
DISS. ETH NO. 27521

Local Algorithms

for Classic Graph Problems

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

Manuela Fischer
M.Sc. ETH in Computer Science

born on 14 February 1992
citizen of Switzerland

accepted on the recommendation of

Prof. Dr. Mohsen Ghaffari, examiner
Prof. Dr. Fabian Kuhn, co-examiner
Prof. Dr. David Peleg, co-examiner
Prof. Dr. Seth Pettie, co-examiner

2021

Acknowledgments

I wish to express my deepest gratitude to my advisor Mohsen Ghaf-
fari for the enormous trust and effort he put into me by allowing me
to be his first Ph.D. student. He not only provided me with plenty of
scientific opportunities but also gave me the freedom to pursue my
own research interests. Without his encouragement, support, guid-
ance, and expertise, this thesis would not have been possible. His
staggering enthusiasm for problem-solving and his seemingly infinite
supply of knowledge have never ceased to amaze me.

I also want to thank my co-examiners Fabian Kuhn, David Peleg,
and Seth Pettie for agreeing to join my thesis committee and for
their invaluable feedback.

Next, I would like to thank all past and present members of DaDA1

who made our research group feel like a big family. In particu-
lar, I want to mention Jara Uitto for making every single day at
work incredibly fun; Sebastian Brandt for being the best office mate
imaginable; Julian Portmann for our entertaining conversations; and
Bernhard Haeupler, Christoph Grunau, Goran Zuzic, Saeed Ilchi,
and Václav Rozhoň for the delightful coffee breaks.

1the group of Discrete and Distributed Algorithms

3

4

A very special thanks goes to the group of Emo Welzl. From the
very first day, they adopted me into their group as if I belonged to
them, and invited me, besides daily lunch, to all their fun activities,
such as after-work beers at bQm, board game evenings, and hikes.
In particular, I am greatly indebted to Emo Welzl for inspiring me
with his fascination with research and for helping me to find the
right path for my Ph.D.; and to Manuel Wettstein for never failing
to make me laugh.

Further, I would like to thank everyone else I had the privilege of
interacting with during my time at ETH, especially Andreas Noever
for becoming my bouldering buddy; Ralph Keusch for joining me for
runs, even before sunrise and in the pouring rain; Yannic Maus and
Krzysztof Nowicki for interesting discussions during conferences and
their research visits; the group of Angelika Steger for inviting me to
their workshop in Buchboden twice; and Andrea Salow not only for
being extremely helpful with any administrative matters but also
for motivating me for swimming.

I wish to thank all people who helped me proofreading parts of
this thesis. A big shout-out to Manuel Wettstein for designing the
amazing cover graphic.

Last but not least, thank you to my co-authors MohammadHos-
sein Bateni, Soheil Behnezhad, Sebastian Brandt, Yi-Jun Chang,
Mahsa Derakhshan, Hossein Esfandiari, Mohsen Ghaffari, Moham-
madTaghi Hajiaghayi, Richard M. Karp, Fabian Kuhn, Vahab Mir-
rokni, Slobodan Mitrović, Andreas Noever, Nemanja Škorić, Ange-
lika Steger, Miloš Trujić, Jara Uitto, and Yufan Zheng for many
enlightening discussions and fruitful collaborations; and the teams
from Google Research New York, IBM Research Europe, and the
IBM T. J. Watson Research Center in New York for hosting me
during my research internships.

Zürich, June 2021 Manuela Fischer

Contents

Abstract vii

Zusammenfassung ix

1 Background 1
1.1 Distributed Graph Algorithms 2

1.1.1 The LOCAL Model 7
1.1.2 The Congested Clique Model 11
1.1.3 The Massively Parallel Computation Model . 13

1.2 Local Graph Problems 16
1.2.1 Graph Problems and Local Coordination . . 16
1.2.2 Lovász Local Lemma and LCL Problems . . . 20
1.2.3 Local Sampling 23

2 Contributions and Outline 25
2.1 Part I: The LOCAL Model 26

2.1.1 Deterministic Local Rounding 30
2.1.2 Lovász Local Lemma and Bootstrapping . . . 33
2.1.3 Tight Analysis of Local Greedy Algorithms . 34
2.1.4 Local Sampling of Uniform Colorings 36

2.2 Part II: Global Communication Models 38
2.2.1 Sparsification of Local Algorithms 39
2.2.2 Sublinear-Memory MPC Model 40

i

ii CONTENTS

3 Tools and Techniques 45

3.1 Local Decomposition Techniques 45

3.1.1 Coloring . 46

3.1.2 2-Decomposition 48

3.1.3 H-Partition 49

3.1.4 Network Decomposition 51

3.1.5 Shattering . 56

3.2 Local Simulation in All-to-All Models 61

3.2.1 Lenzen’s Routing 61

3.2.2 Graph Exponentiation 62

3.2.3 Sparsification and Opportunistic Speedup . . 63

I LOCAL 67

4 Local Rounding for Matching 69

4.1 Introduction . 69

4.1.1 Our Results and Related Work 69

4.1.2 Notation and Preliminaries 73

4.1.3 Overview and Outline 75

4.2 Matching in Bipartite Graphs 78

4.2.1 Step 1: Fractional Matching 80

4.2.2 Step 2: Main Rounding 80

4.2.3 Step 3: Final Rounding 85

4.3 Matching in General Graphs 86

4.3.1 Constant-Approximate Maximum Matching . 86

4.3.2 (2 + ε)-Approximate Maximum Matching . . 87

4.3.3 Maximal Matching 89

4.4 Extensions and Corollaries 89

4.4.1 Almost Maximal Matching 89

4.4.2 b-Matching 93

4.4.3 Weighted Matching and b-Matching 98

4.4.4 Edge Dominating Set 100

CONTENTS iii

5 Local Rounding for Hypergraph Matching 101

5.1 Introduction . 101

5.1.1 Our Results and Related Work 101

5.1.2 Notation and Preliminaries 110

5.1.3 Overview and Outline 112

5.2 Hypergraph Maximal Matching 115

5.2.1 Fractional Matching Approximation 116

5.2.2 Rounding Overview 117

5.2.3 Basic Rounding 118

5.2.4 Recursive Rounding 122

5.2.5 Maximum and Maximal Matching 125

5.3 Implications and Corollaries 127

5.3.1 Edge Coloring 127

5.3.2 Approximate Maximum Matching in Graphs 129

5.3.3 Orientations with Small Outdegree 131

5.4 Extension to MIS and Coloring 133

5.4.1 Basic Rounding of Greedy Packings 139

5.4.2 Recursive Rounding of Greedy Packings . . . 141

5.4.3 Maximum and Maximal Independent Set . . 144

6 Local Algorithms for the Lovász Local Lemma 147

6.1 Introduction . 147

6.1.1 Our Results and Related Work 147

6.1.2 Overview and Outline 152

6.2 Base LLL Algorithm 153

6.2.1 Overview and Outline 153

6.2.2 Randomized LLL Shattering Algorithm 156

6.2.3 Deterministic LLL Algorithm 158

6.2.4 Wrap-Up: The Base LLL Algorithm 159

6.3 Bootstrapping . 160

6.3.1 Bounded-Degree LLL Algorithm 160

6.3.2 Higher-Degree LCL Algorithms 162

6.3.3 Automatic Speedup and Derandomization . . 162

iv CONTENTS

6.4 Defective Coloring 163

6.4.1 Bucketing . 165

6.4.2 Defective Coloring using Bucketing 168

6.5 Frugal Coloring . 169

6.5.1 Sampling a Partial Frugal Coloring 170

6.5.2 Iterated Partial Frugal Coloring 175

6.5.3 Completing a Partial Frugal Coloring 179

6.6 List Vertex Coloring 182

6.6.1 Pruning . 183

6.6.2 Completing the Pruning 186

7 Tight Analysis of Local Greedy Algorithms 189

7.1 Introduction . 189

7.1.1 Our Result and Related Work 189

7.1.2 Overview and Outline of Our Analysis 193

7.1.3 Notation and Preliminaries 196

7.2 Upper Bound . 198

7.2.1 Proof Outline 198

7.2.2 Probability of Continuing a Dependency Path 199

7.2.3 Bound on Dependency Length 206

7.3 Lower Bound . 211

8 Local Sampling 213

8.1 Introduction . 213

8.1.1 Our Results and Related Work 213

8.1.2 Notation and Preliminaries 215

8.2 Local Glauber Dynamics 216

8.2.1 Stationary Distribution 217

8.2.2 Mixing Time 217

8.2.3 Description of Path Coupling 217

CONTENTS v

II All-to-All Communication Models 227

9 Vertex Coloring in CC and MPC 229

9.1 Introduction . 229

9.1.1 Our Results and Related Work 230

9.1.2 Overview and Outline 231

9.1.3 Notation and Preliminaries 235

9.2 Graph Partitioning 236

9.2.1 Overview and Intuitive Discussion 236

9.2.2 Formal Description of Graph Partitioning . . 241

9.3 Sparsification of Local Coloring 246

9.3.1 Overview and Outline 247

9.3.2 Black-Box Partial Coloring 248

9.3.3 Sparsified Color Bidding 253

9.3.4 Analysis of Sparsified Color Bidding 259

9.3.5 Implementation of Sparsified Color Bidding . 267

9.4 Vertex Coloring in CC 269

9.4.1 Coloring Low-Degree Graphs 269

9.4.2 Coloring High-Degree Graphs 271

9.5 Vertex Coloring in MPC 275

9.5.1 Simulation of Local Coloring 275

9.5.2 Recursive Coloring in MPC 278

10 MIS in Trees 281

10.1 Introduction . 281

10.1.1 Our Results and Related Work 281

10.1.2 Overview and Outline 283

10.2 Tree MIS Shattering Algorithm 286

10.2.1 Overview and Outline 286

10.2.2 Degree Reduction 287

10.3 Gathering Connected Components 292

10.3.1 Näıve Gathering 292

10.3.2 In-Space Gathering for Trees 295

vi CONTENTS

11 MM and MIS in Uniformly Sparse Graphs 305
11.1 Introduction . 305

11.1.1 Our Results and Related Work 305
11.1.2 Overview and Outline 308

11.2 Degree Reduction . 310
11.2.1 Centralized Degree Reduction Algorithm . . 310
11.2.2 Degree Reduction in MPC 314

Bibliography 325

Curriculum Vitae 355

Abstract

Graph algorithms have been studied extensively for decades, if not
centuries. A slightly more recent development, initiated by the sem-
inal work of Linial in 1987, is the study of local graph algorithms:
algorithms that, as opposed to centralized ones, have access only to
a small part of the graph. Understanding what can and what can-
not be computed locally is one of the oldest branches of distributed
graph algorithms.

In this thesis, we develop novel local techniques that lead to the
resolution of long-standing open questions at the heart of the theory
of distributed computing with ramifications way beyond.

Part I is dedicated to the LOCAL model where there is a direct
correspondence between complexity and locality—faster LOCAL al-
gorithms are more local. We advance on the state of the art in
several directions: we introduce a deterministic local rounding tech-
nique for linear programs that results in the first improvement for
maximal matching in over twenty years and in the first efficient de-
terministic edge coloring algorithm, answering a question that goes
back to the very beginning of the area; we devise a local algorithm
for Lovász Local Lemma that gives rise to an exponential improve-
ment on its predecessor; we show that a simple local greedy maximal

vii

viii Abstract

independent set algorithm is as fast as the celebrated algorithm of
Luby from 1986, confirming a wide-spread belief; and we present a
strikingly simple local sampling technique that fully parallelizes its
centralized counterpart.

In Part II, we demonstrate the importance of local algorithms for the
global communication models Congested Clique and Massively Par-
allel Computation. Although in some sense they are orthogonal to
LOCAL, local approaches turn out to be absolutely essential for the
design of algorithms in these models. By adopting local techniques
and adapting LOCAL algorithms, we settle the complexity of the
vertex coloring problem in the Congested Clique model and expo-
nentially improve on its complexity (or, alternatively, polynomially
on its memory requirement) in the Massively Parallel Computation
model; and we break a seemingly fundamental barrier in the Mas-
sively Parallel Computation model with the first efficient algorithms
with sublinear memory for a number of classic graph problems.

Zusammenfassung

Graphalgorithmen werden seit mehreren Jahrzehnten, wenn nicht
Jahrhunderten, ausgiebig studiert. Eine etwas jüngere Entwicklung,
angestossen durch die bahnbrechende Arbeit von Linial in 1987, ist
das Studieren von lokalen Graphalgorithmen: Algorithmen, die – im
Gegensatz zu zentralisierten – nur auf einen kleinen lokalen Teil des
Graphen Zugriff haben. Zu verstehen, was lokal berechnet werden
kann und was nicht, ist eine der ältesten Fragen im Bereich von
verteilten Graphalgorithmen.

In dieser Dissertation entwickeln wir neue lokale Techniken, die zur
Lösung von lange offenstehenden Fragen im Herzen der Theorie von
verteilten Graphalgorithmen mit Implikationen für zahlreiche an-
dere Bereiche führen.

Teil I ist dem Modell LOCAL gewidmet, wo es eine direkte Beziehung
zwischen Komplexität und Lokalität gibt: schnellere Algorithmen
sind lokaler. Wir bringen den Forschungsstand in verschiedene Rich-
tungen voran: wir führen eine deterministischte lokale Rundung-
stechnik für lineare Programme ein, die zu der ersten Verbesserung
für das Problem Maximal Matching seit mehr als zwanzig Jahren

ix

x Zusammenfassung

und zu den ersten effizienten deterministischen Kantenfärbalgorith-
men führt, was eine zum Beginn des Forschungsbereichs zurückge-
hende Frage positiv beantwortet; wir entwerfen einen lokalen Al-
gorithmus für das Problem Lovász Local Lemma, der expoentiell
schneller ist als sein Vorgänger; wir zeigen dass der einfache lokale
greedy Algorithmus für das Problem Maximal Independent Set gle-
ich schnell ist wie der berühmte Algorithmus von Luby in 1986,
was eine weit-verbreitete These bestätigt; und wir präsentieren eine
auffallend einfache lokale Sampling-Technik, die ihr zentralisiertes
Gegenstück vollständig parallelisiert.

In Teil II demonstrieren wir die Bedeutung von lokalen Algorithmen
für die Modelle Congested Clique und Massively Parallel Computa-
tion mit globaler Kommunikation. Obwohl diese Modelle in einem
gewissen Sinne orthogonal zu LOCAL sind, stellt sich heraus, dass
lokale Strategien absolut essentiell sind für das Entwerfen von ef-
fizienteren Algorithmen. Indem wir lokale Techniken übernehmen
und lokale Algorithmen adaptieren, entwickeln wir einen optimalen
Knotenfärbalgorithmus in Congested Clique und wir durchbrechen
eine scheinbar fundamentale Barriere in Massively Parallel Com-
putation mit dem ersten effizienten Algorithmus mit sublinearem
Speicher für zahlreiche klassische Graphprobleme.

CHAPTER 1

Background

Graph problems play an extraordinarily important role in mathe-
matics and computer science. They have been studied extensively
for centuries—their origins can be traced back to the famous prob-
lem of the Königsberg bridges by Euler in 1736 [90]; they were among
the first problems examined in complexity theory [42, 85, 152]; and
there are numerous books devoted to the topic of graph theory and
graph algorithms [154, 91, 41].

A vast majority of these classic graph algorithms, however, is cen-
tralized : they assume a single computing entity to have knowledge
of the whole graph. Recently, there has been an increased interest in
local algorithms, that is, algorithms that can see only a small part of
the graph, yet have to come up with a solution to the whole problem.
This is particularly essential when faced with massive graphs that

1

2 Background

cannot be stored and accessed in the memory of a single computer,
which is becoming more and more common.

Figure 1.1: Local (as opposed to centralized) graph algorithms have
access only to a small part of the input graph.

Understanding the capabilities and limitations of local approaches,
hence, as Linial [171] phrased it,

“to what extent a global solution to a computational
problem can be obtained from locally available data”,

is the key challenge and, in fact, one of the oldest branches of dis-
tributed graph algorithms.

1.1 Distributed Graph Algorithms

Complex networks composed of a multitude of autonomous entities
have emerged at every scale in a variety of areas. Examples range
from biological structures like neurons in a brain, insects in a colony,
fishes in a school, birds in a flock, zebras in a herd, and human beings
in a society to technological systems like railcars in a fleet, drones
in a swarm, computers in the Internet, mobile devices in a wireless
network, processors in a supercomputer, cores on a chip, and gates
in a logic circuit.

1.1. Distributed Graph Algorithms 3

Over the past decades, such distributed systems have experienced
an unprecedented growth; they have become an imperative part of
modern computing. There are a plethora of reasons for this devel-
opment.

Firstly, trends such as digitalization, the Internet of things, and
swarm robotics have led to an increased need for geographically dis-
tributed devices to communicate. From self-driving cars to activity
trackers to smart contact lenses: they all have to be capable of
interacting with their environment.

Secondly, cloud storage services like Dropbox and Google Drive have
seen steady user growth ever since their inception. Similarly, Google
Compute Engine, Microsoft Azur, and other cloud computing plat-
forms have gained a lot of popularity. The groundbreaking inno-
vation of crowd-sourced resource sharing and pooling has further
pushed this progress. For instance, Storj leverages underutilized
hard drive capacity and Golem harnesses idle machines all over the
world. Such virtual supercomputers have played an important role
in recent projects such as Folding@Home which impressively demon-
strate the power of this advancement. In general, for many applica-
tions, combining cheap computers—be it crowd-sourced or not—is
more beneficial from an economic perspective than deploying one
expensive specialized machine.

In addition, multicore computing has become more important than
ever. Moore’s law has approached physical limits; the process of
doubling the number of transistors on a chip has been hindered and
eventually brought to an end by barriers in electron tunneling and
heat extraction. To still keep up with its predicted speed increase,
instead of accumulating more sequential computing power in one
core, multiple cores need to be incorporated.

This is further exacerbated in today’s era of Big Data, where the
growth of speed and memory of a single computer is outpaced by

4 Background

the surge in the amount of information available. Immense data
sets originating from various sources, such as gene sequences from
bioinformatics and stock charts from computational finance preva-
lently are too massive to admit efficient centralized algorithms and
to even fit into the random access memory of a single computer. In
other cases, data is naturally spread across multiple machines, as it
emerges in a distributed manner.

Despite the diversity of their applications, these distributed sys-
tems have one thing in common: there is no central control—they
all depend on communication to establish coordination. Generally
speaking, under a distributed system we understand a collection of
autonomous entities that cooperate by exchanging messages. They
can collaborate to achieve a shared goal or they can pursue their
own interests but rely on sharing information to do so. While time
complexity serves as a good indicator for the running time of cen-
tralized algorithms in practice, this is not accurate for distributed
computing. In fact, offline computation—that is, computation per-
formed locally by one entity without interacting with others—often
is negligible compared to the cost incurred by communication [153].
This is conceptually very different from traditional computational
complexity, and hence constitutes a fundamental change.

To address this challenge, many different computational models have
been proposed, specifically tailored to distributed computing and
its inherent need for communication. These models differ in how
messages are exchanged—from broadcasting in radio-based systems
to point-to-point in telecommunication; in how reliable they are—
whether messages can be delayed, corrupted, and lost; and in how
fault-tolerant and secure they are—how they handle hardware and
software failures and how they deal with malicious and selfish enti-
ties.

1.1. Distributed Graph Algorithms 5

Synchronous Distributed Message-Passing

In the area of synchronous distributed message-passing, a point-to-
point communication network is modeled as a graph: there is a node
with a unique ID for every computing entity, and an edge connecting
two nodes if there is a bidirectional communication channel between
them. Communication happens in rounds and is assumed to be
completely synchronous and reliable—there are no clock drifts, no
lost messages, and no crashes.

In this setting, an algorithm simply is a synchronous round-based
protocol that specifies for every round and every node what offline
computation it performs (based on knowledge it has at that point)
and then what messages it sends to its neighbors. Initially, a node
solely knows about its neighbors. Eventually, the solution to a prob-
lem has to be output in a distributed manner: every node only has
to output a part of the solution but all these partial solutions com-
bined have to be consistent and complete. The goal is to minimize
the number of rounds needed until every node terminates. This
quantity is referred to as round complexity or running time. Since
the focus lies on communication, offline computation is allowed to
be unbounded1

There are two main challenges for efficient communication in this
synchronous distributed message-passing setting: locality and con-
gestion. The challenge of locality is to deal with the shortcoming
that every node only has partial information about the system’s
state. Due to the constraint of direct communication being re-
stricted to adjacent nodes, there is no fast dissemination to and from
far-away nodes. Accessing remote information requires intermedi-
ate nodes to transceive messages, resulting in communication costs
that are quickly growing with (hop) distance. As a consequence, an

1Most algorithms, however, do not abuse this offline computing power; they
often even run in constant time.

6 Background

individual node cannot afford to gain and maintain global knowl-
edge about the entire network; it has to base its decisions on local
information only. The challenge of congestion, on the other hand,
is to cope with the limited bandwidth of the network. Every edge
can transfer messages only at a certain rate and every node can only
hold a certain amount of information—if these limits are exceeded,
delays and failures have to be expected.

To sum up, locality and congestion can be understood as orthogonal
concepts characterizing the detriment in communication efficiency
due to the sheer size as well as the scarce bandwidth of the network,
respectively. As illustrated in Table 1.2, there are several models,
all of them capturing different (combinations of) aspects of locality
and congestion. To help us better understand their role as obstacles
to fast distributed algorithms, it seems natural to decouple them by
studying the influence of each issue separately.

At one extreme, to analyze the pure effect of congestion, and hence
to disregard any impact of locality, one can allow all-to-all communi-
cation between the nodes. Since the communication graph then is a
clique, and thus every piece of information is at most one hop away,
any complexity can be ascribed to the issue of congestion. In par-
ticular, if the network had unlimited bandwidth and memory, any
problem could be solved in a single round: every node gathers the
whole graph and then computes a solution offline. The CC (Con-
gested Clique) and MPC (Massively Parallel Computation) model
edge and node congestion, respectively, if locality is not a concern.

At the other extreme, the LOCAL model can be seen as the comple-
ment of these bandwidth-restricted models. It explores the limits
imposed by locality without any interference of congestion. The
bandwidth and memory constraints are removed from the picture
by allowing messages to be of unbounded size and nodes having un-
limited memory. Fast LOCAL algorithms are local algorithms that
only need to access close-by information—conversely, lower bounds

1.1. Distributed Graph Algorithms 7

can be interpreted as the need to look beyond a certain horizon.

If one additionally imposes a bound on the message sizes in the
LOCAL model, one arrives at the classic CONGEST model. It is
sometimes also called E-CONGEST model, since the capacity of the
edges in the communication network is restricted. There is a little
less well-known variant of CONGEST with node congestion, called
V-CONGEST. These CONGEST models simultaneously consider lo-
cality and congestion. On the other hand, if neither locality nor
congestion play a role, communication is free; we can think of this
case as the classic centralized model where all computation takes
place in a single node.

Note that there is a close connection and no clear-cut boundary
between these distributed message-passing and parallel computing
with models like PRAM (Parallel Random-Access Machine). How-
ever, most parallel computation models allow shared memory and
hence do not rely on message-passing only for communication.

1.1.1 The LOCAL Model

The foundations for the systematic study of local algorithms were
laid by the seminal works of Linial [171] in 1987 and Naor and Stock-
meyer with the pithy title ‘What can be computed locally?’ [195]
in 1993. The significance of locality and locality-sensitivity for dis-
tributed computing is reflected by the huge and still rapidly growing
body of research and monographs devoted to this theme, such as the
famous book called ‘Distributed Computing: A Locality-Sensitive
Approach’ by Peleg [211] whose plea

“It is necessary to develop a robust and general method-
ology for addressing locality in distributed algorithms.”

gets to the heart of the matter.

The LOCAL model, the standard synchronous message-passing model

8 Background

��

����

����

����

�����	
�

��� ������	
�

�� 	�����	
�

���
���	�� ����

������
	��

���

Table 1.2: Different (combinations of) challenges for synchronous
message-passing and one representative model each.

1.1. Distributed Graph Algorithms 9

of distributed computing, was introduced by Linial in 1987 [171, 172]
and named by Peleg [211]. It isolates the pure concept of locality
of an algorithm: faster LOCAL algorithms are more local. In this
model, graph problems are studied on the communication graph—in
other words, the input graph instance is equal to the communica-
tion graph. The motivation for this is two-fold. On the one hand,
as we will see in Section 1.2.1, many problems naturally arising
in networks can be phrased as classic graph problems on the com-
munication graph. On the other hand, distributed algorithms can
be useful for determining the locality of a graph problem. Roughly
speaking, the locality of a problem corresponds to its dependency
radius, thus to the distance up to which nodes’ solutions have to de-
pend on each other, and can be bounded by the round complexity
of a LOCAL algorithm. The LOCAL model thus allows to study the
role of the purely graph-theoretical notion locality, the way distant
nodes affect each other, and how far the effect of a node spreads by
designing message-passing protocols on the input graph.

More concretely, in the LOCAL model, a problem on an input graph
G = (V,E) with n = |V | vertices, m = |E| edges, and maximum
degree ∆ is studied on a communication graph which is equal to
G. We can think of every vertex of the input graph sitting at the
respective node of the communication graph. If important for the
discussion, we will (try to) distinguish between a vertex in the in-
put graph and node as the computing entity in the communication
graph. For the LOCAL model, however, these are tightly coupled.
See Figure 1.3. Every node is equipped with a unique O(log n)-bit ID
and initially knows about its neighbors, its part of the input, as well
as n and ∆.2 The communication happens in synchronous rounds,
where, per round, each node3 can perform arbitrary computations

2For most settings this is without loss of generality, because if n and ∆ are
not known, it is enough to try exponentially increasing estimates (perform an
exponential search on the parameter space) [155].

3Sometimes, to simplify the discussion, one describes the behavior of an edge

10 Background

Figure 1.3: In the LOCAL model, communication graph (black) and
input graph (blue) coincide. Every vertex of the input graph in-
stance is a computing entity, hence a node in the communication
graph.

and send a message of arbitrary4 size to each of its neighbors. In
the end, every node is expected to output its part of the solution,
for instance the color of its vertex for a graph coloring problem, or
whether its incident edges are part of the matching.

Due to the power of the LOCAL model—thanks to the relaxations
of having free offline computation and unbounded message sizes—
there is a one-to-one correspondence of the round complexity and
the problem’s locality: in r rounds, a node can learn the entire

instead of that of a node. One can think of this as having the higher-ID node of
the two endpoints taking responsibility for the edge, or the two nodes discussing
with each other about what happens to the edge, at the cost of a multiplicative
overhead of 2 in the round complexity.

4A variant of the model where the messages have to be of bounded size, at
most O(logn) bits, is known as the CONGEST or E-CONGEST model [211]. In
fact, some of our algorithms do apply to this setting, too, but it is not the focus
of this thesis.

1.1. Distributed Graph Algorithms 11

topology of its r-hop neighborhood, but nothing beyond this radius-
r-horizon. Only nodes within can affect the information available.
Consequently, an r-round algorithm is mapping from a node’s r-hop
neighborhood to its output [172]. If the number of rounds exceeds
the diameter of the graph, every node can learn about the whole
graph and solve any problem offline. On the other hand, for cer-
tain problems, it is impossible to compute a solution in less rounds.
For instance, one cannot decide whether a graph is acyclic without
seeing the whole input. We call a problem global if any LOCAL
algorithm requires Ω(n) rounds and local if it admits an efficient
LOCAL solution. In general, the accepted standard for efficiency is
poly log n rounds.

1.1.2 The Congested Clique Model

The CC (Congested Clique) model, introduced by Lotker, Patt-
Shamir, Pavlov, and Peleg in 2003 [179, 175], can be seen as a
complement of LOCAL: it schematically captures (edge) congestion
while it disregards any impact of locality. This model plays not only
an important role for understanding bandwidth-restricted systems
and hence for the design of algorithms that optimally use avail-
able bandwidth, its all-to-all communication also is an increasingly
common feature in many distributed settings: They appear in cloud
computing, overlay networks, P2P (peer-to-peer) networks and high-
performance computing.

In the CC model, the communication graph is a clique on n nodes.
Every node has a unique ID of O(log n) bits. The computation
proceeds in rounds; in every round, every node can perform arbitrary
computations and send a (possibly different5) message of O(log n)
bits to each of its n−1 neighbors. This bound on the size essentially
means that every message can carry a constant number of words,

5A variant where the same message needs to be sent to all neighbors is known
as Broadcast Congested Clique

12 Background

each word for instance describing a node or an edge identifier. The
complexity of interest is the number of communication rounds until
the result is output, in a distributed manner.

While the model is more general, a main focus lies on graph problems
where the input is a graph G = (V,E) on n = |V | vertices, m = |E|
edges, and maximum degree ∆ where each node (i.e., computing
entity) initially receives one vertex of the input graph and eventually
has to output its vertex’ solution. See Figure 1.4. However, this
mapping is not binding; in principle, it is possible to rearrange the
vertices in an arbitrary manner during the computation. This is
in stark contrast to the LOCAL (and CONGEST) model where the
communication and input graph are closely tied together.

Figure 1.4: In the Congested Clique model, there is a one-to-one
correspondence between the nodes in the communication graph and
the vertices in the input graph. The edges in the communication
graph (black), however, form a clique regardless of the edges in the
problem input graph (blue).

In the CC model, Θ(n2) messages of size Θ(log n) can be exchanged
in every round. This massively parallel communication power has

1.1. Distributed Graph Algorithms 13

been exploited to devise super fast and sometimes even constant-
round algorithms [168, 150]. In fact, Drucker et al. [84] showed that
substantially super-constant lower bounds on the round complexity
in CC imply long-standing open and known to be notoriously hard
lower bounds in circuit complexity. On the other hand, any graph
problem can be solved in O(∆) many CC rounds: each node goes
through its vertex’ incident edges one by one and sends them to all
other nodes. After at most ∆ rounds, every node has a full copy of
the input graph and hence can compute a solution offline.

1.1.3 The Massively Parallel Computation Model

The ever-increasing amount of data available has caused the resource
memory to become a major bottleneck for efficient algorithms. To
overcome this obstacle, inspired by the MapReduce paradigm [78],
several computation frameworks for performing large-scale compu-
tations across multiple machines have been proposed: Dryad [144],
Flume [79], Spark [232], Pregel [182], and Hadoop [228], to name
just a few.

The MPC (Massively Parallel Computation) model constitutes a
clean theoretical abstraction of these frameworks and thus serves
as the basis for the systematic study of memory-restricted (that is,
node-congested) distributed algorithms. It goes back to works by
Karloff et al. [151] and Feldman et al. [92] in 2010, was refined later
in a sequence of works [126, 29, 8, 30, 73], and has become tremen-
dously popular over the past decade. Although MPC has had its
advent in parallel computing, unlike most parallel models (such as
PRAM), it does not feature any shared memory and therefore relies
solely on message-passing for communication.

In the MPC model, the distributed network consists of M nodes,
each node being a computing machine with a local memory of size
S and a unique ID of size O(logM). To clear up the notation and
hence to simplify the presentation, the space is specified in number of

14 Background

words, each word consisting of O(logM) bits. Initially, the input is
distributed arbitrarily across the nodes. The computation proceeds
in synchronous rounds. In every round, every node can perform
arbitrary offline computation based on the data it has stored in its
memory and then exchange messages with the other nodes. As in
the CC model, the communication graph is fully connected; every
node is allowed to send as many messages to as many nodes as it
wants, as long as for every node the total size of sent and received
messages does not exceed its memory capacity S. This communica-
tion step, which is called shuffling in the MapReduce terminology,
requires a massive data volume (up to O(MS) words) to be trans-
ferred between nodes. It is thus the main goal to keep the number
of rounds as small as possible. In the end, the nodes collaboratively
have to hold and output a solution.

Many different variants of this model have been studied, for differ-
ent choices of the parametersM and S depending on the size |I| of
the input instance I. Note that S ≥ |I| leads to a degenerate case
that allows for a trivial solution. Indeed, as the data fits into the
local memory of a single node, the input can be loaded there, and a
solution can be computed offline. Due to the targeted application of
MPC in the presence of massive data sets, thus large input instances
I, it is often crucial that S is not only smaller than |I| but actually
substantially sublinear in |I|. On the other hand, the global mem-
ory, i.e., the total memory MS in the system, has to be at least
|I|, so that the input actually fits, but usually is assumed not to
be much larger. Summarized, one requires S = Õ

(
|I|δ

)
memory on

each of the M = Õ
(
|I|1−δ

)
nodes, for some 0 < δ < 1.6

For graph problems, the input I is a graph G = (V,E) with n
vertices and m edges, of total size |I| = Θ̃(n + m). As opposed to
the LOCAL (and somewhat also the CC model), the computation
is performed by nodes that are not associated with any particular

6Throughout, ˜ in the O-notation is used to hide lower-order terms.

1.1. Distributed Graph Algorithms 15

part of G; the vertices of the input graph are distributed arbitrarily
across the computing nodes.7 See Figure 1.5. At the end, each node
should know the output of the vertices in its memory.

Figure 1.5: In the MPC model, the communication graph is a clique
(depicted in black) on the nodes (also called machines). The vertices
of the problem input graph G (depicted in blue) are distributed
across the nodes arbitrarily.

Note that if ∆ > S, and hence a vertex cannot be stored with
all its incident on a single node, one has to introduce some sort
of a workaround. One explicit way for many natural problems is
to split high-degree vertices into many copies distributed among
many nodes. For the communication between the copies, one can
imagine a balanced tree of depth 1/δ rooted at one of the copies.
Through this tree, the copies can exchange information in O(1/δ)
communication rounds. This issue is usually ignored by making the
simplifying assumption that every node has S = Ω(∆) memory.

7This is usually done using a hash function that then can be used to determine
which node holds a vertex or a (potential) edge. We assume that the vertices are
stored in the nodes in a balanced way, i.e., as long as a single vertex fits onto a
single node and the total memory is not exceeded, the underlying system takes
care of load balancing.

16 Background

While many classic parallel (e.g., PRAM) or distributed (e.g., LO-
CAL) graph algorithms can be directly adopted in the MPC model
in the same number of rounds using a standard simulation tech-
nique [151, 126], its additional power of free offline computation
(compared to PRAM) and of global communication (compared to
LOCAL) could potentially be exploited to obtain faster MPC algo-
rithms. Accordingly, the question

“Are the MPC parallel round bounds “inherited” from
the PRAM model tight? In particular, which problems
can be solved in significantly smaller number of MPC
rounds than what the [...] PRAM model suggest[s]?”

of Czumaj et al. [73] summarizes the main goal of the area: to
devise algorithms which are substantially faster than their PRAM
and LOCAL counterparts. Typically, a graph algorithm in the MPC
model is considered efficient if its time complexity is poly log log n,
which is exponentially faster than the efficiency threshold for the
LOCAL model. This seems particularly reasonable in the light of
recent developments: Ghaffari, Kuhn, and Uitto [121] showed that
certain lower bounds from the LOCAL model can be transferred to
(certain variants of) the MPC model in an exponentially scaled down
version. Note that no general unconditional super-constant lower
bounds are known, and, in fact, expected to be known [215, 193].

1.2 Local Graph Problems

Graph problems, and especially local graph problems, are of central
importance for distributed computing, as overviewed next.

1.2.1 Graph Problems and Local Coordination

One of the major challenges faced when devising distributed al-
gorithms is local coordination and symmetry breaking : nodes with

1.2. Local Graph Problems 17

symmetrical views of the network need to take on different roles
without explicitly getting assigned one. Problems that are trivial
with a bird’s-eye view become hard if there is no central control.
This is neatly captured by Linial’s [173] analogy:

“It is very difficult to have many processors perform in
concert when there is no conductor around.”

There should be neither a perfect unison nor full disharmony—nodes
should follow their own agenda without creating chaos.

There are four classic problems, phrased as graph problems on the
communication network, that serve as a main abstraction of symme-
try breaking and local coordination: vertex coloring, edge coloring,
maximal independent set, and maximal matching. See Figure 1.6
for an overview. Roughly speaking, they can be used to (locally
optimally) schedule the nodes’ protocols so that no two interdepen-
dent computations are executed at the same time. Consequently,
algorithms for these problems serve as subroutine in many network
algorithms.

(2∆ − 1) Edge Coloring Maximal Matching(∆ + 1) Vertex Coloring Maximal Independent Set

Figure 1.6: The four classic local graph problems that prototypically
model symmetry breaking and local coordination.

A q vertex coloring—that is, an assignment of one of q colors to
nodes so that no two adjacent nodes have the same color—can be
seen as a schedule of length q where a node with color i is active in
round i and hence no two neighboring nodes are active in the same
round. Note that the unique IDs of O(log n) bits already give rise

18 Background

to such a coloring, but with poly n many colors. The goal is to have
a coloring with as few colors as possible, hence as short schedule as
possible. The minimum number of colors needed for the guaranteed
existence of a proper coloring is q = ∆ + 1. In fact, by Brook’s
theorem [48], for most graphs q = ∆ is sufficient. However, without
a global view of the network, this is not always possible to decide.
Moreover, with ∆ + 1 colors, a coloring can be found by a greedy
sequential algorithm that goes through the vertices one by one, as-
signing each a still available color. In other words, any partial color-
ing can be extended to a proper coloring—no matter how a vertex’
neighbors are colored: since they can block at most ∆ colors, there
is always at least one available color left—without having to recon-
sider previous decisions. This is a particularly handy property for
distributed computing as it allows to take decision at several places
simultaneously, only focusing on immediate correctness (i.e., com-
patibility with the direct neighborhood), without having to worry
about further-reaching interferences.

The generalized problems (∆ + 1) list vertex coloring and (deg +
1) list vertex coloring are frequently studied as well. There, every
vertex v is given an individual list Ψ(v) of colors with |Ψ(v)| = ∆+1
or |Ψ(v)| = d(v) + 1, respectively, where d(v) is the degree of vertex
v. The goal is to find a proper vertex coloring where each vertex
v is assigned a color from Ψ(v). The interest in the latter problem
mainly stems from the fact that completing a coloring after some
vertices have already been assigned a color can be phrased as a
(d+ 1) list vertex coloring problem.

Similarly to vertex coloring, an edge coloring—an assignment of col-
ors to edges such that no two incident edges share their color—serves
as a schedule for the coordination of noiseless interactions between
nodes so that no node has to interact with multiple neighbors in
the same round. By Vizing’s theorem [226], ∆ or ∆ + 1 colors are
enough. However, again one usually aims for the greedy (and hence

1.2. Local Graph Problems 19

conveniently parallelizable) threshold 2∆−1 (since an edge can have
up to 2∆− 2 incident edges) for the number of colors.

MIS(Maximal Independent Set) and MM(Maximal Matching)—that
is, an inclusion-maximal set of non-adjacent nodes and non-incident
edges, respectively—are variants of vertex coloring and edge color-
ing, respectively, where instead of a full schedule (where all nodes
or all pairs of nodes get their turn) only an assignment to a single
slot is planned. Again these problems are locally weakened ver-
sions: instead of looking for the biggest possible such set (that is, a
maximum independent set or matching), one is only interested in a
locally maximal one. These relaxations are useful especially when
the unrelaxed problem is inherently global. Indeed, finding a max-
imum matching in a communication network that is as simple as a
cycle will require a node to learn about the whole graph.

Note that MIS is the hardest of the four problems, as the other three
can be reduced to it locally [171]. In particular, MM and (2∆ − 1)
edge coloring are special cases of MIS and (∆ + 1) vertex color-
ing, respectively, on the line graph8 representing the adjacencies.
According to Kuhn [158],

“MIS computation can be seen as a Drosophila of dis-
tributed computing as it prototypically models symmetry
breaking.”

This central role is also underpinned by two recent Dijkstra Prizes
awarded to papers dedicated to this problem—to Linial [172] in 2013
and to Luby [181] and Alon, Babai, and Itai [5] in 2016—who call
it “the crown jewel of distributed computing”.

While in the centralized setting, these symmetry breaking problems
admit trivial sequential greedy solutions, understanding their com-

8The line graph L(G) of a graph G = (V,E) is a graph with vertex set E and
an edge between two of its vertices if the corresponding edges are incident.

20 Background

plexity in the LOCAL model is an open question which goes back to
the very beginning of the area [171]; it thus arguably is one of the
ultimate goals of distributed computing.

1.2.2 Lovász Local Lemma and LCL Problems

The LLL (Lovász Local Lemma) is a beautiful result by Erdős and
Lovász in 1975 [88] that has become an indispensable tool for the
probabilistic method [7] when proving that certain combinatorial
objects exist. It can be seen as a generalization of the following
well-known fact: if each of a set of “bad” events has probability less
than 1 and all those events are independent, then there is a positive
probability that none of the bad events occur. In other words, there
exists a configuration to avoid all bad events. The Lovász Local
Lemma allows to relax the condition of independence to extend the
applicability to events with sparse dependencies.

Although the LLL applies to general probability spaces and general
notions of dependency, a simpler setting is used in most applica-
tions. In its easiest form, the probability space is defined by a set
X of boolean variables, each X ∈ X drawn independently with
Pr[X = 0] = Pr[X = 1] = 1/2. Each bad event B ∈ B is an
(arbitrary complex) boolean function determined by the variables
vbl(B) ⊆ X . Events B and B′ are called dependent, denoted by
B ∼ B′, if vbl(B) ∩ vbl(B′) 6= ∅. The events are only sparsely de-
pendent, meaning that each B ∈ B depends on at most d other
events B′ ∈ B with B′ 6= B. In other words, the dependency
graph GB = (B, {(B,B′) | vbl(B) ∩ vbl(B′) 6= ∅}) that connects any
two events which share at least one variable has maximum degree
d. See Figure 1.7. We denote the set of events depending on B,
thus the neighbors of the vertex B in the dependency graph, by
N(B). Every bad event B ∈ B occurs with probability at most
p, so p = maxB∈B Pr[B]. The Lovász Local Lemma shows that
Pr
[
∩B∈BB̄

]
> 0, under the (symmetric) LLL criterion that epd ≤ 1.

1.2. Local Graph Problems 21

Intuitively, if a local union bound is satisfied around each node in
the dependency graph, with some slack, then there is a positive
probability to avoid all bad events.

Figure 1.7: The dependency graph of an LLL instance with 8 events
and 10 variables. For each event, the set of variables it depends on is
given as a bitmap (with blue meaning dependent and grey meaning
independent). The maximum degree is d = 3. In the constructive
LLL problem, the goal is to find an assignment in {0, 1} for all the
variables so that none of the events is violated.

The constructive version of the purely existential LLL is the algo-
rithmic problem of finding an assignment of values to the variables
X ∈ X so that all bad events are avoided. Although the LLL itself
does not provide an efficient way for finding such a configuration,
and that remained open for about 15 years, a number of efficient cen-
tralized algorithms have been developed for it, starting with Beck’s
breakthrough in 1991 [31], through [4, 186, 74, 222, 188], and lead-
ing to the elegant algorithm of Moser and Tardos in 2010 [189], who
received the Gödel Prize in 2020 for their work.

In the standard distributed formulation of LLL, one considers LOCAL
algorithms that work on the dependency graph GB as communica-
tion graph where every event is thought of as a computing entity.
Note that one can imagine a few alternative graph formulations, all
of which turn out to be essentially equivalent up to an O(1) overhead

22 Background

in the round complexity.

The LOCAL Lovász Local Lemma is an important tool for the de-
sign of distributed graph algorithms [67, 213, 87, 55] and has re-
cently gained an extraordinary significance due to the enlightening
revelation by Chang and Pettie [61] that LLL is a complete prob-
lem for sublogarithmic-time problems. Concretely, they showed that
any o(log n)-round randomized algorithm for any LCL problem on
bounded-degree graphs can be transformed to an algorithm with
complexity O(TLLL(n)). Here, TLLL(n) denotes the randomized com-
plexity for solving LLL on n-node bounded-degree graphs w.h.p.9,
and LCL stands for Locally Checkable Labeling [196], a class of nat-
ural local problems whose solution can be verified within a constant
radius and hence in O(1) many LOCAL rounds. This class is ex-
pressive enough to include all the classic local problems while ruling
out inherently global problems (such as leader election or connec-
tivity) and artificially non-local ones (such as finding the maximum
ID within radius

√
n). The result by Chang and Pettie thus im-

plies that LLL is important not only for a few special problems, but
in fact for essentially all sublogarithmic-time distributed problems,
and can be seen as the analogue of understanding the classic com-
plexity of NP-complete problems, in that it seeks answers to the
question of whether for efficiently checkable problems a solution can
also be found efficiently. Due to its remarkable role, Chang and
Pettie [61] state that

“understanding the distributed complexity of the LLL is
a significant open problem.”

In contrast to the centralized setting, distributed algorithms for LLL,
and the related round complexity, are less well-understood.

9Throughout, w.h.p. stands for with high probability and means with prob-
ability 1 − n−Ω(1), thus a failure probability that is polynomially small in the
number of nodes in the graph.

1.2. Local Graph Problems 23

1.2.3 Local Sampling

The MCMC (Markov Chain Monte Carlo) method is a central class
of algorithms for sampling, that is, for randomly drawing an element
from a ground set according to a certain probability distribution.
It works by constructing a Markov chain with the targeted sam-
pling distribution as its stationary distribution. Within a number
of steps, known as the mixing time, the Markov chain converges;
its state then (approximately) follows this distribution. Besides the
intrinsic interest of such a general sampling method, in particular
for complex distributions where simple sampling techniques fail, the
MCMC method gives rise to efficient approximation algorithms in a
variety of areas: enumerative combinatorics (due to the fundamental
connection between sampling and counting established by Jerrum,
Valiant, and Vazirani [148]), simulated annealing [191] in combi-
natorial optimization, Monte Carlo simulations [185] in statistical
physics, and computation of intractable integrals for, among many
others, Bayesian inference [10] in machine learning, to mention a
few.

The employment of MCMC methods is particularly important when
confronted with high-dimensional data where traditional (exact) ap-
proaches quickly become intractable. Such data sets are not only
increasingly frequent, but also critical for the success of many ap-
plications. For instance in machine learning, higher-dimensional
models help expressability and hence predictability. It is thus cen-
tral that MCMC algorithms scale well with increasing dimensions.
This is not the case, however, for most centralized methods, as they
process and update the variables one by one, that is, a single site per
step. To speed up the sampling process, Markov chain updates can
be parallelized by spreading the variables across several processors.
In other settings, such as distributed machine learning, the (data as-
sociated to) variables might already be naturally distributed among
several nodes, and the overhead of aggregating them into one, if

24 Background

they fit there in the first place, would be untenable. In either case,
to avoid overhead in communication and coordination, local update
rules for Markov chains are needed: a node must be able to change
the value of its variables without knowing all the values of the vari-
ables on other nodes. Yet, the joint distribution over all variables in
the system must converge to a certain globally defined distribution.

This local sampling problem was introduced in a recent work by
Feng, Sun, and Yin [96], whose title asks “What can be sampled
locally?”. They study the problem of sampling a proper q-coloring
in the LOCAL model: given the communication graph G on n nodes
with maximum degree ∆, each node is required to output one of q
colors at random such that no two neighboring nodes have the same
color and such that the distribution of the joint output is close in
terms of total variation distance to the uniform distribution over all
proper q-colorings of G. Besides minimizing the round complexity,
the objective is to keep the number q of colors as low as possible.
The ultimate goal is to achieve a linear speedup in the number of
update steps of the Markov chain over centralized algorithms with
the same number of colors.

CHAPTER 2

Contributions and Outline

The goal of this thesis is to advance the research in the area of
local graph algorithms at the heart of the theory of distributed
computing. Besides the theoretical interest of understanding the
exact limitations of locality, local approaches for distributed com-
puting offer a wide range of other benefits. They are inevitable for
communication-efficient thus fast network algorithms and often are
surprisingly simple and easy to implement, hence in particular also
do not require memory-intensive or calculation-heavy computations.
Moreover, they are fault-tolerant by design: a corrupted node can
affect nearby nodes only, therefore its effect cannot percolate too far;
and there is no single point of failure or vulnerability. Last but not
least, the study of local algorithms often leads to insights in other
research areas. For instance, they are of great importance for the
design of self-stabilizing distributed algorithms [1] and not seldom

25

26 Contributions and Outline

give rise to fast dynamic and parallel algorithms in a straightforward
manner, since less communication usually implies less coordination.
In general, the areas of parallel computing and local algorithms for
distributed computing are closely related, and many results apply
to both settings [68, 181, 5, 189].

We develop novel algorithmic tools and techniques with provable
guarantees that resolve long-standing open questions in the LOCAL
model and give rise to fast algorithms in other models of distributed
computing (such as CONGEST) and parallel computing (such as
PRAM) in Part I.

In Part II, we show that, possibly surprisingly, local approaches are
essential even for distributed computing models orthogonal to LO-
CAL: we adopt local techniques to devise fast distributed algorithms
in the all-to-all communication models CC and MPC that consider-
ably improve the state of the art. Interestingly, our methods can also
be used for the design of local centralized algorithms [217], which,
in turn, often serve as building blocks for faster classic centralized
algorithms [192].

We here briefly outline our conceptual contributions; for the precise
results and techniques, we refer to the respective chapters.

2.1 Part I: The LOCAL Model

The results presented in Part I of the thesis are based on the follow-
ing publications.

[99, 100] Improved Deterministic Distributed Matching via
Rounding, by Manuela Fischer. Best Student Paper.

[103] Deterministic Distributed Edge-Coloring via Hypergraph
Maximal Matching, by Manuela Fischer, Mohsen Ghaf-
fari, and Fabian Kuhn.

2.1. Part I: The LOCAL Model 27

[101] Sublogarithmic Distributed Algorithms for Lovász Local
Lemma with Implications on Complexity Hierarchies, by
Manuela Fischer and Mohsen Ghaffari.

[105, 106] Tight Analysis of Randomized Greedy MIS, by Manuela
Fischer and Andreas Noever.

[102] A Simple Parallel and Distributed Sampling Technique:
Local Glauber Dynamics, by Manuela Fischer and
Mohsen Ghaffari.

They are concerned with central questions in the area of LOCAL
graph algorithms, which can be mostly grouped into three different
directions, as we will outline briefly.

Deterministic versus Randomized Algorithms

For several decades, there had been an exponential gap between ran-
domized and deterministic round complexity for many classic local
graph problems: most problems can be solved w.h.p. in poly log n
or even O(log n) rounds by randomized algorithms [181, 5, 174],
while the best deterministic algorithm is based on a generic approach
which, until two years ago, took 2O(

√
logn) rounds [207]. Panconesi

and Rizzi pointed out in the year 2001 [205] that

“while maximal matchings can be computed in polyloga-
rithmic time, in n, in the distributed model [131], it is a
decade old open problem whether the same running time
is achievable for the remaining 3 structures [maximal
independent set, vertex coloring, and edge coloring].”

Only very recently, Rozhoň and Ghaffari [216] and Ghaffari, Grunau,
and Rozhoň [114] in a subsequent work managed to resolve this
question by bringing down the bound of network decomposition
to O(log5 n). Despite this breakthrough, the best randomized al-
gorithms for symmetry breaking and dozens of other classic prob-

28 Contributions and Outline

lems, currently still are significantly (though admittedly not expo-
nentially) faster and considerably simpler and more elegant than
their deterministic counterparts.

Understanding whether such a separation is inherent as well as po-
tentially narrowing down this gap are not only interesting from a
(complexity-)theoretical point of view, and thus according to Baren-
boim and Elkin [24] “perhaps the most fundamental open problem”,
but there are also strong practical motivations for developing effi-
cient deterministic algorithms. Besides being indispensable for ap-
plications where reproducibility of the computation is critical or
where even tiny error probabilities cannot be tolerated1, faster de-
terministic algorithms curiously often help to obtain even faster ran-
domized algorithms. The reason for that is as follows. Most of the
recent developments in randomized network algorithms are based on
the shattering technique (see Section 3.1.5), which randomly breaks
down the graph into several small components, typically of expo-
nentially smaller size, and then applies a deterministic algorithm to
each of these components separately. In fact, this connection is more
general: Chang, Kopelowitz, and Pettie [57] showed that it is impos-
sible to improve the randomized complexities without also improving
the deterministic complexity, which makes the shattering technique
absolutely essential. It is thus crucial to understand the determin-
istic complexity of problems, even if one does not mind the use of
randomness. This is demonstrated in Chapters 4 to 6 (outlined in
Sections 2.1.1 and 2.1.2), where we improve on the state-of-the-art
randomized algorithms by devising faster deterministic techniques.

1Note that the standard approach of repeating an algorithm until it succeeds
is not so easy to adopt in distributed computing, as detecting a global failure
requires additional communication.

2.1. Part I: The LOCAL Model 29

Deterministic Algorithms for Low-Degree Graphs

A parallel branch of research is concerned with a more local mea-
sure of complexity: aiming to keep the dependency on n as low as
possible and only characterize the ∆-dependency in the round com-
plexity [142, 127]. Ideally, we would want and likely also expect the
dependency radius, and hence the running time, to be independent
of the size of the network. For many problems, however, it turns out
that it is not possible to have running times purely depending on ∆
without any dependence on n, as there is at least a Ω(log∗ n) lower
bound2 by Linial [172] (deterministic) and Naor [194] (randomized).
This is why one main interest lies in getting T (∆) +O(log∗ n) run-
ning times with at most an O(log∗ n) additive term, for some ideally
as small as possible function T . In general, expressing the complex-
ity in terms of both the size n and the maximum degree ∆ of the
network allows us to distinguish the impact of these two parameters.

Randomized Algorithms for Low-Degree Graphs

There is also an interest in getting more efficient randomized algo-
rithms for low-degree graphs. More concretely, the goal is to get
T (∆) + poly log logn-round algorithms for small functions T . It is
no coincidence that the n-dependency is exponentially smaller than
in the deterministic round complexities purely expressed in n. As we
will see in Section 3.1.5, this is a direct consequence of the shatter-
ing technique which randomly shatters the graph into components
of size (roughly speaking) poly log n, on which the deterministic al-
gorithm runs exponentially faster. The first term T (∆) comes from
the randomized shattering part; the poly log log n from applying an
efficient deterministic algorithm to the small components.

2More precisely, if IDs consist of O(log k) bits, or alternatively, if a poly k-
coloring of the network is given, the lower bound is Ω(log∗ k). This allows to go
around the Ω(log∗ n) lower bound of Linial [171].

30 Contributions and Outline

2.1.1 Deterministic Local Rounding

In 2016, Ghaffari, Kuhn, and Maus [119] formalized the role of ran-
domness for distributed graph algorithms by a completeness-type
result which showed that, at that time, rounding is the only ob-
stacle for efficient deterministic algorithms or, put differently, that
deterministically rounding fractional values to integral values while
approximately preserving some linear constraints is essentially all
that we do need to know how to perform efficiently to get poly log n-
round deterministic algorithms for basically all the problems3.

Although this obstacle has been surmounted by Rozhoň and Ghaf-
fari [216], the problem of rounding still prototypically captures the
essence of the difference between randomization and determinism.
It illustrates the power of random coins by extracting and pinpoint-
ing a single problem whose randomized and deterministic difficulty
differ drastically: many variants of rounding admit a trivial 0-round
randomized algorithm but cannot be solved efficiently deterministi-
cally by any other approach than network decomposition.

One major goal of this thesis is to better understand this discrepancy
between randomization and determinism by shedding some light to
the problem of deterministic rounding. The key novelty is a simple
deterministic local rounding method which transforms fractional so-
lutions of certain linear programs to integral solutions. This is the
first such rounding method, to our knowledge.

More specifically, in a first step, as presented in Chapter 4, we pro-
vide a technique to efficiently round a fractional matching of a graph
(an assignment of a value in [0, 1] to each edge so that for every ver-
tex the values of its incident edges sum up to no more than 1) to
an integral one, without changing the overall value of the match-

3Stating this result formally and in full generality requires more definitions.
We refer to [119] for the precise statement. The significance of rounding is further
discussed in [21, 116].

2.1. Part I: The LOCAL Model 31

ing by too much. Our deterministic rounding method gives rise to
the first improvement on maximal matching and many variants of
matching (even some global matching approximation problems) in
over 20 years with simpler, faster, and more accurate algorithms.

In a second step in Chapter 5, we generalize our rounding technique
from graphs to hypergraphs. In the LOCAL model, when communi-
cating on a hypergraph, per round each node v can send a message
on each of its hyperedges, which then gets delivered to all the other
endpoints of that hyperedge4. For our purposes, hypergraphs are
mainly used for formulating the requirements of the problem, and
the real communication happens on the base graph where every hy-
peredge on r nodes is replaced by an r-clique on these nodes.

The problem of matching in hypergraphs is relevant for several rea-
sons. Firstly, it is a natural extension to study classic graph prob-
lems in the more general setting of hypergraphs. Secondly, as we
will see, local hypergraph matching algorithms serve as a subroutine
for several distributed algorithms, such as maximum-weight match-
ing, edge coloring [120], and Nash-Williams decomposition [115].
Thirdly, and probably most importantly in the historic context of
our result in [103], hypergraph maximal matching is a means to
interpolate between all four classic symmetry breaking problems.
In other words, vertex coloring, edge coloring, maximal matching,
and maximal independent set on graphs all can be phrased as a
maximal matching problem on hypergraphs. Our hypergraph maxi-
mal matching algorithm thus leads to numerous improvements over
the state of the art. To name just a few, it yields the first effi-
cient (and only one disregarding network decomposition) algorithms
for edge coloring on general graphs and maximal independent set
on bounded-neighborhood-independence graphs, resolving two long-
standing open questions in the affirmative.

4The variant of the model with bounded-size messages can be specialized in
a few different ways, see e.g. [166].

32 Contributions and Outline

Notably, these problems are among the very few problems admit-
ting a direct solution not relying on network decomposition. This
comes with several advantages: For one, since there is no need to
gather and whole graph topologies into single nodes, the algorithms
only send small messages and hence directly work in the CONGEST
model as well. For another, it leaves room for improvement in the
polylogarithmic bound, especially for low-degree graphs. Indeed,
for the problem of matching, our algorithm is considerably faster
than network decomposition and the to date fastest algorithm; for
graphs with sublogarithmic degree, our algorithms are significantly
faster than the generic ones based on network decomposition. Fur-
thermore, our approach is completely different and novel; and it
demonstrates the power and flexibility of rounding.

We are confident that our results open the road for further progress
on deterministic distributed graph algorithms, with clear conse-
quences also on randomized algorithms, and that ideas of deter-
ministic distributed rounding will be of interest well beyond the
scope of these results: that they will prove useful to get efficient
deterministic—and hence randomized—LOCAL algorithms for an
even wider range of problems and, as Barenboim and Elkin [24]
suggested, they may serve as a “good stepping stone” towards a
poly log n-round deterministic algorithm for MIS that does not rely
on network decomposition. In fact, in a recent development, our
rounding techniques have been extended to coloring in [118], to give
the first efficient (∆ + 1) vertex coloring algorithm without the use
of network decomposition. Moreover, they have given rise to faster
algorithms for seemingly unrelated problems such as finding a low
outdegree orientation [223].

2.1. Part I: The LOCAL Model 33

2.1.2 Lovász Local Lemma and Bootstrapping

Chang and Pettie [61, 53] proved that LLL is a complete problem
for LCL problems with sublogarithmic complexity in bounded-degree
graphs: they show that when there is an o(log n)-round randomized
algorithm A for an LCL problem P on a graph G with constant
degree, it can be sped up to run in O(TLLL(n)) rounds. Their neat
idea can be summarized as follows. They lie to the algorithm A and
say that the network size is some much smaller value n∗ � n. This
deceived algorithm A may have a substantial probability to fail,
creating an output that violates the requirements of P somewhere.
However, the probability of failure in each local neighborhood is at
most 1/n∗. Choosing n∗ a large enough constant, depending on the
complexity of A, the algorithm A provides an LLL system—where
there is one bad event for violation of each local requirement of
P—that satisfies the criterion pdc < 1 for some (desirably large)
constant c ≥ 1. By solving this LLL system, one thus obtains a
solution for the original problem P in O(TLLL(n)) time. This is
illustrated in Figure 2.1.

Inspired by this idea, in Chapter 6 we improve TLLL(n) using a
bootstrapping approach as follows: we first devise a sublogarithmic-
round base LLL algorithm A, and then use the deception technique
to speed up A. This works by viewing A as setting up a new LLL
with a much larger exponent in its LLL criterion, hence allowing us
get to a much smaller complexity by (recursively) applying the same
scheme. We find this recursive application of the idea to speed up
the complexity of LLL itself, through increasing the exponent of the
corresponding LLL criterion, somewhat amusing.

Many subsequent works are following our ideas. Examples are [55,
56, 53, 47], and [135, 136, 134, 216, 114], and even range as far as
descriptive combinatorics [36].

34 Contributions and Outline

Figure 2.1: An illustration of the deception technique: if the out-
puts for two nodes of the deceived algorithm depend on each other
(because their dependency disks overlap), they are connected by an
edge (depicted in blue) in the corresponding LLL problem.

2.1.3 Tight Analysis of Local Greedy Algorithms

Luby’s algorithm by Luby [181] and independently Alon, Babai, and
Itai [5] is a famous and simple randomized algorithm for the prob-
lem of maximal independent set: For O(log n) iterations, every node
picks a random number and all local minima—i.e., nodes that have
the smallest number among their neighbors—join the independent
set and are removed from the graph along with their neighbors. One
iteration can be implemented in two rounds of communication: one
round to share the random numbers and round to inform neighbors
about their decisions (whether to join the MIS). It is a well-known
fact that the removal of local minima and their neighbors for ran-
dom numbers leads to a decrease in the total number of edges by a
constant factor (see, e.g., [184] for a simple proof). Since in every
iteration new random numbers are generated, repeated application
of this argument directly implies an upper bound of O(log n).

There is another very similar and strikingly simple randomized algo-
rithm, called the local greedy MIS algorithm, that works as follows:

2.1. Part I: The LOCAL Model 35

An order of the vertices is chosen uniformly at random. Then, in
each iteration, all local minima join the MIS. The only difference to
Luby’s algorithm is that the randomness is not regenerated in ev-
ery round, but only generated in the very beginning. This reduces
the amount of required communication to a minimum. Indeed, a
node initially only needs to inform its neighbors about its position
in the random order and then, in the round of its removal from the
graph, about its decision. Another nice property of this algorithm
is that—once an order is fixed—it always yields the so-called lexi-
cographically first MIS, i.e., the same as the sequential greedy MIS
algorithm that goes through the vertices in this order one by one
and adds a vertex to the MIS if none of its neighbors has been added
in a previous step. Such determinism can be an important feature
of parallel algorithms [40, 38].

These practical advantages are mainly owed to the fact that the
same random order is used throughout. This, however, comes with
the drawback of complicating the analysis significantly, due to the
lack of independence among different iterations. Indeed, while for
Luby’s algorithm the round complexity was established at O(log n)
almost fourty years ago [180, 5], no similar result is known for the
local greedy MIS algorithm.

In Chapter 7, we establish that the local greedy MIS algorithm is
as fast as Luby’s, while requiring significantly less communication
and randomness, confirming a widespread belief. Note that this
in particular implies that the trivial algorithm that iteratively lets
nodes with locally minimal IDs join the MIS is efficient on average—if
the IDs are chosen uniformly at random, O(log n) rounds are enough.
This is significantly faster than the worst case (for instance, a path
with monotonically increasing IDs) that requires Ω(n) rounds.

This observation and our analysis are built upon by several works in
various different areas, to obtain improved LOCAL [62], MPC [112],
parallel [82, 35, 83, 81, 138], and dynamic [33, 203] algorithms.

36 Contributions and Outline

2.1.4 Local Sampling of Uniform Colorings

Over the past few years, several methods to parallelize sequential
Markov chains have been proposed. Most of them rely on a heavy
coordination machinery, are special purpose, and/or do not provide
any theoretical guarantees. In the following, we briefly introduce
two of the most promising and more generic parallel and distributed
sampling techniques, in the context of colorings.

The most natural one follows a standard decentralization approach,
also implemented in the LubyGlauber algorithm of [96]: an inde-
pendent set of nodes (e.g., a color class of a proper coloring) si-
multaneously updates their colors [96], ensuring that no two neigh-
boring nodes change their color at the same time. This approach
mainly suffers from the limitation that the number of independent
sets needed to cover all nodes might be large, which slows down
mixing. In particular, a multiplicative ∆-term in the mixing time
seems inevitable [125, 96]. In the worst case of a clique, this ap-
proach falls back to sequential sampling, updating one node after
the other. Moreover, this method requires an independent set to be
computed, which incurs a significant amount of additional commu-
nication and coordination.

An orthogonal direction was pursued by [200, 229, 96], where meth-
ods are introduced to update the colors of all nodes simultaneously.
One example is the LocalMetropolis algorithm of [96]. This ex-
treme parallelism, however, comes at a cost of either introducing
a bias in the stationary distribution, resulting in a non-uniform col-
oring [200, 229], or demanding stronger mixing conditions [96].

We aim for the middle ground between these two approaches, mo-
tivated by the following observation: we do not need to prevent
simultaneous updates of adjacent nodes, only simultaneous conflict-
ing updates of adjacent nodes. Indeed, preventing two adjacent
nodes in the first place from picking a new color in the same round

2.1. Part I: The LOCAL Model 37

seems to be way too restrictive, in particular because it is unlikely
that both nodes choose the same new color. On the other hand, if all
nodes update their colors simultaneously, a node is expected to have
a conflict with at least one of its neighbors, which prevents progress.
Since a simultaneous update of nodes in an independent set is too
slow and of all nodes is too risky, we want an almost independent
set (or, in other words, a low-degree graph) to update their colors.
This can be achieved by letting each node decide whether it partic-
ipates in a particular color update step independently with (small)
constant probability so that only a small fraction of a node’s neigh-
bors is expected to update the color, and hence also, in the worst
case, only these can conflict with its update. An example is given
in Figure 2.2. As opposed to centralized sampling, where only one

Figure 2.2: A color update: the update of the three vertices on
the left are valid; the one on the top (two neighbors proposing the
same color) and to the right (a vertex proposing a neighbor’s current
color) are not.

variable per step updates its value, here the expected number of
variables simultaneously updating their value is Ω(n), resulting in a
linear speedup in the number of update steps. This local sampling
technique is introduced in Chapter 8.

Our algorithm leads to applications in several areas, such as [37] in
the LOCAL setting and [97] for dynamic algorithms.

38 Contributions and Outline

2.2 Part II: Global Communication Models

In Part II of this thesis we show how local approaches can be used
to devise fast algorithms the all-to-all communication models Con-
gested Clique and MPC. It is based on the following publications
and manuscripts.

[44, 45] Breaking the Linear-Memory Barrier in MPC: Fast
MIS on Trees with Strongly Sublinear Memory, by
Sebastian Brandt, Manuela Fischer, and Jara Uitto.
Best Student Paper.

[43] Matching and MIS for Uniformly Sparse Graphs in
the Low-Memory MPC Model, by Sebastian Brandt,
Manuela Fischer, and Jara Uitto.

[32] Massively Parallel Computation of Matching and MIS in
Sparse Graphs, by Soheil Behnezhad, Sebastian Brandt,
Masha Derakhshan, Manuela Fischer, MohammadTaghi
Hajiaghayi, Richard M. Karp, and Jara Uitto.

[104] Simple Graph Coloring Algorithms for Congested Clique
and Massively Parallel Computation, by Manuela Fi-
scher, Mohsen Ghaffari, and Jara Uitto.

[54] The Complexity of (∆ + 1)-Coloring in Congested
Clique, Massively Parallel Computation, and Central-
ized Local Computation, by Yi-Jun Chang, Manuela Fi-
scher, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng.
Best Student Paper.

Global communication models and locality-based models (like LO-
CAL) are contrasting models dealing with opposite challenges. At
first sight, thus totally different sets of techniques seem to be needed.
However, as we demonstrate in Part II of this thesis, one should not
jump to this conclusion too hastily.

2.2. Part II: Global Communication Models 39

We use local techniques to design faster algorithms in global all-
to-all communication models. More concretely, we accelerate the
simulation of LOCAL algorithms by enhancing them with non-local
communication. Our technique is based on the observation (as dis-
cussed in more detail in Section 3.2) that models that suffer from
congestion often admit simple if not trivial algorithms when the un-
derlying graph is sparse. Intuitively, the reason for that is as follows.
All we need to know to predict the output of an r-round LOCAL al-
gorithm for a vertex v is the r-hop neighborhood N r(v) of v. If
the maximum degree of the graph is small enough, N r(v) can be
gathered efficiently into a single node, where the LOCAL algorithm
can be run offline. In fact, this often takes O(log r) rounds, leading
to an exponential speedup.

In Section 2.2.1, we show how to take this idea even further to a
super-exponential speedup with an additional sparsification of the
corresponding LOCAL algorithm. In Section 2.2.2, we discuss the
sublinear-memory MPC model, a practically realistic variant of the
model. As it turns out, for this model, local simulation techniques
are not only helpful but apparently inevitable.

2.2.1 Sparsification of Local Algorithms

Imagine that we have an r-round LOCAL algorithm A that has not
only small locality but also a small locality volume, meaning that a
vertex’ output only depends on a subset N r

∗ (v) ⊆ N r(v) of vertices
within its r-hop neighborhood N r(v). To simulate A’s output for
v, it thus suffices to gather information from N r

∗ (v) only, instead of
N r(v), which is potentially much smaller and hence can be collected
much more efficiently.

One common approach is thus to sparsify LOCAL algorithms, i.e.,
to reduce their locality volume [110, 123]. We exemplify this with
our constant-round (∆ + 1) list vertex coloring algorithm in the CC
model presented in Chapter 9: we first sparsify and then efficiently

40 Contributions and Outline

simulate a LOCAL vertex coloring algorithm, leading to a super-
exponential speedup in the round complexity.

2.2.2 Sublinear-Memory MPC Model

In the study of classic graph problems for MPC, there are three
different natural regimes for the memory S in terms of the num-
ber of vertices n of the graph: strongly superlinear memory with
S = Ω̃(n1+δ); almost-linear memory with S = Θ̃(n); and strongly
sublinear memory with S = Õ

(
n1−δ), for some 0 < δ < 1. Unsatis-

factorily, an assumption common to a vast majority of approaches
and techniques is to allow essentially linear in n memory per node
(for instance, strongly superlinear or mildly sublinear like n1−o(1))
memory per node.

Indeed, for instance for the problem of maximal matching, the only
subpolylogarithmic algorithm of Lattanzi, Moseley, Suri, and Vassil-
vitskii [167] requires strongly superlinear memory. When the local
memory is restricted to be (nearly) linear, the round complexity of
Lattanzi et al.’s algorithm drastically degrades, falling back to the
trivial bound attained by the simulation of the O(log n)-round LO-
CAL (and PRAM) algorithm due to Luby [181] and, independently,
Alon, Babai, and Itai [5].

For other classic problems, such as maximal independent set or ap-
proximate maximum matching, we have a slightly better under-
standing. There, the local memory can be reduced to be linear
while still having poly log log n-round algorithms [12, 73, 112]. Yet,
all these algorithms fail to go (substantially) below linear space with-
out an (almost) exponential blow-up in the running time. This is
true for a wide variety of problems [214, 52].

Ghaffari et al. [117] aptly sum up this bleak state with

2.2. Part II: Global Communication Models 41

“the technical difficulty (and the round complexity) of
the problem increases as the memory per machine de-
creases”

and

“The case of the strongly sub-linear memory regime ap-
pears to be considerably harder.”

Linear memory is often not only prohibitively large and hence im-
practical for massive graphs, but also allows an easy or even trivial
solution for sparse graphs. Indeed, for graphs with Õ(n) edges,
this is getting close to the degenerate regime where we can afford
to store the whole input graph in a single node. This issue has
been artificially circumvented by explicitly restricting the attention
to dense graphs with m = Ω̃(n1+δ) edges, as to ensure sublinearity
of the total memory in G while still not having to relinquish the
nice property that (essentially) all vertices fit into the memory of
a single node [151]. Besides being a stretch of the definition, this
additionally imposed condition of denseness of the input graph does
not seem to be realistic. In fact, as recently also pointed out by
[73], most practical large graphs are sparse. It is thus natural to ask
whether there is a fundamental reason why the known techniques
get stuck at the linear-memory barrier and to what extent linear
memory is necessary for efficient algorithms.

To address this question, we focus on the MPC model with sublinear
memory. One important aspect of our work is, from the theory per-
spective, that it breaks this threshold and thereby opens up a whole
new unexplored domain of research questions. Moreover, since all
common methods—such as filtering [167, 165], (randomized com-
posable) coresets [14, 12], and round compression [14, 11]—seem to
hit a boundary at the linear-memory barrier, completely new tech-
niques are required.

In the sublinear-memory setting, one is inevitably confronted with

42 Contributions and Outline

the inherent challenge of locality: In contrast to the MPC model
with linear or strongly superlinear memory, in this MPC setting, as
the space of a node is strongly sublinear, it will never be able to
see a significant fraction of the vertices, regardless of how sparse
the graph is. Even though the communication graph does not suffer
from locality, the node congestion causes that a single node at once
only gets to see a non-significant part of the graph, and there is
nothing it can do about it. Note that this is different from CC.
There, in principle, a node can see the whole graph—it just needs
some time to gather the whole graph due to congestion. In MPC no
matter how many rounds are given, it is just utterly impossible to
at some point fit the whole graph even if it is incredibly sparse.

We thus need to deal with this intrinsic local view of the nodes.
It seems natural to borrow ideas from LOCAL algorithms, which
are designed exactly to cope with this locality restriction. A direct
simulation, however, in most cases only results in logΩ(1) n-round
algorithms. The problem is that these algorithms do not make
use of the additional power of the MPC model—the global all-to-all
communication—as the communication is restricted to neighboring
vertices.

We introduce a new and strikingly simple technique to cope with
this imposed locality: we enhance local-inspired approaches with
global communication in order to arrive at efficient algorithms in
the world of sublinear-memory MPC which are exponentially faster
than their LOCAL counterparts and whose memory requirements
are polynomially smaller than their traditional MPC counterparts.
Ironically, while Lattanzi et al. [167] observe that approaches to

“shoehorn message passing style algorithms into the
framework”

have given rise to (too) slow MPC algorithms in the linear-memory
setting, we are convinced that in the presence of strongly sublinear

2.2. Part II: Global Communication Models 43

memory, LOCAL (and hence message-passing) inspired techniques
are absolutely essential for efficiency.

Our method leads to substantial improvements on the state of the
art that are either exponentially faster or require exponentially less
memory than their predecessors.

In particular, we study the classic local graph problems MIS, and
MM on the special graph families of trees and, more generally, graphs
with arboricity λ = poly log n. These sparse graphs are particularly
interesting for the following reasons. While trees—and in general,
graphs with a linear number of edges—admit a trivial solution in
the linear-memory MPC model, this cheat does not work in the
sublinear-memory setting. In some sense, sparse graphs are thus
the easiest non-trivial case, which makes it the most natural start-
ing point for further studies. We strongly believe that our tech-
niques can be extended to more general graph families. Moreover,
arboricity is a well-received measure of sparsity that does not impose
strict structural constraints such as planarity, bounds on maximum
degree, or the like [23, 28, 89, 70, 128]. The family of graphs with
arboricity poly log n—often called uniformly sparse graphs, and also
known as sparse everywhere graphs—includes but is not restricted to
graphs with maximum degree poly log n, minor-closed graphs (e.g.,
planar graphs and graphs with bounded treewidth), as well as pref-
erential attachment graphs, and thus arguably contains most sparse
graphs of practical relevance [124, 202].

44 Contributions and Outline

CHAPTER 3

Tools and Techniques

We present some frequently used techniques in two parts. First, in
Section 3.1, we explain a variety of local decomposition techniques
used to design faster LOCAL algorithms. Second, in Section 3.2, we
introduce tools for the efficient simulation of LOCAL algorithms in
all-to-all communication models.

3.1 Local Decomposition Techniques

Many problems turn out to become easy if the graph is somewhat
small—small in terms of, for instance, number of nodes, diameter,
or maximum degree. To exploit this fact, a common strategy is
to break the graph into smaller parts and to deal with each part
separately (either sequentially or in parallel). Often, there is a trade-

45

46 Tools and Techniques

off between how simple each part is, how many parts are needed, and
how much time it takes to compute the decomposition. The purpose
of this section is to convey the intuition behind these techniques. For
a more thorough overview, we refer to [24].

3.1.1 Coloring

Proper Coloring

If a node’s decision only depends on neighboring nodes, a proper
coloring can be used to decouple these decisions: given a proper
coloring of the nodes of G with k colors, one can process G in k
phases, in each phase dealing with one color class. For instance,
given a k-coloring, one can compute a MIS in k rounds as follows: in
round i, every node with color i without a neighbor in the MIS joins
the MIS and informs all its neighbors about this decision. Note that
a proper coloring can be seen as an extreme case of degree reduction,
since every part (i.e., every color class) has maximum degree 0.

Defective Coloring

While a proper vertex coloring makes the computation within each
part particularly easy, the number of parts often is prohibitively
large. One remedy is to consider a relaxation of proper coloring
that allows for a smaller number of colors, at the cost of having
some (but not too many) adjacent nodes with the same color. A
defective k-coloring with defect d is a k-coloring where each color
class has degree at most d—it decomposes the graph into k many
degree-d graphs. An example of a defective coloring is depicted in
Figure 3.1.

Proper edge colorings and defective edge colorings with defect d—
where the maximum degree induced by edges of the same color is
d—are the analogues for decisions on edges instead of nodes.

3.1. Local Decomposition Techniques 47

Figure 3.1: A 2-defective 3-coloring and the corresponding decom-
position into 3 graphs of degree at most 2.

Distance Coloring and Power Graphs

For problems where more distant nodes’ decisions depend on each
other, the approach of a proper (or a defective) graph coloring does
not work. For instance, when computing a maximal matching, two
nodes at distance 2 cannot decide simultaneously about their edges
to join the MM: it could lead to a common neighbor of these nodes
to have two incident edges in the MM. In general, if nodes’ decisions
depend on nodes within distance k, to have the decisions decoupled,
a coloring is needed where no two nodes within distance k have the
same color is needed. In other words, one needs a proper color-
ing of the power graph Gk = (V,Ek) of G obtained by adding an
edge iff two nodes have distance at most k in G. Such a coloring
of the power-k graph is called a distance-k coloring. Note that a
distance-k coloring is equivalent to a coloring for which all nodes
within the k-hop neighborhood of a node have distinct colors. A
coloring algorithm—or any algorithm for that matter—on Gk can
be executed on G by letting each node in G simulate the behavior
of a node in Gk in a coloring algorithm, at the cost of a multiplica-
tive factor of Θ(k) in the running time. An example of a distance
coloring can be found in Figure 3.2. Note that this trick with power
graphs is more general, as also nicely exemplified in Section 3.1.4.

48 Tools and Techniques

Figure 3.2: A graph G and its distance-2 coloring. The additional
edges of G2 are depicted in grey. Any two nodes of the same color
have distance at least 3 in G.

3.1.2 2-Decomposition

A 2-decomposition is a simple transformation that decomposes a
graph into vertex-disjoint paths and cycles with the same edge set
(but a larger vertex set), in zero rounds. It has been used frequently
before, for instance by [146, 131, 132], and also gives rise to an almost
trivial proof of Petersen’s 2-factorization theorem from 1891 [190].

The 2-decomposition graph G′ of a graph G is generated as follows.
Each node v in G introduces ddG(v)/2e copies and arbitrarily splits
its incident edges among these copies in such a way that every copy
has degree 2, with the possible exception of one copy which has
degree 1 if v has odd degree. Notice that the edge sets of G and
G′ are the same and that G′ is simply a set of cycles and paths.
See Figure 3.3 for an example. A node v in G then simulates the
algorithm for each of its copies in G′.

Figure 3.3: A graph and its 2-decomposition.

3.1. Local Decomposition Techniques 49

3.1.3 H-Partition

The H-partition, also called Nash-Williams decomposition [199, 197,
198], see Barenboim and Elkin [24, Chapter 5.1], can be used to de-
compose a graph with small arboricity into parts with small degree.
The arboricity λ of a graph is the minimum number of edge-disjoint
forests needed to cover the edges of the graph. Put differently, it is
the smallest possible maximum outdegree of a node over all possible
orientations of the edges. A graph with small arboricity thus can
be thought of as a uniformly sparse graph. Note that any graph
satisfies λ ≤ ∆/2.

More concretely, the H-partition distributes the nodes of a graph
into layers in a way that in each layer the nodes have small outdegree
into subsequent layers. Initially, the idea was to decompose graph
with constant arboricity into O(log n) layers of nodes with constant
outdegree, but it easily generalizes to basically any outdegree as
follows:

An H-partition with outdegree d, defined for any d > 2λ, is a parti-
tion of the nodes into ` = Θ(logd/λ n) layers with the property that
a node in layer i has at most d neighbors in the union of the layers
i, . . . , `. An example can be found in Figure 3.4.

Note that for d > 2λ such a partition can be computed easily by
the following sequential greedy algorithm, also known as peeling al-
gorithm: Iteratively, for i ≥ 1, put all remaining vertices with re-
maining degree at most d into layer i, and remove them from the
graph. Due to the well-known fact that the average degree of a
graph with arboricity λ is at most 2λ, in every iteration a fraction
2λ/d of the vertices will be removed. Hence, the algorithm termi-
nates after O(logd/λ n) iterations. Similarly, this partition can be
computed by a LOCAL algorithm in the same number of rounds.

We next prove some properties of the resulting H-partition that will
be useful later.

50 Tools and Techniques

Figure 3.4: A schematic depiction of one level of an H-partition
with parameter d = 3. Only edges relevant for this level are shown.
There can be arbitrarily many incoming edges (light grey) but only
at most d outgoing edges (black) to the same or subsequent levels.

Lemma 3.1. The H-partition with outdegree d, constructed by the
greedy peeling algorithm, satisfies the following properties.

(i) For all 0 ≤ i ≤ `, the number
∣∣∣⋃`

j=i Lj

∣∣∣ of vertices in layers

with index ≥ i is at most n
(

2λ
d

)i−1
. In other words, if we

remove all vertices in layer i from the set of vertices in layers
≥ i, then the number of vertices drops by a factor of 2λ

d , i.e.,∣∣∣⋃`
j=i+1 Lj

∣∣∣ ≤ 2λ
d

∣∣∣⋃`
j=i Lj

∣∣∣ for all 0 ≤ i ≤ `.

(ii) There are at most ` = O
(

log d
λ
n
)

layers.

Proof. We prove (i) by induction, thus assume that there are ni ≤
n
(

2λ
d

)i−1
vertices in the graph Hi induced by vertices in layers ≥ i.

Towards a contradiction, suppose that there are ni+1 > n
(

2λ
d

)i
vertices in layers ≥ i + 1. By construction, all these vertices must
have had degree larger than d in Hi, as otherwise they would have
been added to layer i. This results in an average degree of more than
ni+1d
ni

= 2λ in Hi, which contradicts the well-known upper bound of
2λ on the average degree in a graph that has arboricty at most λ.
Note that (ii) is a direct consequence of (i).

3.1. Local Decomposition Techniques 51

3.1.4 Network Decomposition

The network decomposition approach is a classic technique that goes
back to the pioneering work by Awerbuch et al. [17, 207] in the very
beginning of the area. Roughly speaking, a network decomposition
partitions the nodes into a few blocks, each of which is made of a
number of low-diameter connected components.

We next give a formal definition, along with an intuitive discussion of
the approach, and then provide one specific network decomposition
algorithm.

A (C,D) network decomposition is a partition of the nodes V into C
node-disjoint blocks V1, V2, . . . , VC such that the induced subgraph
G[Vi] of each block Vi consists of (a number of) connected compo-
nents of diameter at most D. See Figure 3.5 for an illustration.

C1 2 i− 1 i

D

C − 1

Figure 3.5: A schematic depiction of a (C,D) network decomposi-
tion. There are C blocks consisting of several connected components
with diameter at most D.

The idea of the network decomposition approach is to decompose
the graph into many low-diameter components. Each of these com-
ponents then can be solved easily, by gathering the whole topology
and computing a solution offline. Different components of the same
block can be handled simultaneously. Different blocks, however,
might depend on each other. The blocks thus have to be processed
sequentially, one after the other. Overall, if a (C,D) network decom-
position can be computed in T (C,D) rounds, basically all problems

52 Tools and Techniques

can be solved in O(T (C,D)+C ·(D+1)) rounds, since each of the C
blocks takes O(D+1) rounds to gather all diameter-D components.

Network decomposition is a generic approach that provides an easy
solution for many problems. On the other hand, the technique is
not very practical for real-world applications: it heavily relies on
gathering topologies of diameter-D graphs (hence messages of up
to Õ(min{∆D, n2}) size) and brute-forcing solutions on them: this
cheat constitutes a stretch of the definition of distributed computing
and abuses the unbounded computing power and message sizes. Ide-
ally, we thus want to design algorithms that do not rely on network
decomposition. For many problems, however, it is unfortunately the
only efficient approach we know.

An (O(log n), O(log n)) network decomposition can be computed in
O(log2 n) randomized rounds by Linial and Saks [174, 86]. Until re-
cently, the best deterministic network decomposition algorithm was
with parameters C,D, T (C,D) = 2O(

√
logn) by Panconesi and Srini-

vasan [207], improving on 2O(
√

logn log logn) by Awerbuch et al. [17].
A very recent breakthrough result by Rozhoň and Ghaffari [216]
and a follow-up of Ghaffari, Grunau, and Rozhoň [114] have further
decreased C,D, and T (C,D) to poly log n.

In the following, we present a specific variant of network decomposi-
tion that works mainly by putting together some ideas of Awerbuch
and Peleg [18], Panconesi and Srinivasan [207], and Awerbuch et
al. [16]. We are not aware of this result appearing in prior work.
Note that combining it with the recent technique of [216, 114], we
can improve the round complexity to λn1/λ log5 n.

Lemma 3.2. A (λ, n1/λ log n) network decomposition can be com-
puted by a deterministic LOCAL algorithm in λn1/λ·2O(

√
logn) rounds.

Proof. We first describe a centralized algorithm for computing a
(λ, n1/λ log n) network decomposition, colloquially referred to as ball

3.1. Local Decomposition Techniques 53

carving. This technique was first presented by Awerbuch and Pe-
leg [18]. Then, we explain how to transform this sequential ball
carving process into an efficient deterministic LOCAL algorithm with
round complexity n1/λ · 2O(

√
logn), using another network decompo-

sition algorithm of Panconesi and Srinivasan [207], and an idea of
Awerbuch et al. [16].

Centralized Network Decomposition via Ball Carving: We
will decompose the graph into node-disjoint blocks A1 to Aλ, such
that in the graph G[Ai], each connected component has diameter at
most n1/λ log n. We first describe the process of generating the first
block A1. The generation of the next blocks is similar.

We choose an arbitrary node v to be the center of a new ball, and
we use Br(v) denote the set of nodes with distance at most r from
v. Let r∗ be the smallest r ≥ 0 for which

|Br(v)| <
(

1 + n−1/λ
)
|Br−1(v)| .

Observe that since |Br(v)| ≥
(

1 + n−
1
λ

)r
for r ≤ r∗, it must hold

that r∗ ≤ n1/λ log n. We put all the nodes in Br∗−1(v) into A1,
and then delete Br∗(v) from G. That is, we carve and remove a
ball of radius r∗ around the node v, but then only take the inner
part—nodes, that are not on the boundary—of it to A1. Then, we
pick another node in this remainder graph, and perform another ball
carving; we repeat this process until no node is left.

Once we are done with defining A1, we remove all nodes of block
A1 from the graph G, and then work on the remaining graph G2 =
G \ A1. Then, we create the new block A2, by a similar iterative
ball-carving process on G2. More generally, after computing blocks
A1 to Ai−1, we move to the graph Gi = G \ ∪i−1

j=1Aj and compute
the block Ai, by a sequential ball-carving process similar to above.

We now argue that λ blocks exhaust the graph. In each iteration i

54 Tools and Techniques

of computing another block, the size of the remaining graph shrinks
such that |Gi| < n−1/λ|Gi−1|. This is because for each carved ball
where we include Br∗−1(v) in Ai and then discard the boundary
Br∗(v) \Br∗−1(v), leaving them for the next blocks, we have

|Br∗(v) \Br∗−1(v)| ≤ n−
1
λ |Br∗−1(v)|.

Since |Gi| < n−1/λ|Gi−1|, after λ blocks, the remaining graph Gλ+1

is empty, and the process terminates.

Distributed Network Decomposition via Ball Carving: To
compute the desired (λ, n1/λ log n) network decomposition, we will
simulate the ball carving idea explained above. However, we need
to speed up the process, and make it run in λn1/λ ·2O(

√
logn) rounds.

For that, we use another network decomposition as a helper tool.
In particular, we first compute a

(
2O(
√

logn), 2O(
√

logn)
)

network de-

composition of Gd for d = 2n1/λ log n+ 1, by running the algorithm
of Panconesi and Srinivasan [207] on Gd. This takes d2O(

√
logn)

rounds. It partitions the graph G into ` = 2O(
√

logn) node-disjoint
blocks G1, . . . , G` such that for each block Gi, each connected com-
ponent of Gi has diameter at most d · 2O(

√
logn) in the graph G,

while any two components of Gi are non-adjacent in Gd and thus
have distance at least d+ 1 in G.

We now use this network decomposition to compute the desired out-
put (λ, n1/λ log n) network decomposition which partitions V into
node-disjoint sets A1, A2, . . . , Aλ such that in each subgraph G[Ai]
for i ∈ {1, . . . , λ}, each connected component has diameter at most
n1/λ log n. The construction is made of λ epochs, each of which
computes one of the blocks Ai, in n1/λ · 2O(

√
logn) rounds. We next

discuss the first epoch, which computes the block A1. The next
epochs are similar, and compute the other blocks A2 to Aλ, each
repeating the procedure on the remaining graph.

Each Epoch in the Construction of A1: The epoch is broken
into ` = 2O(

√
logn) phases, each of which takes n1/λ·2O(

√
logn) rounds,

3.1. Local Decomposition Techniques 55

hence making for an overall round complexity of n1/λ · 2O(
√

logn) for
the epoch. We will simulate the ball-carving process of computing
A1, throughout these phases. During this process, each node is in
one of the following three states: some nodes are put in A1 (these
are the inner parts of the carved balls), some nodes are processed
and discarded (these are the boundaries of the carved balls), and
some nodes are unprocessed.

In phase j, we do as follows: Consider the set of nodes of Gj . Notice

that each component of Gj has diameter at most d · 2O(
√

logn), and
moreover, each two components have distance at least d + 1. We
first make the minimum-ID node of each of these components learn
the (n1/λ log n)-neighborhood of its component, as well as the status
of the nodes in this neighborhood. Notice that this information is
within distance at most

d · 2O(
√

logn) + n1/λ log n = n1/λ · 2O(
√

logn)

from that minimum-ID node. This can be done in n1/λ · 2O(
√

logn)

rounds. Then, this minimum-ID node simulates the ball-carving
process offline, as follows: each time, it picks another unprocessed
node in its component, and then carves the ball around it similar
to the sequential ball-carving process explained above. Notice that
this ball can potentially go out of Gj . However, the ball will grow at
most n1/λ log n hops away from its center. Hence, the ball carving
processes of two different components of Gj never reach each other,
as the components are more than d > 2n1/λ log n hops apart. Also,
notice that the minimum-ID node is doing this process offline, once
it has gathered the relevant information, and thus this computation
does not consume any further communication. Once the node with
minimum ID has computed the newly carved Ai-balls centered at the
nodes of its component, it informs the related nodes of their status:
whether they are in A1, discarded from the A1 due to falling on the
boundary, or remaining unprocessed. This finishes the description
of phase j. We then move to the next phase.

56 Tools and Techniques

3.1.5 Shattering

The shattering technique is a general framework which has been
introduced in the LOCAL model by Barenboim, Elkin, Pettie, and
Schneider [27, 28] and goes back to the early nineties where it is a
key ingredient in Beck’s LLL method [31, 4]. Analogues of it appear
in [186, 187, 217, 6]. It has inspired a diverse set of results over the
past decade.

The shattering framework consists of two phases. First, in the shat-
tering phase, a randomized shattering algorithm computes a ran-
dom partial solution to the problem at hand such that the remain-
der graph is decomposed (i.e., shattered) into several (disconnected)
small (think of size poly log n) components. Roughly speaking, at
each step of the shattering algorithm, one specifies an invariant that
all nodes must satisfy in order to continue to participate. Those bad
nodes that violate the invariant are removed from consideration and
taken care of in the second phase.

Then, in the post-shattering phase, a solution on these remain-
ing small components formed by bad nodes is found using a de-
terministic algorithm for graphs of size poly log n. Note that one
cannot apply a conventional randomized algorithm, as its success
probability on the exponentially smaller component would only be
1 − (log n)−Ω(1) instead of 1 − n−Ω(1). This usually gives rise to
algorithms with a running time that can be expressed as the sum
poly log ∆ + poly log log n of two terms, the first coming from the
shattering phase, which usually takes poly log ∆ rounds to shatter
the graph, and the latter being the exponentially scaled down run-
ning time of the deterministic algorithm for the problem, which usu-
ally is poly log log n, as the network decomposition approach gives
rise to poly log n-round deterministic algorithms.

The shattering thus can be seen as a randomized decomposition
technique to decompose the graph into smaller components (in terms

3.1. Local Decomposition Techniques 57

of number of nodes). An example is given in Figure 3.6.

The shattering lemma, roughly speaking, shows that if each node of
the graph remains after the shattering algorithm with some small
probability and we have certain independence between these events,
the remaining connected components are somewhat small. More
concretely, if every node stays with probability ∆−Ω(1) and nodes
of distance Ω(1) are independent, then the remainder graph has
connected components of size poly ∆ · log n with probability 1 −
n−Ω(1).

Figure 3.6: A shattered graph. Light blue nodes are nodes that
succeeded (hence have committed to a solution). The remaining
(black) nodes form small connected components.

As explained by [27, 28], this approach can be used to circumvent
the union bound barrier, which is a “fundamental barrier in ran-
domized distributed algorithms” [27] that “refers to the limitations
attendant to any analysis that employs the union bound to upper
bound the global probability of failure” [28]: For a local randomized
algorithm, one often has the property that in each round every node
tries to commit to a solution and fails to do so with some constant
probability p. Thus, all nodes succeed after O(1/p) rounds in ex-
pectation. However, to conclude that with probability 1 − n−Ω(1)

all nodes succeed, the union bound needs each node to succeed with

58 Tools and Techniques

probability 1− n−Ω(1), which requires Ω(log1/p n) iterations.

The shattering technique remedies this situation as follows. The
randomized shattering algorithm with failure probability 1 − Ω(1)
at each node is executed for poly log ∆ rounds only instead of log n.
This will make some of the nodes not succeed. However, not too
many. If nodes of sufficiently large distance are independent and ev-
ery node fails, and hence stays, with probability ∆−Ω(1), the size of
remaining components can be shown to have size poly ∆ · log n with
high probability. As pointed out by [109], this can be illustrated by
a simple intuition based on Galton-Watson branching processes: as-
suming the nodes’ failures to be independent, the graph is expected
to shatter into small pieces as soon as the probability of a node fail-
ing goes below 1/∆. Since nodes’ failures are not independent, we
need some slack of ∆−Ω(1) in the failure probability.

We next provide a formal proof of the shattering lemma. The idea
origins from [27, 28] and can be found in similar versions in various
papers, especially in [109, 111] and also in [115, Appendix A].

Lemma 3.3 (The Shattering Lemma). Let G = (V,E) be a graph
with maximum degree ∆. Consider a process which generates a ran-
dom subset B ⊆ V such that Pr[v ∈ B] ≤ ∆−c1, for some constant
c1 ≥ 1, and such that the random variables 1(v ∈ B) depend only
on the randomness of nodes within at most c2 hops from v, for all
v ∈ V , for some constant c2 ≥ 1. Then, for any constant c3 ≥ 1,
we have the following three properties:

(i) G[B] has size at most O
(
log∆ n∆2c2

)
with probability at least

1− n−c3.

(ii) With probability at least 1 − n−c3, each connected component
of G[B] admits a (λ,O(log1/λ n · log2 log n)) network decompo-
sition, for any integer λ ≥ 1, which w.h.p. can be computed in
λ log1/λ n · 2O(

√
log logn) rounds.

3.1. Local Decomposition Techniques 59

(iii) With probability 1−O(∆c2) · e−Ω(n∆−c3), the number of edges
induced by B is O(n).

Proof. Consider the graph H = G[2c2+1,4c2+2] which contains an
edge between u and v iff their distance in G is between 2c2 + 1 and
4c2 + 2. We first show the following claim.

Claim 3.4. Graph H has no connected component U with |U | ≥
t := c3

c4
log n with probability at least 1− n−c3, for some c4 ≥ 1.

Proof. The existence of such a connected set U would imply that
H[B] contained a tree on t nodes. There are at most 4t different
such (unlabeled) tree topologies, and each can be embedded into
H in less than n ·∆(4c2+2)t ways. Moreover, the probability that a
particular tree occurs in H[B] is at most ∆−c1·t, since all the nodes
stay in B with probability at most ∆−c1 independently, as they
have distance at least 2c2 + 1. A union bound over all trees thus
lets us conclude that such a set U exists with probability at most
4tn∆(4c2+2)t∆−c1·t ≤ n−c3 , for some choice of c4, which proves the
claim.

We observe that a connected component S in G[B] of size k∆2c2

implies the existence of a connected set U in H[B] of size k. To
that end, we greedily add nodes from S to U one by one, each time
discarding all (at most ∆2c2 many) nodes within 2c2 hops of the
added vertex. Property (i) thus follows from Claim 3.4.

To prove (ii), we first compute a (4c2 + 3,Θ(log log n))-ruling set
on G in O(log log n) rounds, w.h.p., using either the algorithm of
Schneider et al. [220] and Gfeller and Vicari [108] (see [28, Table IV])
or the algorithm of Ghaffari [111, Lemma 2.2]. This in particular
gives us such a ruling set for each connected component C of B
(with regard to the distances in G). Recall that an (α, β)-ruling set
for C is a set RC ⊆ C of nodes where each two have distance at
least α, while for each vertex in C, there is at least one vertex in

60 Tools and Techniques

RC within β hops. Then, each vertex joins the cluster of its nearest
ruling set vertex in RC (breaking ties arbitrarily using IDs). We
contract the clusters into super-nodes, and connect two super-nodes
if their clusters contain adjacent nodes. The following computations
will only take place on the super-nodes; we can simulate one round
of this in O(log log n) rounds on G, since each of these super-nodes
has radius O(log log n) in G.

We next show that every component consisting of super-nodes with
probability at least 1− n−c3 has at most at most O(log∆ n) super-
nodes. For the analysis, we add edges to make RC connected (if it
is not) in H (so that there is a path of length at most 2c2 + 1 but
no path of length at most 4c2 + 1). See [28, Page 19, Steps 3 and 4].
Due to Claim 3.4, the resulting connected set, and hence RC , has
size at most O(log∆ n).

We then compute a (λ, log1/λ n · log logn) network decomposition on
each connected component of this super-graph, independently and
all in parallel, using the algorithm described in Lemma 3.2. Notice
that when invoking Lemma 3.2, we are now working on graphs of size
O(log∆ n), which means the network decomposition that we obtain
has parameters (λ,O(log1/λ n · log log n)) and it runs in λ log1/λ n ·
2O(
√

log logn) rounds on the super-graph, and hence also on G. In the
end, we extend this decomposition to the original graph on nodes of
(this connected component of) B, where each vertex of B belongs to
the block of the network decomposition where its contracted cluster
is. This increases the radius of each block by the radius of the
contracted cluster, which is at most a factor O(log log n). This thus
leads to a

(
λ,O(log1/λ n · log2 log n)

)
network decomposition.

Note that there is one subtlety. The network decomposition algo-
rithm works under the assumption that the graph has size O(log n),
and hence that all the nodes it sees have unique O(log log n)-bit IDs.
This is not the case, however. To achieve that, we will compute a
proper coloring in the power graph of the super-graph, with power

3.2. Local Simulation in All-to-All Models 61

λ log1/λ n ·2O(
√

log logn), which works in O(log∗ n) rounds, and hence
will not affect the overall round complexity. We refer to [53, Lemma
1.2] and [28, Remark 3.6] for a more thorough discussion.

Finally, observe that each edge e survives if both its endpoints sur-
vive, which happens with probability at most 2∆−c1 . Hence, the
expected number of surviving edges is at most n∆1−c1 . A Cher-
noff bound with bounded dependence (see, e.g., [212]) concludes the
proof of (iii).

3.2 Local Simulation in All-to-All Models

3.2.1 Lenzen’s Routing

One central and frequently used communication primitive for de-
signing CC algorithms is the routing algorithm of Lenzen [169, 168],
colloquially known as Lenzen’s routing. It allows to exchange mes-
sages in O(1) rounds, as long as each vertex v is the source and
the destination of at most O(n) messages of size O(log n), or, put
differently, O(n log n) bits of information.

We use Lenzen’s routing implicitly in several places, mainly in two
different variants.

Sparse Graphs: Whenever a graph has O(n) edges, any problem
can be solved easily in O(1) many CC rounds as follows. Every node
sends its incident edges to a dedicated node (for instance, the one
with the smallest ID) using Lenzen’s routing. Note that trivially,
no node sends or receives more than O(n) edges, hence more than
O(n) messages of size O(log n). This dedicated node then computes
a solution offline and shares it with all other nodes.

Simulation of LOCAL Algorithms: A single-round LOCAL al-
gorithm with messages of size at most O(log n) (in other words, a
single-round CONGEST algorithm) can be implemented in CC in

62 Tools and Techniques

O(1) rounds: each node sends and receives at most ∆ messages,
hence at most O(∆ log n) = O(n log n) bits.

Similarly, if ∆rs = O(n log n), an r-round LOCAL algorithm with
messages of size at most s can be simulated in CC in O(1) rounds.

3.2.2 Graph Exponentiation

Many LOCAL algorithms can be simulated in the same number of
rounds in the CC and MPC models using a standard simulation
technique [151, 126]. An interesting question is whether one can use
the additional power of global all-to-all communication to (substan-
tially) speed up the corresponding round complexities from LOCAL.
One partial answer was given by the very natural and intuitive graph
exponentiation approach by Lenzen and Wattenhofer [169], which is
frequently applied in the design of algorithms in the CC and MPC
models. It usually leads to an exponential speedup.

The main idea behind it is as follows: An r-round LOCAL algorithm
can be seen as a function that maps a vertex and its r-hop neighbor-
hood to an output for that vertex. Hence, to determine the output
of an r-round LOCAL algorithm in MPC or CC for a vertex v, it
suffices if a single node knows v’s r-hop neighborhood. The goal is
to design a technique that allows to learn the 2i-hop neighborhood
of every vertex in i rounds. Suppose that every vertex knows its
2i−1-hop neighborhood in iteration i− 1. Then, in iteration i, each
vertex can inform the vertices in its 2i−1-hop neighborhood of the
topology of its 2i−1-hop neighborhood.

The main difficulty is that the amount of information in the r-hop
neighborhood of a single vertex can be as high as Θ(n2). We need
to ensure that the graph is sparse enough so that fast learning of
the neighborhood is possible. We briefly discuss the implications for
graph exponentiation in CC and MPC, respectively.

3.2. Local Simulation in All-to-All Models 63

Graph Exponentiation in CC

If ∆r = O(n), so that every r-hop neighborhood has linear size, it is
possible to achieve an exponential speedup in the round complexity
compared to that of LOCAL, using Lenzen’s routing to gather r-hop
neighborhoods.

Graph Exponentiation in Sublinear-Memory MPC

The memory restrictions in the sublinear regime of MPC impose
the following two fundamental barriers for this graph exponentia-
tion approach. One needs to carefully design graph exponentiation
techniques that do circumvent these difficulties.

Local Memory Barrier: Even for r = 1, the r-hop neighborhood
of a vertex may have size Ω(m), exceeding the local memory S of a
node.

Global Memory Barrier: Storing the neighborhood of each ver-
tex on its corresponding node leads to storing overlapping neighbor-
hoods, and hence redundant copies of vertices and edges, and thus
a total aggregated memoryMS that is significantly larger than the
input size m.

3.2.3 Sparsification and Opportunistic Speedup

The graph exponentiation technique seems to be limited to expo-
nential speedup for CC and MPC compared to LOCAL. We next
present a method that potentially gives rise to a super-exponential
speedup in CC: under certain conditions, the LOCAL algorithm can
be accelerated to run in O(1) rounds.

The output of a node v for a r-round LOCAL algorithm A may
depend on the whole r-hop neighborhood of v, thus on up to ∆r

nodes. To efficiently simulate A in CC, a strategy is to sparsify the
algorithm A so that the number of nodes a node has to explore to

64 Tools and Techniques

decide its output is significantly smaller than ∆r. This notion of
sparsification of LOCAL algorithms is a key idea behind [110, 123,
71].

We explain how to use this sparsification technique for LOCAL algo-
rithms to obtain constant-round solutions in CC. Lemma 3.5, pre-
sented below, summarizes the criteria for this method to work. We
note that a somewhat similar idea was at the heart of the O(1)-round
minimum spanning tree algorithm of [150].

Let `in denote the number of bits needed to represent the random
bits and the input for executing A at a node and let `out denote
the number of bits needed to encode the output of A at a node.
We assume that each node v initially knows a set N∗(v) ⊆ N(v)
such that throughout the algorithm A, each node v only receives
information from nodes in N∗(v). We use ∆∗ for the size of the
biggest set N∗(v). Note that it is possible that u ∈ N∗(v) but
v /∈ N∗(u). In this case, during the execution of A, all messages sent
via the edge {u, v} are from u to v. We use Nk

∗ (v) to denote the set
of all nodes u such that there is a path (v = w0, w1, . . . , wx−1 = u)
such that x ≤ k and wi ∈ N∗(wi−1) for each i ∈ [1, x−1]. Intuitively,
if A takes r rounds, then all information needed for vertex v ∈ V to
calculate its output is the IDs and the inputs of all nodes in N r

∗ (v).

Lemma 3.5 (Opportunistic Speedup). An r-round LOCAL algo-
rithm A can be simulated w.h.p. in O(1) rounds in CC if

(i) ∆r
∗ log

(
∆∗ + `in

logn

)
= O(log n),

(ii) `in = O(n), and

(iii) `out = O(log n).

Proof. Assume A is in the following canonical form. Each node first
generates certain amount of local random bits, and then collects
all information in its r-neighborhood. This information includes

3.2. Local Simulation in All-to-All Models 65

not only the graph topology, but also IDs, inputs, and the random
bits of these nodes. After gathering this information, each node
computes its output offline based on the gathered information.

Consider the following procedure in CC for simulating A. In the
first phase, for each ordered node pair (u, v), with probability p to
be determined, u sends all its information to v. The information can
be encoded in Θ(∆∗ log n + `in) bits. This includes the local input
of u, the local random bits needed for u to run A, and the list of
IDs in N∗(u)∪ {u}. In the second phase, for each ordered node pair
(u, v), if v has gathered all the required information to calculate the
output of A at u, then v sends the output of A at u to u.

At first sight, the procedure seems to take ω(1) rounds. How-
ever, if we set p = Θ

(
(∆∗ + `in/ log n)−1

)
, the expected number

of O(log n)-bit messages sent from or received by a node is np ·
Θ(∆∗ + `in/ log n) = O(n).

More precisely, let Xu be the number of nodes u sends its local
information to in the first phase; similarly, let Yv be the number of
nodes sending their local information to node v. We have E[Xu] =
np for each u ∈ V , and E[Yv] = np for each v ∈ V . By a Chernoff
bound, when np = Ω(log n), with probability 1− e−Ω(np) = n−Ω(1),
we have Xu = O(np), for each u ∈ V , and Yv = O(np) for each
v ∈ V . That is, the number of O(log n)-bit messages sent from and
received by a node w.h.p. is at most np ·Θ(∆∗ + `in/ log n) = O(n).

We verify that np = Ω(log n). Condition (i) implicitly requires
∆∗ = O(log n), and (ii) ensures `in = O(n). Therefore,

np = Θ

(
n

∆ + `in
logn

)
= Ω(log n).

Thus, we can route all messages in O(1) rounds using Lenzen’s rout-
ing; the first phase hence can be implemented in O(1) CC rounds.

66 Tools and Techniques

Condition (iii) guarantees that `out = O(log n), and so the messages
in the second phase can be sent directly in O(1) rounds. What
remains to do is to show that w.h.p. for each u ∈ V there is a node
v ∈ V that receives messages from all nodes in N r

∗ (u) during the
first phase, and so v is able to calculate the output of u offline.

Let Eu,v be the event that v receives messages from all nodes in
N r
∗ (u) during the first phase, and define Eu to be the event that at

least one of {Eu,v | v ∈ V } occurs. We have Pr[Eu,v] ≥ p∆r
∗ , since

|N r
∗ (u)| ≤ ∆r

∗. Thus, Pr[Eu] ≥ 1− (1− p∆r
∗)n.

Condition (i) guarantees that ∆r
∗ log(∆∗+`in/ log n) = O(log n). By

setting

p =
ε

∆∗ + `in
logn

for some sufficiently small constant ε, we have ∆r
∗ log p ≥ −1

2 log n.
This implies p∆r

∗ ≥ 1/
√
n. Therefore,

Pr[Eu] ≥ 1− (1− p∆r
∗)n = 1− e−Ω(

√
n),

which means that the simulation w.h.p. computes the correct output
for all nodes.

Part I

LOCAL Model

67

CHAPTER 4

Local Rounding for Matching

4.1 Introduction

We present the work from the publications ‘Improved Deterministic
Distributed Matching via Rounding’ [99, 100].

4.1.1 Our Results and Related Work

We illustrate the power as well as the flexibility of deterministic
rounding by presenting improved distributed algorithms for a num-
ber of well-studied matching problems. Our algorithms are simpler,
faster, more accurate, and/or more general than their known coun-
terparts.

69

70 Local Rounding for Matching

Approximate Maximum Matching

Our main ingredient is an approximation algorithm for matching.

Theorem 4.1. There is an O
(
log2 ∆ · log 1

ε + log∗ n
)
-round deter-

ministic LOCAL algorithm that computes a (2+ε)-approximate max-
imum matching, for any ε > 0.

For constant ε > 0, this O(log2 ∆+log∗ n)-round algorithm is signif-
icantly faster than the previously best known deterministic constant
approximations, especially in low-degree graphs: the O(∆ + log∗ n)-
round 2-approximation of Panconesi and Rizzi [205], the O(log4 n)-
round 2-approximation of Hańćkowiak et al. [132], the O(log4 n)-
round (3/2)-approximation of Czygrinow et al. [77, 76], and its ex-
tension [75] which finds a (1+ε)-approximation in logO(1/ε) n rounds.

Our O(log2 ∆+log∗ n)-round algorithm gets close to the lower bound
of Ω(log ∆/ log log ∆+log∗ n), due to the celebrated results of Kuhn
et al. [162, 163, 164], Linial [171], and Naor [194], that holds for any
(randomized) constant approximation of matching.

Maximal Matching

Iterative invocation of our matching approximation algorithm yields
a maximal matching.

Theorem 4.2. There is an O(log2 ∆ · log n)-round deterministic
LOCAL maximal matching algorithm.

This is the first improvement in about 20 years over the break-
throughs of Hańćkowiak et al., which presented first an O(log7 n)-
[131] and then an O(log4 n)-round [132] algorithm for the problem
of maximal matching. Moreover, plugging in our improved deter-
ministic algorithm in the randomized maximal matching algorithm
of Barenboim et al. [27, 28] improves their round complexity from
O(log ∆ + log4 log n) to O(log ∆ + log3 log n).

4.1. Introduction 71

Corollary 4.3. There is an O(log ∆ + log3 log n)-round LOCAL al-
gorithm that w.h.p. computes a maximal matching.

Almost Maximal Matching

We get a faster algorithm for ε-almost maximal matching, a match-
ing that leaves only ε-fraction of edges among unmatched vertices.

Theorem 4.4. There is a deterministic O
(
log2 ∆ · log 1

ε + log∗ n
)
-

round LOCAL ε-almost maximal matching algorithm, for any ε > 0.

This theorem statement is interesting because of two aspects: First,
in some practical settings, this almost maximal matching—which
practically looks maximal for essentially all vertices—may be as use-
ful as maximal matching, especially since it can be computed much
faster. Notice that the complexity grows slowly as a function of ε.
Thus, we can set ε quite small. By setting ε = ∆− poly log ∆, we
get an algorithm that, in O(poly log ∆ + log∗ n) rounds, produces a
matching that seems to be maximal for almost all vertices, even if
they look up to their poly log ∆-hop neighborhood.

Second, this faster almost maximal matching algorithm sheds some
light on the difficulties for maximal matching: Balliu et al. [19]
recently proved an Ω (min {∆, log n/ log logn})-round lower bound
for deterministic LOCAL maximal matching algorithms, confirming
a conjecture by Göös et al. [127] that “there should be no o(∆) +
O(log∗ n) algorithm for computing a maximal matching.” Since our
ε-almost maximal matching algorithm clearly undercuts this bound,
the challenge for maximal matching must stem from the fact that
all matchable edges must be matched.

Edge Dominating Set

As a corollary of the almost maximal matching algorithm of Theo-
rem 4.4, we get a fast algorithm for approximating minimum edge

72 Local Rounding for Matching

dominating set, which is the smallest set of edges such that any edge
shares at least one endpoint with them.

Corollary 4.5. There is an O(log2 ∆ · log ∆
ε + log∗ n)-round deter-

ministic LOCAL algorithm for a (2 + ε)-approximate minimum edge
dominating set, for any ε > 0.

Previously, the fastest algorithms ran in O(∆ + log∗ n) rounds [205]
or O(log4 n) rounds [132], providing 2-approximations. Moreover,
Suomela [224] provided roughly 4-approximations in O(∆2) rounds,
in a restricted variant of the LOCAL model with port numberings.

Weighted Matching and (Weighted) b-Matching

An interesting aspect of the method we use is its flexibility and gen-
erality. In particular, the algorithm of Theorem 4.1 can be easily
extended to a (2+ε)-approximation of maximum weighted matching,
and more interestingly, of maximum weighted b-matching. Through-
out, W will denote the maximum normalized edge weight.

Theorem 4.6. There is an O(log2 ∆·log 1
ε ·log1+εW+log∗ n)-round

deterministic LOCAL algorithm for a (2 + ε)-approximate maximum
weighted matching, or b-matching, for any ε > 0 and W ≥ 2.

To the best of our knowledge, this is the first deterministic dis-
tributed algorithm for b-matching. Moreover, even in the case of
standard matching, it improves on the previously best-known algo-
rithm: a deterministic algorithm for (6 + ε)-approximation of maxi-
mum weighted matching was provided by Panconesi and Sozio [206],
with a round complexity of O

(
log4 n · log1+εW

)
. However, that de-

terministic algorithm does not extend to b-matching.

Recently, Ahmadi et al. [2] have slightly improved and generalized
our rounding technique to get a (1+ε+o(1))-approximate maximum
weighted matching in O

(
log(∆W)/ε2 + log2 ∆/ε+ log∗ n/ε

)
.

4.1. Introduction 73

Further Related Work

Aside from the deterministic algorithms discussed above, there is
a long line of research on randomized distributed approximation
algorithms for matching: for the unweighted case, [145] provide a 2-
approximation in O(log n) rounds, and [176] a (1+ε)-approximation
in O(log n) rounds for any constant ε > 0. For the weighted case,
[227, 178, 176] provide successively improved algorithms, culminat-
ing in the O(log 1/ε · log n)-round (2 + ε)-approximation of [176].
Moreover, [157] present an O(log n)-round randomized algorithm
for 2-approximate weighted b-matching.

4.1.2 Notation and Preliminaries

Matching and Fractional Matching: An integral matching M is
a subset of E such that e∩e′ = ∅ for all e 6= e′ ∈M . It can be seen as
an assignment of values xe ∈ {0, 1} to edges, where xe = 1 iff e ∈M ,
such that cv :=

∑
e∈E(v) xe ≤ 1 for all v ∈ V . Here, E(v) denotes

the set of edges incident to vertex v. When the condition xe ∈ {0, 1}
is relaxed to 0 ≤ xe ≤ 1, such an assignment is called a fractional
matching. We call a fractional matching 2−i-fractional for an i ∈ N if
xe ∈ {0} ∪

{
2−j : 0 ≤ j ≤ i

}
. Notice that a 2−0-fractional matching

is simply an integral matching. Given a fractional matching, we call
a vertex v half-tight if cv =

∑
e∈E(v) xe >

1
2 . Given a fractional

b-matching, we call a vertex v half-tight if cv =
∑

e∈E(v) xe >
bv
2 .

Variants of Matching: An integral matching is called maximal
if we cannot add any edge to it without violating the constraints.
For ε > 0, we say that M ⊆ E is an ε-almost maximal matching if
after removing the edges in and incident to M from G, at most ε|E|
edges remain, thus if |N+(M)| ≥ (1− ε)|E| for N+(M) := {e ∈ E |
∃e′ ∈M : e ∩ e′ 6= ∅}.

A b-matching for b-values {1 ≤ bv ≤ d(v) : v ∈ V } is an assignment
of values xe ∈ {0, 1} to edges e ∈ E such that

∑
e∈E(v) xe ≤ bv for all

74 Local Rounding for Matching

v ∈ V . Throughout, d(v) denotes the degree of v in G. A fractional
b-matching only requires 0 ≤ xe ≤ 1.

In an unweighted graph, a matching M∗ is called maximum if it is a
largest matching in terms of cardinality. For any c ≥ 1, we say that
a matching is c-approximate if c

∑
e∈E xe ≥ |M∗| for a maximum

matching M∗. In a weighted graph where each edge e is assigned a
weight we ≥ 0, we say that M∗ is a maximum weighted matching
if it is a matching with maximum weight w(M∗) :=

∑
e∈M∗ we.

An integral matching M is a c-approximate weighted matching if
c
∑

e∈M we ≥ w(M∗).

An edge dominating set is a set D ⊆ E such that for every e ∈ E
there is an e′ ∈ D such that e∩e′ 6= ∅. A minimum edge dominating
set is an edge dominating set of minimum cardinality.

We now state some simple facts about matchings.

Lemma 4.7. For a maximal matching M and a maximum matching
M∗, we have the following two properties:

(i) |M | ≥ 1
2∆−1 |E|, and (ii) 1

2 |M
∗| ≤ |M | ≤ |M∗|.

Proof. For (i), observe that an edge has at most 2∆− 2 neighbors.
Hence, per edge that joins a maximal matching, at most 2∆ − 2
cannot join. In other words, out of 2∆ − 1 edges, at least one will
be in a maximal matching. For (ii), we want to see that a maximal
matching is a 2-approximation. For every edge e ∈M∗, we have that
either e or at least one of the edges incident to e is in the maximal
matching M , due to maximality. On the other hand, every edge
e ∈M can have at most 2 edges incident to it that are in M∗.

Lemma 4.8 (Panconesi and Rizzi [205]). There is an O(∆+log∗ n)-
round deterministic LOCAL algorithm for maximal matching.

4.1. Introduction 75

Remark 4.9. Note that if a q-coloring is provided, the algorithm
from Lemma 4.8 runs in O(∆ + log∗ q) rounds. In particular, for
bipartite graphs (where the bipartition is given), the round complex-
ity is simply O(∆). This gives rise to the following frequently used
trick: If their algorithm is applied repeatedly, by precomputing an
O(∆2)-coloring using Linial’s algorithm [172] in O(log∗ n) rounds,
one can replace the O(log∗ n) term in each iteration by O(log∗∆),
at the cost of initially spending O(log∗ n) rounds once.

4.1.3 Overview and Outline

Our main ingredient is a deterministic local rounding technique for
matching. To the best of our knowledge, this is the first known
deterministic distributed rounding method. Somewhat similar ap-
proaches have been studied in [131, 132, 133] that can be interpreted
as approximate rounding algorithms, although they are not explic-
itly phrased in this way. Their key component is, roughly speaking,
to decompose edges of any regular graph into two groups, say green
and blue, so that almost all vertices see a fair split of their edges
into the two colors. This is a special case of rounding for regular
graphs.

To present the flavor of our deterministic rounding method, here we
overview it in a simple special case: we describe an O(log2 ∆)-round
algorithm for a constant approximation of the maximum unweighted
matching in 2-colored bipartite graphs. The precise algorithm, as
well as the extensions to general graphs, better approximations, and
more general problems appear later.

In approximating the maximum matching, the main challenge is
finding an integral matching with such an approximation guarantee;
finding a fractional matching with such an approximation is trivial.

76 Local Rounding for Matching

Fractional Solution

There is a simple O(log ∆)-round greedy algorithm that works as
follows.

Greedy Algorithm: We call a vertex v half-tight if its value cv :=∑
e∈E(v) xe > 1/2, where E(v) := {e ∈ E : v ∈ e} denotes the set of

edges incident to vertex v. Initially, we set xe = 1/∆ for all edges
e. Then, for log ∆ iterations, we freeze all edges with at least one
half-tight endpoint and double the value of all non-frozen edges.

Analysis: One can see that this produces a 4-approximation, as
the following neat “blaming” argument shows. To that end, we
give 1 dollar to each edge e in a maximum matching M∗ and ask
it to redistribute this money among all edges in such a way that
no edge e′ receives more than 4xe′ dollars. Consider a maximum
matching M . Every edge e ∈M in the maximum matching blames
one dollar on a tight endpoint in the fractional matching. Note that
there must be at least one, as otherwise the fractional matching
could be further increased. Every tight endpoint that has received
a dollar now blames it on all its incident edges proportionally to
their value, every edge getting at most twice its value. Since an
edge has potentially two endpoints distributing blame on it, in total
it receives at most a quadruple of its value in dollars. Since overall
|M | dollars have been distributed, this proves that M is at most 4
times larger than the fractional matching. This is also illustrated in
Figure 4.1.

See [156, 163, 119], which discuss other distributed aspects of linear
programs.

Gradual Rounding

We gradually round this fractional matching x = {xe : e ∈ E} bit
by bit to an integral matching x′ = {x′e : e ∈ E} while ensuring that∑

e x
′
e ≥ (

∑
e xe)/C, for some constant C.

4.1. Introduction 77

e

0
u

v

w

1

4

1

4

Figure 4.1: An edge e in the maximum matching (drawn in blue)
blames its dollar on its tight (blue) endpoint u (depicted as green
arrows). This vertex in turn distributes this dollar to its incident
edges proportionally to their value: 0 to edge e with value 0 and 50
cents to each of the two edges with value 1

4 (shown as red arrows).
These edges, however, might also receive (no more than) 50 cents
from their (tight) endpoints v and w, respectively.

We have O(log ∆) rounding phases, each of which takes O(log ∆)
rounds. In each phase, we get rid of the most-fractional values and
thereby move closer to integrality. The initial fractional matching
has1 only values xe = 2−i for i ∈ {0, . . . , dlog ∆e} or xe = 0. In
the phase k, we partially round the edge values xe = 2−i for i =
dlog ∆e − k + 1. Some of these edges will be raised to xe = 2 · 2−i,
while others are dropped to xe = 0. The choices are made in a way
that keeps

∑
e xe essentially unchanged, as we explain next.

Consider the graph H edge-induced by edges e with value xe = 2−i.
For the sake of simplicity, suppose all vertices of H have even degree.
Dealing with odd degrees requires some delicate care, but it will not
incur a loss worse than an O

(
2−i
)
-fraction of the total value. In this

1Any fractional maximum matching can be transformed to this format, with
at most a factor 2 loss in the total value: simply round down each value to the
next power of 2, and then drop edges with values below 2−(dlog ∆e+1).

78 Local Rounding for Matching

even-degree graph H, we effectively want that for each vertex v of
H, half of its edges raise xe = 2−i to xe = 2 · 2−i while the others
drop it to xe = 0. For that, we generate a degree-2 graph H ′ by
computing the 2-decomposition: Graph H ′ is simply a set of cycles
of even length, as H was bipartite.

In each cycle of H ′, we would want that the raise and drop of
edge weights is alternating. That is, odd-numbered, say, edges are
raised to xe = 2 · 2−i while even-numbered edges are dropped to
xe = 0. This would keep x a valid fractional matching—meaning
that each vertex v still has

∑
e∈E(v) xe ≤ 1—because the summa-

tion
∑

e∈E(v) xe does not increase, for each vertex v. Furthermore, it
would keep the total weight

∑
e xe unchanged. If the cycle is shorter

than length O(log ∆), this raise/drop sequence can be identified in
O(log ∆) rounds. For longer cycles, we cannot compute such a per-
fect alternation in O(log ∆) rounds. However, one can do something
that does not lose much2: imagine that we chop the longer cycles
into edge-disjoint paths of length Θ(log ∆). In each path, we drop
the endpoints to xe = 0 while using a perfect alternation inside the
path. An example can be found in Figure 4.2.

These border settings mean that we lose Θ(1/ log ∆)-fraction of the
weight. Thus, even over all the O(log ∆) iterations, the total loss is
only a small constant fraction of the total weight.

4.2 Matching in Bipartite Graphs

The common denominator of our results is a deterministicO(log2 ∆)-
round algorithm for a constant approximation of the maximum un-
weighted matching in 2-colored bipartite graphs.

2Our algorithm actually does something slightly different, but describing this
ideal procedure is easier.

4.2. Matching in Bipartite Graphs 79

u

v1

v2

v3

Figure 4.2: Three copies v1, v2, v3 of a vertex v with its even-length
cycles in H ′ and their raise/drop sequence: red means set to 0 and
green means increased by a factor 2. The cycles of v1 and v2 are
short enough to identify a perfect alternation. The cycle of v3 is
too long and has to be chopped at u, say, into two alternating paths
with dropped edge values at the border.

Lemma 4.10. There is an O(log2 ∆)-round deterministic LOCAL
algorithm for a c-approximate maximum matching in a 2-colored
bipartite graph, for some constant c.

The proof of Lemma 4.10 is split into three parts. In the first
step, explained in Section 4.2.1, we compute a 2−dlog ∆e-fractional
4-approximate maximum matching in O(log ∆) rounds. The second
step, which constitutes the heart of our approach and is formalized
in our Rounding Lemma in Section 4.2.2, is a method to round these
fractional values to almost integrality in O(log2 ∆) rounds. In the
third step, presented in Section 4.2.3, we resort to a simple constant-
round algorithm to transform the almost integral matching that we
have found up to this step into an integral matching. As a side re-
mark, we note that we explicitly state some of the constants, for the
sake of readability. These constants are not the focus of this work,
and we have not tried to optimize them.

80 Local Rounding for Matching

4.2.1 Step 1: Fractional Matching

We show that a simple greedy algorithm already leads to a fractional
4-approximate maximum matching.

Lemma 4.11. There is an O(log ∆)-round deterministic LOCAL
algorithm that computes a 2−dlog ∆e-fractional 4-approximate maxi-
mum matching.

Proof. Initially, set xe = 2−dlog ∆e for all e ∈ E. Notice that this
trivially satisfies the constraints cv =

∑
e∈E(v) xe ≤ 1. Then, we

iteratively raise the value of all loose edges by a factor 2 until they
have at least one half-tight endpoint. This can be done in O(log ∆)
rounds, since at the latest when the value of an edge is 1/2, both
endpoints would be half-tight. Once there is no loose edge left, we
have ∑

e∈E
xe =

1

2

∑
v∈V

cv ≥
1

2

∑
e={u,v}∈M∗

(cu + cv) >
|M∗|

4

for a maximum matching M∗.

4.2.2 Step 2: Main Rounding

The Rounding Lemma, is a method that gradually turns a 2−i-
fractional matching into a 2−i+1-fractional one, bit by bit, for de-
creasing values of i, while only worsening the approximation ratio
by a little.

Lemma 4.12 (Rounding Lemma). There is an O
(
log2 ∆

)
-round

deterministic LOCAL algorithm that transforms a 2−dlog ∆e-fractional
4-approximate maximum matching in a 2-colored bipartite graph into
a 2−4-fractional 14-approximate maximum matching.

Proof. Iteratively, for k = 1, . . . , dlog ∆e − 4, in phase k, we get rid
of edges e with value xe = 2−i for i = dlog ∆e − k + 1 by either

4.2. Matching in Bipartite Graphs 81

increasing their values by a factor 2 to xe = 2−i+1 or setting them
to xe = 0.

Next, we describe the process for one phase k, thus a fixed i. Let H
be the graph induced by the set Ei := {e ∈ E : xe = 2−i} of edges
with value 2−i and use H ′ to denote its 2-decomposition. Notice
that H ′ is a vertex-disjoint union of paths and even-length cycles.
Set ` = 24 log ∆. We call a path/cycle short if it has length at most
`, and long otherwise. We now process short and long cycles and
paths, by distinguishing three cases, as we discuss next. Each of
these cases will be done in O(log ∆) rounds, which implies that the
complexity of one phase is O(log ∆). Thus, over all the O(log ∆)
phases, this rounding algorithm takes O(log2 ∆) rounds.

Case A: Short Cycles

Alternately set the values of the edges to 0 and to 2−i+1. Since
the cycle has even length, every vertex has exactly one incident
edge whose value is set to 0 and exactly one set to 2−i+1. Hence,
the values cv =

∑
e∈E(v) xe for all vertices v in the cycle remain

unaffected by this update. Moreover, the total value of all the edges
in the cycle stays the same. See Figure 4.3 for an example.

Case B: Long Cycles and Long Paths

We first orient the edges in a manner that ensures that each maximal
directed path has length at least `. This is done in O(`) rounds. For
that purpose, we start with an arbitrary orientation of the edges.
Then, for each j = 1, . . . , dlog `e, we iteratively merge two (maximal)
directed paths of length < 2j that are directed towards each other
by reversing the shorter one, breaking ties arbitrarily. For more
details of this orientation step, we refer to [133, Fact 5.2] and to [61,
Theorem A.2].

Given this orientation, we determine the new values of xe as follows.

82 Local Rounding for Matching

Figure 4.3: The edge values of a short and a long cycle induced by
edges in Ei after rounding: green stands for value 2−i+1 and red
means value 0. In the long cycle, vertices of color 1 and color 2 are
depicted as white and black disks, respectively.

Recall that we are given a 2-coloring of vertices. Set the value of
all border edges (that is, edges that have an incident edge such
that they are either oriented towards each other or away from each
other) to 0, increase the value of a non-border edge to 2−i+1 if it is
oriented towards a vertex of color 1, say, and set it to 0 otherwise.
See Figure 4.3 for an example.

Now, we show that this process generates a valid fractional matching
while incurring only a small loss in the value. Observe that no
constraint is violated, as for each vertex the value of at most one
incident edge can be raised to 2−i+1 while the other is dropped to
0. Moreover, in each maximal directed path, we can lose at most
3 · 2−i in the total sum of edge values. This happens in the case of
an odd-length path starting with a vertex of color 2. Hence, we can
say that we lose at most a 3

` -fraction of the total sum of the edge
values in long cycles and long paths.

4.2. Matching in Bipartite Graphs 83

Case C: Short Paths

Give the path an arbitrary direction, that is, identify the first and
the last vertex. Set the value of the first edge to 2−i+1 if the first
vertex is loose, and to 0 otherwise. Alternately, starting with value
0 for the second edge, set the value of every even edge to 0 and of
every odd edge to 2−i+1. If the last edge should be set to 2−i+1

(that is, if the path has odd length) but the last vertex is half-tight,
set the value of that last edge to 0 instead. See Figure 4.4 for an
example.

We now discuss the validity of the new fractional matching. If a
vertex v is in the interior of the path, that is, not one of the end-
points, then v can have at most one of its incident edges increased
to 2−i+1 while the other one decreases to 0. Hence the summation
cv =

∑
e∈E(v) xe does not increase. If v is the first or last vertex in

the path, the value of the edge incident to v is increased only if v
was loose, i.e., if cv =

∑
e∈E(v) xe ≤

1
2 . In this case, we still have

cv =
∑

e∈E(v) xe ≤ 1 after the increase, as the value of the edge
raises by at most a factor 2.

We now argue that the value of the matching has not decreased by
too much during this update. For that, we group the edges into
blocks of two consecutive edges, starting from the first edge. If the
path has odd length, the last block consists of a single edge. It
is easy to see that the block value, that is, the sum of the values
of its two edges, of every interior (neither first nor last) block is
unaffected.

Let v be an endpoint of a path. If v is loose, the value of the
block containing v remains unchanged or increases (in the case of
an odd-length path ending in v). If v is half-tight, then the value of
its block stays the same or decreases by 2−i+1, which is at most a
2−i+2-fraction of the value cv.

This allows us to bound the loss in terms of these half-tight end-

84 Local Rounding for Matching

points. The crucial observation is that every vertex can be end-
point of a short path at most once. This is because, in the 2-
decomposition, a vertex can be the endpoint of a path only if it
has a degree-1 copy. This happens only if it has odd degree, and in
that case, it has exactly one degree-1 copy, hence, also exactly one
endpoint of a short path. Therefore, we lose at most a 2−i+2-fraction
in
∑

v∈V cv when updating the values in short paths.

Figure 4.4: The edge values of two short paths induced by edges in
Ei after rounding: green edges stands for 2−i+1 and red means 0.
Half-tight endpoints are depicted as black disks and loose ones as
white disks.

Analyzing the Overall Loss Due to Rounding

First, we show that over all the rounding phases, the overall loss is
only a constant fraction of the total value

∑
e∈E xe.

Let x
(i)
e and c

(i)
v denote the value of edge e and vertex v, respectively,

before eliminating all the edges with value 2−i. Putting together the
loss analyses discussed above, we get

∑
e∈E

x(i−1)
e ≥

∑
e∈E

x(i)
e −

3

`

∑
e∈E

x(i)
e − 2−i+2

∑
v∈V

c(i)
v

≥
(

1− 3

`
− 2−i+3

)∑
e∈E

x(i)
e .

4.2. Matching in Bipartite Graphs 85

It follows that

∑
e∈E

x(4)
e ≥

dlog ∆e∏
i=5

(
1− 3

`
− 2−i+3

)∑
e∈E

x(dlog ∆e)
e

≥

dlog ∆e∏
i=5

e−2(3
`
+2−i+3)

∑
e∈E

x(dlog ∆e)
e

≥ e−
1
4
−16

∑dlog ∆e
i=5 2−i

∑
e∈E

x(dlog ∆e)
e

≥ 1

e
5
4

∑
e∈E

x(dlog ∆e)
e ≥ 1

4e
5
4

|M∗| ≥ 1

14
|M∗|

for a maximum matching M∗, recalling that we started with a 4-
approximate maximum matching. Here, the second inequality holds
because 1− y ≥ e−2y for y ≤ 1

2 , and 3/`+ 2−i+3 ≤ 1/2, as i ≥ 5.

Finally, observe that in all the rounding phases the constraints cv =∑
e∈E(v) xe ≤ 1 are preserved, since the value cv can increase only if

v is loose (and in fact only if the degree-1-copy of v is an endpoint
of a short path), which means cv ≤ 1/2, and in that case only by at
most a factor 2.

4.2.3 Step 3: Final Rounding

So far, we have an almost integral matching. Next, we round all
edges to either 0 or 1, by finding a maximal matching in the sub-
graph induced by edges with positive value.

Lemma 4.13. Given a 2−4-fractional 14-approximate maximum
matching in a 2-colored bipartite graph, there is deterministic LO-
CAL algorithm that computes an integral 434-approximate maximum
matching in O(1) rounds.

86 Local Rounding for Matching

Proof. In the given 2−4-fractional matching, xe 6= 0 means xe ≥
1/16. Thus, a vertex cannot have more than 16 incident edges with
non-zero value in this fractional matching. In this constant-degree
subgraph, a maximal matching M can be found in O(1) rounds using
the algorithm in Lemma 4.8, recalling that we are given a 2-coloring.
We have

|M | ≥ |{e ∈ E : xe > 0}|
31

≥ 1

31

∑
e∈E

xe

by Lemma 4.7 (i). As we started with a 14-approximation, it follows
that M is 434-approximate.

4.3 Matching in General Graphs

We now explain how the approximation algorithm for maximum
matchings in 2-colored bipartite graphs can be employed to find
approximate maximum matchings in general graphs. The main idea
is to transform the given general graph into a bipartite graph with
the same edge set in such a way that a matching in this bipartite
graph can be easily turned into a matching in the general graph.

4.3.1 Constant-Approximate Maximum Matching

Theorem 4.14. There is an O(log2 ∆+log∗ n)-round deterministic
LOCAL algorithm for a c-approximate maximum matching, for some
constant c.

Proof. Let
−→
E be an arbitrary orientation of the edges E. Split

every vertex v ∈ V into two siblings vin and vout, and add an edge

{uout, vin} to EB for every oriented edge (u, v) ∈
−→
E . Let Vin :=

{vin : v ∈ V } be the vertices in color class 1 and Vout := {vout : v ∈
V } the vertices with color 2. By Lemma 4.10, a c-approximate
maximum matching MB in the bipartite graph B = (Vin∪Vout, EB)
can be computed in O

(
log2 ∆

)
rounds. We now go back to V ,

4.3. Matching in General Graphs 87

that is, we merge vin and vout back to v. This makes the edges
of MB incident to vin or vout now be incident to v, yielding a graph
G′ = (V,MB) ⊆ G with maximum degree 2.

We compute a maximal matching M ′ in G′. Using the algorithm
of Lemma 4.8, this can be done in O(log∗ n) rounds. If an poly ∆-
coloring of G is provided, which implies a coloring of G′ with poly ∆
colors, the round complexity of this step is merely O(log∗∆).

It follows from Lemma 4.7 (i) that

|M ′| ≥ |MB|
3
≥
|M∗B|

3c
≥ |M

∗|
3c

for maximum matchings M∗B in B and M∗ in G, respectively. Thus,
M ′ is a (3c)-approximate maximum matching in G. Notice that
the last inequality is true since by introducing additional vertices
but leaving the edge set unchanged when going from G to B, the
maximum matching size cannot decrease.

4.3.2 (2 + ε)-Approximate Maximum Matching

The approximation ratio of a matching algorithm can be improved
from Θ(1) to 2 + ε easily, by O

(
log 1

ε

)
repetitions: each time, we

apply the algorithm of Lemma 4.14 to the remaining graph, and
remove the found matching together with its neighboring edges from
the graph.

Proof of Theorem 4.1. Starting with G0 = G, for i = 0, . . . , k − 1,
where k = O

(
log 1

ε

)
, iteratively compute a c-approximate maximum

matching Mi in Gi, using the algorithm of Lemma 4.14. We delete
Mi together with its incident edges from the graph, that is, set
Gi+1 = (V,E(Gi) \N+(Mi)).

Now, we argue that the obtained matching
⋃k−1
i=0 Mi is (2 + ε)-

approximate. To this end, we bound the size of a maximum match-
ing in the remainder graph Gk.

88 Local Rounding for Matching

Let M∗i be a maximum matching in Gi. An inductive argument
shows that |M∗i | ≤ (1− 1/c)i|M∗|. Indeed, observe

∣∣M∗i+1

∣∣ ≤ |M∗i | − |Mi| ≤
(

1− 1

c

)
|M∗i | ≤

(
1− 1

c

)
i+1|M∗|,

where the first inequality holds since otherwise M∗i+1∪Mi would be a
better matching thanM∗i inGi, contradicting the latter’s optimality.
For k = log1−1/c

ε
2(2+ε) , we thus have |M∗k | ≤

ε
2(2+ε) |M

∗|.

As
⋃k−1
i=0 Mi is a maximal matching in G \ Gk by construction,(⋃k−1

i=0 Mi

)
∪M∗k is a maximal matching in G. By Lemma 4.7 (ii),

this means that ∣∣∣∣∣
k−1⋃
i=0

Mi

∣∣∣∣∣+ |M∗k | ≥ |M∗|/2,

hence ∣∣∣∣∣
k−1⋃
i=0

Mi

∣∣∣∣∣ ≥
(

1

2
− ε

2(2 + ε)

)
|M∗| ≥ |M

∗|
2 + ε

.

We have O(log 1
ε) iterations, each taking O(log2 ∆ + log∗ n) rounds.

As observed in Remark 4.9, by precomputing an O(∆2)-coloring in
O(log∗ n) rounds, the round complexity of each iteration decreases
to O(log2 ∆ + log∗∆) = O(log2 ∆), overall leading to a round com-
plexity of O(log2 ∆ · log 1

ε + log∗ n).

Remark 4.15. The analysis above shows that the matching M
computed by the algorithm of Theorem 4.1 is not only (2 + ε)-
approximate, but also has the property that any matching in the
remainder graph (induced by E \ N+(M)) can have size at most
ε|M∗| for a maximum matching M∗ in G.

4.4. Extensions and Corollaries 89

4.3.3 Maximal Matching

If one increases the number of repetitions to O(log n), the found
matching is maximal.

Proof of Theorem 4.2. We apply the c-approximation algorithm of
Lemma 4.14 for k = log1−1/c

1
n iterations on the respective remain-

der graph, as described in the proof of Theorem 4.1. The same
analysis (also adopting the notation from there) shows that any
matching M∗k in the remainder graph Gk has |M∗k | ≤ |M∗|/n < 1,

which means that Gk is an empty graph. But then
⋃k−1
i=1 Mi must

be maximal.

4.4 Extensions and Corollaries

4.4.1 Almost Maximal Matching

In Section 4.3 (see Remark 4.15), we have seen how one can obtain
a matching that reduces the size of the matching in the remainder
graph, that is, the graph after removing the matching and all inci-
dent edges, by a constant factor. Intuitively, one would expect that
this also reduces the number of remaining edges by a constant factor,
which would directly lead to an (almost) maximal matching just by
repetitions. However, this is not the case, since not every matched
edge removes the same number of edges from the graph, particularly
in non-regular graphs. This calls for an approach that weights edges
incident to vertices of different degrees differently, which naturally
brings into play weighted matchings.

Constant-Approximate Maximum Weighted Matching: We
thus first present an algorithm that finds a constant approximation
of maximum weighted matching, based on the approximate (un-
weighted) matching algorithm of Theorem 4.1. Note that this is a
faster version of Theorem 4.6. In particular, this algorithm’s round
complexity does not depend on the maximum weight W .

90 Local Rounding for Matching

Lemma 4.16. There is an O
(
log2 ∆ + log∗ n

)
-round determinis-

tic LOCAL algorithm that computes a 256-approximate maximum
weighted matching.

Proof. We assume without loss of generality that the edge weights
are normalized, that is, from a set {1, . . . ,W} for some maximum
weight W ≥ 2. Round the weights we for e ∈ E down to the
next power of 8, resulting in weights w′e. This rounding procedure
lets us lose at most a factor 8 in the total weight, as every single
edge weight is decreased by at most this. Moreover, it provides us
with a decomposition of G into graphs Ci = (V,Ei) with Ei :={
e ∈ E : w′e = 8i

}
for i ∈ {0, . . . , blog8W c}.

In parallel, run the algorithm of Theorem 4.1 with ε = 1 on every Ci
to find a 3-approximate maximum matching Mi in Ci in O(log2 ∆+
log∗ n) rounds. Observe that the edges in

⋃
iMi do not need to form

a matching since edges from Mi and Mj for i 6= j can be incident.
However, a matching M ⊆

⋃
iMi can be easily obtained by deleting

all but the highest-index edge in every such conflict, that is, by
removing all edges e ∈ Mi that have an incident edge e′ ∈ Mj for
some j > i.

In the following, we argue that the weight of M cannot be too small
compared to the weight of

⋃
iMi by an argument based on counting

in two ways.

Let every edge e ∈ (
⋃
iMi) \M put blame w′e on an edge in M as

follows. Since e /∈ M , there must be an edge e′ incident to e such
that e ∈ Mi and e′ ∈ Mj for some j > i. If e′ ∈ M , then e blames
weight we on e′. If e′ /∈M , then e puts blame we on the same edge
as e′ does.

For an edge e ∈ M ∩ Ei and j ∈ [i], let nj denote the maximum
number of edges from Mi−j that blame e. A simple inductive argu-
ment shows that nj ≤ 2j . Indeed, there can be at most two edges
from Mi−1 blaming e, at most one per endpoint of e, and, for j > 1,

4.4. Extensions and Corollaries 91

we have

nj ≤ 2 +

j−1∑
j′=1

nj′ ≤ 2 +

j−1∑
j′=1

2j
′

= 2j ,

since at most two edges in Mi−j can be incident to e and at most
one further edge can be incident to each edge in Mi−j′ for j′ < j, as
Mi−j is a matching.

Therefore, overall, at most

i∑
j=1

2j8i−j ≤ 1

3
8i ≤ w′e

3

weight is blamed on e. This means that∑
e∈(∪iMi)\M

w′e ≤
1

3

∑
e∈M

w′e,

hence ∑
e∈∪iMi

w′e ≤
4

3

∑
e∈M

w′e.

Taken together, we thus have that∑
e∈M∗

we ≤ 8
∑
e∈M∗

w′e ≤ 24
∑

e∈∪iMi

w′e ≤ 32
∑
e∈M

w′e ≤ 256
∑
e∈M

we

for a maximum weighted matching M∗.

We use our fast weighted maximum approximation algorithm from
Lemma 4.16, by assigning appropriately chosen weights, to find a
matching that removes a constant fraction of the edges in Lemma 4.17.
The main idea is to define the weight of each edge to be the num-
ber of its incident edges. This way, an (approximate) maximum
weighted matching corresponds to a matching that removes a large
number of edges.

92 Local Rounding for Matching

Lemma 4.17. There is an O
(
log2 ∆ + log∗ n

)
-round deterministic

LOCAL algorithm for a 511
512 -almost maximal matching.

Proof. For each edge e = {u, v} ∈ E, introduce a weight we =
d(u) + d(v) − 1, and apply the algorithm of Lemma 4.16 to find a
256-approximate maximum weighted matching M in G.

For the weight w(M∗) of a maximum weighted matching M∗, it
holds that w(M∗) ≥ |E|, as the following simple argument based on
counting in two ways shows. Let every edge in E put a blame on
an edge in M∗ that is responsible for its removal from the graph as
follows. An edge e ∈ M∗ blames itself. An edge e /∈ M∗ blames
an arbitrary incident edge e′ ∈ M∗. Notice that at least one such
edge must exist, as otherwise M∗ would not even be maximal. In
this way, |E| many blames have been put onto edges in M∗ such
that no edge e = {u, v} ∈ M∗ is blamed more than we times, as e
can be blamed by itself and any incident edge. Therefore, indeed
w(M∗) =

∑
e∈M∗ we ≥ |E|, and, as M is a 256-approximate, it

follows that
∑

e∈M we ≥ |E|
256 .

Now, observe that we is twice the number of edges that are deleted
when removing e together with its incident edges from G. Since
every edge can be incident to at most two matched edges (and thus
can be deleted by at most two edges in the matching), in total

|N+(M)| ≥ 1
2

∑
e∈M we ≥ |E|

512 many edges are removed from G
when deleting the edges in and incident to M , which proves that M
is a 511

512 -almost maximal matching.

Similarly as in the proof of Theorem 4.1, where we iteratively in-
voked the constant approximate maximum (unweighted) matching
algorithm to gradually decrease the maximum matching size in the
remainder graph, we here iteratively apply the constant almost max-
imal matching algorithm of Lemma 4.17 to successively reduce the
number of remaining edges. Via O

(
log 1

ε

)
repetitions of this, each

4.4. Extensions and Corollaries 93

time removing the found matching and its incident edges, we get an
ε-almost maximal matching, thus proving Theorem 4.4.

Proof of Theorem 4.4. Let G0 = G. For i = 0, . . . , k = O
(
log 1

ε

)
,

iteratively apply the algorithm of Lemma 4.17 to Gi to obtain a c-
almost maximal matching Mi in Gi. We then remove the found
matching as well as its incident edges from the graph, thus set
Gi+1 = (V,E(Gi) \N+(Mi)). It is easy to see that M :=

⋃k−1
i=0 Mi

for k = logc ε is ε-approximate. Indeed, it follows from

|E(Gi+1)| ≤ c |E(Gi)|

that ∣∣E \N+(M)
∣∣ = |E(Gk)| ≤ ck|E| ≤ ε|E|.

Overall, this takes O(log2 ∆ · log 1
ε + log∗ n) rounds.

When setting ε = 1/n2, thus increasing the number of repetitions
to O(log n), we obtain a maximal matching.

Alternative Proof of Theorem 4.2. We invoke the ε-almost maximal
matching algorithm of Theorem 4.4 with ε = 1

n2 , leading to at most
1
n2 |E| < 1 remaining edges.

4.4.2 b-Matching

In this subsection, we explain that only slight changes to the al-
gorithm of Theorem 4.1 are sufficient to make it suitable also for
computing approximations of maximum b-matching. To this end, we
first introduce an approximation algorithm for maximum b-matching
in 2-colored bipartite graphs in Lemma 4.18. Then, we extend this
algorithm to work for general graphs, in Lemma 4.22. Finally, in
the second part of the proof of Theorem 4.1 presented at the end of
this subsection, we show that the approximation ratio can be im-
proved to a value arbitrarily close to 2, simply by repetitions of this
constant approximation algorithm.

94 Local Rounding for Matching

Lemma 4.18. There is an O
(
log2 ∆

)
-round deterministic LOCAL

algorithm for a c-approximate maximum b-matching in a 2-colored
bipartite graph, for some constant c.

This result is a direct consequence of Lemma 4.19, Lemma 4.20,
and Lemma 4.21, which we present next. These lemmas respec-
tively show how a fractional constant approximate b-matching can
be found, how this fractional matching can be round to almost inte-
grality, and how these almost integral values can be turned into an
integral matching, while only losing a constant fraction of the total
value. The proofs are very similar to the ones in Section 4.2, except
for the very last step of rounding (Lemma 4.21), which requires one
extra step, as we shall discuss.

In the following, we call a vertex v ∈ V loose if cv =
∑

e∈E(v) xe <
bv/2, and half-tight otherwise. As before, an edge e is called loose
if either of its endpoints are half-tight.

Lemma 4.19. There is an O(log ∆)-round deterministic LOCAL al-
gorithm for 2−dlog ∆e-fractional 4-approximate maximum b-matching.

Proof of Lemma 4.19. As in the proof of Lemma 4.11, starting with
xe = 2−dlog ∆e (and thus cv ≤ 1 ≤ bv), the edge values of loose edges
are gradually increased until all edges have at least one half-tight
endpoint. This takes no more than O(log ∆) rounds, since at the
latest when the value of an edge incident to v is bv/2, then v becomes
half-tight. We employ a simple argument based on counting in two
ways to show that this yields a 4-approximation of a maximum b-
matching M∗. Let each edge e ∈ M∗ blame one of its half-tight
endpoints. In this way, each half-tight vertex v—which by definition
has value cv =

∑
e∈E(v) xe ≥

bv
2 —is blamed at most bv times. Let

v split this blame uniformly among its incident edges in M∗ such
that each edge e′ is blamed at most twice its value xe′ . In this way,
every edge e′ is blamed at most 4xe′ , as it can be blamed by both
of its endpoints. It follows that |M∗| ≤ 4

∑
e∈E xe.

4.4. Extensions and Corollaries 95

Next, we transform this fractional solution into an almost integral
solution, which is still a constant approximation.

Lemma 4.20. There is an O(log2 ∆)-round deterministic LOCAL
algorithm that transforms a 2−dlog ∆e-fractional 4-approximate max-
imum b-matching in a 2-colored bipartite graph into a 2−4-fractional
14-approximate maximum b-matching.

Proof of Lemma 4.20. As in the proof of Lemma 4.12, the edges
of values 2−i for i = dlog ∆e, . . . , 5 are eliminated. We derive
analogously that the fractional matching obtained at the end is a
14-approximation, observing that changing the condition for half-
tightness of a vertex from cv ≥ 1

2 to cv ≥ bv
2 ≥

1
2 only helps in the

analysis.

In a final step, the almost integral solution is transformed into an
integral one. Notice that for b-matchings, as opposed to standard
matchings, the subgraph induced by edges with positive value need
not have constant degree. In fact, a vertex v ∈ V can have up
to 16bv incident edges with non-zero value. This prevents us from
directly applying the algorithm of Lemma 4.8 to find a maximal
matching in the subgraph with non-zero edge values, as this could
take O(maxv bv) = O(∆) rounds.

Lemma 4.21. Given a 2−4-fractional 14-approximate maximum b-
matching in a 2-colored bipartite graph, there is a deterministic LO-
CAL algorithm that finds an integral 434-approximate maximum b-
matching in O(1) rounds.

Proof. We decompose the edge set induced by edges of positive

value in the 2−4-fractional maximum b-matching
{
x

(4)
e : e ∈ E

}
into

constant-degree subgraphs Ci = (V,Ei), as follows. We make at
most bv copies of vertex v, and we arbitrarily split the edges among

96 Local Rounding for Matching

these copies in such a way that every copy has degree at most 16.
This is done in a manner similar to the 2-decomposition procedure.

In parallel, run the algorithm of Lemma 4.8 on each Ci, in O(1)
rounds. This yields a maximal matching Mi for each Ci that triv-
ially, by Lemma 4.7 (i), satisfies the condition |Mi| ≥ |Ei|/31. Now,
let M :=

⋃
iMi. Since each vertex v occurs in at most bv subgraphs

and each Mi is a matching in Ci, vertex v cannot have more than
bv incident edges in M . Thus, indeed, M is a b-matching. Finally,
observe that

|M | ≥

∣∣∣{e ∈ E : x
(4)
e > 0

}∣∣∣
31

≥ 1

31

∑
e∈E

x(4)
e ,

thus that M is 434-approximate.

A similar argument as in Lemma 4.14 shows that the algorithm
for approximate maximum b-matchings in bipartite graphs from
Lemma 4.18 can be adapted to work for general graphs.

Lemma 4.22. There is an O
(
log2 ∆ + log∗ n

)
-round determinis-

tic LOCAL algorithm that computes a c-approximate maximum b-
matching, for some constant c.

Proof. Do the same reduction to a bipartite graph B as in the proof
of Lemma 4.14, that is, create an in- and an out-copy of every vertex,
and, for an arbitrary orientation of the edges, make each oriented
edge incident to the respective copy of the corresponding vertices.

Compute a c-approximate maximum b-matching MB in B using the
algorithm of Lemma 4.18. Merging back the two copies of a vertex
into one yields a graph with degree of vertex v bounded by 2bv, as
vin and vout both can have at most bv incident edges in MB. Now,
compute a 2-decomposition of this graph. On each component C

4.4. Extensions and Corollaries 97

with edges EC ⊆MB, find a maximal matching MC in O(1) rounds
by the algorithm of Lemma 4.8.

Notice that for each vertex v without a degree-1 copy, its degree
is at least halved in

⋃
CMC compared to MB, and thus at most

bv. If a vertex v has a degree-1 copy, then its degree need not be
halved. But this can happen only if v’s degree in MB is odd, thus at
most 2bv − 1. In this case, v has at most bv − 1 degree-2 copies and
one degree-1 copy, which means that its degree in

⋃
CMC is upper

bounded by bv. We conclude that
⋃
CMC is indeed a b-matching.

Moreover, it follows from |MC | ≥ |EC |/3 by Lemma 4.7 (i) that
|
⋃
CMC | ≥ |MB| /3 ≥ |M∗B| /(3c) ≥ |M∗| /(3c) for maximum b-

matchings M∗B in B and M∗ in G. Thus, the matching
⋃
CMC is

3c-approximate.

Proof of Theorem 4.1 for b-matching. Starting with S0 = ∅, G0 =
G, and b0v = bv for all v ∈ V , for i = 0, . . . , k = O

(
log 1

ε

)
, iter-

atively apply the algorithm of Lemma 4.22 to Gi with b-values biv
to obtain a c-approximate maximum b-matching Mi in Gi. Up-
date bi+1

v = biv − dMi(v) and Gi+1 = (V,Ei+1) with Ei+1 := Ei \(
Mi ∪

{
{u, v} ∈ Ei : bi+1

v = 0 or bi+1
u = 0

})
, that is, reduce the b-

value of each vertex v by the number dMi(v) of incident edges in
the matching Mi and remove Mi as well as all the edges incident
to a vertex with remaining b-value 0 from the graph. The same
analysis as in the proof of Theorem 4.1 for standard matchings goes
through and concludes the proof.

Remark 4.23. The analysis above shows that the b-matching M
returned by the b-matching approximation algorithm of Theorem 4.1
is not only (2 + ε)-approximate in G, but also has the property that
any b-matching in the remainder graph, after removing M and all
edges incident to a vertex v with bv incident edges in M , can have
size at most ε|M∗| for a maximum b-matching M∗ in G.

98 Local Rounding for Matching

4.4.3 Weighted Matching and b-Matching

We use the following simple approach to extend our results for
matchings and b-matchings from the unweighted to the weighted
case: partition the edge set into buckets of edges with almost the
same weight, modulo factors of 1 + ε′ for a small ε′ > 0. Iteratively,
for decreasing weight buckets, find an approximate maximum (un-
weighted) matching in each of these buckets and remove this found
matching and its incident edges from the graph. As a maximum
weighted matching cannot differ by too much from a maximum un-
weighted matching, if all the weights are roughly the same, this leads
to a good approximation. We next make this more precise.

Proof of Theorem 4.6. In the following, we assume without loss of
generality that all weights are normalized, thus that they are from
the set {1, . . . ,W} for some W ≥ 2. We present the proof for
weighted b-matching; the result for weighted standard matching fol-
lows directly.

Let ε′ = ε
8 and k = dlog1+ε′W e. We decompose G into k + 1

many graphs Ci = (V,Ei) for i ∈ {0, . . . , k} where we define Ei :={
e ∈ E : (1 + ε′)k−i ≤ we < (1 + ε′)k+1−i}. For i = 0, . . . , k, we iter-

atively apply the b-matching algorithm of Theorem 4.1 to the graph
C ′i := (V,E′i), where the b-values are biv := bv −

∑i−1
j=0 dMj (v), and

E′i := Ei \

i−1⋃
j=0

Mj ∪
{
{u, v} ∈ E : biu = 0 or biv = 0

},
is the graph induced by edges in bucket i after removing the pre-
viously found b-matchings Mj for 0 ≤ j < i and the edges having
an endpoint with remaining b-value 0. This results in a b-matching
Mi in C ′i in O

(
log2 ∆ · log 1/ε

)
rounds. Here, dMj (v) denotes the

4.4. Extensions and Corollaries 99

number of edges in Mj incident to v. Let

Ri := Ei \

 i⋃
j=0

Mj ∪
{
{u, v} ∈ E : bi+1

u = 0 or bi+1
v = 0

}
be the set of edges in Ei that are not in conflict with

⋃i
j=0Mj , thus

are not part of this matching and also do not have too many incident
edges in it.

Let M :=
⋃k
i=0Mj be the union of the found matchings and use

M∗ to denote a maximum weighted b-matching in G. We show that
w(M∗) ≤ (2 + ε)w(M) by an argument based on counting in two
ways. In particular, we make each edge e ∈ M∗ put a total blame
of we on edges in M such that every edge e′ ∈ M receives at most
(2 + ε)we′ blame, as follows.

If e ∈M , then it puts blame we on e. If e /∈M , there are two cases.
Let i be such that e ∈ Ei. In case 1, if e has an endpoint, say v, with
bi+1
v = 0, and thus has bv many edges in

⋃i
j=0Mj incident to v, it

puts blame we
bv

on each of these edges. In case 2, if both endpoints

have remaining b-value at least 1 after removing
⋃i
j=0Mj from the

graph, thus, if e ∈ Ri, it splits the blame we uniformly among all
the edges in Mi.

We first bound the blame that is put on an edge e′ ∈ Mi in case
2. Observe that, in case 2, only edges e ∈ Ri ∩M∗ can blame e′.
For these edges e it holds that we ≤ (1 + ε′)we′ . As observed in
Remark 4.15, |Mi| ≥ 1

2+ε′ |M
∗
i | and any matching in Ri (thus, in

particular M∗ ∩ Ri) has size at most ε′|M∗i | for a maximum un-
weighted matching M∗i in C ′i. As the blame of edges in M∗ ∩ Ri
is split uniformly among the edges in Mi, edge e′ receives at most
ε′(2 + ε′)(1 + ε′)we′ blame in case 2.

For case 1, observe that e′ = {u, v} has at most bu edges e incident
to u and at most bv edges incident to v in M∗ that could blame we

bu

100 Local Rounding for Matching

and we
bv

, respectively, weight on e′. Since these edges need to come
from an Ej for j ≥ i, they satisfy we ≤ (1 + ε′)we′ . Hence, at most
2(1 + ε′)we′ blame is put on e′ in case 1.

Summarized, e′ is blamed at most

2
(
1 + ε′

)
we′ + ε′(2 + ε′)(1 + ε′)we′ ≤ (2 + ε)we′

weight, observing that e′ can either be in M∗ and then blame itself,
or not be in M∗ and then receive (at most two) blames of case 1. It
follows that

∑
e∈M∗ we ≤ (2 + ε)

∑
e∈M we.

By precomputing an O(∆2)-coloring with Linial’s algorithm [172],
we get the desired round complexity.

4.4.4 Edge Dominating Set

Since any maximal matching is an edge dominating set, an almost
maximal matching can easily be turned into an edge dominating set:
additionally to the edges in the almost maximal matching, add all
the remaining (at most ε′|E| many) edges to the edge dominating
set. When ε′ is small enough, the obtained edge dominating set is a
good approximation to the minimum edge dominating set. We next
make this relation more precise.

Proof of Corollary 4.5. Apply the algorithm of Theorem 4.4 with
ε′ = ε/(4∆), say, to find an ε′-almost maximal matching M in G.
It is easy to see that D = M ∪ (E \N+(M)) is an edge dominating
set. Moreover, due to the fact that a minimum maximal matching is
a minimum edge dominating set (see e.g. [230]) and since maximal
matchings can differ by at most a factor 2 from each other,

(2 + ε)|D∗| ≥
(

1 +
ε

2

)
|M | ≥ |M |+ ε

2(2∆− 1)
|E|

> |M |+ ε′|E| ≥ |D|

by Lemma 4.7 (ii), also using Lemma 4.7 (i).

CHAPTER 5

Local Rounding for Hypergraph Matching

5.1 Introduction

In this chapter—based on the publication ‘Deterministic Distributed
Edge-Coloring via Hypergraph Maximal Matching’ [103]—we present
a drastic generalization of the rounding technique for matching on
graphs from Chapter 4 to matching on hypergraphs.

5.1.1 Our Results and Related Work

Hypergraph Maximal Matching

Our main technical contribution is an efficient deterministic algo-
rithm for maximal matching in low-rank hypergraphs.

101

102 Local Rounding for Hypergraph Matching

Theorem 5.1. There is a deterministic LOCAL algorithm that com-
putes a maximal matching in O(r5 log6+log r ∆·log n) rounds1, in any
n-vertex rank-r hypergraph with maximum degree ∆.

In subsequent works, this round complexity has been improved to
O
(
r2 log(n∆) · log n · log4 ∆

)
by Ghaffari, Harris, and Kuhn [115]

and to Õ
(
r2 log n · log ∆ + r log2 ∆

)
by Harris [137].

Note that besides being a natural extensions of maximal matchings
in graphs—also supplying an alternative poly log n-round determin-
istic algorithm for graph maximal matching—our result allows us to
obtain answers and improvements for many other problems.

Unified Formulation of Symmetry Breaking Problems

One first important observation is that hypergraph maximal match-
ing serves as a unification of all four classic symmetry breaking prob-
lems: maximal matching, (2∆ − 1) edge coloring, (∆ + 1) vertex
coloring, and MIS. We can cast each of these problems as a maximal
matching problem on hypergraphs of some rank r which depends
on the problem and increases as we move from maximal matching
to maximal independent set. In other words, with the hypergraph
maximal matching problem we obtain a smooth interpolation be-
tween maximal matching in graphs with r = 2, then (2∆− 1) edge
coloring with r = 3, followed by (∆+1) vertex coloring with r = ∆,
and maximal independent set with r = ∆ in graphs.

Edge Coloring: We next present a reduction from (2∆ − 1) edge
coloring on a graph G to maximal matching in rank-3 hypergraphs.
A similar reduction can be used for list edge coloring, as formal-
ized in Lemma 5.3. We note that these reductions are inspired by
the well-known reduction of Luby from (∆ + 1) vertex coloring to
MIS [181, 171].

1Throughout, unless stated otherwise, all logarithms are to base 2. Moreover,
we stress that one does not need a ceiling sign for log r in this complexity bound.

5.1. Introduction 103

Lemma 5.2. Given a deterministic LOCAL algorithm A that com-
putes a maximal matching in N -vertex hypergraphs of rank 3 and
maximum degree d in T (N, d) rounds, there is a deterministic LO-
CAL algorithm B that computes a (2∆ − 1) edge coloring of any
n-vertex graph G = (V,E) with maximum degree ∆ in at most
T (3n∆, 2∆− 1) rounds.

Proof. To edge-color G = (V,E) with 2∆ − 1 colors, we generate
a hypergraph H as follows: Take 2∆ − 1 copies of G, one for each
color. For each edge e ∈ E, let e1 to e2∆−1 denote its copies. For
each e ∈ E, add one extra vertex we to H and change all edge copies
e1 to e2∆−1 to 3-hyperedges by adding we to them. Algorithm B runs
the maximal matching algorithm A on H. Then, for each e ∈ E,
if the copy ei of e is in the computed maximal matching, B colors
e with color i. One can see that each G-edge e must have exactly
one copy ei in the maximal matching, which we then interpret as its
color. Indeed, e cannot have more than one copy in the matching,
since all these edges are connected to we, and the matching would
not be maximal if none of the copies would be picked.

List Edge Coloring: This can be extended easily to list edge
coloring. In the list edge coloring problem, each edge e must choose
its color from an arbitrary given list Ψ(e) of colors with |Ψ(e)| =
d(e) + 1, where d(e) denotes the number of edges adjacent to e.

Lemma 5.3. Given a deterministic LOCAL algorithm A that com-
putes a maximal matching in N -vertex hypergraphs of rank 3 and
maximum degree d in T (N, d) rounds, there is a deterministic LO-
CAL algorithm B that solves list edge coloring of any n-vertex graph
G = (V,E) with maximum degree ∆ in at most T (2n∆2, 2∆ − 1)
rounds.

Proof. To edge color G = (V,E), we generate a hypergraph H:
For each edge e ∈ E with color list Ψ(e), we take |Ψ(e)| copies of

104 Local Rounding for Hypergraph Matching

e = {v, u} as follows: For each color i ∈ Ψ(e), we take one copy ei
of e which is put incident to copies vi and ui of v and u. Thus, if
two adjacent edges e = {v, u} and e′ = {v, u′} have a common color
i ∈ Ψ(e) ∩Ψ(e′), then their ith copies ei and e′i will be present and
will both be incident to vi. Notice that for each vertex v, at most
2∆2 copies of it will be used because for each of the edges e incident
to v, at most |Ψ(e)| < 2∆ additional copies of v are added.

Algorithm B runs the maximal matching algorithm A on H, and
then, for each edge e ∈ E, if the copy ei of e is in the computed
maximal matching, B colors e with color i. One can verify that each
G-edge e has exactly one copy ei in the maximal matching, and thus
we get a list edge coloring.

Deterministic Edge Coloring

Our reduction of edge coloring to rank-3 hypergraph maximal match-
ing combined with our hypergraph maximal matching algorithm
leads to the first poly log n-round edge coloring algorithm, resolv-
ing a decades old problem.

Theorem 5.4. There is a deterministic LOCAL algorithm that com-
putes a (2∆− 1) (list) edge coloring in O(log8 ∆ · log n) rounds.

This is the first poly log n-round and to date only non-network-
decomposition-based deterministic algorithm for edge coloring. The
previously best known round complexity was 2O(

√
logn), by a classic

network decomposition of Panconesi and Srinivasan [207], which it-
self improved on an 2O(

√
logn·log logn)-round algorithm of Awerbuch

et al. [17]. The novel network decomposition algorithm of [216, 114]
can solve edge coloring in O(log5 n) rounds. Note that for a wide
range of ∆, our result is significantly faster than the generic network
decomposition approach.

The hypergraph maximal matching algorithms by Ghaffari, Harris,

5.1. Introduction 105

and Kuhn [115] and by Harris [137] yield algorithms for edge coloring
in O(log4 ∆ · log2 n) and Õ(log2 ∆ · log n) rounds, respectively.

For low-degree graphs, the approach by Kuhn [160] gives an algo-
rithm in 2O(

√
log ∆) + O(log∗ n) rounds, improving over the bound

of O(
√

∆ log ∆ · log∗∆ + log∗ n) [107, 25]. Very recently, this was

further improved to 2O(log2 log ∆) +log∗ n by [20]. Note that the only
known lower bound is Ω(log∗ n) by Linial [172].

Randomized Edge Coloring

Our deterministic list edge coloring of Theorem 5.4, in combination
with some randomized edge coloring algorithms of [87, 27], also im-
proves the complexity of randomized algorithms for (2∆ − 1) edge
coloring, making it the first among the four classic problems whose
randomized complexity falls down to poly log log n.

Corollary 5.5. There is a randomized LOCAL algorithm that w.h.p.
computes a (2∆− 1) edge coloring in O(log9 log n) rounds.

The previous (worst-case) complexity for randomized (2∆− 1) edge
coloring was 2O(

√
log logn) rounds, due to Elkin, Pettie, and Su [87].

By improving this, we widen the provable gap between the complex-
ity of (2∆−1) edge coloring, which is now in poly(log log n) rounds,
and the complexity of maximal matching, which has a lower bound
of Ω(log n/ log log n) rounds [164, 19]. The only known lower bound
for edge coloring is Ω(log∗ n) due to Linial [172] and Naor [194].

Our result recently got improved by Ghaffari, Harris, and Kuhn [115]
to O

(
log6 log n

)
, by Harris [137] to Õ(log3 log n), by Rozhoň and

Ghaffari [216] to O(log7 log n), and eventually by Ghaffari, Grunau,
and Rozhoň [114] to O(log5 log n).

106 Local Rounding for Hypergraph Matching

Edge Coloring in Sparse Graphs

A work of Barenboim, Elkin, and Maimon [26] presents an efficient
deterministic algorithm for computing a (∆+o(∆)) edge coloring in
graphs with arboricity λ ≤ ∆1−δ, for some constant δ > 0. A simple
combination of our list edge coloring algorithm of Theorem 5.4 with
H-partition [24, Chapter 5.1] significantly extends their result.

Corollary 5.6. There is a deterministic LOCAL algorithm that
computes an edge coloring with ∆+(2+ε)λ−1 colors on any n-vertex
graph with maximum degree ∆ and arboricity λ in O(1

ε log8 ∆·log2 n)
rounds.

Notice that any graph has arboricity λ ≤ ∆/2. The above corollary
shows that we start seeing savings in the number of colors as soon
as the arboricity goes slightly below this upper bound. For instance,
for λ < ∆(1− ε)/2, we already get colorings with less than 2∆− 2
colors.

Recently, Kuhn [160] devised an algorithm that finds a coloring with
(2 + o(1))λ colors in 2O(

√
log λ) log2 n.

MIS in Graphs with Bounded Neighborhood-Independence

To translate MIS on a graph G to maximal matching on a hyper-
graph H, one can consider the following reduction: View each G-
edge as one H-vertex and each G-vertex v as one H-edge on the
H-vertices corresponding to the G-edges incident to v. However,
unfortunately, in this näıve formulation, the rank becomes ∆. As
such, we do not obtain any improvement on the known algorithms
for these problems, in the general case. It remains an intriguing open
question whether any alternative formulation, perhaps in combina-
tion with other ideas, can help. However, using some more involved
ideas, we obtain improvements for some special cases, which lead to
answers for a few other open problems.

5.1. Introduction 107

We extend our algorithm to the problem of computing an MIS in
graphs with neighborhood independence bounded by an integer r,
i.e., where the number of mutually non-adjacent neighbors of each
vertex is at most r. Notice that maximal matching in graphs is the
same as MIS in the corresponding line graph, which is a graph of
neighborhood independence r = 2. It is not clear how to extend the
methods of [131, 132] to MIS in such graphs2, even for r = 2. As an
open question alluding to this point, and as “a good stepping stone
towards the MIS problem in general graphs”, Barenboim and Elkin
asked in their book [24]:

Open Problem 11.5 [24]:
“Devise or rule out a deterministic polylogarithmic algo-
rithm for the MIS problem in graphs with neighborhood
independence bounded by 2.”

Our method for hypergraph maximal matching in Theorem 5.1 gen-
eralizes to MIS in graphs with bounded neighborhood independence,
as we state formally next, hence positively answers this question.

Theorem 5.7. There is a deterministic LOCAL algorithm that com-
putes a maximal independent set in O(r5 log6+log r ∆ · log n) rounds,
in any n-vertex graph with maximum degree ∆ and neighborhood
independence bounded by r.

Moreover, as Luby’s reduction of (∆+1) vertex coloring to MIS [181,
171] increases the neighborhood independence by at most 1, we also
get efficient algorithms for (∆ + 1) vertex coloring in graphs with
bounded neighborhood independence.

Corollary 5.8. There is a deterministic LOCAL algorithm that
computes a (∆ + 1) vertex coloring in O(r5 log6+log(r+1) ∆ · log n)

2For a more strict definition of bounded neighborhood, MIS turns out to be
much easier. See [161, 221].

108 Local Rounding for Hypergraph Matching

rounds, in any n-vertex graph with maximum degree ∆ and neigh-
borhood independence bounded by r. Moreover, the same algorithm
solves list vertex coloring, where each vertex v ∈ V must get a color
from an arbitrary given list Ψ(v) of colors with |Ψ(v)| ≥ d(v) + 1.

Note that a recent coloring algorithm of Kuhn [160] has round com-
plexity 2O(

√
log r·log ∆) + O(log∗ n) if the colors come from a color

space of size poly ∆.

Augmenting Paths

Another family of improvements comes for graph problems in which
the main technical challenge is to find a maximal set of disjoint
augmenting paths of short length `. These problems can be phrased
as maximal matching in hypergraphs with rank r = Θ(`), essentially
by viewing each augmenting path as one hyperedge on its elements
(depending on the required disjointness).

Maximum Matching Approximation: By integrating our hy-
pergraph maximal matching into the framework of Hopcroft and
Karp [143], we can compute a (1 + ε)-approximation of maximum
matching in graphs in (log ∆/ε)O(log(1/ε)) rounds. For that, we
mainly need to find maximal sets of vertex-disjoint augmenting
paths of length at most ` = O(1/ε).

Theorem 5.9. There is a deterministic LOCAL algorithm that com-
putes a (1 + ε)-approximation of maximum matching for any 0 <

ε ≤ 1 in poly 1
ε ·O

((
1
ε log ∆

)
7+log 1

ε

)
rounds.

This is faster than the previously best known deterministic algo-
rithm for (1 + ε)-approximation in bipartite graphs, which required
logO(1/ε) n rounds [75]. We remark that an O(log n/ε3)-round ran-
domized (1 + ε)-approximation algorithm was presented by Lotker
et al. [176], mainly by computing this maximal set of vertex-disjoint
augmenting paths using Luby’s randomized MIS algorithm [181, 5].

5.1. Introduction 109

In subsequent works, our result got improved by Ghaffari, Har-
ris, and Kuhn [115] to O(log5 ∆ log2 n/ε9) and by Harris [137] to
Õ
(
log2 ∆/ε4 + log∗ n/ε

)
. The latter also gives a randomized algo-

rithm in Õ
(
log ∆/ε3 + log log n/ε3 + log2 log n/ε2

)
rounds.

Low-Outdegree Orientation and Forest Decomposition: In-
tegrating our hypergraph maximal matching into the low-outdegree
orientation framework of Ghaffari and Su [122], we can compute
orientations with outdegree at most d(1 + ε)λe, for any 0 < ε < 1,
in graphs with arboricity λ. For that, we mainly need to find max-
imal sets of disjoint augmenting paths of length ` = O(log n/ε).
This low-outdegree orientation directly implies a decomposition into
d(1 + ε)λe edge-disjoint pseudo-forests.

Theorem 5.10. There is a deterministic LOCAL algorithm that
computes an orientation with maximum outdegree at most dλ(1+ε)e
in 2O(log2(log n

ε)) rounds, for any ε > 0, in any n-vertex graph with
arboricity at most λ.

For constant ε and even ε = log−O(1) n, the resulting round com-
plexity is quasi-polylogarithmic—that is, 2O(log2 logn). Although this
is not a polylogarithmic complexity, it gets close and it is almost ex-
ponentially faster than the previously best known 2O(

√
logn) deter-

ministic algorithm [122, 207]. This improvement can be viewed as
partial solution for Open Problem 11.10 of Barenboim and Elkin [24]
which asks for an efficient deterministic distributed algorithm for
decomposing the graph into less than 2λ forests.

The subsequent works by Ghaffari, Harris, and Kuhn [115] and by
Harris [137] improved our result to O(log5 ∆ · log10 n/ε9) and to
Õ(log6 n/ε4) (as well as to Õ(log3 n/ε3) randomized), respectively.
Recently, based on our rounding technique, Su and Vu [223] provided
an Õ(log2 n/ε2)-round deterministic algorithm.

110 Local Rounding for Hypergraph Matching

5.1.2 Notation and Preliminaries

Hypergraph Matching: A hypergraph H = (V,E) is said to have
rank r when each hyperedge e ∈ E ⊆ V contains at most |e| ≤ r
vertices. A matching in a hypergraph is a set M of hyperedges, no
two of which share an endpoint: i.e., for all e, f ∈M , we have that
e ∩ f = ∅.

Fractional Matching: A fractional matching of H is an assign-
ment of values in 0 ≤ xe ≤ 1 to edges e ∈ E such that for each vertex
v ∈ V , we have

∑
e∈E(v) xe ≤ 1. Here, E(v) := {e ∈ E : v ∈ e} is

the set of edges incident to v. We call a fractional matching (1/d)-
fractional if we have xe ≥ 1/d or xe = 0 for each e ∈ E.

Half-tight Vertices: For fractional matching, we say that a vertex
v is half-tight if

∑
e∈E(v) xe ≥

1
2 .

Bounded Neighborhood Independence: For an integer r ≥ 1,
we say that a graph G = (V,E) has neighborhood independence at
most r if for every vertex v ∈ V , the graph G[N(v)] induced by the
set N(v) of neighbors of v has independence number at most r.

We note that the line graph of a hypergraph H of rank r has neigh-
borhood independence at most r. This is because for each hyperedge
e of H all incident hyperedges f share at least one vertex with e and
because all the hyperedges sharing a vertex of H form a clique in
the line graph of H. Hence, the neighborhood of each edge can be
covered by at most r cliques in the line graph.

Recurrence Relation: Finally, we provide the solution of a recur-
rence relation that will be useful later to bound the number of levels
in our recursive algorithm.

Lemma 5.11. Let r ≥ 2 and ∆ ≥ 2 be two parameters and let α ≥ 1
and c > 0 be two given constants. Further, let R(L) be a function

5.1. Introduction 111

that is defined for L ≥ 1 by the following recurrence relation:

R(L) :=

{
cr2 + c log ∆, if L ≤ 4,

αrR(
√

2L) + cr, otherwise.
(5.1)

Then we have R(L) = O
(
r2 + (logL)log2 α+log2 r(r2 + log ∆)

)
.

Proof. For all x ≥ 1, we define a non-negative integer tx as

tx := min

{
t ∈ N0 :

(x
2

)2−t

≤ 2

}
.

We prove that for all L ≥ 1, we have

R(L) ≤ (αr)tL(cr2 + c log ∆) + cr

tL−1∑
i=0

(αr)i

< 2(αr)tL(cr2 + c log ∆),

(5.2)

where the last inequality follows from αr ≥ 2. For x ≥ 1, we have
tx ≤ max {0, log log x} and thus the claim of the lemma directly
follows from (5.2).

To prove (5.2), first note that for L ≤ 4, we have tL ≥ 0 and because
αr ≥ 1, we thus have R(L) ≤ cr2 as required by (5.1). For L > 4,
we prove (5.2) by induction. More formally, for each L > 4, we show
that there is a finite sequence L = Lk > Lk−1 > · · · > L0 such that
L0 ≤ 4 and such that for each i ∈ {1, . . . , k}, (5.1) implies that if
(5.2) holds for Li−1, it also holds for Li.

Let us therefore assume that Lk = L > 4. For i ≥ 1, we define
Li−1 :=

√
2Li. First note that because for x > 4,

√
2x ≤ x/

√
2 and

thus we reach a value smaller than 4 in a bounded number of steps.
For every i ≥ 1 such that Li > 4, we have

tLi−1 = min

t ∈ N0 :

(√
Li
2

)2−t

=

(
Li
2

)2−(t+1)

≤ 2

 = tLi−1.

112 Local Rounding for Hypergraph Matching

From (5.1), for Li > 4, we therefore have

R(Li) ≤ αrR(Li−1) + cr

≤ αr

(αr)tLi−1(cr2 + c log ∆) + cr

tLi−2∑
j=0

(αr)j

+ cr

= (αr)tLi (cr2 + log ∆) + cr

tLi−1∑
j=0

(αr)j .

This proves (5.2), and thus concludes the proof.

5.1.3 Overview and Outline

0
e

w
v

x
y

Figure 5.1: Every hyperedge of the maximum matching (drawn in
blue) in the rank-3 hypergraph blames 1 dollar on one of its tight
(blue) endpoints (depicted as green arrows). Vertex u distributes
this dollar it has received from e to each of its incident hyperedges
proportionally to their value: 0 to e with value 0 and 50 cents to
each of two of its hyperedges with value 1

4 (shown as red arrows).
These hyperedges might receive at most 50 cents from each of their
other endpoints v and w and x and y, respectively.

As for the case of graphs, finding a fractional matching with a good

5.1. Introduction 113

approximation ratio is easy—the challenge again lies in finding a
good integral matching.

Fractional Hyergraph Matching

A simple greedy algorithm finds a (2r)-approximation in O(log ∆)
rounds: Starting with edge values xe = 2−blog ∆c for all e, for
O(log ∆) rounds, we freeze edges with half-tight endpoints and dou-
ble the values of all other edges. See Figure 5.1 for an illustration
of why this gives the desired approximation.

Challenges for Rounding in Hypergraphs

The core part of the rounding for graphs (i.e., hypergraphs with rank
r = 2) is that it can be done essentially with no loss: in each iteration
we can move a factor 2 closer to integrality while decreasing the
matching size only negligibly, by a factor (1− ε

Θ(log ∆)). This whole

methodology of rounding without more than a factor o(1) loss in the
size seems to be quite limited, and it certainly gets stuck at rank
r = 2. These matching rounding methods [99, 131, 132] decompose
the edges of the graph into bipartite low-diameter degree-2 graphs
(i.e., short even-length cycles)—aside from a smaller portion of some
not-so-nice parts, which are handled separately—and then 2-color
edges of each short cycle so that each vertex has half of its edges
in each color. Then, in rounding, one color is raised by a factor
2 while the other is dropped to zero. Unfortunately, this type of
locally-balanced splittings of edges did not seem within reach for
hypergraphs. We refer to [115] for a thorough discussion and a
solution to this problem.

When trying to deterministically round fractional matchings in hy-
pergraphs, we face essentially two challenges: (1) It is not clear how
to efficiently perform any slight rounding—e.g., rounding all frac-
tional values so that the minimum moves from at least 1/d to at

114 Local Rounding for Hypergraph Matching

least 2/d without violating the constraints—without a considerable
loss in the matching size. (2) An even more crucial issue comes from
the need to do many levels of rounding. Even once we have an effi-
cient solution for a single iteration of rounding, which moves, say, a
constant factor closer to integrality, a factor-Θ(r) reduction of the
matching size seems inevitable. However, if we do this repeatedly,
and our matching size drops by a factor Θ(r) in each rounding it-
eration, the matching size becomes too small. Notice that we need
about O(log ∆) levels of factor-2 roundings. If we decrease by a
factor Ω(r) per iteration, we are left with a matching of size a fac-
tor 1/rΘ(log ∆) = 1/ poly(∆) of the maximum matching, which is
essentially useless.

Our Rounding Method for Matchings in Hypergraphs

Solution for Challenge (1): We devise a rounding procedure for
hypergraph matchings which rounds the fractional matching by a
factor L—i.e., raises the fractional values by factor L—while reduc-
ing the matching size only by a factor Θ(r). On a high level, this
rounding is by recursion on L. The base level of the recursion is an
algorithm that rounds the fractional matching by a constant factor,
for L = O(1), with only a factor Θ(r) decrease of the matching size.
This part is somewhat simpler and is performed efficiently using
defective coloring results of [159]. This is a solution for the first
challenge above.

Solution for Challenge (2): To overcome the second challenge,
our method interleaves some iterations of rounding with refilling the
fractional matching. In particular, suppose that we would like to do
a factor-L rounding of a given fractional matching x, thus produc-
ing an output fractional matching y with fractional values raised by
a factor L compared to x. We do this in Θ(r) iterations, using a
number of factor-

√
2L rounding procedures. Concretely, per itera-

tion, we first ‘remove’ the current output fractional matching y from

5.2. Hypergraph Maximal Matching 115

the input fractional matching x, in a sense to be made precise, and
then we apply two successive factor-(

√
2L) rounding operations on

the leftover fractional matching. This creates a fractional matching
which is rounded by a factor of 2L, but may be a factor 1/Θ(r2)
smaller than x. We add (a half of) this to the current fractional
matching y, in a sense to be made precise. The removal and also
the addition are done carefully, so as to ensure that the size of the
output fractional matching grows by about a factor (1/Θ(r2)) of the
size of x while the fractionality is by a factor L better than the one
of x. After Θ(r) such iterations, we get that the output fractional
matching is a Θ(r)-approximation of the input.

5.2 Hypergraph Maximal Matching

In this section, we present our hypergraph maximal matching algo-
rithm, thus proving Theorem 5.1.

The core of our rank-r hypergraph maximal matching algorithm is
an algorithm that computes a matching whose size is within a factor
O(r3) of the maximum matching.

Lemma 5.12. There is a deterministic LOCAL algorithm that given
an O(r2∆2) edge coloring computes a (32r3)-approximate matching
in O

(
r2 log6+log r ∆

)
rounds.

This was slightly improved in [137] to Õ(r log ∆ + log2 ∆ + log∗ n).

Over the next two subsections, we discuss the matching approxima-
tion procedure of Lemma 5.12. We note that finding a fractional
matching with size close to the maximum matching is straightfor-
ward, as we soon overview in Section 5.2.1. The challenge is in
finding an integral matching with the same guarantee. In other
words, the core technical component of our method is an algorithm
for rounding fractional hypergraph matchings to integral match-

116 Local Rounding for Hypergraph Matching

ings, without losing much in the size. In particular, we present
our deterministic rounding technique for hypergraph matchings in
Section 5.2.2.

5.2.1 Fractional Matching Approximation

In the following, we present a simple O(log ∆)-round algorithm that
computes a (2r)-approximate fractional matching.

Greedy Fractional Matching Algorithm: Initially, we set xe =
1
∆ for all edges e. This obviously is a valid fractional matching.
Then, for log ∆ iterations, in each iteration, we freeze all the edges
that have at least one half-tight vertex and then raise the value of
all unfrozen edges by a factor 2.

This way, we always keep a valid fractional matching, since only val-
ues of edges incident to non-half-tight vertices are increased. More-
over, within O(log ∆) iterations all edges will be frozen. We next
show that this property already implies an approximation ratio 2r.

Lemma 5.13. The greedy algorithm described above computes a
(2r)-approximate fractional matching. Moreover, any (fractional)
matching x with the property that each edge has at least one half-
tight endpoint is a (2r)-approximation.

Proof. We show that x must have size at least a factor (1/(2r)) of a
maximum matching M∗ employing an argument based on counting
in two ways. To that end, we give 1 dollar to each edge e ∈M∗ and
ask it to redistribute this money among edges in such a way that
no edge e′ receives more than 2rxe′ dollars. This can be achieved
as follows. Each edge e ∈ M∗ asks a half-tight vertex, say v ∈ e,
to distribute e’s dollar on e’s behalf. Vertex v does so by splitting
this money among its incident edges e′ ∈ E(v) proportionally to the
edge values xe′ . In this way, every edge e′ ∈ E(v) receives no more
than 2xe′ dollars from v. This is because v does not receive more

5.2. Hypergraph Maximal Matching 117

than 1 dollar, as it is half-tight and it cannot have more than one
incident edge in M∗. Since an edge can receive money only from its
vertices, every edge e′ receives at most 2rxe′ dollars in total.

5.2.2 Rounding Overview

Our method for rounding fractional matchings is recursive, and
parametrized mainly by a parameter L which captures the extent of
the performed rounding. In simple words, given a fractional match-
ing x ∈ [0, 1]|E|, the algorithm round(x, L) rounds x by a factor L.
That is, if in the input fractional matching x the smallest (non-zero)
value is 1/d, then in the output fractional matching the smallest
(non-zero) value is at least L/d. On the other hand, the guaran-
tee is that the output fractional matching has size at least a factor
(1/(4r)) of the input fractional matching. The functionality of this
rounding method is abstracted by the following definition.

Definition 5.14 (Factor-L Rounding round(x, L)). The factor-L
rounding method round(x, L) turns a (1/d)-fractional matching x ∈
[0, 1]|E| into an (L/d)-fractional matching y ∈ [0, 1]|E| such that∑

e∈E ye ≥
1
4r

∑
e∈E xe.

Remark 5.15. The method requires some condition on the values
of L and d. Since L/d refers to the fractionality, the statement is
meaningful only when L ≤ d. Due to some small technicalities, we
will perform the recursive parts of rounding only for values of L
that satisfy a slightly stronger condition of L log2 L ≤ d. For the
remaining cases, we resort to our basic rounding.

We explain our rounding method in two main parts. The first part,
explained in Section 5.2.3, is a procedure that we use as the base
case, to round the matching by a constant factor L = O(1) in
O(r2 +log ∆) rounds. The second part, discussed in Section 5.2.4, is
the recursive step which explains how our factor-L rounding works

118 Local Rounding for Hypergraph Matching

by making a few calls to factor-
√

2L rounding procedures, and a few
smaller steps. Finally, in Section 5.2.5, we combine these rounding
procedures with the previously seen algorithm of Section 5.2.1 for
fractional matchings to obtain our matching approximation proce-
dure of Lemma 5.12.

5.2.3 Basic Rounding

In this subsection, we explain our base case rounding procedure for
small rounding parameters, i.e., L = O(1). Throughout, we will
assume that the base hypergraph already has an O(r2∆2) edge col-
oring, which can be computed easily using Linial’s algorithm [171],
in O(log∗ n) rounds.

Lemma 5.16 (Basic Rounding). There is an O(L2r2+log ∆)-round
deterministic LOCAL algorithm that transforms a (1/d)-fractional
matching x into an (L/d)-fractional matching y with

∑
e∈E ye ≥

1
2r

∑
e∈E xe, for any L ≤ d.

Algorithm Outline and Intuitive Discussions

Let Ex be the set of all edges e for which xe > 0, and let Hx =
(V,Ex) be the subgraph of H with this edge set. Notice that Hx

has degree at most d, because x is a (1/d)-fractional matching. Our
goal is to compute a fractional matching y, supported on the edge
set Ex, such that for each edge e ∈ Ex, at least one of its endpoints
v ∈ e is half-tight in y, meaning that

∑
e′∈Ex(v) ye′ ≥ 1/2. One can

easily see that such a fractional matching is a (2r)-approximation of
x, i.e.,

∑
e∈E ye ≥

1
2r

∑
e∈E xe. Thus, the goal is to find a fractional

matching y such that for each edge e ∈ Ex, at least one of its
endpoints is half-tight in y. Furthermore, we want y to be (L/d)-
fractional, meaning that all the non-zero ye-values must be greater
than or equal to L/d.

5.2. Hypergraph Maximal Matching 119

If we had no concern for the time complexity, we could go through
the color classes of edges one by one, each time setting ye = 1 for all
edges of that color, and then removing edges of Ex that have half-
tight vertices. This would ensure that, at the end, all edges in Ex
have at least one half-tight endpoint. However, this would require
time proportional to the number of colors. Even if we were given
an ideal edge coloring for free, that would be Ω(d) rounds, which is
too slow for us.

To speed up the process, we use a relaxed notion of edge coloring,
namely defective edge coloring, which allows us to have much less
colors, while each color class has a bounded number of edges incident
to each vertex, say k. Now, we cannot raise the ye-values of all the
edges of the same color at the same time to ye = 1, because that
would be too fast and could violate the condition

∑
e′∈Ex(v) ye′ ≤ 1.

However, we can raise each of these edge values to say ye = 1
2k and

still be sure that the summation
∑

e′∈Ex(v) ye′ for each vertex does
not increase faster than an additive 1/2. That is because there are
only k edges incident to each vertex, per color class. If we freeze and
remove all edges that now have one half-tight vertex, these fractional
value raises would never violate the condition

∑
e′∈Ex(v) ye′ ≤ 1, thus

always lead to a valid fractional matching.

To materialize the above intuitive approach, we first compute a de-
fective edge coloring with O

(
L2∆2

)
colors and defect k = d/(2L).

Then, we go through the colors, one by one, applying the above
fractional-value increases. This ensures that all the non-zero frac-
tional values ye are at least 1

2k ≥
L
d . At the very end, we perform

O(log d/L) doubling steps to ensure that each edge has at least one
half-tight endpoint. We next explain the steps of this algorithm,
and then provide the related analysis.

120 Local Rounding for Hypergraph Matching

Step 1: Defective Edge Coloring

We compute a defective edge coloring of Hx with O(L2r2) colors
and defect—that is, maximum degree induced by edges of the same
color—at most d/(2L), as follows. Let F = (VF , EF) be the line
graph of Hx, that is, the graph which has a vertex ve ∈ VF for every
edge e ∈ Ex and an edge {ve, ve′} ∈ EF if e and e′ are incident, thus
e ∩ e′ 6= ∅. Note that F has maximum degree at most rd, since
Hx’s maximum degree is bounded by d. With the defective coloring
algorithm of Kuhn [159], we can compute a (d/(2L) − 1)-defective
vertex coloring of F with

O

(rd
d

2L − 1

)2
 = O

(
L2r2

)
colors3. Exploiting the given O

(
r2∆2

)
edge coloring of H, and thus

Hx, which is an O
(
r2∆2

)
vertex coloring of the line graph F , we

can make this algorithm run in O(log∗(r∆)) rounds. The vertex
coloring of the line graph with defect d/(2L)− 1 is an edge coloring
of Hx where every edge has at most d/(2L) − 1 incident edges of
the same color, resulting in at most d/(2L) many edges of the same
color incident to each vertex.

Step 2: Fractional Matching via Defective Coloring

We process the colors of the d/(2L)-defect defective coloring one by
one, in O

(
L2r2

)
iterations. In the ith iteration, for each non-frozen

edge e with color i, we raise ye from ye = 0 to ye = L/d. Then for
each vertex v that is already half-tight, meaning that

∑
e∈Ex(v) ye ≥

1/2, we freeze all the edges incident to v. This means the fractional

3If we happen to have d/(2L) ≤ 1, then a (d/(2L) − 1)-defective coloring
becomes a degenerate case of the definition, as (d/(2L) − 1) ≤ 0, and then by
convention, this simply means proper coloring. In that case the algorithm of
Kuhn [159] provides a proper coloring with O(d2r2) = O(L2r2) colors.

5.2. Hypergraph Maximal Matching 121

value of these edges will not be raised in the future. Notice that
since we raise values only incident to vertices that are not already
half-tight, and as for each such vertex the summation goes up by at
most d

2L ·
L
d = 1/2, the vector y always remains a fractional matching,

meaning that we always have
∑

e∈Ex(v) ye ≤ 1 for each vertex v.

At the very end, once we are done with processing all colors, some
edges in Ex may remain without any half-tight endpoint. Though
any such edge e would itself have ye = L/d. We perform log (d/L)
iterations of doubling, where in each iteration, we double all the
fractional values ye for all edges that do not have a half-tight end-
point. At the end, we are ensured that each edge has at least one
half-tight endpoint, and moreover, each non-zero fractional value ye
is at least L/d.

Lemma 5.17. The above algorithm computes an (L/d)-fractional
matching y such that

∑
e∈E ye ≥

1
2r

∑
e∈E xe, in O(L2r2+log(d/L)+

log∗(r∆)) = O(L2r2 + log ∆) rounds.

Proof. The round complexity comes from O(log∗(r∆)) rounds spent
for computing the defective edge coloring, O(L2r2) rounds for pro-
cessing the colors of the defective coloring one by one, and then
O(log(d/L)) rounds for the final doubling steps.

It is clear by construction that the computed vector y is a fractional
matching, because we always have

∑
e∈Ex(v) ye ≤ 1, and that it is

(L/d)-fractional, because the smallest non-zero ye value that we use
is L/d. What remains to be proved is that

∑
e∈E ye ≥

1
2r

∑
e∈E xe.

For that, we use the property that the fractional matching y that
we compute is such that for each e ∈ Ex, at least one of the vertices
v ∈ e must be half-tight, meaning that

∑
e∈E(v) ye ≥ 1/2. We use

this property to argue that the fractional matching y has size at
least a factor (1/(2r)) of x. This is done via a blaming argument
along the same lines as the proof of Lemma 5.13. We let every edge
e ∈ Ex put xe dollars on edges e′ ∈ Ey as follows. Each edge e

122 Local Rounding for Hypergraph Matching

passes its xe dollars to one of its half-tight vertices v ∈ e. Then, the
half-tight vertex v distributes these xe dollars among all its incident
edges e′ ∈ Ex(v) proportionally to the values ye′ . As x is a fractional
matching, in this way, v cannot receive more than 1 dollar in total
from its incident edges in Ex. Therefore, and since v is half-tight,
no edge e′ incident to v receives more than 2ye′ dollars from v ∈ e′.
In total, an edge e′ ∈ Ey can receive at most 2rye′ dollars from
edges in Ex, at most 2ye′ from each of its endpoints. Therefore,∑

e∈E xe ≤ 2r
∑

e∈E ye.

5.2.4 Recursive Rounding

We explain a recursive method round(x, L) that takes any (1/d)-
fractional matching x and computes an (L/d)-fractional matching
y such that

∑
e∈E ye ≥

1
4r

∑
e∈E xe. This procedure will be applied

when L is greater than some fixed constant. The procedure works
mainly by a number of recursive calls to factor-

√
2L rounding pro-

cedures, and a few additional steps.

Lemma 5.18 (Recursive Rounding). There is a deterministic LO-
CAL algorithm that turns a (1/d)-fractional matching x into an
(L/d)-fractional matching y with

∑
e∈E ye ≥

1
4r

∑
e∈E xe, for any

L such that L log2 L ≤ d, in O
(
(r2 + log ∆) log5+log r L

)
rounds.

The Recursive Rounding Algorithm

The method round(x, L) consists of 16r iterations. Initially, we set
ye = 0 for all edges. Then, in 16 iterations, we gradually grow y
while keeping it (L/d)-fractional.

The process in each iteration is as follows:

Step 1: We first generate a fractional matching z by initially setting
it equal to x, and then removing from it each edge e that is incident
to a at least one half-tight vertex of y. In other words, for each

5.2. Hypergraph Maximal Matching 123

vertex v such that
∑

e∈E(v) ye ≥ 1/2, we set ze = 0 for all e with
v ∈ e; for all other edges, we set ze = xe.

Step 2: We perform round(z,
√

2L), producing some intermediate
(
√

2L/d)-fractional matching z′, and then call round(z′,
√

2L). This
creates a (2L/d)-fractional matching z′′ whose size is at least a factor
1
4r ·

1
4r = 1

16r2 of the size of z.

Step 3: We divide the values of this fractional matching z′′ by
a factor 2, creating an (L/d)-fractional matching, and we add the
result to y. Thus, we effectively update y ← y + z′′/2.

Remark 5.19. Recall the promise from Remark 5.15 that we will
apply the rounding method only for values such that L log2 L ≤ d.
The main reason for this stronger condition, compared to the more
natural condition of L ≤ d, is the factor 2 that we have in the
recursive rounding call. For instance, the matching z′′ is a (2L/d)-
fractional matching and thus, for this to be meaningful, we need
2L ≤ d. However, with the stronger condition that L log2 L ≤ d, we
can say that the promise is satisfied throughout the recursive calls.
For instance, in the second call to round(z′,

√
2L), the new condition

would be
√

2L(log
√

2L)2 ≤ d/
√

2L, which is readily satisfied given
that L log2 L ≤ d and L ≥ 8.

Analysis of the Recursive Rounding

We next provide the related analysis. In particular, Lemma 5.20
proves that the generated fractional matching y is valid, Lemma 5.21
proves that it is a good approximation of x, and Lemma 5.22 ana-
lyzes the running time of this recursive procedure.

Lemma 5.20. The fractional matching y is valid, meaning that∑
e∈E(v) ye ≤ 1 for all vertices v.

124 Local Rounding for Hypergraph Matching

Proof. We show by induction on i that the fractional matching y
in iteration i does not violate the constraints

∑
e∈E(v) ye ≤ 1 for

all v. At the beginning, the condition is trivially satisfied. If v is
half-tight at the beginning of an iteration, then ze = 0 and hence
z′′e = 0 for all e ∈ E(v), thus no value is added to

∑
e∈E(v) ye in this

iteration. If v is not half-tight at the beginning of an iteration, we
add at most half of a fractional matching to edges incident to v, thus
at most a value 1/2 to the summation

∑
e∈E(v) ye. More formally,

we have
∑

e∈E(v) z
′′
e ≤ 1, thus

∑
e∈E(v) z

′′
e /2 ≤ 1

2 , which results in a

new value of at most
∑

e∈E(v)(ye + z′′e /2) ≤ 1.

Lemma 5.21. We have
∑

e∈E ye ≥
1
4r

∑
e∈E xe at the end of 16r

iterations.

Proof. Consider one iteration and suppose
∑

e∈E ye <
1
4r

∑
e∈E xe.

We first show that then
∑

e∈E ze ≥
1
2

∑
e∈E xe by a blaming argu-

ment along the same lines as the proof of Lemma 5.13. For that, we
let every edge e ∈ E which is incident to a half-tight vertex in y put
xe dollars on edges in a manner that each edge e′ receives at most
2rye′ dollars. This can be done by sending those xe dollars of e to
(one of) its y-half-tight vertex v, and then letting v distribute these
xe dollars among its incident edges e′ ∈ E(v) proportionally to the
values ye′ . Since x is a matching, each vertex v in total receives at
most 1 dollar from its incident edges. Then, since v is y-half-tight,
it can distribute this dollar among its incident edges such that no
edge e′ receives more than 2ye′ dollars from one of its endpoints v.
Now, an edge e′ ∈ E can possibly receive 2ye′ dollars from each of
its (half-tight) endpoint vertices, thus in total at most 2rye′ dollars.
Therefore, indeed∑

e∈E : ∃v∈e :
∑
e′∈E(v) ye′≥1/2

xe ≤ 2r
∑
e∈E

ye ≤
2r

4r

∑
e∈E

xe =
1

2

∑
e∈E

xe.

It follows that if
∑

e∈E ye <
1
4r

∑
e∈E xe holds, then

∑
e∈E ze ≥

5.2. Hypergraph Maximal Matching 125

1
2

∑
e∈E xe. Thus, in each such iteration, the matching y grows by

at least ∑
e∈E

z′′e
2
≥ 1

2
· 1

16r2

∑
e∈E

ze ≥
1

2
· 1

16r2
· 1

2

∑
e∈E

xe.

Therefore we have
∑

e∈E ye ≥
1
4r

∑
e∈E xe after at most 16r itera-

tions.

Lemma 5.22. It takes O((r2 +log ∆) log5+log r L) rounds to run the
method round(x, L).4

Proof. The complexity R(L) of the rounding method round(x, L)
follows the recursive inequality

R(L) ≤ 16r(R(
√

2L) +R(
√

2L) +O(1)).

Furthermore, we have the base case solution of R(L) = O(L2r2 +
log ∆) for L = O(1). The claim can now be proved by an induction
on L, as formalized in Lemma 5.11. Here, instead of the formal
calculations, we mention an intuitive explanation: the complexity
gets multiplied by roughly 32r as we move from L to

√
2L. There

are roughly log logL such moves, and hence the complexity gets
multiplied by (32r)log logL < log5+log r L until we reach the base
case of L = O(1), where the base complexity is O(r2 + log ∆) by
Lemma 5.16.

5.2.5 Maximum and Maximal Matching

Approximate Maximum Matching

We now use our rounding procedure to find the (32r3)-approximate
matching of Lemma 5.12 in O

(
r2 log6+log r ∆

)
rounds.

4We remark that we have not tried to optimize the constant that appears
in the exponent of the round complexity. This constant mainly comes from the
constant in the number of iterations in our recursive rounding, which is currently
set to 16r, for simplicity.

126 Local Rounding for Hypergraph Matching

Proof of Lemma 5.12. First, we compute a (1/∆)-fractional (2r)-
approximate matching x in O(log ∆) rounds, by the greedy algo-
rithm described in Section 5.2.1. Then, we apply the recursive
rounding from Lemma 5.18 for L = ∆/ log2 ∆. This produces a
(1/ log2 ∆)-fractional matching x′ whose size is a factor (1/(8r2))
of the maximum fractional matching of the hypergraph, and takes
O
(
log5+log r ∆(r2 + log ∆)

)
rounds. To finish up the rounding, we

apply the basic rounding of Lemma 5.16 for L = log2 ∆, which runs
in O(r2 log4 ∆) and produces a 1-fractional, i.e., integral, matching
x′′ whose size is at least a factor (1/(4r)) of the size of x′. Hence,
the final produced integral matching is a (32r3)-approximation of
the maximum matching.

Maximal Matching

Once given such an approximation algorithm, we can easily find a
maximal matching via iterative applications of this matching ap-
proximation, by repeatedly applying this matching approximation
procedure to the remainder hypergraph for O(r3 log n) iterations,
each time adding the found matching to the output matching, and
then removing the found matching and its incident edges from the
hypergraph.

Proof of Theorem 5.1. First, we pre-compute an O(r2∆2) edge col-
oring of H in O(log∗ n) rounds by Linial’s algorithm [171]. Then,
iteratively, we apply the maximum matching approximation proce-
dure of Lemma 5.12 to the remaining hypergraph. We add the found
matching M to the matching that we will output at the end, and
remove M along with its incident edges from the hypergraph.

In each iteration, the size of the maximum matching of the remain-
ing hypergraph goes down to at least a factor of 1 − 1/(32r3) of
the previous size. This is because otherwise we could combine the
matching computed so far with the maximum matching in the re-
mainder hypergraph to obtain a matching larger than the maxi-

5.3. Implications and Corollaries 127

mum matching in H. After O(r3 log n) repetitions, the remain-
ing maximum matching size is 0, which means the remaining hy-
pergraph is empty. Hence, we have found a maximal matching
in O

(
log∗ n+ r3 log n

(
r2 log6+log r ∆

))
= O(r5 log6+log r ∆ · log n)

rounds.

5.3 Implications and Corollaries

5.3.1 Edge Coloring

We use our hypergraph maximal matching algorithm to prove our
edge coloring results.

Deterministic List Edge Coloring

First, we prove our deterministic (list) edge coloring result.

Proof of Theorem 5.4. Follows directly from Lemma 5.3 and Theo-
rem 5.1.

Remark 5.23. We note that Lemma 5.3, and hence also Theo-
rem 5.4, can be easily extended from graphs to hypergraphs. In par-
ticular, list edge coloring of hypergraphs of rank r can be reduced to
maximal matching in hypergraphs of rank r+1. Thus, we can obtain
a deterministic list edge coloring algorithm for hypergraphs of rank
r with round complexity O(r5 log6+log(r+1) ∆ log n) rounds.

Radomized List Edge Coloring

As stated before, the deterministic list edge coloring algorithm of
Theorem 5.4, in combination with known randomized algorithms
of Elkin, Pettie, and Su [87] as well as Johansson [149], leads to a
poly log log n-round randomized algorithm for (2∆−1) edge coloring.

128 Local Rounding for Hypergraph Matching

Proof of Corollary 5.5. For ∆ = Ω(log2 n), we run the algorithm
of Elkin, Pettie, and Su [87] for ((1 + ε)∆) edge coloring, which

takes O
(

log∗∆ + logn
∆1−o(1)

)
= O(log∗∆) rounds. For ∆ = o(log2 n),

we first apply the simple randomized coloring algorithm of Johans-
son [149] for O(log ∆ + log log n) = O(log log n) rounds. In partic-
ular, in each iteration, every remaining edge e independently picks
a color qe from its remaining palette uniformly at random. If there
is no incident edge that picked the same color qe, then the edge e is
colored with this color qe and removed from the graph. Moreover,
the color qe gets deleted from the palettes of every incident edge. As
proved in e.g. [27], after O(log ∆ + log log n) rounds, this procedure
leaves us with a graph where each connected component of remain-
ing edges has size at most N = poly log n. On these components, we
then run the list edge coloring algorithm of Theorem 5.4 to complete
the partial coloring. This takes at most O(log8N) = O(log8 log n)
rounds. Hence, including the O(log log n) initial rounds, the overall
complexity is O(log8 log n) rounds.

Edge Coloring in Sparse Graphs

Finally, we prove our edge coloring result for graphs with low ar-
boricity.

Proof of Corollary 5.6. First, we compute anH-partition [24, Chap-
ter 5.1] inO(log n/ε) rounds. This decomposes V into disjoint vertex
sets H1, H2, . . . , H`, for ` = O(log n/ε), with the property that each
vertex in Hi has degree at most (2 + ε)λ in the graph G[∪`j=iHj].
To compute this decomposition, one just needs to iteratively peel
vertices of degree at most (2 + ε)λ from the remaining graph.

Having this partition, we compute a (∆+(2+ε)λ−1) edge coloring
by gradually moving backwards in this partition, from H` towards
H1. Each step is as follows. Suppose we already have a coloring
of edges of G[∪`j=i+1Hj]. We now introduce the vertices of Hi and

5.3. Implications and Corollaries 129

also their edges whose other endpoint is in ∪`j=iHj . Each such edge
e has at most (2 + ε)λ − 1 other incident edges on the side of its
Hi-endpoint and at most ∆ − 1 other incident edges on the other
endpoint. If we take away the colors of {1, 2, . . . ,∆ + (2 + ε)λ− 1}
that are already used by neighboring edges e′ whose both endpoints
are in ∪`j=i+1Hj , the edge e would still have at least de + 1 re-
maining colors in its palette, where de is the number of edges in
G[∪`j=iHj] incident on e that remain uncolored. Hence, we can
color all these edges by applying the list edge coloring algorithm of
Theorem 5.4, in O(log8 ∆ log n) rounds. This is the round complex-
ity needed for coloring new edges after introducing each layer Hi.
Hence, the overall complexity until we go through all the ` layers
and finish the edge coloring of G = G[∪`j=1Hj] is `O(log7 ∆ log n) =

O(1
ε log7 ∆ log2 n).

5.3.2 Approximate Maximum Matching in Graphs

Proof of Section 5.1.1. We first discuss an algorithm with complex-
ity poly 1

ε ·O
(
(1
ε log ∆)6+log 1/ε log n

)
, and then explain how a small

change improves the complexity to poly 1
ε ·O

(
(1
ε log ∆)7+log 1/ε

)
.

We follow a well-known approach of Hopcroft and Karp [143] of
increasing the size of the matching using short augmenting paths.
Given a matching M , an augmenting path P with respect to M is a
path that starts with an unmatched vertex, then alternates between
non-matching and matching edges, and ends in an unmatched ver-
tex. Augmenting the matching M with this path P means replacing
the matching edges in P ∩M with the edges P \M . Notice that the
result is a matching, with one more edge.

The approximation algorithm variant of Hopcroft and Karp [143]
works as follows: For each ` = 1 to 2(1/ε) − 1, we find a maximal
set of vertex-disjoint augmenting paths of length `, and we aug-
ment them all. Hopcroft and Karp [143] show that this produces a

130 Local Rounding for Hypergraph Matching

(1 + ε)-approximation of maximum matching. See also [177], where
they use the same method to obtain a O(log n/ε3)-round random-
ized distributed algorithm for (1 + ε)-approximation of maximum
matching, using the help of the O(log n) round randomized MIS
algorithm of Luby [181].

What remains to be discussed is how do we compute a maximal set
of vertex-disjoint augmenting paths of a given length ` ≤ 2(1/ε)−1.
This can be easily formulated as a hypergraph maximal matching for
a hypergraph of rank at most 1/ε+1: create a hypergraph H by in-
cluding one vertex for each unmatched vertex and also one vertex for
each matching edge. Then, each augmenting path is simply a hyper-
edge made of its elements, i.e., its unmatched vertices and its match-
ing edges. This hypergraph has rank at most 1/ε+ 1, maximum de-
gree at most ∆2(1/ε), and the number of its vertices is no more than
n. Moreover, a single round of communication on this hypergraph
can be simulated in O(1/ε) rounds of the base graph, simply because
each hyperedge spans a path of length at most O(1/ε). Hence, we
can directly apply Theorem 5.1 to compute a maximal matching of
it, i.e., a maximal set of vertex-disjoint augmenting paths. This runs
in O

(
1
ε6

(2
ε log ∆)6+log(1/ε+1) log n

)
rounds. This is the complexity of

the algorithm for each one value of ` ∈ [1, 2/ε−1]. Thus, the overall
complexity is at most O

(
1
ε7

(2
ε log ∆)6+log(1/ε+1) log n

)
.

We now want to remove the factor log n from the complexity. In the
above algorithm, we compute a maximal set of disjoint augmenting
paths, and this precise maximality necessitates the factor log n (in
our approach). However, we do not need such a precise maximality.
It suffices if the set of disjoint augmenting paths is almost maximal,
in particular in the sense that the fraction of the remaining aug-
menting paths is less than poly(ε∆−1/ε), say. Then, even if we per-
manently remove all vertices that have such a remaining augment-
ing path, we lose only a negligible factor poly(ε∆) of the matching,
which at the end only changes our approximation ratio to 1+2ε. To

5.3. Implications and Corollaries 131

compute such an almost maximal set of disjoint augmenting paths,
instead of O(r3 log n) iterations in the proof of Theorem 5.1, it suf-

fices to have O
(
r3 log

(
poly ∆1/ε

ε

))
iterations. This brings down the

overall complexity to poly 1
ε ·O

((
1
ε log ∆

)
7+log 1/ε

)
.

5.3.3 Orientations with Small Outdegree

We show how to use our hypergraph maximal matching algorithm
to obtain orientations with small outdegree.

Proof of Theorem 5.10. We closely follow the approach of Ghaffari
and Su [122], which iteratively improves the orientation, i.e., re-
duces its maximum outdegree, using suitably defined augmenting
paths. They developed this approach and used it along with Luby’s
randomized MIS algorithm [181] to obtain a polylogarithmic round
randomized algorithm for finding an orientation with outdegree at
most dλ(1 + ε)e. We show how to turn that algorithm into a quasi-
polylogarithmic round deterministic algorithm, mainly by replac-
ing their MIS module with our hypergraph maximal matching algo-
rithm.

Let D = dλ(1 + ε)e. Given an arbitrary orientation, we call a path
P an augmenting path for this orientation if P is a directed path
that starts in a vertex with outdegree at least D + 1 and ends in a
vertex with outdegree at most D− 1. Augmenting this path means
reversing the direction of all of its edges. Notice that this would
improve the orientation, as it would decrease the outdegree of one
of the vertices whose outdegree is above the budget D, without
creating a new such vertex.

Let G0 be the graph with our initial arbitrary orientation. Define
G′0 to be a directed graph obtained by adding a source vertex s and
a sink vertex t to G0. Then, we add doutG0

(u) − D edges from s to
every vertex u with outdegree at least D+ 1, and D− doutG0

(u) edges
from every vertex u with outdegree at most D − 1 to t. We will

132 Local Rounding for Hypergraph Matching

improve the orientation gradually, in ` = O(log n/ε) iterations. In
the ith iteration, we find a maximal set of edge-disjoint augmenting
paths of length 3 + i from s to t in G′i, and then we reverse all these
augmenting paths. The resulting graph is called G′i+1.

Ghaffari and Su [122, Lemma D.6] showed that in this manner, each
time the length of the augmenting path increases by at least an
additive 1. Moreover, they showed that at the end of the process,
no augmenting paths of length at most ` = O(log n/ε) remains.
They used this to prove that there must be no vertex of outdegree
D + 1 left, at the end of the process, as any such vertex would
imply the existence of an augmenting path of length at most ` =
O(log n/ε) [122, Lemma D.9].

The only algorithmic piece that remains to be explained is how we
compute a maximal set of edge-disjoint augmenting paths of length
at most 3 + i < `, in a given orientation. Ghaffari and Su[122,
Theorem D.4] solved this part using Luby’s randomized MIS al-
gorithm [181]. We instead use our hypergraph maximal match-
ing algorithm. In particular, we view each edge as one vertex
of our hypergraph, and each augmenting path of length at most
3 + i < ` as one hyperedge of our hypergraph. Then, we invoke
Theorem 5.1, which provides us with a maximal set of edge-disjoint
augmenting paths. The round complexity of the process is at most

poly `·loglog logn
ε

+O(1) ∆·log n, where the first term ` is because simu-
lating each hyperedge needs ` rounds, and the second factor ` comes
from the fact that the degree of the hypergraph may be as large as
∆`, which means the related logarithm is at most ` log ∆. This is the
complexity for each iteration. Since the algorithm has ` iterations,
each time working on an incremented augmenting-path length, the

overall complexity is at most poly ` · loglog logn
ε

+O(1) ∆ · log n. This

is no more than 2O(log2 logn
ε

) rounds, which is quasi-polylogarithmic
in n for most ε-values of interest, e.g., ε = Ω(1/poly log n).

5.4. Extension to MIS and Coloring 133

5.4 Extension to MIS and Coloring

We will now generalize the hypergraph maximal matching algorithm
of Section 5.2 to computing maximal independent sets and (∆ + 1)
vertex colorings of graphs of bounded neighborhood independence,
thus proving Theorem 5.7 and Corollary 5.8.

Despite the fact that graphs of neighborhood independence r are
significantly more general than line graphs of rank-r hypergraphs,
we show that our techniques for computing a maximal matching
in rank-r hypergraphs can be generalized to computing an MIS in
graphs of neighborhood independence r, and this, in fact, even with
exactly the same asymptotic dependency on r and ∆.

Intuitive Discussion

When moving from matchings in hypergraphs to independent sets
in graphs of neighborhood independence at most r, it is not directly
clear how to define a fractional solution of an MIS in such graphs.
While in the case of hypergraph matchings, the natural LP relax-
ation leads to fractional solutions that are within a small factor of a
maximum matching, it is not as straightforward to model fractional
versions of independent sets in graphs of bounded neighborhood in-
dependence in a meaningful way. Note that for example even for
r = O(1), the integrality gap of the natural LP relaxation of the
maximum independent set problem might be as large as Ω(∆).

However, any MIS is within a factor r of a maximum independent
set, and this can in fact be generalized to maximal fractional solu-
tions of the following kind. We start by setting the fractional values
of all vertices to 0 and then, we iteratively increment the value of
some vertices. As long as right after incrementing the value of a
vertex v the total value in the 1-neighborhood of v does not exceed
1, the total value of the resulting fractional solution is guaranteed
to be within a factor r of a maximum independent set. We call such

134 Local Rounding for Hypergraph Matching

a fractional solution a greedy packing and show that our rounding
scheme for hypergraph matching can be adapted to greedy packings
of graphs of bounded neighborhood independence.

Integral greedy packings are exactly independent sets. Thus, inte-
gral greedy packings of the line graph of a hypergraph H correspond
to matchings of H. However, we note that a fractional greedy pack-
ing of the line graph of H is not the same as a fractional matching
of H. We believe that this stresses the robustness of our approach.
For example, when running the MIS algorithm for graphs of bounded
neighborhood independence on the line graph of a bounded rank hy-
pergraphH, we get a slightly different but equally efficient algorithm
for computing a maximal matching of H.

Overview and Outline

In the following, we study special fractional solutions x that as-
sign a non-negative value xv ≥ 0 to each vertex v ∈ V of a graph
G = (V,E) and allow to approximate maximum and maximal inde-
pendent sets in G if G is a graph of bounded neighborhood inde-
pendence. For convenience, we first introduce some notation. Recall
that given a graph G = (V,E) and a vertex v ∈ V , we use N(v) to
denote the set of neighbors of v. Further, we define

N+(v) := {v} ∪N(v)

to denote the set of vertices in the 1-neighborhood of v. Moreover,
for vertex vector x assigning values xv to every vertex v ∈ V , for
each vertex v ∈ V , we define

Σx(v) :=
∑

u∈N+(v)

xu

to be the local sum of the values xu in the 1-neighborhood of v. As a
fractional relaxation of the independent set of a graph G, we define
a greedy packing as follows.

5.4. Extension to MIS and Coloring 135

Definition 5.24 (Greedy Packing). For a graph G = (V,E), a
vertex vector x assigning a non-negative value xv ≥ 0 to each vertex
v ∈ V is called a greedy packing if there exists a global order ≺ on
the vertices V such that

∀v ∈ V : xv +
∑

u∈N(v):u≺v

xu ≤ 1.

Hence, in a greedy packing, the values xv can be assigned to the
vertices in some order such that for all vertices v ∈ V , when vertex
v gets assigned value xv, the sum of the values in v’s 1-neighborhood
is bounded by 1.

Analogously to the matching algorithm in Section 5.2, the key part
is a recursive algorithm that finds and independent set that is an
approximation of a maximum independent set in graphs of bounded
neighborhood independence. We formally prove the following result.

Lemma 5.25. In graphs of neighborhood independence at most r,
there is a deterministic LOCAL algorithm that computes a (32r3)-
approximate independent set in O

(
r2 log6+log r ∆

)
rounds, given an

O(∆2) vertex coloring.

We first show that in graphs of bounded neighborhood independence
for any such greedy packing x, the local sum Σx(v) is bounded for
all vertices.

Lemma 5.26. Let G = (V,E) be a graph with neighborhood inde-
pendence at most r and assume that we are given a greedy packing
x. Then, for all v ∈ V , we have Σx(v) ≤ r.

Proof. Consider an arbitrary vertex v ∈ V and let Gv be the sub-
graph of G induced by the vertices in N+(v). Let ≺ be the global
order on V which is defined by Definition 5.24 because x is a greedy
packing. Assume that the vertices in N+(v) are named u0, . . . , ud(v)

136 Local Rounding for Hypergraph Matching

such that for all 0 ≤ i < d(v), ui � ui+1. We construct an MIS S of
Gv by processing the vertices in N+(v) in the order u0, u1, . . . , ud(v),
always adding the current vertex ui to S if no neighbor of ui has
already been added to S. In this way, every vertex ui ∈ N+(v) \ S
has an MIS neighbor uj ∈ N+(v) for which j < i and thus ui ≺ uj .
We charge the value xui of every vertex ui ∈ N+(v)\S to some MIS
neighbor uj for which j < i. In addition, the value xuj of each MIS
vertex uj ∈ S is charged to the vertex itself. For each MIS vertex
uj ∈ S, let Xuj be the total value charged to uj . We can upper
bound Xuj as follows:

Xuj ≤
∑

ui∈N+(uj)∩N+(v):i>j

xui ≤ xuj +
∑

w∈N(uj):w≺uj

xw ≤ 1.

The last inequality follows because x is a greedy packing with respect
to the global order ≺. The claim of the lemma now follows because
G has neighborhood independence bounded by r, and thus the MIS
S can contain at most |S| ≤ r vertices.

We will show how to recursively compute a large greedy packing.
Before doing this, we first prove some useful simple properties of
greedy packings.

Lemma 5.27. Given a global order ≺ on the vertices V and a
greedy packing x with respect to the order ≺. Then, the following
statements hold:

(1) Let v ∈ V be vertex for which Σx(v) ≤ 1 and let y be a vertex
vector such that yu = xu for all u 6= v and such that yv ≤
xv + 1− Σx(v). Then y is also a greedy packing.

(2) Let U ⊆ V be a subset of the vertices and let y be a vertex
vector such that yv = xv for all vertices v ∈ V \U and such that
yu ≥ xu for all u ∈ U . If Σy(u) ≤ 1 for all vertices u ∈ U , y is
also a greedy packing.

5.4. Extension to MIS and Coloring 137

(3) Let U ⊆ V be a set of vertices u for which Σx(u) ≤ 1/2 and
consider a vertex vector y such that yv = xv for all v 6∈ U and
such that yu = 2xu for all u ∈ U . Then y is also a greedy
packing.

Proof. We first prove claim (1). Consider a global order ≺0 that is
obtained from ≺ by moving vertex v to the very end of the order
(without changing the relative order of any of the other vertices).
We claim that y is a greedy packing with respect to the global order
≺0. For all vertices u 6= v, the condition of Definition 5.24 follows
because x is a greedy packing with respect to the global order ≺. For
vertex v, the condition follows because Σy(v) = Σx(v)+yv−xv ≤ 1.

Claim (2) follows from claim (1) by sequentially processing the ver-
tices in U . We start with vector x and when processing vertex u,
we replace the current value xu of vertex u by yu. Because for all
vertices yv ≥ xv, for each of the intermediate vectors z, we have
Σz(u) ≤ 1 for all u ∈ U . The conditions for claim (1) are therefore
satisfied for each vertex u ∈ U .

Finally, to prove claim (3), observe that because we have Σx(u) ≤
1/2 for all vertices u ∈ U , the local sum for the vertices in u is still
bounded by 1 even if we double the values of all vertices v ∈ V .
Claim (3) therefore follows as a special case of claim (2).

In order to recursively compute a large greedy packing, we will need
to be able to add a new greedy packing to an existing one. The next
lemma shows in which way this can be done. In the following, given
a real-valued non-negative vertex vector x and a parameter c > 0,
we say that a vertex v ∈ V is c-tight if Σx(v) ≥ c.

Lemma 5.28. Let G = (V,E) be a graph and let x be a greedy
packing of G. Further, let F ⊆ V be the vertices of G that are
not 1/2-tight with respect to x and let y be a greedy packing of G

138 Local Rounding for Hypergraph Matching

for which yv > 0 only for v ∈ F . Then, the fractional assignment
z := x+ y/2 is a greedy packing of G.

Proof. Assume that x is a greedy packing of G with respect to to
the global order ≺x on V and that y is a greedy packing of G with
respect to the global order ≺y on F . Note that for all vertices
v ∈ F , we have Σx(v) < 1/2. Therefore for the greedy packing x
the condition of Definition 5.24 is satisfied for the vertices in F for
every choice of the global order ≺x. Without loss of generality, we
can therefore assume that ≺x first orders all vertices in V \ F and
it then orders the vertices in F in an arbitrary way. We can thus
define a global order ≺ on the vertices V as a combination of ≺x
and ≺y in an obvious way. The order ≺ first orders the vertices in
V \ F in the same order as ≺x and it then orders the vertices in
F in the same order as ≺y. We show that z = x + y/2 is a greed
packing of G with respect to the global order ≺. For each vertex
v ∈ V \ F , the condition of Definition 5.24 is satisfied because x is
a greedy packing. For a vertex v ∈ F , we have

zv +
∑

u∈N(v):u≺v

zu =
yv
2

+
∑

u∈N(v)∩F :u≺yv

yu
2

+ xv +
∑

u∈N(v):u≺xv

xu

<
1

2
+

1

2
= 1,

and therefore the claim of the lemma follows.

As in the case of computing matchings in hypergraphs, our goal
is to start with a large fractional greedy packing and to gradually
round the fractional solution to an integer one of approximately
the same size. For a given parameter δ > 0, a non-negative real-
valued vertex vector x is called δ-fractional if for every vertex v ∈ V ,
either xv = 0 or xv ≥ δ. Given a parameter L > 1, we show how to
recursively turn a δ-fractional greedy packing into an (Lδ)-fractional
greedy packing of a similar size. The proof follows the same basic
structure as the rounding for fractional hypergraph matchings in

5.4. Extension to MIS and Coloring 139

Sections 5.2.3 and 5.2.4. The following lemma provides a way to
upper bound the size of a greedy packing in terms of another greedy
packing. We will use it to compare the size of a computed (Lδ)-
fractional greedy packing to the existing δ-fractional greedy packing.

Lemma 5.29. Let x and y be two greedy packings of a n-vertex
graph with neighborhood independence at most r. Further, let U ⊆ V
be the set of vertices of V for which Σy(v) ≥ 1/2. We have∑

v∈V
yv ≥

1

2r

∑
v∈U

xv.

Proof. To prove the lemma, we use a blaming argument. Let Vy be
the set of vertices for which yv > 0. We distribute all the xv-values
of vertices in U among the vertices in Vy. That is, for each vertex
v ∈ Vy, we define a variable αv such that

∑
v∈Vy αv =

∑
v∈U xv.

More concretely, we define the values αv for each vertex v ∈ Vy as
follows:

αv :=
∑

u∈N+(v)∩U

xu ·
yv

Σy(u)
≤

∑
u∈N+(v)∩U

xu · 2yv = 2yvΣx(v). (5.3)

Hence, every vertex u ∈ U distributes its value xu among the neigh-
boring vertices in v ∈ Vy proportionally to the values yv. Because
x is a greedy packing of G, Lemma 5.26 implies that Σx(v) ≤ r for
all v ∈ V . Together with (5.3), we thus get αv ≤ 2ryv for all v ∈ Vy
and the claim of the lemma follows.

5.4.1 Basic Rounding of Greedy Packings

Lemma 5.30 (Basic Rounding of Greedy Packings). Assume that
a parameter L > 1, an integer d ≥ L, and a (1/d)-fractional greedy
packing x as well as an O(∆2) vertex coloring of an n-vertex graph
with neighborhood independence at most r are given. Then there is

140 Local Rounding for Hypergraph Matching

an O
(
(rL)2 + log∗∆ + log d

)
-round deterministic LOCAL algorithm

that computes an (L/d)-fractional greedy packing y for which yv > 0
only if xv > 0 and such that y is of size

∑
v∈V yv ≥

1
2r

∑
v∈V xv.

Proof. Let Vx be the set of vertices v ∈ V for which xv > 0 and
let Gx = G[Vx] be the subgraph of G induced by Vx. Note that
because x is a greedy packing, Lemma 5.26 implies that for every
vertex v ∈ V , Σx(v) ≤ r and since x is (1/d)-fractional, this implies
that Gx has maximum degree at most r · d. We compute the (L/d)-
fractional greedy packing y in two steps. In a first step, we compute
an arbitrary (L/d)-fractional greedy packing z of G by assigning
value zv = L/d to a subset of the vertices v ∈ Vx. In the second
step, we obtain y from z by iteratively doubling the value of each
vertex that is not (1/2)-tight at most O(log d) times.

For the first step, we apply the deterministic defective coloring algo-
rithm of Kuhn [159]. For a C vertex colored graph G of maximum
degree ∆ and a parameter p ≥ 1, the algorithm allows to compute
a p-defective O((∆/p)2)-coloring of G in time O(log∗C). That is,
the algorithm assigns one of O((∆/p)2) colors to each vertex of G
such that the subgraph induced by each of the colors has maximum
degree at most p. We apply the defective coloring algorithm of [159]
to the graph Gx with parameter p = d/(2L). Because we are given
an O(∆2)-coloring of G (and thus also of Gx), the time for comput-
ing this defective coloring is O(log∗∆) and because the maximum
degree of Gx is at most dr, the number of colors of the defective
coloring is at most O

(
(rL)2

)
.

We now compute an initial (L/d)-fractional greedy packing z as
follows. For all vertices v ∈ V \Vx, we set zv = 0. For the vertices in
Vx, we iterate through the O((rL)2) colors of the defective coloring
of Gx and process all vertices of the same color in parallel. At
the beginning, we set zv = 0 for all v ∈ Vx. When processing the
vertices of colors c, for each vertex v ∈ Vx of color c, we set zv = L/d
if and only if Σz(v) ≤ 1/2. Because each vertex of color c has at

5.4. Extension to MIS and Coloring 141

most d/(2L) neighbors of color c, this implies that even after this
step, Σz(v) ≤ 1 for all vertices of color c. Claim (2) of Lemma 5.27
therefore implies that throughout this process, vector z remains a
valid greedy packing. Because at the end all non-zero values of z
are equal to L/d, clearly, z is (L/d)-fractional. Note also that for
all vertices v ∈ Vx for which zv = 0, we have Σz(v) ≥ 1/2.

To obtain the greedy packing y from z we first set y = z and we
then proceed in synchronous rounds. Let Vy ⊆ Vx be the set of
vertices for which zv > 0. In each round, each vertex v ∈ Vy for
which Σy(v) ≤ 1/2 doubles its value yv. The process stops when
Σy(v) ≥ 1/2 for all vertices v ∈ Vy. Because yv ≥ 1/2 implies that
Σy(v) ≥ 1/2, this happens after at most log(d/L) ≤ log d rounds.
Claim (3) of Lemma 5.27 implies that the vector y remains a valid
greedy packing throughout this process.

We therefore obtain an (L/d)-fractional greedy packing y where for
each vertex v ∈ Vx, we have Σy(v) ≥ 1/2. Lemma 5.29 then shows
that that

∑
v∈V yv ≥ 1/(2r)

∑
v∈V xv, which concludes the proof.

5.4.2 Recursive Rounding of Greedy Packings

We next explain a recursive method round(x, L) that given a δ-
fractional greedy packing x of a graph G = (V,E) of neighborhood
independence ≤ r computes an (Lδ)-fractional greedy packing y
of G of size

∑
v∈V yv ≥

1
4r

∑
v∈V xv and such that yv > 0 only

if xv > 0. The method round(x, L) runs in 16r phases. At the
beginning, y = 0 and in each phase, some values of y are increased.
As soon as for some vertex v ∈ V , Σy(v) ≥ 1/2, the value yv is
not increased any further. In each phase, the method therefore first
defines a δ-fractional greedy packing z which is identical to x on
all vertices v for which Σy(v) < 1/2 and which is 0 on all other
vertices. On this vector z, the method is called recursively with
parameter

√
2L, resulting in a (

√
2Lδ)-fractional greedy packing z′.

142 Local Rounding for Hypergraph Matching

Afterwards, the method is again called recursively with parameter√
2L on the vector z′, resulting in a (2Lδ)-fractional greedy packing

z′′. Finally, the vector y is updated by adding z′′/2 to it.

The following lemma shows that the algorithm round(x, L) computes
an (Lδ)-fractional greedy packing of size within a factor 4r of the
size of x.

Lemma 5.31. Assume that we are given parameters 0 < δ < 1
and L < 1/(2δ), and a δ-fractional greedy packing x of a n-vertex
graph with neighborhood independence at most r. Then the method
round(x, L) computes an (Lδ)-fractional greedy packing y for which
yv > 0 only if xv > 0 and such that∑

v∈V
yv ≥

1

4r

∑
v∈V

xv. (5.4)

Proof. Note that for L ≤ 4, the algorithm directly applies the basic
rounding algorithm of Lemma 5.30 and the claims of the lemma thus
directly hold by applying Lemma 5.30. Let us therefore assume that
L > 4 and let us therefore (inductively) also assume that the recur-
sive calls to round(z,

√
2L) and round(z′,

√
2L) satisfy the claims of

the lemma.

We first show that y is an (Lδ)-fractional greedy packing of G and
that yv > 0 only if xv > 0. Note that zv > 0 only if xv > 0
and we have z′v > 0 only if zv > 0 and z′′v > 0 only if z′v > 0
because that is guaranteed by the recursive calls to round(z,

√
2L)

and round(z′,
√

2L). Because yv is only increased for vertices v ∈ V
for which z′′v > 0, we therefore have yv > 0 only if xv > 0 throughout
the algorithm. To see that y is (Lδ)-fractional, note that because x is
δ-fractional, the recursive calls to round(z,

√
2L) and round(z′,

√
2L)

guarantee that z′ is (
√

2Lδ)-fractional and z′′ is (2Lδ)-fractional.
We update y by adding z′′/2 and thus an (Lδ)-fractional vector to

5.4. Extension to MIS and Coloring 143

it. Thus, y is (Lδ)-fractional at all times during the execution of the
method round(·, ·). We prove that y at all times is a greedy packing
by induction on the number of phases. Clearly at the beginning
when ye = 0 for all e, y is a greedy packing. Also, whenever, y is
updated, we add z′′/2 to it. Note that because z′′ is the result of
the call to round(z′,

√
2L), z′′ is a greedy packing. Further, z′′v > 0

only where zv > 0 and thus only for vertices v where Σy(v) < 1/2 at
the beginning of the respective phase. It therefore follows directly
from Lemma 5.28 that y + z′′/2 is a greedy packing of G.

It thus remains to show (5.4). As long as (5.4) does not hold, at the
beginning of each of the 16r phases, we have

∑
v∈V xv > 4r

∑
v∈V yv.

Let Vz be the set of vertices for which Σy(v) < 1/2 and V̄z := V \Vz
be the set of vertices for which Σy(v) ≥ 1/2. From Lemma 5.29,
we get that

∑
v∈V̄z xv ≤ 2r

∑
v∈V yv and we thus have

∑
v∈V zv =∑

v∈Vz xv >
1
2

∑
v∈V xv. From the guarantees of the recursive calls

to round(z,
√

2L) and round(z′,
√

2L), the size of z′′/2 that we add
to y is thus

1

2

∑
v∈V

z′′v ≥
1

8r

∑
v∈V

z′v ≥
1

32r2

∑
v∈V

zv ≥
1

64r2

∑
v∈V

xv.

After 16r phases, we therefore have
∑

v∈V yv ≥
16r
64r2

∑
v∈V xv.

Lemma 5.32. It takes O
(
(r2 + log ∆) log5+log r L

)
rounds to run

the method round(x, L).

Proof. The proof is identical to the proof of Lemma 5.22, the anal-
ogous result in the analysis for hypergraph maximal matching. The
round complexity R(L) of round(x, L) follows the recursive inequal-
ity R(L) ≤ 16r(R(

√
2L) + R(

√
2L) + O(1)). Furthermore, we have

the base case solution of R(L) = O(L2r2 + log ∆) for L = O(1).
The claim can now be proved by an induction on L, as formalized
in Lemma 5.11.

144 Local Rounding for Hypergraph Matching

5.4.3 Maximum and Maximal Independent Set

Approximate Maximum Independent Set

We now use our rounding procedure to find the approximate inde-
pendent set of Lemma 5.25.

Proof of Lemma 5.25. Let S∗ be some maximum independent set of
the given graph G = (V,E) with neighborhood independence ≤ r.
We first compute a (1/∆)-fractional greedy packing x of size at least
1
2r · |S

∗|. To compute x, we initially set xv = 1/∆ for all vertices
v ∈ V . As this guarantees that Σx(v) ≤ 1 for all v ∈ V , this initial
vector x clearly is a greedy packing. Now, we proceed in log ∆
synchronous rounds, where in each round, all vertices v ∈ V for
which Σx(v) < 1/2 double their value xv. Claim (3) of Lemma 5.27
implies that the vector x remains a greedy packing throughout this
process. Further, after at most log ∆ doubling steps, we certainly
have Σx(v) ≥ 1/2 for all vertices v ∈ V . Lemma 5.29 therefore
implies that

∑
v∈V xv ≥

1
2r

∑
v∈V yv for every greedy packing y of

G. The claim that
∑

v∈V xv ≥ |S∗|/(2r) now follows because for
any independent S set of G, setting yv = 1 for v ∈ S and yv = 0
otherwise results in a greedy packing y.

Given the greedy packing x, we now apply the recursive rounding
from Lemma 5.31 for L = ∆/ log2 ∆. This produces a (1/ log2 ∆)-
fractional greedy packing x′, in O

(
log5+log r ∆(r2 + log ∆)

)
rounds,

whose size is a factor (1/(8r2)) of |S∗|. To finish up the rounding, we
apply the basic rounding of Lemma 5.30 for L = log2 ∆, which runs
in O(r2 log2 ∆) and produces a 1-fractional, i.e., integral, greedy
packing x′′ of size is at least a (1/(4r)) times the size of x′. Hence,
the final produced integral greedy packing is a (32r3)-approximation
of the maximum independent set S∗.

5.4. Extension to MIS and Coloring 145

Maximal Independent Set

We compute a maximal independent set via iterative applications
of this independent set approximation.

Proof of Theorem 5.7. First, we pre-compute an O(∆2) vertex col-
oring of G in O(log∗ n) rounds by Linial’s algorithm [171]. Then,
iteratively, we apply the maximum independent set approximation
procedure of Lemma 5.25 to the remaining graph. We add the found
independent set S to the independent set that we will output at the
end, and remove S along with its neighbors from the graph.

In each iteration, the size of the maximum independent set of the
remaining graph goes down to at least a factor of 1 − 1/(32r3).
This is because otherwise we could combine the independent set
computed so far with the maximum independent set in the remain-
ing graph to obtain an independent set larger than the maximum
independent set in G. After at most O(r3 log n) repetitions, the
remaining independent set size is 0, which means the remaining
graph is empty. Hence, we have found a maximal independent set
in O

(
log∗ n+ r3 log n

(
r2 log6+log r ∆

))
= O(r5 log6+log r ∆ · log n)

rounds.

146 Local Rounding for Hypergraph Matching

CHAPTER 6

Local Algorithms for the Lovász Local Lemma

6.1 Introduction

In this section, we present our work in the publication ‘Sublogarith-
mic Distributed Algorithms for Lovász Local Lemma’ [101], where
we devise a fast randomized LOCAL algorithm for the constructive
Lovász Local Lemma problem.

6.1.1 Our Results and Related Work

Despite its centrality for distributed computing, the state of the art
for distributed algorithms for the LLL problem is rather bleak. In
their celebrated work, Moser and Tardos [189] provide a randomized
parallel algorithm, which can be transformed into a O(log2 n)-round
LOCAL algorithm in a straight-forward manner. Chung, Pettie, and

147

148 Local Algorithms for the Lovász Local Lemma

Su [67] presented an O(log n · log2 d)-round algorithm, which was
later improved slightly to O(log n · log d) [109]. Perhaps more impor-
tantly, under a modestly stronger1 criterion that epd2 < 1, which is
satisfied in most of the standard applications, they gave an O(log n)-
round algorithm [67]. On the other hand, Brandt et al. [46] showed
a lower bound of Ω(logd log n) rounds, which holds even if a much
less permissive LLL criterion of p·2d < 1 is satisfied. Even under this
exponentially stronger criterion, the best known upper bound had
changed only slightly to O(log n/ log log n) [67]. Although a wide
gap between the best upper and lower bound had persisted, Chang
and Pettie [61] conjecture the latter to be tight:

Conjecture by Chang and Pettie [61]:
“There exists a sufficiently large constant c such that
the distributed LLL problem can be solved in O(log log n)
time on bounded degree graphs, under the symmetric LLL
criterion pdc < 1.”

Randomized LLL Algorithm

Making the first step of progress towards this conjecture, and provid-
ing a significant improvement on the algorithm of Chung et al. [67],
we prove TLLL(n) = 2O(

√
log logn) under the symmetric polynomial

LLL criterion that p(ed)32 < 1.2

Theorem 6.1. There is a 2poly d+O(
√

log logn)-round LOCAL algo-
rithm that w.h.p. solves the LLL problem under a polynomial LLL
criterion p(ed)32 < 1. In particular, for LLL problems with d =
O(log1/5 log n), we get a 2O(

√
log logn)-round algorithm.

1We say that a criterion is stronger if it is harder to satisfy, so less permissive,
and the corresponding theorem weaker.

2We remark that we did not try to optimize these constants, and, for that
matter, any constant in this thesis.

6.1. Introduction 149

This improves on the O(log n)-round algorithm of Chung et al. [67].
Our method provides some further supporting evidence for the con-
jecture of Chang and Pettie [60, 61] that the Lovász Local Lemma
can be solved in O(log log n) rounds for d = O(1). In particular,
if we combine our method with the recent network decomposition
algorithm [216] and the derandomization technique [115], we arrive
at an O(d2) + poly log log n round complexity, thus poly log log n
for constant-degree LLLs, getting close to the bound conjectured by
Chang and Pettie [61] as well as the lower bound Ω(log log n) [46]
for p2d ≤ 1.

We note that even under a significantly stronger exponential LLL
criterion, formally requiring 4epd4 · 2d < 1, the best known round
complexity before our result was O(log n/ log log n) [67]. Interest-
ingly, for p · 2d < 1 under some additional conditions, Brandt et
al. [47] provided an O(d2 + log∗ n)-round deterministic algorithm,
which is tight in bounded-degree graphs due to the Ω(log∗ n) lower
bound by Chung, Pettie, and Su [67].

Gap in the Randomized Distributed Complexity Hierarchy

Putting Theorem 6.1 with [60, Theorem 6], we get the following
automatic speedup result:

Corollary 6.2. Let A be a randomized LOCAL algorithm that solves
an LCL problem P on bounded-degree graphs w.h.p. in o(log n) rounds.
Then it is possible to transform A into a new randomized LOCAL
algorithm A′ that solves P w.h.p. in 2O(

√
log logn) rounds.

Using a similar method, as well as our deterministic LLL algorithm
from Theorem 6.10, we obtain the following corollary, the proof
of which appears in Section 6.3.3. It shows that any o(log log n)-
round randomized algorithm for an LCL problem on bounded-degree
graphs can be improved to a deterministic O(log∗ n)-round LOCAL
algorithm. This result seems to be implicit in the recent work of

150 Local Algorithms for the Lovász Local Lemma

Chang, Kopelowitz, and Pettie [57], though with a quite different
proof. It can be derived from [57, Corollary 3] and [57, Theorem 3].

Corollary 6.3. Let A be a randomized LOCAL algorithm that solves
some LCL problem P on bounded-degree graphs w.h.p. in o(log log n)
rounds. Then, it is possible to transform A into a new deterministic
LOCAL algorithm A′ that solves P in O(log∗ n) rounds.

Algorithms for Various Graph Coloring Problems

For several distributed graph problems on bounded-degree graphs,
we can immediately get faster algorithms by applying our LLL al-
gorithm. However, there are two quantifiers which appear to limit
its applicability: (1) it needs a stronger form of the LLL criterion,
concretely requiring p(ed)32 < 1 instead of epd ≤ 1; (2) it applies to
graphs with degree d = O(log1/5 log n). We explain how to overcome
these two limitations in most of the LLL-based problems studied by
Chung, Pettie, and Su [67]. Regarding limitation (1), we show that
even though in many coloring problems the direct LLL formulation
would not satisfy the polynomial criterion p(ed)32 < 1, we can still
solve the problem, through a number of iterations of partial color-
ings, each of which satisfies this stronger LLL criterion. Regarding
limitation (2), we explain that in most of these coloring problems,
the first step of our LLL algorithm, which is its only part that relies
on bounded degrees, can be replaced by a faster randomized step,
suited for that coloring. The end results of our method contain
algorithms with round complexity 2O(

√
log logn) (and combined with

[115, 216] in poly log log n rounds) for a number of coloring problems
including defective coloring, frugal coloring, and list vertex-coloring,
substantially improving on the corresponding O(log n)-round algo-
rithms of Chung, Pettie, and Su [67].

One key ingredient for these coloring algorithms is another result
obtained via our speedup method, targeting higher-degree graphs.

6.1. Introduction 151

Lemma 6.4. Let A be a randomized LOCAL algorithm that solves
some LCL problem P on n-vertex graphs with maximum degree d =

2O(log1/4 logn) in O(log1/4 n) rounds. Then, it is possible to transform
A into a new randomized LOCAL algorithm A′ that solves P w.h.p.
in 2O(

√
log logn) rounds.

The proof is deferred to Section 6.3.2.

We next present the different results for several variants of coloring
problems.

Defective Coloring: An f -defective coloring is a (not necessar-
ily proper) coloring of vertices, where each vertex has at most f
neighbors with the same color. In other words, in an f -defective
coloring, each color class induces a subgraph with maximum degree
f . Chung, Pettie, and Su [67] gave an O(log n)-round distributed al-
gorithm for computing an f -defective coloring with O(∆/f) colors.

We here improve this complexity to 2O(
√

log logn) rounds.

Theorem 6.5. There is a 2O(
√

log logn)-round randomized distributed
algorithm that w.h.p. computes an f -defective O(∆/f)-coloring in
an n-vertex graph with maximum degree ∆, for any integer f ≥ 0.

Frugal Coloring: An f -frugal coloring is a proper coloring in
which no color appears more than f times in the neighborhood
of any vertex. We improve the complexity of f -frugal O(∆1+1/f)-
coloring from O(log n) by Chung, Pettie, and Su [67] to 2O(

√
log logn).

Theorem 6.6. There is a 2O(
√

log logn)-round randomized distributed
algorithm for a f -frugal (120∆1+1/f) coloring3 in a graph with n
vertices and maximum degree ∆ w.h.p. for any integer f ≥ 1.

List Vertex Coloring: A list vertex coloring assigns each vertex v
a color from its color list Lv such that no two neighboring vertices

3We remark that we have not tried to optimize this constant 120.

152 Local Algorithms for the Lovász Local Lemma

choose the same color. The color lists satisfy the following proper-
ties: (1) |Lv| ≥ L for all v ∈ V . We emphasize that the list size L
may be much smaller than the degree ∆. (2) For each v ∈ V and
each color q ∈ Lv, the set Nq(v) = {u |u ∈ N(v) and q ∈ Lu} of
neighbors u of v that also have color q in their color list Lu has size
|Nq(v)| ≤ L/C, for a given large constant C > 2e.

Chung, Pettie, and Su [67] gave an O(log n)-round randomized dis-
tributed algorithm for list vertex coloring with C ≥ 2e+ ε. We here
improve this complexity to 2O(

√
log logn) rounds, for a sufficiently

large constant C which we have not tried to optimize.

Theorem 6.7. There is a 2O(
√

log logn)-round randomized LOCAL
algorithm that w.h.p. computes a list vertex coloring in an n-vertex
graph where each list Lv has size L and for each color q ∈ Lv, we
have we have |Nq(v)| ≤ L/C, for some sufficiently large constant
C > 2e.

6.1.2 Overview and Outline

Our sublogarithmic-time LLL algorithm of Theorem 6.1—which solves
LLL in 2O(poly d+

√
log logn) rounds, given the condition that p(ed)32 <

1—is developed in two stages: a base algorithm that runs in O(d2)+
log1/β n · 2O(

√
log logn) rounds under the LLL criterion p(ed)4β < 1;

and a bootstrapping part to boost the running time of the base
algorithm to 2O(

√
log logn) for d = O(log1/5 log n).

Stage 1: Base LLL Algorithm

In the first stage we run a randomzied sublogarithmic-round algo-
rithm based on the shattering technique. Its proof can be found in
Section 6.2. The main idea is to color the square of the dependency
graph and go through the color classes one by one.

6.2. Base LLL Algorithm 153

Theorem 6.8. For any integer β ≥ 8, there is a randomized dis-
tributed algorithm w.h.p. solving the LLL problem under the sym-
metric criterion p(ed)4β < 1, in O(d2) + β log1/β n · 2O(

√
log logn)

rounds.

In the main regime of interest, the best LLL criterion exponent that
we will assume is β = O(1), and thus this (β log1/β n · 2O(

√
log logn))-

round algorithm, on its own, would not get us to our target com-
plexity of 2O(

√
log logn), although still being an improvement on the

O(log n)-round algorithm of [67].

Stage 2: Bootstrapping of Base LLL Algorithm

In the second stage—presented in Section 6.3—we boost the round
complexity of our base algorithm to 2O(poly d+

√
log logn) with the help

of a bootstrapping approach where the LLL algorithm generates a
new LLL instance with amplified slack in the LLL criterion.

6.2 Base LLL Algorithm

6.2.1 Overview and Outline

Our base algorithm follows the shattering technique and conse-
quently consists of two parts: a randomized shattering and a de-
terministic post-shattering.

Randomized Shattering Algorithm

Our randomized shattering algorithm performs a partial sampling
in the LLL space—i.e., finds an assignment for some of the variables
of the LLL—in a manner that shatters the graph so that the leftover
graph induced by events with still unset variables is somewhat small.

Partial Assignment: We use X ∗ ⊆ X for the variables already
set by the shattering algorithm; X ′ := X \ X ∗ for the still unset

154 Local Algorithms for the Lovász Local Lemma

variables; and B′ for the events that still have at least one unset
variable, thus vbl(B) ∩ X ′ 6= ∅ for all B ∈ B′. Moreover, GB′ [X ′]
stands for the graph induced by events in B′ and variables in X ′,
where events B,B′ ∈ B′ are connected if vbl(B)∩ vbl(B′)∩X ′ 6= ∅.

Lemma 6.9 (LLL Shattering). There is a randomized LOCAL O(d2+
log∗ n)-round algorithm that w.h.p. computes a partial assignment of
values to variables in X ∗ of an LLL satisfying p(ed)4β < 1, for any
integer β ≥ 8, such that

(i) Pr[B | X ∗] ≤ √p for all B ∈ B, and

(ii) each connected component of the square G2
B[X ′] of the leftover

graph w.h.p. admits a (β,O(log1/β n · log2 log n)) network de-
composition, which can be computed in β log1/β n · 2O(

√
log logn)

rounds.

This algorithm essentially works by going over theO(d2) color classes
of G2

B one by one, setting the variables of the corresponding events
carefully as to ensure to not make a bad event too likely. The dis-
tance coloring (coloring of G2

B as opposed to GB) is needed to ensure
that for no event more than one incident event is setting its vari-
ables at the same time. A precise algortihm description as well as
the proof can be found Section 6.2.2.

The two properties of Lemma 6.9 will allow us to invoke the deter-
ministic LLL algorithm that we present later in Section 6.2.3 on the
components of events with unset variables. In particular, (i) means
that the bad events B form another LLL problem on the variables
that remain unset, where each new bad event has probability at
most

√
p. Furthermore, (ii) ensures that the components are small

enough to make the deterministic algorithm efficient.

6.2. Base LLL Algorithm 155

Deterministic LLL Algorithm

A key ingredient in developing our randomized LLL algorithm from
Theorem 6.1 is a deterministic distributed algorithm for LLL, which
we present in Section 6.2.3.

Theorem 6.10 (Deterministic LLL Algorithm). For any integer
β ≥ 1, any n-vertex LOCAL LLL problem can be solved deterministi-
cally in βn1/β ·2O(

√
logn) rounds, under the symmetric LLL criterion

p(ed)β < 1. If the algorithm is provided a (β, γ) network decompo-
sition of the square graph G2

B, then the LLL algorithm runs in just
O(β(γ + 1)) rounds.

Our deterministic algorithm can be used as post-shattering algo-
rithm to complete the partial assignment given by the randomized
shattering algorithm from Lemma 6.9. To the best of our knowledge,
this is the first non-trivial deterministic distributed LLL algorithm.
In fact, we believe that a conceivable future improvement of our LLL
algorithm may need to improve this deterministic LLL algorithm—
ideally to complexity O(log n), matching the deterministic lower
bound of Ω(log n) by [57]—for proving the TLLL(n) = O(log log n)
conjecture of Chang and Pettie [60].

Our algorithm makes use of network decompositions, and, in par-
ticular, makes a black-box invocation to the algorithm stated in
Lemma 3.2 for computing a (β, n1/β log n) network decomposition.
The running time of our deterministic LLL algorithm hence directly
depends on the network decomposition it works with. In particular,
if we plug in the novel (poly log n, poly log n) network decomposition
algorithm in poly log n rounds by [216, 114], using the methods of
Lemma 3.2, we can obtain a (β, n1/β log n)-network decomposition
in n1/β poly log n rounds.

156 Local Algorithms for the Lovász Local Lemma

6.2.2 Randomized LLL Shattering Algorithm

We now explain the randomized component of our LLL algorithm
for bounded-degree graphs, which performs a partial sampling in
the LLL space, thus setting some of the variables, in a manner that
guarantees the following two properties needed for Lemma 6.9: (i)
the conditional probabilities of the bad events, conditioned on the
already set variables, satisfy a polynomial LLL criterion, (ii) the
connected components of the events on variables that remain unset
are small (e.g., for bounded-degree graphs, they have size at most
O(log n)), with high probability.

Our partial sampling is inspired by a centralized LLL algorithm of
Molloy and Reed [186] and Pach and Tardos [204]. See also [115,
Algorithm 1] who wrote a section about our algorithm (even with
pseudo-code).

Proof of Lemma 6.9. We first compute a (d2 + 1) coloring of the
square graph G2

B on the events, which can be done even determin-

istically in Õ(d) + O(log∗ n) rounds [107]. Suppose Bi is the set of
events colored with color i, for i ∈ {1, . . . , d2 + 1}. We process the
color classes one by one.

Initially, all the variables are unset and non-frozen. For each color
i ∈ {1, . . . , d2 + 1}, and for each node B ∈ Bi in parallel, we make
node B sample values for its non-frozen and yet unset variables
offline, one by one, independently and uniformly at random. Notice
that since we are using a coloring of G2

B, for each color i, each event
A ∈ B shares variables with at most one event B ∈ Bi. Hence,
during this iteration, at most one node B is sampling variables of
event A. Each time, when node B is choosing a value for a variable
v ∈ vbl(B), it checks whether this setting makes one of the events
A ∈ B involving variable v dangerous. We call an event A dangerous
if Pr[A | V∗A] ≥ √p, where V∗A denotes the already set variables of A
up to this point in the sampling process. If the recently set variable v

6.2. Base LLL Algorithm 157

leads to a dangerous event A, then we undo this variable assignment
to v, and freeze variable v as well as all the remaining variables of
event A. We will not assign any value to these frozen variables in
the remainder of the randomized sampling process. We have two
key observations regarding this process:

Observation 6.11. At the end of each iteration, for each event
A ∈ B, its conditional probability Pr[A | V∗A], conditioned on the
already made assignments V∗A, is at most

√
p < 1/(ed)2β.

This immediately follows by the design of our sampling algorithm:
Towards a contradiction, assume that Pr[A | V∗A] >

√
p. Then there

is a round in which an event B samples a variable vbl(A) such that
the probability exceeds

√
p (for the first time). In that case, B

reverts this choice—thus decreasing A’s probability below
√
p—and

freezes all the variables in vbl(A). It is thus not possible for any other
event to change A’s and hence A’s probability after that round.

Observation 6.12. For each event B ∈ B, the probability of B
having at least one unset variable is at most (d+1)

√
p. Furthermore,

this is independent of events that are further than 2 hops from B.

The reason for this is as follows. For each B ∈ B, the probability
that B ever becomes dangerous is at most

√
p. This is because

otherwise the total probability of B happening would exceed
√
p.

Now, an event B ∈ B can have frozen variables only if at least one
of its neighboring events A, or event B itself, becomes dangerous at
some point during the process. Since B has at most d neighboring
events, by a union bound, the latter has probability at most (d +
1)
√
p.

Observation 6.11 directly implies property (i) of Lemma 6.9. We use
Observation 6.12 to conclude that the events with at least one unset
variable comprise small connected components: In particular, we
apply our Shattering Lemma (Lemma 3.3) to G2

B with the random

158 Local Algorithms for the Lovász Local Lemma

partial setting process generating a set B′ ⊆ B of the events that
have at least one variable unset. By Observation 6.12, each event
remains with probability at most

(d+ 1)
√
p ≤ (d+ 1)e−2βd−2β ≤ d−15,

hence we can set c1 ← 15. These events depend only on events
within at most 1 hop in GB, thus c2 ← 2 hops in G2

B. Lemma 3.3
(iii) shows that w.h.p. property (ii) of Lemma 6.9 holds.

6.2.3 Deterministic LLL Algorithm

Proof of Theorem 6.10. We first compute a (β, n1/β log n) network
decomposition of G2

B, which decomposes its vertices into β disjoint
blocks B1, . . . ,Bβ, such that each connected component of G2

B[Bi]
has diameter at most n1/β log n. This decomposition can be com-
puted in βn1/β · 2O(

√
logn) rounds, using Lemma 3.2. The rest of

the proof is described assuming this (β, n1/β log n) network decom-
position and works in O(βn1/β log n) rounds; one can easily see that
given a (β, γ) network decomposition G2

B, the algorithm would work
instead in O(β(γ + 1)) rounds.

Iteratively for i = 1, . . . , β, we assign values to all variables of events
in Bi that have remained unset. The values are chosen is such a way
that, after i steps, the conditional probability of any event in B,
conditioned on all the assignments in variables of events in

⋃i
j=1 Bj ,

is at most p(ed)i < 1. Once i = β, since the conditional failure
probability is p(ed)β < 1 but all the variables are already assigned,
we know that none of the events occurs.

The base case i = 0 is trivial. In the following, we explain how to
set the values for variables involved in events of Bi in n1/β · log n
rounds. Let Xi be the set of variables in events of Bi that remain
with no assigned value. We form a new LLL problem, as follows:
For each bad event A ∈ B, we introduce an event BA,i on the space

6.2. Base LLL Algorithm 159

of values of Xi. This is the event that the values of Xi get chosen
such that the conditional probability of the event A, conditioned on
the variables in

⋃i
j=1Xj , is larger than p(ed)i. Notice that

Pr

BA,i | i−1⋃
j=1

Xj

 ≤ p(ed)i−1

p(ed)i
=

1

ed
.

Moreover, each event BA,i depends on at most d other events BA′,i.
Hence, the family of events BA,i on the variable set Xi satisfies the
conditions of the tight (symmetric) LLL. Therefore, by the Lovász
Local Lemma, we know that there exists an assignment to variables
of Xi which makes no event BA,i happen. That is, an assignment
such that the conditional probability of each event A, conditioned
on the assignments in

⋃i
j=1Xj , is bounded by at most p(ed)i.

Given the existence, we find such an assignment in n1/β ·log n rounds,
as follows: each component of G2

B[Bi] first gathers the whole topol-
ogy of this component (as well as its incident events and the current
assignments to any of their variables), in n1/β log n rounds. Then,
it decides about an assignment for its own variables in Xi, by brute-
forcing all possibilities. Different components can decide indepen-
dently as there is no event that shares variables with two of them,
since they are non-adjacent in G2

B.

6.2.4 Wrap-Up: The Base LLL Algorithm

Combining the two parts gives us the randomized LLL algorithm of
Theorem 6.8.

Proof of Theorem 6.8. We first run the randomized shattering algo-
rithm of Lemma 6.9 for computing a partial setting of the variables,
in O(d2 + log∗ n) rounds. Then, by Lemma 6.9 (i), the remain-
ing events B′ (those which have at least one unset variable) form a
new LLL system on the unset variables, where each bad event has
probability at most

√
p.

160 Local Algorithms for the Lovász Local Lemma

Moreover, by Lemma 6.9 (ii), each connected component of the
square graph G2

B[B′] of these remaining events B′ admits the com-

putation of a (β,O(log1/β n · log2 log n)) network decomposition in
β log1/β n · 2O(

√
log logn) rounds. From now on, we handle the re-

maining events in different connected components of G2
B[B′] inde-

pendently.

Since
√
p(ed)β < 1, we can now invoke the deterministic LLL algo-

rithm of Theorem 6.10 on top of the network decomposition of each
component. Our deterministic LLL then runs in β log1/β n · log2 log n
additional rounds, and finds assignments for these remaining vari-
ables, without any of the events occurring, hence solving the overall
LLL problem. The overall round complexity is O(d2) + β log1/β n ·
2O(
√

log logn).

6.3 Bootstrapping

In this section, we show how to use bootstrapping to speed up our
base LLL algorithm, proving Theorem 6.1 for bounded-degree graphs
and Lemma 6.4 for higher-degree graphs, as well as our automatic
speedup result from Corollary 6.3.

6.3.1 Bounded-Degree LLL Algorithm

Proof of Theorem 6.1. In Theorem 6.8, we saw an algorithm A that
solves any n-event LLL under the criterion p(ed)32 < 1 in Tn,d =

O(d2 + log1/4 n) rounds. We now explain how to bootstrap this
algorithm to run in 2O(

√
log logn) rounds, on bounded-degree graphs.

Inspired by the idea of Chang and Pettie [60], we will lie to A and
say that the LLL graph has n∗ � n vertices, for a value of n∗ to
be fixed later. Then, An∗ runs in Tn∗,d = O(d2 + log1/4 n∗) rounds.
In this algorithm, the probability of any local failure (i.e., a bad
event of LLL happening) is at most 1/n∗. We can view this as a new

6.3. Bootstrapping 161

system of bad events which satisfies a much stronger LLL criterion.
In particular, we consider each of the previous bad LLL events as a
bad event of the new LLL system, on the space of the random values
used by An∗ , but now we connect two bad events if their distance
is at most 2Tn∗,d + 1. Notice that if two events are not connected in
this new LLL, then in algorithm An∗,d, they depend on disjoint sets
of random variables and thus they are independent.

The degree of the new LLL system is

d′ = d2Tn∗,d+1 = dO(d2+log1/4 n∗).

On the other hand, the probability of the bad events of the new
system is at most p′ = 1/n∗. Hence, the polynomial LLL criterion is
satisfied with exponent

β′ =
logd n

∗

O(d2 + log1/4 n∗)
.

We choose n∗ = log n, which, for d = O((log logn)1/5), means β′ =
Ω(
√

log log n). Hence, this new LLL system can be solved using the
LLL algorithm of Theorem 6.8 in time

(d′)2 + β′ log1/β′ n · 2O(
√

log logn)

= dO(d2+(log logn)1/4) +
√

log logn · (log n)1/Ω(
√

log logn) · 2O(
√

log logn)

= 2O(
√

log logn).

We should note that these are rounds on the new LLL system, but
each of them can be performed in

2Tn∗,d + 1 = O(d2 + log1/4 n∗) = O(
√

log logn)

rounds on the original graph. Hence, the overall complexity is still
2O(
√

log logn).

162 Local Algorithms for the Lovász Local Lemma

6.3.2 Higher-Degree LCL Algorithms

Similar ideas as in Theorem 6.1 lead to the proof of Lemma 6.4.

Proof of Lemma 6.4. Consider the randomized algorithm An∗ that
solves some LCL problem P on n∗-vertex graphs with complexity
O(log1/4 n∗). We now bootstrap An∗ using an approach similar
to the proof of Theorem 6.1: In particular, we shall run An∗ on
our full graph of n vertices, where we set n∗ = log n, while An∗ is
still told that the network size is n∗. This runs in O(log1/4 log n)
rounds. The probability of each local bad event—i.e., a violation
of one of the conditions of P—is at most p′ = 1/n∗ = 1/ log n. On
the other hand, each two of these local bad events that are further
than O(log1/4 log n) hops apart rely on disjoint random variables
in the execution of An∗ . Hence, this new LLL system has depen-

dency degree at most d′ = dO(log1/4 logn) = 2O(
√

log logn). Thus,
this system satisfies the polynomial LLL criterion with a value of
β = Θ(

√
log logn), because p′(ed′)β < 1. Therefore, we can solve

it using the algorithm of Theorem 6.8 in O((d′)2) + β(log n)1/β ·
2O(
√

log logn) = 2O(
√

log logn) rounds of the new LLL system. Each
of these rounds can be performed in O(log1/4 n∗) = O(log1/4 log n)
rounds of the base graph, and thus the overall round complexity of
the new algorithm A′n is 2O(

√
log logn).

6.3.3 Automatic Speedup and Derandomization

We finally provide an alternative proof for the result in [57] that
o(log log n)-round algorithms can be sped up to a deterministicO(log∗ n)-
round algorithm.

Proof of Corollary 6.3. Consider the randomized algorithmAn∗ that
solves the LCL problem P on n∗-vertex graphs in o(log log n∗) rounds.
We bootstrap An∗ using an approach similar to the proof of The-
orem 6.1. In particular, we shall run An∗ on our full graph of n
vertices, while An∗ is still told that the network size is n∗, for a suf-

6.4. Defective Coloring 163

ficiently large constant value of n∗. This runs in T = o(log log n∗)
rounds. The probability of each local bad event—i.e., a violation of
one of the conditions of P—is at most p′ = 1/n∗. On the other
hand, each two of these local bad events that are further than
2T + 1 = o(log log n∗) hops apart rely on disjoint random variables
in the execution of An∗ . Hence, this new LLL system has depen-
dency degree at most d′ = d2T+1. Thus, this system satisfies the
polynomial LLL criterion with β ≥ (d′)2 + 1. That is because

p(ed′)d
′+1 ≤ 1

n∗
(
edo(log logn∗)

)do(log logn∗)+1

<
1

n∗
(√

log n∗
)√logn∗

< 1,

where the penultimate inequality uses that d = O(1).

On the other hand, we can easily compute a ((d′)2+1, 0) network de-
composition of the square graph G2

B of this new LLL’s dependency
graph, simply by taking a ((d′)2 + 1) coloring of it. Notice that
this coloring can be computed in O(log∗ n) time, using the deter-
ministic distributed coloring algorithm [107]. Then, we apply the
deterministic LLL algorithm of Theorem 6.10 on top of this network
decomposition, with β = (d′)2 + 1 and γ = 0. The algorithm of
Theorem 6.10 then runs in O((d′)2) rounds, and solves this LLL,
hence providing a solution for the LCL problem P. Overall, we get
a deterministic algorithm with complexity O(log∗ n) for solving the
LCL problem P on bounded-degree graphs.

6.4 Defective Coloring

In this section, we present our defective coloring algorithm using our
LLL result in several steps.

Direct LLL Formulation: Chung, Pettie, and Su [67] give a for-
mulation of f -defective d2∆/fe coloring as LLL as follows. Each

164 Local Algorithms for the Lovász Local Lemma

vertex picks a color uniformly at random. For each vertex v, there
is a bad event Dv that v has more than f neighbors assigned the
same color as v. The probability of a neighbor u having the same
color as v is f/(2∆). Hence, the expected number of neighbors of v
with the same color as v is at most f/2. By a Chernoff bound, the
probability of v having more than f neighbors with the same color
is at most e−f/6. Moreover, the dependency degree between the bad
events Dv is d ≤ ∆2. Therefore, p(ed)32 ≤ e−f/6+32+64 log ∆ < 1 for
f = Ω(log ∆).

We are unable to directly apply our LLL algorithm of Theorem 6.1 to
this formulation, because (1) for f = o(log ∆), this LLL formulation
does not satisfy the polynomial criterion p(ed)32 < 1, (2) even if this
criterion is satisfied, the dependency degree d may be larger than
what Theorem 6.1 can handle.

Iterative LLL Formulation using Bucketing: Instead of directly
finding an f -defective O(∆/f) coloring with one LLL problem—
i.e., a partition of G into O(∆/f) buckets with maximum degree
f each—we gradually approach this goal by iteratively partitioning
the graph into buckets, until they have maximum degree f . In other
words, we slow down the process of partitioning. We gradually
decrease the degree, moving from maximum degree x to log5 x in
one iteration. We can see each of these bucketing steps—that is,
the partitioning into subgraphs—as a partial coloring, which fixes
some bits of the final color. Each of these slower partitioning steps
can be formulated as an LLL. The function x 7→ log5 x is chosen
large enough for the corresponding LLL to satisfy the polynomial
criterion, and small enough so that decreasing the degree from ∆
to f does not take too many iterations, namely O(log∗∆) iterations
only.

Outline: We first formulate the bucketing as an LLL problem sat-
isfying the polynomial LLL criterion and present ways for solving
this LLL for different ranges of ∆ in Section 6.4.1. Then, we explain

6.4. Defective Coloring 165

how iterated application of solving these bucketing LLLs leads to a
partition of the graph into O(∆/f) many degree-f buckets, solving
the defective coloring problem, in Section 6.4.2.

6.4.1 Bucketing

LLL Formulation of Bucketing

One Iteration of Bucketing: In one bucketing step, we would like
to partition our graph with degree ∆ into roughly ∆/∆′ buckets,
each with maximum degree ∆′, for a ∆′ = Ω(log5 ∆). Notice that
we can achieve the defective coloring of Theorem 6.5, by repeating
this bucketing procedure, iteratively. See its proof in Section 6.4.2
for details of iterative bucketing. Each iteration of bucketing can be
formulated as an LLL as follows.

LLL Formulation of One Iteration of Bucketing: Let k =
(1 + ε)∆/∆′ for ε = log2 ∆/

√
∆′. We consider the random variables

assigning each vertex a bucket number in [k]. Then, we introduce a
bad event Dv for vertex v if more than ∆′ neighbors of v are assigned
the same number as v. In expectation, the number of neighbors of
a vertex in the same bucket is at most ∆′/(1 + ε). By a Chernoff
bound, the probability of having more than ∆′ neighbors in the
same bucket is at most p = e−Ω(ε2∆′) = e−Ω(log4 ∆). Moreover, the
dependency degree between these bad events is d ≤ ∆2. Hence, this
LLL satisfies the polynomial criterion.

Solving the Bucketing LLL

Bucketing for Low-Degree Graphs: If ∆ = O(log1/10 log n),
then d = O(log1/5 log n), and thus we can directly apply the LLL al-
gorithm of Theorem 6.1 to compute such a bucketing in 2O(

√
log logn)

rounds.

Bucketing for Higher-Degree Graphs: For larger values of

166 Local Algorithms for the Lovász Local Lemma

∆, however, we cannot apply Theorem 6.1 directly. The following
lemma discusses how we handle this range by sacrificing a factor 2 in
the number of buckets. In a nutshell, the idea is to just perform one
sampling step of bucketing, and then to deal with vertices with too
large degree separately, by setting up another bucketing LLL. While
the first LLL on the whole graph could not be solved directly, the
second LLL is formulated only for a small subset of vertices, which
allows an efficient solution. Because of the two trials of solving an
LLL, we lose a factor 2 in the total number of buckets.

Lemma 6.13. For ∆ = Ω(log1/10 log n), there is a 2O(
√

log logn)-
round randomized LOCAL algorithm that w.h.p. computes a bucket-
ing into 2k buckets with maximum degree ∆′ each, for parameters
∆′ = Ω(log5 ∆), ε = log ∆/

√
∆′, and k = (1 + ε)∆/∆′.

Proof. We break the ∆ = Ω(log1/10 log n) range into two sub-ranges,

based on whether ∆ = 2Ω(log1/4 logn) or not. We present the proof
for each of these cases separately.

Case 1, ∆ = 2Ω(log1/4 logn): We assign each vertex to one of the
first k buckets uniformly at random. Then, for each vertex that has
more than ∆′ neighbors in its bucket, we remove it from its bucket
and put it into B. Note that even though we might have removed a
vertex from its bucket (and added it to B) in this way, it still counts
as neighbor for other vertices in its bucket. By construction, each of
the k buckets has degree at most ∆′. However, we have a set B of
vertices not assigned to any bucket. We now show how to perform
another bucketing step of B into k additional buckets, by setting up
and solving another bucketing LLL.

By the above observations, a vertex is put in B with probability
at most e−Ω(log2 ∆). Moreover, the events 1(v ∈ B) depend only
on the 1-hop neighborhood. By Lemma 3.3 (iii), we can com-
pute a (

√
log logn, 2O(

√
log logn) log2 log n) network decomposition of

6.4. Defective Coloring 167

(each connected component of) G[B] in 2O(
√

log logn) rounds, setting
β =
√

log log n. We now set up a bucketing LLL (in fact, one for each
of the connected components of G[B]), and invoke the deterministic
algorithm of Theorem 6.10 on top of this network decomposition.
Notice that the criterion p(ed)β < 1 is satisfied for β =

√
log log n,

because p = ∆−Ω(log3 ∆) and ∆ = 2Ω(log1/4 logn). Hence, the algo-
rithm of Theorem 6.10 runs in 2O(

√
log logn) rounds, and computes a

bucketing for all the vertices in G[B] into k additional buckets.

Case 2, ∆ ∈ [Ω(log1/10 log n), 2O(log1/4 logn)]: We first devise a
randomized algorithm An∗ with complexity O(log1/4 n∗) that com-
putes a bucketing of any n∗-vertex graph into 2k buckets, each with
maximum degree ∆′. Then, we bootstrap this algorithm, using
Lemma 6.4, to turn it into another bucketing algorithm A′n that

runs in 2O(
√

log logn) on any n-vertex graph with ∆ = 2O(log1/4 logn).

Algorithm An∗ performs a simple bucketing by putting each ver-
tex in one of the first k buckets, chosen uniformly at random. For
each vertex that has more than ∆′ neighbors in its bucket, we re-
move it from its bucket and put it into a set B of bad vertices.
By Lemma 3.3 (iii), we can compute an (8, O(log1/4 n∗)) network
decomposition of each connected component of the subgraph in-
duced by B, in O(log1/4 n∗) rounds. We can then invoke the de-
terministic LLL algorithm of Theorem 6.10 to compute a bucketing
of these bad vertices of B into the second k buckets, in no more
than O(log1/4 n∗) rounds, by setting β = 8 in Theorem 6.10. This
completes the description of the bucketing algorithm An∗ with com-
plexity O(log1/4 n∗).

We now bootstrap An∗ using Lemma 6.4 to obtain a bucketing al-
gorithm A′n that runs in 2O(

√
log logn) rounds, on any n-vertex graph

with maximum degree at most 2Θ(log1/4 logn).

168 Local Algorithms for the Lovász Local Lemma

6.4.2 Defective Coloring using Bucketing

Now we show how to use (iterated) bucketing to arrive at a defective
coloring.

Proof of Theorem 6.5. If f ≥ ∆, any assignment of colors to vertices
is an f -defective coloring. If f = O(1), a proper O(∆) coloring is a
O(∆/f) coloring with defect 0 ≤ f . In this case, we can find such
a coloring by running the algorithm of Barenboim et. al. [27] in
2O(
√

log logn) rounds. We thus assume in the following that f < ∆
and f = ω(1).

Parameters: Let ∆0 = ∆, and for i ≥ 1, set ∆i = log5 ∆i−1,
εi = log2 ∆i−1/

√
∆i = log2 ∆i−1/ log2.5 ∆i−1 = log−0.5 ∆i−1, and

ki = (1 + εi)∆i−1/∆i. Moreover, let t be such that ∆t = ω(f) and
log5 ∆t = O(f), and set ∆t+1 = f , εt+1 = log2 ∆t/

√
f , as well as

kt+1 = (1 + εt+1)∆t/f .

Algorithm: We run the basic bucketing algorithm of Lemma 6.13
with ∆′ ← ∆1, ε ← ε1, k ← k1 for at most 3 iterations (in each
iteration, the algorithm is applied to each of the buckets from the
previous iteration), until we have reached ∆i = O(log1/10 log n).
Then we switch to the direct LLL algorithm of Theorem 6.1, run for
bucketing, and perform it until i = t. For i = t + 1, we apply the
LLL algorithm of Theorem 6.1 one last time with ∆′ ← ∆t+1 = f .

Analysis: We first observe that t = O(log∗∆). The overall run-
ning time thus is O(t) · 2O(

√
log logn) = 2O(

√
log logn), since each of

the t + 1 bucketing iterations takes at most 2O(
√

log logn) rounds by
Lemma 6.13 and Theorem 6.1. Notice that all the buckets on the
same level (that is, in the same iteration) are treated independently,
in parallel.

After these t+ 1 iterations, the resulting f -defective coloring has at

6.5. Frugal Coloring 169

most

2k1 · 2k2 · 2k3

t+1∏
i=4

kt ≤ 8
t+1∏
i=1

(1 + εi)
∆i−1

∆i

≤ 8(1 +O(εt+1))
∆

f
= 8
(

1 +O(f−1/10)
)∆

f

colors, using that εi is exponentially increasing in i as well as that
log2 ∆t = O(f2/5).

6.5 Frugal Coloring

Direct LLL Formulation of Frugal Coloring: Molloy and Reed
in their famous book [187, Theorem 19.3] formulated frugal coloring
as an LLL problem in the following way: Each vertex picks a color
uniformly at random. There are two types of bad events: On the one
hand, we have the properness condition, i.e., a bad event Mu,v, for
each {u, v} ∈ E, which happens if u and v have the same color. On
the other hand, the frugality condition — requiring that no vertex
has more than f neighbors of the same color. That is, we have one
bad event Fu1,...,uf+1

for each set u1, . . . , uf+1 ∈ N(v) of vertices
in the neighborhood of some vertex v, which happens if all these
vertices u1, . . . , uf+1 are assigned the same color. For palettes of
size C, the probability of a bad event is at most 1/C and 1/Cf for
type 1 and type 2, respectively. Each event depends on at most
(f + 1)∆ type 1 and at most (f + 1)∆

(
∆
f

)
type 2 events.

Iterated LLL Formulation of Frugal Coloring: While the above
formulation is enough to satisfy the asymmetric tight LLL criterion
for C = O(∆1+1/f), it does not satisfy the (symmetric) polynomial
LLL. Therefore, the algorithm of Theorem 6.1 is not directly appli-
cable. We show how to break down the frugal coloring problem into
a sequence of few partial coloring problems, coloring only some of

170 Local Algorithms for the Lovász Local Lemma

the vertices that have remained uncolored, each of them satisfying
the polynomial LLL criterion.

Outline: In Section 6.5.1, we formalize our notion of partial fru-
gal colorings and present a method for sampling them. Then, in
Section 6.5.2, we show how to use this sampling to formulate the
problem of finding a partial frugal coloring guaranteeing progress
(to be made precise) as a polynomial LLL and how to solve it. In
Section 6.5.3, we explain how —after several iterations of setting up
and solving these progress-guaranteeing LLLs, gradually extending
the partial frugal coloring—we can set up and solve one final poly-
nomial LLL for completing the partial coloring, also based on the
sampling method presented in Section 6.5.1.

6.5.1 Sampling a Partial Frugal Coloring

Partial Frugal Coloring: A partial f -frugal coloring of G =
(V,E) is an assignment of colors to a subset V ∗ ⊆ V such that
it is proper in G[V ∗] and no vertex in V has more than f neighbors
with the same color. In other words, it is a f -frugal coloring of
G[V ∗] with the additional condition that no vertex in V ′ := V \ V ∗
has more than f neighbors in V ∗ with the same color.

Base-Graph Degree: A partial coloring naturally splits the base
graph G into two parts: a graph G[V ∗] induced by colored vertices
and a graph G[V ′] induced by uncolored vertices. However, the
problem of extending or completing a partial frugal coloring does
not only depend on G[V ′], but also on the base graph G. That is
why we introduce the notion of base-graph degree, a property of the
uncolored set V ′ with respect to the base graph G.

Given a partial coloring, we call the number dV ′(v) of neighboring
uncolored vertices of a vertex v ∈ V its base-graph degree into the
uncolored set V ′, and we call the maximum base-graph degree ∆′ of
a vertex v ∈ V into V ′ the base-graph degree of V ′. Moreover, we

6.5. Frugal Coloring 171

use NV ′(v) to denote v’s neighbors in V ′.

In the following, we show how one can sample a partial frugal color-
ing, thus randomly assign some of the vertices in a set V ′ of uncol-
ored vertices a color. The main idea of our sampling process is to
pick a color uniformly at random, and then discard it if this choice
would lead to a violation (in terms of properness and frugality). In
order to increase the chances of a vertex being colored, instead of
just sampling one color, each vertex v samples x different colors from
x different palettes at the same time, for some parameter x ≥ 1, and
then picks the first color that does not lead to a violation. If v has no
such violation-free among its x choices, then v remains uncolored.

The next lemma analyzes the probability of two kinds of events:
Event E1 that a vertex is uncolored. This event is important if we
aim to color all the vertices in V ′. Event E2 that the base-graph
degree of a vertex into the set of uncolored vertices in V ′ is too
large. This event is important if we do not aim at a full coloring of
the vertices in V ′, but want to ensure that we make enough progress
in decreasing the base-graph degree of the uncolored set.

Lemma 6.14. Let V ′ ⊆ V be an uncolored set with base-graph de-
gree ∆′, f ∈ [∆], and x ≥ 1. Then there is an O(1)-round random-
ized LOCAL algorithm that computes a partial f -frugal (20x∆′∆1/f)
coloring of some of the vertices in V ′ such that

(i) the probability that a vertex in V ′ is uncolored is at most 10−x,

(ii) the probability Pr[dV ′(v) > 5−x∆′] that the base-graph degree
of a vertex v ∈ V is larger than 5−x∆′ is at most e−Ω(5−x∆′).

Proof of Lemma 6.14. We let C := 20∆′∆1/f . Every vertex v ∈ V ′
picks x tentative colors cj(v) for j ∈ [x] uniformly at random from
x disjoint palettes, each of size C. Then vertex v gets permanently
colored with the first color that does not lead to a conflict, if there
is at least one such color.

172 Local Algorithms for the Lovász Local Lemma

For the sake of analysis, we think of these x samplings happening
sequentially in steps 1 ≤ j ≤ x. We introduce two type of events.
An event

Mj(v) := {∃u ∈ NV ′(v) : cj(u) = cj(v)}

if v has a monochromatic incident edge in step j, in other words, if
there is a vertex in V ′ adjacent to v that picks the same color as v
in step j. An event

Fj(v) :=
{
∃u ∈ N(v), u1, . . . , uf ∈ NV ′\{v}(u)

: cj(ui) = cj(v) for all i ∈ [f]
}

if v is involved in a non-frugal neighborhood of some vertex u ∈ V
with respect to its own jth tentative color choice. With U0 = V ′, we
let Mj and Fj denote the set of vertices v ∈ Uj−1 for which Mj(v)
and Fj(v), respectively, holds. We discard the tentative colors of all
vertices in Uj := Mj ∪Fj and make the tentative color of vertices in
Kj := Uj−1 \ Uj permanent.

We note that even though a vertex v ∈ V ′ might have a permanent
color, and thus be part of Kj for some j, it still participates in
the color sampling for j′ > j, and can lead to conflicts with other
vertices in u ∈ Uj′ , forcing u to uncolor itself, while v stays colored
permanently.

Validity of the Coloring: Let K :=
⋃x
j=1Kj be the set of vertices

that succeed in finding a permanent color, and let U := Ux = V ′ \K
denote the set of all vertices that remain uncolored. It is easy to see
that the coloring of the vertices in K uses at most xC colors and is
a partial f -frugal coloring.

Properties (i) and (ii): We bound the probability of a single ver-
tex in V ′ being uncolored in a single step, show that every vertex
has many different colors in its neighborhood in each step, and then
conclude that the number of uncolored neighbors of a vertex must

6.5. Frugal Coloring 173

decrease in every step by arguing about each color separately. Fi-
nally, we combine these results about a single step to derive a bound
on the number of uncolored neighbors of a vertex after all x trials.

Probability of Being Uncolored: For j ∈ [x] and v ∈ Uj−1, we
have

Pr[v ∈ Uj] ≤ Pr[Mj(v)] + Pr[Fj(v)] ≤ ∆′

C
+ ∆

(
∆′ − 1

f

)
1

Cf

≤ ∆′

C
+

∆(∆′)f

Cf
≤ 1/10.

Moreover, Pr[v ∈ U] ≤ (1/10)x, as different steps use different
palettes. This proves (i).

Number of Different Colors in Neighborhood in One Step:
We show that with large probability a vertex v ∈ V has many dif-
ferent tentative colors in the neighborhood NUj−1(v) of size d. For
an arbitrary ordering u1, . . . , ud of the neighbors of v, we introduce
random variables Xi which indicate whether vertex ui has a color
different from all the colors of vertices u1, . . . , ui−1 in step j. Then
X :=

∑d
i=1Xi is the total number of different colors in the neigh-

borhood NUj−1(v) of v. We have

E[X] ≥ d− 1

C

d∑
i=1

(i− 1) ≥
(

1− 1

2 · 20

)
d.

A Chernoff bound, applicable due to the Xis being negatively cor-
related, yields

Pr

[
X <

(
1− 1

20

)
d

]
≤ Pr

[
X ≤

(
1− 1

40

)
E[X]

]
≤ e−

d
5000 .

Degree in Uncolored Graph in One Step: We first observe
that the events u ∈ Uj and w ∈ Uj for vertices with cj(u) 6= cj(w)

174 Local Algorithms for the Lovász Local Lemma

are negatively correlated (conditioned on their colors). Intuitively
speaking, when there is a conflict with one color, it is unlikelier or
as unlikely that there is a conflict with another color. For vertices of
the same color, however, these events might be positively correlated.

For the moment, we suppose that v ∈ V has t many different ten-
tative colors in its neighborhood in Uj−1 of size dUj−1(v) = d and
let u1, . . . , ut ∈ Uj−1 be vertices having the respective colors. By
the above observations, each of the events ui ∈ Uj has probability
at most 1/10 and these events are negatively correlated. It follows
by a Chernoff bound that the probability that more than (3t)/20 of
these vertices are uncolored is at most e−t/120.

If a vertex v has more than d/5 uncolored vertices in the neighbor-
hood NUj−1(v), this means that is has less than (1− 1/5) d colored
vertices in the neighborhood NUj−1(v). That in particular implies
that it has less than (1− 1/5) d colored vertices among u1, . . . , ut,
which means more than t− (1− 1/5)d uncolored among u1, . . . , ut.
Thus, since t − (1 − 1/5)d ≥ (3d)/20 for t ≥ (1− 1/20) d, we have
that Pr

[
dUj−1(v) > d/5

]
is equal to

d∑
t=1

Pr

[
dUj−1(v) >

d

5
| X = t

]
Pr[X = t]

≤ e−
d

5000 +

d∑
t=(1− 1

20)d

Pr
[
dUj−1(v) > d/5 | X = t

]

≤ e−
d

5000 +

d∑
t=(1− 1

20)d

e−
t

120 ≤ e−
d

5000 +
d

20
e−

(1− 1
20)d

120

≤ e−
d

10000 .

Degree in Uncolored Graph After x Trials: It follows by a

6.5. Frugal Coloring 175

union bound over all x steps that

Pr
[
dUc(v) > 5−x∆′

]
≤

x∑
i=1

e−
1

10000
5−i∆′ = e−Ω(5−x∆′),

where the last step comes from the fact that e−5−i is (doubly-)
exponentially increasing in i.

6.5.2 Iterated Partial Frugal Coloring

In the following, we first show how a progress-guaranteeing partial
coloring—that is, a coloring that decreases the base-graph degree of
every vertex quickly enough—can be found based on the sampling
process presented in Section 6.5.1. Then, we prove that by iterating
this algorithm for O(log∗∆) repetitions, using different palettes in
each iteration, the base-graph degree reduces to O(

√
∆).

In one iteration, given a set V ′ of uncolored vertices, we want to color
a subset V ∗ ⊆ V ′ such that the uncolored vertices V ′′ := V ′ \ V ∗
have a base-graph degree ∆′′ that is sufficiently smaller than the
base-graph degree ∆′ of V ′. Note that the sampling of Section 6.5.1
only provides us with a partial coloring where every vertex is likely
to have a decrease in the base-graph degree. Here, however, we want
to enforce that for every vertex in V there is such a decrease. To
this end, we set up an LLL as follows.

LLL Formulation for Progress-Guaranteeing Coloring: Per-
forming the sampling of Lemma 6.14, we have a bad event Dv for
every vertex v ∈ V that its base-graph degree into V ′′ is larger than
∆′′ = 5−x∆′. By Lemma 6.14 (ii), we know that the probability of
Dv is at most e−Ω(5−x∆′). Moreover, the dependency degree is at
most d ≤ ∆2. This LLL thus satisfies the polynomial criterion.

However, as d might be large, we cannot directly apply the LLL al-
gorithm of Theorem 6.1. In the following, we present an alternative

176 Local Algorithms for the Lovász Local Lemma

way of finding a partial coloring ensuring a drop in the base-graph
degree of every vertex. In a nutshell, the idea is to just perform
one sampling step of a partial frugal coloring, as described in Sec-
tion 6.5.1, and then deal with vertices associated with bad events
(to be made precise) separately, by setting up another progress-
guaranteeing LLL. While the first LLL on the whole graph could not
be solved directly, the second LLL is formulated only for a “small”
subset of vertices, which allows an efficient solution. Because of the
two trials of solving an LLL, we lose a factor 2 in the total number
of colors.

Lemma 6.15. Given a partial f -frugal coloring with uncolored set
V ′ with base-graph degree ∆′ and a parameter x ≥ 1 such that
5−x∆′ = Ω(

√
∆), there is a 2O(

√
log logn)-round randomized dis-

tributed algorithm that computes a partial f -frugal (40x∆′∆1/f) col-
oring such that the uncolored set has base-graph degree at most
∆′′ = 5−x∆′.

Proof. We handle the problem in four cases depending on the range
of ∆.

Case 1, ∆ = ω(log2 n): We perform a sampling as described in
Lemma 6.14. Then, by Lemma 6.14 (ii), the probability of a vertex
having more than ∆′′ = 5−x∆′ uncolored neighbors is at most p =
e−ω(logn). A simple union bound over all vertices shows that, with
high probability, there is no such vertex whose base degree remains
high.

Case 2, ∆ ∈ [ω(log2 log n), O(log2 n)]: We perform a sampling as
described in Lemma 6.14. This gives us a partial f -frugal coloring
with , assigning colors to a subset W ⊆ V ′. Let D ⊆ V denote
the set of vertices in V that have degree larger than ∆′′ into the
uncolored set U = V ′\W , and let B = N(D)∩U be all the neighbors
in U of such vertices in D. We will show how to partially color
(some) vertices in B with additional 20x∆′∆1/f colors such that

6.5. Frugal Coloring 177

the base-graph degree into the uncolored set B′ in B drops to ∆′′.
This is a partial f -frugal (40x∆′∆1/f) coloring such that no vertex
in V has more than ∆′′ neighbors in the uncolored set (U \B)∪B′,
as desired.

Consider the square graph G2[B], i.e., the graph on vertices of B
where each two B-vertices whose G-distance is at most 2 are con-
nected. By Lemma 6.14 (ii), the probability of a vertex u being
in D is e−Ω(5−x∆′). Hence, the probability of v being in B is at

most ∆e−Ω(5−x∆′) = e−Ω(
√

∆), by a union bound over all neighbors
u ∈ N(v) of v, due to the assumption that 5−x∆′ = Ω(

√
∆). More-

over, only the events u ∈ B for vertices with distance at most 3 in
G, and hence distance at most 6 in G2, are dependent. Lemma 3.3
(iii) thus shows that the connected components of G2[B] w.h.p. ad-
mit a (β,O(log1/β log2 log n)) network decomposition, which we can
compute in β log1/β n · 2O(

√
log logn) rounds.

We now set up a polynomial LLL for a progress-guaranteeing par-
tial frugal coloring on the (uncolored) set B (with all the base
graph vertices V), as discussed in Section 6.5.2. In fact, we set
up one independent such LLL for each component of G2[B]. No-
tice that the colorings of different components do not interfere with
each other, as each V -vertex has neighbors in at most one of these
components. This LLL satisfies the stronger condition p(ed)4β of
Theorem 6.10 for β =

√
log logn. We can thus apply the deter-

ministic algorithm of Theorem 6.10 on top of this network decom-
position, which runs in O(β log1/β log2 log n) rounds. Overall, this
takes β log1/β n · 2O(

√
log logn) +O(β log1/β log2 log n) = 2O(

√
log logn)

rounds, and gives us a partial coloring of vertices in B such that the
base-graph degree to the vertices that remain uncolored has dropped
to ∆′′.

Case 3, ∆ ∈ [ω(log1/5 log n), O(log2 log n)]: We first devise an al-
gorithm An∗ that performs the desired partial frugal coloring in
O(log1/4 n∗) rounds, in n∗-vertex graphs. Then we use Lemma 6.4 to

178 Local Algorithms for the Lovász Local Lemma

speed up this partial frugal coloring algorithm to run in 2O(
√

log logn)

rounds.

The algorithm An∗ is similar to the process we described in case 2: it
first performs a sampling according to Lemma 6.14, then defines bad
vertices B for this sampling similar to before. The only difference
is that, when solving the LLL of each of the components of G2[B],
we may not have the desired polynomial LLL criterion satisfied for
β = Ω(

√
log logn∗). Still, the condition is satisfied for any desirable

large constant β = O(1). Hence, the deterministic algorithm of
Theorem 6.10 solves these remaining components in no more than
O(log1/4 n∗), with probability 1 − 1/ poly(n∗). This is the desired
algorithm An∗ for partial frugal coloring.

Now, we invoke Lemma 6.4 to speed up this partial frugal coloring
algorithm An∗ to run in 2O(

√
log logn) rounds, with high probabil-

ity, on any n-vertex graph with maximum degree at most ∆ =
O(log2 log n). Notice that we are able to do this because the maxi-
mum degree ∆ = O(log2 log n) is (even far) below the requirement

∆ ≤ 2Θ(log1/4 logn) of Lemma 6.4. Thus, we get an algorithm An for
partial frugal coloring, that w.h.p. in 2O(

√
log logn) rounds colors a

subset of V ′ such that the base-degree to the vertices that remain
uncolored is at most ∆′′.

Case 4, ∆ ∈ O(log1/5 log n): Here, we can directly apply the LLL
algorithm of Theorem 6.1 to the progress-guaranteeing LLL. This
w.h.p. yields a drop in the degree to ∆′′, in 2O(

√
log logn) rounds.

The next lemma describes how through iterated application of find-
ing partial colorings, as supplied by Lemma 6.15, the base-graph
degree of the uncolored set decreases to O(

√
∆) after O(log∗∆)

rounds and using at most O(∆1+1/f) colors.

Lemma 6.16. There is a 2O(
√

log logn)-round randomized algorithm
that computes a partial f -frugal (80∆1+1/f) coloring such that the

6.5. Frugal Coloring 179

uncolored set V ′ has base-graph degree O(
√

∆).

Proof of Lemma 6.16. We first set the parameters, then formalize
the exact meaning of iterating the sampling process of Lemma 6.15,
and finally analyze the number of colors as well as rounds used.

Parameters: We let x0 = 1, xi+1 := (5/4)xi , ∆0 = ∆′, and ∆i+1 =
5−xi ·∆i for 0 ≤ i ≤ t for a t = O(log∗∆) such that ∆t+1 = O(

√
∆)

for the first time (that is, ∆t = ω(
√

∆)).

Iterated Sampling: Iteratively, for 0 ≤ i ≤ t, we apply the sam-
pling algorithm of Lemma 6.15 with V ′ 7→ Vi, ∆′ 7→ ∆i, and x 7→ xi

to obtain a partial f -frugal coloring with Ci := 40 ·xi ·∆i ·∆
1
f many

new colors, leaving a set Vi+1 ⊆ Vi with base-graph degree at most
∆i+1 uncolored.

Analysis: Intuitively, as we know that the number of colors needed
to find a f -frugal coloring decreases with ∆i, we can afford to use
more and more disjoint palettes when ∆i is small. For xi∆i =
∆, this would mean that we use the same number of colors in
each iteration i. However, this would lead to a total number of
40t∆1+1/f colors over all the t iterations. Instead, we ensure that
xi+1∆i+1 is at least a constant factor smaller than xi∆i, which guar-
antees that the total number of colors used behaves like a geomet-

ric series. Indeed,
∑t

i=0 40xi∆i∆
1/f = 40∆

1+ 1
f
∑t

i=0 2−
∑i
j=0 xj ≤

40∆
1+ 1

f
∑t

i=0 2−i ≤ 80∆
1+ 1

f .

By Lemma 6.15, each of the O(log∗∆) iterations takes 2O(
√

log logn)

rounds, hence likewise the overall complexity.

6.5.3 Completing a Partial Frugal Coloring

In this section, we describe how, once the base-graph degree is
O(
√

∆), all the remaining uncolored vertices can be colored, hence
completing the partial frugal coloring. We first give a general for-

180 Local Algorithms for the Lovász Local Lemma

mulation for the completion of partial frugal colorings.

LLL Formulation for Completion of Partial Frugal Coloring:
Performing the sampling of Lemma 6.14, we have a bad event Uv
for every vertex v ∈ V that it is uncolored. By Lemma 6.14 (i),
the probability of Uv is at most 10−x. Moreover, the dependency
degree d is at most ∆2. This LLL satisfies the polynomial criterion
if x = Ω(log ∆).

In the following lemma, we show to solve this LLL. The idea is to
first perform one sampling step (of Lemma 6.14), which shatters
the graph into small components of uncolored vertices, then to set
up an LLL for completing the partial coloring, and finally to solve
it by employing our deterministic LLL algorithm, on each of the
components.

Lemma 6.17. Given a partial f -frugal coloring and a set V ′ of un-
colored vertices with base degree ∆′ = O(

√
∆), there is a 2O(

√
log logn)-

round randomized algorithm that completes this f -frugal coloring, by
assigning colors to all vertices in V ′, using 40∆1+1/f additional col-
ors.

Proof of Lemma 6.17. We handle the problem in four cases, de-
pending on the range of the values of ∆, similar to the proof of
Lemma 6.15.

Case 1, ∆ = ω(log2 n): We perform one sampling step as described
in Lemma 6.14 with x = ∆/∆′ = Ω(

√
∆). Then, by Lemma 6.14

(ii), the probability of a vertex remaining uncolored is at most p =
e−ω(logn). A simple union bound over all vertices shows that, with
high probability, no vertex remains uncolored.

Case 2, ∆ ∈ [ω(log2 log n), O(log2 n)]: We perform one sampling
step as described in Lemma 6.14 with x = ∆/∆′ = Ω(

√
∆). This

gives a partial f -frugal coloring with 20x∆′∆1/f = 20∆1+1/f col-
ors. Let V ′′ ⊆ V ′ be the set of vertices that remain uncolored. The

6.5. Frugal Coloring 181

probability of a vertex being in V ′′ is at most 10−x = e−Ω(
√

∆),
by Lemma 6.14 (i). Moreover, uncoloring for vertices with dis-
tance at least 3 in G, and hence at least 5 in G2, are independent.
Thus, Lemma 3.3 (iii) implies that the connected components of
G2[V ′′] w.h.p. admit a (β,O(log1/β n log2 log n)) network decompo-
sition, which can be computed in β log1/β n · 2O(

√
log logn) rounds.

We set up LLLs with x = ∆/∆′ for completing a partial frugal col-
oring, one for each connected component of G2[V ′′]. Notice that the
colorings of different components do not interfere with each other,
as each V -vertex has neighbors in at most one of these components.

Setting β =
√

log log n, we have p(ed)β = (10)−
√

∆(O(∆))2
√

log logn <
1. Thus, the even stronger condition of Theorem 6.10 for β =√

log logn is satisfied, which lets us find a solution for the LLL,
and hence a completion of the f -frugal coloring, in additional β ·
log1/β n · log2 log n rounds, on each of the connected components
of G2[V ′′] in parallel. Overall, this takes β log1/β n · 2O(

√
log logn) +

β log1/β n log2 log n = 2O(
√

log logn) rounds.

Case 3, ∆ ∈ [ω(log1/5 log n), O(log2 log n)]: We first devise an
algorithm An∗ that completes the given partial frugal coloring in
Θ(log1/4 n∗) rounds, in n∗-vertex graphs. Then, we use Lemma 6.4
to speed up this coloring completion algorithm to run in 2O(

√
log logn)

rounds.

The algorithm An∗ is similar to the process we described in case
2: it first performs a sampling according to Lemma 6.14 with x =
∆/∆′ = Ω(

√
∆), then defines bad vertices B for vertices that remain

uncolored, and handles each of connected components of G2[B] with
a new LLL. The only difference is that, when solving the LLL of each
of the components of G2[B], we may not have the desired polynomial
LLL criterion satisfied for β = Ω(

√
log logn∗). Still, the condition is

satisfied for any desirably large constant β. Hence, the deterministic
algorithm of Theorem 6.10 can solve these remaining components
in at most Θ(log1/4 n∗) rounds, with local correctness probability

182 Local Algorithms for the Lovász Local Lemma

at least 1 − 1/ poly n∗. This is the desired algorithm An∗ for the
completion of the coloring.

Now, we invoke Lemma 6.4 to speed up this frugal coloring comple-
tion algorithm An∗ to run in 2O(

√
log logn) rounds, with high prob-

ability, on any n-vertex graph with maximum degree at most ∆ =
O(log2 log n). Notice that we are able to do this because the maxi-
mum degree ∆ = O(log2 log n) is (even far) below the requirement

∆ = 2Θ(log1/4 logn) of Lemma 6.4. Thus, we get an algorithm An for
completing the partial frugal coloring that, in 2O(

√
log logn) rounds,

colors all the remaining uncolored vertices, with high probability.

Case 4, ∆ ∈ O(log1/5 log n): Here, we can directly apply the LLL
algorithm of Theorem 6.1 to the LLL for completing a partial frugal
coloring. This gives us an algorithm that w.h.p. completes the given
partial frugal coloring in 2O(

√
log logn) rounds.

A wrap-up of these results about iterated partial colorings and com-
pleting a partial coloring immediately leads to a proof of Theo-
rem 6.6.

Proof of Theorem 6.6. We first apply the iterated coloring algorithm
of Lemma 6.16 with 80∆1+1/f colors, in 2O(

√
log logn) rounds. Then,

we run the algorithms of Lemma 6.17 to complete this partial col-
oring with 40∆1+1/f additional colors, in 2O(

√
log logn) rounds. This

yields a f -frugal (120∆1+1/f) coloring, in 2O(
√

log logn) rounds.

6.6 List Vertex Coloring

We remark that essentially without loss of generality, we can focus
on the regime where L = O(log2 n). This is because if L = Ω(log2 n),
we can make each vertex choose log2 n colors in its list at random to
retain, forming a new color list L′v with |L′v| = log2 n. Then, with
high probability, we have the following property: for each vertex v

6.6. List Vertex Coloring 183

and each color q ∈ L′v, the number of neighbors u of v that have
q ∈ L′u is at most (1 + o(1)) log2 n/C.

Direct LLL Formulation of List Vertex Coloring: Suppose
each vertex picks a color uniformly at random. Define a bad event
Eu,v,q for each edge {u, v} and color q if its endpoints choose the
same color q. The probability of each such event is at most p = (1

L)2.
The dependency degree between these events is at most d = 2L·L/C.
This is because the event Eu,v,q has dependency with the events of
at most L colors from each endpoint u or v, and at most L/C
edges incident on that endpoint for each of these L colors. Hence,
if C > 2e, the LLL criterion epd ≤ 1 is satisfied.

Shortcomings of the Direct LLL Formulation: As before, we
face two issues in applying the LLL algorithm Theorem 6.1: (1) the
above formulation does not satisfy the polynomial LLL criterion,
(2) the dependency degree d may be above what Theorem 6.1 can
handle.

Iterated LLL Formulation of List Vertex Coloring via Prun-
ing: In the following, we explain how through a sequence of gradual
pruning of color lists, we can get to our target coloring. A prun-
ing step can be formulated as an LLL which satisfies the polynomial
LLL criterion. We also explain how to perform each of these pruning
steps, albeit the fact that the related (strengthened) LLL does not
have bounded degrees.

6.6.1 Pruning

A Factor-2 Pruning of Color Lists: We would like to narrow
down the color lists and their conflict sizes by roughly a factor 2.
More concretely, we would like that each vertex v keeps a subset
L′v ⊆ Lv such that |L′v| ≥

|Lv |
2 (1 − 1

log2 L
), and moreover, for each

color q ∈ L′v, the number of neighbors u of v that have q ∈ L′u is at
most (1 + 1

log2 L
) L

2C .

184 Local Algorithms for the Lovász Local Lemma

By repeating this factor-2 pruning for roughly logL/C = O(log log n)
iterations, we get to a setting where each vertex has a color list of
size at least C/2, none of which are kept by any neighbor. Then,
each vertex can pick any of these colors as its final color.

LLL for Factor-2 Pruning of Color Lists: Let each vertex v keep
each of its colors in Lv with probability 1/2, forming its new list L′v.

We have two types of bad events, first that |L′v| ≤
|Lv |

2 (1− 1
log2 L

), and

second that for a color q ∈ L′v, the number of neighbors u of v that
have q ∈ L′u is more than (1 + 1

log2 L
) L

2C . By Hoeffding bound, the

probability of each of these bad events is at most p = e−Θ(
√
L/ log2 L).

Each event depends on at most d = O(L2/C) many others. Thus,
this LLL satisfies the polynomial LLL criterion.

For L = O((log logn)1/10), we can directly apply the LLL algorithm
of Theorem 6.1 to solve the above factor-2 pruning in 2O(

√
log logn)

rounds. Next, we explain how we solve the other cases of this prun-
ing LLL in 2O(

√
log logn) rounds.

Solving the Factor-2 Pruning LLL

For L = O((log logn)1/10), we can directly apply the LLL algorithm
of Theorem 6.1 to solve the above factor-2 pruning in 2O(

√
log logn)

rounds. In the following, we discuss how we handle the remaining
case L ∈ [Ω(log1/10 log n), O(log2 n)]. We break this range into two
cases, depending on whether L ≥ Ω(log4 log n) or not. A key part in
both will be a somewhat gradual sampling of which colors to retain
in the list. To perform that sampling with an appropriate speed (to
be made precise), we will use defective colorings, as we discuss next.

Color-Choice Graph: Consider a graph H where we include one
vertex (v, q) for each color q ∈ Lv of each vertex v. Two vertices
(v, q) and (u, q′) are connected if and only if either (1) v = u, or (2)
v and u are adjacent and q = q′.

6.6. List Vertex Coloring 185

Defective Coloring of the Color-Choice Graph: Notice that
the color-choice graph H has maximum degree at most L+ L/C ≤
2L. We compute a defective coloring χ of H with defect f =
L/(2 log2 L) and O((2L

f)2) = O(log4 L) colors, in O(log∗ n) rounds,
using the deterministic algorithm of Kuhn [159]. We use this defec-
tive coloring mainly to schedule which colors (v, q) are sampled to
be kept in the list.

Sampling the Colors in O(log4 L) Phases: We have K0 log4 L
phases, for some constant K0, one per color class of the schedule-
color χ. During each phase i, we sample each of the colors (v, q) ∈ H
that has χ-color i, with probability 1/2, for inclusion in L′v. At the
end of the phase, we check two properties, and potentially freeze
some of the unset color-choices in H, meaning that we will not
sample these, and we defer the decision on them to some later pro-
cess. This freezing is done as follows: If for a vertex v, we had
zv ≥ L/(16K0 log6 L) many of its colors (v, q) that were sampled in
this phase, but less than zv/2−L/(16K0 log6 L) of them turned out
to be included in L′v, then we freeze vertex v and all of its unsampled
colors (v, q′). Moreover, if for a vertex v and a color q ∈ Lv, in this
phase we sampled at least zv,q ≥ L/(16K0C log6 L) of colors (u, q) in
neighboring vertices of v, but more than zv,q/2 +L/(16K0C log6 L)
of them turned out to be included in their respective lists L′u, then
we freeze all unsampled colors (u, q′), for any q′, in neighbors u of v.
At the end of all the phases, if a vertex v has less than L/(2 log2 L)
frozen colors (v, q), we discard all of these colors and none of them
will be included in L′v.

Lemma 6.18. For any (integer) β ≥ 1, each connected component
of the graph H2 induced by frozen colors w.h.p. allows us to compute
a (β,O(log1/β n · log2 log n)) network decomposition in β log1/β n ·
2O(
√

log logn) rounds.

Proof. Follows from Lemma 3.3 (iii) and the observation that the

186 Local Algorithms for the Lovász Local Lemma

probability of each color getting frozen is at most exp(−Ω̃(
√
L)),

and the freezing of colors (v, q) ∈ H that are more than 5 hops
apart in H depend on disjoint random bits.

6.6.2 Completing the Pruning

A New LLL for Completion of the Pruning: Consider the
set of frozen colors, and the following new LLL for determining the
inclusion of each of these frozen colors in their respective pruned
lists, each included with probability 1/2. We have two bad events:
(1) Ev if for a vertex v which has fv ≥ L/(2 log2 L) frozen colors
(v, q), less than fv/2 − L/(2 log2 L) of these colors get chosen for
inclusion in L′v, (2) Ev,q if for a vertex v and a color q ∈ Lv which
has fv,q frozen colors (u, q) in neighboring vertices u of v, more than
fv,q/2 +L/(2C log2 L) of these frozen colors get chosen for inclusion
in their respective pruned lists L′u.

Observation 6.19. If we find a fixing for the frozen colors without
allowing any of the bad events in the completion LLL to happen,
then the overall lists L′v satisfy the requirements of factor-2 pruning.
Moreover, in this completion LLL, each bad event has probability at
most p = exp(−Ω̃(

√
L)) and they have dependency d = O(L2).

Lemma 6.20. If L ≥ (log log n)4, then we can solve the completion
LLL on each of the connected components of H2 on frozen colors in
2O(
√

log logn) rounds.

Proof. For L ≥ (log log n)4, the new LLL that we set for complet-
ing the pruning satisfies p(ed)β < 1 for β = Ω(

√
log log n), as it

had per-event probability p = exp(−Ω̃(
√
L)) and dependency de-

gree d = O(L2). Hence, we can apply the deterministic algorithm
of Theorem 6.10, on top of the network decomposition supplied by
Lemma 6.18 for each of the connected components of H2 on the
frozen colors, both with parameter β = Ω(

√
log log n). Thus, we get

6.6. List Vertex Coloring 187

an algorithm for completing the sampling in 2O(
√

log logn) rounds.

Lemma 6.21. If L = O(log4 log n), we can solve the factor-2 list
pruning LLL in 2O(

√
log logn) rounds.

Proof. We first devise an algorithm An∗ which solves the factor-2
list pruning problem in O(log1/4 n∗) rounds on any n∗-vertex graph,
with probability 1 − 1/n∗. Then, we use Lemma 6.4 to speed up
this algorithm to solve n-vertex list prunings in 2O(

√
log logn).

Base Algorithm An∗: As mentioned above, when we target cor-
rectness probability 1 − 1/n∗, we can without loss of generality as-
sume that L = O(log2 n∗). Then, we first perform the O(log4 L)
rounds of partial sampling of the pruning, as explained above (by
going through a defective coloring, and then sampling each of its col-
ors, one by one). We then are left with a number of connected com-
ponents of the color-choice graph H2 on frozen colors, and new com-
pletion LLL for each of them, as described above. Each of these new
LLLs satisfies the polynomial LLL criterion p(ed)β < 1 for β = ω(1),
because it has per-event probability p = exp(−Ω̃(

√
L)) and depen-

dency degree d = O(L2). Hence, we are able to deterministically
solve these completion LLLs in β(log n∗)1/β · 2O(

√
log logn∗) rounds,

using Theorem 6.10. Therefore, the overall complexity is at most
O(log4 L) +O(log1/4 n∗) = O(log1/4 n∗).

Speedup: Now, we can apply Lemma 6.4 to speed up this algorithm
An∗ . In particular, the procedure of the proof of Lemma 6.4 will set
n∗ = log n and then, it will run An∗ on the n-vertex graph, hence
forming a new LLL that satisfies a much better exponent of the poly-
nomial LLL criterion, concretely β = Ω(log log n). See Lemma 6.4
for details. As a result of solving that LLL, we get an algorithm A′n
that performs the factor-2 list pruning in 2O(

√
log logn) rounds, on any

n-vertex graph. We note that we have ≤ (log log n)4 and thus the

dependency degree in the pruning LLL is d = O(L2)� 2O(log1/4 logn),
which satisfies the requirement of Lemma 6.4.

188 Local Algorithms for the Lovász Local Lemma

CHAPTER 7

Tight Analysis of Local Greedy Algorithms

7.1 Introduction

We study the round complexity of the well-studied local greedy MIS
algorithm, based on the publications ‘Tight Analysis of Randomized
Greedy MIS’ [105, 106].

7.1.1 Our Result and Related Work

Randomized Local Greedy MIS

Our main result is a tight analysis of the local greedy MIS algorithm,
settling its round complexity. This algorithm works as follows: for
a random assignment of values to nodes, in every iteration every
remaining node with the smallest value among its remaining neigh-

189

190 Tight Analysis of Local Greedy Algorithms

bors joins the MIS and informs all its neighbors about this decision.
These nodes and all their neighbors delete themselves from the graph
for the subsequent rounds.

Theorem 7.1. The local greedy MIS algorithm w.h.p. terminates in
O(log n) rounds.

This improves on the O(log2 n)-analysis by Blelloch, Fineman, and
Shun [39] almost ten years ago. Only for Erdős-Rényi random
graphs, an (in expectation) upper bound of O(log n) was known,
due to a result by Calkin and Frieze [50], resolving the conjecture
of Coppersmith, Raghavan, and Tompa [69] who themselves arrived
at O

(
log2 n/ log logn

)
.

A result by Calkin, Frieze, and Kučera [51] proves that Theorem 7.1
is aymptotically best possible. We also provide an alternative short
proof of the lower bound in Section 7.3, resulting in a tight analysis
of the round complexity.

Theorem 7.2. There exists a graph on which the local greedy MIS
algorithm w.h.p. takes Ω(log n) rounds to terminate.

Local Symmetry Breaking

Due to the well-known reductions of maximal matching and (∆+1)
vertex coloring to MIS due to [181, 171], our analysis in Theorem 7.1
directly applies to the randomized local greedy algorithms for max-
imal matching and vertex coloring.

Local Greedy MM: The randomized local greedy maximal match-
ing algorithm works as follows: A random order of the edges is cho-
sen. Then, in each round, all locally minimal edges are removed
from the graph along with all their incident edges.

7.1. Introduction 191

Corollary 7.3. The randomized local greedy maximal matching al-
gorithm w.h.p. terminates in O(log n) rounds.

Proof. For a graph G = (V,E), the line graph L = (E,F) is defined
to be a graph with vertex set E and an edge {e, e′} ∈ F iff e∩e′ 6= ∅.
Running the randomized local greedy MIS algorithm on the line
graph L corresponds to running the randomized greedy maximal
matching algorithm on G.

Local Greedy (∆ + 1) Vertex Coloring: The randomized local
greedy (∆+1) vertex coloring algorithm works as follows: A random
order of the vertex-color pairs V × [∆ + 1] is chosen. Then, in each
round, all locally minimal pairs (v, c) are removed along with all
(v′, c′) such that either v′ = v or {v, v′} ∈ E and c′ = c. Vertex v is
assigned color c.

Corollary 7.4. The randomized local greedy (∆+1) vertex coloring
algorithm, as defined above,1 w.h.p. terminates in O(log n) rounds.

Proof. Luby [180, 171] presented the following reduction from (∆ +
1) vertex coloring in a graph G to MIS in a graph H: to construct
H, take ∆+1 copies of G and add a clique among all ∆+1 copies of
the same vertex, for all vertices in G. It is easy to observe that a MIS
in H corresponds to a proper (∆ + 1) vertex coloring of G, when we
assign vertex v the color i iff the ith copy of v is in the MIS. Indeed,
due to maximality, every vertex in G is assigned at least one color,
and because of the added cliques and the independence of the MIS,
at most one. Moreover, having a copy of G for every color guarantees
that all the edges must be proper (due to independence).

Local Greedy (2∆ − 1) Edge Coloring: The randomized local
greedy (2∆−1) edge coloring algorithm works as follows: A random

1This is not the greedy coloring algorithm where the largest available color
is picked greedily.

192 Tight Analysis of Local Greedy Algorithms

order of the edge-color pairs E × [2∆− 1] is chosen. Then, in each
round, all locally minimal pairs (e, c) are removed along with all
(e′, c′) such that either e′ = e or e ∩ e′ 6= ∅ and c′ = c. Edge e is
assigned color c.

Corollary 7.5. The randomized local greedy (2∆− 1) edge coloring
algorithm, as defined above, w.h.p. terminates in O(log n) rounds.

Proof. This directly follows from the application of the algorithm
from Corollary 7.4 on the line graph.

Correlation Clustering

Correlation clustering has the goal to partition vertices into clusters
so that the number of miss-classified edges—that is, edges with its
two endpoints in two different clusters or non-edges with endpoints
in the same cluster—is minimized. More formally, we are given a
complete graph on n vertices where each edge is either labeled + or
−, indicating that the corresponding vertices should be in the same
or in different clusters, respectively. The goal is to group the vertices
into (an arbitrary number of) clusters so that the number of −
edges within clusters and + edges crossing clusters is minimized [22].
Ailon, Charikar, and Newman [3] showed that the randomized local
greedy MIS algorithm, called CC-Pivot in their paper, provides a 3-
approximation for correlation clustering when each non-MIS vertex
is clustered with its inhibitor, that is, its lowest-rank neighbor in
the MIS. Moreover, [65] argues how an iteration of this (or a similar)
algorithm can be implemented in O(1) rounds of MapReduce or in
O(1) passes of the streaming model.

Corollary 7.6. A 3-approximation for correlation clustering w.h.p.
can be computed in O(log n) rounds in the PRAM, LOCAL, as well
as MapReduce model, and in O(log n) passes in the streaming model.

7.1. Introduction 193

7.1.2 Overview and Outline of Our Analysis

As opposed to Luby’s algorithm where new random numbers are
chosen in every step, in the local greedy MIS algorithm the order
is kept fixed between iterations. This has the effect that the order
of the remaining vertices at each iteration are not uniformly dis-
tributed, which complicates the analysis significantly. To overcome
the problem of dependencies among different iterations, Blelloch,
Fineman, and Shun [39]—inspired by an approach of [69] and [50]—
divide the algorithm into several phases. In each phase they only
expose a prefix of the remaining order and run the greedy algorithm
on these vertices only (whilst still deleting a vertex in the suffix if it
is adjacent to a vertex added to the MIS). This way, in each phase the
order among the unprocessed (but possibly already deleted) vertices
in the suffix remains random, leading to a sequence of independent
subproblems.

Blelloch, Fineman, and Shun [39] exploit this independence to ar-
gue that after having processed a prefix of length Ω(t · log n), the
maximum remaining degree (among the not yet deleted vertices) in
the suffix w.h.p. is d = n

t . This is because in every step2 in which
a vertex v has more than d neighbors, the probability that one of
these is chosen to be exposed next (which causes the deletion of
v) is at least d

n . In the end of the phase, the probability of v not

being deleted is at most
(
1− d

n

)Ω(t logn)
= n−Ω(1). A union bound

over all vertices concludes the argument. By doubling the param-
eter t after each phase they ensure that after O(log n) phases the
whole graph has been processed. Inside each phase, they use the
maximum degree to bound the round complexity by the length of a
longest monotonically increasing path3, which is O(log n).

2For the sake of analysis, we think of the prefix being processed sequentially.
This does not change the outcome.

3A monotonically increasing path with respect to an order is a path along
which the order ranks are increasing.

194 Tight Analysis of Local Greedy Algorithms

The main shortcoming of Blelloch et al.’s approach is that it relies
heavily on the property that in each phase the remaining degree of
all vertices with high probability falls below a certain value. This
imposed union bound unavoidably stretches each prefix by a factor
of log n. We will circumvent this problem using the following core
ideas.

(1) Instead of bounding the degree of all vertices in the graph, we
will consider a fixed set of O(log n) positions, that is, indices in
{1, . . . , n}, and only analyze the degree of vertices assigned to
these positions in the random order.

(2) Instead of using one prefix for all these vertices simultaneously,
we will essentially have one distinct “prefix” for each position,
that is, one distinct set of vertices which we will use to ar-
gue about the degree drop of the vertex assigned to this po-
sition. This will preserve independence among positions, and
hence spare us the need of a union bound.

(3) Instead of bounding the probability of a long monotonically in-
creasing path of vertices based on the with high probability up-
per bound on the degree, we will restrict our attention to the
much stronger concept of so-called dependency paths4. Roughly
speaking, a dependency path is a monotonically increasing path
which alternates between vertices in the MIS and vertices not in
the MIS, and the predecessor of a vertex v not in the MIS is the
first vertex that knocked v out. These additional properties of
dependency paths allow us to execute a more nuanced analysis
of their occurrence probability. In particular, we will not need
to argue that the degrees of our vertices drop according to some
process with high probability. It suffices to show that for any
degree of this vertex its chances of being part of a dependency
path are low enough.

4Note that this is not the same as dependence path in [39].

7.1. Introduction 195

Proof Outline: Summarized, our method—comprising all the afore-
mentioned ideas—can be outlined as follows. We will show that the
round complexity is bounded by the largest dependency path length.
It is then enough to show that w.h.p. there cannot be a dependency
path of length L = Ω(log n). In a first step, we will analyze the
probability that a fixed set P of positions forms a dependency path.
To this end, we assign each position a position set (which will play
the role of a “prefix” for this position’s vertex and thus serve the
purpose of controlling its degree) of a certain size and at a certain
place, both carefully chosen depending on the position. Then we
will argue for each position5 that its probability of being part of
and continuing the dependency path is not too high, based on the
randomness of its associated position set. Being careful about only
exposing positions that have not already been exposed for other po-
sitions, we will be able to combine these probabilities to obtain a
bound on the probability that P forms a dependency path. This
is schematically illustrated in Figure 7.1. Finally, we union bound
over all choices for P .

1 2 w x y z n

Figure 7.1: For positions w, x, y, z ∈ P , we want to bound the proba-
bility that the vertices assigned to these positions form a dependency
chain alternating between vertices in the MIS (black) and vertices
not in the MIS (white). To do so, we put aside a disjoint set of
positions (i.e., a prefix) for every position in P (depicted with the
lighter version of their position’s color) which we use to bound the
degree of the corresponding vertex assigned to a position in P .

5In fact, to get a strong enough bound, we will have to argue not only about
one position but about two positions simultaneously.

196 Tight Analysis of Local Greedy Algorithms

7.1.3 Notation and Preliminaries

We use [n] := {1, . . . , n} and [x, y] := {x, . . . , y}. For two sets
X,Y ⊆ N, we write X < Y if maxX < minY . We use X[i] for
the ith element in the set X (we think of all sets as ordered) and
X[I] the (ordered) set of the elements in X at positions I ⊆ [|X|].
For an order π : [n] → V , we say that vertex v ∈ V has position
i if π(i) = v, use π(I) :=

⋃
i∈I π(i), and write π(I) = π′(I) when

π(i) = π′(i) for all i ∈ I. We say that we expose a position i when
we fix the vertex π(i) in a random order π. Moreover, we say a
vertex v is exposed if there is a position i such that i is exposed
and π(i) = v. If a set I of positions is already exposed, this means
that the considered probabilities are all conditioned on π(I). We use
subscript I to indicate that the probability is over the randomness in
the positions I. For a graph G = (V,E), we use E(X,Y) to denote
the set of edges in E between X and Y , for X,Y ⊆ V , and write
e(X,Y) = |E(X,Y)|. Moreover, we let N(v) := {u ∈ V : {u, v} ∈
E} denote the neighborhood of vertex v ∈ V .

Framework

We introduce the concept of dependency paths, and show that this
notion is closely related to the round complexity of the local greedy
MIS algorithm.

Dependency Path: For a fixed permutation π : [n] → V , let
V ∗ ⊆ V denote the MIS generated by the (sequential) greedy al-
gorithm that processes the vertices in the order (π(1), . . . , π(n)).
For every vertex v not in V ∗, we use inhib(v) to denote the neigh-
bor of v in V ∗ of minimum position, that is, setting inhib(v) :=
arg min{π−1(u) : u ∈ N(v) ∩ V ∗}, and call it v’s inhibitor.

Definition 7.7. A sequence 1 ≤ p1 < · · · < p2l+1 ≤ n of positions
forms a dependency path of length 2l + 1 for l ≥ 0 if

7.1. Introduction 197

(i) (π(p1), . . . , π(p2l+1)) is a path in G,

(ii) {π(pk) | k is odd} ⊆ V ∗,

(iii) {π(pk) | k is even} ⊆ V \ V ∗,

(iv) π(pk−1) = inhib(π(pk)) for even k.

We write p1 ∼ · · · ∼ p2l+1.

Connection to Local Algorithm: In the following, we establish
a connection between the round complexity of the local algorithm
and the dependency length, defined as the length of the longest de-
pendency path in a graph.

Lemma 7.8. If the dependency length is 2l+ 1, the local algorithm
takes at most l + 1 rounds.

Proof. Consider a slowed-down version of the local algorithm in
which the deletion of a vertex v /∈ V ∗ is delayed until the round
in which inhib(v) enters the independent set. That is, even if a
neighbor u of v enters the independent set, v is not deleted from
the graph unless u = inhib(v). This algorithm takes at least as
many rounds as the original local algorithm, as the time in which
a vertex is processed can only be delayed. Furthermore the slowed-
down version produces the same independent set as in the original
algorithm.

We show by induction that every vertex entering the independent
set in round i in this modified local algorithm must be the last vertex
of a dependency path of length 2(i− 1) + 1. The base case i = 1 is
immediate. If a vertex w enters V ∗ in round i + 1, then there is a
neighbor v of w with π(v) < π(w) that was deleted from the graph
(but not added to the MIS) in round i, as otherwise w could have
been added to V ∗ in an earlier round. This means that inhib(v) was
added to V ∗ in round i. By the induction hypothesis, inhib(v) is the

198 Tight Analysis of Local Greedy Algorithms

last vertex of a dependency path of length 2(i−1)+1, and it is easy
to check that v and w extend this dependency path.

7.2 Upper Bound

7.2.1 Proof Outline

Bound on Dependency Length

The number of rounds taken by the randomized local greedy MIS
algorithm in the beginning and in the end—that is, for vertices
with positions in [1,Θ(log n)] and [βn, n], for a constant β ∈ (0, 1)
which is given by Lemma 7.10 below—can be handled easily, as
we will discuss in the proof of Theorem 7.1 in Section 7.2.3. We
thus focus on the technically more interesting range of positions in
[Θ(log n), βn] here. By Lemma 7.8, we know that the dependency
length constitutes an upper bound on the round complexity of the
randomized local greedy MIS algorithm. It is thus enough to show
the following.

Theorem 7.9. W.h.p. there is no dependency path of length L =
Ω(log n) in the interval [βn].

Probability of Continuing a Dependency Path

One main part of this theorem’s proof, which is deferred to Sec-
tion 7.2.3, is to argue that the probability that a fixed set {p1, . . . , pL}
of positions form a dependency path is low. This, in turn, is proved
by bounding the probability that—when already having exposed
pk−1—the positions pk and pk+1 continue a dependency path, thus
pk−1 ∼ pk ∼ pk+1, for all segments (pk−1, pk, pk+1) for even k ∈ [L].
By being careful about dependencies among segments, thus in par-
ticular about which randomness to expose when, these probabilities
for the segments then can be combined to a bound for the proba-

7.2. Upper Bound 199

bility of p1 ∼ · · · ∼ pL. We will achieve this by assigning disjoint
position sets Pi to positions pi and exposing, roughly speaking, only
Pk−1, Pk, and {pk, pk+1} when analyzing the probability of the seg-
ment (pk−1, pk, pk+1). More formally, this reads as follows.

Lemma 7.10. There exist absolute constants β, ε ∈ (0, 0.01) such
that the following holds. Fix three positions p1, p2, p3 ∈ [βn] and
two disjoint sets P1, P2 ⊆ [βn] of equal size l := |P1| = |P2| ≥ 10000
which satisfy P1 < P2 < p1 < p2 < p3, and let t2 := maxP2.
Consider S ⊆ [βn]\(P1∪P2∪{p2, p3}) with p1 ∈ S. Suppose that the
positions in S have already been exposed. Then the probability that
p1, p2, p3 can still form a dependency path when additionally exposing
S2\S for S2 := S∪[t2]∪{p2, p3} is PrS2 [p1 ∼ p2 ∼ p3 | π (S)] ≤ 1−ε

(el)2 .

The proof of this lemma is the most technical part and can be found
in Section 7.2.2.

7.2.2 Probability of Continuing a Dependency Path

Proof of Lemma 7.10. As we will see next, the probability of p1 ∼
p2 ∼ p3 can be bounded by considering an execution of the sequen-
tial greedy MIS algorithm on a random ordering.

Connection to Sequential Algorithm

We will work with the following sequential algorithm. Initially, in
step t = 1, all vertices are called alive. Then, in each step t ∈
[n], position t is exposed (if not already exposed) and vertex π(t)
processed as follows. If π(t) is alive in step t, then π(t) is added to
the MIS, and π(t) as well as all its neighbors are called dead (i.e.,
not alive) for all steps t′ > t after t. If π(t) is dead in step t, then
we proceed to the next step. We say that a vertex dies in step t if
it is alive in step t and dead in step t + 1, and say that it is dead
after t.

200 Tight Analysis of Local Greedy Algorithms

Let t1 = maxP1 and t2 = maxP2. Consider the events

E1: π(p1), π(p2) are neighbors and alive in step t1 + 1 ≤ p1, and

E2: π(p2), π(p3) are neighbors and alive in step t2 + 1 ≤ p1,
and π(p1), π(p3) are not neighbors.

Observe that these two events are necessary for p1 ∼ p2 ∼ p3. Indeed
for both π(p1) and π(p3) to enter the independent set they must
not share an edge and must be alive in step t2 + 1 ≤ p1 < p3.
Furthermore by definition of a dependency path π(p2) dies in step
p1 and therefore must be alive in step t1 + 1 as well.

In the following, we call an alive and unexposed (with respect to a
step and a set of exposed positions) vertex active, and let the active
degree of a vertex be its number of active neighbors.

Proof Sketch

By the above observation it is enough to bound the probability
that during the execution of the sequential algorithm up to step
t2 the events E1 and E2 occur. First, we will investigate how the
active degree of the vertex v := π(p1) evolves and thereby affects
the probability of E1 when the sequential algorithm runs through
the position set P1 up to step t1. The main observation is that on
the one hand, if the active degree d of v in step t1 is low, then it
is unlikely that π(p2) is an active neighbor of v (this happens with
probability ≈ d

n).6 On the other hand, if the active degree of v is
high in step t1 (and thus during all steps P1) then v is likely to die
because one of its active neighbors enters the MIS (v stays alive with

probability ≈
(
1− d

n

)l
). The combined probability (over P1 ∪{p2})

that v stays alive and one of its active neighbors is selected for

6Note that since there are always at least (1 − β)n unexposed positions the
probability that one of d alive vertices is exposed in the next step is always
Θ
(
d
n

)
.

7.2. Upper Bound 201

π(p2) is ≈ d
n

(
1− d

n

)l
. Therefore the probability of E1 is maximized

for d ≈ n
l , yielding a value 1

el for one additional position, and hence
1

(el)2 for two positions, which falls just short of our desired bound.

In that seemingly bad case, however, we will argue that π(p2) is
likely to have a low active degree, which in turn will make E2 improb-
able (by employing a similar argument for v′ := π(p2) when running
the algorithm through P2 up to step t2, also exposing π(p3)). Taken
together, E1 and E2 will have low probability in all cases, i.e., for
any active degree d of v.

See Figure 7.2 for an illustration.

Formal Proof

We may assume without loss of generality that [t2] \ (P1 ∪ P2) ⊆ S.
If not, we expose the missing positions and add them to S. Let
t0 = minP1 and S1 = S ∪ P1 ∪ {p2}. Suppose that S is exposed
and that the sequential algorithm has run up to step t0 − 1. We
then run the sequential algorithm through the steps [t0, t1] ⊇ P1.
For i ∈ {0, . . . , l− 1}, let N1

i denote the set of active neighbors of v
in step P1[i+ 1], and N1

l the set of active neighbors of v after step
t1 = P1[l]. We use di for the corresponding degrees, let N2

i denote
the set of active neighbors of (vertices in) N1

i without N1
i , and set

Ei := E(N1
i , N

2
i) and ei := |Ei|, in the respective step.

We now analyze the probability of E1 by distinguishing several cases
based on the set Ω of all vertex sequences ω : P1 → V \π(S) that can
be encountered when exposing P1. We restrict our attention to ω ∈
Ω∗ := Ω \ Ω0 for Ω0 := {ω ∈ Ω: v dead in steps after t1 under ω},
as otherwise E1 is impossible.

We introduce the following auxiliary algorithm. Let A be the al-
gorithm that works exactly as the sequential greedy algorithm, ex-
cept that it picks a vertex for P1[i] uniformly at random from V \

202 Tight Analysis of Local Greedy Algorithms

(
π(S) ∪N1

i−1

)
instead of from V \ π(S). For ω /∈ Ω0 this set never

becomes empty. If V \
(
π(S) ∪N1

i−1

)
= ∅ at some step then define

A to pick vertices in some arbitrary way. We use PrA[ω | π(S)]
to denote the probability of the algorithm A picking the sequence
ω ∈ Ω∗ when exposing P1, conditioned on π(S). Note that

PrA[ω | π(S)] =
l−1∏
i=0

(
1

n− |S| − i− di

)
and therefore

PrS1 [π(P1) = ω(P1) | π(S)] =

l−1∏
i=0

(
1

n− |S| − i

)

= PrA[ω | π(S)]

l−1∏
i=0

(
1− di

n− |S| − i

)
.

Moreover, the probability of having an active neighbor of v at p2

under ω is at most dl
n−|S|−l . Thus,

PrS1 [E1 and π(P1) = ω(P1) | π(S)]

≤ dl
n− |S| − l

PrA [ω | π(S)] exp

(
−

l−1∑
i=0

di
n

)
.

(7.1)

Since the di are decreasing (in i) this term is maximized for d0 =
· · · = dl = n

l , yielding an upper bound of

PrA [ω | π(S)]
n

el(n− |S| − l)

≤ PrA [ω | π(S)]
1

el(1− β)
.

Summing up over ω ∈ Ω∗ results in PrS1 [E1 | π(S)] ≤ 1
el(1−β) . Note

that the same upper bound of 1
el(1−β) can be obtained for PrS2 [E2 |

7.2. Upper Bound 203

π(S1)], where S2 = S1 ∪P2 ∪{p3}, by repeating the argument while

exposing P2. Thus we obtain our first bound of
(

1
el(1−β)

)2
.

The next step is to improve it to the claimed bound of 1−ε
(el)2 . To that

end, we distinguish three different cases for ω, mainly based on the
active degree dbδlc of v after bδlc steps under ω, for δ = 0.01, say.
Note that our assumption of l ≥ 10000 ensures that bδlc ≥ 0.99δl.

Large Deviation from Degree ≈ n
l :

Ω1 = {ω ∈ Ω∗ : dbδlc > 1.1nl or dl < 0.8nl under ω}

Easy calculations show that for ω ∈ Ω1, when the degree deviates
a lot from the optimizer n

l , then the upper bound on (7.1) can be
improved by a small constant factor (1− ε1).

Degree ≈ n
l and Few Edges:

Ω2 = {ω ∈ Ω∗ : dbδlc ≤ 1.1nl , dl ≥ 0.8nl , el ≤ 0.6n
2

l2
under ω}

For ω ∈ Ω2, we will argue that because el is small, the active degree
of π(p2) in steps > t1 is likely to be low. In that case, E2 will have
a low probability by an argument analogous to the one in the case
ω ∈ Ω1 where the active degree of v deviates from n

l :

There can be at most 0.9375dl vertices in N1
l with degree into N2

l

larger than 0.8nl after step t1. All other at least 0.0625dl many
vertices in N1

l thus have degree into N2
l at most 0.8nl . For π(p2)

such that this is the case, analogously7 to the case ω ∈ Ω1 from
before, we improve upon the trivial bound by a constant factor
(1 − ε1). For π(p2) with larger degree we obtain the trivial bound
of PrA′ [ω

′ | π(S1)] 1
el(1−β) . Thus, on average we improve by some

factor (1− ε2).

7The main observations needed for adapting the proof is that we can ignore
all sequences for P2 under which a vertex in N1

l or N2
l is exposed, since then

either v or v′ would die, and that π(p3) ∈ N2
l \N1

l is necessary for E2.

204 Tight Analysis of Local Greedy Algorithms

Degree ≈ n
l and Many Edges:

Ω3 = {ω ∈ Ω∗ : dbδlc ≤ 1.1nl , dl ≥ 0.8nl , el > 0.6n
2

l2
under ω}

We will argue that
∑

ω∈Ω3
PrA[ω | π(S)] is bounded away from 1

by a constant. Intuitively speaking, the more edges there are, the
likelier it is that vertices in N1

i die. It is thus not too likely to have
only a small drop in the active degree over all (1 − δ)l steps if in
every step the number of edges in Ei is large.

Run A for bδlc many steps and suppose that dbδlc ≤ 1.1nl . We will

bound the probability that dl ≥ 0.8nl and el > 0.6n
2

l2
if we continue

to run A.

If ei ≥ 0.6n
2

l2
then let Mi ⊆ Ei be a subset of exactly d0.6n2

l2
e

edges, and let Xi+1 denote the number of vertices in N1
i which are

connected through Mi with the vertex selected in step i + 1 scaled
down by γ :=

(
n− |S ∪N1

i | − i
)
/n. To shorten notation, we use

ξi := π (S ∪ P1 ([i])). Then, for (say) β ≤ 0.01,

EA [Xi+1 | ξi] =
γ|Mi|

n− |S ∪N1
i | − i

=
|Mi|
n

=
d0.6n2

l2
e

n
.

If ei ≤ 0.6n
2

l2
then define Xi to be a constant random variable (with

the same expectation). Note that these random variables are uncor-
related. Indeed since Xi is fully determined by ξi while (for j > i)
EA[Xj | ξi] does not depend on ξi we have:

EA[XiXj] =
∑
ξi

EA[XiXj | ξi]PrA[ξi]

=
∑
ξi

EA[Xi | ξi]EA[Xj | ξi]PrA[ξi] = EA[Xi]EA[Xj].

Now let X :=
∑l

i=bδlcXi (note that if el > 0.6n
2

l2
then this is a

lower bound on dbδlc − dl) with expectation EA[X | ξbδlc] ≥ 0.5nl

7.2. Upper Bound 205

and variance

VarA[Xi+1 | ξbδlc] ≤ EA[X2
i+1 | ξbδlc] ≤ dbδlcEA[Xi+1 | ξbδlc] ≤

n2

l3
,

where we have used Xi+1 ≤ dbδlc ≤ 1.1nl .

Since the Xi are uncorrelated, the variance of the sum is at most
VarA[X | ξbδlc] ≤ n2

l2
. Hence, by Cantelli ’s inequality (the one-sided

version of Chebyshev ’s inequality),

PrA

[
X ≥ 0.4

n

l
| ξbδlc

]
≥ PrA

[
X − EA[X | ξbδlc] ≥ −0.1

n

l
| ξbδlc

]
≥ 1−

VarA[X | ξbδlc]
0.001n

2

l2
+ VarA[X | ξbδlc]

≥ C > 0,

for some constant C.

Thus, if we have dbδlc ≤ 1.1nl then with probability at least C either

el ≤ 0.6n
2

l2
or the active degree drops by at least 0.4nl . Both cases

are excluded from Ω3. Therefore
∑

ω∈Ω3
PrA[ω | π(S)] ≤ 1− C.

Wrap-Up: Combining these three cases, we obtain∑
ω∈Ω

PrS2 [E1 and E2 and π(P1) = ω(P1) | π(S)]

≤
∑

ω∈Ω1∪Ω2

PrA[ω | π(S)]
1−min {ε1, ε2}

((1− β)el)2

+
∑
ω∈Ω3

PrA(ω | π(S))
1

((1− β)el)2
,

which is at most 1−ε
(el)2 for some absolute small constants ε, β > 0,

since
∑

ω∈Ω3
PrA[ω | π(S)] ≤ 1− C.

206 Tight Analysis of Local Greedy Algorithms

7.2.3 Bound on Dependency Length

We will bound the probability that there exists a dependency path of
length Ω(log n) in the interval [A log n, βn] for some large A, thereby
proving Theorem 7.9.

Proof of Theorem 7.9. We first upper bound the probability that a
fixed set P of L = Θ(log n) (for odd L) positions forms a dependency
path by iteratively applying Lemma 7.10. We then take a union
bound over all possible choices for P .

Probability for Fixed Positions

Let I = [1, . . . , n] and let A denote a large constant which we will fix
later. For a fixed set P = {p1, . . . , pL} ⊆ [A log n, n] of L =

√
A log n

positions, we will choose position sets Pk to associate with each pk
which satisfy the conditions

(i) P1 < · · · < PL,

(ii) Pk < pk for all k ∈ [L], and additionally

(iii) Pk < pk−1 and |Pk| = |Pk−1| for all even k ∈ [L].

This will ensure the applicability of Lemma 7.10 to (pk−1, pk, pk+1)
for even k ∈ [L].

We break the interval [n] into exponentially growing sub-intervals
Ii :=

[
(1 + γ)i, (1 + γ)i+1

)
for some small enough constant 0 < γ <

1. Let si := |Ii ∩ (P \ {pL})| denote the number of positions in
P \ {pL} that intersect Ii. Observe that si = 0 for all i + 1 ≤
log1+γ(A log n). For convenience, we use pi,j to refer to pk if pk is

the jth position among Ii ∩ P .

If si > 0 then we split Ii−1 \P into si+1 position sets Ii−1,1 < . . . <

7.2. Upper Bound 207

Ii−1,si+1, each of size

li :=

⌊
|Ii−1 \ P |
si + 1

⌋
=

⌊
bγ(1 + γ)i−1c − |P ∩ Ii−1|

si + 1

⌋
.

Note that these subsets are not necessarily contiguous and do not
contain any of the positions pk ∈ P . We claim that li ≥ γ(1 +
γ)i−2/(si + 1) ≥ 10000. Indeed for si to be non-zero i must satisfy
(1 + γ)i+1 ≥ A log n =

√
A|P |. Thus the first inequality holds for

A(γ) large enough. Secondly si ≤ |P | thus the second inequality
holds for A large enough as well.

Next we assign each position pk = pi,j ∈ P a position set

Pk = I(pk) = I(pi,j) :=

{
Ii−1,j , if k is odd or j 6= 1,

Ii−hi−1,s(i−hi)+1, if k is even, j = 1,

where hi := i − max{j | j < i : sj 6= 0} is the distance i − j of Ii
to the next smaller interval Ij which contains at least one position
from P .8 In words, we assign the jth position pi,j in the interval Ii
the jth position set Ii−1,j in the previous interval Ii−1, except for
positions pk for which k is even and pk is the first position in some
interval Ii. Since in that case pk−1 is in the interval Ii−hi , and thus
is assigned a position set Ii−hi−1,s(i−hi)

, we have to assign pk the

position set Ii−hi−1,s(i−hi)+1 in order to not violate condition (iii).

Let S0 = {p1}, and for every even k ∈ [L], let Sk = Sk−2 ∪
[maxPk] ∪ {pk, pk+1}. Then, iteratively for every even k ∈ [L],
apply Lemma 7.10 with (p1, p2, p3) ← (pk−1, pk, pk+1), (P1, P2) ←
(Pk−1, Pk), l ← |Pk−1| = |Pk|, S ← Sk−2. Observe that indeed
(Pk−1 ∪ Pk) ∩ Sk−2 = ∅, pk−1 ∈ Sk−2, and Sk = Sk−2 ∪ [maxPk] ∪
{pk, pk+1}, which—together with properties (i)–(iii)—then makes

8Note that, since we are interested in hi only for positions pk = pi,1, where k
is even. Thus in particular not for p1, there will actually always be a j < i with
sj 6= 0.

208 Tight Analysis of Local Greedy Algorithms

Pk−3 Pk−2 Pk−1 Pk

Ii−2 Ii−1 Ii

pk−3 pk−2 pk−1 pk pk+1

Figure 7.2: The situation before applying Lemma 7.10 to
(pk−1, pk, pk+1). The set Ii−2 \ P has been split into si−1 + 1 = 4
parts. The first three parts are associated with the points in P∩Ii−1.
Since k is even and pk is the first position in the interval Ii, its as-
sociated set is Pk = Ii−hi−1,si−hi+1 = Ii−2,4 (and not Ii−1,1). This
ensures that |Pk−1| = |Pk|. The positions before Pk−1 = Ii−2,3

as well as pk−3, pk−2, pk−1 have already been exposed. Invoking
Lemma 7.10 will additionally expose Pk−1, Pk, pk and pk+1.

the lemma applicable. Thus for every even k we obtain a bound
of 1−ε

e2|Pk−1||Pk|
on the probability that pk−1, pk, and pk+1 form a de-

pendency path when exposing Sk, conditioned on already having
exposed Sk−2. Thus, P forms a dependency path with probability
at most ∏

k∈[L] : k even

PrSk [pk−1 ∼ pk ∼ pk+1 | π(Sk−2)]

≤
∏

k∈[L] : k even

1− ε
e2|Pk−1||Pk|

=
∏

i : si 6=0

si∏
j=1

√
1− ε

e|I(pi,j)|
.

Let Ĩ = {i : si 6= 0 ∧ pi,1 = pk for some even k}. Then for i ∈ Ĩ
li

|I(pi,1)|
=

li
li−hi

≤ (1 + γ)hi
si−hi + 1

si + 1
(1 + γ)

≤ (1 + γ)hi(si−hi + 1).

Since
∑

i∈Ĩ hi ≤ log1+γ n and because the mapping f : Ĩ → {i : si ≥
1} that maps f(i) = i−hi is an injection, we can bound the product

7.2. Upper Bound 209

by ∏
i∈Ĩ

li
|I(pi,1)|

≤
∏
i∈Ĩ

(1 + γ)hi(si−hi + 1) ≤ n
∏

i : si≥1

(si + 1)

≤ n
(

2L

log1+γ(n)

)log1+γ(n)

.

Finally by definition |I(pi,j)| = li whenever i /∈ Ĩ or j > 1. Therefore
we obtain

∏
i : si 6=0

si∏
j=1

√
1− ε

e|I(pi,j)|
≤ n

(
2L

log1+γ(n)

)log1+γ(n) ∏
i : si 6=0

(√
1− ε
eli

)si
.

Union Bound Over All Positions

For fixed values of {si} there are at most

n
∏
i

(
γ(1 + γ)i

si

)
≤ n

∏
i : si 6=0

(
eγ(1 + γ)i

si

)si
= n

∏
i : si 6=0

((
si + 1

si

)(
eγ(1 + γ)i

si + 1

))si
≤ n

∏
i : si 6=0

e
(
eli(1 + γ)2

)si
≤ n1+ 1

log(1+γ)

∏
i : si 6=0

(
eli (1 + γ)2

)si
choices for positions P with |Ii∩(P \{pL})| = si (counting n choices

for pL), using
(
si+1
si

)si
≤ e in the second inequality and |{i : si 6=

0}| ≤ log1+γ n in the third inequality.

Therefore, by a union bound, the probability of having a dependency

210 Tight Analysis of Local Greedy Algorithms

path of length L for prescribed {si} is at most

n
2+ 1

log(1+γ)

(
2L

log1+γ n

)log1+γ n (√
1− ε(1 + γ)2

)L
.

Since we can assign values to {si} in at most(
L+ log1+γ n

log1+γ n

)
≤
(
e

(
L

log1+γ n
+ 1

))log1+γ n

ways, it follows that the probability of a dependency path of length
L is at most

n
2+ 1

log(1+γ) ·
(

2L

log1+γ n
e

(
L

log1+γ n
+ 1

))log1+γ n

·
(√

1− ε(1 + γ)2
)L
,

which is n−Ω(1) for a constant γ small enough depending on ε, and
L =

√
A log n large enough depending on γ.

We now use the bound on the dependency length from the previous
result to prove our main result in Theorem 7.1.

Proof. By Theorem 7.9, w.h.p. the length of any dependency path
in the interval [βn] is O(log n), and by Lemma 7.8, this thus bounds
the number of rounds needed by the local algorithm to process this
interval by O(log n).

Suffix [βn, n]: For the suffix [βn, n], it can be shown that w.h.p.
after processing the first βn positions the maximum degree among
all remaining vertices is at most d = O(log n). See e.g. Lemma
3.1 in [39]. Since each possible path of length L is monotonically
increasing with probability 1/L! ≤ (e/L)L, the probability of having
such a path in the suffix is at most n (ed/L)L, which is n−Ω(1) for
L = Ω(log n) large enough. Finally, observe that for the parallel
algorithm to take L rounds there indeed must be a monotonically
increasing path of length L.

7.3. Lower Bound 211

7.3 Lower Bound

Proof of Theorem 7.2. Consider a graph consisting of
√
n connected

components, each connected component made of l + 1 layers for
l := logn

5 as follows. The ith layer for i ∈ [0, l] is a clique on 2i ver-
tices, and there is a full bipartite graph between any two consecutive
layers. The remaining vertices not part of a layer are just isolated.

A path of length l is strictly increasing if the ith vertex on the path
for 0 ≤ i ≤ l is in layer l − i and the of the path vertices are sorted
(in the random order). We will argue that the probability that a
connected component contains such a strictly increasing path is at
least n−0.05.

Consider the layers U0, . . . , Ul of one connected component U and
a random order. The probability that Ul contains the minimum
among

⋃l
i=0 Ui is at least |Ul||U | ≥

1
4 . Then, conditioned on the

previous event, the probability of Ul−1 containing the minimum

among
⋃l−1
i=0 Ui is at least

|Ul−1|
|
⋃l−1
i=0 Ui|

≥ 1
4 . Continuing this argument,

combining the conditional probabilities, we get a lower bound of(
1
4

)l
= n−0.05 on the probability that there is a strictly increasing

path in U . Since all the
√
n connected components are indepen-

dent, the probability of no such component containing a strictly

increasing path is at most
(
1− n−0.05

)√n � n−Ω(1). Thus, with
high probability, the considered graph contains such a path.

Finally, observe that the local greedy MIS algorithm will take at least
(l+1)/2 rounds until it has processed such a strictly increasing path,
since the algorithm processes only 2 layers in each round.

212 Tight Analysis of Local Greedy Algorithms

CHAPTER 8

Local Sampling

8.1 Introduction

We study local sampling of proper vertex coloring, based on the
publication ‘A Simple Parallel and Distributed Sampling Technique:
Local Glauber Dynamics’ [102].

8.1.1 Our Results and Related Work

The centralized Glauber dynamics for vertex coloring [147, 218]
works as follows: in every step, a random vertex picks a random
color and updates its color if the new color does not lead to a con-
flict. This Markov chain takes n log n steps to mix. We present
a strikingly simple local sampling technique, called Local Glauber
Dynamics, that fully parallelizes this centralized Glauber dynamics.

213

214 Local Sampling

Theorem 8.1 (Local Glauber Dynamics). A uniform proper q-
coloring can be sampled within total variation distance ε > 0 in
O
(
log n

ε

)
rounds, where q = α∆ for any α > 2.

This improves on the LubyGlauber algorithm of Feng, Sun, and
Yin [96], which needs O(∆ log n) rounds, and their LocalMetropo-
lis algorithm, which converges in O(log n) rounds but requires a
considerably stronger condition of α > 2 +

√
2. They state that

“We also believe that the 2 +
√

2 threshold is of certain
significance to this [LocalMetropolis] chain as the Do-
brushin’s condition to the Glauber dynamics.”

implying that this value is a barrier for their approach. This is
also justified by their supposedly easiest special case of a tree that
leads to the same threshold. Our result gets rid of the additional√

2 while not incurring any loss in the round complexity, with a
considerably easier and more natural update rule. Not only our
proof is simpler and shorter, also our algorithm is asymptotically
best possible, as there is an Ω

(
log n

ε

)
lower bound [129, 96, 130] due

to the exponential correlation between variables.

The threshold of α > 2 corresponds to Dobrushin’s condition, thus
almost matches the threshold of the centralized Glauber dynamics
[147, 218] at 2∆ + 1. In other words, we present a technique that
fully parallelizes the Glauber dynamics, speeding up the mixing time
from poly n steps to O(log n) rounds. Besides its many practical
ramifications, especially on the area of distributed machine learning,
this moves us a step closer towards an answer to the question of what
can be sampled locally and gives us a theoretical insight about the
locality of problems.

In terms of number of colors needed, Dobrushin’s condition can be
undercut: Vigoda [225] and three recent works [64, 80, 63] showed
that, when resorting to a different highly non-local Markov chain,

8.1. Introduction 215

α < 11
6 is enough. This gives rise to the question whether efficient

distributed algorithms intrinsically need to be stuck at Dobrushin’s
condition, which would imply that this bound is inherent to the
locality of the sampling process, or whether our threshold is an
artifact of our possibly suboptimal dynamics.

Note that independently Feng, Hayes, and Yin [93] arrived at the
same result with a slightly different sampling algorithm. They fur-
ther extended their work in [98, 94, 95].

8.1.2 Notation and Preliminaries

Markov Chain: We consider a Markov chain X =
(
X(t)

)
t≥0

,

where X(t) = (X
(t)
v)v∈V ∈ [q]V is the coloring of the graph in round

t. We will omit the round index, and use X = (Xv)v∈V ∈ [q]V for
the coloring at time t and X ′ = (X ′v)v∈V ∈ [q]V for the coloring at
time t+ 1, for a t ≥ 0, instead.

Mixing Time: For a Markov chain
(
X(t)

)
t≥0

with stationary dis-

tribution µ, let π
(t)
σ denote the distribution of the random color-

ing X(t) of the chain at time t ≥ 0, conditioned on X(0) = σ.

The mixing time τmix(ε) = maxσ∈Ω min
{
t ≥ 0: dTV

(
π

(t)
σ , µ

)}
is

defined to be the minimum number of rounds needed so that the
Markov chain is ε-close (in terms of total variation distance) to
its stationary distribution µ, regardless of X(0). The total varia-
tion distance between two distributions µ, ν over Ω is defined as
dTV(µ, ν) =

∑
σ∈Ω

1
2 |µ(σ)− ν(σ)|.

Path Coupling: The Path Coupling Lemma by Bubley and Dyer
[49, Theorem 1] (also see [96, Lemma 4.3]) gives rise to a particularly
easy way of designing couplings. In a simplified version, it says that
it is enough to define the coupling of a Markov chain only for pairs
of colorings that are adjacent, that is, differ at exactly one vertex.
The expected number of differing vertices after one coupling step

216 Local Sampling

then can be used to bound the mixing time of the Markov chain.

Lemma 8.2 (Path Coupling [49], simplified). For σ, σ′ ∈ [q]V , let
φ(σ, σ′) := |{v ∈ V : σv 6= σ′v}|. If there is a coupling (X,Y) →
(X ′, Y ′) of the Markov chain, defined only for (X,Y) with φ(X,Y) =
1, that satisfies E[φ(X ′, Y ′) | X,Y] ≤ 1−δ for some 0 < δ < 1, then
τmix(ε) = O

(
1
δ log n

ε

)
.

8.2 Local Glauber Dynamics

We propose the following generic sampling method, which we call
Local Glauber Dynamics: In every step, every variable indepen-
dently marks itself at random with a certain (low) probability. If
it is marked, it samples a proposal at random and checks with its
neighbors whether the proposal leads to a conflict with their current
state or their new proposals (if any). If there is a conflict, the vari-
able rolls back and stays with its current state, otherwise the state
is updated.

More concretely, we define a transition from X = (Xv)v∈V to X ′ =
(X ′v)v∈V in one round as follows. Every node v ∈ V marks itself
independently with probability 0 < γ < 1. If it is marked, it pro-
poses a new color cv ∈ [q] uniformly at random, independently from
all the other nodes. If this proposed color does not lead to a con-
flict with the current and the proposed colors of any neighbor, that
is, cv /∈

⋃
u∈N(v){Xu, cu} and cu /∈ {Xv, cv} for any u ∈ N(v)1,

then v accepts color cv, thus sets X ′v = cv. Otherwise, v keeps
its current color, that is, sets X ′v = Xv. Note that the condition
cv /∈

⋃
u∈N(v){Xu, cu} is necessary to guarantee reversibility of the

Markov chain.

1To simplify notation, we assume that cu = Xu in case u is not marked.

8.2. Local Glauber Dynamics 217

8.2.1 Stationary Distribution

The Local Glauber dynamics is ergodic: it is aperiodic, as there is
always a positive probability of not changing any of the colors, and
irreducible, since any (proper) coloring can be reached from any col-
oring. Moreover, the chain might possibly start from an improper
coloring, but it will never move from a proper to an improper color-
ing, that is, it is absorbing to proper colorings. It is easy to verify
that this Local Glauber dynamics, due to its symmetric update rule,
satisfies the detailed balance equation for the uniform distribution,
meaning that the transition from X to X ′ has the same probability
as a transition from X ′ to X for proper colorings. The chain thus is
reversible and has the uniform distribution over all proper colorings
as unique stationary distribution.

8.2.2 Mixing Time

Informally speaking, the Path Coupling Lemma says that if for all X
and Y which differ in one vertex, we can define a coupling (X,Y)→
(X ′, Y ′) in such a way that the expected number of vertices at which
X ′ and Y ′ differ is bounded away from 1 from above, then the chain
converges quickly. In Section 8.2.3, we formally describe such a
path coupling, in Section 8.2.3, we list necessary (but not necessarily
sufficient) conditions for a vertex to have two different colors after
one coupling step, which is then used in Section 8.2.3 to bound the
expected number of differing vertices by 1−δ for some constant 0 <
δ < 1, depending on α. Application of Lemma 8.2 then concludes
the proof of Theorem 8.1.

8.2.3 Description of Path Coupling

We look at two colorings X and Y that differ at a vertex v0 ∈ V
only. That is, g = Xv0 6= Yv0 = b, for some g 6= b ∈ [q], which we
will naturally refer to as green and blue, respectively, and Xv = Yv

218 Local Sampling

for all v 6= v0 ∈ V . In the following, we explain how every node
v ∈ V comes up with a pair (cXv , c

Y
v) of new proposals, which then

will be accepted or rejected based on the Local Glauber dynamics
rules.

Marking: In both chains, every node v ∈ V is marked indepen-
dently with probability γ, using the same randomness in both chains.
In the following, we restrict our attention to marked nodes only;
non-marked nodes are thought of proposing their current color as
new color, i.e., cXv = Xv and cYv = Yv.

Consistent, Mirrored, and Flipped Proposals: We introduce
two possible ways of how proposals for a node v can be sampled: con-
sistently and mirroredly. For the consistent proposals, both chains
propose the same randomly chosen color, that is, cXv = cYv = c for
a u.a.r. c ∈ [q]. For the mirrored proposals, both chains assign the
same random proposal if it is neither green nor blue, and a flipped
proposal (i.e., green to one and blue to the other chain) otherwise.
More formally, cXv = c and cYv = c if c ∈ {g, b} and c the element in
{g, b} \ {c}, and cXv = cYv = c if c /∈ {g, b}, for a u.a.r. c ∈ [q]. We
say that v has flipped proposals if cXv 6= cYv . Note that we say mir-
rored proposal to refer to the process of sampling mirroredly, and
we say flipped if, as a result of sampling mirroredly, a node proposes
different colors in the two chains.

Breadth-First Assignment of Proposals: Let

B = {v ∈ V \ {v0} : Xv ∈ {g, b}} ⊆ V \ {v0}

be the set of vertices v 6= v0 with current color green or blue, as well
as

K =

(⋃
v∈B

N+(v)

)
\ {v0}

its inclusive neighborhood, without v0, where N+(v) := N(v)∪{v}.
We ignore this set K for the moment, and focus on the set S ⊆ V \K

8.2. Local Glauber Dynamics 219

of marked vertices that are not adjacent to a vertex with color green
or blue (except for possibly v0). Informally speaking, we will go
through these vertices in a breadth-first manner, with increasing
distance d ≥ 0 to vertex v0, and fix their proposals layer by layer, but
defer the assignment of vertices not (yet) adjacent to a vertex with
flipped proposals, as follows. We repeatedly add all (still remaining)
vertices that have a vertex in the last layer with flipped proposals to
a new layer, and sample their proposals mirroredly, thus perform a
breadth-first assignment on vertices with flipped proposals only. All
remaining vertices sample their proposals consistently. Note that
this in particular guarantees that a vertex is sampled consistently
only if it not adjacent to a vertex with flipped proposals.

More formally, this can be described as follows. We define M0 =
F 0 = {v0}, even if v0 is not marked. For vertex v0, if marked,
the proposals are sampled consistently. For d ≥ 1 and v ∈ Md,
the proposals are sampled mirroredly. For the subsequent layer,
we restrict the attention to (new) neighbors of vertices in Md with
flipped proposals only, i.e., consider

Md+1 = N
(
F d
)
\

d⋃
i=0

Md

for

F d = {v ∈Md : cXv 6= cYv }.

For all remaining (marked) vertices, that is, vertices in S \M and
vertices in K, proposals are sampled consistently. Here, M :=⋃
d≥0Md. See Figure 8.1 for an illustration of this breadth-first-

based approach.

Accept Proposals: The proposals (cXv)v∈V and (cYv)v∈V in the
chains X and Y are accepted or rejected based on the Local Glauber
dynamics rules, leading to colorings X ′, Y ′ ∈ [q]V .

220 Local Sampling

X

M
0

M
1

M
2

M
3

M
4

Y

v v

u

ww

v0v0

u

Figure 8.1: The breadth-first layers Md for d ≥ 0 of two chains
that differ at v0 ∈ M0. The disk color corresponds to the vertex’
current color, where black means any color except green and blue.
The color of the box around a vertex shows this vertex’ proposed
color, where white stands for any color (possibly also green or blue,
but consistent). Dashed boxes indicate the sets F d of vertices with
flipped proposals. Note that vertex v appears in layer 4 even though
it has distance 3 to v0. This is because we perform the breadth-first
assignment only on vertices with flipped proposals. v’s neighbor u
does not have flipped proposals, thus is in M2 \ F 2, which means
that u’s neighbors are not added to the next layer. Only v’s neighbor
w ∈ F 3 leads to v being added to M4.

8.2. Local Glauber Dynamics 221

Properties of the Coupling

The main observation is the following. If we ignore vertices with
current colors green and blue for the moment, one can argue that X ′

and Y ′ can only differ at a vertex different from v0 if its proposals
are flipped. Flipped proposals, however, can only arise when the
proposals are sampled mirroredly, which happens only if there is
a vertex in the preceding layer with flipped proposals (due to the
breadth-first order in which we assign the proposals). A vertex thus
can lead to an inconsistency only if there is path in G from v0 to
this vertex consisting of vertices with flipped proposals, called a flip
path.

We will next make this intuition with the flip paths more precise, in
two parts: for vertices in S (that sample their proposals mirroredly
if adjacent to a vertex with flipped proposals) in Lemma 8.3 and for
vertices in K (that always sample their proposals consistently) in
Lemma 8.4. See Figure 8.2 for an illustration of these two cases.

Lemma 8.3. If X ′ and Y ′ differ at v 6= v0 ∈ S, there is a flip
path (v0, . . . , v` = v) ∈ F 0 × · · · × F ` of length ` ≥ 1 in G, with the
additional property that the proposal of v is the opposite of the last
color (in green and blue) seen on this path, in both chains. More
formally, cY = cXv 6= cYv = cX , where cX = cXv`−1

and cY = cYv`−1
if

` > 1, and cX = Xv0 and cY = Yv0 if ` = 1.

Proof. We first argue that v’s proposals must be flipped and ac-
cepted in both chains. Trivially, acceptance of a consistent proposal
in both chains or rejection in both chains leads to X ′v = Y ′v . More-
over, observe that flipped proposals are, by construction, either ac-
cepted in both or rejected in both chains, as flipping changes the
role of green and blue, but not the overall behavior. Indeed, sup-
pose, without loss of generality, that cXv = c ∈ {g, b} is rejected by
X. Thus, in particular, v has a neighbor u with current color or
proposal c in X. As we are restricting our attention to the set S

222 Local Sampling

which does not have any adjacent vertex with current color green or
blue, except for v0, either u = v0 or u proposes c. So u either must
have different current colors (if u = v0) or have mirrored proposals
(if v ∈ F d, then u ∈ Md′ for some d′ ≤ d+ 1, because at the latest
v’s flipped proposal leads to u being added to the subsequent layer,
by how we assign the proposals in breadth-first manner) and hence
flipped proposals. Thus, v’s proposal c in Y will be rejected by Y ,
since either u = v0 ∈ N(v) has color c or u ∈ N(v) proposes c.

It thus remains to rule out the case of consistent proposals that are
accepted in one and rejected in the other chain. Towards a contra-
diction, suppose that v proposes the same color cv in both chains,
and that it is accepted in one and rejected in the other. Since
Xv = Yv and cXv = cYv , this can happen only if v is adjacent either
to v0 or to at least one vertex with flipped proposals, as otherwise
all proposals and all current colors in v’s inclusive neighborhood
would be the same, leading to the same behavior in both chains. In
both cases, v ∈Md for some d ≥ 1, which means that its proposals
are sampled mirroredly. Hence, cv /∈ {g, b}, as otherwise the pro-
posals would be flipped. Now, since neither v’s current color nor
v’s proposals is green or blue, and neighbors of v can differ in their
colors or proposals only if green or blue is involved, the proposals
are either accepted or rejected in both chains. It follows that indeed
only vertices in S with flipped proposals that are accepted in both
chains can have different colors in X ′ and Y ′.

By construction of the layers, and since v ∈ F ` for some ` ≥ 1,
there must exist a sequence of vertices v1 ∈ F 1, . . . , v`−1 ∈ F `−1

connecting v0 to v in G: a flip path of length `. Moreover, the
proposal is accepted in a chain only if the proposed color is the
opposite of the color (green or blue) that is seen on the path (either
as proposal if ` > 1, or as current color of v0 if ` = 1).

Lemma 8.4. If X ′ and Y ′ differ at v 6= v0 ∈ K, there is a path

8.2. Local Glauber Dynamics 223

(v0, . . . , v` = v) ∈ F 0 × · · · × F `−1 ×K of length ` ≥ 1 in G, called
almost flip path, with the additional property that the proposal of v
is either green or blue, that is, cv = cXv = cYv ∈ {g, b}.

Proof. Since, by definition of the coupling, v ∈ K samples its pro-
posals consistently, X ′ and Y ′ can only differ at v 6= v0 if the pro-
posal is accepted in one and rejected in the other chain. This can
happen only if v is adjacent to either v0 or to at least one vertex
with flipped proposals. Otherwise, all proposals and all current col-
ors in v’s inclusive neighborhood would be the same, leading to the
same behavior. Hence, v is adjacent to some u ∈ F d for some d ≥ 0.
By construction of the layers, there must exist a sequence of vertices
v1 ∈ F 1, . . . , v`−1 = u ∈ F `−1 connecting v0 to v in G: an almost flip
path of length ` = d+1. Note that, in particular, because neighbors
of vertices in B are by definition sampled consistently (as they are
in K), and a vertex at the end of an almost flip path has a neighbor
with flipped proposals, this last vertex on an almost flip path must
be in K \B.

The proposal cv is accepted in one and rejected in the other chain
only if cv ∈ {g, b}. In that case, the chain with the same color on
the end of the path will reject, the other will (possibly) accept.

Bounding the Expected Number of Differing Vertices

We show that E[φ(X ′, Y ′) | X,Y] ≤ 1 − δ for some 0 < δ < 1,
by bounding the expectations E[

∑
v 6=v0∈V 1 (X ′v 6= Y ′v) | X,Y] and

E[1
(
X ′v0
6= Y ′v0

)
| X,Y] separately. We will see that, as δ tends to 0,

both terms can be bounded by ≈ 1
α , leading to an expected number

of roughly 2
α , which is strictly less than 1 for α > 2.

Vertices v 6= v0: Section 8.2.3, or more precisely, Lemmas 8.3
and 8.4, show that the number of vertices (different from v0) that
have different colors in X ′ and Y ′ can be bounded by the number
of (almost) flip paths with an additional property. We will next see

224 Local Sampling

YX

F
0

F
1

F
2

F
3

F
4v

v0 F
0

F
1

F
2

K \B

v0

YX

v

B

Figure 8.2: The disk color corresponds to the vertex’ current color,
where black means any color except green and blue. The color of
the box around a vertex indicates this vertex’ proposed color, where
white means any color (also green and blue, but consistent). A
flip path on the left: v’s flipped proposals are accepted in both
chains, yielding X ′v = g and Y ′v = b. An almost flip path on the
right: v ∈ K \B samples its proposals consistently. In chain X, the
proposal g will be accepted, in chain Y , it will be rejected, leading
to X ′v = g 6= Y ′v = Yv.

that the expected number of such (almost) flip paths can be ex-
pressed as a geometric series summing over the depths of the layers.

There are at most ∆` paths (v0, . . . , v`) of length ` in G. Moreover,
each such path has probability (2γ/q)` of being a flip or almost flip
path with the mentioned additional property, since all intermediate
vertices v1, . . . , v`−1 need to mark themselves and to propose one
arbitrary color in {g, b}, and v` needs to mark itself and to propose
the color in {g, b} as specified in Lemmas 8.3 and 8.4, respectively.
Note that a path in G can either be a flip path or an almost flip
path, but never both. Moreover, observe that vertex v0 does not

8.2. Local Glauber Dynamics 225

need to be marked. We get

E

 ∑
v 6=v0∈V

1(X ′v 6= Y ′v) | X,Y

 ≤ ∞∑
`=1

∆`

(
2γ

q

)`

=
∞∑
`=1

(
2γ∆

q

)`
≤

2γ∆
q

1− 2γ∆
q

.

(8.1)

Vertex v0: Chains X ′ and Y ′ can agree at vertex v0 only if at least
one the proposals is accepted. For that, v0 needs to be marked and
its proposal cv0 = cXv0

= cYv0
needs to be different from all the at

most ∆ current colors of its neighbors, that is, cv /∈
⋃
v∈N(v0){Xv},

which happens with probability at least γ (1−∆/q). Moreover, the
proposals of v0’s neighbors (if marked) need to avoid at most three
colors in {cv0 , g, b}, possibly less, which happens with probability at
least 1− 3γ/q. We thus get

E
[
1
(
X ′v0
6= Y ′v0

)]
≤ 1− γ

(
1− ∆

q

)(
1− 3γ

q

)∆

. (8.2)

Wrap-Up: Overall, combining (8.1) and (8.2), we get

E[φ(X ′, Y ′) | X,Y] ≤ 1− γ
(

1− 1

α

)
e−

6γ
α +

2γ
α

1− 2γ
α

= 1− γe−
6γ
α

(
1− 1

α

(
1 +

2e
6γ
α

1− 2γ
α

))
.

For α > 2 and γ := γ(α) small enough, this is strictly bounded away
from 1 from above, where the hidden constant depends on α (but
not on ∆ or n).

226 Local Sampling

Part II

All-to-All Communication
Models

227

CHAPTER 9

Vertex Coloring in CC and MPC

9.1 Introduction

We study the problem of vertex coloring in Congested Clique and
Massively Parallel Computation. Our results are based on the the
manuscript ‘Simple Graph Coloring Algorithms for Congested Clique
and Massively Parallel Computation’ [104] as well as the publi-
cation ‘The Complexity of (∆ + 1)-Coloring in Congested Clique,
Massively Parallel Computation, and Centralized Local Computa-
tion’ [54]. We mostly focus on conveying the intuition for the CC
result; the MPC result works by only slightly adapting the algorithm
and parameters. Note that while the result for the Centralized Lo-
cal Computation model is omitted, as this model is not the focus of
the thesis, it follows in a straightforward manner from our analysis.

229

230 Vertex Coloring in CC and MPC

9.1.1 Our Results and Related Work

(∆ + 1) List Vertex Coloring in Constant CC Rounds

We present an O(1)-round randomized algorithm for (∆ + 1) list
vertex coloring in the CC model, settling the asymptotic complexity
of this problem.

Theorem 9.1. There is an O(1)-round CC algorithm that w.h.p.
solves the (∆ + 1) list vertex coloring problem.

The proof can be found in Section 9.4.

This improves on the O(log∗∆)-round randomized algorithms of
Parter and Su [210] as well as on the O(log log ∆ · log∗∆)-round ran-
domized algorithm of Parter [209]. Hegeman and Pemmaraju [141]
gave faster algorithms for the significantly more relaxed problem of
O(∆) coloring: they run in O(1) rounds if ∆ = Ω(log4 n) and in
O(log log n) rounds otherwise.

Very recently, Czumaj et al. [72] provided a deterministic constant-
round (∆+1) list vertex coloring algorithm in CC, based on a similar
technique.

(∆ + 1) List Vertex Coloring in Sublinear-Memory MPC

We present a randomized (∆+1) list vertex coloring algorithm with
round complexity O(

√
log log n) in the MPC model with strongly

sublinear memor.

Theorem 9.2. There is an O(
√

log log n)-round sublinear-memory
MPC algorithm that w.h.p. solves the (∆ + 1) list vertex coloring
problem, using S = O(nδ) memory per node and total memory
MS = Õ(m), for any 0 < δ < 1.

The proof can be found in Section 9.5. Notably, this is the first

9.1. Introduction 231

coloring algorithm with sublogarithmic round complexity in the
sublinear-memory regime of MPC. For the quasilinear memory regime
of MPC, an O(1)-round algorithm was given recently by Assadi et
al. [13] and also by Czumaj et al. [72]. These algorithms, how-
ever, as well as the CC algorithms discussed above, only work in the
linear-memory regime.

If we combine our algorithm with the recent LOCAL network de-
composition algorithm of [216, 114], we get a round complexity of
O(log log log n), which matches a conditional lower bound due to
Ghaffari, Kuhn, and Uitto [121].

9.1.2 Overview and Outline

We convey the intuition of our method in two parts corresponding
to the two main ingredients of our algorithm: (1) a simple graph
partitioning method for coloring which allows us to break a graph
coloring instance into many smaller graph coloring instances; and
(2) a sparsification of the LOCAL (∆ + 1) vertex coloring algorithm
of Chang, Li, and Pettie [58, 59] that allows us to efficiently im-
plement it in the CC model super-exponentially faster, using our
opportunistic speedup technique.

Graph Partitioning

In Section 9.2, we provide a simple random partitioning that sig-
nificantly simplifies and extends the one in the previous CC algo-
rithms [209, 210]. The main change will be that, besides partition-
ing the vertices randomly, we also partition the colors randomly.
In particular, this new procedure partitions the vertices and col-
ors in a way that allows us to easily apply the LOCAL algorithm
CLP of Chang, Li, and Pettie [58, 59] in a black-box manner. Con-
cretely, our partitioning breaks the graph as well as the respective
palettes randomly into many subgraphs B1, . . . , Bk of maximum de-

232 Vertex Coloring in CC and MPC

gree O(
√
n) and size O(

√
n), while ensuring that each vertex in these

subgraphs receives a random part of its palette with size close to the
maximum degree of the subgraph. The palettes for each part are
disjoint, which allows us to color all parts in parallel. There will be
one leftover subgraph L with maximum degree Õ

(
∆3/4

)
, as well as

sufficiently large remaining palettes for each vertex in this leftover
subgraph.

Application in CC: Since each subgraph has O(n) edges, all of
B1, . . . , Bk can be colored in parallel in O(1) rounds, using Lenzen’s
routing. The leftover part L is handled by recursion. We show that
when ∆ > log4.1 n, we are done after O(1) levels of recursion. This
graph partitioning is illustrated in Figure 9.1.

G

B1 B2 B3 L

Figure 9.1: The graph partitioning in CC. The graph is partitioned
into parts B1, B2, B3 and a leftover graph L. The palettes are ran-
domly distributed among the parts. Each of those parts can be col-
ored immediately, in parallel. The leftover graph with the remaining
colors (not leading to a conflict with the colorings of B1, B2, and B3)
defines a new list vertex coloring instance, on which we recurse.

9.1. Introduction 233

Application in Sublinear-Memory MPC: We perform recur-
sive calls not only on L but also on B1, . . . , Bk. See Figure 9.2
for an illustration. After O(1/δ) levels of recursion, the maximum
degree can be made O(nδ), which enables us to run the CLP algo-
rithm on these parts with an exponential speedup using the graph
exponentiation method. We note that the previous partitioning ap-
proaches [209, 210] are unable to reduce the maximum degree to
below

√
n; this is a significant limitation that our partitioning over-

comes.

Figure 9.2: The graph partitioning in MPC. The graph is parti-
tioned into several parts and a leftover graph (depicted in grey). The
palettes are randomly distributed among the parts. Each of those
parts can be colored recursively, in parallel. The leftover graph with
the remaining colors (not leading to a conflict with the colorings of
the parts) defines a new list-coloring instance, on which we recurse.

Sparsification

For low-degree graphs, the above-explained graph partitioning leads
to ω(1) recursion levels in CC. To get to an O(1) round complexity,
additional ideas are required, as we will outline next.

234 Vertex Coloring in CC and MPC

As explained in Section 9.3, we aim to sparsify the algorithm of
CLP [58, 59] so that the number of nodes a node has to explore to
decide its output is sufficiently small. This allows us to efficiently
simulate it in CC with our opportunistic speedup lemma in O(1)
rounds.

The shattering phase of the CLP algorithm [58, 59] consists of three
parts: (1) initial coloring, (2) dense coloring, and (3) color bid-
ding. Parts (1) and (2) take O(1) rounds1; Part (3) takes O(log∗∆)
rounds. The post-shattering phase turns out to be easily solvable in
CC, as the remaining graph after shattering is sufficiently sparse.

We thus only need to sparsify the color bidding part of the CLP algo-
rithm, which we do as follows. We let each node v sample poly log ∆
colors from its palette at the beginning of this procedure, and we
show that with probability 1−∆−Ω(1), these colors are enough for v
to correctly execute the algorithm. Based on the sampled colors, we
can do an O(1)-round preprocessing step to let each node v identify
a subset N∗(v) ⊆ N(v) of neighbors of size ∆∗ = poly log ∆, and v
only needs to receive messages from neighbors in N∗(v) in the sub-
sequent steps of the algorithm. For the case ∆ = poly log n, the pa-
rameters r = O(log∗∆) and ∆∗ = poly log ∆ = poly log log n satisfy
the condition for our opportunistic speedup lemma in Lemma 3.5,
so that the color bidding, hence the shattering phase, and thus also
the CLP algorithm can be simulated in O(1) rounds in CC.

Notice that the recent work by Assadi et al. [13] on (∆ + 1) vertex
coloring in the linear-memory MPC setting is also based on some
form of palette sparsification, as follows. They showed that if each
vertex samples O(log n) colors uniformly at random, then w.h.p. the
graph still admits a proper coloring using the sampled colors. Since
one only needs to consider the edges {u, v} where u and v share a

1In preliminary versions of [58], dense coloring takes O(log∗∆) rounds. This
time complexity has been improved to O(1) in a revised full version of [58, 59].

9.1. Introduction 235

sampled color, this effectively reduces the degree to O(log2 n). For
an MPC algorithm with Θ̃(n) memory per node, the entire sparsified
graph can be sent to a single node, and a coloring can be computed
offline using any algorithm (e.g., brute-forcing). This sparsification
is not applicable in our setting. In particular, in our sparsified CLP
algorithm, we need to ensure that the coloring can be computed by
a LOCAL algorithm with a small locality volume; this is because
the final coloring is constructed distributedly via the opportunistic
speedup lemma, as opposed to offline.

Roadmap

In Section 9.2 and Section 9.3, we introduce our two main ingredients
graph partitioning and sparsification, respectively. In Section 9.4,
we use them to devise our CC algorithm; in Section 9.5, we show
how graph partitioning can be used to arrive at our MPC algorithm.

9.1.3 Notation and Preliminaries

Neighborhoods: If there is an edge orientation, Nout(v) refers to
the set of out-neighbors of v and use dout(v) := |Nout(v)|. We write
Nk(v) = {u ∈ V | dist(u, v) ≤ k}. We use subscript to indicate
the graph or vertex set under consideration, e.g., NG(v), NS(v),
Nout
G (v), or Nout

S (v), if it is not clear from the context.

Available and Excess Colors: In the course of our algorithms,
we sometimes slightly abuse notation to use Ψ(v) not only for the
initial color list of v but also to denote the set of available colors of
v at any point in time. i.e., the subset of Ψ(v) that excludes the
colors already taken by v’s colored neighbors in N(v). The number
of excess colors at a vertex is the number of available colors minus
the number of uncolored neighbors. Moreover, we assume without
loss of generality that each color can be represented using O(log n)
bits. If not, we w.h.p. can hash the colors down to this magnitude.

236 Vertex Coloring in CC and MPC

9.2 Graph Partitioning

In this section, we describe our graph partitioning algorithm, which
is the first new technical ingredient in our results. This ingredient
on its own leads to our CC result for graphs with ∆ = log4+Ω(1) n
and to our MPC result.

9.2.1 Overview and Intuitive Discussion

We begin with a high-level overview of our approach and the proof
that the (∆ + 1) list vertex coloring problem can be solved in O(1)
rounds in CC when ∆ = Ω(log4+Ω(1)). We compare our algorithm’s
main part with that of the previous CC algorithm of Parter [209] in
O(log log ∆ · log∗∆) rounds and of Parter and Su [210] in O(log∗∆)
rounds as well as the LOCAL algorithm of Chang, Li, and Pettie [58],
which we will refer to as CLP.

What’s Borrowed from CLP [58]

Most prior works on distributed coloring focus on the LOCAL model.
The current state-of-the-art randomized upper bound for the (∆+1)
list vertex coloring problem is O(log∗∆)+O(Detd(poly log n)) of [58]
(which builds upon the techniques of [139]), where Detd(n

′) is the
deterministic complexity of (d+ 1) list vertex coloring on n′-vertex
graphs. In the (d + 1) list vertex coloring problem, each v has a
palette of size d(v) + 1. Currently Detd(n

′) = log5 log(n′) [216, 114],
but two years ago, Detd(n

′) = 2O(
√

log logn′) [208].

The CLP algorithm follows the shattering technique, where the ran-
domized shattering phase takes O(log∗∆) rounds. After that, the
remaining uncolored vertices form connected components of size
poly log n. The post-shattering phase then applies a (d + 1) list
vertex coloring deterministic algorithm on each of the remaining
connected components to color all these vertices.

9.2. Graph Partitioning 237

The (main part of the) CLP algorithm, the shattering phase, works
in O(log∗∆) iterations. We do not delve into the details of these
iterations but comment the following: to run each iteration of this
algorithm, it suffices if each vertex knows its neighbors and their
color palettes as well as the neighbors of its neighbors. The rest of
the process of the iteration is some local computation which needs no
communication. After these O(log∗∆) iterations, the vertices that
remain uncolored induce a much simpler graph, with O(n) edges,
and where each component has size poly log n. This remaining graph
can be handled much easier. The main interesting point is these
O(log∗∆) iterations of the shattering algorithm.

As mentioned before, for each iteration, it suffices if each vertex
knows its neighbors and their color palettes as well as the neighbors
of its neighbors. If ∆ = O(

√
n), this information can be learned

easily in O(1) many CC rounds, using Lenzen’s routing. The more
interesting case is when ∆ = Ω(

√
n).

The Algorithm of Parter [209]

For the ∆ = Ω(
√
n) case, Parter’s [209] recursive sparsification pro-

cedure randomly breaks the graph of degree ∆ into many subgraphs
with degree roughly ∆′ = O(∆2 log n/n) and one special leftover
subgraph with degree O(

√
n). This last part will be handled using

CLP. The earlier subgraphs receive fixed and disjoint colors, by a
deterministic partitioning of the original color. They will be solved
first in parallel via recursion. Then the leftover part will be colored
using CLP, where all colors already taken by neighbors are removed
from the palette of a vertex. For these subgraphs of degree ∆′,
the sparsification procedure is called recursively. Given that each
iteration reduces the degree from ∆ to O(∆2 log n/n), it can take
O(log log ∆) = O(log log n) iterations for this process to bring down
the degree of each part to

√
n, which can be handled using CLP.

This explains the O(log log ∆ log∗∆) complexity of [209].

238 Vertex Coloring in CC and MPC

Now, let us discuss why this partitioning method cannot set the
size of each of the parts to be less than O(∆2 log n/n). The ran-
dom partitioning has some deviation and each part should receive a
number of colors slightly larger than the expected degree in order to
prepare for the deviation in the maximum degree of the part. Since
the expected degree in each part is ∆′, the expected additive devi-
ation per part will be roughly O(

√
∆′ log n). We will have roughly

k = ∆/∆′ such parts. Thus, we should put roughly ∆
√

log n/∆′

colors aside. These are taken basically from the share of the left-
over part, so we should have k

√
∆′ log n ≤

√
n, which implies that

∆′ = O(∆2 log n/n). Notice that this limitation on ∆′, which itself
is rooted in the upper bound on what degrees can be handled by
CLP, is the reason of why O(log log ∆) recursions are needed here.

The Algorithm of Parter and Su [210, 209]

In the improvement provided in [210], Parter and Su increase the
threshold for the degree that can be handled directly by CLP from
O(
√
n) to O(n5/8). This is done by a somewhat complex refinement

of the internal parts of the CLP algorithm so that it can work without
knowing all of the second neighborhood. Particularly, it just needs
a large enough sampling of the palette of the neighbors. Given
this increased threshold of O(n5/8), the recursive partitioning of
[209] can be adjusted to break graphs into many subgraphs with
degree ∆′ = O(∆2 log n/n5/4), and one leftover subgraph of degree
O(n5/8) which can be handled using this modified CLP. Hence, O(1)
repetitions suffice to bring down the degree to the range that CLP
can handle; the round complexity becomes O(log∗∆). Besides the
need for delving into the complex details of CLP, one more critical
drawback of this algorithm is that still each vertex will need to learn
about O(n) bits of information, which can be O(n2) bits in total.

9.2. Graph Partitioning 239

Our Algorithm

We provide a simple random partitioning that significantly simplifies
and extends the above [210, 209]. The main change will be that, be-
sides partitioning the vertices randomly, we also partition the colors
randomly (using shared randomness, which can be produced offline
and shared easily). In particular, this new procedure partitions the
vertices and colors in a way that allows us to easily apply CLP in a
black-box manner.

Näıve Divide-and-Conquer: A näıve divide-and-conquer attempt
to solve the coloring problem works as follows. Decompose the
vertex set V and the color set C randomly into k =

√
∆ parts:

V = B1 ∪ · · · ∪ Bk and C = C1 ∪ · · · ∪ Ck. We hope to be able to
color each part Bi by its associated color set Ci, and so we need
to make sure that for each v ∈ Bi, its palette size restricted to
Ci is higher than its degree in Bi. Consider a vertex v ∈ V . For
ease of calculation, let us assume d(v) = ∆ and |Ψ(v)| = ∆ + 1.
In expectation, its degree in Bi will be d(v)/

√
∆ =

√
∆, and its

palette size restricted to Ci will be |Ψ(v)|/
√

∆ >
√

∆, but due to
the anti-concentration behavior of summation of independent ran-
dom variables, the gap between the degree and the palette size can
be as high as roughly ∆1/4.

Leftover Part: This issue can be solved by introducing a leftover
part L in the partition V = B1∪· · ·∪Bk∪L. Specifically, we include
each v ∈ V to the set L with probability q = Õ(∆−1/4), and then
each remaining vertex joins one of B1, . . . , Bk uniformly at random.
The introduction of L decreases the expected degree of each vertex
v in each Bi by roughly ∆1/4, and so with high probability this is
smaller than its palette size restricted to Ci. Hence now we are able
to color Bi by Ci with high probability.

Indeed, eachBi is of maximum degreeO(
√

∆) and has sizeO(n/
√

∆),
in expectation, and so it is expected that the number of edges within

240 Vertex Coloring in CC and MPC

Bi is O(n). Moreover, each vertex in these subgraphs receives a ran-
dom part of its palette with size close to the maximum degree of the
subgraph. The palettes for each part are disjoint, which allows us to
color all parts in parallel. Since each subgraph has O(n) edges, all
of B1, . . . , Bk can be colored in O(1) rounds, using Lenzen’s rout-
ing, by sending the subgraph Bi to node i and letting it compute a
solution offline.

After finishing the coloring all of B1, . . . , Bk, we update the set of
available colors of each remaining uncolored vertices. In expecta-
tion, the subgraph induced by L has maximum degree Õ(∆3/4) and
contains Õ(n/∆1/4) vertices. Hence the number of edges in L is
Õ(n
√

∆). We deal with this leftover part L by recursion.

The second iteration—with n2 = Õ(n/∆1/4) and ∆2 = Õ(∆3/4)—
provides a new leftover set with Õ(n/∆7/16) vertices, Õ(n∆1/8)
edges, and maximum degree Õ(∆9/16). Repeating the same cal-
culation again for the third iteration, if ∆ = log4+Ω(1) n initially,
we find that the subgraph induced by L after the third iteration
has a sublinear number of edges, and so we can also deliver this
subgraph to one node and compute a proper coloring offline. The
graph partitioning technique hence suffices in that case.

We note that the previous partitioning approach [209, 210] is unable
to reduce the maximum degree to below

√
n; this is a significant

limitation that our partitioning overcomes. We also note that the
CC and MPC coloring algorithms of [141, 140] also use the approach
of randomly partitioning the palette. However, their algorithms
need a palette of size that is much larger than ∆ + 1 to ensure
that the set of colors associated with each vertex set Bi is higher
than its maximum degree. We avoid the use of extra colors by
having a sufficiently large leftover part L and recursively applying
the partitioning algorithm on L.

9.2. Graph Partitioning 241

9.2.2 Formal Description of Graph Partitioning

Our graph partitioning algorithm will be applied recursively. It is
required that the failure probability is at most 1 − n−Ω(1) in all
recursive calls, where n is the number of vertices in the original
graph. For the sake of presentation, throughout this section, we use
G = (V,E) to refer to the current subgraph under consideration,
not the original input graph. Accordingly, graph G does not always
have exactly n vertices, but only at most n vertices.

We first give a formal description of our graph partitioning, and
then show that it satisfies some nice properties.

Graph Partitioning Algorithm

We consider a graph partitioning algorithm parameterized by two
constants γ and ν satisfying γ ≥ 2 and ν = 1

2 + 2
3γ+2 . Consider

a graph G = (V,E) with maximum degree ∆. Recall that in this
section G is assumed to be a subgraph of the n-vertex original graph,
and so n ≥ |V |. Each vertex v ∈ V has a palette Ψ(v) of size
|Ψ(v)| ≥ max{dG(v),∆′}+ 1, where ∆′ = ∆−∆ν . Denote G[S] as
the subgraph induced by the vertices S ⊆ V . For each vertex v ∈ V ,
denote dS(v) as |N(v) ∩ S|. The algorithm is as follows, where we
set k :=

√
∆.

Vertices: The partition V = B1 ∪ · · · ∪ Bk ∪ L is defined by
the following procedure. Include each v ∈ V to the set L with
probability q = Θ

(√
log n/∆1/4

)
. Each remaining vertex joins one

of B1, . . . , Bk uniformly at random. Note that Pr[v ∈ Bi] = p(1− q)
for p = 1/k = 1/

√
∆.

Palettes: Let C =
⋃
v∈V Ψ(v) denote the set of all colors. The

partition C = C1 ∪ · · · ∪ Ck is defined by having each color c ∈ C
join one of C1, . . . , Ck uniformly at random. Note that Pr[c ∈ Ci] =
p = 1/k.

242 Vertex Coloring in CC and MPC

Properties of Graph Partitioning

Lemma 9.3. Suppose |Ψ(v)| ≥ max{dG(v),∆′} + 1 with ∆′ :=
∆−∆ν , and |V | > ∆ = ω(logγ n), where γ and ν are two constants
satisfying γ ≥ 2 and ν := 1

2 + 2
3γ+2 . The two partitions V = B1 ∪

· · ·∪Bk∪L and C =
⋃
v∈V Ψ(v) = C1∪· · ·∪Ck satisfy the following

four properties with probability 1− n−Ω(1).

(i) Size of Each Part: We have

|E(G[Bi])| = O(|V |)

for each i ∈ [k] and

|L| = O(q|V |) = O
(√

log n/∆1/4
)
|V |.

(ii) Available Colors in Bi: For each i ∈ {1, . . . , k} and v ∈ Bi,
for the number gi(v) of available colors for v in the subgraph Bi, it
holds

gi(v) := |Ψ(v) ∩ Ci| ≥ max {dBi(v),∆i −∆ν
i }+ 1,

where ∆i := maxv∈Bi dBi(v).

(iii) Available Colors in L: For each v ∈ L, we have

gL(v) := |Ψ(v)| − (dG(v)− dL(v)) ≥ max{dL(v),∆L −∆ν
L}+ 1,

for each v ∈ L, where ∆L := maxv∈L dL(v). Note that gL(v) repre-
sents a lower bound on the number of available colors in v after all
of B1, . . . , Bk have been colored.

(iv) Remaining Degrees: The maximum degree of Bi is

max
v∈Bi

dBi(v) ≤ ∆i = O
(√

∆
)

9.2. Graph Partitioning 243

and the maximum degree of L is

max
v∈L

dL(v) ≤ ∆L = O(q∆) = O

(√
log n

∆1/4

)
·∆.

Moreover, for each vertex v, we have

dBi(v) ≤ max

{
O(log n), O

(
1√
∆

)
· d(v)

}
if v ∈ Bi,

and
dL(v) ≤ max {O(log n), O(q) · d(v)} if v ∈ L.

Proof. We split the proof in four parts, according to the four prop-
erties in the lemma statement.

Property (i): We first show the bound on the Bi, that is, that
|E(G[Bi])| = O(|V |), for each i ∈ [k], with probability 1 − n−Ω(1).
To have |E(G[Bi])| = O(|V |), it suffices to have dBi(v) = O(p∆) for
each v, and |Bi| = O(p|V |), since p = 1/

√
∆. Note that we already

have E[dBi(v)] ≤ (1− q)p∆ < p∆ and E[|Bi|] = (1− q)p|V | < p|V |,
so we only need to show that these parameters concentrate at their
expected values with high probability. A Chernoff bound yields

Pr[dBi(v) ≤ (1 + ε1)(1− q)p∆] = 1− e−Ω(ε21(1−q)p∆)

= 1− n−Ω(1),
(9.1)

for

ε1 = Θ

(√
log n

(1− q)p∆

)
= Θ

(√
log n

p∆

)
,

and

Pr [|Bi| ≤ (1 + ε2)(1− q)p|V |] = 1− e−Ω(ε22(1−q)p|V |)

= 1− n−Ω(1),

244 Vertex Coloring in CC and MPC

for

ε2 = Θ

(√
log n

(1− q)p|V |

)
= Θ

(√
log n

p|V |

)
.

Note that we have ε1 < 1 and ε2 < 1 in these calculations. In
particular, the inequality ε1 < 1 holds because of the assumption
∆ = ω(logγ n) = ω(log2 n).

Next, we show the analogous results for L, i.e., that both |L|/|V |
and ∆L/∆ have size O(q) = O

(√
log n/∆1/4

)
with probability 1 −

n−Ω(1). Similarly to before, we already have E[dL(v)] ≤ q∆ and

E[|L|] = q|V |. Since q = O
(√

logn
∆1/4

)
, we only need to show that

these parameters concentrate around their expected values with high
probability, using a Chernoff bound. Indeed, we get

Pr[dL(v) ≤ (1 + ε3)q∆] = 1− e−Ω(ε23q∆)

= 1− n−Ω(1),
(9.2)

for ε3 = Θ
(√

log n/(q∆)
)
, and

Pr[|L| ≤ (1 + ε4)q|V |] = 1− e−Ω(ε24q|V |) = 1− n−Ω(1),

for ε4 = Θ
(√

log n/(q|V |)
)

. Again, observe that we have ε3 <

1 and ε4 < 1. In particular, ε3 < 1 because ∆ = ω(logγ n) =
ω(log2 n).

Property (ii): Now we analyze the number of available color for
each set Bi. We will show that with probability 1−n−Ω(1), we have
|Ψ(v) ∩ Ci| ≥ ∆i + 1 for each Bi and each v ∈ Bi, which implies
|Ψ(v) ∩ Ci| ≥ dBi(v) + 1 and |Ψ(v) ∩ Ci| ≥ ∆i −∆ν

i + 1.

Observing that q = Θ
(√

logn
∆1/4

)
≥ ∆−(1−ν) ≥ ∆−1/4 � ∆−(1−ν),

since γ ≥ 2 and ν = 1
2 + 2

3γ+2 imply that ν ∈ (1/2, 3/4], and

selecting q ≥ 3ε1 = Θ
(√

log n/∆1/4
)
, we get

9.2. Graph Partitioning 245

(1− ε1)p∆′ = (1− ε1)

(
1− 1

∆(1−ν)

)
p∆ ≥ (1 + ε1)(1− q)p∆ + 1.

We already know that ∆i ≤ (1 + ε1)(1 − q)p∆ with probability
1− n−Ω(1). In order to have |Ψ(v) ∩ Ci| ≥ ∆i + 1, we only need to
show that |Ψ(v)∩Ci| ≥ (1−ε1)p∆′ with probability 1−n−Ω(1). For
the expected value, we know that E[|Ψ(v) ∩ Ci|] = p|Ψ(v)| ≥ p∆′.
A Chernoff bound gives

Pr[|Ψ(v) ∩ Ci| ≥ (1− ε1)p∆′] = 1− e−Ω(ε21p∆
′) = 1− n−Ω(1),

which concludes the proof of (ii).

Property (iii): Next, we consider the number of available colors
in L. It is straightforward to see that gL(v) ≥ dL(v) + 1, since

gL(v) = (|Ψ(v)| − dG(v)) + dL(v) ≥ 1 + dL(v).

Thus, we only need to show that gL(v) ≥ ∆L −∆ν
L + 1.

We have

E[gL] = (|Ψ(v)| − dG(v)) + E[dL(v)] = (|Ψ(v)| − dG(v)) + qdG(v)

= |Ψ(v)| − (1− q)dG(v) ≥ q∆′,

where we use the assumption that dG(v) ≤ |Ψ(v)| − 1 and ∆′ ≤
|Ψ(v)| − 1 in the last inequality.

Next, we prove that gL(v) ≥ (1−ε3)q∆′ with probability 1−n−Ω(1).
A Chernoff bound yields

Pr[gL(v) ≥ (1− ε3)q∆′] = Pr[dL(v) ≥ qdG(v)− ε3q∆
′]

= 1− e−Ω(ε23q∆
′) = 1− n−Ω(1),

246 Vertex Coloring in CC and MPC

recalling that ε3 = Θ
(√

logn
q∆

)
= Θ

(√
logn
q∆′

)
, and that ε3 < 1.

Using the above concentration bound, we infer that

gL(v) ≥ (1− ε3)q∆′

= q∆′ −O
(√

q∆′ log n
)

= q∆− q∆ν −O
(√

q∆ log n
)

with probability 1− n−Ω(1). Combining this with

∆L ≤ (1 + ε3)q∆ = q∆ +O(
√
q∆ log n),

we obtain
gL(v) = ∆L − q∆ν −O(

√
q∆ log n).

Note that q∆ν +O(
√
q∆ log n) = o ((q∆)ν) = o (∆ν

L), where we use√
q∆ log n� (q∆)

1
2 (q∆)

1
2(3

4
γ+ 1

2)
−1

= (q∆)ν ,

since q∆ = Θ(∆
3
4 log

1
2 n) = ω(log

3
4
γ+ 1

2 n). We thus finally obtain
gL(v) ≥ ∆L −∆ν

L + 1.

Property (iv): The upper bounds on ∆i and ∆L follow immedi-
ately from (9.1) and (9.2). The claimed bounds for dBi(v) and dBi(v)
can be derived using a straightforward application of Chernoff and
union bound.

9.3 Sparsification of Local Coloring

We next present our second novel technical ingredient: a sparsifi-
cation for the LOCAL (∆ + 1) list vertex coloring algorithm CLP of
Chang, Li, and Pettie [58]. As a consequence, combined with the
opportunistic speedup lemma from Lemma 3.5, this sparsification
gives us an O(1)-round CC algorithm solving (∆ + 1) list vertex
coloring for the case ∆ = poly log n.

9.3. Sparsification of Local Coloring 247

9.3.1 Overview and Outline

The algorithm of [58] is based on the graph shattering framework.
The O(log∗∆)-round shattering phase leaves connected components
of size poly log n with O(n) edges among uncolored vertices. On
these remaining components, in the post-shattering phase of their
LOCAL algorithm, they run a deterministic (d+1) list vertex coloring
algorithm. Since the remaining components have only O(n) edges,
in CC, the post-shattering can be directly solved using Lenzen’s
routing. Thus, in order to simulate the CLP algorithm in O(1)
rounds in CC, we only need to focus on the shattering phase.

The shattering phase of the CLP algorithm consists of three parts,
an O(1)-round initial coloring, an O(1)-round dense coloring, and an
O(log∗∆)-round color bidding part. In Section 9.3.2 in Lemma 9.4,
we present a summary (and minor adaptations) of the first two steps
as a black-box algorithm. This black-box algorithm runs in 2 rounds
in the LOCAL model. Since ∆ = poly log n, the 2-hop neighborhoods
have size ∆2 = poly log n, and hence can be easily gathered in O(1)
CC rounds using Lenzen’s routing.

The black-box algorithm partitions the vertices into the sets Vgood,
Vbad, and R. The latter two sets will have size poly log n and O(n),
respectively, so that they will admit an easy solution with Lenzen’s
routing algorithm as well. The only remaining, and most interesting
part, is thus Vgood. In the CLP algorithm, this set is taken care of in
the last part, the color bidding. It will thus be enough to sparsify
the color bidding part of the CLP algorithm.

In Section 9.3.3, we present a sparsified version of the color bid-
ding where every vertex needs to receive information from only
poly log ∆ = poly log log n of its neighbors to decide its output. In
Section 9.3.4, we prove some useful properties of our sparsified color
bidding algorithm. In Section 9.3.5, we show how to implement this
color bidding algorithm in the LOCAL model.

248 Vertex Coloring in CC and MPC

9.3.2 Black-Box Partial Coloring

We will use the first two parts of the CLP algorithm of [58] as a black
box. We will later see in (the proof of) Lemma 9.13, that this black-
box algorithm can be easily simulated in CC in O(1) rounds. Indeed,
for the black-box algorithm it is enough for each node to know the
2-hop neighborhood of its vertex. If ∆ = O(

√
n), and hence 2-hop

neighborhoods have size ∆2 = O(n), this can be done in O(1) rounds
using Lenzen’s routing. Moreover, observe that vertices in Vbad and
R form components of size poly log n and O(n) respectively, hence
they can be solved easily using Lenzen’s routing algorithm as well.
The only remaining, and most interesting part, is thus Vgood.

Lemma 9.4 (Chang, Li, and Pettie [58, 59]). There is an O(1)-
round LOCAL algorithm with messages of O(∆2 log n) bits that col-
ors a subset of vertices so that the remaining uncolored vertices are
partitioned into subsets Vgood, Vbad, and R as follows.

Good Vertices: The edges within Vgood are oriented as a directed
acyclic graph, and each vertex v ∈ Vgood is associated with a param-
eter pv ≤ |Ψ(v)| − d(v) satisfying the conditions p? = minv∈V pv ≥
∆/ log ∆ and

∑
u∈Nout(v) 1/pu ≤ 1/C, where C > 0 can be any spec-

ified constant. Here Ψ(v) is the set of available colors at v, i.e., the
colors in the palette of v that have not been taken by v’s neighbors
and d(v) refers to the number of uncolored neighbors of v in Vgood.
Intuitively, pv ≤ |Ψ(v)| − d(v) is a lower bound on the number of
excess colors at v.

Bad Vertices: The probability that a vertex v ∈ V joins Vbad is 1−
∆−Ω(1). In particular, using Lemma 3.3, they w.h.p. form connected
components of size ∆O(1) ·O(log n) and the number of edges within
the bad vertices is O(n).

Remaining Vertices: The subgraph induced by R has maximum
degree O(1).

9.3. Sparsification of Local Coloring 249

Proof. We briefly review the algorithm of [58, 59] and show how
to obtain Lemma 9.4 from [58, 59]. The algorithm uses a spar-
sity sequence defined by ε1 = ∆−1/10, εi =

√
εi−1 for i > 1, and

` = Θ(log log ∆) is the largest index such that ε`K ≤ 1 for some
sufficiently large constant K.

Initial Coloring: In an initial coloring phase, the algorithm per-
forms an O(1)-round procedure to color a fraction of the vertex set
V , leaving V ? as the set of remaining uncolored vertices. The set
V ? is decomposed into `+ 1 subsets (V1, . . . , V`, Vsparse) according to
their local sparsity.

Dense Coloring: In the dense coloring phase, The algorithm then
applies another O(1)-round procedure to color a fraction of vertices
in V1∪· · ·∪V`. The remaining uncolored vertices in V ? after the first
two phases are partitioned into three subsets: U , R, and Vbad.2 The
set R induces a constant-degree graph. The set Vbad satisfies the
property that each vertex is added to Vbad with probability ∆−Ω(1).
The vertices in U satisfy the following properties.

Excess Colors: We have V1 ∩ U = ∅. Each v ∈ Vi ∩ U , with i > 1,
has Ω(ε2

i−1∆) excess colors. Each v ∈ Vsparse∩U has Ω(ε2
`∆) = Ω(∆)

excess colors. The number of excess colors at a vertex v is defined by
the number of available colors of v minus the number of uncolored
neighbors of v.

Number of Neighbors: For each v ∈ U , and for each i ∈ [2, `], the
number of uncolored neighbors of v in Vi∩U is O(ε5

i∆) = O(ε2.5
i−1∆).

The number of uncolored neighbors of v in Vsparse ∩ U is of course
at most ∆ = O(ε2.5

` ∆), since ε` is a constant.

At this moment, the two sets Vbad and R satisfy the required con-
dition specified in Lemma 9.4. In what follows, we focus on U .

2The algorithm in [58] for coloring layer-1 large blocks has two alternatives.
Here we always use the one that puts the remaining uncolored vertices in one of
R or Vbad, where each vertex is added to Vbad with probability ∆−Ω(1).

250 Vertex Coloring in CC and MPC

Orientation: We orient the graph induced by the uncolored ver-
tices in U as follows. For any edge {u, v}, we orient it as (u, v) if
one of the following is true: (a) u ∈ Vsparse but v /∈ Vsparse, (b) u ∈ Vi
and v ∈ Vj with i > j, (c) u and v are within the same part in the
partition V ? = V1 ∪ . . . V` ∪ Vsparse and ID(v) < ID(u). This results
in a directed acyclic graph. We write Nout(v) to denote the set of
out-neighbors of v in this graph.

Lower Bound on Excess Colors: In view of the above, there
exist universal constants η > 0 and C > 0 such that the following
is true. For each i ∈ [2, `] and each uncolored vertex v ∈ Vi \ Vbad,
we set pv = ηε2

i−1∆. For each v ∈ Vsparse \ Vbad, we set pv = ηε2
`∆.

By selecting a sufficiently small η, the number pv is always a lower
bound on the number of excess colors at v.

Recall that to color the graph quickly we need the number of ex-
cess colors to be sufficiently large with respect to the outdegree. If
v ∈ Vi ∩ U with i ≥ 2, it satisfies |Nout(v)| =

∑i
j=2O(ε2.5

j−1∆) =

O(ε2.5
i−1∆). In this case, pv/|Nout(v)| = Ω(ε−0.5

i−1). If v ∈ Vsparse ∩ U ,
then of course |Nout(v)| ≤ ∆ = O(ε2

`∆), since ε` is a constant. In
this case, pv/|Nout(v)| = Ω(ε−0.5

`).

However, due to the high variation on the palette size in our setting,
pv/|Nout(v)| is not a good measurement for the gap between the
number of excess colors and outdegree at v. The inverse of the
expression

∑
u∈Nout(v) 1/pu turns out to be a better measurement,

as it takes into account the number of excess colors in each out-
neighbor.

There is a constant C > 0 such that for each uncolored vertex
v ∈ V ?\(Vbad∪R), we have

∑
u∈Nout(v) 1/pu ≤ 1/C. The calculation

is as follows. If v ∈ Vi ∩ U for i > 1, then

∑
u∈Nout(v)

1

pu
=

i∑
j=2

O

(
ε2.5
j−1∆

ε2
j−1∆

)
=

i∑
j=2

O
(
ε0.5
j−1

)
= O

(
ε0.5
i−1

)
<

1

C
.

9.3. Sparsification of Local Coloring 251

If v ∈ Vsparse ∩ U , then

∑
u∈Nout(v)

1

pu
=

`+1∑
j=2

O

(
ε2.5
j−1∆

ε2
j−1∆

)
=

`+1∑
j=2

O
(
ε0.5
j−1

)
= O

(
ε0.5
`

)
<

1

C
.

For a specific example, if v is an uncolored vertex in V2 \ Vbad, then
pv = ηε2

1∆ = η∆0.8 is the lower bound on the number of excess colors
at v, and v has outdegree |Nout(v)| = O(ε2.5

1 ∆) = O(∆0.75), and we
have

∑
u∈Nout(v) 1/pu = O(ε0.5

1) = O(∆−0.05) < 1/C. Intuitively,
this means that the gap between the number of excess colors and
the outdegree at v is Ω(∆0.05).

Summary: The graph induced by U satisfies the following condi-
tions. Each vertex v is associated with a parameter pv = ηε2

j∆ (for

some j ∈ [1, `]) so that pv = Ω(ε2
j∆). Moreover, v has O(ε2.5

j ∆) out-

neighbors. In particular, we have
∑

u∈Nout(v) 1/pu = O(ε0.5
j) < 1/C,

where C > 0 is a universal constant. The current pv-values for ver-
tices in U almost satisfy the required condition for Vgood, but only
almost.

(1) Let p? be the minimum pv-value among all uncolored vertices
v ∈ V ?. Currently we only have p? ≥ ηε2

1∆ = η∆0.8, but it is
required that p? ≥ ∆/ log ∆.

(2) Currently we have
∑

u∈Nout(v) 1/pu ≤ 1/C for some universal
constant C, but it is required that C > 0 can be any given constant.

For the rest of the proof, we show that there are O(1)-round al-
gorithms that are able to improve these conditions, by coloring a
fraction of vertices in U and putting some vertices from U to Vbad.

We first consider improving the lower bound on p?. This is done
by letting all vertices whose pv-value is too small (i.e., less than
∆/ log ∆) jointly run the following algorithm.

252 Vertex Coloring in CC and MPC

Lemma 9.5 (Chang, Li, and Pettie [58, 59]). Consider a directed
acyclic graph, where vertex v is associated with a parameter pv ≤
|Ψ(v)| − d(v). We write p? = minv∈V pv and let d? be the maximum
outdegree of the graph. Suppose that there is a number C = Ω(1)
such that all vertices v satisfy

∑
u∈Nout(v) 1/pu ≤ 1/C. Then there

is an O(log∗(p?)− log∗(C))-round LOCAL algorithm achieving the
following. Each vertex v remains uncolored with probability at most
e−Ω(

√
p?) + d?e−Ω(p?). This is true even if the random bits generated

outside a constant radius around v are determined adversarially.

As pv = ηε2
j∆, we have

∑
u∈Nout(v) 1/pu = O(ε0.5

j) = O(p
1/4
v) =

O(log−1/4 ∆), and thus can use C = Ω
(

log1/4 ∆
)

in Lemma 9.5.

All remaining uncolored vertices join Vbad.

We show how to increase C to any given constant in O(1) rounds.
We apply the following algorithm using the current p? and C.

Lemma 9.6 (Chang, Li, and Pettie [58, 59]). There is a 1-round
LOCAL coloring algorithm that satisfies

Pr

[
d ≥ 1 + λ

e
C
6 C

]
≤ e−

2τ2p?e
−C3

C + d?e−Ω(p?).

for any v and τ , and d being the summation of 1/pu over all vertices
u in Nout(v) that remain uncolored after the algorithm.

After that, we can set the new C-value to be C ′ = CeC/6/(1 + τ).
Each vertex v that does not meet the condition that the sum of
1/pu over all remaining uncolored vertices u in Nout(v) is at most
1/C ′ = (1 + τ)/(eC/6C) is put into Vbad. If τ is chosen as a small
enough constant, we have C ′ > C. After a constant number of
iterations, we can increase the C-value to any constant we like. Now,
all conditions in Lemma 9.4 are met for the three sets R, Vbad, and
Vgood ← U .

9.3. Sparsification of Local Coloring 253

9.3.3 Sparsified Color Bidding

In view of Lemma 9.4, we focus on the subgraph induced by Vgood,
and denote it as G0 = (V0, E0). The graph G0 is a directed acyclic
graph. The set of available colors for v is denoted as Ψ0(v). Our
goal is to find a proper coloring of G0. An important property
of G0 is that each vertex v ∈ V is associated with a parameter
pv ≤ |Ψ0(v)| − dG0(v) such that

∑
u∈Nout(v) 1/pu ≤ 1/C0, where C0

can be any specified large constant. Intuitively, pv gives the lower
bound of the number of excess colors at vertex v. It is guaranteed
that p? = minv∈V0 pv ≥ ∆/ log ∆. All vertices in V0 initially know
the parameters C0 and p?.

Review of the Color Bidding Algorithm

The above conditions might look a bit strange, but it allows us to
find a proper coloring in O(log∗∆) rounds in the LOCAL model in
O(log∗∆) iterations of the ColorBidding procedure by [58], as follows.

1. Each c ∈ Ψ(v) is added to Sv with probability C
2|Ψ(v)| .

2. If there exists a color c? ∈ Sv that is not selected by any vertex
in Nout(v), then v colors itself with c?.

We give a very high-level explanation about how this works. For
the first iteration we use C = C0. Intuitively, for each color c ∈ Sv,
the probability that c is selected by an out-neighbor of v is∑

u∈Nout(v)

C

2|Ψ(u)|
≤

∑
u∈Nout(v)

C

2pu
≤ 1/2,

where we use the inequality
∑

u∈Nout(v) 1/pu ≤ 1/C0 that is guar-
anteed by Lemma 9.4. The probability that v fails to color itself is
roughly 2−|Sv |, which is exponentially small in C0, as E[|Sv|] = C0/2.
Thus, for the next iteration we may use a parameter C that is ex-
ponentially small in C0, and so after O(log∗∆) iterations, we are
done.

254 Vertex Coloring in CC and MPC

Parameters

Let ζ > 0 be a constant to be determined. Let p? ∈ [∆/ log ∆,∆]
be the parameter specified in the conditions for Lemma 9.4. The
C-parameters C0, . . . , Ck−1 used in the algorithms are defined as
follows. For the base case, C0 is the parameter C specified in the
conditions for Lemma 9.4. Given that Ci has been defined, we set

Ci+1 = 2

(

min
{

1
2e

Ci
6 Ci, logζ p?

})
2

− 2.

In other words, Ci+1 is the result of rounding the minimum of
1
2e

Ci
6 Ci and logζ p? down to the nearest even number. We choose

the number k of iterations as the smallest index such that Ck−1 =

2
⌈
logζ p

?

2

⌉
− 2. It is clear that k = O(log∗∆), as p? ≤ ∆ + 1.

We will use this sequence C0, . . . , Ck−1 in our sparsified color bidding
algorithm. This sequence is slightly different from the one used
in [58]. The last number in the sequence used in [58] is set to be

√
p?,

but here we set it to be poly log p?. Having a larger C-parameter
leads to a smaller failure probability, but it comes at a cost that we
have to sample more colors. This means that each vertex needs to
communicate with more neighbors to check for conflict.

Overview of the Proof

We first review the analysis of ColorBidding in [58], and then we
discuss how we sparsify this algorithm. The proof in [58] maintains
an invariant for each vertex v that is uncolored at the beginning of
each iteration i which says

Ii(v) :
∑

u∈Nout
G (v)

1/pu ≤ 1/Ci.

9.3. Sparsification of Local Coloring 255

We will use the same pu in every iteration because the number of
excess colors of a vertex never decreases. Here, G refers the current
graph under consideration, i.e., it excludes all vertices that have
been colored or removed in previous iterations. We use G0 to refer
to the original graph (i.e., the one induced by Vgood).

By Lemma 9.4, this invariant is met for i = 0. The vertices u not
satisfying the invariant Ii(v) are considered bad, and are removed
from consideration. The analysis of [58] shows that

(1) Suppose all vertices u in G at the beginning of iteration i satisfy
Ii(u). Then at the end of this iteration, for each vertex u, with
probability 1−∆−Ω(1), either u has been successfully colored or
Ii+1(u) is satisfied.

(2) For the last iteration, given that all vertices u in G satisfy
Ik−1(u), then v is successfully colored at iteration k with prob-
ability 1−∆−Ω(1).

By the shattering lemma in Lemma 3.3, all vertices that remain
uncolored at the end of the algorithm induce a subgraph with O(n)
edges. In particular, in CC we are able to color them in O(1) addi-
tional rounds using Lenzen’s routing.

To sparsify the algorithm, our strategy is to let each node sample the
colors needed in all iterations at the beginning of the algorithm. It
is straightforward to see that each node only needs to use poly log ∆
colors throughout the algorithm, with probability 1−∆−Ω(1). After
sampling the colors, if u finds that v ∈ Nout(u) does not share any
sampled color, then there is no need for u to communicate with v.
This effectively reduces the maximum degree to ∆′ = poly log ∆. If
∆ = poly log n, then ∆′ = poly log log n, which is enough to apply
the opportunistic speedup lemma in Lemma 3.5.

Verifying Invariant: There is one issue needed to overcome: ver-
ifying whether Ii(u) is met has to be done on the original graph G,

256 Vertex Coloring in CC and MPC

as we have to go over all vertices v ∈ Nout
G (u), regardless of whether

u and v have shared sampled colors. One way to deal with this issue
is to simply not remove the vertices u violating Ii(u), but if we do it
this way, then when we calculate the failure probability of a vertex
v, we have to apply a union bound over all vertices u within radius
r = O(log∗∆) to v that u does not violate the invariant for each it-
eration. Due to this union bound, we can only upper bound the size
of the connected components of bad vertices by ∆O(log∗∆) ·O(log n).
To resolve this issue, we observe that the invariant Ii(u) might be
too strong for our purpose, since intuitively if v ∈ Nout(u) does not
share any sampled colors with u, then v should not be able to affect
u throughout the algorithm.

Alternative Invariant and Rich Vertices: We here consider
an alternative weaker invariant I ′i(u) that can be checked in the
sparsified graph. More precisely, in each iteration, each vertex v will
do a two-stage sampling to obtain two color sets Sv ⊆ Tv ⊆ Ψ(v).
The set Sv has size C/2, and the set Tv has size logζ ∆, where ζ > 0
is a constant to be determined. The alternative invariant is defined
as

I ′i(v) :

∣∣∣∣∣∣Tv \
⋃

u∈Nout
G (v)

Su

∣∣∣∣∣∣ ≥ |Tv|3
.

This invariant can be checked by having v communicate only with
neighbors that share a sampled color with v. Intuitively, if Ii(v)
holds, then I ′i(v) holds with probability 1 − ∆−Ω(1). It is also
straightforward to see that I ′i(v) implies that v has a high probabil-
ity of successfully coloring itself in this iteration, as Sv is a uniformly
random subset of Tv of size Ci/2. In the subsequent discussion, we
say that v is rich if I ′i(v) is met.

Overloaded and Lazy Vertices: Other than not satisfying I ′i(v),
there are two other bad events that we need to consider. If v has
too many neighbors that share a sampled color with v, we say that

9.3. Sparsification of Local Coloring 257

v is overloaded. This is a bad event since the goal of the palette
sparsification is to reduce the number of neighbors that v needs
to receive information from. More concretely, we say a vertex is
overloaded, if

If most of the sampled colors of v reserved for iteration i have al-
ready been taken by the neighbors of v during the previous iterations
1, . . . , i− 1, then v does not have enough colors to correctly run the
algorithm for iteration i. In this case, we say that v is lazy.

The Sparsified Color Bidding Algorithm

We are now in a position to describe the sparsified version of the
ColorBidding method. For the sake of clarity we use the following
notation to describe the palette of a vertex u. Recall that Ψ0(u)
refers to the palette of u initially in the original graph G0. At
the beginning of an iteration, we write Ψ+(u) to denote the set of
available colors at u, and write Ψ−(u) to denote the set of colors
already taken by vertices in NG0(u). Note that Ψ+(u) = Ψ0(u) \
Ψ−(u).

SparsifiedColoring: The SparsifiedColoring algorithm—which repre-
sents the entire coloring algorithm—works as follows. Let K =
log3+ζ p?, consider the graph of uncolored and not Bad vertices,
where each vertex v knows the set Ψ−(v) of colors already used by
neighbors.

It consists of k iterations of SparsifiedColorBidding. More concretely,
for k = O(log∗ p∗ − log∗C0) = O(log∗∆) iterations, in iteration i,
each node v does the following.

(1) It generates a sequenceR(i)
v (1), . . . ,R(i)

v (K) of colors, by picking
each uniformly at random and independently from Ψ0(v). Then,

it collects the information about
{
R(i′)
u : 0 ≤ i′ ≤ i

}
from each

neighbor u ∈ N(v). If there exist three indices i′ ∈ [0, i], j ∈

258 Vertex Coloring in CC and MPC

[1,K], and j′ ∈ [1,K] so that R(i)
v (j) = R(i′)

v (j′), we say u is a
significant neighbor of v. If v has more than K2 log ∆ significant
neighbors, we call v overloaded.

(2) It calls the function SparsifiedColorBidding is called with param-

eters C ← Ci, and Rv ← R(i)
v .

Intuitively, an overloaded vertex v means that the colors in R(i)
v

have appeared in
⋃

0≤i′≤iR
(i′)
u for too many neighbors u ∈ N(v).

This is undesirable as we want the degree of the sparsified graph to
be small.

SparsifiedColorBidding: We present a sparsified version of Color-
Bidding: the procedure SparsifiedColorBidding(C, {Rv}v) is the spar-
sified version of ColorBidding. It consists of four steps, executed by
all nodes v in parallel.

(1) Node v calls SampleColors with k1 ← C/2, k2 ← logζ p?, S− ←
Ψ−(v), and R ← Rv) to sample two sets Sv and Tv of k1 and k2

colors, respectively, from R ← Rv \ Ψ−(v). If v is overloaded,
it sets Sv = Tv = ∅. If Sv = ∅, we say that v is lazy.

(2) Node v then collects the information Su from all neighbors u ∈
Nout(v). If at most 2/3 of the colors in Tv are selected in Su of
neighbors u ∈ Nout(v), thus I ′i(v) is met, we call v rich.

(3) If v is not rich or if v is lazy, then v marks itself Bad and stops
the algorithm, thus skips the next step.

(4) If there is a color c ∈ Sv that is not in
⋃
u∈Nout(v) Su, we say that

v is lucky with color c. Node v then colors itself with color c. If
v is lucky with more than one color, ties are broken arbitrarily.

Note that a Bad vertex does not attempt to color itself; but it still
might need to provide information to other vertices in subsequent
iterations.

9.3. Sparsification of Local Coloring 259

SampleColors: The function SampleColors(k1, k2, S
−,R) describes

how a vertex u samples the colors Su and Tu in a single iteration. We
use k1 and k2 as the target set sizes of Su and Tu, respectively. The
set R represents a length-K sequence of colors that u presampled
for the iteration i, where K = log3+ζ p?, and R(j) stands for color
j of R. We will later see that R is generated in such a way that
each R(j) is a uniformly random color chosen from Ψ0(u), where
Ψ0(u) is the set of initially available colors of v in G0. The set
S− represents the set Ψ−(u) which consists of the colors already
taken by the vertices in NG0(u) before iteration i. The method
SampleColors(k1, k2, S

−,R) goes through the colors in R \ S− and
stores the first k1 such colors in Su, and the first k2 such colors in
Tu, if there are enough colors, and ∅ otherwise.

It is straightforward to verify that the output (Sv, Tv) of the method
SampleColors(C/2, logζ p∗,Ψ−(v),Rv) satisfies one of the following.

(a) Sv = Tv = ∅. This happens when most of the pre-sampled col-
ors for this iteration have been taken by the neighboring vertices.
We will alter show that this occurs with probability ∆−Ω(1).

(b) When each Rv(j) is a uniformly random color of Ψ0(v), then
Tv is a uniformly random subset of Ψ0(v) \Ψ−(v) of size logζ p∗

and Sv is a uniformly random subset of Tv of size C/2.

9.3.4 Analysis of Sparsified Color Bidding

For each iteration i, recall that Ψ+(v) = Ψ0(v) \ Ψ−(v) is the set
of available colors at v at the beginning of this iteration. Consider
the beginning of iteration i of SparsifiedColoring. In the graph under
consideration, we say that v is (C,D)-honest if the following two
conditions are met.

(i)
∑

u∈Nout(v) 1/pu ≤ 1/C.

(ii) For each color c ∈ Ψ0(v), vertex v has at most D many c-

260 Vertex Coloring in CC and MPC

significant neighbors u in the previous iteration.

All vertices are (C0, 0)-honest at the beginning of iteration i = 0.

Honest Vertices are Well-Behaved

We first show that all (C,D)-honest vertices are well-behaved.

Lemma 9.7. Let U be the set of yet uncolored but not Bad vertices
after iteration i. If a vertex v is (C,D)-honest, with C ≤ logβ p?

and D ≤ 2Kk = O(K log∗∆), at the beginning of iteration i of
SparsifiedColorBidding in SparsifiedColoring, the following holds.

(i) The probability that v does not successfully color itself is at

most e−
C
6 + e−Ω(logζ ∆).

(ii) The probability that v marks itself Bad is at most e−Ω(logζ ∆).

(iii) The probability that at the beginning of the next iteration, v ∈
U or v is not (C ′, D′)-honest is at most e−Ω(logζ ∆), where

C ′ = min
{

1
2e

C
6 C, logζ p?

}
and D′ = D + 2K.

The probability calculation only relies on the distribution of random

bits generated in N2
G0

(v) in this iteration, i.e., {R(i)
u }u∈N2

G0
(v). In

particular, the result holds even if random bits generated outside
N2
G0

(v) are determined adversarially.

Proof. We focus on the iteration i of the algorithm where the vertex
v is (C,D)-honest. There is no guarantee about the (C,D)-honesty

of all other vertices. For this vertex v, we write Eoverloadv , E lazyv , E richv ,
and E luckyv to denote the event that v is overloaded, lazy, rich, and
lucky. Note that a lucky vertex must be rich and not lazy, and an
overloaded vertex must be lazy.

9.3. Sparsification of Local Coloring 261

In this proof we frequently use the inequality

∆ + 1 ≥ |Ψ0(v)| ≥ |Ψ+(v)| ≥ pv ≥ p? = Ω

(
∆

log ∆

)
.

Our analysis only relies on the random bits generated by vertices
within N2

G0
(v) in this iteration.

We next bound the probabilities of the events Eoverloadv , E lazyv , and
E richv separately, and then combine them to prove Lemma 9.7.

Claim 9.8. We have Pr[Eoverloadv] = e−Ω(log3+ζ ∆).

Proof. Since v is (C,D)-honest, our plan is to show that for each

color c ∈ Ψ0(v), the number R(i)
u of new c-significant neighbor u ∈

NG0(v) brought by the color sequences in iteration i is at most 2K

with probability 1− e−Ω(log3+ζ ∆).

Set NG0(v) = {u1, . . . , us}, use Xr for the indicator variable that

color c appears in R(i)
ur , and define Y =

∑
1≤r≤sXj . Then Y is an

upper bound on the number of new c-significant neighbors. Since
v is (C,D)-honest, the total number of c-significant neighbors is at
most D + Y . Note that X1, . . . , Xs are independent, and

E[Y] =
∑

1≤r≤s
E[Xr] ≤

∑
1≤r≤s

(
1−

(
1− 1

|Ψ0(ur)|

)K)

≤ s K

∆ + 1
≤ K∆

∆ + 1
< K.

By a Chernoff bound, we have

Pr[Y ≥ 2K] ≤ e−Ω(K) = e−Ω(log3+ζ ∆).

A union bound over all c ∈ Ψ0(v) thus shows that v has more
than D′ = D + 2K c-significant neighbors u ∈ NG0(v) for some

262 Vertex Coloring in CC and MPC

color c ∈ Ψ0(v) in iteration i with probability at most e−Ω(log3+ζ ∆).
Given that v has no more than D′ many c-significant neighbors for
every color c ∈ Ψ0(v), we infer that v has at most

|R(i)
u |D′ ≤ KD′ = K(D + 2K)� K2 log ∆

significant neighbors, which implies that v is not overloaded, which
concludes the proof.

Claim 9.9. We have Pr[E lazyv] = e−Ω(log2+β ∆).

Proof. Remember that v is lazy if either (a) v is overloaded, or if
(b) SampleColors outputs (∅,∅). In view of Claim 9.8, we only
need to show that SampleColors gives (∅,∅) with probability at

most e−Ω(log2+β ∆).

Consider the sampling process in SampleColors, and suppose that we
are in the middle of the process, and T is the current set of colors
that we have obtained. Suppose |T | = r currently, i.e., we have
selected r colors from Ψ+(v). The probability that the next color
Rj we consider is different from these r colors in T is at least

|Ψ+(v)| − r
|Ψ0(v)|

≥ |Ψ
+(v)| − logζ p?

|Ψ0(v)|
≥

Ω ∆
log ∆

∆ + 1
= Ω

(
1

log ∆

)
.

Remember that |Ψ+(v)| ≥ pv = Ω(∆/ log ∆), as well as logζ p? =
O(logζ ∆), and that SampleColors outputs (∅,∅) if after we go over
all k2 log3 p? = log3+β p? elements in the sequence R, the size of T
is still less than k2 = logβ p?. The probability that this event occurs
can be bounded by the probability that a binomial random variable
with expected value n′p′ is smaller than t′ and hence less than n′p′/2,
where where n′ = log3+β p? = Θ(log3+β ∆), and p′ = Ω(1/ log ∆),
as well as t′ = logβ p? = Θ(logβ ∆) � n′p′. By a Chernoff bound,

this is e−Ω(n′p′) = e−Ω(log2+β ∆).

9.3. Sparsification of Local Coloring 263

Claim 9.10. We have Pr
[
E richv

]
= e−Ω(logζ ∆).

Proof. Recall that v is rich if
∣∣∣Tv \⋃u∈Nout

G (v) Su

∣∣∣ ≥ |Tv|/3. If v is

lazy, then Tv = ∅, so v is automatically rich. Thus, in the sub-
sequent discussion, we assume that v is not lazy. Let Nout

G (v) =
{u1, . . . , us} and Xr = |Tv ∩Sur |. To prove the lemma, it suffices to

show that we have Pr[Y ≥ 2/3|Tv|] = e−Ω(logζ p?)) for Y =
∑s

r=1Xr,.

We consider the random variable Xr = |Tv ∩ Sur |. For notational
simplicity, we write u = ur. If u is lazy, then Xr = 0. Suppose u is
not lazy. Then let Su ⊆ Ψ+(u) be the result of randomly choosing
C/2 distinct colors c1, . . . , cC/2 from Ψ+(u), one by one. For each
j ∈ [1, C/2], let Zu,j be the indicator random variable that cj ∈ Tv.
Then Xr =

∑C/2
j=1 Zu,j . Observe that in the process, when we pick

the color j, the probability that the color picked is in Tj is at most

|Tv|
|Ψ+(u)| − (j − 1)

≤ |Tv|
|Ψ+(u)| − C

2

,

regardless of the already chosen colors c1, . . . , cj−1. Thus, we have

E[Zu,j] ≤
|Tv|

|Ψ+(u)| − C
2

≤ |Tv|
pu − C

2

≤ 1.1|Tv|
pu

,

since C ≤ logβ p? = poly log ∆ and pu = Ω(∆/ log ∆).

Therefore, in order to bound Y = X1 + · · ·+Xs from above, we can
assume without loss of generality that each Xr is the sum of C/2
independent and identically distributed random variables, and each
of them is a bernoulli random variable with p = 1.1|Tv |

pu
, and so Y is

the summation of s · (C/2) independent 0-1 random variables. Since
v is (C,D)-honest, we have

∑
u∈Nout

G (v) 1/pu ≤ 1/C. The expected

value of Y can be upper bounded as follows.

E[Y] ≤ C

2

∑
v∈Nout

G (u)

1.1|Tv|
pv

≤ 1.1

2
|Tv|.

264 Vertex Coloring in CC and MPC

A Chernoff bound yields

Pr
[
E richv

]
≤ Pr

[
Y ≥

(
1

1.1
· 4

3

)(
1.1

2
|Tv|

)]
= e−Ω(|Tv |) = e−Ω(logζ p?),

and concludes the proof.

Using Claims 9.8 to 9.10, we now prove the three conditions specified
in Lemma 9.7.

Condition (i): Conditioning on E richv ∩ E lazyv , we have that v is
lucky with some color unless it fails to select any of |Tv|/3 spe-
cific colors from Tv ⊆ Ψ+(v). Remember that E richv implies that∣∣∣Tv \⋃u∈Nout

G (v) Su

∣∣∣ ≥ |Tv|/3, and if any one of them is in Sv, then

v successfully colors itself. Also remember that Sv is a size-(C/2)
subset of Tv chosen uniformly at random. Thus,

Pr
[
E luckyv | E richv ∩ E lazyv

]
≤

(2/3|Tv |
C/2

)(|Tv |
C/2

) ≤ (2

3

)C/2
≤ e−

C
6 .

Combining this with Claims 9.9 and 9.10, we get

Pr
[
E luckyv

]
≤ Pr

[
E luckyv | E richv ∩ E lazyv

]
+ Pr

[
E lazyv

]
+ Pr

[
E richv

]
≤ e−

C
6 + e−Ω(logζ p?),

which shows (i).

Condition (ii): Vertex v marks itself Bad if E richv ∪ E lazyv occurs,

which happens with probability at most Pr
[
E richv

]
+ Pr

[
E lazyv

]
=

e−Ω(logζ p?), using Claims 9.9 and 9.10.

9.3. Sparsification of Local Coloring 265

Condition (iii): Define Y as the summation of 1/pu over all ver-
tices u ∈ Nout

G (v) such that u /∈ U in the next iteration. We prove
that the probabilities of (a) Y ≤ 1/C ′ and (b) v has more than D′

c-significant neighbors u ∈ NG0(v) in this iteration are both at most

e−Ω(logζ ∆).

For (b), this directly follows from Claim 9.8. For the rest of the
proof, we deal with (a). Let Nout

G (v) = {u1, . . . , us}. Consider the

event E∗r = E lucky
ur ∪ Erich

ur ∪ E
lazy
ur that ur does not join U in the next

iteration, i.e., ur successfully colors itself or marks itself Bad.

For each r ∈ [1, s], define the random variable Zr as follows. Let

Zr = 0 if the event E lucky
ur ∪ Erich

ur ∪ E
lazy
ur occurs, and Zr = 1/pur

otherwise. Clearly we have Y =
∑s

r=1 Zr. Note that as calculated
above in the proof of Condition (i), we have

Pr
[
E∗r
]

= Pr
[
E lucky
ur ∩ Erich

ur ∩ E
lazy
ur

]
≤ Pr

[
E lucky
ur | Erich

ur ∩ E
lazy
ur

]
,

which is at most e−
C
6 , hence E[Y] ≤ e−

C
6 /C. Since v is (C,D)-

honest, we have
∑

u∈Nout
G (v) 1/pu ≤ 1/C. Combining these two in-

equalities, we obtain that E[Y] ≤ e−
C
6 /C ≤ 1/(2C ′).

Next, we prove the desired concentration bound for Y using Hoeffd-
ings’s inequality. Each variable Zr is within the range [0, 1/pur]. We
have ∑

u∈Nout
G (v)

1

p2
u

≤
∑

u∈Nout
G (v)

1

pup?
≤ 1

Cp?
,

and thus obtain

Pr

[
Y ≥ 1

C ′

]
≤ e

− 2
(2C′)2

1
Cp? = e−Ω(p? log−3β p?)

≤ e−Ω(
√
p?) � e−Ω(logβ p?),

266 Vertex Coloring in CC and MPC

as (1/C ′)2 = Ω(1/ log2β p?) and Cp? = Ω(p?/ logβ p?), by the as-
sumptions specified in the lemma statement.

There is a subtle issue regarding the applicability of Hoeffding’s
inequality. The variables {X1, . . . , Xk} are not independent, but we
argue that we are still able to apply Hoeffding’s inequality. Assume
that Nout(v) = (u1, . . . , us) is sorted in reverse topological order,
and so for each 1 ≤ a ≤ s, we have Nout(ua) ∩ {ua, . . . , us} = ∅.
We reveal the random bits in the following manner. First of all, we
reveal the set Tu for all vertices u. Now the event regarding whether
a vertex is rich or is lazy has been determined. Then, for r = 1 to s,
we reveal the set {Su | u = ur or u ∈ Nout(ur)}. This information
is enough for us to decide the outcome of Zr. Note that in this
process, conditioning on arbitrary outcome of Z1, . . . , Zr−1 and all
random bits revealed prior to revealing the set Sur , The probability
that E∗r occurs is still at most e−C/6.

Remark 9.11. Note that Lemma 9.7 only relies on the assumption
that the vertex v under consideration is (C,D)-honest, and works
even if many neighbors of v are not (C,D)-honest. This is in con-
trast to most of the analysis of graph shattering algorithms where the
analysis relies on the assumption that all vertices at the beginning
of each iteration have to satisfy certain invariants.

Probability of an Uncolored Vertex

Based on Lemma 9.7, we show that SparsifiedColoring colors a vertex
with a sufficiently high probability that enables us to apply the
shattering lemma.

Lemma 9.12. The algorithm SparsifiedColoring gives a partial col-
oring of G0 such that the probability that a vertex v does not suc-
cessfully color itself with a color in Ψ0(v) is

O(k) · e−Ω(logζ ∆) = ∆−Ω(1),

9.3. Sparsification of Local Coloring 267

and this holds even if the random bits generated outside N2
G0

(v) are
determined adversarially.

Proof. We consider the sequence D0 = 0 and Di+1 = Di + 2K.
Suppose the algorithm does not color a vertex v, then v must fall
into one of the following categories.

(a) There is an index i ∈ [0, k − 2] such that v is (Ci, Di)-honest at
the beginning of iteration i, but v is not (Ci+1, Di+1)-honest at
the beginning of iteration i+ 1. By Lemma 9.7 (iii), this occurs

with probability at most (k − 1)e−Ω(logζ ∆).

(b) There is an index i ∈ [0, k − 1] such that v is (Ci, Di)-honest at
the beginning of iteration i, but v marks itself Bad in iteration
i. By Lemma 9.7 (ii), this happens with probability at most

ke−Ω(logζ ∆).

(c) For the last iteration i = k − 1, the vertex v is (Ck−1, Dk−1)-
honest at the beginning of iteration k−1, but v does not success-
fully color itself with a color in its palette in iteration k− 1. By
Lemma 9.7 (iii), this occurs with probability at most e−Ω(logζ ∆).

Note that our analysis only relies on the distribution of random
bits generated in N2

G0
(v), as guaranteed by Lemma 9.7. That is,

even if an adversary is able to decide the random bits of vertices
outside of N2

G0
(v) throughout the algorithm SparsifiedColoring, the

probability that v does not successfully color itself is still at most
O(k) · e−Ω(logζ ∆).

9.3.5 Implementation of Sparsified Color Bidding

In this section, we present an implementation of SparsifiedColoring in
the LOCAL model so that after an O(1)-round preprocessing step,
each node v is able to identify a poly log ∆-size subset N∗(v) ⊆
NG0(v) of neighbors such that v only needs to receive information
from these nodes during SparsifiedColoring. Put simply, in the pre-

268 Vertex Coloring in CC and MPC

processing step, we let each vertex v sample the color sequences R(i)
v

for 0 ≤ i ≤ k− 1 and let each vertex learn the set of colors sampled
by its neighbors. Based on this information, before the first iteration
begins, v is able to identify at most K2 log ∆ = poly log ∆ neighbors
of v for each iteration i such that v is sure that v does not need to
receive information from all other neighbors during this iteration.

Fixing All Random Bits

Instead of having each node v generate the color sequence R(i)
v at

iteration i, we determine all of {R(i)
v }0≤i≤k−1 in the preprocessing

step. After fixing these sequences, we can regard SparsifiedColoring

as a deterministic LOCAL algorithm, where {R(i)
v }v∈V0, 0≤i≤k−1 can

be seen as the input for the algorithm. To gather this information,
we need to use messages of k ·K ·O(log n) = poly log ∆ · log n bits,
where k = O(log∗∆) is the number of iterations, and K is the length

of the color sequence R(i)
v for a single iteration.

Determining the Set N∗(v)

We show how to let each vertex v determine a set N∗(v) ⊆ NG0(v) of
size poly log ∆ so that v only needs to receive messages from N∗(v)
during the execution of SparsifiedColoring, based on information in

{R(i)
u }u∈NG0

(v), 0≤i≤k−1. We make the following observations, which
follow straightforwardly from the description of SparsifiedColoring.
In order for v to execute the method SparsifiedColorBidding in it-
eration i correctly, v does not need to receive information from

u ∈ NG0(v) if all colors in {R(i′)
u }u∈NG0

(v), 0≤i′≤i do not overlap with

the colors in R(i)
u . In other words, v only needs information from

its significant neighbors. Moreover, if v is overloaded in iteration i,
then v knows that it is lazy in this iteration, and so the outcome of
SparsifiedColorBidding in iteration i is that v sets Sv = Tv = ∅ and
marks itself Bad. This allows us to define the set N∗(v) as follows.

9.4. Vertex Coloring in CC 269

Add u ∈ NG0(v) to N∗(v) if there exists an index i ∈ [0, k − 1] such
that u is a significant neighbor of v in iteration i and if v is not
overloaded in iteration i.

By the definition of overloaded vertices, we know that if v is not
overloaded, then v has at most K2 log ∆ = poly log ∆ significant
neighbors for this iteration, meaning |N∗(v)| = poly log ∆. Note
that the set N∗(v) can be calculated offline at the node v during the
preprocessing step.

Summary

In the LOCAL model, the SparsifiedColoring algorithm can be sum-
marized as follows. In a randomized 1-round preprocessing phase
with messages of poly log ∆ · log n bits, it is achieved that each node
has calculated a set N∗(v) of size |N∗(v)| = poly log ∆ so that in the
second phase, each node v only receives messages from N∗(v). In
the main phase—a deterministic O(log∗∆)-round procedure—each
node receives its color sequences for all iterations as input and out-
puts a color (or a special symbol ⊥ indicating that it is uncolored).
The input can be represented with `in = poly log ∆ · log n bits; the
output requires `out = O(log n) bits.

9.4 Vertex Coloring in CC

We split the proof into two parts, according to ∆ = poly log n or
∆ = log4+Ω(1) n.

9.4.1 Coloring Low-Degree Graphs

We show that by applying SparsifiedColoring with the opportunistic
speedup lemma in Lemma 3.5, we can solve (∆ + 1) list vertex
coloring in CC in O(1) rounds when ∆ = poly log n.

270 Vertex Coloring in CC and MPC

Lemma 9.13. There is an O(1)-round CC algorithm that w.h.p.
solves the (∆ + 1) list vertex coloring problem in any graph with
maximum degree ∆ = poly log n.

Proof. First, recall that it directly follows from Lenzen’s routing
algorithm that an r-round LOCAL algorithm with messages of size
s can be implemented in O(1) rounds of CC if ∆rs = O(n). For our
application, this in particular includes O(1)-round algorithms with
message size poly ∆ · log n = poly log n. We simulate the LOCAL
coloring algorithm as follows.

Black-Box Partial Coloring: The first step of the LOCAL al-
gorithm is to run the black-box algorithm from Lemma 9.4, which
takes O(1) rounds in LOCAL with messages of size O(∆2 log n) =
poly log n. This phase thus can be implemented in CC in O(1)
rounds using Lenzen’s routing.

Graphs R and Vbad: The set R trivially induces a subgraph with
O(n) edges. By Lemma 3.3, the set Vbad w.h.p. induces a subgraph
with O(n) edges. We use Lenzen’s routing to color these two sub-
graphs in O(1) rounds each.

Graph Vgood: The SparsifiedColoring algorithm can be implemented
in CC as follows.

The preprocessing phase takes O(1) rounds in LOCAL with messages
of size poly log ∆ · log n, which can be implemented in O(1) rounds
of CC using Lenzen’s routing.

For the main phase, we apply the speedup lemma in Lemma 3.5
with r = O(log∗∆), `out = O(log n), `in = poly log ∆ · log n, and
∆∗ = poly log ∆. Since ∆ = poly log n, the criterion for Lemma 3.5
is satisfied. We thus can simulate this phase in O(1) many CC
rounds.

The algorithm SparsifiedColoring does not color all vertices in Vgood.
However, by Lemma 9.12 and Lemma 3.3, we know that these uncol-

9.4. Vertex Coloring in CC 271

ored vertices induce a subgraph with O(n) edges. We use Lenzen’s
routing to color them in O(1) rounds.

9.4.2 Coloring High-Degree Graphs

We show that the (∆+1) list vertex coloring problem can be solved
in O(1) rounds in CC using graph partitioning when the degrees are
assumed to be sufficiently high, as captured by the following lemma.

Lemma 9.14. There is an O(1)-round CC algorithm that solves
the (∆ + 1) list vertex coloring problem w.h.p. in any graph with
maximum degree ∆ = log4+Ω(1) n.

We prove this result in two parts. First, we show that our graph
partitioning can be implemented in O(1) rounds in CC. Then, we
use recursive application of this graph partitioning.

Implementation of Graph Partitioning in CC

We show how this graph partitioning can be implemented in O(1)
rounds in the Congested Clique.

Lemma 9.15. The graph partitioning, as described in Section 9.2.2,
can be computed w.h.p. in O(1) rounds in CC.

Proof. Partitioning the vertex set V is straightforward, as every
vertex can make the decision independently and offline, whereas it
is not obvious how to partition C to make all vertices agree on the
same partition. Note that we can assume |C| ≤ (∆ + 1)|V |; if |C| is
greater than (∆+1)|V | initially, then we can let each vertex decrease
its palette size to ∆ + 1 by removing some colors in its palette, and
we will have |C| ≤ (∆ + 1)|V | after removing these colors.

A straightforward way of partitioning C is to generate Θ(|C| log n)
random bits at a vertex v offline, and then v broadcasts this informa-

272 Vertex Coloring in CC and MPC

tion to all other vertices. Note that it takes O(log k) = O(log |V |) =
O(log n) bits to encode which part of C1 ∪ · · · ∪Ck each c ∈ C is in.
A direct implementation of the approach cannot be done in O(1)
rounds, due to the message size constraint of CC, as each vertex can
send at most Θ(n log n) bits in each round.

To solve this issue, observe that it is not necessary to use total in-
dependent random bits for each color c ∈ C in Lemma 9.3. Indeed,
Θ(log n)-wise independence suffices to guarantee a failure probabil-
ity of n−Ω(1) in all applications of the Chernoff bound in Lemma 9.3
when using a variant of Chernoff for bounded independence [219].
To compute the decomposition C = C1∪· · ·∪Ck with Θ(log n)-wise
independent random bits, we thus only needO(log n·log(|C| log k)) =
O(log2 n) total independent random bits (also see [7, Section 16.2]).
Broadcasting O(log2 n) bits of information to all nodes can be done
in O(1) rounds via Lenzen’s routing.

Recursive CC Coloring Algorithm

We prove that a constant-depth recursive application of Lemma 9.3
suffices to give an O(1)-round CC (∆ + 1) list vertex coloring algo-
rithm for graphs with ∆ = log4+Ω(1) n).

We will use the graph partitioning to color each Bi using the colors
in Ci in parallel as follows. Since |E(G[Bi])| = O(|V |) = O(n),
using Lenzen’s routing, we are able to send the entire graph G[Bi]
to a single distinguished node v?i , which then can compute a proper
coloring of G[Bi] offline.

If |E(G[L])| = O(n), then similarly we can send G[L] to a single
distinguished node to compute the coloring offline. Otherwise, we
apply the graph partitioning recursively on G[L], with the same
parameter n (to guarantee a failure probability of n−Ω(1) in every
step). What remains to show is that O(1) recursive applications of
the partitioning are enough.

9.4. Vertex Coloring in CC 273

Proof of Lemma 9.14. Given a graph G = (V,E), we apply the
graph partitioning algorithm of Lemma 9.3 to partition V into sub-
sets B1, . . . , Bk, L with parameter n = |V |, and k =

√
∆. After

that, we select arbitrary k =
√

∆ different nodes v∗1, . . . , v
∗
k to be

responsible for coloring G[Bi], as follows. Each v∗i in parallel gath-
ers all information of G[Bi], and then computes a proper coloring
of G[Bi] using the palettes Ψ(v) ∩ Ci for each vertex v ∈ Bi offline.
The existence of such a proper coloring is guaranteed by Property
(ii) of Lemma 9.3. The gathering can be done in O(1) rounds using
Lenzen’s routing, since Property (i) of Lemma 9.3 guarantees that
|E(G[Bi])| = O(n). We thus can color V \ L in O(1) rounds.

Finally, each vertex v ∈ L removes the colors that have been taken
by its neighbors in V \L from its palette Ψ(v). By Property (iii),
after this operation, the number of available colors for each v ∈ L
is at least gL(v) ≥ max{dL(v),∆L − ∆ν

L} + 1. Now the subgraph
G[L] satisfies all conditions required to apply Lemma 9.3, as long as
∆L = ω(logγ n). We will see that this condition is always met.

We then recursively apply the algorithm of the lemma on the sub-
graph induced by vertices L with the same parameter n. The recur-
sion stops once we reach a point that |E(G[L])| = O(n), and so we
can apply Lenzen’s routing to let one distinguished node gather all
information of G[L] and compute its proper coloring offline.

Now we analyze the number of iterations needed to reach a point
that |E(G[L])| = O(n). Here we use γ = 2 and ν = 3/4. Let
V1 = V be the vertex set, ∆1 = ∆ the maximum degree, and V1 =
B1∪· · ·∪Bk ∪L the graph partitioning in the first iteration. Define
V2 = L and ∆2 = ∆L. Similarly, for i > 2, we define Vi and ∆i based
on the set L in the outcome of the graph partitioning algorithm in
iteration i− 1. We have

∆i = ∆i−1 ·O

(√
log n

∆
1/4
i−1

)

274 Vertex Coloring in CC and MPC

by Property (iv) of Lemma 9.3 and

|Vi| = |Vi−1| ·O

(√
log n

∆
1/4
i−1

)

by Property (i) of Lemma 9.3. We choose α > 0 such that ∆1 =
(log n)2+α, and assume α = Ω(1) and i = O(1). This yields

∆i = O
(

(log n)2+α(3/4)i−1
)

as well as

|Vi| = O(n/∆) ·∆i = n ·O
(

(log n)α((3/4)i−1−1)
)
.

Thus, the condition of ∆i = ω(logγ n) = ω(log2 n) for applying
Lemma 9.3 must be met.

Next, we analyze the number of iterations it takes to make ∆i|Vi| suf-
ficiently small. In the CC model, if ∆i|Vi| = O(n), then we are able
to compute a proper coloring of Vi in O(1) rounds by Lenzen’s rout-
ing. Let us write ∆ = log2+α n, where α = 2 +β. The lemma state-
ment implies that β = Ω(1). Note that the condition for ∆i|Vi| =
O(n) can be rewritten as (2− α) + 2α(3/4)i−1 ≤ 0. Combining this
with α = 2 + β, we obtain the formula −β + 2(2 + β)(3/4)i−1 ≤ 0,
which can also be read as (4/3)i−1 ≥ 2(2 + β)/β.

Now we can calculate the minimum i needed so that the condition
for ∆i|Vi| = O(n) is met. We have i ≥ 1 + log4/3 2(2 +β)/β = O(1),
since β = Ω(1). Hence, our algorithm takes only O(1) iterations. In
particular, when β ≥ 10.8, i.e., ∆ = Ω(log12.8 n), we have i ≥ 1 +
log4/3 2(2 + β)/β for i ≥ 4. Therefore, ∆4|V4| = O(n), which means
that three iterations suffice. Since each iteration can be implemented
in CC in O(1) rounds, by Lemma 9.15, overall we get an algorithm
with round complexity O(1).

9.5. Vertex Coloring in MPC 275

9.5 Vertex Coloring in MPC

First, note that the graph partitioning directly also leads to an O(1)-
round MPC coloring algorithm with S = Õ(n) memory per node and
MS = Õ(m) total memory, similar to the CC algorithm described
in Section 9.4.2. This gives a simple alternative proof of a result
by [13] that (∆+1) (list) vertex coloring can be solved in the linear-
memory regime. However, the coloring algorithm of [13] takes only
one round of communication, and it uses only Õ(n) bits in total.

The case of sublinear-memory MPC is a little more complicated than
the graph partitioning for CC and linear-memory MPC in that an
O(n)-edge subgraph no longer fits into the memory of a node. In this
case, we still apply the above divide-and-conquer approach, but we
also recurse on each Bi. When the maximum degree of the current
subgraph is small enough, we solve the coloring problem directly by
simulating the CLP algorithm. In order to so, we need to make sure
that the palette size of each vertex is not only higher than its degree,
but also sufficiently close to the maximum degree of the subgraph
under consideration.

We first show in Section 9.5.1 how to simulate the CLP algorithm
in MPC under certain conditions. In Section 9.5.2, we then use
this simulation together with a recursive application of the graph
partitioning to prove our MPC result from Theorem 9.2.

9.5.1 Simulation of Local Coloring

We show how to simulate the CLP in CC.

Lemma 9.16 (Chang, Li, and Pettie [58, 209]). The (∆ + 1) list
vertex coloring problem can be solved w.h.p. in O(

√
log logn) rounds

of MPC with total memoryMS = Õ
(∑

v d(v)2
)

if ∆2 = O
(
nδ
)

and

if |Ψ(v)| ≥ max
{
d(v) + 1,∆−∆3/5

}
for every vertex v.

276 Vertex Coloring in CC and MPC

Note that combining this with [216, 114] gives a round complexity
of O(log log log n).

The proof of Lemma 9.16 almost immediately follows from [58, 209];
there are only few changes that have to be made in order to turn
their CC algorithm into a sublinear-memory MPC algorithm.

Proof of Lemma 9.16. There are two main issues in the sublinear-
memory MPC model that we need to take care of. First, the total
memory of the system is limited to MS = Θ̃(m + n). Second, the
local memory per node is restricted to O(nδ), for a constant δ > 0.
These two restrictions force us to be careful about the amount of
information sent between the nodes. In particular, no vertex can
receive messages from more than O(nδ) other vertices in one round
(as opposed to CC where a vertex can receive up to O(n) messages
per round).

The key feature of our partitioning algorithm is that we can reduce
the coloring problem to several instances of graph coloring with
maximum degree ∆ = O(nδ/2). Given this assumption, we can
implement the CLP algorithm in the sublinear-memory MPC model
almost line by line as done by Parter [209, Appendix A.2] for CC.
Therefore, here we simply point out the differences in the algorithm
and refer the reader to the paper of Parter for further technical
details.

Dense Vertices: Put briefly, a vertex is γ-dense, if a (1−γ)-fraction
of the edges incident on it belong to at least (1− γ)∆ triangles. An
γ-almost clique is a connected component of γ-dense vertices that
have at most γ∆ vertices outside the component. Each such com-
ponent has a weak diameter of at most 2. These components can
be computed in 2 rounds by each vertex learning its 2-hop neigh-
borhood. This process is performed O(log log ∆) times in parallel
which incurs a factor of O(log log ∆) in the memory requirements,
which is negligible. Furthermore, the algorithm requires running a

9.5. Vertex Coloring in MPC 277

coloring algorithm within the dense components. Since the com-
ponent size is at most ∆ � ∆2, we can choose one vertex in the
component as a leader. The node containing the leader vertex can
simulate the coloring algorithm offline without breaking the local
memory restriction.

Memory Bounds: Once the 2-hop neighborhoods of nodes have
been learned, no more memory overhead is required. Since we have
∆ � nδ/2, learning the 2-hop neighborhoods does not violate the
local memory restriction of O(nδ). For the total memory bound,
storing 2-hop neighborhoods requires Õ(

∑
v(d(v))2) memory.

Post-Shattering and Clean-up: Another step that we cannot
use as a black box is an algorithm that colors a graph consisting of
connected components of poly log n size. Regardless of the compo-
nent sizes being small, all vertices over all components might not
fit the memory of a single node. Hence, similarly to the CLP al-
gorithm in the LOCAL model, we use the best deterministic list
coloring algorithm to color the components. For general graphs,
currently the best round complexity in the LOCAL model is ob-
tained by applying the network decomposition algorithm of Pan-
conesi and Srinivasan [208] with round complexity 2O(

√
logn′), where

n′ = O(poly log n) is the maximum size of the small components.3

We can speed up this bound exponentially in the MPC model by us-
ing the graph exponentiation technique, thus obtain a running time
of O(

√
log logn).

We observe that for the graph exponentiation technique, if we have
components of size poly log n, then the 2i-hop neighborhood of any
vertex for any i fits into the memory of a single node, since the num-
ber of vertices in the neighborhood is clearly bounded by poly log n.
The same observation yields that total memory of Õ(m) suffices.

3With [216, 114], we could further improve this to O(log5 n′).

278 Vertex Coloring in CC and MPC

9.5.2 Recursive Coloring in MPC

We show how to use recursive application of Lemma 9.3 as well as
an efficient simulation of the CLP algorithm of [58], as summarized
in Lemma 9.16, to prove Theorem 9.2.

Proof of Theorem 9.2. In the case that ∆ = poly log n, the condi-
tions of Lemma 9.16 are satisfied trivially; we can solve the prob-
lem in O(log∗∆ +

√
log log n) = O(

√
log logn) rounds of sublinear-

memory MPC with total memory Õ(n∆2) = Õ(m). Otherwise, we
execute the following recursive algorithm.

Randomized Partitioning: We apply the randomized partition-
ing algorithm of Lemma 9.3 to G, which gives us sets B1, . . . , Bk
and L, as well as color sets C1, . . . , Ck. The goal is now to first
color B1, . . . , Bk with colors from C1, . . . , Ck, respectively. Since
the colors in the sets Ci are disjoint, this gives a proper coloring
of B :=

⋃k
i=1Bi. Then, for every vertex in L, we remove all col-

ors already used by neighbors in B from the palettes, leaving us
with a list vertex coloring problem of the graph induced by L with
maximum degree ∆L.

Note that the implementation of the graph partitioning is straight-
forward in MPC.

We first describe how to color each set Bi with colors in Ci, and
then how to solve the remaining list vertex coloring problem in L.
For the parameters in Lemma 9.3, we use γ = 6 and ν = 3/5.4

List-Coloring Problem in Bi: If ∆2
i = O(nδ), then, because of

Lemma 9.3 (ii), Bi satisfies the conditions of Lemma 9.16. We thus
can apply the algorithm of Lemma 9.16 to Bi. Otherwise, we recurse
on Bi. Note that this is possible since, by Lemma 9.3 (ii) applied

4The choice ν = 3/5 is to ensure that the number of available colors for
each vertex in each subgraph meets the palette size constraint specified in
Lemma 9.16.

9.5. Vertex Coloring in MPC 279

to G, Bi satisfies the conditions of Lemma 9.3.

List-Coloring Problem in L: If ∆2
L = O(nδ), then, due to

Lemma 9.3 (iii) applied to G, the graph L satisfies the conditions
of Lemma 9.16. We thus can apply the algorithm of Lemma 9.16 to
L. Otherwise, we recurse on L. Note that this is possible since L
satisfies the conditions of Lemma 9.3 due to Lemma 9.3 (iii).

Number of Iterations: Since the maximum degree in L reduces
by a polynomial factor in every step, after at most O(1/δ) steps,
the resulting graph has maximum degree at most O(nδ/2), where
we satisfy the conditions of Lemma 9.16, and hence do not recurse
further. Note that when recursing on sets Bi, the degree drop is even
larger, and hence the same reasoning applies to bound the number
of iterations.

Memory Requirement: It is obvious that the recursive partition-
ing of the input graph G does not incur any asymptotic overhead
in the memory, neither local nor global. Now, let H be the set of
all graphs H on which we apply the algorithm of Lemma 9.16. As
we only apply this algorithm when the maximum degree ∆H of H
is O(nδ/2) or poly(log n), we clearly have ∆2

H = O(nδ), so the algo-
rithm Lemma 9.16 is guaranteed to run with local memory O(nδ).

It remains to show how to guarantee the total memory requirement
of Õ(m), where m is the number of edges in the input graph G.
First, observe that due to the specifications of Lemma 9.16, we can
write the total memory requirement as

∑
H∈H

∑
v∈H(dH(v))2. First,

assume that the graph G has been partitioned at least three times
to get to H. By Lemma 9.3 (iv), the degree of any vertex v in H is
either Õ(1) or at most

dG(v) · Õ
(

∆−
1
4

)
Õ
(

∆−
1
4
· 3
4

)
Õ
(

∆−
1
4
·(3

4)2
)

= dG(v) · Õ
(

∆−37/64
)

= Õ
(√

dG(v)
)
.

280 Vertex Coloring in CC and MPC

Note that in the above calculation we assume that v goes to the
leftover part L in all three iterations. If v goes to Bi, then the
degree shrinks even faster. Remember that we set q = Õ(∆−1/4).
Hence, we need a total memory of

Õ

(∑
H∈H

∑
v∈H

(dH(v))2

)
= Õ

(∑
H∈H

∑
v∈H

dG(v)

)
= Õ

(∑
v∈G

dG(v)

)
,

which is in Õ(m). Note that the algorithm can be easily adapted to
always perform at least three partitioning steps if ∆H is bounded
from below by a sufficiently large poly log n, because then the con-
ditions of Lemma 9.3 are satisfied. On the other hand, if ∆H =
poly log n, it follows immediately that Õ

(∑
v(dH(v))2

)
= poly log n,

which is Õ(1). Put together, we have
∑

H∈H
∑

v∈H(dH(v))2 =

Õ(m), which concludes the proof.

CHAPTER 10

MIS in Trees

10.1 Introduction

In this chapter—based on the publications ‘Breaking the Linear-
Memory Barrier in MPC: Fast MIS on Trees with Strongly Sublinear
Memory’ [44, 45]—we see how to adopt the shattering technique to
the MPC setting, i.e., how to efficiently shatter a graph in this model,
for maximal independent sets in trees.

10.1.1 Our Results and Related Work

We provide two different algorithms for the problem of MIS in trees.
Our first algorithm in Theorem 10.1 is surprisingly simple and in-
tuitive, but comes with a small overhead in the global memory,
meaning that MS is superlinear in the input size Θ(n).

281

282 MIS in Trees

Theorem 10.1. There is an O(log2 log n)-round MPC algorithm
that w.h.p. computes an MIS in n-vertex trees with S = Õ

(
nδ
)

mem-

ory on each of M = Õ
(
n1−δ/3) nodes, for any 0 < δ < 1.

Our second algorithm in Theorem 10.2 gets rid of this overhead at
the cost of some elegance and a factor log log n in the running time.

Theorem 10.2. There is an O(log3 log n)-round MPC algorithm
that w.h.p. computes an MIS in n-vertex trees with S = Õ

(
nδ
)

mem-

ory on each of M = Õ
(
n1−δ) nodes, for any 0 < δ < 1.

The algorithms in Theorems 10.1 and 10.2 almost match the con-
ditional lower bound of Ω(log log n) for MIS (on general graphs)
due to Ghaffari, Kuhn, and Uitto [121], which holds unless there is
an o(log n)-round sublinear-memory MPC algorithm for connected
components. This, in turn, is believed to be impossible under a
popular conjecture [231].

Our algorithms improve almost exponentially on the Õ(
√

log n)-
round sublinear-memory MPC algorithms in concurrent works—for
bounded-arboricity by Onak [201] and for general graphs by Ghaf-
fari and Uitto [123] and by Czumaj, Davies, and Parter [71]—as
well as on the algorithms directly adopted from the PRAM and LO-
CAL model: an O(log n)-round algorithm for general graphs due
to Luby [181] and independently Alon, Babai, Itai [5], and the
O(
√

log n)-round algorithm for trees by Barenboim et al. and Ghaf-
fari [28, 109], improving on O(

√
log n · log logn) by Lenzen and Wat-

tenhofer [170]. Note that for rooted trees, the PRAM and LOCAL
algorithm of Cole and Vishkin [68] directly gives rise to an O(log∗ n)-
round sublinear-memory MPC algorithm.

Moreover, our result shows that the memory per node can be re-
duced substantially from Ω̃(n) to nδ while not incurring a significant
loss in the round complexity, compared to the recent O(log log n)-
round MIS algorithm of Ghaffari et al. [112].

10.1. Introduction 283

In independent concurrent works, Ghaffari and Uitto [123] and Onak
have provided algorithms for the problems of maximal independent
set and matching in general graphs in Õ(

√
log n) rounds. Czumaj,

Davies, and Parter [71] provided a O(log ∆ + log log n)-round de-
terministic algorithm for general graphs. In a subsequent work,
Ghaffari, Grunau, and Jin [113] improved our result to O(log log n)
rounds.

10.1.2 Overview and Outline

We first explain some initial clean-up preprocessing which allows
a simplified description of the algorithm. Then, we present a fre-
quently used tool: a gathering algorithm that allows us to collect
connected components of diameter D onto single nodes in O(logD)
rounds. After this, we are ready to outline our algorithm.

Clean-Up in Preprocessing Phase

We argue how to get rid of the issue that potentially ∆ = ω(S)
by a simple clean-up phase in the very beginning. To make the
statements and arguments more readable, we think of this clean-up
as having taken place already.

If the degree of a vertex is larger than the memory of a node, one
needs to store several lower-degree copies of this vertex on different
nodes. Here, we give a short argument for why one can assume
without loss of generality that all incident edges of a vertex are
stored on the same node. Notice that in a tree with n vertices,
there can be at most n1−δ/2 vertices with degree at least nδ/2. If we
now just ignore all these high-degree vertices and find an MIS among
the remaining vertices, the resulting graph, after removal of all MIS
vertices and their neighbors, has at most n1−δ/2 vertices. Repeating
this argument roughly 2/δ times gives an MIS in the whole input
graph.

284 MIS in Trees

Efficient Gathering of Connected Components

One recurring theme of our algorithm is the following frequently
used gathering tool which allows us to quickly gather all vertices
of a connected component onto one node (provided that they fit
there), and hence to quickly run local algorithms. It will come in
two variants, which naturally give rise to Theorems 10.1 and 10.2,
respectively. The proof is deferred to Section 10.3.

Lemma 10.3 (Gathering). Let G be any n′-vertex subgraph of a tree
G consisting of connected components of size at most k = O

(
nδ/3

)
and diameter at most D. Then there are

a) an O(logD)-round sublinear-memory MPC algorithm with M =
Õ
(
n1−δ/3) nodes and

b) an O(logD · log log n)-round sublinear-memory MPC algorithm
with M = Õ

(
n1−δ) nodes, if n′D3 = O(n),

that compute an assignment of vertices to nodes so that all the ver-
tices of a connected component of G′ are on the same node.

In concurrent works, independent of ours, [9, 15, 34] studied, among
other problems, finding connected components in the sublinear-
memory setting of MPC. In particular, Andoni et al. [9] give algo-
rithms to find connected components and to root a forest with con-
stant success probability, with O(m) total memory in time O(logD ·
log logn). While their results are more general, ours have the ad-
vantages of being (arguably) much simpler and deterministic. Fur-
thermore, to turn their algorithm to work with high probability,
the straightforward approach requires a logarithmic overhead in the
total memory.

10.1. Introduction 285

Algorithm Outline

Our algorithm is based on the shattering technique and correspond-
ingly will consist of two phases: a shattering and a post-shattering.

Shattering: In Section 10.2, we prove the following lemma.

Lemma 10.4 (Tree MIS Shattering). There are

a) an O(log log n·log log ∆)-round sublinear-memory MPC algorithm
that uses M = Õ(n1−δ/3) nodes and

b) an O(log2 log n · log log ∆)-round sublinear-memory MPC algo-
rithm with M = Õ(n1−δ) nodes

that compute an independent set on an n-vertex tree with maximum
degree ∆ so that the remainder graph, after removal of the indepen-
dent set vertices and their neighbors, w.h.p. has only components of
size at most poly log n.

Post-Shattering: The following Tree MIS Post-Shattering Lemma
is a direct consequence of our Gathering Lemma in Lemma 10.3.

Lemma 10.5 (Tree MIS Post-Shattering). There are

a) an O(log k)-round MPC algorithm with M = Õ
(
n1−δ/3), and

b) an O(log k · log logn)-round MPC algorithm with M = Õ
(
n1−δ)

that find an MIS in an n-vertex tree consisting of connected compo-
nents of size k = O

(
nδ/3

)
.

Proof. By Lemma 10.3, we can gather the connected components in
O(log k) rounds and compute an MIS on each connected component
offline. Theorem 1.1 by Ghaffari [109] certifies that the number of
vertices remaining after our shattering process can be made small
enough to satisfy the conditions required by Lemma 10.3.

286 MIS in Trees

Note that the näıve simulation of the corresponding LOCAL post-
shattering algorithm [109, 207] would lead to a round complexity
of 2O(

√
log logn). Combining it with the recent work by Rozhoň and

Ghaffari [216] and Ghaffari, Grunau, and Rozhoň [114] would yield
an O(log5 log n)-round algorithm.

10.2 Tree MIS Shattering Algorithm

10.2.1 Overview and Outline

Our shattering algorithm consists of a degree reduction phase and
a low-degree LOCAL shattering phase.

Degree Reduction

The degree reduction phase reduces the maxmium degree1 of the
tree from ∆ to poly log n in log log ∆ rounds.

Lemma 10.6 (Iterated Subsample-and-Conquer). There are

a) an O(log1+δ log ∆ · log logn)-round sublinear-memory MPC algo-

rithm with M = Õ(n1−δ/3) nodes and

b) an O(log1+δ log ∆ · log2 log n)-round sublinear-memory MPC al-

gorithm with M = Õ(n1−δ) nodes

that compute an independent set on an n-vertex tree with maximum
degree ∆ such that the remainder graph, after removal of the inde-
pendent set vertices and their neighbors, w.h.p. has maximum degree
poly log n.

The proof of this lemma can be found in Section 10.2.2.

1Note that in the MPC model it is easy to keep track of the maximum degree.

10.2. Tree MIS Shattering Algorithm 287

Low-Degree Shattering

Once the degree has dropped to ∆′ = poly log n, we apply the shat-
tering part of the LOCAL MIS algorithm of Ghaffari [109], which
runs in O(log ∆′) = O(log log n) rounds and w.h.p. leads to con-
nected components of size poly ∆′ · log n = poly log n in the remain-
der graph. Observe that the simulation of this algorithm in the MPC
model is straightforward.

Lemma 10.7 (Low-Degree LOCAL Shattering of [109]). There is an
O(log ∆)-round LOCAL algorithm that computes an independent set
on an n-vertex graph with maximum degree ∆ so that the remainder
graph, after removal of all vertices in the independent set and their
neighbors, w.h.p. has connected components of size poly ∆ · log n.

Wrap-Up

We now combine these two results to prove our Tree MIS Shattering
Lemma in Lemma 10.4.

Proof of Lemma 10.4. We apply the algorithm of Lemma 10.6 which
w.h.p. yields an independent set with a remainder graph that has
maximum degree ∆′ = poly log n. On this low-degree graph, we
simulate the LOCAL algorithm of Lemma 10.7 in a straightforward
manner, by collecting the r-hop neighborhood of each vertex to a
single node. Then a node with the r-hop neighborhood of a ver-
tex u can derive what the r-round LOCAL algorithm would out-
put for vertex u. This simulation takes O(log ∆′) = O(log log n)
rounds and w.h.p. leaves us with connected components of size
poly ∆′ · log n = poly log n.

10.2.2 Degree Reduction

Our degree reduction algorithm from Lemma 10.6 basically consists
of poly log log ∆ repetitions of the subsample-and-conquer method.

288 MIS in Trees

Each iteration roughly reduces the maximum degree from ∆ to ∆β

for some 0 < β < 1 and can be summarized as follows.

Lemma 10.8 (Subsample-and-Conquer Algorithm). There are

a) an O(log log n)-round sublinear-memory MPC algorithm withM =
Õ(n1−δ/3) nodes and

b) an O(log2 log n)-round sublinear-memory MPC algorithm with
M = Õ(n1−δ) nodes

that compute an independent set in an n-vertex tree G with max-
imum degree ∆ = logΩ(1) n such that the remainder graph, after
removal of the independent set vertices and their neighbors, w.h.p.
has maximum degree at most ∆β for some β = Θ (1/(1 + δ)).

The proof of this result is presented in the next section. Here we
quickly show how it implies Lemma 10.6.

Proof of Lemma 10.6. This directly follows from Lemma 10.8, with
log 1

β
log ∆ = O(log1+δ log ∆) many applications.

Degree Reduction via Iterated Subsampling

Before we dive into the proof of Lemma 10.8, we provide an intuitive
discussion. The Subsample-and-Conquer algorithm of Lemma 10.8
can be summarized as follows.

Subsample: We sample the vertices independently with probability
roughly ∆−β, This subsampling step guarantees, roughly speaking,
the following three very desirable properties of the graph G′ induced
by the sampled vertices.

(i) The diameter of each connected component of G′ is bounded
by O(log∆ n).

10.2. Tree MIS Shattering Algorithm 289

(ii) The number of vertices in each connected component of G′ is
small enough to fit into the memory of a single node.

(iii) Every vertex with degree ∆β or higher in G has Ω(log n) neigh-
bors in G′.

Conquer: We find a random MIS in all the connected components
of G′ in parallel. This can be done as follows. We first gather
each connected component on a node, using the graph exponenti-
ation technique. Here, Properties (i) and (ii) are crucial to ensure
that the gathering can be done efficiently. In particular, storing
the components on a single node is possible due to the small size of
the components, and the gathering is fast due to the small diameter.
Now every remaining component sits on a single node and hence can
be processed offline. For every connected component, which again
is just a tree, we pick one of the two possible 2-colorings uniformly
at random, and add one of the two color classes to the MIS.

This allows us to conclude that every high-degree vertex (with de-
gree at least ∆β) will be removed from the graph. Indeed, a high-
degree vertex v either is subsampled, in which case either v itself
or one of its neighbors is added to the MIS; or v is not subsampled,
but because of (iii) has many subsampled neighbors. Each of these
neighbors will be part of a different connected component (since
they are connected only via v, due to the acyclicity of the tree), and
hence added to the MIS independently with probability 1/2. A sim-
ple Chernoff and union bound argument hence lets us conclude that
every non-subsampled vertex with high degree will have at least one
neighbor that joins the MIS. Summarizing, all high-degree vertices
(sampled or not), w.h.p. either join the MIS or have an adjacent in-
dependent set vertex, and thus are removed from the graph for the
next iteration. A schematic depiction can be found in Figure 10.1.

For the purpose of the proof of Lemma 10.8 we assume that ∆ =
logΩ(1) n. Notice that from the perspective of the final round com-

290 MIS in Trees

v

Figure 10.1: A high-degree vertex v has many subsampled neigh-
bors. Each of those is added to the MIS (green) with probability
1/2 independently, depending on the 2-coloring of the correspond-
ing subtree. Thus, w.h.p., v will have at least one neighboring vertex
added to the MIS, and hence will be removed for the next iteration.

plexity, the exponent of the logarithm turns into a constant factor
hidden in the O-notation.

Proof of Lemma 10.8. We first outline the algorithm and then slowly
go through the steps of the algorithm again while proving its key
properties. Throughout, let α′ > 0 be a small constant and let α be
such that (1 + α′)α = β.

Algorithm: Every vertex is sampled independently with probabil-
ity ∆−α into a set V ′. The connected components of G′ = G[V ′] are
gathered by Lemma 10.3, and one of the two 2-colorings is picked
uniformly at random, independently for every connected component.
This can be done offline. All the black vertices, say, are added to the
MIS, and are removed from the graph along with their neighbors.

Subsampling: We first prove that the random subsampling leads
to nice properties of the graph induced by subsampled vertices that
allows us to efficiently gather its components using our Gathering
Lemma in Lemma 10.3.

10.2. Tree MIS Shattering Algorithm 291

Claim 10.9. After the subsampling, w.h.p. the following holds.

(i) Every connected component of G′ has diameter O
(

1
α log∆ n

)
.

(ii) Every connected component of G′ consists of nO((1−α)/α) ver-
tices.

(iii) Every vertex with degree Ω
(
∆β
)

in G has degree logΩ(1) n in
G′.

Proof. Consider an arbitrary path of length ` = Ω
(

1
α log∆ n

)
in

G. This path is in G′ only if all its vertices are subsampled into
V ′, which happens with probability at most ∆−α` = n−Ω(1). A
union bound over all—at most n2 many—paths in the tree T shows
that w.h.p. the length of every path, and hence in particular also
the diameter of every connected component, in G′ is bounded by
O
(

1
α log∆ n

)
. Since the degree among the subsampled vertices w.h.p.

is bounded by O
(
∆1−α), which is a simple application of Chernoff

and union bound, it follows that every connected component con-
sists of at most O

(
∆(1−α)`

)
= nO((1−α)/α) vertices. Finally, another

simple Chernoff and union bound argument shows that every vertex

with degree Ω
(
∆β
)

in the graph G has at least Ω
(

∆α′α
)

= logΩ(1) n

neighbors in G′, which concludes the proof of Claim 10.9.

Gathering: Since G′ consists of components that have a low di-
ameter by Claim 10.9 (i) and that are small enough to fit on a
single node by Claim 10.9 (ii)—by choosing α = Θ (1/(1 + δ)) small
enough such that nO(α/(1−α)) = O

(
nδ/3

)
—we can gather them effi-

ciently by Lemma 10.3, in eitherO(log log n) orO(log2 log n) rounds.
The random MIS can then be easily computed offline.

Random MIS: It remains to show that w.h.p. every high-degree
vertex in G has at least one adjacent vertex that joins the random
MIS, which leads to the removal of this high-degree vertex from the
graph. This is trivially true for all subsampled vertices.

292 MIS in Trees

Now consider an arbitrary non-subsampled vertex v with degree
Ω
(
∆β
)

and its logΩ(1) n subsampled neighbors, by Claim 10.9 (iii).
Observe that, since we are in a tree and thus in particular in a
triangle-free graph, there cannot be edges between these neighbors.
Therefore no two neighbors of a non-subsampled vertex belong to
the same connected component in G′, which means that all the
neighbors in V ′ of v are colored independently, and hence are added
to an MIS independently with probability 1/2. By the Chernoff
inequality, w.h.p. at least one of v’s neighbors must have been added
to an MIS, and a union bound over all vertices concludes the proof
of the degree reduction, and hence of Lemma 10.8.

10.3 Gathering Connected Components

We provide a proof of the Gathering Lemma in Lemma 10.3. Our
approach is essentially a tuned version of the Hash-to-Min algorithm
of Chitnis et al. [66] and the graph exponentiation idea by Lenzen
and Wattenhofer [169]. Notice that, however, Chitnis et al. only
show an O(log n) bound for the round complexity; it is not possible
to just use their method as a black box. The section is divided into
two subsections, where we first give a simple and fast but memory-
inefficient algorithm and then present a slightly slower algorithm
that only needs a constant space overhead.

We present the näıve gathering algorithm in Section 10.3.1 and the
in-space gathering in Section 10.3.2.

10.3.1 Näıve Gathering

We first present the algorithm. The underlying idea of the algorithm
is to find a minimum-ID2 vertex within every component and to cre-

2We assume without loss of generality that every vertex has a unique iden-
tifier. If not, every vertex can draw an O(logn)-bit identifier at random, which
w.h.p. will be unique.

10.3. Gathering Connected Components 293

(a)

u

(b)

u

v2

v1

s

t

(c)

Figure 10.2: We illustrate the gathering algorithm with help of the
tree depicted in (a). The edges added by vertex u are illustrated
in (b) by dashed arcs. In (c) we display how the edges added by
vertices v1 and v2, drawn as dashed arcs, shortcut the shortest path
between vertices s and t.

ate a virtual graph that connects all the vertices of that component
to this minimum-ID vertex, the leader.

Gathering Algorithm

In every round, every vertex u completes its 1-hop neighborhood
to a clique. Once a round is reached in which there are no more
edges to be added, u stops and selects its minimum-ID neighbor as
its leader. We refer to Figure 10.2 for an illustration.

Observe that once there is a round in which u does not add any
edges, the component of u forms a clique, and thus all vertices in this
component have the same leader, namely the minimum-ID vertex in
this clique.

294 MIS in Trees

Round Complexity

Next, we prove that this algorithm terminates quickly.

Claim 10.10. The gathering algorithm takes O(logD) rounds on a
graph with diameter D.

Proof. Consider any shortest path u1, . . . , u` of length 2 ≤ ` ≤ D.
After the first round, every ui gets connected to ui−2 and ui+2 for
2 < i < ` − 1. Thus, the diameter of the new graph is at most
d2D/3e. After O(logD) iterations, the diameter within each com-
ponent has reduced to 1, and the algorithm halts.

Memory Analysis

It remains to show that not too many edges are added, so that the
virtual graph of any component still fits into the memory of a node.

Claim 10.11. The number3 of edges in the virtual graph created by
the gathering algorithm in a component of size k is O(k3).

Proof. During the execution of the algorithm, each vertex in a com-
ponent may create an edge between any other two vertices in the
corresponding component, thus at most k3.

Since the components need to be of size at most O(nδ/3), the previ-
ous claim guarantees that the virtual graph of any connected com-
ponent indeed fits into the memory. So as to not overload any node
with too many components, we assume that the shuffling distributes
the components to the nodes in an arbitrary feasible way, e.g., greed-
ily4.

3Note that here we count edges multiple times if they are (possibly) stored
multiple times (on different nodes), which allows for a number of edges that is
larger than the number of possible distinct edges in a component of size k.

4An alternative and simple way to prevent overloading is to add a factor

10.3. Gathering Connected Components 295

10.3.2 In-Space Gathering for Trees

The simple and näıve gathering algorithm can be very wasteful in
terms of space usage over the whole system. A main weakness is
that we need O(k3) memory to store a connected component of size
k, even if this component originally just consisted of as few as k− 1
edges. This is because a single edge can exist on up to k nodes.
In the worst case, the required memory is blown up by a power 3.
This leads to a super-linear overall memory requirement, that is,
we need roughly N1+2δ/3 total memory in the system. Notice that
this can be implemented either by adding more nodes or by adding
more memory to the nodes, since we do not care on which nodes the
resulting components lie, as long as they fit in the memory.

We now provide a fine-tuned version of the gathering method that
works asymptotically in space. In other words, the total space re-
quirement drops to O(n). This proves part (b) of Lemma 10.3.

Informally, our algorithm first turns every connected component into
a rooted tree and then determines which vertices are contained in
the same tree component by making sure that each vertex learns
the ID of the root of its tree.

Determining the Root

Lemma 10.12. There is an O(logD)-round MPC algorithm that
works in an n-vertex forest of rooted trees with maximum diameter
D and, for every vertex, determines the root of the corresponding
tree. The algorithm requires M = O

(
n1−δ) nodes.

Proof. Let parent(v) denote the parent of vertex v, where we define
parent(r) = r for a root vertex r. Consider the following pointer-
forwarding algorithm (inspired by the graph exponentiation tech-

O(logn) of memory per node and consider a random assignment of components
to nodes as a balls-into-bins process.

296 MIS in Trees

nique) that is run in parallel for every vertex v. In every round,
for every child u of v, we set parent(u) := parent(v). The process
terminates once v points to a root, i.e., to a vertex r for which
parent(r) = r. Notice that after every step, following the parent
pointers still leads to the root vertex.

Let (v1, v2, . . . , vk) be the directed path from vertex v1 to the root
r = vk of its subtree in round t. After one round of the algorithm,
every vi is connected to vmin{i+2,k}. Thus, the length of the path
is at most dk/2e. After O(log k) = O(logD) rounds the algorithm
terminates yielding the claim.

Rooting a Tree

Given Lemma 10.12, what remains to show for our algorithm is how
to root a tree. The idea is to once more use the graph exponen-
tiation method to learn an `-hop neighborhood of a vertex in log `
steps. However, in order to prevent the space requirement from
getting out of hand, each vertex performs only a bounded number
of exponentiation steps, after which all vertices that already know
their parent in the output orientation are removed from the graph.
Then this process is iterated until at most one vertex (per connected
component) remains.

Tree Rooting Algorithm A: In the following, we give a formal
description of an algorithm A for rooting a tree of diameter D. The
algorithm takes an integer B as input parameter that describes the
initial memory budget for each vertex v, i.e., an upper bound on the
number of edges that v may add before the first vertex removal. The
execution of A is subdivided in phases i = 0, 1, . . . which consist of
O(logD) rounds each. Set B0 = B.

Phase i of A: In phase i, each vertex v does the following:

In round 0, vertex v sets its local budget Bv to Bi. In each following
round j = 1, 2, . . ., vertex v first connects its 1-hop neighborhood

10.3. Gathering Connected Components 297

to a clique by adding edges between all its neighbors that are not
connected yet, but it does so only if the number of added edges is
at most Bv. Then v updates its local budget by decreasing Bv by
the number of edges that v added. If Bv was not large enough to
connect v’s 1-hop neighborhood to a clique, then v does not add
any edges in round j. This concludes the description of round j, of
which there are O(logD) many.

Denote the tree at the beginning of phase i by Ti, and for each
neighbor u of v, denote the set of vertices that are closer to u than v
in Ti by Siu(v). Phase i concludes with a number of special rounds:
First, v checks whether it has a neighbor u′ in Ti with the following
properties:

(i) Siu(v) is contained in the current 1-hop neighborhood of v, for
each neighbor u of v in Ti satisfying u 6= u′.

(ii) Siu′(v) is not (entirely) contained in the current 1-hop neigh-
borhood of v.

If such a neighbor u′ exists (which, by definition, is unique), then
v sets parent(v) = u′. Second, v removes all edges that it added
during phase i (regardless of whether a parent is set). Third, v is
removed from Ti if it already chose its parent, i.e., if it set parent(v).
Fourth, the budget per vertex is updated, by setting Bi+1 = Bi ·
ni/ni+1, where ni and ni+1 are the numbers of vertices of Ti and
Ti+1, respectively. This concludes the description of phase i.

We execute this process until at most one vertex remains.

Termination of A: Since in each phase (at the very least) all leaves
are removed, this process eventually terminates.

It is straightforward to check that if a vertex v chooses its parent
u′ = parent(v) in phase i, then any neighbor u 6= u′ of v in Ti also
chooses its parent in phase i, and, what is more, u chooses v as
its parent (which, combined with the following observations, shows

298 MIS in Trees

that the orientation of the input tree induced by the parent choices
of the vertices yields indeed a rooted tree). Hence, given the above
process, one of two things happens in the end: either exactly one
vertex remains, or all vertices are removed but there is exactly one
pair of vertices that chose each other as their parent. In the former
case, no action has to be taken, as the remaining vertex is simple the
root of our rooted tree. In order to handle the latter case, we add a
simple fifth special round at the end of each phase i: Each vertex v
removed in phase i checks whether the vertex it chose as its parent
chose v as its parent. If this is the case, then the vertex with the
higher ID removes its choice of parent and becomes the root vertex
of the input tree. See Figure 10.3 for an illustration of algorithm A.

Running Time of A: We present a number of lemmas in order
to determine the round complexity of algorithm A. Here, a subtree
T (v) rooted at some vertex v corresponds to the descendants of v
in the rooted tree T returned by A (or in the rooted subtree of T
induced by the vertices of some Ti).

Lemma 10.13. Consider some arbitrary phase i, and let T (v) be
the subtree of Ti rooted at v. If |T (v)| ≤

√
Bi, then v chooses its

parent in phase i and is removed from the tree.

Proof. Let k be some arbitrary non-negative integer, and consider
any vertex u in T (v) with distance at most 2k to v. Observe that,
according toA, the distance between any two vertices in Ti decreases
by a factor of at most 2 per round. Hence, after round k of phase
i, all vertices contained in the 1-hop neighborhood of u are actually
also contained in T (v). Thus, each edge that u would have added
if it had connected its 1-hop neighborhood to a clique in each of
the rounds 1, . . . , k + 1, disregarding any budget constraints, is an
edge between vertices from T (v). Since |T (v)| ≤

√
Bi, the number

of edges between vertices from T (v) is bounded from above by Bi;
it follows that u had enough budget to indeed connect its 1-hop

10.3. Gathering Connected Components 299

v

u1 u2

· · ·

(a) The leaves have only one neighbor, which becomes their parent. Ver-
tices u1, u2, and v do not have enough budget to add edges.

u1 u2

v

· · ·

(b) Once the leaves are removed, enough budget is freed for vertices u1
and u2 to add edges that connect their neighbors.

u1 u2

v

· · ·

(c) Once u1 and u2 know that v is their parent, vertex v can focus its
budget to the remainder of the tree (grey area).

Figure 10.3: The steps performed by algorithm A. Assume that the
initial budget is 2. As illustrated in (a), leaves are always able to de-
termine their parent. Assuming that the tree has non-leaf minimum
degree 3, removing all the leaves at least roughly doubles the bud-
get of all vertices. Thus, in the second step, shown in (b), vertices
with degree at most 4 are able to complete their 1-hop neighbor-
hoods into a clique. Small subtrees rooted at (or connected to) v
are removed quickly in our process, as depicted in (c). Therefore, v
requires large subtrees to survive for many phases.

300 MIS in Trees

neighborhood to a clique in each round up to and including round
k + 1.

Now consider any vertex w whose distance to v in Ti is at least
2k, but at most 2k+1 − 1. Let w0, . . . , wk be vertices on the unique
path between v and w with distance 20, . . . , 2k to v. Due to the
observations above, it is straightforward to check that, in each round
1 ≤ h ≤ k, vertex wh−1 connects vertex wh to v, while in round k+1,
vertex wk connects vertex u to v. Since the depth of T (v) is upper
bounded by logD, it follows that after logD rounds, all vertices
from T (v) are contained in v’s 1-hop neighborhood. Hence, v will
choose the only neighbor that is not contained in T (v) as its parent,
and v is removed in phase i. Since k was chosen arbitrarily, the
lemma statement follows.

Lemma 10.14. Let T be a rooted tree with n vertices and diameter
at most D. Let 1 ≤ β ≤ n, and let C be the set of vertices v with
the property that |T (v)| ≤ β. Then, |C| ≥ n(β/(D + β)).

Proof. Assign one dollar to each vertex that is not contained in a
subtree of size at most β. Every such vertex then distributes its
dollar evenly among all of its descendants in C. Note that, for each
leaf vertex w of the tree obtained from T by deleting all vertices in
C, the number of descendants of w in C is at least β since otherwise
w would be in C, by the definition of C. Hence, all vertices that are
not contained in C have at least β descendants in C.

Consider then any vertex v ∈ C. Since the diameter of the tree is
D, vertex v can have at most D ancestors in T . Every ancestor of
v distributes at most 1/β dollars to v and therefore, v receives at
most D/β dollars. As the amount of dollars did not change during
its redistribution from vertices not contained in C to vertices in
C, we can conclude that |C|(D/β) ≥ n − |C| which implies that
|C| ≥ n(β/(D + β)).

10.3. Gathering Connected Components 301

Lemma 10.15. Assume that the input parameter B for our algo-
rithm A satisfies B ≥ D3. Then the round complexity of A in trees
with n vertices and diameter D is O(logD · log log n).

Proof. Observe that the sequence B0, B1, . . . of budgets at the be-
ginning of phases 0, 1, . . . is monotonically non-decreasing, by defi-
nition. Hence, Bi ≥ D3 for all phases i. Now consider some arbi-
trary phase i, and let ni denote the number of vertices of Ti. By
Lemma 10.13 and Lemma 10.14, the number of vertices that are
removed in phase i is at least ni · (

√
Bi/(D +

√
Bi)). Thus, for the

new budget Bi+1, it holds by definition that

Bi+1 ≥ Bi
1

1−
√
Bi

D+
√
Bi

= Bi

(
D +

√
Bi

D

)
≥
B

3
2
i

D
.

Since, as observed above, D ≤ B1/3
i , we obtain Bi+1 ≥ B7/6

i , which
implies Bi+5 ≥ B2

i . Recall that in each phase i, at least a (
√
Bi/D)-

fraction of vertices is removed. Thus, after O(log log n) phases, all
vertices (except possibly for one vertex) have been removed and
the termination condition of A is satisfied. Since every phase takes
O(logD) time, the claim follows.

Now we have all the ingredients to prove the second part of our
gathering lemma in Lemma 10.3. It is a simple corollary of the
following theorem.

Theorem 10.16. Consider a forest F of n vertices where every tree
is of diameter at most D. There is an MPC algorithm that finds
the connected components of F in time O(logD · log log n) where
MS = O(nD3).

Proof. Imagine that we run algorithm A in parallel on all trees of
the input forest F , with input parameter B = D3. There are only
two parts of A that are of a global nature, i.e., where the actions

302 MIS in Trees

of vertices do not depend on their immediate neighborhood: the
termination condition that all vertices, possibly except for one, have
been removed, and the part where the vertex’s budgets are updated
from Bi to Bi+1. The former is easily adapted to the case of forests;
each vertex simply terminates when itself or all its neighbors are
removed. Regarding the updating of the budget, we adapt the tree
rooting algorithm as follows: we still set the new budget Bi+1 to
Bini/ni+1, but now ni and ni+1 denote the total number of vertices
(i.e., in all trees of the forest) that have not been removed yet at
the beginning of phase i, respectively phase i+ 1.

In the following, we verify that Lemmas 10.13 to 10.15 also hold for
forests instead of trees. In the case of Lemma 10.13, this is obvi-
ous as the argumentation is local and thus also applies to forests.
Lemma 10.14 trivially also holds for forests since the lemma state-
ment holds for all trees in the forest. Finally, since the argumen-
tation of the proof of Lemma 10.15 does not make use of the fact
that the input graph is a tree except when applying Lemmas 10.13
and 10.14, it follows that Lemma 10.15 also holds for forests.

Hence, our adapted tree rooting algorithm actually transforms the
forest into a rooted forest in time O(logD · log logn). Now we can
apply Lemma 10.12, and, e.g., color each component with the color
of the root vertex, thereby marking the connected components. Due
to the round complexity given in Lemma 10.12, our total round
complexity is still O(logD · log log n).

It remains to show that the claimed memory constraints are sat-
isfied. Due to the space guarantee given in Lemma 10.12, it is
sufficient to show that the memory overhead induced by adding
edges during the execution of out forest rooting algorithm does not
exceed the allowed amount. Thus, consider the number of edges
added in an arbitrary phase i. Since each vertex adds at most as
many edges as its budget allows, i.e., at most Bi edges, the total
number of edges added in phase i is upper bounded by niBi. By

10.3. Gathering Connected Components 303

the definition of Bj+1, we have nj+1Bj+1 = njBj , for any phase j.
Hence, the value of niBi is the same for every phase i, and we obtain
niBi = n0B0 = nD3. Therefore, the number of edges added in any
phase i does not exceed nD3, and since all added edges are removed
again at the end of each phase, the lemma statement follows.

Remark 10.17. In the analysis, we implicitly assumed that edges
incident on vertices are always added only once. It could, however,
be the case that some vertex is unlucky and many of its neighbors
add a copy of the same edge many times. This misfortune could
potentially result in adding nδ copies of the same (virtual) edge,
which could, in turn, overload the memory per node constraint on
the nodes containing these unlucky vertices. For the sake of simplic-
ity, we decided to leave this problem to the shuffling algorithm of the
underlying MPC framework that can, for example, load the vertices
onto the nodes greedily after each communication step. Since the
total memory constraint is satisfied, this is always feasible. Alterna-
tively, the shuffling algorithm could simply drop duplicate messages.

304 MIS in Trees

CHAPTER 11

MM and MIS in Uniformly Sparse Graphs

11.1 Introduction

In the following—based on the manuscript ‘Matching and MIS for
Uniformly Sparse Graphs in the Low-Memory MPC Model’ [43] and
the publication ‘Massively Parallel Computation of Matching and
MIS in Sparse Graphs’ [32]—we drastically generalize the degree
reduction method from Chapter 10 from trees to uniformly sparse
graphs, i.e., graphs with arboricity λ = poly log n.

11.1.1 Our Results and Related Work

Maximal Matching and Maximal Independent Set

Our two main results can be summarized as follows.

305

306 MM and MIS in Uniformly Sparse Graphs

Theorem 11.1. There is a sublinear-memory MPC algorithm that
w.h.p. computes a maximal independent set in a graph with arboric-
ity λ in O

(√
log λ · log log λ+ log log n · log log ∆

)
rounds.

Theorem 11.2. There is a sublinear-memory MPC algorithm that
w.h.p. computes a maximal matching in a graph with arboricity λ in
O
(√

log λ · log log λ+ log log n · log log ∆
)

rounds.

This improves on the O
(
log λ+

√
log n

)
-round LOCAL algorithm

of [28, 109] and on the Õ
(√

log ∆
)
-round algorithm of [123]. The

only previous subpolylogarithmic round maximal matching algo-
rithm due to Lattanzi et al. [167], requires space per node of n1+Ω(1).
Recently, Czumaj, Davies, and Parter [71] provided a O(log ∆ +
log logn)-round deterministic algorithm for general graphs.

For all graphs with arboricity up to poly log n, our algorithms take
only O(log2 log n) rounds. This improves almost exponentially on
the known sublinear-memory MPC algorithms: the Õ(

√
log ∆)-round

algorithm due to Ghaffari and Uitto [123] and theO
(
log λ+

√
log n

)
-

round algorithm due to a straightforward simulation of the LOCAL
algorithm of Barenboim et al. [27, 28]. Previously, the only known
subpolylogarithmic algorithm, due to Lattanzi et al. [167], required
strongly superlinear memory per node;

We also note that the round complexity of all previous poly log log n-
round MPC matching approximation algorithms for general graphs
(even if we allow linear memory) [73, 12, 112] blows up by an
Ω(log n) overhead for the case of maximal matching. In fact, the
problem of finding a maximal matching seems to be much more diffi-
cult than finding a (1+ε)-approximate maximum matching. Indeed,
currently, an O(1)-approximation can be found almost exponentially
faster than a maximal matching, and the approximation ratio can
be easily improved from any constant to 1 + ε using a reduction of
McGregor [183] (also see Corollary 11.3).

11.1. Introduction 307

In a subsequent work, Ghaffari, Grunau, and Jin [113] provided an
O(
√

log λ · log log λ + log log n)-round algorithm for MIS, MM, and
coloring.

Approximate Maximum Matching and Vertex Cover

As a maximal matching automatically provides 2-approximations
for maximum matching and minimum vertex cover, Theorem 11.2
directly implies the following result.

Corollary 11.3. There is a sublinear-memory MPC algorithm that
w.h.p. computes a 2-approximate maximum matching as well as a
2-approximate minimum vertex cover in a graph with arboricity λ
in O

(√
log λ log log λ+ log log n · log log ∆

)
rounds.

McGregor’s reduction [183] allows us to further improve the approx-
imation to 1 + ε.

Corollary 11.4. There is a sublinear-memory MPC algorithm that
for any ε > 0 w.h.p. computes a (1 + ε)-approximate maximum

matching in O
((

1
ε

)O(1/ε) (√
log λ · log log λ+ log log n · log log ∆

))
rounds.

Due to a reduction by to Lotker, Patt-Shamir, and Pettie [177], our
constant-approximate matching algorithm can also be employed to
find a (2 + ε)-approximate maximum weighted matching.

Corollary 11.5. There is a sublinear-memory MPC algorithm that
in O

(
log 1

ε

(√
log λ · log log λ+ log log n · log log ∆

))
rounds gives a

(2 + ε)-approximate weighted matching w.h.p., for any ε > 0.

308 MM and MIS in Uniformly Sparse Graphs

11.1.2 Overview and Outline

Degree Reduction

The main ingredient of our approach is a degree reduction technique
that reduces the problems of MM and MIS in a graph with arboricity
λ to the corresponding problems in graphs with maximum degree
poly λ in O

(
log2 log n

)
rounds.

Theorem 11.6 (Degree Reduction). There is a sublinear-memory
MPC algorithm that w.h.p. reduces maximal matching and maximal
independent set in graphs with arboricity λ = no(1) to the respective
problems in graphs with maximum degree O

(
max{λ20, log20 n}

)
1 in

O (log log∆ n · log logλ ∆) rounds.

This improves on the degree reduction algorithm of [28, Theorem
7.2], which runs in O(logλ n) rounds in the LOCAL model and can
be straightforwardly implemented in sublinear-memory MPC.

Polynomial Degree Reduction

Our degree reduction algorithm in Theorem 11.6 consists of several
phases, each reducing the maximum degree by a polynomial factor,
as long as the degree is still large enough.

Lemma 11.7. There are O (log log n)-round sublinear-memory MPC
algorithms that compute a matching and an independent set, respec-
tively, in a graph with arboricity λ = no(1) and maximum degree

∆ = Ω
(

(max{λ, log n})20
)

so that the remainder graph w.h.p. has

maximum degree O(∆0.4).

We first show that indeed iterated applications of this polynomial de-
gree reduction lead to the desired degree reduction in Theorem 11.6.

1The purpose of the choice of all the constants in this work is merely to
simplify presentation.

11.1. Introduction 309

Proof of Theorem 11.6. We iteratively apply the polynomial degree
reduction from Lemma 11.7, observing that as long as the maximum
degree is still in Ω(λ20) and Ω(log20 n), we reduce the maximum
degree by a polynomial factor from ∆ to O(∆0.4) in each phase,
resulting in at most O(log log ∆) phases.

The polynomial degree reduction, as claimed in Lemma 11.7, is
proved in two parts. First, in Section 11.2, we provide a centralized
algorithm, and then, in Section 11.2.2, we show how to implement
this centralized algorithm efficiently in MPC.

Wrap-Up

Theorems 11.1 and 11.2 follow from Theorem 11.6 and from an
efficient simulation of LOCAL algorithms due to [123].

Proof of Theorems 11.1 and 11.2. If λ, and hence ∆, is at least
polynomial in n, we directly apply the algorithm of [123], which
runs in O(

√
log ∆ · log log ∆ +

√
log logn) = O(

√
log n · log log n)

rounds. Otherwise, we first apply the algorithm of Theorem 11.6
to obtain a partial solution that reduces the degree in the remain-
der graph to ∆′ = O(λ20) if λ ≥ log n, or to ∆′ = O(log20 n) if
λ ≤ log n. It runs in O(log log n · log log ∆) rounds. In O(

√
log ∆′ ·

log log ∆′ +
√

log log n) = O(
√

log λ · log log λ +
√

log logn) rounds,
we then apply the algorithm of [123] on the remainder graph.

Remark 11.8. While our algorithms, at first sight, seem to need
to know λ, we can easily get rid of this assumption by employing
the standard technique [155] of running the algorithm with doubly-
exponentially increasing estimates for λ. Roughly speaking, the idea
is as follows. We run O(log log ∆) copies, one for every estimate
of λ, of the algorithm in parallel and pick (one of) the correct solu-
tion(s), which is easy to find in MPC.

310 MM and MIS in Uniformly Sparse Graphs

11.2 Degree Reduction

11.2.1 Centralized Degree Reduction Algorithm

In this section, we present a centralized algorithm for the polyno-
mial degree reduction as stated in Lemma 11.7. For details on how
this algorithm can be implemented in the sublinear-memory MPC
model, we refer to Section 11.2.2. In Section 11.2.1, we give a formal
description of the (centralized) algorithm. Then, in Section 11.2.1,
we prove that this algorithm indeed leads to a polynomial degree
reduction.

Algorithm Description

In the following, we set d = ∆1/10, and observe that d = Ω(λ2) as
well as d = Ω(log2 n), due to the assumptions on ∆ in the lemma
statement. We present an algorithm that reduces the maximum
degree to O(d4). This algorithm consists of three phases: a parti-
tion phase, in which the vertices are partitioned into layers so that
every vertex has at most d neighbors in higher-index layers, a mark-
and-propose phase in which a random set of candidates is proposed
independently in every layer, and a selection phase in which a valid
subset of the candidate set is selected as partial solution by resolving
potential conflicts across layers.

Partition Phase: We compute an H-partition, that is, a parti-
tion of the vertices into layers so that every vertex has at most d
neighbors in layers with higher (or equal) index. Such a partition
can be computed in O(logd/λ n) rounds using the sequential peeling
algorithm described in Section 3.1.3.

Mark-and-Propose Phase: We first mark a random set of can-
didates (either edges or vertices) and then propose a subset of these
marked candidates for the partial solution as follows. In the case of
maximal matching, every vertex first marks an outgoing edge chosen

11.2. Degree Reduction 311

uniformly at random and then proposes one of its incoming marked
edges, if any, uniformly at random. In the case of maximal indepen-
dent set, every vertex marks itself independently with probability
p = d−2. Then, if a vertex is marked and none of its neighbors in the
same layer is marked, this vertex is proposed. Note that whether a
marked vertex gets proposed only depends on vertices in the same
layer, thus on neighbors with respect to unoriented edges.

Selection Phase: The set of proposed candidates might not be a
valid solution, meaning that it might have some conflicts (i.e., two
incident edges or two neighboring vertices). In the selection phase,
possible conflicts are resolved (deterministically) by picking an ap-
propriate subset of the proposed candidates, as follows. Iteratively,
for i = `, . . . , 1, all (remaining) proposed candidates in layer i are
added to the partial solution and then removed from the graph.
In the case of maximal matching, we add all (remaining) proposed
edges directed to a vertex in layer i to the matching and remove
both their endpoints from the graph. In the case of maximal in-
dependent set, we add all (remaining) proposed vertices in layer i
to the independent set and remove them along with their neighbors
from the graph.

Proof of Correctness

Conflict-Free: It is easy to see that the selected solution is a valid
partial solution, that is, that there are no conflicts. See Figure 11.1
for an illustration.

Indeed, for the case of the matching, observe the following: An (ori-
ented) edge e = (u, v) that is selected to be added to the matching
cannot have an incident edge that is also selected: an unoriented
incident edge cannot be marked as only oriented edges are marked;
an oriented edge with the same starting point u cannot be marked
as u marks only one outgoing edge; an oriented edge with the same
endpoint v cannot be proposed as v proposes only one incoming

312 MM and MIS in Uniformly Sparse Graphs

v

e

u

(a) the case of maximal matching

v

(b) the case of maximal independent set

Figure 11.1: Illustration of the mark-and-propose and the selection
phase for matching in (a) and independent set in (b). Blue indicates
marked but not proposed, green stands for (marked and) proposed
but not selected, and red means (marked and proposed and) se-
lected. Note that we omitted all (but a few) irrelevant edges from
the figure; the partition into layers thus might not correspond to a
valid H-partition.

edge; all other oriented edges f are either processed before (in the
case of an outgoing edge from v) or after (in the case of an incoming
edge to u) edge e in the selection phase. In the former case, the
selection of f would lead to the removal of e before e is processed; e
thus would not be selected. In the latter case, the edge f is removed
immediately after e is selected (and thus before f is processed), and
thus cannot be selected.

Similarly, for independent set, the following holds: If two neigh-
boring vertices are marked, none of them will be proposed, and

11.2. Degree Reduction 313

consequently, none of them will be selected. A vertex v that is se-
lected to be added to the independent set cannot have a neighbor
that is also selected: a neighbor in the same layer cannot be marked
as otherwise v would not be proposed; a neighbor in a lower-index
layer is removed from the graph when v joins the independent set,
and hence before it potentially could be selected; a selected neighbor
in a higher-index layer would lead to v’s immediate removal from
the graph; when v’s layer is processed, v is not part of the graph
anymore, and thus could not be selected.

Degree Reduction: It remains to show that the degree drops to
O(d4). As the outdegree is bounded by d, the following is enough.

Lemma 11.9. Every vertex with indegree at least d4 gets removed
or all but d4 of its incoming edges get removed, with high probability.

Proof of Lemma 11.9 for matching. Let v be a vertex with degree
at least d4. First, observe that if at least one incoming edge of v is
proposed, then an edge incident to v (not necessarily incoming) will
be selected to be added to the matching. This is because the only
reason why v would not select a proposed incoming edge is that v
has already been removed from the graph, and this happens only
if its proposed edge has been selected to be added to the matching
in a previous step. It thus remains to show that every vertex v
with indegree at least d4 with high probability will have at least one
incoming edge that has been proposed by the respective child. As
every incoming edge of v is marked independently with probability
at least 1/d, the probability of v not having a marked, and hence not

having a proposed incoming edge is at most (1− 1/d)d
4

≤ e−d
3

=

e−Ω(log6 n) = n−ω(1). A union bound over all vertices with degree at
least d4 concludes the proof.

Proof of Lemma 11.9 for independent set. Let v be a vertex in layer
i that is still in the graph and has at least d4 children after all layers

314 MM and MIS in Uniformly Sparse Graphs

with index ≥ i have been processed. We show that then at least one
of these children will be selected to join the independent set with
high probability. Note that this then concludes the proof, as in all
the cases either v will be removed from the graph or will not have a
high indegree anymore. Moreover, observe that such a child u of v
(that is still there after having processed layers ≥ i) will be selected
to join the independent set iff it is proposed. This is because if it
did not join even though it is proposed, then a parent of u would
had been selected to join the independent set, in which case u would
not have been part of the graph anymore, at latest after i has been
processed, thus would not count towards v’s high degree at that
point.

Every such child u of v is marked independently with probability
p = d−2. The probability of u being proposed and hence joining the
independent set is at least p(1−p)d, as it has at most d neighbors in
its layer, and it is proposed iff it is marked and none of its neighbors
in the same layer is marked. vertex v thus in expectation has at
least µ := d4p(1 − p)d ≥ d2e−2/d = Ω(d2) children that join the
independent set.

Since whether a vertex u proposes and hence joins the independent
set depends on at most d other vertices (namely u’s neighbors in
the same layer), it follows from a variant of the Chernoff bounds for
bounded dependence, e.g., from Theorem 2.1 in [212], that the prob-
ability of v having, say, 0.5µ neighbors that join the independent set

is at most e−Ω(µ/d) = e−Ω(d) = e−Ω(log2 n) = n−ω(1). A union bound
over all vertices v with degree at least d4 concludes the proof.

11.2.2 Degree Reduction in MPC

We show how to simulate the centralized degree reduction algorithm
from Section 11.2 in the sublinear-memory MPC model, for the par-
tition phase and for the mark-and-propose and selection phase.

11.2. Degree Reduction 315

The degree reduction algorithm described in Section 11.2 can be
implemented in the LOCAL model in a relatively straightforward
way in poly log n rounds. We show how to exponentially speed this
up using a variant of the graph exponentiation technique. To deal
with the issues of the local and global memory barriers of the graph
exponentiation technique, the key observation is that a large fraction
of the vertices in the graph are contained in the first layers of the
H-partition. In particular, we show that if we focus on the graph
remaining after `/2 iterations of peeling, we can perform roughly
log ` exponentiation steps without violating the memory constraints.
Hence, we can perform 2i steps of the degree reduction process in
roughly i communication rounds.

Partition Phase

In the following, we describe how to compute the H-partition with
parameter d = ∆1/10 in the sublinear-memory MPC model. This
is done by simulating the greedy sequential peeling algorithm de-
scribed in Section 3.1.3, also recalling the properties from Lemma 3.1
Throughout this section, we assume that ∆ ≥ (2λ)20, i.e., that
d ≥ (2λ)2. Observe that if ∆2 > nδ, then the H-partition with
parameter d = ∆1/10 consists of O(logd/λ n) = O(log∆ n) = O(1/δ)
layers, in which case the arguments in this section imply that go-
ing through the layers one by one will easily yield at least as good
round complexities as for the more difficult case of ∆2 ≤ nδ. Hence,
throughout this section, it is safe to assume that ∆2 ≤ nδ.

The goal of the algorithm for computing the H-partition is that
each vertex (or, more formally, the node storing the vertex) knows
in which layer of the H-partition it is contained. The algorithm pro-
ceeds in iterations, where each iteration consists of two parts: first,
the output, i.e., the layer index, is determined for a large fraction
of the vertices, and second, these vertices are removed for the re-
mainder of the computation. The latter ensures that the remaining

316 MM and MIS in Uniformly Sparse Graphs

small fraction of vertices can use essentially all of the total available
memory in the next iteration, resulting in a larger memory budget
per vertex. However, there is a caveat: When the memory bud-
get per vertex exceeds Θ(nδ), i.e., the memory capacity of a single
node, then it is not sufficient anymore to merely argue that the used
memory of all vertices together does not exceed the total memory of
all nodes together. We circumvent this issue by starting the above
process repeatedly from anew (in the remaining graph) each time
the memory requirement per vertex reaches the memory capacity of
a single node.

As we will see, the number of repetitions, called phases, is bounded
by O(1/δ). We now examine the phases and iterations in more
detail.

Algorithm Details: Let k be the largest integer s.t. ∆2k+1 ≤ nδ

(which implies that k ≥ 0). The algorithm consists of phases and
each phase consists of k + 1 iterations.

In each iteration i = 0, 1, . . . , k, we do the following. Let Gi = G
(0)
i

be the graph at the beginning of iteration i. Each vertex connects
its current 1-hop neighborhood to a clique by adding virtual edges
to Gi; if i = 0, omit this step. We perform 20 repetitions of the
following process if i ≥ 1, and 60 repetitions if i = 0. In repetition
0 ≤ j ≤ 19 (or 0 ≤ j ≤ 59), each vertex computes its layer index

in the H-partition of G
(j)
i (with parameter d) or determines that its

layer index is strictly larger than 2i, upon which all vertices in layer
at most 2i (and all its incident edges) are removed from the graph,

resulting in a graph G
(j+1)
i .

For the next iteration, we set Gi+1 = G
(20)
i (and Gi+1 = G

(60)
i if

i = 0). At the end of a phase, we remove all added edges. The
algorithm terminates when each vertex knows its layer.

Note that each time a vertex is removed from the graph, the whole

11.2. Degree Reduction 317

layer that contains this vertex is removed, and each time such a
layer is removed, all layers with smaller index are removed at the
same time or before. By the definition of the H-partition, if we
remove the ` layers with smallest index from a graph, then there is
a 1-to-1 correspondence between the layers of the resulting graph
and the layers with layer index at least `+ 1 of the original graph.
More specifically, layer `′ of the resulting graph contains exactly the
same vertices as layer `+ `′ of the original graph. Hence, if a vertex

knows its layer index in some G
(j)
i , it can easily compute its layer

index in our original input graph G, by keeping track of the number
of deleted layers, which is uniquely defined by i, j and the number
of the phase. We implicitly assume that each vertex performs this

computation upon determining its layer index in some G
(j)
i and only

consider how to determine the layer index in the current graph.

Implementation in the MPC Model: Let us take a look at one
iteration. Connecting the 1-hop neighborhoods to cliques is done
by adding the edges that are missing. Edges that are added by
multiple vertices are only added once (since the edge in question
is stored by the nodes that contain an endpoint of the edge, this
is straightforward to realize). Note that during a phase, the 1-hop
neighborhoods of the vertices grow in each iteration (if not too many
close-by vertices are removed from the graph); more specifically,
after i iterations of connecting 1-hop neighborhoods to cliques, the
new 1-hop neighborhood of a vertex contains exactly the vertices
that were contained in its 2i-hop neighborhood at the beginning of
the phase (and were not removed so far).

In iteration i, the layer of a vertex is computed as follows: First
each vertex locally gathers the topology of its 2i-hop neighborhood
(without any added edges)2. Since this step is performed after con-

2Note that it is easy to keep track of which edges are original and which are
added, incurring only a small constant memory overhead; later we will also argue
why storing the added edges does not violate our memory constraints.

318 MM and MIS in Uniformly Sparse Graphs

necting the 2i−1-hop neighborhood of each vertex to a clique (by
repeatedly connecting 1-hop neighborhoods to cliques), i.e., after
connecting each vertex to any other vertex in its 2i-hop neighbor-
hood, only 1 round of communication is required for gathering the
topology. Moreover, since a vertex that knows the topology of its
2i-hop neighborhood can simulate any (2i−1)-round distributed pro-
cess locally, it follows from the definition of the H-partition, that
knowledge of the topology of the 2i-hop neighborhood is sufficient
for a vertex to determine whether its layer index is at most 2i and,
if this is the case, in exactly which layer it is contained. Thus, the
only tasks remaining are to bound the round complexity of our al-
gorithm and to show that the memory restrictions of our model are
not violated by the algorithm.

Round Complexity: It is easy to see that every iteration takes
O(1) rounds. Thus, in order to bound the round complexity of
our algorithm, it is sufficient to bound the number of iterations by
O((1/δ) · log logn). By Lemma 3.1 (ii) the number of layers in the
H-partition of our original input graph G is O(logd/λ n), which is

O(log∆ n) since d/(2λ) ≥
√
d = ∆1/20. Consider an arbitrary phase.

According to the algorithm description, in iteration i ≥ 1, all ver-
tices in the 20 · 2i lowest layers are removed from the current graph.
Hence, ignoring iteration 0, the number of removed layers doubles
in each iteration, and we obtain that the number of layers removed
in the k + 1 iterations of our phase is Ω(2k). By the definition of

k, we have ∆2k+1+1 > nδ, which implies 2k > 1/3δ log∆ n. Com-
bining this inequality with the observations about the total num-
ber of layers and the number of layers removed per phase, we see
that the algorithm terminates after O(1/δ) phases. Since there are
k+ 1 = O(log log n) iterations per phase, the bound on the number
of iterations follows.

Memory Footprint: As during the course of the algorithm edges
are added and vertices collect the topology of certain neighborhoods,

11.2. Degree Reduction 319

we have to show that adding these edges and collecting these neigh-
borhoods does not violate our memory constraints of O(nδ) per
node. As a first step towards this end, the following lemma bounds
the number of vertices contained in graph Gi.

Lemma 11.10. Graph Gi from phase i contains at most n′/∆2i

vertices, for all i ≥ 1, where n′ = n/∆.

Proof. By Lemma 3.1 (i), removing the vertices in the layer with
smallest index from the current graph decreases the number of ver-
tices by a factor of at least d/(2λ) ≥ d1/2 = ∆1/20. We show the
lemma statement by induction. Since in iteration 0 the vertices in
the 60 layers with smallest index are removed, we know that G1

contains at most n/∆3 = n′/∆21
vertices. Now assume that Gi con-

tains at most n′/∆2i vertices, for an arbitrary i ≥ 1. According to
the design of our algorithm, Gi+1 is obtained from Gi by removing
the vertices in the 20 · 2i layers with smallest index. Combining
this fact with our observation about the decrease in the number of
vertices per removed layer, we obtain that Gi+1 contains at most

n′

∆2i
· 1

∆2i
=

n′

∆2i+1

vertices, concluding the proof.

Using Lemma 11.10, we now show that the memory constraints of
the sublinear-memory MPC model are not violated by our algorithm.
Consider an arbitrary phase and an arbitrary iteration i during that
phase. If i = 0, then no edges are added and each vertex already
knows the topology of its 2i-hop neighborhood, so no additional
memory is required. Hence, assume that i ≥ 1.

Due to Lemma 11.10, the number of vertices considered in iteration
i is at most n′/(∆2i), where, again, n′ = n/∆. After the initial step
of connecting 1-hop neighborhoods to cliques in iteration i, each re-
maining vertex is connected to all vertices that were contained in

320 MM and MIS in Uniformly Sparse Graphs

its 2i-hop neighborhood in the original graph G (and were not re-
moved so far). Hence, each remaining vertex is connected to at most
O(∆2i) other vertices, resulting in a memory requirement of O(∆2i)
per vertex, or O(n/∆) in total. Similarly, when collecting the topol-
ogy of its 2i-hop neighborhood, each vertex has to store O(∆2i ·∆)
edges, which requires at most O(∆2i · ∆) memory, resulting in a
total memory requirement of O(n). Hence, the described algorithm
does not exceed the total memory available in the sublinear-memory
MPC model. Moreover, due to the choice of k, the memory require-
ment of each single vertex does not exceed the memory capacity of
a single node.

Simulation of Mark-and-Propose and Selection

For the simulation of the mark-and-propose and selection phase, we
rely heavily on the approach in Section 11.2.2. Recall that vertices
were removed in chunks consisting of several consecutive layers and
that before a vertex v was removed, v was directly connected to all
vertices contained in a large neighborhood around v by adding the
respective edges. For the simulation, we go through these chunks in
the reverse order in which they were removed. Note that in which
chunk a vertex is contained is uniquely determined by the layer
index of the vertex. As a vertex computes its layer index during the
construction of the H-partition, it can easily determine in which
part of the simulation it will actively participate.

However, there is a problem we need to address. For communication,
we want the edges added during the construction of the H-partition
to be available also for the simulation. Unfortunately, during the
course of the construction, we removed added edges to free mem-
ory for adding other edges. Fortunately, there is a conceptually
simple way to circumvent this problem: in the construction of the
H-partition, add a preprocessing step in the beginning, in which
we remove the lowest c log(log log n/δ) layers, for a sufficiently large

11.2. Degree Reduction 321

constant c, one by one in log(log log n/δ) rounds. This increases the
available memory (compared to the number of (remaining) vertices)
by a factor of Ω(log log n/δ), by Lemma 3.1. Since the algorithm for
constructing the H-partition consists of O(log log n/δ) iterations,
this implies that we can store all edges that we add during the
further course of the construction simultaneously without violating
the memory restriction, by an argument similar to the analogous
statement for the old construction of the H-partition. Similarly,
the number of added edges incident to one particular vertex does
not exceed the memory capacity of a single node. We assume that
this preprocessing step took place and all edges added during the
construction of the H-partition are also available for the simulation.

Matching Algorithm: As mentioned above, we process the chunks
one by one, in decreasing order with respect to the indices of the
contained layers. After processing a chunk, we want each vertex
contained in the chunk to know the output of all incident edges
according to the centralized matching algorithm. In the following,
we describe how to process a chunk, after some preliminary steps.

The mark-and-propose phase of the algorithm is straightforward to
implement in the sublinear-memory MPC model: each vertex (in
each chunk at the same time) performs the marking of an outgoing
edge as specified in the algorithm description. Note that, formally,
the algorithm for the construction of the H-partition only returns
the layer index for each vertex; however, from this information each
vertex can easily determine which edges are outgoing, unoriented,
or incoming according to the partial orientation induced by the H-
partition. The proposing is performed for all vertices before going
through the chunks sequentially: each vertex proposes one of its
marked incoming edges (if there is at least one) uniformly at ran-
dom. Note that proposes an edge does not necessarily indicate that
this edge will be added to the matching; more specifically, an edge
proposed by some vertex v will be added to the matching iff the edge

322 MM and MIS in Uniformly Sparse Graphs

that v marked is not selected to be added to the matching. In other
words, only proposed edges can go into the matching and whether
such an edge indeed goes into the matching can be determined by
going through the layers in decreasing order and only adding a pro-
posed edge if there is no conflict.

After this mark-and-propose phase, the processing of the chunks
begins. Consider an arbitrary chunk. Let i be the iteration (in
some phase) in which this chunk was removed in the construction
of the H-partition, i.e., the chunk consists of 2i layers. Each vertex
in the chunk collects the topology of its 2i-hop neighborhood in the
chunk including the information contained therein about proposed
edges. Due to the edges added during the construction of the H-
partition, this can be achieved in a constant number of rounds, and
by an analogous argument to the one at the end of Section 11.2.2,
collecting the indicated information does not violate the memory
restrictions of our model. Lemma 11.11 shows that the information
contained in the 2i-hop neighborhood of a vertex is sufficient for
the vertex to determine the output for each incident edge in the
centralized matching algorithm.

Lemma 11.11. The information about which edges are proposed
in the 2i-hop neighborhood of a vertex v uniquely determines the
output of all edges incident to v according to the centralized matching
algorithm.

Proof. From the design of the centralized matching algorithm, it
follows that an edge is part of the matching iff 1) the edge is proposed
and 2) either the higher-layer endpoint of the edge has no outgoing
edges or the outgoing edge marked by the higher-layer endpoint is
not part of the matching. Hence, in order to check whether an
incident edge is in the matching, vertex v only has to consider the
unique directed chain of proposed edges (in the chunk) starting in
v. Clearly, the information which of the edges in this chain are

11.2. Degree Reduction 323

proposed uniquely defines the output of the first edge in the chain,
from which v can infer the output of all other incident edges. Since
the number of edges in the chain is bounded by 2i − 1 as the chain
is directed, the lemma statement follows.

It thus follows from the bound on the number of iterations that the
simulation of the selection phase for the matching algorithm can be
performed in O(log log n/δ) rounds of communication, finishing the
proof of Theorem 10.1.

Independent Set Algorithm: The simulation of the independent
set algorithm proceeds analogously to the case of the matching al-
gorithm. First, each vertex performs the marking and proposing
in a distributed fashion in a constant number of rounds. Then,
the chunks are processed one by one, as above, where during the
processing of a chunk removed in iteration i, each vertex contained
in the chunk collects its 2i-hop neighborhood, including the infor-
mation about which vertices are proposed, and then computes its
own output locally. By analogous arguments to the ones presented
in the case of the matching algorithm, the algorithm adheres to the
memory constraints of our model and the total number of communi-
cation rounds is O(log log n/δ). The only part of the argumentation
where a bit of care is required is the analogue of Lemma 11.11. In
the case of the independent set algorithm the output of a vertex
v may depend on each of its parents since each of those could be
part of the independent set, which would prevent v from joining
the independent set. However, all vertices in the chunk that can
be reached from v via a directed chain of edges are contained in v’s
2i-hop neighborhood; therefore, collecting the own 2i-hop neighbor-
hood is sufficient for determining one’s output. Note that at the
end of processing a chunk, if we follow the above implementation,
we have to spend an extra round for removing the neighbors of all
selected independent set vertices since these may be contained in
another chunk.

324 MM and MIS in Uniformly Sparse Graphs

Bibliography

[1] Y. Afek, S. Kutten, and M. Yung. The Local Detection
Paradigm and its Applications to Self-Stabilization. Theo-
retical Computer Science, 186(1):199–229, 1997.

[2] M. Ahmadi, F. Kuhn, and R. Oshman. Distributed Approx-
imate Maximum Matching in the CONGEST Model. In Pro-
ceedings of the International Symposium on Distributed Com-
puting (DISC), 2018.

[3] N. Ailon, M. Charikar, and A. Newman. Aggregating Incon-
sistent Information: Ranking and Clustering. Journal of the
ACM (JACM), 55(5):23, 2008.

[4] N. Alon. A Parallel Algorithmic Version of the Local Lemma.
In the Proceedings of the IEEE Symposium on Foundations of
Computer Science (FOCS), pages 586–593. IEEE, 1991.

[5] N. Alon, L. Babai, and A. Itai. A Fast and Simple Randomized
Parallel Algorithm for the Maximal Independent Set Problem.
Journal of Algorithms, 7(4):567–583, 1986.

[6] N. Alon, R. Rubinfeld, S. Vardi, and N. Xie. Space-Efficient
Local Computation Algorithms. In Proceedings of ACM-SIAM

325

326 BIBLIOGRAPHY

Symposium on Discrete Algorithms (SODA), pages 1132–
1139, 2012.

[7] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley
Publishing, 4th edition, 2016.

[8] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev. Parallel
Algorithms for Geometric Graph Problems. In Proceedings of
the Symposium on Theory of Computing (STOC), pages 574–
583, 2014.

[9] A. Andoni, C. Stein, Z. Song, Z. Wang, and P. Zhong. Paral-
lel Graph Connectivity in Log Diameter Rounds. In the Pro-
ceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), pages 674–685, 2018.

[10] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan. An In-
troduction to MCMC for Machine Learning. Machine Learn-
ing, 50(1-2):5–43, 2003.

[11] S. Assadi. Simple Round Compression for Parallel Vertex
Cover. arXiv preprint: 1709.04599, 2017.

[12] S. Assadi, M. Bateni, A. Bernstein, V. Mirrokni, and C. Stein.
Coresets Meet EDCS: Algorithms for Matching and Vertex
Cover on Massive Graphs. In Proceedings of ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 1616–1635,
2019.

[13] S. Assadi, Y. Chen, and S. Khanna. Sublinear Algorithms
for (∆ + 1) Vertex Coloring. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2019.

[14] S. Assadi and S. Khanna. Randomized Composable Coresets
for Matching and Vertex Cover. In Proceedings of the Sympo-
sium on Parallel Algorithms and Architectures (SPAA), pages
3–12, 2017.

BIBLIOGRAPHY 327

[15] S. Assadi, X. Sun, and O. Weinstein. Massively Parallel Al-
gorithms for Finding Well-Connected Components in Sparse
Graphs. ArXiv e-prints, 2018. arXiv:1805.02974.

[16] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast Dis-
tributed Network Decompositions and Covers. Journal of Par-
allel and Distributed Computing, 39(2):105–114, 1996.

[17] B. Awerbuch, M. Luby, A. V. Goldberg, and S. A. Plotkin.
Network Decomposition and Locality in Distributed Compu-
tation. In the Proceedings of the IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 364–369, 1989.

[18] B. Awerbuch and D. Peleg. Sparse Partitions. In the Pro-
ceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), pages 503–513, 1990.

[19] A. Balliu, S. Brandt, J. Hirvonen, D. Olivetti, M. Rabie, and
J. Suomela. Lower Bounds for Maximal Matchings and Max-
imal Independent Dets. In the Proceedings of the IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages
481–497, 2019.

[20] A. Balliu, F. Kuhn, and D. Olivetti. Distributed Edge Coloring
in Time Quasi-Polylogarithmic in Delta. In the Proceedings
of the International Symposium on Principles of Distributed
Computing (PODC), pages 289–298, 2020.

[21] P. Bamberger, M. Ghaffari, F. Kuhn, Y. Maus, and J. Uitto.
On the Complexity of Distributed Splitting Problems. In the
Proceedings of the International Symposium on Principles of
Distributed Computing (PODC), pages 280–289, 2019.

[22] N. Bansal, A. Blum, and S. Chawla. Correlation Clustering.
Machine Learning, 56(1-3):89–113, 2004.

http://arxiv.org/abs/1805.02974

328 BIBLIOGRAPHY

[23] L. Barenboim and M. Elkin. Sublogarithmic Distributed MIS
Algorithm for Sparse Graphs using Nash-Williams Decompo-
sition. Distributed Computing, 22(5-6):363–379, 2010.

[24] L. Barenboim and M. Elkin. Distributed Graph Coloring:
Fundamentals and Recent Developments. Synthesis Lectures
on Distributed Computing Theory, 4(1):1–171, 2013.

[25] L. Barenboim, M. Elkin, and U. Goldenberg. Locally-
Iterative Distributed (∆ + 1)-Coloring Below Szegedy-
Vishwanathan Barrier, and Applications to Self-Stabilization
and to Restricted-Bandwidth Models. In the Proceedings of the
International Symposium on Principles of Distributed Com-
puting (PODC), pages 437–446, 2018.

[26] L. Barenboim, M. Elkin, and T. Maimon. Deterministic Dis-
tributed (∆ + o(∆))-Edge-Coloring, and Vertex-Coloring of
Graphs with Bounded Diversity. In the Proceedings of the
International Symposium on Principles of Distributed Com-
puting (PODC), pages 175–184, 2017.

[27] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The
Locality of Distributed Symmetry Breaking. In Foundations of
Computer Science (FOCS) 2012, pages 321–330. IEEE, 2012.

[28] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The Lo-
cality of Distributed Symmetry Breaking. J. ACM, 63(3):20:1–
20:45, 2016.

[29] P. Beame, P. Koutris, and D. Suciu. Skew in Parallel
Query Processing. In the Proceedings of the ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 212–223, 2014.

[30] P. Beame, P. Koutris, and D. Suciu. Communication Steps
for Parallel Query Processing. Journal of the ACM (JACM),
64(6):40, 2017.

BIBLIOGRAPHY 329

[31] J. Beck. An Algorithmic Approach to the Lovász Local
Lemma. I. Random Structures & Algorithms, 2(4):343–365,
1991.

[32] S. Behnezhad, S. Brandt, M. Derakhshan, M. Fischer, M. Ha-
jiaghayi, R. M. Karp, and J. Uitto. Massively Parallel Com-
putation of Matching and MIS in Sparse Graphs. In the Pro-
ceedings of the International Symposium on Principles of Dis-
tributed Computing (PODC), pages 481–490, 2019.

[33] S. Behnezhad, M. Derakhshan, M. Hajiaghayi, C. Stein, and
M. Sudan. Fully Dynamic Maximal Independent Set with
Polylogarithmic Update Time. In the Proceedings of the IEEE
Symposium on Foundations of Computer Science (FOCS),
pages 382–405, 2019.

[34] S. Behnezhad, L. Dhulipala, H. Esfandiari, J. Lacki, and
V. Mirrokni. Near-Optimal Massively Parallel Graph Connec-
tivity. In the Proceedings of the IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 1615–1636, 2019.

[35] S. Behnezhad, L. Dhulipala, H. Esfandiari, J. Lacki, V. Mir-
rokni, and W. Schudy. Parallel Graph Algorithms in Constant
Adaptive Rounds: Theory Meets Practice. Proceedings on the
VLDB Endowment (PVLDB), 13(13):3588–3602, 2020.

[36] A. Bernshteyn. Distributed Algorithms, the Lovász Lo-
cal Lemma, and Descriptive Combinatorics. arXiv preprint
arXiv:2004.04905, 2020.

[37] A. S. Biswas, R. Rubinfeld, and A. Yodpinyanee. Local Access
to Huge Random Objects Through Partial Sampling. In In-
novations in Theoretical Computer Science Conference, ITCS,
volume 151, pages 27:1–27:65, 2020.

330 BIBLIOGRAPHY

[38] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun.
Internally Deterministic Parallel Algorithms Can Be Fast. In
ACM SIGPLAN Notices, pages 181–192, 2012.

[39] G. E. Blelloch, J. T. Fineman, and J. Shun. Greedy Sequential
Maximal Independent Set and Matching are Parallel on Aver-
age. In Proceedings of the Symposium on Parallel Algorithms
and Architectures (SPAA), pages 308–317, 2012.

[40] R. Bocchino, V. Adve, S. Adve, and M. Snir. Parallel Pro-
gramming Must Be Deterministic By Default. In USENIX
Conference on Hot Topics in Parallelism, pages 4–4, 2009.

[41] B. Bollobás. Modern Graph Theory, volume 184. Springer
Science & Business Media, 2013.

[42] O. Bor̊uvka. O Jistém Problému Minimálńım. 1926.

[43] S. Brandt, M. Fischer, and J. Uitto. Matching and MIS for
Uniformly Sparse Graphs in the Low-Memory MPC Model.
arXiv preprint arXiv:1807.05374, 2018.

[44] S. Brandt, M. Fischer, and J. Uitto. Breaking the Linear-
Memory Barrier in MPC: Fast MIS on Trees with nε Memory
per Machine. In the Proceedings of the International Collo-
quium on Structural Information and Communication Com-
plexity, volume 11639, pages 124–138, 2019.

[45] S. Brandt, M. Fischer, and J. Uitto. Breaking the Linear-
Memory Barrier in MPC: Fast MIS on Trees with Strongly
Sublinear Memory. Theoretical Computer Science, 849:22–34,
2021.

[46] S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen,
J. Rybicki, J. Suomela, and J. Uitto. A Lower Bound for
the Distributed Lovász Local Lemma. In Proceedings of the

BIBLIOGRAPHY 331

Symposium on Theory of Computing (STOC), pages 479–488,
2016.

[47] S. Brandt, Y. Maus, and J. Uitto. A Sharp Threshold Phe-
nomenon for the Distributed Complexity of the Lovász Local
Lemma. In the Proceedings of the International Symposium on
Principles of Distributed Computing (PODC), pages 389–398,
2019.

[48] R. L. Brooks. On Colouring the Nodes of a Network. In Math-
ematical Proceedings of the Cambridge Philosophical Society,
volume 37, pages 194–197. Cambridge University Press, 1941.

[49] R. Bubley and M. Dyer. Path Coupling: A Technique for
Proving Rapid Mixing in Markov Chains. In the Proceedings
of the IEEE Symposium on Foundations of Computer Science
(FOCS), pages 223–231, 1997.

[50] N. Calkin and A. Frieze. Probabilistic Analysis of a Parallel
Algorithm for Finding Maximal Independent Sets. Random
Structures & Algorithms, 1(1):39–50, 1990.

[51] N. Calkin, A. Frieze, and L. Kučera. On the Expected Per-
formance of a Parallel Algorithm for Finding Maximal Inde-
pendent Subsets of a Random Graph. Random Structures &
Algorithms, 3(2):215–221, 1992.

[52] M. Ceccarello, A. Pietracaprina, G. Pucci, and E. Upfal. Space
and Time Efficient Parallel Graph Decomposition, Clustering,
and Diameter Approximation. In Proceedings of the Sympo-
sium on Parallel Algorithms and Architectures (SPAA), pages
182–191, 2015.

[53] Y.-J. Chang. Locality of Distributed Graph Problems. PhD
thesis, University of Michigan, 2019.

332 BIBLIOGRAPHY

[54] Y.-J. Chang, M. Fischer, M. Ghaffari, J. Uitto, and Y. Zheng.
The Complexity of (∆+1)-Coloring in Congested Clique, Mas-
sively Parallel Computation, and Centralized Local Compu-
tation. In the Proceedings of the International Symposium on
Principles of Distributed Computing (PODC), pages 471–480,
2019.

[55] Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto. The
Complexity of Distributed Edge Coloring with Small Palettes.
In Proceedings of ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 2633–2652, 2018.

[56] Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto. Distributed
Edge Coloring and a Special Case of the Constructive Lovász
Local Lemma. ACM Transactions on Algorithms (TALG),
16(1):1–51, 2019.

[57] Y.-J. Chang, T. Kopelowitz, and S. Pettie. An Exponential
Separation Between Randomized and Deterministic Complex-
ity in the LOCAL Model. In the Proceedings of the IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages
615–624, 2016.

[58] Y.-J. Chang, W. Li, and S. Pettie. An Optimal Distributed
(∆+1)-Coloring Algorithm? In Proceedings of the Symposium
on Theory of Computing (STOC), pages 445–456, 2018.

[59] Y.-J. Chang, W. Li, and S. Pettie. Distributed (∆ + 1)-
Coloring via Ultrafast Graph Shattering. SIAM Journal on
Computing, 49(3):497–539, 2020.

[60] Y.-J. Chang and S. Pettie. A Time Hierarchy Theorem for
the LOCAL Model. In the Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS), pages 156–167,
2017.

BIBLIOGRAPHY 333

[61] Y.-J. Chang and S. Pettie. A Time Hierarchy Theorem for
the LOCAL Model. SIAM Journal on Computing, 48(1):33–
69, 2019.

[62] S. Chatterjee, R. Gmyr, and G. Pandurangan. Sleeping is
Efficient: MIS in O(1)-Rounds Node-Averaged Awake Com-
plexity. In the Proceedings of the International Symposium on
Principles of Distributed Computing (PODC), pages 99–108,
2020.

[63] S. Chen, M. Delcourt, A. Moitra, G. Perarnau, and L. Pos-
tle. Improved Bounds for Randomly Sampling Colorings via
Linear Programming. In Proceedings of ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 2216–2234.
SIAM, 2019.

[64] S. Chen and A. Moitra. Linear Programming Bounds for Ran-
domly Sampling Colorings. arXiv preprint arXiv:1804.03156,
2018.

[65] F. Chierichetti, N. Dalvi, and R. Kumar. Correlation Clus-
tering in MapReduce. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pages 641–650. ACM, 2014.

[66] L. Chitnis, A. Das Sarma, A. Machanavajjhala, and V. Ras-
togi. Finding Connected Components in MapReduce in Loga-
rithmic Rounds. In IEEE International Conference on Data
Engineering ICDE, pages 50–61, 2013.

[67] K.-M. Chung, S. Pettie, and H.-H. Su. Distributed Algorithms
for the Lovász Local Lemma and Graph Coloring. In the Pro-
ceedings of the International Symposium on Principles of Dis-
tributed Computing (PODC), pages 134–143, 2014.

[68] R. Cole and U. Vishkin. Deterministic Coin Tossing and Ac-
celerating Cascades: Micro and Macro Techniques for Design-

334 BIBLIOGRAPHY

ing Parallel Algorithms. In Proceedings of the Symposium on
Theory of Computing (STOC), pages 206–219, 1986.

[69] D. Coppersmith, P. Raghavan, and M. Tompa. Parallel Graph
Algorithms that Are Efficient on Average. In the Proceedings
of the IEEE Symposium on Foundations of Computer Science
(FOCS), pages 260–269, 1987.

[70] G. Cormode, H. Jowhari, M. Monemizadeh, and S. Muthukr-
ishnan. The Sparse Awakens: Streaming Algorithms for
Matching Size Estimation in Sparse Graphs. In the Proceed-
ings of the Annual European Symposium on Algorithms, pages
29:1–29:15, 2017.

[71] A. Czumaj, P. Davies, and M. Parter. Graph Sparsification
for Derandomizing Massively Parallel Computation with Low
Space. In Proceedings of the Symposium on Parallel Algo-
rithms and Architectures (SPAA), pages 175–185, 2020.

[72] A. Czumaj, P. Davies, and M. Parter. Simple, Deterministic,
Constant-Round Coloring in the Congested Clique. In the
Proceedings of the International Symposium on Principles of
Distributed Computing (PODC), pages 309–318, 2020.

[73] A. Czumaj, J. Lacki, A. Madry, S. Mitrović, K. Onak, and
P. Sankowski. Round Compression for Parallel Matching Al-
gorithms. In Proceedings of the Symposium on Theory of Com-
puting (STOC), pages 471–484, 2018.

[74] A. Czumaj and C. Scheideler. A New Algorithm Approach
to the General Lovász Local Lemma with Applications to
Scheduling and Satisfiability Problems. In Proceedings of the
Symposium on Theory of Computing (STOC), pages 38–47,
2000.

[75] A. Czygrinow and M. Hańćkowiak. Distributed Algorithm
for Better Approximation of the Maximum Matching. In In-

BIBLIOGRAPHY 335

ternational Computing and Combinatorics Conference, pages
242–251, 2003.

[76] A. Czygrinow, M. Hańćkowiak, and E. Szymańska. A Fast Dis-
tributed Algorithm for Approximating the Maximum Match-
ing. In the Proceedings of the Annual European Symposium
on Algorithms, pages 252–263, 2004.

[77] A. Czygrinow, M. Hańćkowiak, and E. Szymańska. Dis-
tributed Algorithm for Approximating the Maximum Match-
ing. Discrete Applied Mathematics, 143(1):62–71, 2004.

[78] J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In Proceedings of the Symposium on
Operating Systems Design & Implementation (OSDI), pages
10–10, 2004.

[79] J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. Communications of the ACM, pages
107–113, 2008.

[80] M. Delcourt, G. Perarnau, and L. Postle. Rapid Mixing of
Glauber Dynamics for Colorings Below Vigoda’s 11/6 Thresh-
old. arXiv preprint arXiv:1804.04025, 2018.

[81] L. Dhulipala. Provably Efficient and Scalable Shared-Memory
Graph Processing. 2020.

[82] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically Ef-
ficient Parallel Graph Algorithms Can Be Fast and Scalable.
In Proceedings of the Symposium on Parallel Algorithms and
Architectures (SPAA), pages 393–404, 2018.

[83] L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. Blelloch,
P. Gibbons, and J. Shun. Sage: Parallel Semi-Asymmetric
Graph Algorithms for NVRAMs. Proceedings of the VLDB
Endowment (PVLDB), 13(9), 2020.

336 BIBLIOGRAPHY

[84] A. Drucker, F. Kuhn, and R. Oshman. On the Power of
the Congested Clique Model. In the Proceedings of the Inter-
national Symposium on Principles of Distributed Computing
(PODC), pages 367–376, 2014.

[85] J. Edmonds. Paths, Trees, and Flowers. Canadian Journal of
Mathematics, 17:449–467, 1965.

[86] M. Elkin and O. Neiman. Distributed Strong Diameter Net-
work Decomposition. In the Proceedings of the International
Symposium on Principles of Distributed Computing (PODC),
pages 211–216, 2016.

[87] M. Elkin, S. Pettie, and H.-H. Su. (2∆ − 1)-Edge-Coloring
Is Much Easier Than Maximal Matching in the Distributed
Setting. In Proceedings of ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 355–370, 2015.

[88] P. Erdős and L. Lovász. Problems and Results on 3-Chromatic
Hypergraphs and Some Related Questions. Infinite and finite
sets, 10(2):609–627, 1975.

[89] H. Esfandiari, M. T. Hajiaghayi, V. Liaghat, M. Monem-
izadeh, and K. Onak. Streaming Algorithms for Estimating
the Matching Size in Planar Graphs and Beyond. In Pro-
ceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1217–1233, 2015.

[90] L. Euler. Solutio Problematis ad Geometriam Situs Perti-
nentis. Commentarii Academiae Ccientiarum Petropolitanae,
pages 128–140, 1741.

[91] S. Even. Graph Algorithms. Cambridge University Press, 2011.

[92] J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein, and
Z. Svitkina. On Distributing Symmetric Streaming Computa-

BIBLIOGRAPHY 337

tions. ACM Transactions on Algorithms (TALG), 6(4):1–19,
2010.

[93] W. Feng, T. P. Hayes, and Y. Yin. Distributed Symmetry
Breaking in Sampling (Optimal Distributed Randomly Col-
oring with Fewer Colors). arXiv preprint arXiv:1802.06953,
2018.

[94] W. Feng, T. P. Hayes, and Y. Yin. Fully-Asynchronous Dis-
tributed Metropolis Sampler with Optimal Speedup. arXiv
preprint arXiv:1904.00943, 2019.

[95] W. Feng, T. P. Hayes, and Y. Yin. Distributed Metropolis
Sampler with Optimal Parallelism. In Proceedings of ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages
2121–2140, 2021.

[96] W. Feng, Y. Sun, and Y. Yin. What Can Be Sampled Lo-
cally? In the Proceedings of the International Symposium on
Principles of Distributed Computing (PODC), pages 121–130,
2017.

[97] W. Feng, N. K. Vishnoi, and Y. Yin. Dynamic Sampling from
Graphical Models. In Proceedings of the Symposium on Theory
of Computing (STOC), pages 1070–1081, 2019.

[98] W. Feng and Y. Yin. On Local Distributed Sampling and
Counting. In the Proceedings of the International Symposium
on Principles of Distributed Computing (PODC), pages 189–
198, 2018.

[99] M. Fischer. Improved Deterministic Distributed Matching via
Rounding. In Proceedings of the International Symposium on
Distributed Computing (DISC), volume 91, pages 17:1–17:15,
2017.

338 BIBLIOGRAPHY

[100] M. Fischer. Improved Deterministic Distributed Matching via
Rounding. Distributed Computing, 33(3-4):279–291, 2020.

[101] M. Fischer and M. Ghaffari. Sublogarithmic Distributed Al-
gorithms for Lovász Local Lemma with Implications on Com-
plexity Hierarchies. In Proceedings of the International Sym-
posium on Distributed Computing (DISC), pages 18:1–18:16,
2017.

[102] M. Fischer and M. Ghaffari. A Simple Parallel and Distributed
Sampling Technique: Local Glauber Dynamics. In Proceed-
ings of the International Symposium on Distributed Comput-
ing (DISC), volume 121, pages 26:1–26:11, 2018.

[103] M. Fischer, M. Ghaffari, and F. Kuhn. Deterministic Dis-
tributed Edge-Coloring via Hypergraph Maximal Matching.
In the Proceedings of the IEEE Symposium on Foundations of
Computer Science (FOCS), pages 180–191, 2017.

[104] M. Fischer, M. Ghaffari, and J. Uitto. Simple Graph Color-
ing Algorithms for Congested Clique and Massively Parallel
Computation. CoRR, abs/1808.08419, 2018.

[105] M. Fischer and A. Noever. Tight Analysis of Randomized
Greedy MIS. In Proceedings of ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2152–2160, 2018.

[106] M. Fischer and A. Noever. Tight Analysis of Parallel Random-
ized Greedy MIS. ACM Transaction on Algorithms (TALG),
16(1):6:1–6:13, 2020.

[107] P. Fraigniaud, M. Heinrich, and A. Kosowski. Local Conflict
Coloring. In the Proceedings of the IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 625–634, 2016.

[108] B. Gfeller and E. Vicari. A Randomized Distributed Algo-
rithm for the Maximal Independent Set Problem in Growth-

BIBLIOGRAPHY 339

Bounded Graphs. In the Proceedings of the International
Symposium on Principles of Distributed Computing (PODC),
pages 53–60, 2007.

[109] M. Ghaffari. An Improved Distributed Algorithm for Maximal
Independent Set. In Proceedings of ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 270–277, 2016.

[110] M. Ghaffari. Distributed MIS via All-to-All Communication.
In the Proceedings of the International Symposium on Princi-
ples of Distributed Computing (PODC), pages 141–149, 2017.

[111] M. Ghaffari. Distributed Maximal Independent Set using
Small Messages. In Proceedings of ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 805–820, 2019.

[112] M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrović, and R. Ru-
binfeld. Improved Massively Parallel Computation Algorithms
for MIS, Matching, and Vertex Cover. In the Proceedings of the
International Symposium on Principles of Distributed Com-
puting (PODC), pages 129–138, 2018.

[113] M. Ghaffari, C. Grunau, and C. Jin. Improved MPC Algo-
rithms for MIS, Matching, and Coloring on Trees and Beyond.
In Proceedings of the International Symposium on Distributed
Computing (DISC), volume 179, pages 34:1–34:18, 2020.

[114] M. Ghaffari, C. Grunau, and V. Rozhoň. Improved Deter-
ministic Network Decomposition. In Proceedings of ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages
2904–2923, 2021.

[115] M. Ghaffari, D. G. Harris, and F. Kuhn. On Derandom-
izing Local Distributed Algorithms. In the Proceedings of
the IEEE Symposium on Foundations of Computer Science
(FOCS), pages 662–673, 2018.

340 BIBLIOGRAPHY

[116] M. Ghaffari, J. Hirvonen, F. Kuhn, Y. Maus, J. Suomela, and
J. Uitto. Improved Distributed Degree Splitting and Edge
Coloring. Distributed Computing, 33(3):293–310, 2020.

[117] M. Ghaffari, C. Jin, and D. Nilis. A Massively Parallel Al-
gorithm for Minimum Weight Vertex Cover. In Proceedings
of the Symposium on Parallel Algorithms and Architectures
(SPAA), pages 259–268, 2020.

[118] M. Ghaffari and F. Kuhn. Deterministic Distributed Vertex
Coloring: Simpler, Faster, and without Network Decomposi-
tion. arXiv preprint arXiv:2011.04511, 2020.

[119] M. Ghaffari, F. Kuhn, and Y. Maus. On the Complexity of Lo-
cal Distributed Graph Problems. In Proceedings of the Sympo-
sium on Theory of Computing (STOC), pages 784–797, 2017.

[120] M. Ghaffari, F. Kuhn, Y. Maus, and J. Uitto. Deterministic
Distributed Edge-Coloring with Fewer Colors. In Proceedings
of the Symposium on Theory of Computing (STOC), pages
418–430, 2018.

[121] M. Ghaffari, F. Kuhn, and J. Uitto. Conditional Hardness
Results for Massively Parallel Computation from Distributed
Lower Bounds. In the Proceedings of the IEEE Symposium on
Foundations of Computer Science (FOCS), pages 1650–1663,
2019.

[122] M. Ghaffari and H.-H. Su. Distributed Degree Splitting, Edge
Coloring, and Orientations. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2505–
2523, 2017.

[123] M. Ghaffari and J. Uitto. Sparsifying Distributed Algorithms
with Ramifications in Massively Parallel Computation and
Centralized Local Computation. In Proceedings of ACM-

BIBLIOGRAPHY 341

SIAM Symposium on Discrete Algorithms (SODA), pages
1636–1653, 2019.

[124] G. Goel and J. Gustedt. Bounded Arboricity to Determine the
Local Structure of Sparse Graphs. In International Workshop
on Graph-Theoretic Concepts in Computer Science, pages
159–167. Springer, 2006.

[125] J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin. Parallel
Gibbs Sampling: From Colored Fields to Thin Junction Trees.
In Proceedings of the International Conference on Artificial
Intelligence and Statistics, pages 324–332, 2011.

[126] M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting,
Searching, and Simulation in the MapReduce Framework. In
Proc. ISAAC, pages 374–383. Springer, 2011.

[127] M. Göös, J. Hirvonen, and J. Suomela. Linear-in-Delta Lower
Bounds in the LOCAL Model. In the Proceedings of the Inter-
national Symposium on Principles of Distributed Computing
(PODC), pages 86–95, 2014.

[128] E. Grigorescu, M. Monemizadeh, and S. Zhou. Estimating
Weighted Matchings in o(n) Space. CoRR, abs/1604.07467,
2016. URL: http://arxiv.org/abs/1604.07467, arXiv:

1604.07467.

[129] H. Guo, M. Jerrum, and J. Liu. Uniform Sampling Through
the Lovász Local Lemma. In H. Hatami, P. McKenzie, and
V. King, editors, Proceedings of the Symposium on Theory of
Computing (STOC), pages 342–355, 2017.

[130] H. Guo, M. Jerrum, and J. Liu. Uniform Sampling Through
the Lovász Local Lemma. Journal of the ACM (JACM),
66(3):1–31, 2019.

http://arxiv.org/abs/1604.07467
http://arxiv.org/abs/1604.07467
http://arxiv.org/abs/1604.07467

342 BIBLIOGRAPHY

[131] M. Hańćkowiak, M. Karoński, and A. Panconesi. On the
Distributed Complexity of Computing Maximal Matchings.
In Proceedings of ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 219–225, 1998.

[132] M. Hańćkowiak, M. Karoński, and A. Panconesi. A Faster
Distributed Algorithm for Computing Maximal Matchings De-
terministically. In the Proceedings of the International Sympo-
sium on Principles of Distributed Computing (PODC), pages
219–228, 1999.

[133] M. Hańćkowiak, M. Karoński, and A. Panconesi. On the
Distributed Complexity of Computing Maximal Matchings.
SIAM Journal on Discrete Mathematics, 15(1):41–57, 2001.

[134] D. Harris. Derandomizing the Lovász Local Lemma via Log-
Space Statistical Yests. arXiv preprint arXiv:1807.06672,
2018.

[135] D. G. Harris. Deterministic Parallel Algorithms for Fooling
Polylogarithmic Juntas and the Lovász Local Lemma. ACM
Transactions on Algorithms (TALG), 14(4):1–24, 2018.

[136] D. G. Harris. Deterministic Algorithms for the Lovász Local
Lemma: Simpler, More General, and More Parallel. arXiv
preprint arXiv:1909.08065, 2019.

[137] D. G. Harris. Distributed Local Approximation Algorithms
for Maximum Matching in Graphs and Hypergraphs. In the
Proceedings of the IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 700–724. IEEE, 2019.

[138] D. G. Harris. Oblivious Resampling Oracles and Parallel Al-
gorithms for the Lopsided Lovász Local Lemma. ACM Trans-
actions on Algorithms (TALG), 17(1):1–32, 2020.

BIBLIOGRAPHY 343

[139] D. G. Harris, J. Schneider, and H.-H. Su. Distributed (∆ +
1)-Coloring in Sublogarithmic Rounds. Journal of the ACM,
65(4):19:1–19:21, 2018.

[140] N. J. Harvey, C. Liaw, and P. Liu. Greedy and Local Ra-
tio Algorithms in the MapReduce Model. arXiv preprint
arXiv:1806.06421, 2018.

[141] J. W. Hegeman and S. V. Pemmaraju. Lessons from the Con-
gested Clique Applied to MapReduce. Theoretical Computer
Science, 608:268–281, 2015.

[142] J. Hirvonen and J. Suomela. Distributed Maximal Matching:
Greedy is Optimal. In the Proceedings of the International
Symposium on Principles of Distributed Computing (PODC),
pages 165–174, 2012.

[143] J. E. Hopcroft and R. M. Karp. An n5/2 Algorithm for Maxi-
mum Matchings in Bipartite Graphs. SIAM Journal on Com-
puting, 2(4):225–231, 1973.

[144] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed Data-Parallel Programs from Sequential Build-
ing Blocks. SIGOPS Operating Systems Review, 41(3):59–72,
2007.

[145] A. Israeli and A. Itai. A Fast and Simple Randomized Paral-
lel Algorithm for Maximal Matching. Information Processing
Letters, 22(2):77–80, 1986.

[146] A. Israeli and Y. Shiloach. An Improved Parallel Algorithm for
Maximal Matching. Information Processing Letters, 22(2):57–
60, 1986.

[147] M. Jerrum. A Very Simple Algorithm for Estimating the Num-
ber of k-Colorings of a Low-Degree Graph. Random Structures
& Algorithms, 7(2):157–165, 1995.

344 BIBLIOGRAPHY

[148] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random
Generation of Combinatorial Structures From a Uniform Dis-
tribution. Theoretical Computer Science, 43:169–188, 1986.

[149] Ö. Johansson. Simple Distributed (∆+1)-Coloring of Graphs.
Information Processing Letters, 70(5):229–232, 1999.

[150] T. Jurdzinski and K. Nowicki. MST in O(1) Rounds of Con-
gested Clique. In Proceedings of ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2620–2632, 2018.

[151] H. J. Karloff, S. Suri, and S. Vassilvitskii. A Model of Com-
putation for MapReduce. In Proceedings of ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 938–948, 2010.

[152] R. M. Karp. Reducibility among Combinatorial Problems.
Springer, 1972.

[153] H. Klauck, D. Nanongkai, G. Pandurangan, and P. Robin-
son. Distributed Computation of Large-Scale Graph Prob-
lems. In Proceedings of ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 391–410. SIAM, 2014.

[154] D. König. Theorie der endlichen und unendlichen Graphen:
Kombinatorische Topologie der Streckenkomplexe, volume 16.
Akademische Verlagsgesellschaft mbH, 1936.

[155] A. Korman, J. Sereni, and L. Viennot. Toward More Localized
Local Algorithms: Removing Assumptions Concerning Global
Knowledge. Distributed Computing, 26(5-6):289–308, 2013.

[156] C. Koufogiannakis and N. E. Young. Distributed Frac-
tional Packing and Maximum Weighted b-Matching via Tail-
Recursive Duality. In Proceedings of the International Sym-
posium on Distributed Computing (DISC), pages 221–238.
Springer, 2009.

BIBLIOGRAPHY 345

[157] C. Koufogiannakis and N. E. Young. Distributed Algorithms
for Covering, Packing and Maximum Weighted Matching. Dis-
tributed Computing, 24(1):45–63, 2011.

[158] F. Kuhn. The Price of Locality: Exploring the Complexity of
Distributed Coordination Primitives. PhD thesis, ETH Zurich,
2005.

[159] F. Kuhn. Weak Graph Colorings: Distributed Algorithms and
Applications. In Proceedings of the Symposium on Parallel
Algorithms and Architectures (SPAA), pages 138–144, 2009.

[160] F. Kuhn. Faster Deterministic Distributed Coloring through
Recursive List Coloring. In Proceedings of ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 1244–1259.
SIAM, 2020.

[161] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer.
Fast Deterministic Distributed Maximal Independent Set
Computation on Growth-Bounded Graphs. Distributed Com-
puting, pages 273–287, 2005.

[162] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot
Be Computed Locally! In the Proceedings of the International
Symposium on Principles of Distributed Computing (PODC),
pages 300–309, 2004.

[163] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The Price of
Being Near-Sighted. In Proceedings of ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 980–989, 2006.

[164] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Local Com-
putation: Lower and Upper Bounds. Journal of the ACM
(JACM), 63:17:1–17:44, 2016.

346 BIBLIOGRAPHY

[165] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani. Fast
Greedy Algorithms in MapReduce and Streaming. ACM
Transactions on Parallel Computing (TOPC), 2(3):14, 2015.

[166] S. Kutten, D. Nanongkai, G. Pandurangan, and P. Robinson.
Distributed Symmetry Breaking in Hypergraphs. In Proceed-
ings of the International Symposium on Distributed Comput-
ing (DISC), pages 469–483, 2014.

[167] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filter-
ing: a Method for Solving Graph Problems in MapReduce.
In Proceedings of the Symposium on Parallel Algorithms and
Architectures (SPAA), pages 85–94, 2011.

[168] C. Lenzen. Optimal Deterministic Routing and Sorting on
the Congested Clique. In the Proceedings of the International
Symposium on Principles of Distributed Computing (PODC),
pages 42–50, 2013.

[169] C. Lenzen and R. Wattenhofer. Brief Announcement: Expo-
nential Speed-up of Local Algorithms Using Non-Local Com-
munication. In the Proceedings of the International Sympo-
sium on Principles of Distributed Computing (PODC), pages
295–296, 2010.

[170] C. Lenzen and R. Wattenhofer. MIS on Trees. In the Pro-
ceedings of the International Symposium on Principles of Dis-
tributed Computing (PODC), pages 41–48. ACM, 2011.

[171] N. Linial. Distributive Graph Algorithms - Global Solutions
from Local Data. In the Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS), pages 331–335,
1987.

[172] N. Linial. Locality in Distributed Graph Algorithms. SIAM
Journal on Computing, 21(1):193–201, 1992.

BIBLIOGRAPHY 347

[173] N. Linial. Local-Global Phenomena in Graphs. Combina-
torics, Probability and Computing, 2(4):491–503, 1993.

[174] N. Linial and M. Saks. Decomposing graphs into regions of
small diameter. In Proceedings of the Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’91, pages
320–330, 1991.

[175] Z. Lotker, B. Patt-Shamir, E. Pavlov, and D. Peleg. Minimum-
Weight Spanning Tree Construction in O(log log n) Communi-
cation Rounds. SIAM Journal on Computing, 35(1):120–131,
2005.

[176] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved Dis-
tributed Approximate Matching. In the Proceedings of the
International Symposium on Principles of Distributed Com-
puting (PODC), pages 129–136, 2008.

[177] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved Dis-
tributed Approximate Matching. Journal of the ACM
(JACM), 62(5), 2015.

[178] Z. Lotker, B. Patt-Shamir, and A. Rosen. Distributed Ap-
proximate Matching. In the Proceedings of the International
Symposium on Principles of Distributed Computing (PODC),
pages 167–174, 2007.

[179] Z. Lotker, E. Pavlov, B. Patt-Shamir, and D. Peleg. MST
Construction in O(log log n) Communication Rounds. In Pro-
ceedings of the Symposium on Parallel Algorithms and Archi-
tectures (SPAA), pages 94–100, 2003.

[180] M. Luby. A Simple Parallel Algorithm for the Maximal In-
dependent Set Problem. In Proceedings of the Symposium on
Theory of Computing (STOC), pages 1–10, 1985.

348 BIBLIOGRAPHY

[181] M. Luby. A Simple Parallel Algorithm for the Maximal
Independent Set Problem. SIAM Journal on Computing,
15(4):1036–1053, 1986.

[182] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a System for Large-
Scale Graph Processing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 135–
146, 2010.

[183] A. McGregor. Finding Graph Matchings in Data Streams. In
Approximation, Randomization and Combinatorial Optimiza-
tion. Algorithms and Techniques, pages 170–181. Springer,
2005.

[184] Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and A. Zem-
mari. An Optimal Bit Complexity Randomized Distributed
MIS Algorithm. In Structural Information and Communica-
tion Complexity, pages 323–337. Springer, 2010.

[185] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller. Equation of State Calculations by
Fast Computing Machines. The journal of chemical physics,
21(6):1087–1092, 1953.

[186] M. Molloy and B. Reed. Further Algorithmic Aspects of the
Local Lemma. In Proceedings of the Symposium on Theory of
Computing (STOC), pages 524–529, 1998.

[187] M. Molloy and B. Reed. Graph Coloring and the Probabilistic
Method, 2002.

[188] R. A. Moser. A Constructive Proof of the Lovász Local
Lemma. In Proceedings of the Symposium on Theory of Com-
puting (STOC), pages 343–350, 2009.

BIBLIOGRAPHY 349

[189] R. A. Moser and G. Tardos. A Constructive Proof of the
General Lovász Local Lemma. Journal of the ACM (JACM),
57(2):11, 2010.

[190] H. M. Mulder. Julius Petersen’s Theory of Regular Graphs.
Discrete mathematics, 100(1-3):157–175, 1992.

[191] S. Nahar, S. Sahni, and E. Shragowitz. Simulated Anneal-
ing and Combinatorial Optimization. In ACM/IEEE Design
Automation Conference, pages 293–299. IEEE, 1986.

[192] D. Nanongkai, T. Saranurak, and S. Yingchareonthawornchai.
Breaking Quadratic Time for Small Vertex Connectivity and
an Approximation Scheme. In Proceedings of the Symposium
on Theory of Computing (STOC), pages 241–252, 2019.

[193] D. Nanongkai and M. Scquizzato. Equivalence Classes and
Conditional Hardness in Massively Parallel Computations. In
the Proceedings of the International Conference on Principles
of Distributed Systems (OPODIS), volume 153, pages 33:1–
33:16, 2019.

[194] M. Naor. A Lower Bound on Probabilistic Algorithms for
Distributive Ring Coloring. SIAM Journal on Discrete Math-
ematics, 4(3):409–412, 1991.

[195] M. Naor and L. Stockmeyer. What Can Be Computed Lo-
cally? In Proceedings of the Symposium on Theory of Com-
puting (STOC), pages 184–193. SIAM, 1993.

[196] M. Naor and L. Stockmeyer. What Can Be Computed Lo-
cally? SIAM Journal on Computing, 24(6):1259–1277, 1995.

[197] C. S. J. Nash-Williams. Edge-Disjoint Spanning Trees of Fi-
nite Graphs. Journal of the London Mathematical Society,
1(1):445–450, 1961.

350 BIBLIOGRAPHY

[198] C. S. J. Nash-Williams. Decomposition of Finite Graphs into
Forests. Journal of the London Mathematical Society, 1(1):12–
12, 1964.

[199] C. S. J. A. Nash-Williams. Edge-Disjoint Spanning Trees of
Finite Graphs. Journal of the London Mathematical Society,
36:445–450, 1961.

[200] D. Newman, P. Smyth, M. Welling, and A. U. Asuncion. Dis-
tributed Inference for Latent Dirichlet Allocation. In Advances
in neural information processing systems, pages 1081–1088,
2008.

[201] K. Onak. Round Compression for Parallel Graph Algorithms
in Strongly Sublinear Space. arXiv preprint arXiv:1807.08745,
2018.

[202] K. Onak, B. Schieber, S. Solomon, and N. Wein. Fully Dy-
namic MIS in Uniformly Sparse Graphs. In the Proceedings
of the International Colloquium on Automata, Languages and
Programming (ICALP), pages 92:1–92:14, 2018.

[203] K. Onak, B. Schieber, S. Solomon, and N. Wein. Fully Dy-
namic MIS in Uniformly Sparse Graphs. ACM Transactions
on Algorithms (TALG), 16(2):1–19, 2020.

[204] J. Pach and G. Tardos. Conflict-Free Colorings of Graphs
and Hypergraphs Probability and Computing. Combinatorics,
18:819–834, 2009.

[205] A. Panconesi and R. Rizzi. Some Simple Distributed Algo-
rithms for Sparse Networks. Distributed computing, 14(2):97–
100, 2001.

[206] A. Panconesi and M. Sozio. Fast Primal-Dual Distributed Al-
gorithms for Scheduling and Matching Problems. Distributed
Computing, 22(4):269–283, 2010.

BIBLIOGRAPHY 351

[207] A. Panconesi and A. Srinivasan. Improved Distributed Algo-
rithms for Coloring and Network Decomposition Problems.
In Proceedings of the Symposium on Theory of Computing
(STOC), pages 581–592, 1992.

[208] A. Panconesi and A. Srinivasan. On the Complexity of Dis-
tributed Network Decomposition. J. Algor., 20(2):356–374,
1996.

[209] M. Parter. (∆+1) Coloring in the Congested Clique Model. In
the Proceedings of the International Colloquium on Automata,
Languages and Programming (ICALP), pages 160:1–160:14,
2018.

[210] M. Parter and H.-H. Su. Randomized (∆ + 1) Coloring in
O(log∗∆) Congested Clique Rounds. In Proceedings of the
International Symposium on Distributed Computing (DISC),
pages 39:1–39:18, 2018.

[211] D. Peleg. Distributed Computing: A Locality-Sensitive Ap-
proach. Society for Industrial and Applied Mathematics, 2000.

[212] S. V. Pemmaraju. Equitable Coloring Extends Chernoff-
Hoeffding Bounds. In Approximation, Randomization, and
Combinatorial Optimization: Algorithms and Techniques,
pages 285–296. Springer, 2001.

[213] S. Pettie and H.-H. Su. Distributed Coloring Algorithms
for Triangle-Free Graphs. Information and Computation,
243:263–280, 2015.

[214] A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri, and
E. Upfal. Space-Round Tradeoffs for MapReduce Computa-
tions. In Proceedings of the International Conference on Su-
percomputing, pages 235–244, 2012.

352 BIBLIOGRAPHY

[215] T. Roughgarden, S. Vassilvitskii, and J. R. Wang. Shuffles
and Circuits: (On Lower Bounds for Modern Parallel Com-
putation). In Proceedings of the Symposium on Parallel Algo-
rithms and Architectures (SPAA), pages 1–12, 2016.

[216] V. Rozhoň and M. Ghaffari. Polylogarithmic-Time Determin-
istic Network Decomposition and Distributed Derandomiza-
tion. In Proceedings of the Symposium on Theory of Comput-
ing (STOC), pages 350–363, 2020.

[217] R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. Fast Local
Computation Algorithms. In Symposium on Innovations in
Theoretical of Computer Science, pages 223–238, 2011.

[218] J. Salas and A. D. Sokal. Absence of Phase Transition for
Antiferromagnetic Potts Models via the Dobrushin Unique-
ness Theorem. Journal of Statistical Physics, 86(3-4):551–579,
1997.

[219] J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-
Hoeffding Bounds for Applications with Limited Indepen-
dence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995.

[220] J. Schneider, M. Elkin, and R. Wattenhofer. Symmetry Break-
ing Depending on the Chromatic Number or the Neighborhood
Growth. Theoretical Computer Science, 509:40–50, 2013.

[221] J. Schneider and R. Wattenhofer. An Optimal Maximal In-
dependent Set Algorithm For Bounded-Independence Graphs.
Distributed Computing, 22(5):349–361, 2010.

[222] A. Srinivasan. Improved Algorithmic Versions of the Lovász
Local Lemma. In Proceedings of ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 611–620. Society for In-
dustrial and Applied Mathematics, 2008.

BIBLIOGRAPHY 353

[223] H.-H. Su and H. T. Vu. Distributed Dense Subgraph Detec-
tion and Low Outdegree Orientation. In Proceedings of the
International Symposium on Distributed Computing (DISC),
volume 179, pages 15:1–15:18, 2020.

[224] J. Suomela. Distributed Algorithms for Edge Dominating Sets.
In the Proceedings of the International Symposium on Princi-
ples of Distributed Computing (PODC), pages 365–374, 2010.

[225] E. Vigoda. Improved Bounds for Sampling Colorings. Journal
of Mathematical Physics, 41(3):1555–1569, 2000.

[226] V. G. Vizing. On an Estimate of the Chromatic Class of a
p-Graph. Diskret Analiz, 3(7):25–30, 1964.

[227] M. Wattenhofer and R. Wattenhofer. Distributed Weighted
Matching. In Proceedings of the International Symposium
on Distributed Computing (DISC), pages 335–348. Springer,
2004.

[228] T. White. Hadoop: The Definitive Guide. O’Reilly Media,
Inc., 2012.

[229] F. Yan, N. Xu, and Y. Qi. Parallel Inference for Latent Dirich-
let Allocation on Graphics Processing Units. In Advances
in Neural Information Processing Systems, pages 2134–2142,
2009.

[230] M. Yannakakis and F. Gavril. Edge Dominating Sets in
Graphs. SIAM Journal on Applied Mathematics, 38(3):364–
372, 1980.

[231] G. Yaroslavtsev and A. Vadapalli. Massively Parallel Algo-
rithms and Hardness for Single-Linkage Clustering under `p
Distances. In International Conference on Machine Learning,
pages 5600–5609. PMLR, 2018.

354 BIBLIOGRAPHY

[232] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster Computing with Working Sets. In
USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud), 2010.

