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Figure 1. We present a convolutional autoencoder architecture to fill in missing frames in 3D human motion data. Given short sequences

of known frames (gray), our method automatically fills in variable-length gaps with realistic and coherent motion data (green). We use a

single model to generate motion for a wide range of activities, including locomotion, jumping, kicking, punching, and more.

Abstract

In this paper we propose a convolutional autoencoder
to address the problem of motion infilling for 3D human
motion data. Given a start and end sequence, motion in-
filling aims to complete the missing gap in between, such
that the filled in poses plausibly forecast the start sequence
and naturally transition into the end sequence. To this end,
we propose a single, end-to-end trainable convolutional au-
toencoder. We show that a single model can be used to cre-
ate natural transitions between different types of activities.
Furthermore, our method is not only able to fill in entire
missing frames, but it can also be used to complete gaps
where partial poses are available (e.g. from end effectors),
or to clean up other forms of noise (e.g. Gaussian). Also,
the model can fill in an arbitrary number of gaps that poten-
tially vary in length. In addition, no further post-processing
on the model’s outputs is necessary such as smoothing or
closing discontinuities at the end of the gap. At the heart of
our approach lies the idea to cast motion infilling as an in-
painting problem and to train a convolutional de-noising
autoencoder on image-like representations of motion se-
quences. At training time, blocks of columns are removed
from such images and we ask the model to fill in the gaps.
We demonstrate the versatility of the approach via a num-
ber of complex motion sequences and report on thorough
evaluations performed to better understand the capabilities
and limitations of the proposed approach.

1. Introduction

Modeling 3D human motion has seen increased atten-

tion from the computer vision community as it bears the

potential to benefit many downstream tasks in robotics, au-

tonomous driving, or human-computer interaction. Previ-

ously, a large body of work has focused on predicting how

a given seed sequence evolves in the future [4, 12, 20, 23,

25, 26, 33, 38, 44]. While this kind of open-ended motion

prediction from past observations has its use cases, there

is a significant interest in predicting motion when addition-

ally a sequence in the future is available. For example, al-

though commercial motion capture systems boast high ac-

curacy, optical tracking systems still struggle with occlu-

sions, especially when multiple people in close contact or

objects are involved. In other cases, due to system failure,

damaged tracking sensors, or trackers falling off the actors,

valuable data might be lost during a capture session. Hence,

a method to recover missing frames, to complete partially

observed poses, or predict missing joints over an entire se-

quence, is an invaluable tool for post-processing of motion

capture data. Also, keyframe interpolation, a problem that

has long been studied in computer graphics, could bene-

fit from such a method. Automatically filling in large gap

sizes is of great interest to animators and artists alike, as

it can drastically reduce the amount of required keyframes

and hence manual artistic interventions.

This problem of filling in motion between known se-

quences is sometimes referred to as motion infilling and can

be defined as completing the gap between an available start

sequence in the past and an end sequence in the future (cf.

Figure 1 or 2 for a visual depiction). Ideally, the gap in

between is completed in such a way that the resulting mo-

tion is plausible, natural, and the transitions at either end of

the gap are smooth. Motion infilling can also refer to the

case where a few joints are missing over the entirety of a

sequence or when only partial poses are observed.

In this paper we present a simple yet effective convolu-

tional autoencoder (CAE) trained to complete long gaps in

human motion sequences producing compelling and smooth
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transitions without further post-processing steps. Our pro-

posed model is fully convolutional and able to synthesize

motion for varying gap sizes and multiple gaps occurring

in the same sequence. Furthermore, it can also be used

to blend together partially observed poses within the gap,

or single joints missing over the entire sequence. The pro-

posed method lends itself naturally to the removal of other

types of noise as well, for example Gaussian noise, and as

such can be viewed as a general de-noising framework.

Motion infilling is challenging as it requires learning

smooth transitions between possibly different types of mo-

tion. Also, recent success in open-ended motion prediction

does not immediately translate to the infilling task, as the

dominant method of choice has been recurrent neural net-

works (RNNs), which are notoriously difficult to condition

to future sequences. For example, Berglund et al. [6] show

how a bi-directional structure can be used for the task, but

the supported gap size is fixed and short. Very recently,

Harvey et al. [15] introduced time-to-arrival embeddings to

a recurrent structure to support variable gap sizes. How-

ever, the authors also report the use of inverse kinematics to

post-process the model’s outputs.

To avoid the limitations of recurrent models in motion

modeling, we suggest to cast motion infilling as an image

inpainting problem. Here, the “image” corresponds to a

matrix-based representation of the motion data, where each

column contains a single pose and each row stands for a

joint’s information over time. Treating motion sequences

as matrices has been studied before, e.g. [8, 16, 19, 23].

The problem arising when using such representations is that

neighboring “pixels” are not necessarily neighboring joints

in the skeletal hierarchy. Hence, capturing the intricate spa-

tial dependencies is not straightforward, especially for con-

volutional architectures that usually excel at exploiting spa-

tial relationships from images. Previous work addresses this

by using dense layers spanning the entire height of the input

matrix [8, 16], using large kernel sizes [23], or resorting to

1D convolutions over the temporal domain only [19].

In this work we offer a different take on this problem and

propose that a model with a sufficiently large receptive field

is able to capture the spatial relationships. We achieve this

by designing a convolutional auto-encoder architecture in-

spired by the VGG model [34]. This way, the model covers

a large number of joints in the upper layers and is further-

more capable of learning temporal dependencies to produce

smooth motions without collapsing to a safe mean pose. We

train our model by using a reconstruction objective only and

do not require any additional regularization terms or adver-

sarial training. To enable variable-length infilling, we em-

ploy a curriculum learning scheme in which the inputs are

perturbed with increasingly large gaps during training. This

results in a model that can easily fill in up to 120 frames

(2 seconds) between short given sequences (i.e., typically

Figure 2. Given a known start and target sequence with a gap in-

between, our model fills in the missing frames (shown in green)

creating a smooth transition from walking to running. Note that

while only a single gap is shown here, the proposed method is

able to complete several gaps of varying size.

30–40 frames but also as little as 5).

Our proposed model allows us to train a single model

encompassing a large variety of motion types like walking,

jumping, kicking and more, while still fulfilling the con-

straints defined by the known sequences as closely as pos-

sible and without requiring post-processing. In doing so we

show that a simple but effective convolutional model can

indeed be used to unravel the complex spatio-temporal de-

pendencies in 3D human motion data.

In summary, this paper contributes an easy-to-train and

efficient CAE for the task of 3D human motion infilling.

The proposed model is able to synthesize convincing look-

ing motion to fill in variable-length gaps between sparsely

distributed known sequences of various motion types. Un-

like previous work we push the boundaries of generating

smooth and natural looking transitions using the network’s

outputs directly and thus foregoing post-processing steps or

regularization terms. The resulting model can be applied

to a variety of infilling and other noise removal tasks as

demonstrated by our evaluations.

2. Related Work

Recurrent Models Modeling human motion has been of

interest to the machine learning community as an instance

of time-series modeling, with early works by Taylor et al.
[35, 36] employing conditional restricted Boltzmann ma-

chines. In more recent years, the computer vision com-

munity has often adopted RNNs to address the task of

predicting motion into the future given a seed sequence

[4, 11, 12, 20, 26, 33, 38, 44]. To avoid a collapse to a

mean pose, researchers have suggested to perturb the input

at test time with Gaussian noise [11], removing joints en-

tirely [12], training the model on its own outputs [26], or

employing a specialized output layer that follows the kine-

matic chain of the skeleton [4]. Martinez et al. [26] propose

a residual connection in a sequence-to-sequence architec-

ture to address the discontinuity between the last known and

first predicted pose. Wang et al. [38] further improve upon

smoothness and realism of the predictions by employing ad-

versarial and geodesic-inspired losses.
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While recurrent models lend themselves well to open-

ended motion prediction, they are less suitable for the task

of motion infilling studied in this paper. An example of a

recurrent structure used for infilling of joint trajectories is

presented by Berglund et al. [7] in the form of a bidirec-

tional RNN. However, the presented method uses a fixed

gap size, is only demonstrated for small gaps, and is rather

expensive. Only recently Harvey et al. [14] have shown

the application of a recurrent structure to motion infilling

for larger gap sizes. However, in [14] the authors mention

that post-optimization is used to close discontinuities in the

transition from the last predicted frame to the first known

frame of the target sequence. [15] is a recent follow-up

work. While demonstrating impressive results, it mentions

the use of inverse kinematics as a post-processing step. In

this work, we focus on exploring the capabilities of a neu-

ral network alone to produce smooth and natural motion for

the task of infilling, i.e. without relying on regularization or

post-processing.

Non-recurrent Models While non-recurrent models have

prominently been used for time-series modeling of audio or

natural language (e.g., [3, 10, 31]), their adoption for human

motion data is not straightforward. This can be explained

by the fact that in addition to temporal dependencies, also

highly complex spatial dependencies related to the dynam-

ics of human motion must be captured.

Mao et al. [25] were the first to apply a graph convo-

lutional network (GCN) to the task of motion prediction.

The GCN operates on discrete cosine transforms of the in-

put data, which makes it more difficult to support variable

length inputs. In [8], Bütepage et al. also represent the data

as matrices similar to our work. They then use dense lay-

ers in an autoencoder framework to learn meaningful rep-

resentations, which can be leveraged for prediction and in-

filling. In contrast to our work, their dense layers span the

entire spatial domain of the input matrix, whereas we use

small convolutional filters. This allows us to harness the ef-

ficiency and computational advantage of CNNs, while still

capturing the spatio-temporal dependencies of the data.

Convolutional models have been applied to motion pre-

diction by Hernandez et al. [16] and Li et al. [23]. Both

works represent motion sequences in matrices, like we do in

this work. To apply convolutions to this data representation,

all approaches must deal with the fact that neighboring val-

ues in the data matrix are not necessarily neighboring joints

in the human skeleton [16]. [16] do so by employing dense

layers that span the entire height of the input matrix. While

we agree with [16] that the lack of spatial proximity in the

inputs is an additional challenge for any CNN, we show in

this work that with a sufficiently big receptive field, this is

no hindrance for successful motion modeling with CNNs.

Given a deep enough model, a CNN with 2D filters span-

ning both spatial and temporal dimensions is indeed able to

unfold the underlying spatio-temporal relationships.

Like in this work, Li et al. [23] use convolutions directly

on the input matrix. However, they use bigger filter sizes

and do not apply their architecture to motion infilling. Also,

we refrain from using any adversarial losses or other kinds

of regularizers (e.g. bone length constraints in [16]) and in-

stead demonstrate that our model discovers desirable prop-

erties such as bone length consistency and smoothness from

the data alone without external guidance other than the re-

construction loss.

Manifold Learning and De-noising CNNs have been

used to learn the projection of human motion onto a low-

dimensional manifold. Drawing samples from this mani-

fold then generates plausible human poses. Holden et al.
[19] use such an approach to recover full poses from par-

tial inputs such as corrupted motion-capture data and to fill

gaps of fixed sizes (i.e., max 15 frames). A custom un-

pooling operation requires careful layer-by-layer training.

In follow-up work [18] a similar but shallower architecture

is integrated into a hierarchical system that maps from foot-

fall patterns and trajectories to pose sequences. However, a

separate model has to be trained for each activity, thus this

approach is not well suited to interpolate between sequences

of different activities. We also leverage convolutional auto-

encoders but train a single model for all motion types, pre-

dict both poses and rotational and translational velocities

and can handle transitions between different activities.

As our method cannot only be used to fill in missing

frames, but also to clean up other types of noise such as

Gaussian, it is related to the work of Holden [17]. Although

Holden’s architecture operates on marker level and not

joints, our method is in theory directly applicable. In con-

trast to our work, [17] uses a frame-wise ResNet-based ar-

chitecture and requires post-optimization to induce smooth-

ness and improved pose reconstruction.

Motion Modeling in Computer Graphics A variant of

motion infilling, known as keyframing, is a long-standing

problem in the computer graphics community with the lat-

est addition provided by [15]. Keyframing aims at reduc-

ing the amount of tedious manual labor for artists to create

life-like animations without relinquishing control over the

resulting animation. Early works date back to the 1980s

[39] and many other approaches with the same goal have

been proposed since. Such approaches fall into the field of

physics-based character animation [2, 37], space-time opti-

mization [1, 24, 28] or motion graphs [22, 27, 40]. While

our method can be understood as a keyframing or general

character animation tool, in this work we do not intend to

provide a production-ready tool. Instead, we focus on the
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Figure 3. The input to our model consists of motion clips repre-

sented as matrices that can be viewed as images. Each column

of the image corresponds to a particular frame in the sequence

(highlighted in orange), while rows encode joint positions over

time. The root-relative 3D joint positions are flattened into a sin-

gle vector. To each pose vector we also append translational and

rotational velocity information of the root.

more basic building block of synthesizing convincing hu-

man motion from neural networks alone.

Image Inpainting Our approach is inspired by work on

image inpainting [32, 41, 42], proposing variations of the

idea to combine �1 or �2 penalized auto-encoders with an

adversarial loss in order to synthesize realistic looking nat-

ural images. We cast motion infilling as an image inpainting

task and also leverage an auto-encoder approach. However,

the idiosyncrasies of the task and the differences in the data

require a custom designed architecture.

3. Method
In this section we detail the architecture, training, and in-

ference procedure for our model. We propose a deep convo-

lutional de-noising auto-encoder M, trained to fill in miss-

ing 3D pose information represented as image-like joint po-

sition maps (cf. Figure 3). That is, given the constraints

for joint positions at the beginning and end of a motion se-

quence, our model reconstructs the missing frames in be-

tween in a visually coherent way.

We cast the infilling problem as an image inpainting task,

where the image corresponds to the joint position map. To

do so, we must address the problem that joints that are close

in image space are not necessarily spatially close in the

skeleton hierarchy, which seems to go against the basic as-

sumption of CNNs. Nonetheless, we show that given a suf-

ficiently deep model and sufficiently large receptive field, a

convolutional autoencoder with small filter sizes in the spa-

tial and temporal domain is indeed able to capture the un-

derlying spatio-temporal structure of the data. We achieve

this by following well-established design rules, i.e. stacking

several convolutional layers (with 3× 3 filters) and pooling

operations inbetween. This is in contrast to previous work

that either resorts to dense layers to encode the spatial re-

lationships [8, 16], uses larger filter sizes [23] or temporal

convolutions only [19].

Furthermore, in order to forgo an explicit modelling

of the skeletal structure we propose a curriculum learning

training scheme that aids the model in learning the spa-

tial dependencies between joints, via randomized removal

of joint information. In consequence, the model is robust

against different types of perturbations in the inputs and

thus it can be used for different tasks besides motion infill-

ing, such as noise reduction. We show various applications

of our method in Section 4 and in the accompanying video.

3.1. Data Representation

Here, we briefly introduce the data representation used as

input to our model. For an overview please refer to Figure 3.

We utilize the dataset introduced by Holden et al. [18],

which in turn is a collection of publicly available datasets

[9, 19, 29, 30]. This dataset represents poses as 3D posi-

tions of joints in space. From this dataset we extract motion

clips Xi ∈ R
P×T , where T is the number of frames and

P the size of the vector representing the pose at time step

t. For training, we fix T to 240 (4 seconds), but at infer-

ence time it is variable due to the fully convolutional nature

of our model. This results in a dataset that contains 26′088
clips extracted from 5′648 unique sequences, of which we

reserve 90% for training.

Like [18], we use a local body coordinate format to rep-

resent a pose at time step t. To this end, the (x, y, z) posi-

tions of each joint at frame t are flattened and concatenated

to form a pose vector. The joint positions are all relative

to the position of the root. In addition, translational veloc-

ities t ∈ R
2 in the floor plane are extracted from the root

trajectory, as well as a rotational velocity γ ∈ R about the

up-axis. This representation of the root trajectory r = [t, γ]
is always relative to the previous frame and we concatenate

it to the flattened vector of joint positions. Using 22 joints,

this means that the pose at step t can be represented as a

69-dimensional vector, i.e. P = 69.

3.2. Model Architecture

Our proposed architecture is inspired by [18] and the

VGG model design [34]. An overview is illustrated in Fig-

ure 4. The main reasons speaking for such a deep archi-

tecture are larger model capacity, more non-linearities to

model inherent complexities of the task and increasingly

large receptive fields. The latter allows the model to im-

plicitly learn dependencies across large spatial distances (in

image space) [34]. In our case this means that the model

can implicitly recover the joint dependencies in the skele-

ton without requiring a pre-determined spatial prior.

As shown in Figure 4a, the encoder network stacks 5
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(a) Our model contains 5 layers of encoding and decoding units.

The circled numbers indicate the number of output channels.

(b) Encoding (left) and decoding (right) unit. There is no activation

on the output layer of the last decoding unit.

Figure 4. Architecture overview of our model.

encoding units, where each unit consists of two 3 × 3 con-

volutional layers whose outputs are activated using a leaky

ReLU. Like in the VGG model, the encoding units (cf. Fig-

ure 4b, left) are designed to increase the receptive field

while keeping the increase in trainable parameters mini-

mal. Via max-pooling, the output of each encoding unit

is halved in both the spatial and temporal dimension before

being passed into the subsequent unit. The decoder network

mirrors the architecture of the encoder (Figure 4b, right),

but the two are decoupled, i.e. do not share weights. To

revert the pooling operation in the decoder, we use strided

de-convolutions.

While our model looks similar to the motion manifold

network proposed by Holden et al., we would like to high-

light the following two key differences. First, the autoen-

coder layers proposed by [18, 19] use 1D convolutions over

the temporal domain, while we employ small 2D filters.

Second, [18, 19] propose a custom un-pooling operation,

denoted as Ψ† in [18]. In our experiments, stacking sev-

eral of those layers has proven to be difficult to train in

an end-to-end fashion. In [19] layer-wise training is em-

ployed to train the autoencoder. Still, [18] reports that, even

if trained successfully, stacking multiple layers blurs out the

results and hence the authors fall back to a single-layer au-

toencoder. Our model uses strided de-convolutions to re-

place Ψ†, which enables straight-forward end-to-end train-

ing of multi-layer architectures and leads to improved per-

formance (cf. Section 4.1).

For a typical input sample of size 69 × 240, the result-

ing embedding in the latent space (yellow box in Figure 4a)

corresponds to a 3 × 8 × 256 tensor. Obviously the ques-

tion whether such a compact representation can accurately

represent the subspace of valid poses arises. To this end

we refer to our experimental results in Section 4 indicat-

ing that our architecture can indeed model the sub-space

well. Moreover, due to the deep architecture the effective

size in the upper layers is comparatively large and hence

contributes to capturing long-range relationships.

3.3. Training

The task of motion infilling is now cast as the problem

to fill in missing gaps within the “images” Xi. Note that

this is different from the usual application scenario of de-

noising autoencoders, where inputs are typically assumed

to be corrupted by some stochastic diffusion process. In our

case we remove entire blocks of complete columns from the

inputs (see Figure 6) so that the model is forced to learn how

to generate complete, valid poses.

During training we present the model with pairs of com-

plete and incomplete samples, and we instruct it to recon-

struct the data to closely match the complete counterpart.

To induce robustness against the amount of perturbation we

employ a curriculum learning training scheme [5]. During

curriculum learning the model is initially trained with sam-

ples that allow the task to be easily completed, and sub-

sequently it is exposed to increasingly harder cases. In

our case, this translates into increasing the span of masked

ranges along the temporal dimension. In this way the model

is exposed to more realistic representations of the problem,

and consequently is capable of generating plausible poses

given drastically different types of inputs. In particular, the

model is robust to the length of the gap, to random noise

applied to inputs and to missing joint information.

More formally, during training we generate corrupted

motion samples by perturbing the clips Xi with the help

of a mask M i ∈ R
P×T as follows:

X̃i = Xi �M i

where � denotes the element-wise matrix multiplication.

The model M then tries to reconstruct the perturbed mo-

tion samples X̃i such that:

X̂i =M(X̃i).

We parameterize the choice of the mask M i by a pair

of scalars (λ, τ), where λ and τ determine the length and

location of the gap, respectively. In order to increase the

variation of the inputs we generate the masks by using nor-

mal and uniform distributions such that:

λ ∼ N (μe, σ
2) τ ∼ U(1, T − λ)

where μe and σ2 parametrize the gap size distribution at

training epoch e. Please note, that while μe is gradually in-

creased during training, σ2 is kept fixed. We initialize μe to

10, and increase it until 120 by steps of 10 every 5 epochs.
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Additionally, we randomly alternate between the previously

described type of distortion and masking out 1, 2, or 3 ran-

dom joints over the entire length of the sequence.

For each pair of original and reconstructed samples

(Xi, X̂i), we optimize the �1 loss:

L(·) =
∥
∥
∥Xi − X̂i

∥
∥
∥
1

In our experiments we found that the �1 loss results in

smoother reconstructions when compared to the �2 loss,

which reflects previous work [43] on image inpainting.

Please note that we compute the loss over the entire mo-

tion sequence, not just the masked portion. In this way we

force the model to learn the global structure of the motion.

We apply zero-mean and unit-variance normalization on

each row of Xi, where the mean and standard deviation are

calculated over the training dataset. We use the Adam op-

timizer [21] with a fixed learning rate of 0.001 and a batch

size of 80. For all convolutional layers, Xavier initialization

is used [13]. We train for 200 epochs which roughly takes 8

hours on an NVIDIA Quadro M6000 (12 GB).

4. Evaluation
In this section, we show quantitative comparisons and

ablations (Section 4.1) and demonstrate the visual quality

of our method (Section 4.2). Please also refer to the video

for more visualizations.

4.1. Quantitative Results

Reconstruction and Infilling To assess our method’s per-

formance quantitatively we compute the mean 3D joint er-

ror for both reconstruction and infilling tasks. Table 1 com-

pares our best model to three baselines: Interpolation refers

to naive linear interpolation. Vanilla AE is the same as our

best model but each encoding/decoding block contains only

a single strided 3×3 convolutional layer, yielding a smaller

receptive field. We also compare against an implementation

of the motion manifold network presented in [18].

Finally, we also show the effect of curriculum learn-

ing on our best model. While the previous baselines were

trained to reconstruct 60 frames (1 second) in clips of size

240, the last entry in Table 1 was trained to reconstruct up

to 120 frames (2 seconds) with the curriculum scheme de-

scribed in Section 3.3.

Table 1 shows that a simple application of [18] is sub-

optimal. Our architectural changes described in Section 3.2

lead to improved performance (Vanilla AE, Ours). Further-

more, the difference in performance between the Vanilla AE
and our model highlights the importance of the receptive

field’s size. Lastly, the model trained using the curriculum

loses some accuracy in the 60-frame and 0-frame (i.e., pure

reconstruction) tasks. Despite this trade-off, Ours (curr.)
still ranks second at least.

Model 0 Frames 60 Frames 120 Frames

Linear Interpolation n/a 10.45 (± 15.5) 17.04 (± 24.4)

Holden et al. (60) [18] 4.44 (± 6.5) 15.28 (± 19.1) 18.26 (± 24.5)

Vanilla AE (60) 2.79 (± 6.7) 7.45 (± 11.7) 13.61 (± 21.6)

Ours (60) 2.37 (± 5.0) 4.96 (± 8.5) 12.00 (± 19.5)

Ours (curr.) 2.75 (± 5.2) 5.47 (± 8.6) 7.00 (± 10.6)

Table 1. 3D joint error comparison for reconstruction (0 Frames)

and infilling (60/120 frames) tasks. Reported are mean and stan-

dard deviation in cm computed over all joints and frames in the

validation set. Poses are root aligned. For infilling results the error

is computed only over the gap. (60) after the model name means

that this model was trained to reconstruct 60 frames. (curr.) refers

to curriculum learning up to 120 frames.

Model σ = 1.0 σ = 1.5 p = 0.3 p = 0.5
Holden et al. [18] 5.0 (± 4.8) 6.6 (± 5.4) 6.5 (± 7.8) 9.5 (± 11.3)

Ours 5.8 (± 4.6) 7.8 (± 5.9) 3.1 (± 4.4) 4.0 (± 5.6)

Table 2. 3D joint error comparison for de-noising experiments. σ
indicates how much Gaussian noise was added to the inputs. p is

the percentage of joints dropped at random in each frame. Values

are mean and standard deviation in cm.

De-noising To test our method’s noise reduction capabil-

ities, we conduct two experiments. In the first one we per-

turb the inputs by adding Gaussian noise ε ∼ N (0, σ) to

the joint positions. In a second experiment, we mask a joint

with a probability of p in each frame independently. Ta-

ble 2 summarizes the 3D joint reconstruction error for vary-

ing values of σ and p computed over 400 randomly chosen

validation samples of length 240 frames. In removing Gaus-

sian noise from the inputs, our best model is out-performed

by the baseline. However, our model beats the baseline by a

large margin when filling in randomly dropped joints. Note

that neither models were trained specifically for these tasks.

Furthermore, the 3D joint reconstruction metric does not

necessarily correlate well with perceived smoothness or nat-

uralness of the output motion. In the supplementary video

we visualize several de-noised sequences and show that our

model’s outputs are both smooth and plausible.

Bone Length Consistency Our method does not use an

auxiliary loss to enforce bone length consistency as we have

found this to have little effect on the overall results. To in-

vestigate how much bone length variation we observe in the

model outputs, we compute the bone lengths over the en-

tire validation set for the pure reconstruction task. Figure 5

compares our best model to our implementation of Holden

et al. [18]. While our model clearly exhibits variance, the

spread of predicted bone lengths is smaller compared to [18]

and the median of all predictions is typically closer to the

ground-truth value.

4.2. Qualitative Results

In the following we present our experiments assessing

the quality of the synthesized motions. Please note that all
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Figure 5. Boxplots of estimated bone lengths for 6 selected bones

computed over the entire validation set (n = 610′080) when per-

forming pure reconstruction. We compare our best model (in blue)

vs Holden et al. [18] (in orange) vs ground-truth values (gray dots).

Figure 6. Inputs for the motion infilling task. White are gaps to

fill, while the rest represents the known key sequences. Please

note that only a portion of the true input is shown here.

figures and the accompanying video show raw model out-

puts without any additional post-processing. Furthermore,

the model predicts the entire sequence, i.e. the known sub-

sequences are replaced with reconstructed poses. This al-

lows the model to slightly alter the given frames if neces-

sary in order to create smooth transitions between motions.

In addition, the model also predicts the root trajectory.

Motion Infilling To show our model’s performance in

synthesizing coherent transitions between different actions

we have produced a variety of results that blend several mo-

tion clips (see Figure 1 and more in the appendix). To this

end, we have selected a few poses from various motion se-

quences (called seed sequences in the following) and chose

a variable length of frames to be filled in by the model be-

tween each seed.

In Figure 1 and the video we show the results of our

model on blending 16 seed sequences from a test database

of different motion categories. All seed sequences are taken

from the holdout validation set. Since our model correctly

handles variable-length sequences, we place variable gaps

of sizes 50–100 between seed sequences. The necessary

length of a seed sequence depends on the motion category.

Experimentally we have obtained good results with ranges

from 5 (one-legged jump) to 90 (sitting). Typically the

fewer examples of an activity are represented in the train-

ing data, the more key frames are necessary in order to con-

strain the model sufficiently. Figure 1 contains a total of

1927 frames, of which 1300 (roughly 67%) were filled in

by our model. Figure 6 shows an excerpt of the “image”

that is fed to the model.

The missing frames are generated efficiently by perform-

ing one forward-pass through the network. It takes 2.8
seconds to generate 1927 frames on a low-end GPU (i.e,

Figure 7. Tertiary motion blending. Time flows from left to right.

Blue: generated sequence. Orange: specific joints positions ob-

tained from a third sequence used to alter the original motion.

Figure 8. Example of joint recovery in two sequences of 240
frames each. In the left four characters, the left elbow and left

hand (marked in red) were masked in the input. On the two right

most characters the right knee, right toe and left knee were re-

moved respectively. Outputs at different time steps are shown.

NVIDIA GeForce GT 730, 2 GB memory), or 1.45 ms per

frame. Higher end hardware (i.e., NVIDIA Quadro M6000,

12 GB memory), further reduces the inference time to a to-

tal of 0.58 seconds (0.3 ms per frame).

Tertiary Motion Blend-
ing In addition to in-

terpolating between key

frames, our model can be

used to blend in additional motion, e.g., to re-target an ex-

isting motion while constraining an end-effector. Here we

blend a grabbing action into a plain walking clip. We intro-

duce a gap of 60 frames in the middle of a walking sequence

from the test dataset, and then place joint positions of a right

arm over the length of 15 frames into the gap (inputs shown

in inset, outputs in Figure 7). The joint positions for the arm

are taken from another test clip and kept in its original rep-

resentation, i.e., the local body coordinates. Note that it is

necessary to provide such tertiary constraints over a number

of frames, otherwise the model will treat the input as noise.

Recovering Joints In a

further experiment we

evaluate the task of re-

covering one or more

joints that are missing over the entire sequence. This cor-

responds to the scenario when a tracker (e.g., an optical

marker) is lost during a recording session or certain joints

are occluded. We mask different joints in various clips of

length 240 from our test dataset by removing entire rows,

thus removing joints entirely over the duration of the mo-
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tion sequence (see inset). Figure 8 and the accompanying

video visualize the results. Despite significant loss of infor-

mation, the model produces convincing looking motions,

even if the missing joints are close in the hierarchy of the

skeleton (e.g. elbow and hand).

Variable Gap Size and Amount of Context A key fea-

ture of our approach is the capability to generate motion

in between seed sequences with variable spacing. Here we

evaluate the limits in terms of gap parameters. First, we

take two seed motions and increase the gap size between the

seeds incrementally. Second, instead of varying gap sizes

we vary the number of given frames in the seed sequences.

For both experiments we choose walking and punching

motions as seed sequences. Gap sizes 5, 20, 80, and 250

are applied with fixed seed sequences. Note that 5 and 250

are extreme values, with the latter being roughly twice the

gap size seen during training. The model produces smooth

and plausible motion for gap sizes 20 and 80. With gap

size 250 the motion remains smooth, however towards the

middle of the sequence, the model starts to converge into a

mean pose before starting to prepare for the ensuing punch

(see video, minute 02:47). Likewise extremely small gaps

of only 5 frames in combination with drastically different

source and target motions produces (overly) smooth motion

and intermediate fine details are lost.

In terms of number of frames required per seed sequence

we experimented with values of 1, 5, 10, 25, and 50 on

either side of the gap and fixed the gap size to 80 in line

with the previous experiment. Again the model performs

well under most of the configurations but the most extreme:

with only a single seed frame on either end the model pro-

duces overly smooth motions and simply repositions the

end-effectors. Not surprisingly, the more context we intro-

duce, the better the predicted motion. In this particular case

there was no more discernible difference in terms of mo-

tion details after 25 seed frames. Both experiments point

to the same effect that not absolute numbers count, but the

ratio between gap size and context provided by the seed se-

quences. We found this ratio should be approx. 1/6 for sim-

ple walking motions, 1/3 for transitions between different

motion types and 2/3 for those containing rare activities

such as ballet.

Further Results We show results from the de-noising ex-

periments in the appendix and the video. Also, please refer

to the appendix for more infilling results between various

motion types, including types that are rare in the data.

Limitations While we see good pose predictions across a

wide range of motions and task variations there are certainly

failure cases and limitations. It is possible to successfully

recover full motion cycles even if they are masked from start

to end, such as a gait cycle, but only if the motion is recur-

ring. For example, motions that are more complex and only

occur once such as a full turn in-air that is masked entirely,

will not be reconstructed since there is no information that

would constrain the model to do so. Similarly, the recon-

struction of motions that are very rare in the training data

are prone to appear jittery.

5. Conclusion
In this paper we have proposed a deep convolutional au-

toencoder that learns to fill in large gaps in 3D human mo-

tion data. The method is capable of creating smooth tran-

sitions between drastically different motion sequences and

generates plausible looking motion overall. The key idea

in this approach is to cast the infilling task as an inpainting

problem. We train the neural network on image-like rep-

resentations of human poses where each column represents

one time step in the sequence. During training we mask in-

creasingly large blocks of the input data so that the model

is forced to learn how to generate plausible pose data to fill

in the gaps. A curriculum learning scheme is employed to

enable prediction over variable gap length and to achieve

robustness against various forms of noise in the inputs. We

have evaluated our method in a number of experiments to

illustrate its capabilities but also to identify its limits.

While the method produces plausible and natural motion

without any further smoothing there are various areas for

future work. In particular, we currently predict complete

motion sequences including relative translational and rota-

tional root velocities. Integrating these velocities over time

results in a global root trajectory. Clearly for the method to

be applicable in a production settings it would be necessary

to provide control over the global trajectories. In the fu-

ture, it would be interesting to decouple the root trajectory

control from the pose generation process.

Similarly, although in our visualizations this does not

seem to majorly degrade visual quality, our method cannot

guarantee that bone lengths are always consistent or no foot

skating artifacts occur. Future work could look into robusti-

fying the method in this regard, especially so in the context

of multi-person datasets.
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eterization of dynamic character motion. Graphical models,

68(2):194–211, 2006. 3
[2] S. Agrawal and M. van de Panne. Task-based locomotion.

ACM Transactions on Graphics (Proc. SIGGRAPH 2016),
35(4), 2016. 3

[3] E. Aksan and O. Hilliges. Stcn:stochastic temporal convo-

lutional networks. In International Conference on Learning
Representations (ICLR), 2019. 3

[4] E. Aksan, M. Kaufmann, and O. Hilliges. Structured predic-

tion helps 3d human motion modelling. In The IEEE Inter-
national Conference on Computer Vision (ICCV), Oct 2019.

1, 2
[5] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-

riculum learning. In Proceedings of the 26th annual interna-
tional conference on machine learning, pages 41–48. ACM,

2009. 5
[6] M. Berglund, T. Raiko, M. Honkala, L. Kärkkäinen,
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