď 0, 0 ď x ď 1u, again with the method of Tardos
[40]. We will obtain an optimal solution r with cTr ă 0 this way, and we rescale
it to be integral, meaning that if ri “ pi

qi
, for pi P Z, qi P Z‰0, we replace r by

maxt|qi| : i P t1, . . . , nuu ¨ r. Then x˚ together with r certify unboundedness of
the problem.

We postponed some details in our discussion of our recursion if the k-sum in-
volved is a 2-sum. We prove the missing ingredients here.

Proof of Lemma 2.16. We make the non-negativity constraints implicit by ap-
pending ´I, the negative of the pnˆnq-identity matrix, to T , and write x P Zn

instead of x P Zě0 in (CPTU).

After performing a column permutation and possibly swapping the first two
constraints as well as replacing h by ´h, we may assume that h1 “ 1. We

perform column operations on

„
T

´I


such that the first row becomes r1, 0, . . . , 0s.

Let us take a closer look at the constraint after this operation. The first row
was changed to r1 | 0s, while the second row of the matrix is now r´1 | ´h2:n ´
h1p´h2:nqs “ r´1, 0, . . . , 0s. The row which, before the application of the column
operations, corresponded to the first non-negativity constraint, was changed to
gT :“ r´1 | h2:ns. The other rows of ´I were not affected. We can thus, with a
permutation matrix P and a unimodular matrix Q, write

P

„
T

´I


Q “

»
——–

e1

gT

M
´I

fi
ffiffifl ,

where M is totally unimodular and e1 “ I1,¨.

Let us discuss what happens to the parity constraint when pivoting. In par-
ticular, we will show that it simply gets transformed into a different parity
constraint, which, taken together with the observations above, will allow us to
conclude that we indeed reduced to a problem that is of type (CPTU) as well.
So let S Ď t1, . . . , nu be a set for which we require xpSq ” 1 pmod 2q in the
original (CPTU) problem. We may write this constraint as

χS
Tx ” 1 pmod 2q, (B.1)

where χS P t0, 1un is the characteristic vector of S. Let Q be the unimodular
matrix corresponding to the column operations that were performed, i.e., hTQ “
r´1, 0, . . . , 0s. Then, the constraint (B.1) becomes, after pivoting, χS

TQx ”
1 pmod 2q, and since χS

TQ P Zn, this can, using the set S̄ “ ts P χS
TQ | s ”

1 pmod 2qu, be rewritten as

1 pmod 2q ” χS
TQx ”

nÿ

i“1

pχS
TQqixi pmod 2q ” χS̄

Tx pmod 2q,

which yields xpS̄q ” 1 pmod 2q.
We may thus reformulate the (CPTU)-problem as follows, where χS P t0, 1un is
the characteristic vector of set S:

maxtcTx : Tx ď 0, xpSq odd, x P Zn
ě0u

“ maxtcTQQ´1x :

„
T

´I


QQ´1x ď 0, xpSq odd, x P Znu

“ maxtcTQQ´1x : P

„
T

´I


QQ´1x ď 0, χS

Tx odd, x P Znu

“ maxtcTQQ´1x :

»
——–

e1

gT

M
´I

fi
ffiffiflQ´1x ď 0, χS

TQQ´1x odd, x P Znu

“ maxtcTQx :

»
——–

e1

gT

M
´I

fi
ffiffiflx ď 0, χS

TQx odd, x P Znu,

which, with S̄ :“ �
i P t1, . . . , nu : pχS

TQqi ” 1 pmod 2q(
,

“maxtcTQx :

»
——–

e1

gT

M
´I

fi
ffiffiflx ď 0, xpS̄q odd, x P Znu

“maxtcTQx :

„
gT

M


x ď 0, x1 “ 0, xpS̄q odd, x P Zn

ě0u

“maxtcTQx :

„
gT

M



¨,p2:nq
x ď 0, xpS̄zt1uq odd, x P Zn´1

ě0 u.

We have thus eliminated the first variable and have found a (CPTU)-problem
with one constraint and one dimension less.

Proof of Lemma 2.17. Let us treat the case first that all problems (2.9) are
bounded and feasible, i.e., that ´8 ă ρLpα, βq ă 8 for all α P t0,˘1u, β P
t0, 1u. Let I “ t1, . . . , 6u correspond to the first six entries of c̄.

1. Let z be feasible for (2.10). Denote by ypα, βq an optimal solution for (2.9)
for the pair pα, βq and by Y the matrix

Y “ “
yp´1, 0q yp0, 0q yp1, 0q yp´1, 1q yp0, 1q yp1, 1q‰

that contains the ypα, βq’s as columns in the order corresponding to c̄.
Consider the vector

y :“
„ř

iPI ziY¨,i
z7:pnR`6q


.

y ě 0 and RyR “ Rz7:pnR`6q ď 0. Furthermore, by our choice of Y , we
have that for any ω P t0,˘1u, hI

TzI “ ω ñ L
ř

iPI ziY¨,i ď ωa. Since z
fulfills

´dTz7:pnR`6q “ hI
TzI ,

this implies
´adTz7:pnR`6q ě L

ÿ

iPI
ziY¨,i,

and so
LyL ` adTyR “ L

ÿ

iPI
ziY¨,i ` adTz7:pnR`6q ď 0.

y is thus feasible for (CPTU). Furthermore, cTy “ c̄Tz.

2. Denote by x˚ an optimal solution for the original problem (CPTU) with

constraint matrix T that fulfills |dTx˚| ď 1. We write it as
”
x˚
L

x˚
R

ı
, where

xL̊ “ x˚
p1:nLq corresponds to the left, and xR̊ “ x˚

pnL`1q:n to the right part
of T .

We show once more that x˚ can be transformed into to a feasible solution
for (2.10), which will imply that problem (2.10) cannot have a smaller
optimal objective function value than cTx˚.

xL̊ is a feasible solution to (2.9) for some α “ αL and some β and xR̊ to
(2.7), for αR “ αL “ ´dTxR̊ and β ” xL̊pSLq pmod 2q.
Let l be the index of the column in the constraint matrix of (2.10) that
corresponds to problem (2.9) with αL “ ´dTxR̊ and β ” xL̊pSlq pmod 2q.
Then by construction,

„
el
xR̊


is feasible and

cTx˚ “ c̄T
„
elL
xR̊


,

where el is the l-th standard unit vector.

As in the proof of Lemma 2.15, we need to argue that we can treat the case that
some ρLpα, βq are 8 or ´8 as well. Again, we delete the corresponding columns
and entries in c̄, which can be interpreted as adding additional constraints that
enforce that some variables are set to zero. Since we did not add additional
feasible solutions to this problem, the first statement of the lemma still holds.
As for the second statement, we need to argue why

“ el
x˚
R

‰
is still feasible: Assume

it was not, then variable l was deleted because the corresponding problem (2.9)
is unbounded. Choose any w P ZnL that is feasible for this problem, and that
fulfills cL

Tw ą cL
TxL̊. Then

“ w
x˚
R

‰
is feasible for the original (CPTU) problem

as well with strictly larger value than x˚, a contradiction.

