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Abstract

Secure multi-party computation (MPC) allows a set of parties to jointly
perform a distributed computation task in a secure manner. This very
general problem is fundamental in cryptography and distributed proto-
cols, and can be studied according to countless parameters: the underly-
ing communication network, the task to compute, and so on.

Over the past decades, the problem of multi-party computation has
been the subject of an enormous body of research. The number of appli-
cations for MPC is potentially unlimited, and protocols for MPC transi-
tioned from being purely theoretical, to actually being deployed in prac-
tice. Continuing deep theoretical work to ensure that MPC stands on
strong scientific foundations is crucial to achieve further progress.

This thesis makes contributions in various topics of multi-party com-
putation. One can roughly differentiate three parts.

Multi-Party Constructive Cryptography. In the first part, we give
contributions to the definitional part of MPC. We model the setting of
MPC in the constructive cryptography framework (CC), by providing
two instantiations of its abstract layer. In the first instantiation, we
give a general framework that models the setting of MPC with so-called
adaptive security, and provide a clean-slate treatment of adaptive secu-
rity guarantees in MPC, exploiting the specification concept of CC. Our
new security notion is technically weaker than standard adaptive secu-
rity, but nevertheless captures security against a fully adaptive adversary.
Moreover, the notion avoids the commitment problem and therefore the
need to use non-committing encryption tools. In the second instantiation,
we provide a very simple framework tailored to the meaningful setting
of synchronous protocols and static corruption. The simplicity of the
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framework makes it suitable for teaching purposes.

MPC with Enhanced Security Guarantees. In the second part, we
explore MPC protocols with enhanced security guarantees. First, we ex-
plore protocols that achieve simultaneously the best of both synchronous
and asynchronous protocols. Two main differences arise when comparing
synchronous and asynchronous protocols. Synchronous protocols achieve
a high corruption tolerance, and allow every party to give input to the
computation. However, they lose all their security guarantees when syn-
chrony assumptions are violated. Moreover, they proceed in ’rounds’, so
their speed is proportional to the publicly known worst-case delay up-
per bound. Asynchronous protocols, on the other hand, do not rely on
any synchrony assumptions and work under arbitrary network conditions.
Moreover, they are responsive: if the network is fast, parties output fast.
However, they have a low corruption resilience, and parties with slow
connections unavoidably cannot give input. We investigate if one can
obtain advantages of both worlds: a high corruption tolerance and input
completeness, with no synchrony assumptions and with responsiveness.

Second, we consider the setting of topology-hiding computation (THC),
where parties have access to an incomplete network of synchronous chan-
nels. Here, protocols require the additional security goal that the topol-
ogy of the network must remain private. We show a THC protocol under
fail-stop corruption and standard assumptions, improving over previous
results which were only semi-honest or required trusted hardware.

Efficient Byzantine Agreement. In the third part, we focus on the ef-
ficiency of Byzantine agreement (BA) protocols, a fundamental primitive
in the design of MPC protocols. First, we generalize the Feldman-Micali
paradigm and give a new elegant way to design round-efficient BA proto-
cols. Our results show that the round complexity of state of the art BA
protocols can be considerably improved with this approach. In particu-
lar, we give a BA protocol for the t < n/3 setting that improves upon
the best known protocol by a factor of 1/2, and uses a single coin toss-
ing. Second, we show an asynchronous BA protocol with subquadratic
communication assuming an initial trusted setup. At the core of this con-
struction, lies an MPC protocol with subquadratic communication when
computing no-input functionalities with short output (e.g., coin tossing),
which is of independent interest.



Zusammenfassung

Sichere Mehrparteienberechnung (MPC von Englisch Multi-Party Com-
putation) erlauben einer Menge von Spielern eine verteilte Berechnung
auf sichere Weise gemeinsam auszuführen. Dieses sehr allgemeine Pro-
blem ist in der Kryptographie und in verteilten Protokollen von grund-
legender Bedeutung und kann anhand zahlreicher Parameter untersucht
werden: anhand des zugrunde liegenden Kommunikationsnetzwerks, der
zu berechnenden Aufgabe und so weiter.

In den letzten Jahrzehnten war das Problem der Mehrparteienberech-
nung Gegenstand einer enormen Forschung. Die Anzahl der Anwendun-
gen für MPC ist möglicherweise unbegrenzt, und die Protokolle für MPC
wurden von rein theoretischen Anwendungen auf die tatsächliche Bereit-
stellung in der Praxis umgestellt. Die Fortsetzung tiefgreifender theore-
tischer Arbeiten, um sicherzustellen, dass MPC auf soliden wissenschaft-
lichen Grundlagen steht, ist entscheidend, um weitere Fortschritte zu er-
zielen.

Diese Arbeit leistet Beiträge zu verschiedenen Themen der Mehrpar-
teienberechnung. Man kann diese grob in drei Bereiche unterteilen.

Multi-Party Konstruktive Kryptographie. Im ersten Teil leisten wir
Beiträge zum Definitionsteil von MPC. Wir modellieren MPC in dem
Konstruktiven Kryptographie Framework (CC von Englisch Construc-
tive Cryptography), indem wir zwei Instanziierungen seiner abstrakten
Schicht bereitstellen. In der ersten Instanziierung geben wir einen allge-
meinen Rahmen an, der MPC mit der sogenannten adaptiven Sicherheit
modelliert und eine neuere Behandlung der adaptiven Sicherheitsgaran-
tien in MPC unter Ausnutzung des Spezifikationskonzepts von CC bie-
tet. Unser neuer Sicherheitsbegriff ist technisch schwächer als die stan-
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dardmässige adaptive Sicherheit, erfasst jedoch die Sicherheit gegen ei-
nen vollständig adaptiven Gegner. Darüber hinaus vermeidet der Begriff
das Commitment-Problem und daher die Notwendigkeit, non-committing-
Verschlüsselungstools zu verwenden. In der zweiten Instanziierung bieten
wir ein sehr einfaches Framework, das auf den relevanten Bereich syn-
chroner Protokolle und statischer Korruption zugeschnitten ist. Die Ein-
fachheit des Frameworks macht es für Unterrichtszwecke geeignet.

MPC mit erweiterten Sicherheitsgarantien. Im zweiten Teil un-
tersuchen wir MPC-Protokolle mit erweiterten Sicherheitsgarantien. Zu-
nächst untersuchen wir Protokolle, die gleichzeitig das Beste aus synchro-
nen und asynchronen Protokollen erzielen. Beim Vergleich von synchro-
nen und asynchronen Protokollen ergeben sich zwei Hauptunterschiede.
Synchrone Protokolle erreichen eine hohe Korruptionstoleranz und ermög-
lichen es jedem Spieler, Eingaben für die Berechnung zu machen. Sie ver-
lieren jedoch alle ihre Sicherheitsgarantien, wenn Synchronisationsannah-
men verletzt werden. Darüber hinaus operieren sie in “Runden”, sodass
ihre Geschwindigkeit proportional zur öffentlich bekannten Obergrenze
für die Verzögerung im ungünstigsten Fall ist. Asynchrone Protokolle
basieren hingegen nicht auf Synchronisationsannahmen und arbeiten un-
ter beliebigen Netzwerkbedingungen. Darüber hinaus sind sie responsiv:
Wenn das Netzwerk schnell ist, erhalten die Parteien ihre Ausgabe schnell.
Sie weisen jedoch eine geringe Korruptionsresistenz auf, und Parteien
mit langsamen Verbindungen können unvermeidlich keine Beiträge leis-
ten. Wir untersuchen, ob man die Vorteile beider Welten kombinieren
kann: eine hohe Korruptionstoleranz und Vollständigkeit der Eingabe,
ohne Synchronisationsannahmen und responsivem Verhalten.

Zweitens betrachten wir Topologie-Versteckende-Berechnung (THC
von Englisch Topology-Hiding Computation), bei der Parteien Zugriff auf
ein unvollständiges Netzwerk synchroner Kanäle haben. Hier erfordern
Protokolle das zusätzliche Sicherheitsziel, dass die Topologie des Netz-
werks privat bleiben muss. Wir zeigen ein THC-Protokoll unter Fail-Stop-
Korruption und Standardannahmen, das frühere Ergebnissen verbessert,
die nur halb-ehrliche Korruption tolerieren konnten oder vertrauenswür-
dige Hardware erforderten.

Effiziente Byzantinische Vereinbarung. Im dritten Teil konzentrie-
ren wir uns auf die Effizienz der Protokolle der byzantinischen Vereinba-
rung (BA von Englisch Byzantine Agreement), ein grundlegendes Ement
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beim Entwurf von MPC-Protokollen. Zunächst verallgemeinern wir das
Feldman-Micali-Paradigma und geben eine neue elegante Möglichkeit,
runden-effiziente BA-Protokolle zu entwerfen. Unsere Ergebnisse zeigen,
dass die Runden-Komplexität von BA-Protokollen nach dem Stand der
Technik mit diesem Ansatz erheblich verbessert werden kann. Insbeson-
dere geben wir ein BA-Protokoll für den Fall t < n/3 an, das das bekann-
teste Protokoll um den Faktor 1/2 verbessert und einen einzelnen Münz-
wurf verwendet. Zweitens zeigen wir ein asynchrones BA-Protokoll mit
subquadratischer Kommunikation unter der Annahme eines anfänglichen
vertrauenswürdigen Setups. Im Kern dieser Konstruktion liegt ein MPC-
Protokoll mit subquadratischer Kommunikation bei der Berechnung von
Funktionen ohne Eingabe mit kurzer Ausgabe (z. B. Münzwurf), das von
unabhängigem Interesse ist.
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Chapter 1

Introduction

1.1 Motivation
Secure multi-party computation (MPC) is one of the most fundamental
problems in cryptography. It considers the scenario where a set of par-
ties wish to carry out a computation in a secure manner. Security in
this context informally means guaranteeing the correctness of the com-
putation as well as the privacy of parties’ inputs, even when some of
the parties might misbehave. There is a huge number of applications for
MPC, including voting, consensus, privacy-preserving auctions, privacy-
preserving machine learning, and many more. Since the invention of its
first theoretical results a few decades ago, a huge amount of research has
been done.

Security Definitions. A crucial step towards meaningfully designing
and analyzing cryptographic protocols is to come up with appropriate
definitions of security. Formulating good definitions is highly non-trivial:
the definition should closely capture the aspects that we care about, while
at the same time being simple and usable, even minimal, avoiding as much
as possible unnecessary artifacts.

A very natural approach to understand the security of distributed pro-
tocols (and in particular MPC protocols), is by means of a construction.
There, one needs to specify the assumed systems or modules available to
the protocol, and the ideal system that the distributed protocol aims to
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achieve. For example, one can consider a key agreement protocol, where
parties have access to authenticated communication, and the goal is to
construct an ideal uniform random shared secret key. Another example
can be the classical BGW model, where parties have access to a network
of synchronous pair-wise secure channels, and the ideal system allows
parties to evaluate a function. Importantly, the construction statements
should then be composable: in any larger application that assumes the
availability of an ideal system, it is safe to replace it by the corresponding
protocol and assumed modules that achieve it.

A long-term goal is therefore to build a solid library of constructions
that are useful for large applications in a modular way.

Constructions in MPC. One can roughly classify MPC constructions
according to two aspects about the real-world systems that parties have
available when executing a protocol.

The first aspect is the reliability of computers that parties use to exe-
cute the protocol. Typical settings include parties that run the protocol
on computers that can be hacked and arbitrarily taken over (often de-
noted the active and adaptive corruption model), or one may consider
computers that execute correctly the protocol specification, but that can
leak the internal state (the passive corruption model). Note that the
space of computers that one can consider is potentially unlimited: one
can consider randomness corruption, memory corruption, etc.1

The second aspect is the communication network that parties have
available. The most common network considered in the literature of
MPC is the so-called synchronous network, where an upper bound on
the network delay is assumed. When considering synchronous networks,
one typically also assumes that parties have access to synchronized clocks
as well. Another popular communication network is the asynchronous
network. Here, protocols do not rely on any timing assumptions and the
network delay is arbitrary, but at the same time it is more challenging to
achieve.

In this thesis, we explore such MPC constructions and the concrete
case of Byzantine agreement according to both aspects, with different

1In the literature, one often considers an adversary entity explicitly, and specifies
what the adversarial entity may or may not do. One then usually says that a party
gets corrupted, meaning that its computer was hacked. Note that instead of defining
different types of adversary entity, one can make constructive statements by simply
specifying the guarantees of the computers available in the protocol.
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security guarantees and different levels of efficiency.

1.2 Overview and Contributions
This thesis is based on some of the research done during my Ph.D. studies
at ETH Zurich. Parts of the material were published in [LLM+18, BLL20,
LM20b, BKLL20, LLM+20b, FLL21, HLM21], together with many of
the collaborators I was lucky to interact with, and some parts are still
unpublished. Some of the research done during my Ph.D. did not make it
to the thesis, because it is still on-going, did not fit in the topic or various
other reasons. These include the published papers [BCLM17, LMRT17,
LLM+20a, GHL20, LMM20, HKL20, CHL21, DHL21].

The thesis makes contributions in various topics of multi-party com-
putation, and is divided into three parts. In the first part, we give contri-
butions to the definitional part of multi-party computation. The second
part explores MPC constructions with enhanced security guarantees. The
third part focuses on the efficiency of Byzantine agreement protocols, a
fundamental primitive used to design MPC protocols. In the following,
we summarize the main contributions and give pointers to the relevant
chapters and the papers they are based on.

1.2.1 Multi-Party Constructive Cryptography
In this part, we give definitional contributions to the area of multi-party
computation. The part contains Chapters 3 to 5.

Constructive Cryptography Framework: The Basics

We take the constructive cryptography framework (CC) developed by
Maurer and Renner [MR11, Mau11, MR16] as the starting point. Chapter
3 is devoted to summarize the essential concepts that will be used in later
chapters.

The constructive cryptography framework follows the very natural
constructive paradigm described in the introduction. The central con-
cept in constructive cryptography is that of a resource. Resources model
both the systems or modules available to a protocol (e.g., a communi-
cation network, computers, clocks, etc.), and the ideal system that the
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protocol is supposed to construct (e.g., a broadcast channel, a secure
function evaluation system, etc.). The framework then specifies a theory
of resources with an algebra, where protocols can transform resources to
create further resources, following well-defined algebraic axioms.

Although Parts II and III of the thesis are not written in the CC
framework, mostly because the development of the framework took place
in parallel with the results of other parts (and some aspects are still
under development), all results can be phrased within the CC framework.
Moreover, the general paradigm and philosophy remains the basis of this
thesis.

Adaptive Security in MPC

Chapter 4 contains an instantiation of the constructive cryptography
framework to the setting of multi-party computation with adaptive se-
curity, where the adversary is allowed to choose adaptively which parties
to corrupt during the protocol execution. A main technical obstacle in
this context is the so-called “commitment problem”, where the simulator
is unable to consistently explain the internal state of a party with respect
to its pre-corruption outputs. As a result, protocols typically resort to
the use of cryptographic primitives like non-committing encryption, in-
curring an important efficiency loss.

We provide a new, clean-slate treatment of adaptive security in MPC,
exploiting the specification concept of constructive cryptography. A new
natural security notion, called CC-adaptive security, is proposed, which
is technically weaker than standard adaptive security but nevertheless
captures security against a fully adaptive adversary. Known protocol ex-
amples separating between adaptive and static security are also insecure
in our notion. Moreover, our notion avoids the commitment problem
and thereby the need to use non-committing tools. We exemplify this
by showing that the protocols by Cramer, Damgard and Nielsen (EU-
ROCRYPT’01) for the honest majority setting, and (the variant without
non-committing encryption) by Canetti, Lindell, Ostrovsky and Sahai
(STOC’02) for the dishonest majority setting, achieve CC-adaptive se-
curity. The latter example is of special interest since all UC-adaptive
protocols in the dishonest majority setting require some form of non-
committing or equivocal encryption. The material of this chapter is based
on the published work in [HLM21].
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Synchronous Constructive Cryptography

Chapter 5 contains a simple synchronous composable security framework
as an instantiation of the constructive cryptography framework, aiming to
capture minimally, without unnecessary artefacts, exactly what is needed
to state synchronous security guarantees. The results in this chapter were
previously published in [LM20b].

The objects of study are specifications (i.e., sets) of systems, and tra-
ditional security properties like consistency and validity can naturally
be understood as specifications, thus unifying composable and property-
based definitions. The framework’s simplicity is in contrast to current
composable frameworks for synchronous computation which are built on
top of an asynchronous framework (e.g. the UC framework), thus not only
inheriting artefacts and complex features used to handle asynchronous
communication, but adding additional overhead to capture synchronous
communication. We then demonstrate how secure (synchronous) multi-
party computation protocols can be understood as constructing a com-
puter that allows a set of parties to perform an arbitrary, on-going com-
putation, in line with the arithmetic black-box functionality proposed by
Damgard and Nielsen [DN03]. An interesting aspect is that the instruc-
tions of the computation need not be fixed before the protocol starts
but can also be determined during an on-going computation, possibly
depending on previous outputs.

1.2.2 Multi-Party Computation with Enhanced Secu-
rity Guarantees

In this part, we explore multi-party computation constructions with en-
hanced security guarantees. By enhanced security guarantees we mean
security guarantees that are typically not achievable by usual MPC pro-
tocols, as we summarize below. The part contains Chapters 6 to 9.

Universally Composable Framework: The Basics

The results in this part are described using the universally composable
framework (UC) introduced by Canetti [Can01]. Chapter 6 summarizes
the main concepts and notation of the framework, and an instantiation of
UC functionalities for synchronized clocks and different types of networks.
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Best of Synchronous and Asynchronous Protocols

The first two results in this part are devoted to the design of proto-
cols achieving (simultaneously) guarantees that synchronous and asyn-
chronous protocols achieve. The results are in Chapters 7 and Chapter 8,
and are based on the previously published works in [BLL20, LLM+20b].

Two main differences arise when comparing synchronous and asyn-
chronous protocols. Synchronous MPC protocols can achieve the optimal
corruption threshold n/2 for full security assuming setup, and even arbi-
trary number of corruptions for the case of security with abort. Moreover,
they allow every party to give input to the computation. However, they
work under the assumption that the network is synchronous, and become
completely insecure when synchrony assumptions are violated. Moreover,
synchronous protocols proceed in rounds, so their speed is proportional
to the publicly known worst-case delay upper bound.

Asynchronous MPC protocols do not rely on any synchrony timing
assumptions and work under arbitrary network conditions. These proto-
cols are message-driven and have the feature that the speed at which the
parties can obtain output depends on the actual network delay. They
are responsive: if the network is fast, parties output fast. However, they
tolerate less than n/3 corruptions, and parties with slow connections un-
avoidably cannot give input.
Synchronous MPC with Asynchronous Fallback. Chapter 7 inves-
tigates whether there exists a protocol for MPC that can achieve security
guarantees when executed in either network type. More concretely, we
investigate if there is a protocol tolerating up to ts < n/2 corruptions
under a synchronous network and ta < n/3 corruptions even when the
network is asynchronous. We show that such a protocol exists if and only
if ta + 2ts < n and the number of inputs taken into account under an
asynchronous network is at most n− ts.
Synchronous MPC with Asynchronous Responsiveness. Chap-
ter 8 investigates whether it is possible to leverage MPC protocols that
run over a synchronous network to achieve responsiveness: full security
with responsiveness up to t corruptions, and extended security (full se-
curity or security with unanimous abort) with no responsiveness up to
T ≥ t corruptions. We show that:

• For the case of unanimous abort as extended security, there is an
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MPC protocol if and only if T + 2t < n.

• For the case of full security as extended security, there is an MPC
protocol if and only if T < n

2 and T + 2t < n. In particular, setting
t = n

4 allows to achieve a fully secure MPC for honest majority,
which in addition benefits from having substantial responsiveness.

Topology-Hiding Computation

The third result considers the setting of topology-hiding communication
and computation, and can be found in Chapters 9. The material is based
on the previously published work [LLM+18].

Topology-hiding communication protocols allow a set of parties, con-
nected by an incomplete network with unknown communication graph,
where each party only knows its neighbors, to construct a complete com-
munication network such that the network topology remains hidden even
from a powerful adversary who can corrupt parties. This communication
network can then be used to perform arbitrary tasks, for example secure
multi-party computation, in a topology-hiding manner.

Previously proposed protocols under standard assumptions could only
tolerate passive corruption. Chapter 9 proposes protocols that can also
tolerate fail-corruption (i.e., the adversary can crash any party at any
point in time) and so-called semi-malicious corruption (i.e., the adver-
sary can control a corrupted party’s randomness), without leaking more
than an arbitrarily small fraction of a bit of information about the topol-
ogy. Since leaking a small amount of information is unavoidable, as is
the need to abort the protocol in case of failures, our protocols seem to
achieve the best possible goal in a model with fail-corruption. Further
contributions include applications of the protocol to obtain secure MPC
protocols, which requires a way to bound the aggregated leakage when
multiple small-leakage protocols are executed in parallel or sequentially.
Moreover, a protocol using fully-homomorphic encryption with better
round complexity is proposed.

1.2.3 Efficient Byzantine Agreement Protocols
This part of the thesis is devoted to explore efficient protocols for Byzan-
tine agreement (BA), a fundamental building block for MPC protocols.
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Two parameters are of vital importance: the round and communication
complexity. The part contains Chapters 10 and 11.

Expand-and-Extract: A New Way to Design Round-Efficient
Byzantine Agreement

In Chapter 10, we address the round complexity of Byzantine agreement
protocols. The material of this chapter is based on previously published
work [FLL21].

Minimizing the round complexity of Byzantine Agreement protocols is
a fundamental problem in distributed computing. The typical approach
to achieve round efficient (randomized) BA is to have a weak form of BA,
called graded consensus (GC), followed by a distributed coin, and to re-
peat this process until some termination condition is met—as introduced
by Feldman and Micali (STOC ‘88).

In Chapter 10, we revisit the question of building BA from GC, or,
more precisely, from generalizations of GC. Concretely, we demonstrate
that the round complexity of fixed-round BA (with a given target error
probability) can be considerably reduced based on this generalization. In
particular, assuming a setup for threshold signatures among the parties
and corruption threshold t < n/3, we improve over the round complex-
ity of the best known protocol by a factor of 1/2, asymptotically; this
is achieved by applying one single Feldman-Micali iteration consisting
of one (generalized) GC instance and one round of coin tossing. Our
technique also applies to the dishonest-minority case (t < n/2), yield-
ing an improvement by a factor of 1/4 (asymptotically) over the round
complexity of the best known fixed-round protocol.

Asynchronous Byzantine Agreement with Subquadratic Com-
munication

In Chapter 11, we address the communication complexity of Byzantine
agreement protocols. The material of this chapter is based on the previ-
ously published work [BKLL20].

Understanding the communication complexity of Byzantine agree-
ment is a fundamental problem in distributed computing. In particular,
for protocols involving a large number of parties (as in, e.g., the context
of blockchain protocols), it is important to understand the dependence
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of the communication on the number of parties n. In Chapter 11, we
show how to use the so-called player-replaceability paradigm to achieve
asynchronous BA protocols with subquadratic communication complex-
ity. The results hold against an adaptive adversary who can corrupt
f < (1 − ϵ)n/3 of the parties (for any constant ϵ > 0), in the atomic-
send model, where parties can atomically send messages to all parties,
and messages sent by honest parties cannot be retrieved back (even if
they become corrupted). One protocol assumes initial setup done by a
trusted dealer, after which an unbounded number of BA executions can
be run; alternately, we can achieve subquadratic amortized communica-
tion with no prior setup. At the heart of the protocol is an MPC protocol
in the same threat model that has o(n2) communication when computing
no-input functionalities with short output (e.g., coin tossing).

1.3 Related Work
The thesis covers different topics within multi-party computation. We
therefore provide the relevant related work for each topic in the respective
chapters. The bibliography is found at the end of the thesis.





Chapter 2

Preliminaries

2.1 Notation
We denote P the set of parties participating in the distributed protocol.
Moreover, we denote by H the set of honest parties. We denote the set
of integers {1, ..., n} as [n]. Throughout the thesis, whenever we use a
security parameter, we denote it by κ.

We denote random variables by capital letters. Prefixes of sequences
of random variables are denoted by a superscript, e.g. Xi denotes the
finite sequence X1, . . . , Xi. For random variables X and Y , we denote
by pX|Y the corresponding conditional probability distribution. Given a
tuple t, we write the projection to the j-th component of the tuple as
[t]j . Given a sequence ti of tuples t1, . . . , ti, we write [ti]j as the sequence
[t1]j , . . . , [ti]j . For a finite set X, we will use x←$ X and x← X similarly,
to denote sampling x uniform randomly from X.

2.2 Cryptographic Primitives
In this section, we define the basic cryptographic primitives that are used
in several chapters of the thesis. Other primitives that are only used in
specific chapters are presented in the respective chapters. The reader
familiar with these tools can skip this section.
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2.2.1 Public-Key Encryption
We recall the definition of a public-key encryption scheme, firstly intro-
duced by Goldwasser and Micali [GM84].

Definition 2.2.1. A public-key encryption scheme consists of three al-
gorithms E = (Keygen, Enc, Dec):

• (Key generation) The key generation algorithm takes as input the
security parameter κ, and outputs (ek, dk) = Keygen(1κ), where ek
is the public key, and dk is the secret key.

• (Encryption) There is an algorithm Enc, which on input public key
ek and plaintext m, it outputs an encryption c = Encek(m; r) of m,
with random input r.

• (Decryption) There is an algorithm that, given as input a decryp-
tion key dk and a ciphertext, it outputs m = Dec(c).

We require perfect correctness, in the sense that for any keys (ek, dk)
in the support of Keygen and any plaintext m, it holds that if c =
Encek(m; r) for some r, then m = Dec(c).

Semantic security of the encryption scheme is defined via the IND-
CPA game.

1: Let (ek, dk) = Keygen(1κ). Output (κ, ek) to A.
2: On input (m0, m1) from A, output c = Encek(mb) to A.
3: On input b′ from A, output b′.

Game IND-CPAb
E,A(κ)

Definition 2.2.2. For a public-key encryption scheme E , we define the
CPA-advantage of an adversary A as the difference in the probability that
it outputs 1 when interacting in the game IND-CPA0

E,A or IND-CPA1
E,A.

We say that E is IND-CPA secure, if the advantage of any efficient adver-
sary A is negligible in κ.

2.2.2 Threshold Homomorphic Encryption
We recall the definition of a threshold encryption scheme. This is similar
to a public-key encryption scheme, except that it has two additional
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properties. First, it is homomorphic, meaning that one can compute
linear operations on ciphertexts without the need to decrypt them. And
second, it supports threshold decryption. This means that the decryption
key is actually distributed among the set of n parties, and 1) given partial
decryptions of t + 1 parties, one can recover the original message, and
2) any adversary corrupting up to t parties has no information on the
encrypted message.

Definition 2.2.3. A threshold homomorphic encryption scheme consists
of five algorithms:

• (Key generation) The key generation algorithm is parameterized by
(t, n) and outputs (ek, dk) = Keygen(t,n)(1κ), where ek is the public
key, and dk = (dk1, . . . , dkn) is the list of secret keys.

• (Encryption) There is an algorithm Enc, which on input public key
ek and plaintext m, it outputs an encryption m = Encek(m; r) of
m, with random input r.

• (Partial decryption) There is an algorithm that, given as input a
decryption key dki and a ciphertext, it outputs di = DecSharedki

(c),
a decryption share.

• (Reconstruction) Given t+1 decryption shares {di}, one can recon-
struct the plaintext m = Rec({di}).

• (Additively Homomorphic) There is an algorithm which, given pub-
lic key ek and encryptions a and b, it outputs a uniquely-determined
encryption a + b. We write a + b = a � b. Likewise, there is an al-
gorithm performing substraction: a− b = a � b.

• (Multiplication by constant) There is an algorithm, which, given
public key ek, a plaintext a and a ciphertext b, it outputs a uniquely-
determined encryption a · b. We write a · b = a � b.

A threshold encryption scheme with a statically-secure threshold de-
cryption protocol can be found for example in [CDN01] based on the Pail-
lier’s cryptosystem [Pai99], and based on the QR and DDH assumption.
Such a scheme with an adaptively secure threshold decryption protocol
can be found in [LP01], based on the Paillier cryptosystem.
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2.2.3 Threshold Fully Homomorphic Encryption
A stronger primitive than threshold homomorphic encryption, is that of
threshold fully-homomorphic encryption [Gen09, vGHV10, BV11, AJL+12,
BGG+18]. The difference is that instead of being able to perform only
linear operations on ciphertexts, one can perform arbitrary computations.
Definition 2.2.4. A threshold fully-homomorphic encryption (TFHE)
scheme consists of the following algorithms:

• (Key generation) The key generation algorithm is parameterized by
(t, n) and outputs (ek, dk) = Keygen(t,n)(1κ), where ek is the public
key, and dk = (dk1, . . . , dkn) is the list of secret keys.

• (Encryption) There is an algorithm Enc, which on input public key
ek and plaintext m, it outputs an encryption m = Encek(m; r) of
m, with random input r.

• (Partial decryption) There is an algorithm that, given as input a
decryption key dki and a ciphertext, it outputs di = DecSharedki

(c),
a decryption share.

• (Reconstruction) Given t+1 decryption shares {di}, one can recon-
struct the plaintext m = Rec({di}).

• (Evaluation) The homomorphic evaluation algorithm Eval takes as
input the encryption key ek, an s-input circuit C, and s ciphertexts
c1, . . . , cs; it outputs a ciphertext c.

We require:
Correctness: For any integers s, t, n, messages {mi}i∈[s], s-input cir-

cuit C, and set I ⊆ [n] with |I| = t, if we run (ek, {dki}i∈[n]) ←
Keygen(1κ, 1t, 1n) followed by

c := Evalek(C, Encek(m1), . . . , Encek(ms)),

then Rec({Decdki
(c)}i∈I) = C(m1, . . . , ms).

Compactness: There is a polynomial p such that for all (ek, dk) output
by Keygen(1κ, 1t, 1n) and all {mi}, the length of

Evalek(C, Encek(m1), . . . , Encek(ms))

is at most p(|C(m1, . . . , ms)|, κ).
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2.2.4 Digital Signatures
We review the syntax and definition of a signature scheme.

Definition 2.2.5. A digital signature scheme is a triple of algorithms
DS = (Keygen, Sign, Ver):

• (Key generation) The key generation algorithm Keygen takes as
input the security parameter κ, and outputs a key pair (pk, sk),
where pk is the public key or verification key, and sk is the secret
key or signing key.

• (Signing) There is an algorithm Sign, which on input the signing
key sk and message m, it outputs a signature σ = Signsk(m).

• (Verification) There is an algorithm Ver that, given as input a ver-
ification key pk, a message m and a signature σ, outputs a bit
b = Verpk(m, σ).

We require perfect correctness, in the sense that for any keys (pk, sk)
in the support of Keygen, message m, and signature σ = Signpk(m), it
holds that Verpk(m, σ) = 1.

Security of the signature scheme is defined via the EU-CMA unforge-
ability game.

1: Let (pk, sk) = Keygen(1κ). Output (κ, pk) to A.
2: On input m from A, output σ = Signsk(m) to A.
3: On input (m, σ) from A, output a bit b, where b = 1 if and only if m

was not queried before and Verpk(m, σ) = 1.

Game EU-CMADS,A(κ)

Definition 2.2.6. For a digital signature scheme DS, we define the EU-
CMA advantage of an adversary A as the probability that A wins the
unforgeability game. We say that DS is EU-CMA secure, if the advantage
of any efficient adversary A is negligible in κ.
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Chapter 3

Constructive
Cryptography
Framework: The Basics

In this chapter, we summarize the basic concepts of the Constructive
Cryptography framework by Maurer and Renner [MR11, Mau11, MR16]
needed for this thesis. The general theory goes beyond the field of Cryp-
tography, but in most parts we describe the theory with the goal of
phrasing cryptographic statements in mind.

3.1 Specifications
A basic idea, which one finds in many disciplines, is that one considers a
set Φ of objects and specifications of such objects. A specification U ⊆ Φ
is a subset of Φ and can equivalently be understood as a predicate on
Φ defining the set of objects satisfying the specification, i.e., being in
U . Examples of this general paradigm are the specification of mechanical
parts in terms of certain tolerances (e.g. the thickness of a bolt is between
1.33 and 1.34 millimeters), the specification of the property of a program
(e.g. the set of programs that terminate, or the set of programs that
compute a certain function within a given accuracy and time limit), or
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in a cryptographic context the specification of a close-to-uniform n-bit
key as the set of probability distributions over {0, 1}n with statistical
distance at most ϵ from the uniform distribution.

A specification corresponds to a guarantee, and smaller specifications
hence correspond to stronger guarantees. An important principle is to
abstract a specification U by a larger specification V (i.e., U ⊆ V) which is
simpler to understand and work with. One could call V an ideal specifica-
tion to hint at a certain resemblance with terminology often used in the
cryptographic literature. If a construction (see below) requires an object
satisfying specification V, then it also works if the given object actually
satisfies the stronger specification U .

3.2 Constructions
A construction is a function γ : Φ→ Φ transforming objects into (usually
in some sense more useful) objects. A well-known example of a con-
struction useful in cryptography, achieved by a so-called extractor, is the
transformation of a pair of independent random variables (say a short
uniform random bit-string, called seed, and a long bit-string for which
only a bound on the min-entropy is known) into a close-to-uniform string.

A construction statement of specification S from specificationR using
construction γ, denoted R γ−→ S, is of the form

R γ−→ S :⇐⇒ γ(R) ⊆ S.

It states that if construction γ is applied to any object satisfying spec-
ification R, then the resulting object is guaranteed to satisfy (at least)
specification S.

The composability of this construction notion follows immediately
from the transitivity of the subset relation:

R γ−→ S ∧ S γ′

−→ T =⇒ R γ′◦γ−−−→ T .

3.3 Systems Theory
The above natural and very general viewpoint is also taken in Construc-
tive Cryptography, where the objects in Φ are systems, called resources,
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with interfaces to the parties considered in the given setting. The frame-
work is a resource theory with an algebra of systems, where converters
and resources can be combined to create further resources, according to
a series of natural algebraic axioms. In this thesis we model the basic
objects as discrete reactive systems, formally modeled as random systems
[Mau02, MPR07], characterized by their input and output behavior.

3.3.1 Random Systems
Definition 3.3.1. An (X ,Y)-random system R is a sequence of condi-
tional probability distributions pR

Yi|XiY i−1 , for i ≥ 1. Equivalently, the
random system can be characterized by the sequence of distributions
pR

Y i|Xi =
∏i

k=1 pR
Yk|XkY k−1 , for i ≥ 1.

A random system is the mathematical object corresponding to the
behavior of a discrete system. A deterministic system is a special type
of function (or sequence of functions), and the composition of systems is
defined via function composition. Probabilistic systems are often thought
about (and described) at a more concrete level, where the randomness
is made explicit (e.g. as the randomness of an algorithm or the random
tape of a Turing machine). Hence a probabilistic discrete system (PDS)
corresponds to a probability distribution over deterministic systems, and
the definition of the composition of probabilistic systems is induced by
the definition of composition of deterministic systems (analogously to
the fact that the definition of the sum of real-valued random variables
is naturally induced by the definition of the sum of real numbers, which
are not probabilistic objects). Different PDS can have the same behavior,
which means that the behavior, i.e., a random system, corresponds to an
equivalence class of PDS (with the same behavior).

We often describe a random system in many different ways, e.g. by
several variants of pseudo-code, and as is common in the literature we
also use such an ad-hoc description language.

3.3.2 Resources and Converters

Resources. A resource R is a random system with interfaces, where
the interface address and the actual input value are encoded as part
of the input. Then, the system answers with an output value at the
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same interface. One can take several independent resources R1, . . . , Rk

with disjoint interfaces, and form a new resource [R1, . . . , Rk], with the
interface set being the union. This resource is denoted as the parallel
composition. For each party, all its interfaces are merged into a single
interface, where the original interfaces can be thought of as sub-interfaces.

Converters. A converter models the local actions executed by a party
at its interface, which can be thought of as a system or protocol engine.
Formally, converters are modeled as random systems with two interfaces,
an outside interface and an inside interface. At its inside, the converter
gives input to the party’s interface of the resource and at the outside it
emulates an interface (of the transformed resource). Upon an input at
an outside interface, the converter is allowed to make a bounded number
of queries to the inside interfaces, before returning a value at the queried
interface. Applying a converter induces a mapping Φ → Φ. We denote
the set of converters as Σ.

For a converter α and a resource R, we denote by αiR the resource
obtained from applying the converter to the resource at interface i. One
can then see that converter attachment satisfies composition order invari-
ance, meaning that applying converters at distinct interfaces commutes.
That is, for any converters α and β, any resource R and any disjoint
interfaces j, k, we have that αjβkR = βkαjR.1

Figure 3.1 shows a resource with four interfaces where converters are
applied at two of the interfaces. The resource obtained by applying a
converter α at interface j of resource R is denoted as αjR. The resource
shown in Figure 3.1 can hence be written

α2β4R,

which is equal to β4α2R.

3.3.3 Modeling Aspects: Resources vs Converters
The general guiding principle in Constructive Cryptography is that every-
thing that is considered relevant is modeled as part of the resource, and
aspects within the converters are considered irrelevant. For example, in

1This is an abstract requirement, in the sense of an axiom, which for an instantia-
tion of the theory, for example to the special case of discrete systems, must be proven
to hold.
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Figure 3.1: Example of a resource with 4 interfaces, where converters α
and β are attached to interfaces 2 and 4.

the case where one only wants to make statements about an unbounded
adversary, i.e. information-theoretic security, the converter set contains
all systems, regardless of the actual computational complexity. This is
the approach taken in Chapter 5.

On the other hand, in the more general case where aspects about the
protocol converters are relevant, one can consider the set of converters
that perform no computation, and only connect systems themselves. The
protocol converters are then modeled as a parallel resource. In this case,
all aspects of the protocol converters can be made explicit: its comput-
ing power, the memory requirements, the way they become adaptively
corrupted, and so on. This is the approach taken in Chapter 4.

3.3.4 Basic Construction Notion and Aspects
The general construction notion from Section 3.2 leads to the basic con-
struction notion in Constructive Cryptography, where objects in Φ are
resources and constructions correspond to converter attachment. The
construction notion satisfies the usual composition properties that one
expects: sequential and parallel composition.

Theorem 3.3.2. Let R, S and T be specifications, and let α and β
be converters attached at the same interface i of specifications R and S,
respectively. Then,

1. αiR ⊆ S ∧ βiS ⊆ T =⇒ (βα)iR ⊆ T .

2. αiR ⊆ S =⇒ αi[R, T ] ⊆ [S, T ].
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Proof. The first property trivially follows from the transitivity of the
subset relation, while the second property follows from the fact that
αi[R, T ] = [αiR, T ] ⊆ [S, T ].

An important aspect about the construction notion is its generality
and simplicity. While the template of the contruction notion, the subset
relation, is very simple and rigid, the definition of what the specifications
are is completely flexible. This will allow for a more flexible way of
defining ideal guarantees, as we show in Chapters 4 and 5.

Further note that the construction notion does not fix any compu-
tational model, asymptotic efficiency notion, or even the existence of a
simulator. This is in contrast to the typical construction notion in the
literature, which hard-codes all these aspects. First, it phrases the ideal
specification S with the so-called simulation paradigm, e.g. by showing
the existence of a monolithic simulator σ attached to a fixed ideal re-
source S. Second, it also fixes a particular computational model, typically
a model where the security statements hold except with negligible distin-
guishing advantage with respect to any polynomial-time distinguisher.
The basic construction notion in Constructive Cryptography allows to
consider different security notions in the literature as special cases of
this, and further enable more flexible security statements.

3.4 Relaxations
The construction notion stated above does not incur any type of statis-
tical error or computational assumption. However, often a construction
statement does not achieve a desired specification S, but only a relaxed
or approximated version of it. We capture this via so-called relaxations
[MR16], which map specifications to weaker, or relaxed, specifications.
A relaxation formalizes the idea that we are often happy with resources
being almost as good as a target resource specification. For example,
one could consider the relaxation that maps a resource S to the set of
resources that are indistinguishable from S.

Definition 3.4.1. Let Φ denote the set of all resources. A relaxation
ϕ : Φ→ 2Φ is a function such that R ∈ ϕ(R), for all R ∈ Φ. In addition,
for a specification R, we define Rϕ :=

⋃
R∈R ϕ(R).
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Relaxations satisfy two important properties. The first is that S ⊆ Sϕ.
And the second is that if R ⊆ S then Rϕ ⊆ Sϕ. This simplifies the
modular analysis, as it means that one can typically consider assumed
resources that are completely ideal, or not relaxed. More concretely, from
the statements R ⊆ Sϕ and S ⊆ T ϕ′ , one can conclude that R ⊆ T ϕ◦ϕ′ .

In the following, we give a few generic types of relaxations [MR16,
JM20].

3.4.1 ϵ-Relaxation
An important relaxation is the relaxation that captures resources that
are close to the desired resource R. This closeness can be captured in
different ways. If a pseudo-metric d on Φ is defined2, one can consider
the specification of resources that are ϵ-close around R.

Definition 3.4.2. Let d be a pseudo-metric on Φ. We define the ϵ-
relaxation of a resource R with pseudo-metric d as:

Rϵ,d := {S ∈ Φ | d(R, S) ≤ ϵ}.

A typical pseudo-metric considered is the one obtained from the best
distinguishing advantage of a distinguisher. For that, one defines a no-
tion of a distinguisher, and the pseudo-metric corresponds to the usual
distinguishing advantage d(R, S) = supD ∆D(R, S).

A distinguisher D is a reactive system that interacts with a resource
by making queries at its interfaces, and outputs a bit. The advantage of
D in distinguishing two resources R and T is defined as

∆D(R, S) := Pr[D(S) = 1]− Pr[D(R) = 1].

This notion of ϵ-relaxation is natural and sufficient to capture indis-
tinguishability in the information-theoretic sense3.

2That is, a function d : Φ × Φ → R≥0 satisfying: for any elements R, S, T ∈ Φ:
d(R, R) = 0, d(R, S) = d(S, R) and d(R, T) ≤ d(R, S) + d(S, T)

3An alternative and more basic way to capture indistinguishability of random sys-
tems without the need to formalize a distinguisher is introduced in [LM20a], where
random systems are interpreted as the equivalence class of distributions over deter-
ministic systems, and the information-theoretic indistinguishability is captured via
the statistical distance of some particular distributions.
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Computational Security with Explicit Reductions

In order to capture computational indistinguishability, a commonly adopted
way is to formalize a class of efficient distinguishers and take the view-
point that distinguishers are polynomial-time implementable systems.

An alternative way to capture computational security is based on ex-
plicit reductions. For that, ϵ is not a number, but a function ϵ that maps
distinguishers to their respective advantage in [0, 1]. The usual inter-
pretation is that ϵ(D) is the advantage in the underlying computational
problem of the distinguisher which is modified by the reduction. This is
the approach taken in Chapter 4.

Definition 3.4.3. Let ϵ be a function that maps distinguishers to real
values in [0, 1]. We define the ϵ-relaxation of a resource R as:

Rϵ := {S ∈ Φ | ∀D : ∆D(R, S) ≤ ϵ(D)}.

3.4.2 Until-Relaxation
Sometimes we want to consider guarantees that hold up to the point
where a certain event happens. This is formally modeled by considering
an additional so-called monotone binary output (MBO) [MPR07], which
is a binary value that can switch from 0 to 1, but not back. Such an
MBO can for example model that all inputs to the system are distinct
(no collisions).

Definition 3.4.4. Let R be a resource, and let E be an MBO for the
resource. We denote by untilE(R) the resource that behaves like R, but
halts when E = 1. That is, for any inputs from the point when E = 1
(and including the input that triggered the condition), the output is ⊥.

The until-relaxation of a system R consists of the set of all systems
that behave equivalently up to the point where the MBO switches to 1.

Definition 3.4.5. Let R be a resource, and let E be an MBO for the
resource. The E-until-relaxation of R, denoted RE], is the set of all
systems that have the same behavior as R until E = 1. That is,

RE] := {S ∈ Φ | untilE(R) = untilE(S)}.
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3.4.3 ∗-Relaxation
In many cases we want to consider the case where there are no guarantees
at a specific interface j, or that a dishonest party can do something
arbitrary, i.e., apply an arbitrary converter.

Definition 3.4.6. Let R be a resource, and let j be an interface of R.
The ∗-relaxation of R, denoted R∗j , is the set of all resources that have
an arbitrary converter attached at interface j. That is,

R∗j := {αjR | α ∈ Σ}.

One can also consider a set Z of interfaces being merged to a single
interface with several sub-interfaces, and applying the above relaxation
to this interface. The resulting specification is denoted R∗Z . This will be
useful later for example to model that a set of dishonest parties collude
(or, as sometimes stated in the literature, are under control of a central
adversary). It is easy to see that the described ∗-relaxation is idempotent:
For any resource R and any set of interfaces Z, we have (R∗Z )∗Z = R∗Z .





Chapter 4

Adaptive Security in
MPC

4.1 Introduction

4.1.1 Multi-Party Computation
Secure multi-party computation (MPC) allows a set of parties to securely
carry out a computation. Here security informally means that parties
obtain the correct output of the computation, while at the same time
keeping their local inputs as private as possible. In order to meaningfully
design and analyze cryptographic protocols, one must come up with ap-
propriate definitions of security. However, this is highly non-trivial: the
definition should closely capture the aspects that we care about, while at
the same time being simple and usable, even minimal, avoiding as much
as possible unnecessary artifacts.

There is a vast literature on security definitions in the field of MPC.
Initial works [GL91, MR92, Bea91, Can00, DM00] considered the stand-
alone setting, which examines only the protocol at hand and does not
capture what it means to use the protocol in a larger context, for the task
of secure function evaluation [Yao82, Yao86, GMW87]. It was not until
several years later, that definitions in so-called composable frameworks for
general reactive tasks were introduced [PW00, Can01, DKMR05, MR11,
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MT13, KTR20, HUM13]. Such definitions aim to capture all aspects of
a protocol that can be relevant, with respect to any possible application,
hence the term universal composability [Can01].

An important aspect of security definitions for secure computation is
the way in which the corrupted parties are chosen. Here, two models are
commonly considered. The static security model assumes that the set
of corrupted parties is fixed before the computation starts and does not
change. In the more general adaptive security model, the adversary may
corrupt parties during the protocol execution, based on information that
has been gathered so far. Indeed, adaptive security captures important
concerns regarding cryptographic protocols that static security does not
capture. These include scenarios where attackers, viruses, or other adver-
sarial entities can take advantage of the communication to decide which
parties to corrupt.

The currently considered standard MPC definition for adaptive se-
curity is the one introduced by Canetti [Can01] in the UC framework.
The UC-adaptive security definition follows the well-known simulation
paradigm, and is formalized by comparing the execution of the protocol
in the real world, to an ideal world that has the desired security proper-
ties by design. Intuitively, it guarantees that for any attack in the real
world performed by an adversary that can adaptively corrupt parties, the
attack can be equivalently performed in the ideal world, achieving a sim-
ilar effect. This is formalized by the existence of a simulator that has to
simulate the entire protocol execution, with respect to any environment
where the protocol is being executed.

4.1.2 The Commitment Problem in Adaptive Secu-
rity

Despite the fact that the current standard notion has been the corner-
stone of adaptive security in MPC and has lead to the development of
many beautiful cryptographic protocols and primitives, the definition
seems to be too strong.

To show this, consider the following example: Let π be any protocol
for secure function evaluation that is adaptively secure. Now, consider a
modified protocol π̃, where each party i first commits to its input using
for example any (non-equivocable) perfectly hiding and computationally
binding commitment scheme and publishes the commitment. Then, all
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parties execute the protocol π. The commitments are never again used,
and in particular they are never opened. Intuitively, protocol π̃ should
be adaptively secure, since the commitments do not reveal any secret
information (the commitments are even statistically independent of the
inputs!). However, protocol π̃ is no longer adaptively secure: we run
into the so-called commitment problem, where the simulator is unable to
consistently explain the internal state of the parties that are adaptively
corrupted. This is because the simulator first has to publish a commit-
ment on behalf of each honest party without knowing its input, and later,
upon corruption, output an internal state on behalf of each party that is
consistent with its input and the previously published commitment.

Common ways to address this issue include the use of non-committing
encryption (see e.g. [CFGN96, CLOS02]), or the availability of secure
erasable memory (see e.g. [BH93]), therefore incurring to an important
efficiency loss or an extra assumption.

However, at a more general level, this raises the question of whether
one could have an alternative security definition that is not subject to
this issue, but still captures natural security guarantees under adaptive
corruption:

Is there a natural MPC security definition that captures security guar-
antees under adaptive corruption and is not subject to the commitment
problem?

There have been a number of works that aimed to solve this issue.
A line of work [Pas03, PS04, BDH+17] considers simulators that have
super-polynomial running time. Such approaches come at the price of
being technical or sacrificing composition guarantees. Another approach
[BDHK06] disallows certain activation sequences by the environment that
cannot be simulated, avoiding some of the complications of the other
approaches, but sacrificing some guarantees by excluding certain attacks.
A recent work [JM20] addressed this issue by proposing a notion that
formalizes guarantees that hold within a certain interval, between two
events, and requiring the simulation to work within each interval, without
forcing the simulation to be consistent between the intervals. Although
this approach seems promising, the guarantees that are given turn out
to be too weak for MPC applications. In particular, the corruptions can
only depend on “external” events, and not on the outputs from the given
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resources.

4.1.3 Contributions

CC-Adaptive Security. Intuitively, an MPC protocol should provide,
at any point during the protocol execution, security guarantees to the set
of honest parties at that point. That is, for every set of parties, there
is a guarantee as long as these parties are honest. This is exactly what
CC-adaptive security captures: we phrase the guarantees naturally as
the intersection (i.e. conjunction) of the guarantees for every set of so-far
honest parties. More concretely, we require for each subset X of parties,
the following: as long as parties in X are honest, the protocol does not
leak anything beyond what can be inferred from parties in X (irrespective
of their corruption status). Technically, there must exist a simulator with
access to inputs from X that correctly simulates the protocol execution
until any party in X gets corrupted. As soon as a party in X gets
corrupted, the guarantee for this set is dropped. (However, guarantees
for other so-far honest sets still remain.)

The corruptions are completely adaptive in the strong and usual sense,
where the selection of which parties become corrupted can be done based
on any information gathered during the protocol execution. The more
parties are corrupted, the less guarantees remain.

Intuitively, the commitment problem does not arise because the guar-
antees are dropped (i.e. the simulation stops) at the point where a party
in X gets corrupted. Therefore, the simulator does not need to explain
the secret state of a party in X. However, note that upon corruption of
any party in X, the simulator must explain its internal state, and we limit
this information requiring that this must be explained from the inputs
of parties in X. Concretely, for X being the so-far honest set, the state
does not reveal anything beyond what can be inferred from the current
corrupted set.

This approach is in contrast to previous adaptive security definitions,
which require the existence of a single simulator that explains all possible
cases.

The described guarantees are naturally phrased within the construc-
tive cryptography (CC) [Mau11, MR11, MR16] composable framework,
where each guarantee corresponds to a set specification of systems, and
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the conjunction of guarantees is simply the intersection of specifications.

Comparison with Standard Static and Adaptive Security. At a
technical level, we show that our new definition lies in-between the current
standard UC-security definitions for static and adaptive security, respec-
tively. Interestingly, popular examples that separate the standard static
and adaptive security notions and do not exploit the commitment prob-
lem, also separate static from CC-adaptive security, therefore showing
that CC-adaptive security gives very strong adaptive security guarantees.
More concretely, we show the following.

Static vs CC-Adaptive Security. We first show that CC-adaptive se-
curity implies static security in all settings. Moreover, we also show that
CC-adaptive security is strictly stronger than static security: for the case
of passive corruption and a large number of parties, the protocol shown in
[CFGN96] separates the notions of static and CC-adaptive security, and
in the case of active corruption and at least three parties, the protocol
shown in [CDD+01] makes the separation.

Adaptive vs CC-Adaptive Security. We show that UC-adaptive se-
curity is strictly stronger than CC-adaptive security in all settings, by
showing a protocol example based on the commitment problem.

Applications. We demonstrate the usefulness of our notion with two
examples, showing that known protocols achieve strong adaptive security
guarantees without the use of non-committing encryption.

CDN Protocol. First, we show that the protocol by Cramer, Damgard
and Nielsen [CDN01] (CDN) based on threshold (additively) homomor-
phic encryption (THE) achieves CC-adaptive security in the honest ma-
jority setting. In the passive corruption setting, the protocol is described
assuming solely the key setup for the THE scheme, while in the active
corruption setting, the protocol is described assuming in addition a multi-
party zero-knowledge functionality. This shows that the CDN protocol
approach achieves strong adaptive security guarantees as-is, even when
using an encryption scheme that commits to the plaintext.

CLOS Protocol. Second, we show that the variant of the protocol by
Canetti, Lindell, Ostrovsky and Sahai [CLOS02] (CLOS) that does not
use non-committing encryption, previously only proven statically secure,
actually achieves CC-adaptive security in the dishonest majority setting.
This is achieved by showing that the oblivious transfer from [GMW87]
achieves CC-adaptivity, and the CLOS compiler transforming passive to
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active protocols preserves CC-adaptivity. Note that, to the best of our
knowledge, all previous UC-adaptive protocols in the dishonest majority
setting required some form of non-committing or equivocal encryption.

4.1.4 Further Related Work
The problem of MPC with adaptive security was first studied by Canetti,
Feige, Goldreich and Naor [CFGN96], and there is a large literature
on MPC protocols with adaptive security. In the case of honest ma-
jority, it was shown that classical MPC protocols are adaptively secure
[BGW88, CCD88, RB89]. Using the results in [KLR06, KMTZ13], it
was shown that these protocols achieve UC adaptive security with abort
in the plain model, or guaranteed output delivery in the synchronous
model. A more efficient protocol was shown in [DN03], following the
CDN-approach based on threshold homomorphic encryption and assum-
ing a CRS. In the case of dishonest majority, the protocols achieve security
with abort, and all known protocols assume some form of non-committing
encryption or equivocation. The first work achieving adaptive security
for dishonest majority was the protocol by Canetti, Lindell, Ostrovsky
and Sahai [CLOS02], assuming a CRS setup. Since then, several sub-
sequent works have improved its round and communication complexity
(e.g. [DKR15, GP15, CsW19, BLPV18, CPV17]). The work by Garg
and Sahai [GS12] considered adaptive security in the stand-alone model
without trusted setup.

The work by Garay, Wichs and Zhou [GWZ09] considers the notion
of semi-adaptive security for two parties, which considers guarantees for
the case where one party is corrupted, and the other party is honest and
can be adaptively corrupted. In contrast, our security notion imposes
guarantees also when both parties are honest and can be adaptively cor-
rupted.

4.2 Preliminaries: A Combined Relaxation
The basic concepts for the CC framework are presented in Chapter 3.

In this chapter we are interested in the relaxation that corresponds to
the intuitive interpretation of “the set of all systems that behave equally
until E = 1 given that the assumption of ϵ is valid”. However, it was
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proven in [JM20] that the ϵ-relaxation and the until-relaxation do not
generally commute, i.e., (RE])ϵ ̸⊆ (Rϵ)E] and (RE])ϵ ̸⊇ (Rϵ)E], and there-
fore it is not clear whether any of the two corresponds to the intuitive
interpretation. Moreover, choosing one of these would partially limit the
composability of such statements. That is, if one construction assumes
SE] to construct T , and another one constructs Sϵ, then adjusting the
first construction to use Sϵ is not trivial. Following the solution in [JM20],
we consider the next combined relaxation.

Definition 4.2.1. Let R be a resource, E be an MBO, and ϵ be a function
mapping distinguishers to a real value in [0, 1]. The (E , ϵ)-until-relaxation
of R, denoted RE:ϵ, is defined as follows:

RE:ϵ :=
((

RE])ϵ
)E]

.

The combined relaxation benefits from the following desired proper-
ties, as shown in [JM20].

Lemma 4.2.2. Let R be a specification, E1, E2 be MBOs for the resource,
and ϵ1, ϵ2 be functions mapping distinguishers to a real value in [0, 1].
Then,

(RE:ϵ)E′:ϵ′
⊆ RE∨E′:ϵE∨E′ +ϵ′

E∨E′ ,

where ϵE∨E′(D) = ϵ(D◦untilE∨E′) is the advantage of the distinguisher
interacting with the projected (by the function untilE∨E′(·)) resource, and
analogously for ϵ′

E∨E′ .

Lemma 4.2.3. Let R and S be specifications, E be an MBO for the
resource, and ϵ be a function mapping distinguishers to a real value in
[0, 1]. Further let α be a converter, and let i be an interface of R. The
(E , ϵ)-until-relaxation is compatible with converter application and with
parallel composition. That is,

1. αi
(
RE:ϵ) ⊆ (

αiR
)E:ϵα , for ϵα(D) := ϵ(Dαi), where Dαi denotes

the distinguisher that first attaches α at interface i of the given
resource, and then executes D.

2. [RE:ϵ,S] ⊆ [R,S]E:ϵS , for ϵS(D) := supS∈S ϵ(D[·, S]), where D[·, S]
denotes the distinguisher that emulates S in parallel to the given
resource, and then executes D.
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4.3 Multi-Party Constructive Cryptography
with Adaptive Corruption

We consider the setting of multi-party computation with adaptive corrup-
tion. In contrast to the static corruption model, which models a setting
where parties are either honest or dishonest, and where one does not nec-
essarily need to consider an explicit adversary, in the adaptive setting
we consider scenarios where an adversary may “hack” into the parties’
systems.
Multi-Party Resources. We consider resources with n + 2 interfaces:
a set P = {1, . . . , n} of n party interfaces, an adversary interface A and a
free interface W [BMT18]. The party interfaces allow each party to have
access to the resource. The adversary interface models adversarial access
to the resource. The free interface allows direct access by the environment
to the resource1, and is used to model aspects that are not used by the
parties, but neither controlled by the adversary.
Protocols and Basic Construction Notion. A protocol consists of a
tuple of converters π = (π1, . . . , πn), one for each party. We denote by
πR the resource where each converter πj is attached to party interface j.

We say that a protocol π constructs specification S from specification
R, if and only if πR := {πR | R ∈ R} satisfies specification S, i.e.,
πR ⊆ S.

Definition 4.3.1. Let R and S be specifications, and let π be a protocol.
We say that π constructs S from R, if and only if πR ⊆ S.

The specifications πR and S are usually called the real world and the
ideal world, respectively. Typical constructions in the literature describe
the ideal specification S with the so-called simulation-paradigm. That
is, by showing the existence of a monolithic simulator σ attached to the
adversary interface of a fixed ideal resource S. Note that this is just
a particular way of defining the security guarantees in our framework.
As we show in our examples, our view provides a more flexible way of
defining ideal guarantees.
Protocol Converters as Resources. In order to model adaptive cor-
ruptions in Constructive Cryptography, we take the viewpoint where only

1This is reminiscent of the environment access to the global setup in UC [CDPW07].
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trivial converters are considered [MR16]. More concretely, we consider
the class Σ of trivial converters which only define a wiring between re-
source interfaces, and the protocol engines are then interpreted as re-
sources. In more detail, when writing a resource αiR consisting of a
converter α attached to interface i of resource R, we understand the con-
verter α as a resource, for example denoted α̃, in parallel with R. And we
consider a trivial converter β for interface i that simply connects α̃ and R,
i.e., we have αiR = πi

i [R, α̃]. We depict in Figure 4.1 this interpretation.

Figure 4.1: On the left, the converter α is connected to a resource R.
On the right, the interpretation where the converter α is interpreted as
a resource α̃ in parallel, with a trivial converter that connects interfaces.

Modeling Corruptions. Protocol converters as resources have, like any
resource, an adversary interface A and a free interface W . Corruption
is modeled explicitly as an input to the resource via the free interface
W . Upon input corrupt at interface W , the resource adds additional
capabilities at the adversary interface A.2

One can then model different types of corruption. In order to model
passive corruption, we require that upon input corrupt at interface W , the
resource makes accessible the entire local state at interface A. One can
then access the local state of the resource via interface A with an input
leak. If active corruption is considered, the adversary can in addition
take over the inside and outside interfaces of the protocol engine via the
adversarial interface A. That is, any inputs given at the inside or outside
interface are first made available to A, who then decides what the values

2One could alternatively model that the input corrupt is given at the adversary
interface A, with an additional mechanism to ensure that the real and ideal world
corruptions are the same; for example making available the set of currently corrupted
parties via the free interface W .
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are.

4.4 CC-Adaptive Security
A natural way to understand the guarantees obtained from an MPC
protocol with adaptive corruption, is to understand the guarantees as an
intersection of separate guarantees for every set of so-far honest parties.
The corruptions are completely adaptive as usual, and the identity of the
chosen parties to become corrupted can be made based on information
gathered during the protocol execution. The more parties are corrupted,
the less sets are so-far honest, and therefore less guarantees remain.

The described guarantees can naturally be captured within the con-
structive cryptography framework, where each guarantee corresponds to
a resource specification, and the conjunction of guarantees is simply the
intersection of specifications. This is in contrast to previous security def-
initions, which require the existence of a single simulator that explains
all possible cases.

As we will show in Section 4.4.2, our notion of CC-adaptive security
lies strictly in-between the standard UC-security notions of static and
adaptive security. Popular examples that separate static and adaptive se-
curity and are not based on the commitment problem, also separate static
and CC-adaptive security, and examples based on the commitment prob-
lem separate our notion from UC-adaptive security; therefore showing
that CC-adaptive security achieves a strong resilience against adaptive
corruption, while at the same time overcoming the commitment problem.

4.4.1 Definition of the Security Notion
As described above, our security notion gives a guarantee for every set of
so-far honest parties. That is, we give a guarantee for each subset X ⊆ P
of parties, as long as the subset X is honest, irrespective of whether
the other parties are honest or not. Intuitively, the guarantee provides
privacy to the set of parties in X, and is described as usual, by requiring
the existence of a simulator (for this set X) that correctly simulates the
protocol execution. The simulator has to simulate without knowing the
secret inputs and outputs of parties in X, but since this guarantee doesn’t
state privacy for parties not in X (recall the guarantee holds irrespective
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of the honesty of other parties), we allow the simulator to know the inputs
of parties that are in X = P \X. As soon as a party in X gets corrupted,
the guarantee for this set is lost (and therefore the simulation stops at
this point). However, guarantees for other so-far honest sets still remain.

Moreover, we state the guarantees with respect to a (monotone3) ad-
versary structure Z ⊆ 2P , meaning that if too many corruptions happen,
i.e., the set of corrupted parties exceeds the adversary structure, all guar-
antees are lost.

Intuitively, the commitment problem does not arise, because the guar-
antees are lost (i.e. the simulation stops) at the point where a party in
X gets corrupted. Therefore, the simulator does not need to explain the
secret state of a party in X. And for parties that are in X, the simula-
tor can consistently explain the secret state because it has access to the
inputs of these parties.

Let EX be the MBO indicating whether any party in X is corrupted.
Moreover, let σX be a simulator that has access to the inputs of all parties
from the set X. Formally, any inputs given at interfaces from parties in
X, are forwarded to the adversary interface. However, we only allow the
simulator to modify the inputs of actively corrupted parties.4

Further let EZ be the MBO that is set to 1 when the set of corrupted
parties does not lie in Z. For the common case of threshold corruption
where the adversary structure contains all sets of up to t parties, we de-
note Et the MBO that is set to 1 when more than t parties are corrupted.

We require that for each set of parties X, there must be a simulator σX
that simulates the protocol execution until any party in X is corrupted,
or the adversary structure is no longer respected, i.e., until EX ∨ EZ = 1.

Definition 4.4.1. Protocol π CC-adaptively constructs specification S
from R with error ϵ and adversary structure Z, if for each set X ⊆ P,
there exists (an efficient) simulator σX , such that πR ⊆ (σXS)EX ∨EZ :ϵ.
In short, πR satisfies the following intersection of specifications:

πR ⊆
⋂

X⊆P
(σXS)EX ∨EZ :ϵ

3If Z ∈ Z and Z′ ⊆ Z, then Z′ ∈ Z.
4Allowing the simulator to modify the inputs of honest parties in X results in an

unnecessarily weak notion.
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Moreover, we say that π CC-adaptively constructs S from R with
error ϵ up to t corruptions if πR ⊆

⋂
X⊆P(σXS)EX ∨Et:ϵ.

The following lemma shows that this type of construction statement
benefits from desirable composition guarantees.

Lemma 4.4.2. Let R, S, T be specifications, and let π, π′ be protocols.
Further let Z ⊆ 2P be a monotone set. Then, we have the following
composition guarantees:

πR ⊆
⋂

X⊆P
(σXS)EX ∨EZ :ϵ ∧ π′S ⊆

⋂
X⊆P

(σ′
X
T )EX ∨EZ :ϵ′

=⇒ π′πR ⊆
⋂

X⊆P
(σ′

X
σXT )EX ∨EZ :ϵ̃,

for ϵ̃ := supX⊆P{(ϵπ′)EX ∨EZ + (ϵ′
σ

X
)EX ∨EZ}, where (ϵπ′)EX ∨EZ is the

advantage of the distinguisher that first attaches π′ to the given resource,
and then interacts with the projected resource, and same for (ϵ′

σ
X

)EX ∨EZ .
Furthermore, we have

πR ⊆
⋂

X⊆P
(σXS)EX ∨EZ :ϵ =⇒ π[R, T ] ⊆

⋂
X⊆P

(σX [S, T ])EX ∨EZ :ϵT ,

for ϵT (D) := supT∈T ϵ(D[·, T]), where D[·, T] is the distinguisher that
emulates T in parallel to the given resource, and then executes D.

Proof. The proof can be found in Section A.1.

4.4.2 Comparison to Traditional Notions of Security
In this section we show how to phrase the standard notions of static and
adaptive security within our framework, and further show that our new
definition lies in-between the two standard notions of static and adaptive
security.

Static Security. In the standard notion of static security, the set of
protocol engines that are corrupted is fixed before the computation starts
and does not change. The possible corruption sets are modelled by a given



4.4. CC-ADAPTIVE SECURITY 41

adversary structure Z ⊆ 2P . Given a set Z ∈ Z, we denote by πZR the
real-world resource, where the set of protocol engines πi, i ∈ Z, are
corrupted. The security definition requires the existence of a simulator
σZ that simulates the protocol execution and has control over the inputs
and outputs from corrupted parties. As usual, in the passive case, the
simulator can read these values, while in the active case, it can also change
them.

Definition 4.4.3. Protocol π statically constructs specification S from
R with error ϵ and adversary structure Z, if for each possible set of cor-
rupted parties Z ∈ Z, there exists a simulator σZ such that πZR ⊆
(σZS)ϵ, where πZ indicates that protocol converters πi, i ∈ Z, are cor-
rupted, and σZ indicates that the simulator has control over the inputs
and outputs of parties in Z.

Lemma 4.4.4. CC-adaptive security implies static security.

Proof. Let π be a protocol that constructs S from specification R with
error ϵ and adversary structure Z, with CC-adaptive security. We prove
that π also satisfies static security with the same parameters. Fix a
set Z ∈ Z. Consider the particular corruption strategy, where parties
in Z are corrupted at the start of the protocol execution, and no more
corruptions happen.

In this case, EZ ∨ EZ = 0, because no party in Z is corrupted,
and the set of corrupted parties lies within Z. Therefore, for the case
where X = Z, there must exist a simulator σZ (with access to the in-
puts and outputs of parties in Z, which are corrupted) that satisfies
πZR ⊆ (σZS)E

Z
∨EZ :ϵ = (σZS)ϵ.

In the following, we show that known examples of protocols that
separate the standard notions of static and adaptive security [CFGN96,
CDD+01], also separate static and CC-adaptive security, both in the case
of passive as well as active corruption.

Lemma 4.4.5. For passive corruption and a large number of parties,
CC-adaptive security is strictly stronger than static security.

Proof. We consider the classical example from Canetti et al. [CFGN96].
Consider a secure function evaluation protocol with guaranteed output
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delivery where parties evaluate the function that outputs ⊥. The adver-
sary structure contains sets of up to t = O(n) parties.

The protocol π proceeds as follows: A designated party D secret
shares its input to a randomly selected set of parties U (out of all parties
except D) of small size κ parties using a κ-out-of-κ sharing scheme, where
κ is the security parameter. Then, D makes the set U public (e.g. by
sending the set to all parties). Subsequently, all parties output ⊥.

It is known that π achieves static security. This is because an ad-
versary not corrupting D only learns D’s secret if U happens to be the
predefined set of corrupted parties, which occurs with probability expo-
nentially small in κ. More concretely, for each Z ∈ Z not containing D,
the probability that U = Z is

(
n−1

κ

)−1 = neg(κ). (Note that in the case
where U ̸= Z, the simulator trivially succeeds simply by emulating the
shares as random values.)

Now we show that π does not achieve CC-adaptive security. Consider
the singleton set X = {D}, containing only the designated party. Note
that U does not contain D, since D chooses a set of κ parties randomly
from the set of parties without D. The adversary can then corrupt the
set of parties in U to find out D’s secret without corrupting D. Note that
the simulator has access to all inputs and outputs from parties in X, but
has no access to D’s input. Formally, the simulator σX has to output
shares for parties in U that add up to D’s input, without knowing the
input, which is impossible.

Lemma 4.4.6. For active corruption, CC-adaptive security is strictly
stronger than static security, as long as there are at least three parties.

Proof. We consider the example from Canetti et al. [CDD+01] with three
parties D, R1 and R2. D has as input two bits b1, b2 ∈ {0, 1}, and R1,
R2 have no input. The ideal resource evaluates the function f that, on
input (b1, b2), it outputs b1 to R1, b2 to R2 and ⊥ to D. The adversary
structure contains {D, R1}.

The protocol π proceeds as follows: at step 1 D sends b1 to R1. After
that, at step 2 D sends b2 to R2. Finally, at step 3 each Ri outputs
the bit that they received from D and terminates, and D outputs ⊥ and
terminates.

It was proven that π achieves static security: for the set Z = {D},
the simulator gets the values s′

1 and s′
2 from the adversary interface, and
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it sends (b′
1, b′

2) to the ideal resource, who forwards each b′
i to Ri. It is

easy to see that this simulator perfectly simulates the protocol execution.
The case where Z = {D, R1} is similar.

For the set Z = {R1}, the simulator obtains the output b1 from the
ideal resource, so it can simply forward this bit to the adversary interface.
Again, it is easy to see that the simulation is successful.

Now let us argue why the above protocol does not satisfy CC-adaptive
security. To show that, consider the singleton set X = {R2}, containing
only party R2. We will show that the adversary can break correctness
of the protocol, by 1) learning the value s1 that is sent to R1, and 2)
depending on the value received after step 1 from the so-far honest D,
possibly corrupt D and modify the value that is sent to R2 at step 2. More
concretely, the adversary strategy is as follows: Initially corrupt R1, and
learn the value s1 from D. If s1 = 1, then corrupt D and choose the
value s′

2 = 0 as the value that is sent to R2 at step 2. With this strategy,
in the real-world protocol, whenever s1 = 1, R2 never outputs 1.

Consider the case where the input to D is (s1, s2) = (1, 1). As argued
above, in the real-world R2 outputs 0. However, since D is honest at
step 1, the simulator σX (even with knowledge of the input of D) has no
power to change the input of D. Therefore, D inputs (1, 1) to the ideal
resource, and therefore the output of party R2 is 1.

Adaptive Security. In the standard notion of UC-adaptive security,
the ideal-world is described as a single specification that consists of a
simulator –with passive or active capabilities (i.e. can read, or also change
the inputs and outputs of corrupted parties)– attached to the adversary
interface of a fixed ideal resource. Moreover, guarantees are given as long
as the corrupted parties respect the adversary structure.

Definition 4.4.7. Protocol π UC-adaptively constructs specification S
from R with error ϵ and adversary structure Z, if there is a simulator σ,
such that πR ⊆ (σS)EZ :ϵ.

Lemma 4.4.8. UC-adaptive security implies CC-adaptive security.

Proof. Let π be a protocol that constructs S from specification R with
error ϵ and adversary structure Z, with standard adaptive security. We
prove that π also satisfies CC-adaptive security. For each set X ⊆ P, we
have that there exists a simulator σX such that πR ⊆ (σXS)EZ :ϵ. This
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is because one can consider the simulator σX that ignores the inputs and
outputs from parties in X and simulates according to the UC-adaptive
simulator σ. Moreover, we have that

(σXS)EZ :ϵ ⊆ (σXS)EX ∨EZ :ϵ,

because EZ = 1 implies EX ∨ EZ = 1. Therefore, we have the following:

πR ⊆ (σS)EZ :ϵ ⊆
⋂

X⊆P
(σXS)EX ∨EZ :ϵ.

Lemma 4.4.9. For passive corruption and any number of parties, CC-
adaptive security does not imply UC-adaptive security.

Proof. Consider a secure function evaluation protocol where parties eval-
uate the function that outputs ⊥. The adversary structure contains sets
of up to t = 2 parties. The protocol π proceeds as follows: A desig-
nated party D computes a commitment of its private input, using a (non-
equivocable) perfectly hiding and computationally binding commitment
scheme and makes this commitment public. Then, all parties output ⊥.

The protocol does not achieve standard adaptive security. Consider
the corruption strategy where D is corrupted “after” he sent his com-
mitment. The simulator then first has to come up with a commitment
without knowing D’s input, and then, upon corruption, learns D’s input
and has to output randomness consistent with D’s input. Since the com-
mitment is non-equivocable, this is not possible. That is, the simulation
strategy runs into the commitment problem.

It is easy to see that π satisfies CC-adaptive security. This is because
for any set X not containing D, the simulator can read D’s input, so
the simulation is straightforward. On the other hand, for any set X
containing D, the simulation is only required until the point in time where
D becomes corrupted (without including the answer to the corruption
query, i.e., there is no need to output D’s private state).

4.5 Some Ideal Resource Specifications
In this section we introduce ideal specifications for the communication
network model, broadcast and MPC. We consider the setting with open
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authenticated and asynchronous channels, where the adversary can choose
to drop messages. As a consequence, the ideal building blocks for broad-
cast and MPC that we consider achieve so-called security with abort.

4.5.1 Network Model
We consider a multi-party communication network with point-to-point
asynchronous authenticated channels among any pair of parties, in line
with the Fauth functionality in [Can01]. Asynchronous means that the
channels do not guarantee delivery of the messages, and the messages are
not necessarily delivered in the order which they are sent. Authenticity
ensures that a recipient will only receive a message from a sender if the
sender actually sent the message. In the case of adaptive corruptions,
this authenticity requirement holds as long as both sender and recipient
are honest. In particular, a dishonest sender is allowed to modify the
messages that have been sent, as long as they have not been delivered to
the recipient yet.

We first describe a single-message authenticated channel AUTHi,j

from party i to party j. A multi-message authenticated channel is then
accordingly obtained via parallel composition of single-message resources.
The resource has n + 2 interfaces, n party interfaces, an adversary inter-
face A and a free interface W .

The channel expects an input message m at interface i, which is stored
upon receipt. The adversary can learn the message that is input, and
can choose to deliver the message by making it available at interface j.
Moreover, if party i is corrupted, it can inject a new message, as long as
the message has not been delivered yet.

Initialization

1: mi, mj ← ⊥
2: CorruptSender = 0

Party Interfaces

Resource AUTHi,j
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1: On input (send, m) at interface i, if mi = ⊥, set mi = m. Output ⊥ at
interface i.

2: On input receive at interface j, output mj at interface j.
3: On any input at interface k ∈ [n]\{i, j}, output ⊥ at the same interface.

Adversary Interface

1: On input leak at interface A, output mi at interface A.
2: On input deliver at interface A, set mj = mi. Output ⊥ at interface

A.
3: On input (inject, m) at interface A, if CorruptSender = 1 and mj ̸= ⊥,

set mi = m.

Free Interface

1: On input (corrupt, i) at interface W , set CorruptSender = 1. Output
⊥ at interface W .

Let N be the complete network of pairwise authenticated channels,
i.e., the parallel composition of AUTHi,j , for i, j ∈ [n].

4.5.2 Broadcast with Abort
In our protocols, we will assume that parties have access to an authen-
ticated broadcast channel. The resource has n + 2 interfaces, n party
interfaces, an adversary interface A and a free interface W . As a first
step, we model a broadcast resource BCi where party i is the sender. We
then define the broadcast specification BC that allows any party to broad-
cast as the specification containing the parallel composition of broadcast
resources BCi, for each i ∈ [n].

Since we operate with N as the communication network, the broad-
cast specification BC we consider corresponds to that of broadcast with
abort [GL02], and does not guarantee delivery of messages. It only guaran-
tees that no two uncorrupted parties will receive two different messages.

As pointed out by Hirt and Zikas [HZ10], traditional broadcast proto-
cols do not construct the stronger broadcast functionality which simply
forwards the sender’s message to all parties, since they are subject to
adaptive attacks, where the adversary can corrupt an initially honest
sender depending on the broadcasted message, and change the broad-
casted message. Therefore, we consider the “relaxed” version, which al-
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lows an adaptively corrupted sender to change the message sent, as long
as the message was not delivered to any party.

In the setting with N , such a broadcast resource can be constructed
with standard adaptive security and arbitrary number of corruptions in
the communication network N using the protocol by Goldwasser and
Lindell [GL02].5

Initialization

1: m∗ = ⊥
2: m1, . . . , mn ← ⊥
3: CorruptSender = 0

Party Interfaces

1: On input (bc, m) at interface i, if m∗ = ⊥, set m∗ = m. Output ⊥ at
interface i.

2: On input receive at interface j ∈ [n], output mj at interface j.

Adversary Interface

1: On input leak at interface A, output m∗ at interface A.
2: On input (deliver, j), j ∈ [n], at interface A, set mj = m∗. Output ⊥

at interface A.
3: On input (inject, m) at interface A, if CorruptSender = 1 and mj = ⊥

for all j ∈ [n], set m∗ = m.

Free Interface

1: On input (corrupt, i) at interface W , set CorruptSender = 1. Output
⊥ at interface W .

Resource BCi

4.5.3 MPC with Abort
We briefly describe an ideal resource MPC capturing secure computation
with abort (and no fairness). The resource has n + 2 interfaces, n party
interfaces, an adversary interface A and a free interface W . Via the

5Note that in broadcast with abort, even when the sender is honest, it is allowed
that parties output ⊥.
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free interface, the resource keeps track of the set of corrupted parties.
The resource allows each party i to input a value xi, and then once all
honest parties provided its input, it evaluates a function y = f(x1, . . . , xn)
(corrupted parties can change their input as long as the output was not
evaluated). The adversary can then select which parties obtain output
and which not.

Initialization

1: x1, . . . , xn ← ⊥
2: y, y1, . . . , yn ← ⊥
3: C = ∅

Party Interfaces

1: On input (input, x) at interface i ∈ [n], if xi = ⊥, set xi = x. Output
⊥ at interface i. Moreover, if xj ̸= ⊥ for each j /∈ C, then set y =
f(x1, . . . , xn).

2: On input output at interface i ∈ [n], output yi at interface i.

Adversary Interface

1: On input (deliver, j), j ∈ [n], at interface A, set yj = y. Output ⊥ at
interface A.

2: On input (input, x, i) at interface A, if i ∈ C and y = ⊥, then set xi = x.
Output ⊥ at interface A.

3: On input (leak, j), j ∈ C, at interface A, output xj at interface A.
4: On input leakOutput, at interface A, output y at interface A.

Free Interface

1: On input (corrupt, i) at interface W , set C = C ∪ {i}. Output ⊥ at
interface W .

Resource MPCf

4.5.4 Multi-Party Zero-Knowledge

Let R be a binary relation, consisting of pairs (x, w), where x is the
statement, and w is a witness to the statement. A zero-knowledge proof
allows a prover to prove to a verifier knowledge of w such that R(x, w) = 1.
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In our protocols we will consider the multi-party version, which allows a
designated party i to prove a statement towards all parties according to
relation R. Such a resource ZKi,R can be seen as a special instance of
MPC with abort MPCf resource, where the function f simply takes as
input (x, w) from the designated party i, and no input from any other
party, and outputs x in the case R(x, w) = 1, and otherwise ⊥. We
denote ZKR the parallel composition of ZKi,R, for i ∈ [n].

Such a resource can be constructed assuming BC and a CRS even
with standard adaptive security for arbitrary many corruptions (see e.g.
[CLOS02]). Alternatively, the resource can be constructed less efficiently
solely from BC for the case where t < n/2 (see e.g. [RB89] with [KLR06]).

4.5.5 Oblivious Transfer
An oblivious transfer resource involves a designated sender s, with input
(x1, . . . , xℓ), and a designated receiver with input i ∈ {1, . . . , ℓ}. The
output for the receiver is xi, and the sender has no output. For our
purposes, we can see the resource as a special instance of MPC with abort
MPCf resource, where the function f simply takes as input (x1, . . . , xℓ)
from the designated sender s, an input i from the designated receiver r,
and no other inputs, and it outputs xi to the receiver, and no output to
any other party.

4.6 Application to the CDN Protocol
In this section we show that the protocol by Cramer, Damgard and
Nielsen [CDN01] based on threshold (additively) homomorphic encryp-
tion essentially achieves MPC with abort and with CC-adaptive security,
in the communication networkN of authenticated asynchronous channels.
With similar techniques, one could achieve MPC with guaranteed output
delivery and with CC-adaptive security in a synchronous communication
model (assuming a broadcast specification).

The CDN protocol is perhaps the iconic example that suffers from
the commitment problem, and the goal of this example is to conceptu-
ally distil out at which steps the protocol is subject to relevant adaptive
attacks, and conclude that the CDN-approach of broadcasting encrypted
inputs in the first step and computing on ciphertexts, actually achieves
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strong adaptive security guarantees, even when the encryption commits
to the plaintext.

Finally, note that the protocol is typically described assuming a syn-
chronous network, where the protocol advances in a round to round basis,
and messages send at round r are assumed to arrive by round r +1. How-
ever, our assumed network N is asynchronous. To address this, we follow
the standard approach of executing a synchronous protocol over an asyn-
chronous network (see [KLR06]). The idea is simply that each party
waits for all round r messages before proceeding to round r +1. The con-
sequence is that the CDN protocol, which achieves full security under a
synchronous network, achieves security with abort under an asynchronous
network.

4.6.1 Passive Corruption Case
The protocol relies on an adaptively secure threshold homomorphic en-
cryption scheme (see for example the scheme by Lysyanskaya and Peikert
[LP01], which is based on the Paillier cryptosystem [Pai99]). In such a
scheme, given the public key, any party can encrypt a message. How-
ever, decrypting the ciphertext requires the collaboration of at least t + 1
parties, where t is a parameter of the scheme. The scheme is additively
homomorphic in the sense that one can perform additions on ciphertexts
without knowing the underlying plaintexts (see Section 2.2.2).

For a plaintext a, let us denote a an encryption of a. Given encryp-
tions a, b, one can compute (using homomorphism) an encryption of a+b,
which we denote a� b. Similarly, from a constant plaintext α and an en-
cryption a one can compute an encryption of αa, which we denote α � a.
For concreteness, let us assume that the message space of the encryption
scheme is the ring R = ZN , for some RSA modulus N .

Let us first describe a version of the protocol for the passive case (see
the section below for a complete description in the active case). The
protocol Πpcdn starts by having each party publish encryptions of its in-
put values. Then, parties compute addition and multiplication gates to
obtain a common ciphertext, which they jointly decrypt using thresh-
old decryption. Any linear operation (addition or multiplication by a
constant) can be performed non-interactively, due to the homomorphism
property of the threshold encryption scheme. Given encryptions a, b of
input values to a multiplication gate, parties can compute an encryption
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of c = ab as follows:

1. Each party i chooses a random di ∈ ZN and distribute encryptions
di and dib to all parties.

2. Parties compute a�(�idi) and decrypt it using a threshold decryp-
tion.

3. Parties set c = (a +
∑

i di) � b � (�idib).

The main problem that arises when dealing with standard adaptive
security, even in the passive case, is that of the commitment problem: the
simulator has to first output encryptions on behalf of the so-far honest
parties during the input stage, and then if one of these honest parties
is later corrupted, the simulator learns the real input of this party and
must reveal its internal state to the adversary. However, the simulator
is now stuck, since the real input is not consistent with the encryption
output earlier. To overcome this issue, protocols usually make use of non-
committing encryption schemes. An exception to this, is the protocol by
Damgard and Nielsen [DN03], which is a variant of the CDN protocol that
even achieves standard adaptive security, and overcomes the commitment
problem by assuming a CRS which is programmed in a very clever way.

We show that this issue does not arise when aiming for CC-adaptive
security. Technically, for each subset of parties X ⊆ P, the simulator
only needs to lie about the inputs of parties in X, since it knows the
inputs of the other parties. Moreover, the simulation is only until the
point where a party in X gets corrupted, and so we do not need to jus-
tify the internal state of this party. We propose CC-adaptive security
as a natural security goal to aim for, providing strong security guaran-
tees against adaptive corruption, and at the same time overcoming the
commitment problem. Conceptually, this example shows that the CDN-
approach achieves such strong adaptive security guarantees, without the
need to use non-committing encryption tools or erasures. Note that in
the passive case, the protocol assumes solely a setup for threshold homo-
morphic encryption, whereas the protocol in [DN03] requires in addition
a CRS.

Key Generation. As usual, we model the setup for the threshold en-
cryption scheme with an ideal resource KeyGen that generates its keys.
The resource KeyGen simply generates the public key ek and private key
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dk = (dk1, . . . , dkn) for the threshold encryption scheme, and outputs to
each party i the public key ek and its private key share dki, and to the
adversary the public key ek.

Theorem 4.6.1. Protocol Πpcdn CC-adaptively constructs MPCf from
[N , KeyGen], with error ϵ and up to t < n/2 passive corruptions, where
ϵ reduces distinguishers to the corresponding advantage in the security of
the threshold encryption scheme and is described in the proof.

Proof. Let R = [N , KeyGen] and S = {MPCf}. Fix a set X ⊆ P.
We need to show that there is a simulator σX such that ΠpcdnR ⊆
(σXS)EX ∨Et:ϵ. At any point in time, if the event EX∨Et = 1, the simulator
halts. The simulator works as follows.
Key Generation. The simulator σX simulates this step by invoking the
simulator for the threshold encryption scheme. Let ek denote the public
key, and dki denote the decryption key share for party i. It then outputs
ek at the adversary interface.
Network Messages. The simulator simulates each step of the proto-
col, given that all messages before that step have been delivered by the
adversary i.e., the simulator receives all the corresponding deliver mes-
sages at the adversary interface. If not, it simply keeps waiting. The
messages in the steps below are output to the adversary at the corre-
sponding steps, upon receiving the corresponding leak messages at the
adversary interface.
Input Stage. For each party i that is honest at this step and gave input
to the ideal resource, σX outputs an encryption ci on behalf of this party
at the adversary interface. If i ∈ X , then the simulator does not know
its input, and computes the ciphertext ci = Encek(0) as an encryption of
0. Otherwise, i /∈ X and the simulator knows its input xi, so it computes
xi = Encek(xi) as the ciphertext.

For each party i that is corrupted at this point, the simulator knows
its input xi, and forwards this input to the ideal resource.
Addition Gates. This step can be simulated in a straightforward man-
ner, performing local homomorphic operations on behalf of each honest
party.
Multiplication Gates. Let a and b denote the ciphertexts input to the
multiplication gate. The simulator σX can execute the honest protocol.
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That is, it generates a random value di on behalf of each honest party i,
and locally computes di = Encek(di), and dib = di � b. It then outputs
the pair of ciphertexts to the adversary interface. For each corrupted
party at this step, the simulator obtains the pair of ciphertexts di and
dib.

Upon receiving the pairs of ciphertexts from all parties, compute the
ciphertext a�(�idi), and simulate an honest threshold decryption proto-
col of this ciphertext. That is, the simulator outputs a decryption share
of the ciphertext to the adversary interface. Upon computing t+1 decryp-
tion shares, reconstruct the plaintext. Let a+

∑
i di be the reconstructed

plaintext. Then, compute the ciphertext c = (a +
∑

i di) � b � (�idib).

Output. The simulator inputs to the ideal resource (deliver, j), for
each party j that obtains an output in the protocol. It also obtains
the output with the instruction leakOutput. Then, upon obtaining an
output y from the ideal resource, use the simulator of the (adaptively
secure) threshold decryption protocol to compute decryption shares on
behalf of the honest parties (see [LP01], where one can simply choose as
the inconsistent party one of the parties in X).

Corruptions. On input a command leak, at interface A.i, if i is cor-
rupted, the simulator outputs the internal state of party i. Note that this
is easily done since for parties not in X, the simulator has access to its
input. And if any party in X gets corrupted, the corresponding MBO is
triggered, EX = 1, and the simulator halts.

We now prove that ΠpcdnR ⊆ (σXS)EX ∨Et:ϵ, for the simulator σX
described above. For that, we first describe a sequence of hybrids.

Hybrid H1. In this system, we assume that the simulator has access
to all inputs from the parties. It then executes the real-world protocol,
except that the key generation and the decryption are executed using the
respective simulators for the threshold encryption scheme. By security
of the threshold encryption scheme, we have that untilEX ∨Et

(
ΠpcdnR

)
is

ϵ1-close to untilEX ∨Et
(H1). That is:

untilEX ∨Et

(
ΠpcdnR

)
⊆ (untilEX ∨Et

(H1))ϵ1 ,

where ϵ1 is the advantage of the distinguisher (modified by the reduc-
tion) to the security of the threshold encryption scheme. Moreover, by
definition we have that untilEX ∨Et (H1) ∈ HEX ∨Et]

1 . Therefore:
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untilEX ∨Et

(
ΠpcdnR

)
⊆

(
HEX ∨Et]

1

)ϵ1
⇐⇒ ΠpcdnR ⊆ HEX ∨Et:ϵ1

1 .

Hybrid H2. The simulator in addition sets the input encryption of
the honest parties in X at the Input Stage to an encryption of 0. By
semantic security of the threshold encryption scheme, and following the
same reasoning as above, we have that H1 ∈ HEX ∨Et:ϵ2

2 , where ϵ2 is the
advantage of the distinguisher (modified by the reduction) to the semantic
security of the encryption scheme. Moreover, the hybrid specification
{H2} corresponds exactly to the ideal specification (σXS).

Combining the above steps, we have that ΠpcdnR ⊆ (σXS)EX ∨Et:ϵX ,
where ϵX = ϵ1 + ϵ2. Therefore, choosing the function ϵ where ϵ(D) =
supX⊆P{ϵX(D)}, the statement follows.

4.6.2 Active Corruption Case
To handle the case of active corruption, the CDN protocol makes use of a
broadcast primitive to ensure consistency of distributed messages among
the parties, and also zero-knowledge proofs at the appropriate steps of
the protocol. As a side remark, we note that the original CDN protocol
used a multi-party zero-knowledge proof based on Σ-protocols, where the
challenge is chosen by a small randomly-selected committee. This step is
subject to crucial adaptive attacks, since the adversary can trivially wait
until the committee is selected and corrupt all members. With this step,
the protocol would not satisfy CC-adaptive security. However, we will
show that the protocol, assuming an ideal multi-party zero-knowledge
resource (with abort) does achieve CC-adaptive security. Note that this
resource guarantees consistency on whether the designated prover suc-
ceeded in the proof, and therefore also can be used as a broadcast resource.
Therefore, in the protocol we do not need to assume the broadcast speci-
fication BC or the network N (these are used to construct ZK). As noted
in Section 4.5.4, such a resource may be instantiated even with standard
adaptive security from N for t < n/2, or more efficiently from bilateral
zero-knowledge proofs, assuming a CRS.

Multi-Party Zero-Knowledge Relations. We state the protocol as-
suming ZKR resources for appropriate relations. More concretely, we are
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interested in zero-knowledge proofs for three types of relations, parame-
terized by a threshold encryption scheme with public key ek:

1. Proof of Plaintext Knowledge: The statement consists of ek, and a
ciphertext c. The witness consists of a plaintext m and randomness
r such that c = Encek(m; r).

2. Proof of Correct Multiplication: The statement consists of ek, and
ciphertexts c1, c2 and c3. The witness consists of a plaintext m1
and randomness r1, r3 such that c1 = Encek(m1; r1) and c3 = m1 ·
c2 + Encek(0; r3).

3. Proof of Correct Decryption: The statement consists of ek, a ci-
phertext c, and a decryption share d. The witness consists of a
decryption key share dki, such that d = Decdki(c).

Let us denote ZK the specification containing the parallel composition
of ZKpopk, ZKpocm and ZKpocd.

Protocol Description. We describe the protocol engine formally be-
low. The (sub)-interfaces of the converter are self-explanatory and are
connected to the resource that the interface is naming. For example,
in.ZKpopk, indicates the inside sub-interface of the converter that is con-
nected to resource ZKpopk.

Moreover, as noted above, the assumed resources have security with
abort. The protocol steps are executed sequentially, where messages from
step r are computed only if all messages from step r−1 have been received,
in line with the standard way of executing a synchronous protocol in an
asynchronous network (see [KLR06]).

Key Setup

1: On input the public key ek and secret key share dki at interface
in.keygen, store them.

Input Distribution

1: On input xi at interface out, compute xi = Encek(xi; r) and input
(xi, (xi, r)) at interface in.ZKpopk.

Protocol Πcdn(i)
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2: On input xj at interface in.ZKpopk, assign this ciphertext as the input
ciphertext of party j. Otherwise, assign a default ciphertext.

Addition Gates Input: a, b. Output: c.

1: Locally compute c = a � b.
Multiplication Gates Input: a, b. Output: c.

1: Sample a random plaintext di and compute the ciphertexts di =
Encek(di; r1) and dib = di � b � Encek(0; r3). Then, output the triple
((di, b, dib), (r1, r3)) at interface in.ZKpocm.

2: On input (dj , b, djb) at interface in.ZKpocm, add j to the set S. That is,
S is the set of parties that succeeded in the proof.

3: Compute a �
(
�i∈Sdi

)
. Then, execute the Threshold Decryption sub-

protocol on this ciphertext. Let a+
∑

i∈S
di be the decrypted plaintext.

4: Compute c =
(
a +

∑
i∈S

di

) � b �
(
�i∈Sdib

)
.

Output

1: Upon obtaining c′, the output ciphertext of the circuit, execute the
Threshold Decryption sub-protocol on c′.

Threshold Decryption Input: ciphertext c. Output: y.

1: Compute a decryption share si = DecSharedki (c). Then, input
((ek, c, si), dki) at interface in.ZKpocd.

2: Upon receiving (ek, c, sj) from t + 1 different parties at interface
in.ZKpocd, compute y = Rec({sj}).

The following theorem states that the protocol Πcdn achieves CC-
adaptive security in the model assuming a threshold encryption setup
and multi-party zero-knowledge resource. The main difference in the
proof with respect to the passive protocol, is that the simulator extracts
the inputs from corrupted parties from the inputs to the zero-knowledge
resource, and also checks that the values received from the adversary in-
terface satisfy the appropriate zero-knowledge relations. Details can be
found in Section A.2.

Theorem 4.6.2. Protocol Πcdn CC-adaptively constructs MPCf from
[ZK, KeyGen], with error ϵ and up to t < n/2 active corruptions, where
ϵ reduces distinguishers to the corresponding advantage in the security of
the threshold encryption scheme and is described in the proof.
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4.7 Application to the CLOS Protocol
In this section, we show another application of our new definition, with
the iconic CLOS protocol [CLOS02], which is based on the classical GMW
protocol [GMW87].

We show that the CLOS protocol can be used to achieve a CC-
adaptively secure protocol for arbitrary number of active corruptions,
assuming a CRS resource, and the existence of enhanced trapdoor per-
mutations. Note that, since CC-adaptivity implies static security, and
some form of setup is required even for static security, then it is impossi-
ble to achieve CC-adaptivity in the plain model (where only the network
is assumed) for the dishonest majority setting. However, note that in
contrast to the UC-adaptive version of the CLOS protocol, the construc-
tion does not require the use of augmented non-committing encryption.
In fact, to the best of our knowledge, all UC-adaptively secure protocols
in the dishonest majority setting require some form of non-committing
encryption.

Theorem 4.7.1. Assuming enhanced trapdoor permutations, there ex-
ists a non-trivial6 protocol that CC-adaptively constructs MPCf from
[N , CRS], for appropriate error ϵ (as defined by the steps below) and for
any number of active corruptions.

We only sketch the proof of the above theorem. We follow the steps of
the CLOS protocol. First, a construction of a passively secure protocol
assuming the asynchronous communication network N is shown. This
construction is achieved by first constructing an ideal oblivious transfer
(OT), and then designing a secure computation protocol assuming an
ideal OT. The following lemma shows that the protocol Πot of [GMW87]
achieves CC-adaptive security. We describe the protocol and the proof
of the following lemma in Section A.3.

Lemma 4.7.2. Assume that enhanced trapdoor permutations exist. Then,
Πot CC-adaptively constructs OT from N , for error ϵ (described in the

6The ideal specification does not require any of the simulators to deliver the mes-
sages to the parties. This implies that a protocol that “hangs” (i.e., never sends any
messages and never generates output) securely realizes any ideal resource, which is
uninteresting. Following [CLOS02], we therefore let a non-trivial protocol be one for
which all parties generate output if the adversary delivers all messages and all parties
are honest.
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proof), and for any number of passive corruptions.

Given that UC-adaptive security implies CC-adaptive security by
Lemma 4.4.8, and there is a UC-adaptively secure MPC protocol assum-
ing an ideal OT resource [CLOS02], we have the following lemma:

Lemma 4.7.3. There exists a non-trivial protocol that CC-adaptively
constructs MPCf from [N , OT], with no error, and for any number of
passive corruptions.

As a corollary of the above two lemmas and the composition guaran-
tees from Lemma 4.4.2, we have:

Corollary 4.7.4. Assume that enhanced trapdoor permutations exist.
There exists a non-trivial protocol that CC-adaptively constructs MPCf

from N , for error ϵ (defined by the composition Lemma 4.4.2 and error
from Lemma 4.7.2), and for any number of passive corruptions.

Second, we use the CLOS compiler that transforms any passively se-
cure protocol operating in the network N , to an actively secure protocol
assuming in addition an ideal commit-and-prove CP resource (see Sec-
tion A.4 for a description). One can see that the compiler preserves the
adaptivity type in the sense that if the passive protocol is CC-adaptively
secure, the compiled protocol is CC-adaptively secure.

Corollary 4.7.5. Let Π be a multi-party protocol and let Π′ be the pro-
tocol obtained by applying the CLOS compiler. Then, the following holds:
if Π CC-adaptively constructs MPCf from N for error ϵ and any num-
ber of passive corruptions, then Π′ CC-adaptively constructs MPCf from
[N , CP] for error ϵ′ defined in the proof and any number of active corrup-
tions.

Sketch. The proof in CLOS (Proposition 9.6) shows that a malicious
adversary cannot cheat in the compiled protocol because the resource
CP checks the validity of each input received. In particular, they show
that for any adversary interacting in the compiled protocol Π′, there is a
passive adversary interacting in protocol Π that simulates the same view.

Concretely, the proof shows that the specification ΠτN and Π′[N , CP]
are the same, where τ is the translation converter attached at the adver-
sary interface, which translates from the adversary in Π′ to the adversary
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in Π. (Typically the translation is called a simulator, and it happens
between a real resource and an ideal resource. Here, the translation is
between two real resources.)

Fix a set X ⊆ P. Since Π CC-adaptively constructs MPCf from N
for error ϵ and any number of passive corruptions, we have that ΠN ⊆
(σXMPCf )EX :ϵ.

Using Lemma 4.2.3, this implies the desired result:

Π′[N , CP] = ΠτN ⊆ τ(σXMPCf )EX :ϵ

⊆ (τσXMPCf )EX :ϵ′ := (σ′
X

MPCf )EX :ϵ′
,

where ϵ′ = ϵτ .

It was also shown in [CLOS02] that CP can be constructed with UC-
adaptive security assuming a zero-knowledge resource ZK and broadcast
BC. Given that ZK can be constructed assuming a resource CRS and
broadcast BC, and BC can be constructed from N , the authors conclude
that CP can be constructed from CRS and N . Therefore, since UC-
adaptive security implies CC-adaptive security, Lemma 4.4.8 shows:

Corollary 4.7.6. There exists a non-trivial protocol that CC-adaptively
constructs CP from [N , CRS], for error ϵ (as in [CLOS02]), and for any
number of active corruptions.

From Corollaries 4.7.4, 4.7.5 and 4.7.6, and Lemma 4.4.2 we achieve
the theorem statement.





Appendix A

Details of Chapter 4

A.1 Proof of Lemma 4.4.2
The proof of the lemma follows from the properties of the ϵ-relaxation
and the until-relaxation, and is in line with the composition theorem for
interval-wise relaxations in [JM20].

We start from the first property, which shows sequential composition.
That is, if π constructs S from R with error ϵ, and π′ constructs T from
S with error ϵ′, then one can construct T from R with a new error ϵ̃,
corresponding essentially to the sum of ϵ and ϵ′.

πR ⊆
⋂

X⊆P
(σXS)EX ∨EZ :ϵ ∧ π′S ⊆

⋂
X⊆P

(σ′
X
T )EX ∨EZ :ϵ′

=⇒ π′πR ⊆
⋂

X⊆P
(σ′

X
σXT )EX ∨EZ :ϵ̃,

for ϵ̃ := supX⊆P{(ϵπ′)EX ∨EZ + (ϵ′
σ

X
)EX ∨EZ}, where (ϵπ′)EX ∨EZ is the

advantage of the distinguisher that first attaches π′ to the given re-
source, and then interacts with the projected resource, and analogously
for (ϵ′

σ
X

)EX ∨EZ .
Let X ⊆ P be a set. From the first part, Lemma 4.2.3 and composition

order invariance, we have:
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π′πR ⊆ π′ (
(σXS)EX ∨EZ :ϵ)

⊆
(
(π′σXS)EX ∨EZ :ϵπ′

)
⊆

(
(σXπ′S)EX ∨EZ :ϵπ′

)
.

Moreover, from the second part we have:

(σXπ′S) ⊆ σX

(
(σ′

X
T )EX ∨EZ :ϵ′

)
⊆ (σXσ′

X
T )EX ∨EZ :ϵ′

σ
X .

Combining both statements and using Lemma 4.2.2 yields:

π′πR ⊆
(

(σXσ′
X
T )EX ∨EZ :ϵ′

σ
X

)EX ∨EZ :ϵπ′

⊆ (σXσ′
X
T )EX ∨EZ :ϵ̃.

The second property ensures that the construction notion achieves
parallel composition. That is, if π constructs S from R, then it also
constructs [S, T ] from [R, T ].

πR ⊆
⋂

X⊆P
(σXS)EX ∨EZ :ϵ =⇒ π[R, T ] ⊆

⋂
X⊆P

(σX [S, T ])EX ∨EZ :ϵT ,

for ϵT (D) := supT∈T ϵ(D[·, T]), where D[·, T] denotes the distin-
guisher that emulates T in parallel to the given resource, and then exe-
cutes D.

Let X ⊆ P be a set. From the composition order invariance property
and Lemma 4.2.3, we have:

π[R, T ] = [πR, T ] ⊆ [(σXS)EX ∨EZ :ϵ, T ]

⊆ [σXS, T ]EX ∨EZ :ϵT =
(
σX [S, T ]

)EX ∨EZ :ϵT
.

A.2 Proof of Theorem 4.6.2
Let R = [ZK, Keygen] and S = {MPCf}. Fix a set X ⊆ P. We need
to show that there is a simulator σX such that ΠcdnR ⊆ (σXS)EX ∨Et:ϵ.
At any point in time, if the event EX ∨ Et = 1, the simulator halts. The
simulator works as follows.

Key Generation. The simulator σX simulates this step by invoking the
simulator for the threshold encryption scheme. Let ek denote the public
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key, and dki denote the decryption key share for party i. It then outputs
ek at the adversary interface.

Network Messages. The simulator simulates each step of the protocol,
given that all messages before that step have been delivered by the adver-
sary i.e., the simulator receives all the corresponding deliver messages
at the adversary interface. If not, it simply keeps waiting. The messages
below in the steps below are output to the adversary at the corresponding
steps, upon receiving the corresponding leak messages at the adversary
interface.

Input Stage. For each party i that is honest at this step and gave
input to the ideal resource, σX outputs an encryption ci on behalf of
this party at the adversary interface. If i ∈ X , then the simulator does
not know its input, and computes the ciphertext ci = Encek(0) as an
encryption of 0. Otherwise, i /∈ X and the simulator knows its input
xi, so it computes xi = Encek(xi) as the ciphertext. It then outputs the
ciphertext ci, indicating that the zero-knowledge proof was successful.

For each party i that is corrupted at this point, the simulator obtains
(c, w) and checks that the witness w, consisting of a plaintext x and
randomness r, satisfy the proof of plaintext knowledge relation, i.e., that
c = Encek(x; r). It this holds, forward x to the ideal resource.

Addition Gates. This step can be simulated in a straightforward man-
ner, performing local homomorphic operations on behalf of each honest
party.

Multiplication Gates. Let a and b denote the ciphertexts input to the
multiplication gate. The simulator σX can execute the honest protocol.
That is, it generates a random value di on behalf of each honest party i,
and locally computes di = Encek(di), and dib = di�b. It then outputs the
pair of ciphertexts to the adversary interface, indicating that the proof
of correct multiplication is valid. For each corrupted party at this step,
the simulator obtains (as input of the zero-knowledge proof of correct
multiplication) the statement containing the ciphertexts ci

1, c2 := b and
ci

3 as the statement, and as witness the plaintexts di, and randomness r1
and r3. The simulator checks that ci

1 = Encek(di; r1), and ci
3 = di � c2 +

Encek(0; r3). If this holds, accept the pair of ciphertexts from party i.
Upon receiving the pairs of ciphertexts from all parties, let S be the

set of accepted parties. Then, compute the ciphertext a � (�i∈Sci
1), and
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simulate an honest threshold decryption protocol on this ciphertext. Let
a+

∑
i∈S di be the reconstructed plaintext. Then, compute the ciphertext

c = (a +
∑

i∈S di) � c2 � (�i∈Sci
3).

Output. The simulator inputs to the ideal resource (deliver, j), for
each party j that obtains an output in the protocol. It also obtains
the output with the instruction leakOutput. Then, upon obtaining an
output y from the ideal resource, use the simulator of the (adaptively
secure) threshold decryption protocol to compute decryption shares on
behalf of the honest parties (see [LP01], where one can simply choose as
the inconsistent party one of the parties in X).

Corruptions. On input a command leak, at interface A.i, if i is cor-
rupted, the simulator outputs the internal state of party i. Note that this
is easily done since for parties not in X, the simulator has access to its
input. And if any party in X gets corrupted, the corresponding MBO is
triggered, EX = 1, and the simulator halts.

We prove that ΠcdnR ⊆ (σXS)EX ∨Et:ϵ via a sequence of hybrids.

Hybrid H1. Here, we assume that the simulator has access to all inputs
from the parties. It then executes the real-world protocol, except that
in the zero-knowledge proofs, when the simulator has to output a proof
on behalf of an honest party it simply outputs a valid response without
checking the witness from the honest party. It is trivial to see that the
real-world specification is the same as H1, since honest parties always
send a valid witness to ZK.

Hybrid H2. We modify the above hybrid to also change the key gen-
eration and the decryption, which are now executed using the respec-
tive simulators for the threshold encryption scheme. By security of the
threshold encryption scheme, we have that untilEX ∨Et (H1) is ϵ1-close to
untilEX ∨Et (H2). With the same argument as in the passive case, we have
that:

untilEX ∨Et
(H1) ∈

(
HEX ∨Et]

2

)ϵ1
⇐⇒ H1 ∈ HEX ∨Et:ϵ1

2 .

Hybrid H3. This hybrid is the same as above, except that the simulator
sets the input encryption of the honest parties in X during the Input
Stage as an encryption of 0. By semantic security of the threshold en-
cryption scheme, we have that H2 ∈ HEX ∨Et:ϵ2

3 , where ϵ2 is the advantage
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of the distinguisher (modified by the reduction) to the semantic security
of the encryption scheme. Moreover, the hybrid H2 corresponds exactly
to the ideal specification (σXS).

Combining the above steps, we have that ΠcdnR ⊆ (σXS)EX ∨Et:ϵX ,
where ϵX = ϵ1 + ϵ2. Therefore, choosing the function ϵ where ϵ(D) =
supX⊆P{ϵX(D)} concludes the proof.

A.3 Protocol and Proof of Lemma 4.11.1
The oblivious transfer protocol Πot from [GMW87] is presented below.
We describe the protocol in the n-party setting, where two of the parties,
the sender s and the receiver r exchange the usual messages, and other
parties do not perform any instructions.

Converter for Sender s

1: On input (x1 . . . , xℓ) at out, choose a trapdoor permutation f over
{0, 1}κ, and its inverse f−1. Then, output f to in.net.r.

2: On input (y1 . . . , yℓ) at in.net.r, output (b1, . . . , bℓ) := (x1 ⊕
B(f−1(y1)), . . . , xℓ⊕B(f−1(yℓ))) to in.net.r, where B(·) is a hard-core
predicate for f .

Converter for Receiver r

Set f ′ = ⊥.
1: On input i at interface out, if f ′ ̸= ⊥, choose

y1, . . . , yi−1, r, yi+1, . . . , yℓ ∈R {0, 1}κ, and compute yi = f(r),
and output (y1, . . . , yℓ) at interface in.net.s.

2: On input f at interface in.net.s, set f ′ = f .
3: On input (b1, . . . , bℓ), output bi ⊕B(r) at out.

Protocol Πot

We prove that the protocol achieves CC-adaptive security against any
number of passive corruptions.

Lemma A.3.1. Assume that enhanced trapdoor permutations exist. Then,
Πot CC-adaptively constructs OT from N , for error ϵ (described in the
proof), and for any number of passive corruptions.

Proof. Fix a set X ⊆ P. We divide four cases, depending on whether
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the sender s or the receiver r are in the set X, and show that ΠotN ⊆
(σXOT)EX :ϵ. In all cases, the simulator halts at the point where a party
in X is corrupted.

Case 1: s /∈ X and r /∈ X. This case is trivial, since the simulator
knows the inputs to both parties, and can therefore locally simulate all
steps.

Case 2: r ∈ X. σX generates f, f−1 as in the protocol, outputs f at the
adversary interface A. It then generates y1, . . . , yi−1, yi, yi+1, yℓ randomly,
where yj ∈R {0, 1κ}. Output y1, . . . , yℓ at interface A. Finally, compute
each bit bi = xi ⊕ B(f−1(yi), i ∈ [1, ℓ]. Output b1, . . . , bℓ at interface A,
input x1, . . . , xℓ to OT and deliver the output to the receiver.

Corruptions. At any point in time, on input leak from A output the
sender’s secret state.

Simulation is perfect in this case. Since f is a permutation, choosing
z at random and computing yi = f(r), as occurs in the real protocol,
gives a uniform random yi. Moreover, the equality bi = xi ⊕ B(f−1(yi))
is satisfied. Therefore, both real and ideal systems behave the same until
the event EX triggers. This means that ΠotN ⊆ (σXOT)EX :0.

Case 3: s ∈ X. σX generates f, f−1 as in the protocol, outputs f at the
adversary interface A. It then generates y1, . . . , yi−1, r, yi+1, yℓ randomly,
where yj ∈R {0, 1κ}, and yi = f(r). Output y1, . . . , yℓ at interface A.
Finally, input i at OT, and obtain xi. Then, compute b1, . . . , bi−1, bi+1, bℓ

as uniform bits, and set bi = xi⊕B(f−1(yi). Output b1, . . . , bℓ at interface
A.

Corruptions. On input leak from A before Step 2, if the receiver r is
corrupted, output the input i. If the corruption is after Step 2, output
y1, . . . , yℓ.

The only difference between the real and ideal world, is in the third
message b1, . . . , bℓ. The bit bi is identical in both worlds, and is set to
xi⊕B(f−1(yi)). For the other bits bj , j ̸= i, the simulation chooses them
uniformly, while the protocol chooses them as xj⊕B(f−1(yj)). However,
since B(·) is a hard-core predicate and yj is uniform random, these are
distinguishable up to the hard-core property.

Therefore, we have that until EX = 1, the real system is the same as
the ideal system, up to the security of the hard-core predicate. That is,
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ΠotN ⊆ (σXOT)EX :ϵhc , where ϵhc is the advantage for the distinguisher
modified by the reduction in distinguishing the hard-core bit from uni-
form.

Case 4: s ∈ X and r ∈ X. In this case, the simulator σX simply
generates f, f−1 as in the protocol, outputs f at the adversary interface
A. It then generates y1, . . . , yℓ, where yj ∈R {0, 1}κ and outputs this
to interface A, and also sets the second messages b1, . . . , bℓ where bj ∈R

{0, 1} and outputs this to interface A.
This case can be argued similarly as the previous case.

A.4 Commit-and-Prove Resource
The commit-and-prove resource [CLOS02] is a generalization of the com-
mitment resource. It is parameterized by a relation R and a designated
party i, the committer. It consists of two phases. In the first phase, party
i can commit to a value w, and all parties receive a “committed” message.
In the second phase, instead of opening the value, the resource receives
some value x, and checks whether R(x, w) = 1. If so, it outputs x to all
parties, and otherwise it ignores the input. In fact, the resource allows
the committer to commit to multiple values, and the relation can depend
on all these values.

We denote the resource CPR the parallel composition of resources
CPi,R for each designated party i ∈ [n], and omit writing the relation
when it is clear from the context.

Local Variable

w is initially an empty list.
Q = ∅.

Commit Phase

1: On input (commit, id, w) at interface i, append w to w and output ⊥ at
interface i.

Resource CPi,R
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2: On input id at interface j ̸= i, if a value with this id was committed,
make the receipt available to the adversary, who then can choose to
deliver the message at interface j.

3: On input id at the adversary interface, if a value with this id was com-
mitted, output receipt at interface j.

Prove Phase

1: On input (prove, id, x) at interface i, if R(x, w) = 1, add (id, x) to Q.
2: On input id at interface j ̸= i if a pair (id, x) was stored, make x

available to the adversary, who then can choose to deliver the message
at interface j.

3: On input id at the adversary interface, if a pair (id, x) was stored, output
x at the same interface.



Chapter 5

Synchronous
Constructive
Cryptography

5.1 Introduction
5.1.1 Composable Security
One can distinguish two different types of security statements about
multi-party protocols. Stand-alone security considers only the protocol
at hand and does not capture (at least not explicitly) what it means to
use the protocol in a larger context. This can cause major problems. For
example, if one intuitively understands an r-round broadcast protocol
as implementing a functionality where the sender inputs a value and r
rounds later everybody learns this value, then one missed the point that
a dishonest party learns the value already in the first round. Therefore
a naive randomness generation protocol, in which each party broadcasts
(using a broadcast protocol) a random string and then all parties compute
the XOR of all the strings, is insecure even though naively it may look
secure [HZ10]. There are also more surprising and involved examples of
failures when using stand-alone secure protocols in larger contexts.

The goal of composable security frameworks is to capture all aspects



70 CHAPTER 5. SYNCHRONOUS CC

of a protocol that can be relevant in any possible application; hence
the term universal composability [Can01]. While composable security
is more difficult to achieve than some form of stand-alone security, one
can argue that it is ultimately necessary. Indeed, one can sometimes
reinterpret stand-alone results in a composable framework. There exist
several frameworks for defining and reasoning about composable security
(e.g. [PW00, Can01, DKMR05, MR11, MT13, KTR20, HUM13]).

5.1.2 Composable Synchronous Models
One can classify results on distributed protocols according to the un-
derlying interaction model. Synchronous models, where parties are syn-
chronized and proceed in rounds, were first considered in the literature
because they are relatively simple in terms of the design and analysis of
protocols. Asynchronous models are closer to the physical reality, but
designing them and proving their security is significantly more involved,
and the achievable results (e.g. the fraction of tolerable dishonest par-
ties) are significantly weaker than for a synchronous model. However,
synchronous models are nevertheless justified in settings where one can
assume a maximal latency of all communication channels as well as suf-
ficiently well-synchronized clocks.

Most composable treatments of synchronous protocols are in (ver-
sions of) the UC framework by Canetti [Can01], which is an inherently
asynchronous model. The models presented in [Can01, Nie03, HM04,
KMTZ13] propose different approaches to model synchronous communi-
cation on top of the UC framework [Can01]. These approaches inherit
the complexity of the UC framework designed to capture full asynchrony.
Another approach was introduced with the Timing Model [DNS98, Gol02,
KLP05]. This model integrates a notion of time in an intuitive manner,
but as noted in [KMTZ13] fails to exactly capture the guarantees ex-
pected from a synchronous network. A similar approach was proposed
in [BHMU05], which modifies the asynchronous reactive-simulatability
framework [BPW07] by adding an explicit time port to each automaton.

Despite the large number of synchronous composable frameworks,
the overhead created when using them is still too large. For example,
when using a model built on top of UC, one typically needs to consider
clock/synchronization functionalities, activation tokens, message schedul-
ing, etc. Researchers wish to make composable statements, but using
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these models often turn out to be a burden and create huge overhead.
As a consequence, papers written in synchronous UC models tend to be
rather informal: the descriptions of the functionalities are incomplete,
clock functionalities are missing, protocols are underspecified and the
proofs are often made at an intuitive level. This leaves the question:

Can one design a composable framework targeted to minimally cap-
ture synchronous protocols?

People have considered capturing composable frameworks for restricted
settings (e.g. [Wik16, CCL15]), but to the best of our knowledge, there
is no composable framework that is targeted to minimally capture any
form of synchronous setting.

5.1.3 Multi-Party Computation
In the literature on secure multi-party computation (MPC) protocols,
of which secure function evaluation (SFE) is a special case, most of the
results are for the synchronous model as well as stand-alone security, even
though intuitively most protocols seem to provide composable security.
To the best of our knowledge, the first paper proving the composable
security of a classical SFE protocol is [CLOS02], where the security of
the seminal GMW-protocol [GMW87] is proved. The protocol assumes
trusted setup, and security is obtained in the UC framework. In [AL17],
the security of the seminal BGW-protocol [BGW88] is proved in the plain
model. With the results in [KLR06, KMTZ13], one can prove security in
the UC framework.

5.1.4 Contributions
A guiding principle is to strive for minimality and to avoid unnecessary
artefacts, thus lowering the entrance fee for getting into the field of com-
posable security and also bringing the reasoning about composable secu-
rity for synchronous protocols closer to being tractable by formal meth-
ods.

The contributions in this chapter are two-fold. First, we introduce a
new composable framework to capture settings where parties have syn-
chronized clocks (in particular, traditional synchronous protocols), and
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illustrate the framework with a few simple examples. Our focus is on
the meaningful class of information-theoretic security as well as static
corruption.

As a second contribution, we prove the composable security of Mau-
rer’s simple-MPC protocol [Mau06] and demonstrate that it perfectly
constructs a versatile computer resource which can be (re-)programmed
during the execution. Compared to [CLOS02, AL17], our treatment is
significantly simpler for two reasons. First, the protocol of [Mau06] is
simpler than the BGW-protocol. Second, and more importantly, the sim-
plicity of our framework allows to prove security of the protocols without
the overhead of asynchronous models: we do not deal with activation
tokens, message scheduling, running time, etc.

Synchronous Constructive Cryptography. Our framework is an in-
stantiation of the Constructive Cryptography framework [Mau11, MR11,
MR16], for specific instantiations of the resource and converter concepts.
Moreover, we introduce a new type of construction notion, parameter-
ized by the set Z of potentially dishonest parties, allowing to capture the
guarantees for every such dishonest set Z. An often considered special
case is that nothing is guaranteed if Z contains too many parties.

Synchronous resources are very simple: They are (random) systems
where the alphabet is list-valued. That is, a system takes a complete
input list and produces a complete output list. Parallel composition of
resources is naturally defined. There is no need to talk about a scheduler
or activation patterns.

To allow that dishonest parties can potentially make their inputs de-
pend on some side information of the round, we let one round r of the
protocol correspond to two rounds, r.a and r.b (called semi-rounds). Hon-
est parties provide the round input in semi-round r.a and the dishonest
parties receive some information already in the same semi-round r.a. In
semi-round r.b, the dishonest parties give their inputs and everybody
receives the round’s output.1

The framework is aimed at being minimal and differs from other frame-
works in several ways. One aspect is that the synchronous communica-
tion network is simply a resource and not part of the framework; hence

1What is known as a rushing adversary in the literature is the special case of
communication channels where a dishonest receiver sees the other parties’ inputs of a
round before choosing his own input for that round.
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it can be modelled arbitrarily, allowing to capture incomplete networks
and various types of channels (e.g., delay channels, secure, authenticated,
insecure, etc).

We demonstrate the usage of our model with three examples: a two-
party protocol to construct a common randomness resource (Section 5.4),
the protocol introduced in [BGP89] to construct a broadcast resource
(Section B.1), and the simple MPC protocol [Mau06] as the construction
of a computer resource (Sections 5.6 and 5.7).

The Computer Resource. We introduce a system Computer which
captures intuitively what traditional MPC protocols like GMW, BGW or
CCD [GMW87, BGW88, CCD88, RB89, GRR98, Mau06] achieve. Tra-
ditionally, in a secure function evaluation protocol among n parties, the
function to compute is modelled as an arithmetic circuit assumed to be
known in advance. However, the same protocols are intuitively secure
even if parties do not know in advance the entire circuit. It is enough
that parties have agreement on the next instruction to execute.

We capture such guarantees in an interactive computer resource, sim-
ilar to a (programmable) old-school calculator with a small instruction
set (read, write, addition, and multiplication in our case), an array of
value-registers, and an instruction queue. The resource has n interfaces.
The interfaces 1, . . . , n− 1 are used to give inputs to the resource and re-
ceive outputs from the resource. Interface n is used to write instructions
into the queue. A read instruction (input, i, p) instructs the computer
to read a value from a value space V at interface i and store it at posi-
tion p of the value register. A write instruction (output, i, p) instructs
the computer to output the value stored at position p to interface i. A
computation instruction (op, p1, p2, p3), op ∈ {add, mult} instructs the
computer to add or to multiply the values at positions p1 and p2 and
store it at position p3. We then show how to construct the computer
resource using the Simple MPC protocol [Mau06]. A similar statement
could be obtained using other traditional MPC protocols.

5.2 Synchronous Systems
To instantiate the Constructive Cryptography framework at the level of
synchronous discrete systems, we need to instantiate the notions of a
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resource R ∈ Φ and a converter π ∈ Σ. We define each of them as special
types of random systems [Mau02, MPR07].

5.2.1 Resources
A resource (the mathematical type) is a special type of random system
[Mau02, MPR07]. A resource with n interfaces takes one input per inter-
face and produces an output at every interface (see Figure 5.1). Without
loss of generality, we assume that the alphabets at all interfaces and for
all indices i are the same.2 An (n,X ,Y)-resource is a resource with n
interfaces and input (resp. output) alphabet X (resp. Y).

Figure 5.1: An example resource with 4 interfaces. At each invocation,
the resource takes an input xj ∈ X at each interface j, and it outputs a
value yj ∈ Y at each interface j.

Definition 5.2.1. An (n,X ,Y)-resource is an (Xn,Yn)-random system.

Parallel Composition. One can take several independent (n,Xj ,Yj)-
resources R1, . . . , Rk and form an (n,×k

j=1 Xj ,×k

j=1 Yj)-resource, de-
noted [R1, . . . , Rk]. A party interacting with the composed resource
[R1, . . . , Rk] can give an input a = (a1, . . . , ak), which is interpreted
as giving each input aj ∈ Xj to resource Rj , and then receive an output
b = (b1, . . . , bk) containing the output from each of the resources.

In the following definition, we denote by xi = (a1,i, . . . , an,i) the i-th
input to the resource, and by yi = (b1,i, . . . , bn,i) the i-th output from
the resource. We further let [[xi]]j = ([a1,i]j , . . . , [an,i]j) be the tuple with

2The alphabets are large enough to include all values that can actually appear.
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the j-th component of each tuple a·,i; and let [[xi]]j be the finite sequence
[[x1]]j , . . . , [[xi]]j . We let [[yi]]j and [[yi]]j be defined accordingly.

Definition 5.2.2. Given a tuple of resources (R1, . . . , Rk), where Rj is
an (n,Xj ,Yj)-resource. The parallel composition R := [R1, . . . , Rk], is
an (n,×k

j=1 Xj ,×k

j=1 Yj)-resource, defined as follows:

pR
Yi|XiY i−1(yi, xi, yi−1) =

k∏
j=1

pRj

Yi|XiY i−1([[yi]]j , [[xi]]j , [[yi−1]]j)

5.2.2 Converters

An (X ,Y)-converter is a system (of a different type than resources) with
two interfaces, an outside interface out and an inside interface in. The
inside interface is connected to the (n,X ,Y)-resource, and the outside in-
terface serves as the interface of the combined system. When an input is
given (an input at the outside), the converter invokes the resource (with
an input on the inside), and then converts its response into a correspond-
ing output (an output on the outside). When a converter is connected to
several resources in parallel [R1, . . . , Rk], we address the corresponding
sub-interfaces with the name of the resource, i.e, in.R1 is the sub-interface
connected to R1.

More concretely, an (X ,Y)-converter is an (X ∪ Y,X ∪ Y)-random
system whose input and output alphabets alternate between X and Y.
That is,

• On the first input, and further odd inputs, it takes a value x ∈ X
and produces a value x′ ∈ X .

• On the second input, and further even inputs, it takes a value y′ ∈
Y, and produces a value y ∈ Y.

Definition 5.2.3. An (X ,Y)-converter π is a pair of sequences of condi-
tional probability distributions pπ

X′
i
|XiX′i−1Y ′i−1Y i−1 and pπ

Yi|XiX′iY ′iY i−1 ,
for i ≥ 1. Equivalently, a converter can be characterized by the sequence
pπ

X′iY i|XiY ′i =
∏i

k=1 pπ
X′

k
|XkX′k−1Y ′k−1Y k−1 · pπ

Yk|XkX′kY ′kY k−1 , for i ≥ 1.
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Application of a Converter to a Resource Interface.

The application of a converter π to a resource R at interface j can be
naturally understood as the resource that operates as follows (see Fig-
ure 5.2):

• On input (x1, . . . , xn) ∈ Xn: input xj to π, and let x′
j be the

output.
Then, input (x1, . . . , xj−1, x′

j , xj+1, . . . , xn) ∈ Xn to R.

• On output (y1, . . . , yj−1, y′
j , yj+1, . . . , yn) ∈ Yn from R, input y′

j to
π, and let yj be the output.
The output is (y1, . . . , yn) ∈ Yn.

Figure 5.2: The figure shows the application of a converter π to the
interface 2 of a resource R. On input a value x2 ∈ X to interface out of
π, the converter π outputs a value x′

2 ∈ X at interface in. The resource
R takes as input (x1, x′

2, x3, x4) ∈ X 4, and outputs (y1, y′
2, y3, y4) ∈ Y4.

On input y′
2 to interface in of π, the converter outputs a value y2 at

interface out.

Given a tuple a = (a1, . . . , an), we denote a{j→b} the tuple where
the j-th component is substituted by b, i.e. (a1, . . . , aj−1, b, aj+1, . . . , an).
Moreover, given a sequence ai of tuples t1, . . . , ti and a sequence bi of
values b1, . . . , bi, we denote ai

{j→bi}, the sequence of tuples t1
{j→b1}, . . . ,

ti
{j→bi}.
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Definition 5.2.4. The application of an (X ,Y)-converter π at interface
j of an (n,X ,Y)-resource R is the (n,X ,Y)-resource πjR defined as
follows:

pπjR
Y i|Xi

(
yi, xi

)
=∑

x′i,y′i

pπ
X′iY i|XiY ′i

(
x′i, [yi]j , [xi]j , y′i) pR

Y i|Xi

(
yi

{j→y′i}, xi
{j→x′i}

)
One can see that applying converters at distinct interfaces commutes.

That is, for any converters π and ρ, any resource R and any disjoint
interfaces j, k, we have that πjρkR = ρkπjR.

For a tuple of converters π = (π1, . . . , πn), we denote by πR the
resource where each converter πj is attached to interface j. Given a subset
of interfaces I, we denote by πIR the resource where each converter πj

with j ∈ I, is attached to interface j.

5.3 Resources with Specific Round-Causality
Guarantees

The resource type of Definition 5.2.1 captures that all parties act in a
synchronized manner. The definition also implies that any (dishonest)
party’s input depends solely on the previous outputs seen by the party.

In practice this assumption is often not justified. For example, con-
sider a resource consisting of two parallel communication channels (in a
certain round) between two parties, one in each direction. Then it is typi-
cally unrealistic to assume that a dishonest party can not delay giving its
input until having seen the output on the other channel. Such adversarial
behavior is typically called “rushing” in the literature. More generally, a
dishonest party’s input can depend on partial information of the current
round inputs from honest parties.

To model such causality guarantees, we introduce resources that pro-
ceed in two rounds (called semi-rounds) per actual protocol round.3 This
makes explicit what a dishonest party’s input can (and can not) depend
on.

3This type of resource is similar to the notion of canonical synchronous function-
alities in [CCGZ16].
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More concretely, each round r consists of two semi-rounds, denoted
r.a and r.b. In the first semi-round, r.a, the resource takes inputs from
the honest parties and gives an output to the dishonest parties. No
output is given to honest parties, and no input is taken from dishonest
parties. In the second semi-round, r.b, the resource takes inputs from the
dishonest parties and gives an output to all parties. Figure 5.3 illustrates
the behavior of such a resource within one round. When describing such
resources, we often omit specifying the semi-round when it is clear from
the context.

Figure 5.3: Figure depicts a resource operating in a round. The dashed
lines indicate that no value is taken as input to the resource, and is output
from the resource. The honest (resp. dishonest) parties give inputs to the
resource in the first (resp. second) invocation, and all parties receive an
output in the second invocation. The dishonest parties receive in addition
an output in the first invocation.

When applying a protocol converter to such a resource, we formally
attach the corresponding converter that operates in semi-rounds, where
round-r inputs are given to the resource at r.a, and round-r outputs are
obtained at r.b.

5.4 A First Example
We demonstrate the usage of our model to describe a very simple 2-party
protocol which uses delay channels to generate common randomness. The
protocol uses a channel with a known lower and upper bound on the



5.4. A FIRST EXAMPLE 79

delay, and proceeds as follows: Each party generates a random value
and sends it to the other party via a delay channel. Then, once the
value is received, each party outputs the sum of the received value and
the previously generated random value. It is intuitively clear that the
protocol works because 1) a dishonest party does not learn the message
before round r, and 2) an honest party is guaranteed to learn the message
at round R.

Bounded-Delay Channel with Known Lower and Upper Bound.
We model a simple delay channel

−→DC (resp.
←−DC) from party 1 to party

2 (resp. party 2 to party 1) with known lower and upper bound on the
delay. It takes a message at round 1, and is guaranteed to not deliver the
message until round r to a dishonest party, but is guaranteed to deliver
it at round R to an honest party. To model such a delay channel, we
define a delay channel

−→
DCr,R,Z with message space M from party 1 to

party 2 with fixed delay that takes a message at round 1 and delivers it
at round r if the receiver is dishonest, and at round R if the receiver is
honest. The set Z indicates the set of dishonest parties. The channel←−
DCr,R,Z in the other direction is analogous.

msg← 0
On input m ∈M at interface 1 of round 1, set msg← m.
if 2 ∈ Z then

Output msg at interface 2 at round r.
else

Output msg at interface 2 at round R.

Resource
−→
DCr,R,Z

To capture that the delay channel is not guaranteed to deliver the
message to a dishonest receiver exactly at round r, we consider the ∗-
relaxation (

−→
DCr,R,Z)∗Z on the delay channel at the dishonest interfaces

Z. This specification includes resources with no guarantees at Z. For
example, the resource may deliver the message later than r, or garbled,
or not at all.

Common Randomness Resource. The sketched protocol constructs
a common randomness resource CRS that outputs a random string. We
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would like to model a CRS that is guaranteed to output the random string
at round R to an honest party, but does not output the random string
before r to a dishonest party. For that, we first consider a resource which
outputs a random string to each honest (resp. dishonest) party at round
R (resp. r).

rnd←$ M
For each party i ∈ {1, 2}:
if i ∈ Z then

Output rnd at interface i at round r.
else

Output rnd at interface i at round R.

Resource CRSr,R,Z

With the same idea as with the delay channels, we can model a com-
mon randomness resource that is guaranteed to deliver the randomness
to the honest parties at round R but is not guaranteed to deliver the
output to the dishonest parties at round r, by considering a ∗-relaxation
on the resource over the dishonest interfaces Z, (CRSr,R,Z)∗Z .

Two-Party Construction. We describe the 2-party protocol π =
(π1, π2) sketched at the beginning of the section and show that it con-
structs a common randomness resource.

Local variable: rnd

Round 1

rnd←$ M
Output rnd at in.dc. // in.dc for π2

Round R

On input v ∈M at in.dc, output rnd + v at out. // in.dc for π2

Converter π1

Lemma 5.4.1. π = (π1, π2) constructs the specification (CRSr,R,Z)∗Z

from the specification [(
−→
DCr,R,Z)∗Z , (

←−
DCr,R,Z)∗Z ].
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Proof. We prove each case separately.
1) Z = ∅: In this case, it is easy to see that π1π2[

−→
DCr,R,∅,

←−
DCr,R,∅] =

CRSr,R,∅ holds, since the sum of two uniformly random messages is uni-
formly random.
2) Z = {2}: Consider now the case where party 2 is dishonest (the case
where party 1 is dishonest is similar). Let S := [

−→
DCr,R,Z ,

←−
DCr,R,Z ]. It

suffices to prove that π1S ∈ (CRSr,R,Z)∗Z because:

π1[(
−→
DCr,R,Z)∗Z , (

←−
DCr,R,Z)∗Z ] ⊆ (π1[

−→
DCr,R,Z ,

←−
DCr,R,Z ])∗Z

= (π1S)∗Z ⊆ ((CRSr,R,Z)∗Z )∗Z = (CRSr,R,Z)∗Z ,

where the last equality holds because the ∗-relaxation is idempotent.
Hence, we show that the converter σ described below is such that π1S =
σ2CRSr,R,Z .

Initialization

rcv← 0.
Round 1.b

On input v ∈M at out.dc, set rcv← v.
Round r.a

On input rnd at in, output rnd− rcv at out.dc.

Converter σ

Consider the system π1S. The system outputs at interface 1 of round
R.b, a value rnd + v, where rnd is a random value and v is the value
received at interface 2 of round 1.b (and v = 0 if no value was received).
Moreover, the system outputs at interface 2 of round r.a, the value rnd.

Now consider the system σ2CRSr,R,Z . The system outputs at interface
1 of round R.b, a random value rnd′. Moreover, the system outputs at
interface 2 of round r.a, the value rnd′ − v, where v is the same value
received at interface 2 of round 1.b (and v = 0 if no value was received).

Since the joint distribution {rnd + v, rnd} and {rnd′, rnd′ − v} are
exactly the same, we conclude that π1S = σ2CRSr,R,Z .
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5.5 Communication Resources
5.5.1 Point-to-Point Channels
We model the standard synchronous communication network, where par-
ties have the guarantee that messages input at round k are received by
round k + 1, and dishonest parties’ round-k messages potentially depend
on the honest parties’ round-k messages. Let AUTHℓ,Z(s, r) be a bilateral
channel resource with n interfaces, one designated to each party i ∈ P,
and where two of the interfaces, s and r are designated to the sender and
the receiver. The channel is parameterized by the set of dishonest parties
Z ⊆ P. The privacy guarantees are formulated by a leakage function
ℓ(·) that determines the information leaked to dishonest parties. For ex-
ample, in an authenticated channel ℓ(m) = m, and in a secure channel
ℓ(m) = |m|.

In the following, we formally describe the channel resource.

Round k, k ≥ 1

On input m at interface s, output m at interface r.
Output ℓ(m) at each interface i ∈ Z.

Resource AUTHℓ,Z(s, r)

Let NZ be the complete network of pairwise secure channels. That
is, NZ is the parallel composition of secure channels AUTHℓ,Z(i, j) with
ℓ(m) = |m|, for each pair of parties i, j ∈ P.

5.5.2 Broadcast Resource Specification
Broadcast is an important building block that many distributed protocols
use. It allows a specific party, called the sender, to consistently distribute
a message. More formally, it provides two guarantees: 1) Every honest
party outputs the same value (consistency), and 2) the output value is
the sender’s value in case the sender is honest (validity).

The broadcast specification BCk,l,Z(s) involves a set of parties P,
where one of the parties is the sender s. It is parameterized by the
round numbers k and l indicating when the sender distributes the mes-
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sage and when the parties are guaranteed to receive it. The specification
BCk,l,Z(s), is the set of all resources satisfying both validity and consis-
tency. That is, there is a value v such that the output at each interface
j for j /∈ Z at round l.b is yl.b

j = v, and if the sender is honest, this value
is the sender’s input xk.a

s at round k.a. That is:

BCk,l,Z(s) :=
{

R ∈ Φ
∣∣∣ ∃v[(

∀j ∈ Z yl.b
j = v

)
∧

(
s ∈ Z → v = xk.a

s

)]}
We show how to construct such a broadcast specification in Section

B.1. Let BC∆,Z(s) be the parallel composition of BCk,k+∆,Z(s), for each
k ≥ 1, and let BC∆,Z be the parallel composition of BC∆,Z(s), for each
party s ∈ P.

5.6 The Interactive Computer Resource
In this section, we introduce a simple ideal interactive computer resource
with n interfaces. Interfaces 1, . . . , n−1 are used to give input values and
receive output values. Interface n allows to input instruction commands.
The resource has a memory which is split into two parts: an array storing
values S and a queue C storing instruction commands to be processed.
We describe the functionality of the resource in two parts: Storing the
instructions that are input at n, and processing the instructions.

Store Instructions. On input an instruction at interface n at round r,
the instruction is stored in the queue C. Then, after a fixed number of
rounds, the input instruction is output at each honest interface i, and at
dishonest interfaces at round r.a.

Instruction Processing. The interactive computer processes instruc-
tions sequentially. There are three types of instructions that the resource
can process. Each instruction type has a fixed number of rounds.

1. An input instruction (input, i, p) instructs the resource to read a
value from a value space V at interface i and store it at position p
of the array S. If party i is honest, it inputs the value at the first
round of processing the input instruction, otherwise it inputs the
value at the last round. This models the fact that a dishonest party
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i can defer the choice of the input value to the end of processing
the instruction.

2. An output instruction (output, i, p) instructs the computer to out-
put the value stored at position p to interface i. If party i is dishon-
est, it receives the value at the first round of processing the output
instruction. Otherwise, the value is output at the last round of
processing the instruction.

3. A computation instruction (op, p1, p2, p3)), op ∈ {add, mult} in-
structs the computer to add or to multiply the values at positions
p1 and p2 and store it at p3.

One could consider different refinements of the interactive computer.
For example, a computer that receives lists of instructions, processes
instructions in parallel, or that allows instructions to be the result of a
computation using values from S. For simplicity, we stick to a simple
version of the computer.

Parameters: ri,ro,ra,rm, rs. // #rounds to process an input, output,
addition or multiplication instruction, and to store an instruction
Initialization

L← empty array. // Store values
C ← empty queue. // Store instructions
Next2Read← 1. // Counter indicating when to read the next instruction
Current← ⊥. // Contains the current instruction being processed

Round k, k ≥ 1

// Read next instruction
if Next2Read = k then

Current← C.pop()
if Current ̸= ⊥ then

Next2Read← k + rj , where rj , for j ∈ {i, o, a, m}, is the round
delay of the instruction in Current.

else

Resource ComputerZ
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Next2Read← k + 1

// Process instruction
if Current = (input, i, p) then

if i /∈ Z then
Read x ∈ V at interface i at round Next2Read− ri.

else
Read x ∈ V at interface i at round Next2Read− 1.

L[p]← x
else if Current = (op, p1, p2, p3), op ∈ {add, mult} then

L[p3]← L[p1] op L[p2]
else if Current = (output, i, p) then

if i /∈ Z then
Output L[p] at interface i at round Next2Read− 1.

else
Output L[p] at interface i at round Next2Read− ro.

Current← ⊥

// Store instruction in queue
Read instruction I at interface n.
If I is a valid instruction, output I at each interface i ∈ Z. Then,
at round k + ∆ introduce the instruction in the queue C.push(I), and
output I at each interface i /∈ Z. // If party n is honest, output to
honest parties at (k + ∆).b and dishonest parties at k.a. Otherwise,
output to all parties at (k + ∆).b

5.7 Protocol Simple MPC
We adapt Maurer’s Simple MPC protocol [Mau06], originally described
for SFE in the stand-alone setting, to realize the resource Computer from
Section 5.6, thereby proving a much stronger (and composable) statement.
The protocol is run among a set P = {1, . . . , n} of n parties. Parties
1, . . . , n− 1 process the instructions, give input values and obtain output
values. Party n has access to the instructions that the other parties needs
to execute.

General Adversaries. In many protocols, the sets of possible dishonest
parties are specified by a threshold t, that indicates that any set of dis-
honest parties is of size at most t. However, in this protocol, one specifies
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a so-called adversary structure Z, which is a monotone4 set of subsets
of parties, where each subset indicates a possible set of dishonest parties.
We are interested in the condition that no three sets in Z cover [n − 1],
also known as Q3([n− 1],Z) [HM00].

5.7.1 Protocol Description
Let Z be an adversary structure that satisfies Q3([n − 1],Z). Protocol
sMPC = (π1, . . . , πn) constructs the resource ComputerZ , introduced in
Section 5.6, for any Z ∈ Z. For sets Z /∈ Z, the protocol constructs the
trivial specification Φ.

Assumed Specifications. The protocol assumes the following speci-
fications: a network specification NZ among the parties in P (see Sec-
tion 5.5.1) and a parallel broadcast specification BC∆,Z which is the par-
allel composition of broadcast channels where any party in P can be a
sender and the set of recipients is P (see Section 5.5.2).

Converters. The converter πn is the identity converter. It allows to
give direct access to the flow of instructions that the parties need to
process. Because the instructions are delivered to the parties in P via
the broadcast specification BC∆,Z(n), parties have agreement on the next
instruction to execute.

We now describe the converters π1, . . . , πn−1. Each converter πi keeps
an (initially empty) array L with the current stored values, and a queue
C of instructions to be executed. Each time an instruction is received
from BC∆,Z(n), it is added to C and also output. Each instruction in C
is processed sequentially.

In order to describe how to process each instruction, we consider the
adversary structure Z ′ := {Z \ {n} : Z ∈ Z}. Let the maximal sets in
Z ′ be max(Z ′) := {Z1, . . . , Zm}.

Input Instruction (input, i, p), for i ∈ [n − 1]. Converter πi does as
follows: On input a value s from the outside interface, compute shares
s1, . . . , sm using a m-out-of-m secret-sharing scheme (m is the number
of maximal sets in Z ′). That is, compute random summands such that
s =

∑m
j=1 sj . Then, output sj to the inside interface in.net.chi,k, for

each party k ∈ Zj .
4If Z ∈ Z and Z′ ⊆ Z, then Z′ ∈ Z.
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Then each converter for party in Zj , echoes the received shares to all
parties in Zj , i.e. outputs the received shares to in.net.chi,k, for each
party k ∈ Zj . If a converter obtained different values, it broadcasts a
complaint message, i.e. it outputs a complaint message at in.bc. In such
a case, πi broadcasts the share sj . At the end of the process, the convert-
ers store the received shares in their array, along with the information
that the value was assigned to position p. Intuitively, a consistent sharing
ensures that no matter which set Zk of parties is dishonest, they miss the
share sk, and hence s remains secret.
Output Instruction (output, i, p), for i ∈ [n− 1]. Each converter πl,
l ∈ [n−1], outputs all the stored shares assigned to position p at interface
in.net.chl,i. Converter πi does: Let vl

j be the value received from party
l as share j at in.net.chl,i. Then, converter πi reconstructs each share
sj as the value v such that {l | vl

j ̸= v} ∈ Z, and outputs
∑

j sj .
Addition Instruction (add, p1, p2, p3). Each converter for a party in
Zj adds the j-th shares of the values assigned to positions p1 and p2, and
stores the result as the j-th share of the value at position p3.
Multiplication Instruction (mult, p1, p2, p3). The goal is to compute
a share of the product ab, assuming that the converters have stored shares
of a and of b respectively. Given that ab =

∑m
p,q=1 apbq, it suffices to

compute shares of each term apbq, and add the shares locally. In order
to compute a sharing of apbq, the converter for each party i ∈ Zp ∩ Zq

executes the same steps as the input instruction, with the value apbq.
Then, converters for parties in Zp ∩ Zq check that they all shared the
same value by reconstructing the difference of every pair of shared values.
In the case that all differences are zero, they store the shares of a fixed
party (e.g. the shares from the party in Zp ∩Zq with the smallest index).
Otherwise, each term ap and bq is reconstructed, and the default sharing
(apbq, 0, . . . , 0) is adopted.
Theorem 5.7.1. Let P = {1, . . . , n}, and let Z be an adversary structure
that satisfies Q3([n − 1],Z). Protocol sMPC constructs (ComputerZ)∗Z

with parameters (ri, ro, ra, rm, rs) = (2∆ + 2, 1, 0, 2∆ + 4, ∆) from the
assumed specification [NZ , BC∆,Z ], for any Z ∈ Z, and constructs Φ
otherwise.

Proof. Case Z = ∅: In this case all parties are honest. We need to
argue that:
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R∅ := sMPC[N∅, BC∆,∅] = Computer∅.

At the start of the protocol, the computer resource Computer∅, and
each protocol converter has an empty queue C of instructions and empty
array L of values. Consider the system R∅. Each time party n inputs
an instruction I to BC∆,∅(n), because of validity, it is guaranteed that
after ∆ rounds each protocol converter receives I, stores I in the queue C
and outputs I at interface out. Each converter processes the instructions
in its queue sequentially, and each instruction takes the same constant
amount of rounds to be processed for all parties. Hence, all honest parties
keep a queue with the same instructions throughout the execution of the
protocol.

Now consider the system Computer∅. It stores each instruction input
at interface n in its queue C, and outputs the instruction I at each
party interface i ∈ P after ∆ rounds. The instructions are processed
sequentially, and it takes the same amount of rounds to process each
instruction as in R∅.

We then conclude that each queue for each protocol converter in R∅
contains exactly the same instructions as the queue in Computer∅.

We now argue that the behavior of both systems is identical not only
when storing the instructions, but also when processing them.

Let us look at the content of the arrays L that Computer∅ and each
protocol converter in R∅ has. Whenever a value s is stored in the array
L of Computer∅ at position p, there are values sl, such that s =

∑m
l=1 sl

and sl is stored in each converter πj such that j /∈ Zl. For each value sl,
the converters that store sl, also stores additional information containing
the position p and the index l.

Consider an input instruction, (input, i, p) at round k, and a value x
is input at the next round at interface i. In the system R∅, the converter
πi computes values sl, such that s =

∑m
l=1 sl and sends each sl to each

converter πj such that j /∈ Zl. All broadcasted messages are 0, i.e. there
are no complaints, and as a consequence sl is stored in each converter πj ,
where j /∈ Zj . In the system Computer∅, the value x is stored at the p-th
register of the array L.

Consider an output instruction, (output, i, p). In the system R∅,
each converter πj sends the corresponding previously stored values sl

associated with position p, and πi outputs s =
∑m

l=1 sl. In the system
Computer∅, the value x stored at the p-th register of the array L is output
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at interface i.
Consider an addition instruction, (add, p1, p2, p3). In the system R∅

each converter adds, for each share index l, the corresponding values asso-
ciated with position p1 and p2, and stores the result as a value associated
with position p3 and index l. In the system Computer∅, the sum of the
values a and b stored at the p1-th and p2-th positions is stored at position
p3.

Consider a multiplication instruction, (mult, p1, p2, p3). In the ideal
system Computer∅, the product of the values a and b stored at positions
p1-th and p2-th is stored at position p3. In the system R∅, let ap (resp.
bq) be the value associated with position p1 (resp. p2) and with index p
(resp. q), that each converter for party in Zp (resp. Zq) has. For each
1 ≤ p, q ≤ m, consider each protocol converter for party j ∈ Zp ∩ Zq.
(Note that since the adversary structure satisfies Q3(P,Z), then, for any
two sets Zp, Zq ∈ Z, Zp ∩ Zq ̸= ∅.) The converter does the following
steps:

1. Input instruction steps with the value apbq as input. As a result,
each converter in Zu stores a value, which we denote vu

j , from j ∈
Zp ∩ Zq.

2. Execute the output instruction, with the value vu
j −vu

j0
and towards

all parties in [n − 1]. As a result, every party obtains 0, and the
value vu

j0
is stored.

3. The value associated with position p3 and index p, stored by each
converter for party in Zp, is the sum wp =

∑
j0

vp
j0

.

As a result, each party in Zp stores wp, and
∑

p wp = ab.

Case Z ̸= ∅: In this case, the statement is only non-trivial if Z ∈ Z,
because otherwise the ideal system specification is SZ = Φ, i.e. there are
no guarantees.

We need to show that when executing sMPC with the assumed spec-
ification, we obtain a system in the specification (ComputerZ)∗Z . That
is, for each network resource N ∈ NZ and parallel broadcast resource
PBC = [BC1, . . . , BCn] ∈ BC∆,Z we need to find a system σ such that:

R := sMPCP\Z [N, PBC] = S := σZComputerZ .
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Round k, k ≥ 1

// Dishonest party n
1: Emulate the behavior of the assumed broadcast resource BCn, where

honest parties’ inputs are ⊥, and dishonest parties’ inputs are given at
out.

2: On input an instruction at in, store it.
// Instruction emulation

3: Read the next instruction I to execute.
4: if I = (input, i, p) then
5: if i /∈ Z then
6: Compute and output a random value sq at each interface

out.i, i ∈ Z ∩ Zq. Store sq, q and p.
7: On input a complaint message on q at out.i, output the

stored value sq at interface out.bc.
8: else
9: If there is exactly one value received sq for each Z ∩ Zq,

then store the values sq with q and p.
10: Otherwise, emulate the behavior of BCj for a complaint message,

for each q such that there are zero or more than a different value,
and for each j ∈ Z ∩ Zq.

11: On input sq at out, store it.
12: Input at in the sum of values sq stored.
13: else if I = (output, i, p) then
14: Read x ∈ V at interface in.
15: Output at out, random values s′

q such that
∑

q:Z∩Zq=∅ s′
q +∑

q:Z∩Zq ̸=∅ sq = x. // The dishonest values sq associated with posi-
tion p are stored

16: else if I = (add, p1, p2, p3) then
17: For each q, add the values sq, s′

q associated with p1 and p2 respec-
tively, and store the result as well as the position p3.

18: else if I = (mult, p1, p2, p3) then
19: Consider, for each 1 ≤ p, q ≤ m, two possible cases:
20: if Z ∩ Zp ∩ Zq ̸= ∅ then
21: The values ap and bq, where ap (resp. bq) is the value associated

with position p1 (resp. p2).

Converter σ
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22: For each i ∈ Z ∩Zp ∩Zq, follow the same steps as with the input
instruction (Steps 9-11). // Check that the dishonest parties in
Zp ∩ Zq input a consistent sharing

23: Check that the values from party i add up to apbq. If so, store the
values from the party with the smallest index. Otherwise, define
the sharing of apbq as (apbq, . . . , 0), and output the corresponding
shares to the dishonest parties.

24: else
25: If all parties in Zp ∩ Zq are honest, generate random values as

shares of apbq, store them and answer complaints, according to
Steps 6-7.

26: Output 0s as the reconstructed differences.
27:

We first argue that the instructions written at the queue C in resource
σZComputerZ follow the same distribution as the instructions that the
honest parties store in their queue in the system RZ . If party n is honest,
this is true, as argued in the previous case for Z = ∅. In the case
that party n is dishonest, the converter σ inputs (equally distributed)
instructions as BCn outputs to honest parties in RZ by emulating the
behavior of BCn, taking into account the inputs from dishonest parties
provided at the outside interface, and the honest parties’ inputs are ⊥.

Now we need to show that the messages that dishonest parties receive
in both systems are equally distributed. We argue about each single
instruction separately. Let I be the next instruction to be executed.
Input instruction: I = (input, i, p). We consider two cases, depending
on whether party i is honest.

Dishonest party i. In the system R, if a complaint message is gen-
erated from an honest party, the exact same complaint message will be
output by σ in the system S. This is because σ stores the shares received
at the outside interface by the dishonest parties, and checks that the
shares are consistent. Moreover, at the end of the input instruction it is
guaranteed that all shares are consistent (i.e., all honest parties in each
Zq have the same share), and hence the sum of the shares is well-defined.
This exact sum is input at ComputerZ by σ.

Honest party i. In this case, the converter σ generates and outputs
random consistent values as the shares for dishonest parties. On input a
complaint from a dishonest party, output at the broadcast interface its
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share to all dishonest parties. In the system R, dishonest parties also
receive shares that are randomly distributed. Observe that in this case,
the correct value is stored in the queue of ComputerZ , but σ only has the
shares of dishonest parties.
Output instruction: I = (output, i, p). In this case, the emulation
is only non-trivial if party i is dishonest. The converter outputs random
shares such that the sum of the random shares and the corresponding
shares from dishonest parties that are stored, corresponds to the output
value x obtained from ComputerZ . Observe that in the system R, the
shares sum up to the value x as well, because of the Q3 condition. Given
that the correct value was stored in the queue in every input instruction,
the same shares that are output by σ follow the same distribution as the
shares received by dishonest parties in R (namely, random shares subject
to the fact that the sum of the random shares and the dishonest shares
is equal to x).
Addition instruction: I = (add, p1, p2, p3). The converter σ simply
adds the corresponding shares and stores them in the correct location.
Multiplication instruction: I = (mult, p1, p2, p3). Consider each
1 ≤ p, q ≤ m. Consider the following steps in the execution of the
multiplication instruction in R:

1. Honest parties execute the input instruction steps with the value
apbq as input. Dishonest parties can use any value as input. How-
ever, it is guaranteed that the sharing is consistent. That is, each
converter for an honest party in Zu stores a value, which we denote
vu

j , from j ∈ Zp ∩ Zq.

2. Execute the output instruction, with the value vu
j −vu

j0
and towards

all parties in P. If any dishonest party used a value different than
apbq in the previous step, one difference will be non-zero, and the
default sharing (apbq, 0, . . . , 0) is adopted. Otherwise, the sharing
from Pj0 , i.e. the values vu

j0
, is adopted.

Case Z ∩ Zp ∩ Zq ̸= ∅: If there is a dishonest party in Zp ∩ Zq, then
the converter σ has the values ap and bq stored.

Step 1: For each dishonest party i ∈ Zp ∩ Zq, the converter σ checks
whether the shares are correctly shared (it checks that the dishonest
parties in Zp ∩ Zq input a consistent sharing), in the same way as when
emulating the input instruction.
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Step 2: After that, σ checks that the shares from party i add up to
apbq. If not, the converter σ defines the sharing of apbq as (apbq, 0, . . . , 0),
and outputs the corresponding shares to the dishonest parties.

Observe that given that the adversary structure satisfies the Q3 con-
dition, there is always an honest party in Zp ∩ Zq. Then, in the system
R, it is guaranteed that the value apbq is shared. Moreover, as in S, the
default sharing is adopted if and only if a dishonest party shared a value
different from apbq.

Case Z ∩Zp ∩Zq = ∅: If all parties in Zp ∩Zq are honest, dishonest
parties receive random shares in R. Moreover, all reconstructed differ-
ences are 0, since honest parties in Zp ∩ Zq share the same value. In S,
σ generates random values as shares of apbq as well, and then open 0s as
the reconstructed differences.





Appendix B

Details of Chapter 5

B.1 Broadcast Construction
We show how to construct the broadcast resource specification introduced
in Section 5.5.2, using the so-called king-phase paradigm [BGP89]. The
construction consists of several steps, each providing stronger consistency
guarantees.

B.1.1 Weak-Consensus
Let Z be a set of parties. The primitive weak-consensus provides two
guarantees:

• Validity: If all parties in Z input the same value, they agree on this
value.

• Weak Consistency: If some party i ∈ Z decides on an output yi ∈
{0, 1}, then every other party j ∈ Z decides on a value yj ∈ {yi,⊥}.

A specification WCk,l,Z,t capturing the guarantees of a weak-consensus
primitive (up to t dishonest parties, and where parties input at round k
and output at round l) can be naturally defined as the set of all resources
satisfying validity and weak consistency. More concretely, for |Z| ≤ t,
WCk,l,Z,t, is the set of all resources which output a value at round l.b
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that satisfy the validity and weak consistency properties, according to
the inputs from round k.a. That is:

WCk,l,Z,t :=
{

R ∈ Φ
∣∣∣ ∃v(

∀j ∈ Z yl.b
j ∈ {v,⊥}

)
∧(

∃v′ ∀j ∈ Z xk.a
j = v′ → ∀j ∈ Z yl.b

j = xk.a
j

)}
And when |Z| > t, WCk,l,Z,t = Φ.

Protocol Πk
wc = (πwc

1 , . . . , πwc
n ) constructs specificationWCk,k,Z,t from NZ .

The protocol is quite simple: At round k each party sends its input
message to every other party via each channel. Then, if there is a bit
b that is received at least n − t times, the output is b. Otherwise, the
output is ⊥. At a very high level, the protocol meets the specification
because, if a party i outputs a bit b, it received b from at least n − t
parties, and hence it received b from at least n− 2t honest parties. This
implies that every other party received the bit 1 − b at most 2t < n − t
times (since t < n

3 ). Hence, no honest party outputs 1− b.

Local Variable: y.

Round k

On input xi at out, output xi to each in.net.chi,j , where j ∈ P.
On input values yj at each in.net.chi,j :
if

∣∣{j ∈ P | yj = 0}
∣∣ ≥ n− t then

y ← 0
else if

∣∣{j ∈ P | yj = 1}
∣∣ ≥ n− t then

y ← 1
else

y ← ⊥
Output y at out.

Converter πwc
i

Theorem B.1.1. Let t < n
3 . Πk

wc constructs WCk,k,Z,t from NZ , for any
Z ⊆ P such that |Z| ≤ t, and constructs Φ otherwise.
Proof. Let Z ⊆ P such that |Z| ≤ t. We want to prove that the system
specification RZ := (Πk

wc)ZNZ ⊆ WCk,k,Z,t.
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For that, all we need to prove is that at round k.b, the outputs from the
honest parties satisfy both the weak-consistency and the validity property,
where the inputs to be taken into account are those at round k.a. We
divide two cases:

• If every party i ∈ Z had as input value b at round k (there was
pre-agreement): In the system specification WCk,k,Z,t, the parties
output the bit b by definition. In the system specification RZ , each
party i ∈ Z receives the bit b at least n−t times. Hence, each party
i ∈ Z also outputs b.

• Otherwise, in RZ , either every party i ∈ Z outputs ⊥ (in which
case the parties meet the specification WCk,k,Z,t), or some party i
outputs a bit b. In this case, we observe that it received b from at
least n−t parties, and hence it received b from at least n−2t honest
parties. This implies that every other party received the bit 1 − b
at most 2t < n − t times (since t < n

3 ). In conclusion, no honest
party outputs 1− b, and the parties output a value vi ∈ {⊥, b}.

B.1.2 Graded-Consensus

We define graded-consensus with respect to a set of parties Z. In this
protocol, each party inputs a bit xi ∈ {0, 1} and outputs a pair value-
grade (yi, gi) ∈ {0, 1}2. The primitive provides two guarantees:

• Validity: If all parties in Z input the same value, they agree on this
value with grade 1.

• Graded Consistency: If some party i ∈ Z decides on a value yi ∈
{0, 1} with grade gi = 1, then every other party j ∈ Z decides on
the same value yj = yi.

Specification GCk,l,Z,t captures the guarantees of a graded-consensus prim-
itive secure up to t dishonest parties, and where parties give input at
round k and output at round l. If |Z| ≤ t:
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GCk,l,Z,t :=
{

R ∈ Φ
∣∣∣

∀v
(
∃j ∈ Z yl.b

j = (v, 1)→ ∀i ∈ Z yl.b
i = (v, g) ∧ g ∈ {0, 1}

)
∧(

∃v ∀j ∈ Z xk.a
j = v → ∀j ∈ Z yl.b

j = (xk.a
j , 1)

)}
And when |Z| > t, GCk,l,Z,t = Φ.

We show a protocol Πk
gc = (πgc

1 , . . . , πgc
n ) that constructs specification

GCk,k+1,Z,t from the assumed specification [WCk,k,Z,t,NZ ]: At round k,
each party i invokes the weak consensus protocol on its input xi. Then,
at round k + 1, each party sends the output from the weak consensus
protocol to every other party via the network. After that, each party i
sets the output value yi to be the most received bit, and the grade gi = 1
if and only if the value was received at least n− t times.

If any party i decides on an output yi with gi = 1, it means that
the party received yi from at least n − t parties, where at least n − 2t
are honest parties. Hence, every other honest party received the value yi

at least n − 2t times. Given that n − 2t > t, at least one honest party
obtained yi as output of WCk,k,Z,t. Therefore, by weak consistency, no
honest party obtained 1 − yi as output from WCk,k,Z,t, from which it
follows that each honest party j received it at most t < n− 2t times and
therefore outputs yj = yi.

Local Variables: y, g.

Round k

On input xi at out, output xi at in.wc. // Output the value toWCk,k,Z,t

On input zi at in.wc, store the value.
Round k + 1

Output zi at each interface in.net.chi,j , for j ∈ P.
On input a message zj from each in.net.chj,i: // Value from each party
j
if

∣∣{j ∈ P | zj = 0}
∣∣ ≥ ∣∣{j ∈ P | zj = 1}

∣∣ then

Converter πgc
i
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y ← 0
else

y ← 1
if

∣∣{j ∈ P | zj = y}
∣∣ ≥ n− t then

g ← 1
else

g ← 0
Output (y, g) at out.

Theorem B.1.2. Let t < n
3 . Πk

gc constructs GCk,k+1,Z,t from specifica-
tion [WCk,k,Z,t,NZ ], for any Z ⊆ P such that |Z| ≤ t, and constructs Φ
otherwise.

Proof. Let Z ⊆ P such that |Z| ≤ t. We want to prove that the system
specification RZ := (Πk

gc)Z [WCk,k,Z,t,NZ ] ⊆ GCk,k+1,Z,t.
For that, all we need to prove is that at round (k + 1).b, the outputs

from the honest parties satisfy both the graded-consistency and the va-
lidity property, where the inputs to be taken into account are those at
round k.a.

At round k.a, each party i ∈ Z inputs the message xi to WCk,k,Z,t.
Then, it is guaranteed that at round k.b, honest parties obtain an output
that satisfies validity and weak-consistency. At round (k +1).b, we divide
two cases:

• If every party i ∈ Z had as input value b at round k (there was
pre-agreement): In GCk,k+1,Z,t, the parties output the bit (b, 1) by
definition. In RZ , each party i ∈ Z outputs the bit b as zj because
of the validity of WCk,k,Z,t. Then, party i receives at least n − t
times the bit b. Hence, each party i ∈ Z also outputs b.

• If an honest party i decides on an output yi with gi = 1, then it
means that the party received yi from at least n− t parties, where
at least n − 2t are honest parties. This implies that every other
honest party received the value yi at least n − 2t times. Given
that n− 2t > t, at least one honest party obtained yi as output of
WCk,k,Z,t at round (k + 1).b. Therefore, by weak consistency, no
honest party obtained 1− yi as output from WCk,k,Z,t, from which
it follows that each honest party j received at most t < n−2t times
and therefore outputs yj = yi.
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B.1.3 King-Consensus
We first define a specification that achieves king-consensus with respect to
a set of parties Z. In the king-consensus primitive, there is a party K, the
king, which plays a special role. The primitive provides two guarantees:

• Validity: If all parties in Z input the same value, they agree on this
value.

• King Consistency: If party K ∈ Z, then there is a value y such that
every party j ∈ Z decides on the value yj = y.

We describe a specification KCk,l,Z,t,K that models a king-consensus prim-
itive where K has the role of king, and is secure up to t dishonest parties,
which starts at round k and ends at round l. If |Z| ≤ t:

KCk,l,Z,t,K :=
{

R ∈ Φ
∣∣∣ (

K ∈ Z → ∃v ∀i ∈ Z yl.b
i = v

)
∧(

∃v ∀j ∈ Z xk.a
j = v → ∀j ∈ Z yl.b

j = xk.a
j

)}
And when |Z| > t, KCk,l,Z,t,K = Φ.

Protocol Πk
kc = (πkc

1 , . . . , πkc
n ) constructs specification KCk,k+2,Z,t,K from

the assumed specification [GCk,k+1,Z,t,NZ ]: At round k, each party i
invokes the graded consensus protocol on its input xi. Then, at round
k+2, the king K sends the output zK from the graded consensus protocol
to every other party. Finally, each party i sets the value yi = zi to the
output of graded consensus if the grade was gi = 1, and otherwise to
the value of the king yi = zK . Note that consistency is guaranteed to
hold only in the case the king is honest: if every honest party i has grade
gi = 0, they all adopt the king’s value. Otherwise, there is a party j with
grade gj = 1, and graded consistency ensures that all honest parties (in
particular the king) have the same output.
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Local Variable: y.

Round k

On input xi at out, output xi at in.gc. // Output to GCk,k+1,Z,t

Round k + 1

On input (zi, gi) from in.gc, store the pair.
Round k + 2

If i = K, output zK to each in.net.chK,j , for j ∈ P. // Party i is the
king
On input zK from in.net.chK,i:
if gi = 0 then

y ← zK

else
y ← zi

Output y at out.

Converter πkc
i

Theorem B.1.3. Let t < n
3 . Πk

kc constructs KCk,k+2,Z,t,K from specifi-
cation [GCk,k+1,Z,t,NZ ], for any Z ⊆ P such that |Z| ≤ t, and constructs
Φ otherwise.

Proof. Let Z ⊆ P such that |Z| ≤ t. We want to prove that the system
specification RZ := (Πk

kc)Z [GCk,k+1,Z,t,NZ ] ⊆ KCk,k+2,Z,t,K .
At round k.a, each party i ∈ Z inputs the message xi to GCk,k+1,Z,t.

Then, it is guaranteed that at round (k + 1).b, honest parties obtain
an output that satisfies validity and graded-consistency. We divide two
cases:

• If every party i ∈ Z had as input value b at round k (there was
pre-agreement): In KCk,k+2,Z,t,K , the parties output the bit b at
round k + 2 by definition. In the system specification RZ , each
party i ∈ Z receives the bit (b, 1) at round k + 1, because of the
validity of GCk,k+1,Z,t. Hence, each party i ∈ Z also outputs b at
round k + 2.

• Otherwise, assume the king is honest. If every honest party i ob-
tains an output (zi, 0), then at round (k+2).b, every party takes the
value of the king zK . Otherwise, there is a party j that obtained an
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output (zj , 1) at round (k + 1).b. In this case, graded consistency
implies that all honest parties have the same output. In particular,
this holds for the honest king. Thus, all parties decide on the same
output.

B.1.4 Consensus
We define a specification that achieves consensus with respect to a set of
parties Z. The primitive provides two guarantees:

• Validity: If all parties in Z input the same value, they agree on this
value.

• Consistency: There is a value y such that every party j ∈ Z decides
on the value yj = y.

We describe a specification Ck,l,Z,t that models consensus, secure up to t
dishonest parties, which starts at round k and ends at round l. If |Z| ≤ t:

Ck,l,Z,t :=
{

R ∈ Φ
∣∣∣ (
∃v ∀i ∈ Z yl.b

i = v
)
∧(

∃v ∀j ∈ Z xk.a
j = v → ∀j ∈ Z yl.b

j = xk.a
j

)}
And when |Z| > t, Ck,l,Z,t = Φ.

Protocol Πk
cons = (πcons

1 , . . . , πcons
n ) constructs Ck,k+3(t+1)−1,Z,t from

specification [KCk,k+2,Z,t,1, . . . ,KCk+3t,k+3(t+1)−1,Z,t,t+1]. The idea is sim-
ply to execute the king consensus protocol sequentially t + 1 times with
different kings. More concretely, at round k+3j, j ∈ [0, t], parties execute
the king consensus protocol, where the king is j + 1. If parties start with
the same input bit, validity of king consensus guarantees that this bit is
kept until the end. Otherwise, since the number of dishonest parties is
at most t, one of the executions has an honest king. After the execution
with the honest king, consistency is reached, and validity ensures that
consistency is maintained until the end of the execution.
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Local Variable: y.

On input x at round k, y ← x.
for j = 0 to t do

Output y at in.kc at round k + 3j. // Output to
KCk+3j,k+3j+2,Z,t,j+1
On input x′ at in.kc at round k + 3j + 2, set y ← x′.

Output y at out.

Converter πcons
i

Theorem B.1.4. Let t < n. Πk
cons constructs Ck,k+3t+2,Z,t from specifi-

cation [KCk,k+2,Z,t,1, . . . ,
KCk+3t,k+3t+2,Z,t,t+1], for any Z ⊆ P such that |Z| ≤ t, and constructs
Φ otherwise.

Proof. Let Z ⊆ P such that |Z| ≤ t. We divide two cases:

• If every party i ∈ Z had as input value b at round k (there was pre-
agreement): After each input to KCk+3j,k+3j+2,Z,t,j+1, the parties
obtain the bit b because of validity. This is the same in Ck,k+3t+2,Z,t

by definition.

• Otherwise, given that there are up to t dishonest parties and there
are t + 1 different kings, there is an honest king K. The output
of any system in the specification KCk+3(K−1),k+3K−1,Z,t,K is the
same value v for all honest parties because of the king consistency.
All the following invocations to king consensus keep the value v as
the output because of the validity property. Thus, all parties decide
on the same output.

B.1.5 Broadcast
In Section 5.5.2 we introduced a broadcast resource specification. We
show how to achieve such a specification from Ck,l,Z,t, as long as |Z| ≤ t,
for any t ≤ n

3 .
We recall the broadcast specification resource secure up to t dishonest
parties, which starts at round k and ends at round l. If |Z| ≤ t:
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BCk,l,Z,t :=
{

R ∈ Φ
∣∣∣ ∃v[(

∀j ∈ Z yl.b
j = v

)
∧

(
s ∈ Z → v = xk.a

s

)]}
And when |Z| > t, BCk,l,Z,t = Φ.

Protocol Πk
bc = (πbc

1 , . . . , πbc
n ) constructs specification BCk,k+3t+3,Z,t from

the assumed specification [Ck+1,k+3t+3,Z,t,NZ ]. The sender simply sends
its input value x to every party, and then parties execute the consensus
protocol on the received value from the sender.

Theorem B.1.5. Let t < n
2 . Πk

bc constructs BCk,k+3t+3,Z,t from spec-
ification [Ck+1,k+3t+3,Z,t,NZ ], for any Z ⊆ P such that |Z| ≤ t, and
constructs Φ otherwise.

Proof. Let Z ⊆ P such that |Z| ≤ t. We divide two cases:

• If the sender is honest, every honest party receives the sender’s
input xs and inputs this value into the consensus resource. Be-
cause of the validity of consensus, every honest party obtains xs

from the consensus resource and outputs it. This is the same in
BCk,k+3t+3,Z,t by definition.

• Otherwise, the consistency of the consensus resource guarantees
that every honest party receives the same value from the consensus
resource, and hence every honest party outputs the same value.

As a corollary of composing all the previous protocols, we obtain that
there is a protocol which constructs broadcast from a network of bilateral
channels.

Corollary B.1.6. Let t < n
3 . There exists a protocol that constructs

BCk,k+3t+3,Z,t from NZ , for any Z ⊆ P such that |Z| ≤ t, and constructs
Φ otherwise.
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Chapter 6

Universal Composability
Framework

6.1 Overview

In this part, the results are proven in the universal composability (UC)
framework introduced by Canetti [Can01]. As many other composable
frameworks, it follows the real/ideal paradigm. All entities, including
parties and the adversary, are modelled via interactive Turing machines
(ITMs).

The goal of a protocol is to emulate an ideal functionality, which
models a trusted party that receives inputs and provides outputs to the
parties. Intuitively, a protocol is proven secure if one shows that for
any attack that an adversary can perform in the real protocol, one can
construct a corresponding ideal adversary which can perform the same
attack in the ideal world via what is called the simulator. The simulator
runs in the ideal world, interacting only with the ideal functionality and
the real adversary, and has to be such that the distributions of messages
seen in the real world and ideal world executions are indistinguishable
from the point of view of an external entity called the environment. The
environment has total control over the adversary, and can choose the
inputs, and see the outputs of all parties.
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6.1.1 Real and Hybrid Worlds
In the real-world, the protocol π, consisting of a set of ITMs, one per
party, interacts with two additional ITM entities: the environment ma-
chine Z, and the adversary machine A.

The environment Z represents the interaction via inputs given to the
protocol and outputs received from it, i.e., can pass inputs to and read
outputs from the parties. The adversary A represents information leak-
age from the protocol execution. The adversary can also issue corruption
commands, via which one can model the specific type of corruption. Im-
portantly, the corruption commands are externalized, meaning that the
environment can check which parties are corrupted at any point.

Protocol Execution. The execution consists of a sequence of activa-
tions. At any point, only one entity is activated. First, Z is activated.
From then, machines take turns in the execution, where the activated ma-
chine performs an instruction to transmit information to another machine,
and loses its activation token when doing so. There are different ways
to transmit information. The machine can write an output on its output
tape, give input to a sub-routine machine, or pause without sending in-
formation (in which case, the environment is activated). The execution
ends when the environment Z halts.

Let us assume that the output of Z is a bit, and let us denote by
REALΠ,A,Z(1κ, z) the output distribution of the environment Z in the
real world execution of protocol Π, with the set P of parties participating
in protocol Π and real-world adversary A, and κ is the security parameter
and z is the auxiliary input to Z.

Setup and Assumed Functionalities. In order to model setup, or the
ideal modules a protocol assumes, the UC framework introduces so-called
hybrid worlds. This is modeled by introducing ideal functionalities that
are available in a protocol execution. One usually denotes the G-hybrid
world, which is identical to the real world, with the exception that parties
can interact with an unbounded number of instances of G. The interaction
with the functionality is as usual: parties can send messages to it, and
receive outputs from it.

Let us denote the hybrid execution of a protocol Π, which is given
access to an ideal functionality G, by HYBG

Π,A,Z(1κ, z). Note that the
real world can be understood as an instance of a hybrid world where only
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a default network is available.1 Without loss of generality we may make
all hybrids explicit and only think about the hybrid world.

6.1.2 Ideal World
Security of a protocol is defined by comparing the protocol execution
(with its assumed functionalities) to an ideal world. In the ideal world,
a key ingredient is the ideal functionality. This is a single machine that
models the desired functionality of a trusted party. The ideal world
consists of the ideal functionality, an ideal-world adversary S (called the
simulator), plus a set of dummy parties, which simply forward the values
from the environment to the functionality and viceversa. Note that the
ideal functionality is a single machine which models all aspects that one
would want from a protocol execution.

The execution proceeds similarly as in the real-world. We denote
the output distribution of Z when interacting with the ideal world as
IDEALF,S,Z(1κ, z), where F is the ideal functionality and S is the sim-
ulator.

6.1.3 Security of a Protocol
Security of a protocol is then defined by comparing the real world with
the ideal world. As pointed out above, we consider the security statement
rather directly for a hybrid world.

Definition 6.1.1. A protocol Π UC-securely realizes an ideal function-
ality F in the G-hybrid model if for any PPT adversary A, there exists
a PPT simulator S such that for any PPT environment Z, it holds that:

HYBG
Π,A,Z ≈c IDEALF,S,Z .

The composition theorem provides security guarantees when proto-
cols are composed in an arbitrary way. This means that if ρ is a UC-
secure protocol realizing G, then the protocol Π in the G-hybrid model
can be replaced by the composition Π ◦ ρ. Informally, the composition
theorem then guarantees that REALΠ◦ρ,A,Z is indistinguishable from
IDEALF,S,Z .

1In the default UC framework, there is a built-in asynchronous network, without
guaranteed delivery.
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6.1.4 Synchronous and Asynchronous Models
The default real-world in the UC framework considers by default an asyn-
chronous network communication model, where the adversary is allowed
to drop messages. In Chapters 7, 8 and 9 we are, however, interested in
a synchronous model and an asynchronous model with eventual delivery.
For such settings, proper extended hybrid UC-functionalities have been
made in the literature. We include some of the references to synchronous
UC [KMTZ13, Can01, LLM+20b], and asynchronous UC with eventual
delivery [CGHZ16, LLM+20b].

While Chapters 9 and 8 use a purely synchronous model, and therefore
one can consider a synchronous model similar to the one introduced by
Katz et al. [KMTZ13], Chapter 7 makes statements for a model where
parties have access to clocks, and parties have access to a network with
eventual delivery.2

In the following, we introduce a clock functionality and a network func-
tionality that is enough to capture synchronous, partially synchronous
and asynchronous with eventual delivery models. This is based on the
published work [LLM+20b].

Communication Network and Clocks

We borrow ideas from a standard model for UC synchronous communica-
tion [KMTZ13, KZZ16]. Parties have access to functionalities and global
functionalities [CDPW07]. More concretely, parties have access to a syn-
chronized global clock functionality Gclk, and a network functionality N δ

of pairwise authenticated channels with an unknown upper bound on the
message delay δ.

At a high level, the model captures the two guarantees that parties
have in the synchronous model of communication. First, every party must
be activated each clock tick, and second, every party is able to perform all
its local computation before the next tick. Both guarantees are captured
via the clock functionality Gclk. It maintains the global time τ , initially
set to 0, and a round-ready flag di = 0, for each party Pi. Each clock
tick, Gclk sets the flag to di = 1 whenever a party sends a confirmation
(that it is ready) to the clock. Once the flag is set for every honest party,

2Note that the model by [CGHZ16] introduces a network with eventual delivery,
but parties do not have access to clocks.
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the clock counter is increased and the flags are reset to 0 again. This
ensures that all honest parties are activated in each clock tick.

The clock functionality stores a counter τ , initially set to 0. For each
honest party Pi it stores flag di, initialized to 0.

ReadClock:

1: On input (ReadClock), return τ .

Ready:

1: On input (ClockReady) from honest party Pi set di = 1 and notify
the adversary.

ClockUpdate:

Every activation, the functionality runs the following code before doing
anything else:

1: if for every honest party Pi it holds di = 1 then
2: Set di = 0 for every honest party Pi and τ = τ + 1.

Functionality Gclk

As mentioned above, the UC standard communication network does
not consider any delivery guarantees. Hence, we consider the function-
ality N δ which models a complete network of pairwise authenticated
channels with an upper bound δ parameter corresponding to an upper
bound delay in the network.3

The network keeps track of the activations, so one can think that the
network knows at any point in time the actual time. The network works
in a fetch-based mode: parties need to actively query for the messages
in order to receive them. For each message m sent from Pi to Pj , N
creates a unique identifier idm for the tuple (Tinit, Tend, Pi, Pj , m). This
identifier is used to refer to a message circulating the network in a concise
way. The field Tinit indicates the time at which the message was sent,

3If δ = ∆ is set to the a worst-case assumed public network delay, this corresponds
to a synchronous network. In the case where δ is unknown, this may model a real
network upper bound that parties do not know. An asynchronous network can be
understood as δ = ∞.
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whereas Tend is the time at which the message is made available to the
receiver. At first, the time Tend is initialized to Tinit + 1.

Whenever a new message is input to the buffer of N , the adversary is
informed about both the content of the message and its identifier. It is
then allowed to modify the delivery time Tend by any finite amount. For
that, it inputs an integer value T along with some corresponding identifier
idm with the effect that the corresponding tuple (Tinit, Tend, Pi, Pj , m) is
modified to (Tinit, Tend + T, Pi, Pj , m). Moreover, to capture that there
is an upper bound on the delay of the messages, the network does not
accept more than δ accumulated delay for any identifier idm. That is,
N checks that Tend ≤ Tinit + δ. Also, observe that the adversary has the
power to schedule the delivery of messages: we allow it to input delays
more than once, which are added to the current amount of delay. If the
adversary wants to deliver a message during the next activation, it can
input a negative delay.

It is parameterized by a positive constant δ. It also stores the current time
τ and keeps a buffer of messages buffer which initially is empty.
The functionality keeps track of the current time and updates τ
accordingly.

Message transmission:

1: At the onset of the execution, output δ to the adversary.
2: On input (Send, i, j, m) from party Pi, N creates a new identifier idm

and records the tuple (τ, τ +1, Pi, Pj , m, idm) in buffer. Then, it sends
the tuple (Sent, Pi, Pj , m, idm) to the adversary.

3: On input (FetchMessages, i) from Pi, for each message tuple
(Tinit, Tend, Pk, Pi, m, idm) from buffer where Tend ≤ τ , the function-
ality removes the tuple from buffer and outputs (k, m) to Pi.

4: On input (Delay, D, id) from the adversary, if there exists a tuple
(Tinit, Tend, Pi, Pj , m, id′) in buffer such that id′ = id and Tend + D ≤
Tinit + δ, then set Tend = Tend + D and return (Delay-ok) to the adver-
sary. Otherwise, ignore the message.

Functionality N δ



Chapter 7

Synchronous MPC with
Asynchronous Fallback

7.1 Introduction
One can very roughly classify the results in MPC according to the under-
lying communication model. The synchronous model assumes that there
is some parameter ∆ known to all parties such that whenever a party
sends a message, the recipient is guaranteed to receive it within time at
most ∆. It is possible to achieve very strong security guarantees in this
model; for example, prior work has shown how to achieve MPC with full
security, where parties are guaranteed to obtain the correct output, for
up to ts < n

2 corruptions (e.g. [GMW87, RB89, BIB89, BMR90, CDN01,
DN03, DI05]). However, one can argue that the synchrony assumption
is too strong: if an honest party P doesn’t manage to send a message
within ∆ delay, it is considered dishonest in the synchronous model. As a
consequence, synchronous protocols generally lose all security guarantees
(e.g., parties can jointly reconstruct P ’s secret-shared input) if the net-
work delays are greater than expected. This is of particular concern in
real-world deployments, where it may not be possible to guarantee ideal
network conditions at all times.

In the asynchronous model, there is no assumptions on delay upper
bounds, so the network delay can be arbitrarily large. The asynchronous
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model is therefore a safe choice for modeling even the most unpredictable
real-world networks; however, prior work has shown that optimal security
guarantees in this model are necessarily weaker than in the synchronous
model: MPC can be achieved in the asynchronous model only for ta < n

3
corruptions, and the output is not guaranteed to take into account all
inputs into the computation [BCG93, BKR94, HNP05, BH07, CGHZ16,
Coh16].

In this chapter, we investigate MPC protocols that keep strong secu-
rity guarantees under both communication models. More specifically, we
ask the following question:

Is there a protocol for MPC that is secure against ts corruptions un-
der a synchronous network, and ta corruptions under an asynchronous
network?

We completely answer this question by showing tight feasibility and
impossibility results:

Feasibility result. We give an MPC protocol that is fully secure up
to ts corruptions under a synchronous network and up to ta corruptions
under an asynchronous network, for any 0 ≤ ta < n

3 ≤ ts < n
2 satisfying

ta + 2ts < n. The number of inputs taken into account in the latter case
is n− ts.

Note that for the regime where ts < n
3 , existing asynchronous MPC

protocols (e.g. [HNP05]) already achieve such security guarantees, i.e.,
are fully secure under an asynchronous network (and hence also a syn-
chronous network), and moreover take into account all inputs when the
network is synchronous.

Optimality of our protocol. We show that our protocol is tight with
respect to both the threshold tradeoffs ta and ts, and also the number of
inputs taken into account. More concretely, we show:

• For any ts, any MPC protocol which achieves full security up to ts

corruptions under a synchronous network cannot take into account
more than n − ts inputs when run over an asynchronous network,
even if all parties are guaranteed to be honest in this case.

• For any ta + 2ts ≥ n, there is no MPC protocol which gives full
security up to ts corruptions under a synchronous network, and



7.1. INTRODUCTION 115

where all parties output the same value up to ta corruptions under
an asynchronous network.

7.1.1 Technical Overview
In this section, we briefly sketch our protocol for MPC that achieves full
security up to ts corruptions under a synchronous network and up to ta

corruptions under an asynchronous network, for any 0 ≤ ta < n
3 ≤ ts < n

2
satisfying ta + 2ts < n.

At a very high level, we run two sub-protocols Πsmpc and Πampc one
after the other, where Πsmpc is a ts-secure synchronous protocol and Πampc
is a ta-secure asynchronous protocol. Conceptually, a key challenge is
that parties are not able to obtain output in both protocols, as this
would violate privacy. Thus, parties need to agree on whether to run
the second sub-protocol. For that, the key is that the protocol Πsmpc
gives some guarantees even when the network is asynchronous. More
concretely, Πsmpc achieves unanimous abort up to ta corruptions under
an asynchronous network. Intuitively, this means that the protocol is
secure, except the fact that either all parties learn the correct output, or
all parties obtain ⊥ as the output.

When the network is synchronous, security of the overall protocol
is inherited from the first sub-protocol. In the case where the network
is asynchronous, parties either learn the correct output from the first
sub-protocol or all parties obtain ⊥ and can safely execute the second
sub-protocol.

Synchronous MPC with Asynchronous Unanimous Abort. In
order to construct the first sub-protocol, we modify a synchronous MPC
protocol that uses threshold homomorphic encryption [CDN01, DN03].
The original protocol provides full security up to ts < n

2 corruptions in a
synchronous network.

Let us briefly recall the high-level structure of the original protocol
[CDN01, DN03]. The protocol is based on a threshold version of the Pail-
lier cryptosystem [Pai99]. For a plaintext a, let us denote a an encryption
of a. The cryptosystem is homomorphic: given encryptions a, b, one can
compute an encryption of a + b, which we denote a� b. Similarly, from a
constant plaintext α and an encryption a one can compute an encryption
of αa, which we denote α � a.
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The protocol starts by having each party publish encryptions of its
input values, as well as zero-knowledge proofs that it knows these val-
ues. Then, parties compute addition and multiplication gates to obtain
a common ciphertext, which they jointly decrypt using threshold decryp-
tion. Any linear operation (addition or multiplication by a constant) can
be performed non-interactively, due to the homomorphism property of
the threshold encryption scheme. Given encryptions a, b of input values
to a multiplication gate, parties can compute an encryption of c = ab as
follows:

1. Each Pi chooses a random di ∈ Zn and uses a Byzantine broadcast
protocol to distribute encryptions di and dib.

2. Parties prove (in zero-knowledge) knowledge of the plaintext of di

and that dib encrypts the correct value. Let S be the subset of
parties succeeding in both proofs.

3. Parties compute y = a� (�i∈Sdi) and decrypt it using a threshold
decryption.

4. Parties set c = y � b � ((�i∈Sdib)).

Intuitively, the protocol works because 1) honest parties have agree-
ment on the ciphertext to decrypt after evaluating the circuit, and 2)
only ciphertexts or random values are revealed.

When the above protocol is executed over an asynchronous network,
all security guarantees are lost. This is because synchronous broadcast
protocols do not necessarily give any guarantees when run over an asyn-
chronous network. As a result, parties lose agreement in critical points in
the protocol. For example, parties can receive different sets of encrypted
inputs during input distribution, which can lead to privacy violations
if the mismatching inputs are decrypted. Moreover, parties must reach
agreement on S, and S must contain at least one honest party contribut-
ing to the reconstructed random value to ensure that the value is random
and unknown to the adversary. For this, it is essential that parties have
agreement on whether a zero-knowledge proof was successful or not. Fi-
nally, parties need to reach agreement on which ciphertext to decrypt, or
whether to decrypt at all.

To solve the problems above, we replace the problematic sub-protocols
with versions that achieve certain guarantees even when the network is
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asynchronous. More concretely, we will make use of broadcast, Byzan-
tine agreement and asynchronous common subset sub-protocols. The
broadcast protocol will ensure that encrypted inputs from honest par-
ties can only lead to correct ciphertexts. When used with the Byzantine
agreement protocol proposed in [BKL19], it will allow parties to reach
agreement on the set S for the multiplication gates. Finally, we make use
of the enhanced asynchronous common subset sub-protocol in [BKL20]
at the end of the circuit computation to decide whether or not parties
should proceed to decrypt a ciphertext, or output ⊥.

7.1.2 Related Work
Despite being a very natural direction of research, protocols resilient to
both synchronous and asynchronous networks have only begun to be stud-
ied in relatively recent works. The closest related work is the recent work
by Blum et al. [BKL19] which considers the problem of Byzantine agree-
ment in a ‘hybrid’ network model. The authors prove that Byzantine
agreement ts-secure under a synchronous network and ta-secure under
an asynchronous network is possible if and only if ta +2ts < n. The work
was recently further extended to the problem of state-machine replica-
tion [BKL20]. Our work extends both above works to the problem of
secure multi-party computation, and in particular, introduces techniques
to protect privacy of inputs in the hybrid network setting.

Another close related work is the work by Guo et al. [GPS19], which
considers a weakened variant of the classical synchronous model. Here,
an attacker can temporarily disconnect a subset of parties from the rest
of the network. Guo et al. gave Byzantine agreement and multi-party
computation protocols tolerating the optimal corruption threshold in this
model, and Abraham et al. [AMN+19] achieve similar guarantees for
state-machine replication. The main difference between these works and
ours is that their protocols need to assume synchrony in part of the
network. In contrast, our protocols give guarantees even if the network
is fully asynchronous.

Further related work for the problem of Byzantine agreement proto-
cols include the work by Malkhi et al. [MNR19] which considers proto-
cols that provide guarantees when run in synchronous or partially syn-
chronous networks, and the work by Liu et al. [LVC+16] which designs
protocols resilient to malicious corruptions in a synchronous network, and
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fail-stop corruptions in an asynchronous network. Kursawe [Kur02] shows
a protocol for asynchronous Byzantine agreement that reaches agreement
more quickly in case the network is synchronous.

A line of works [PS17a, PS18, LM18, LLM+20b] has recently inves-
tigated protocols that achieve responsiveness. These protocols operate
under a synchronous network, but in addition give the guarantee that
parties obtain output as fast as the actual network delay allows. None
of these works provide security guarantees when the network is not syn-
chronous.

7.2 Model
Our protocols are proven secure in the universally composable (UC)
framework [Can01] (see Section 6.1 for a summary).

7.2.1 Setup
We consider a setting with n parties P = {P1, . . . , Pn}. We denote κ the
security parameter.

Common reference string. We assume that the parties have a com-
mon reference string (CRS). The CRS is used to realize the bilateral
zero-knowledge UC functionalities.

Digital signatures. We assume that parties have a public-key infras-
tructure available, i.e., all parties hold the same vector of public keys
(pk1, . . . , pkn), and each party Pi holds the secret key ski associated with
pki. This allows parties to sign values.

We require that the signature scheme is correct and unforgeable against
chosen message attacks.

Threshold encryption. We assume that parties have a threshold ad-
ditively homomorphic encryption setup available. That is, it provides to
each party Pi a global public key ek and a private key share dki.

Such a threshold encryption scheme can be based on, for example,
the Paillier cryptosystem [Pai99] (see Section C.1). We use the threshold
encryption scheme as a basic tool in the MPC protocol, following the
approach in [CDN01, DN03].
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7.2.2 Communication Network and Adversary
We consider a complete network of authenticated channels. Our protocols
operate in two possible settings: synchronous or asynchronous.

In the synchronous setting, all parties have access to synchronized
clocks and all messages are guaranteed to be delivered within some known
upper bound delay ∆. Within ∆, the adversary can schedule the mes-
sages arbitrarily. In particular, the adversary is rushing, i.e., within the
same round, the adversary is allowed to send its messages after seeing the
honest parties’ messages. Sometimes it is convenient to describe a proto-
col in rounds, where each round r refers to the interval of time (r−1)∆ to
r∆. In such case, we say that a party receives a message in round r if it
receives the message within that time interval. Moreover, we say a party
sends a message in round r when it sends the message at the beginning
of the round, i.e., at time (r − 1)∆.

In the asynchronous setting, both assumptions above are removed.
That is, parties do not have access to synchronized clocks, and the ad-
versary is allowed to arbitrarily schedule the delivery of the messages.
However, we assume that all messages are eventually delivered (i.e., the
adversary cannot drop messages). Note that the model introduced in
Section 6.1.4 assumes synchronized clocks for the parties, but one can
also model similarly local clocks that are not synchronized. In the asyn-
chronous setting, our protocols only need that the clocks advance.

We consider a static adversary who corrupts parties in an arbitrary
manner at the beginning of the protocol.

7.3 Definitions
7.3.1 Broadcast
Broadcast allows a designated party called the sender to consistently
distribute a message among a set of parties.

Definition 7.3.1. (Broadcast) Let Π be a protocol executed by parties
P1, . . . , Pn, where a designated sender Ps initially holds an input v, and
parties terminate upon generating output.

• Validity: Π is t-valid if the following holds whenever up to t par-
ties are corrupted: if Ps is honest, then every honest party which
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outputs, outputs v.

• Weak-validity: Π is t-weakly valid if the following holds whenever
up to t parties are corrupted: if Ps is honest, then every honest
party which outputs, outputs v or ⊥.

• Consistency: Π is t-consistent if the following holds whenever up to
t parties are corrupted: every honest party which outputs, outputs
the same value.

• Liveness: Π is t-live if the following holds whenever up to t parties
are corrupted: every honest party outputs a value.

If Π is t-valid, t-consistent and t-live, we say that it is t-secure.

In the asynchronous setting, one can formally prove that the strong
broadcast guarantees as in Definition 7.3.1 cannot be achieved [Bra87,
BT85]. Intuitively, the reason is that one cannot distinguish between a
dishonest sender not sending messages, or an honest sender’s messages
being delayed. Hence, a useful primitive is a reliable broadcast protocol,
which achieves the same guarantees as a broadcast protocol, except that
the liveness property is relaxed and divided into two properties.

Definition 7.3.2. (Reliable Broadcast) Let Π be a protocol executed by
parties P1, . . . , Pn, where a designated sender Ps initially holds an input
v, and parties terminate upon generating output.

• Validity: Π is t-valid if the following holds whenever up to t parties
are corrupted: if Ps is honest, then every honest party outputs v.

• Consistency: Π is t-consistent if the following holds whenever up to
t parties are corrupted: either no honest party terminates, or else
all honest parties output the same value.

Observe that, in contrast to Definition 7.3.1, when the sender is dis-
honest, it is allowed that no honest party terminates.

7.3.2 Byzantine Agreement
In a Byzantine agreement protocol, each party Pi starts with a value vi.
The protocol allows the set of parties to agree on a common value. The
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achieved guarantees are the same as in broadcast (see Definition 7.3.1),
except that validity is adapted accordingly.

Definition 7.3.3. (Byzantine Agreement) Let Π be a protocol executed
by parties P1, . . . , Pn, where each party Pi initially holds an input vi, and
parties terminate upon generating output.

• Validity: Π is t-valid if the following holds whenever up to t parties
are corrupted: if every honest party has the same input value v,
then every honest party that outputs, outputs v.

• Consistency: Π is t-consistent if the following holds whenever up to
t parties are corrupted: every honest party which outputs, outputs
the same value.

• Liveness: Π is t-live if the following holds whenever up to t parties
are corrupted: every honest party outputs a value.

If Π is t-valid, t-consistent and t-live, we say that it is t-secure.

7.3.3 Asynchronous Common Subset
A protocol for the asynchronous common subset (ACS) problem [BCG93,
BKR94, Can96, MXC+16] allows n parties, each with an initial input, to
agree on a subset of the inputs. For this primitive, we do not assume
that parties terminate upon generating output, that is, even after gen-
erating output parties are allowed to keep participating in the protocol
indefinitely.

Definition 7.3.4. (ACS) Let Π be a protocol that is executed by parties
P1, . . . , Pn, where each party initially holds an input v, and parties output
sets of size at most n.

• Validity: Π is t-valid if the following holds whenever up to t parties
are corrupted: if all honest parties start with the same input v,
then every honest party which outputs, outputs {v}.

• Consistency: Π is t-consistent if the following holds whenever up to
t parties are corrupted: every honest party which outputs, outputs
the same set.
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• Liveness: Π is t-live if the following holds whenever up to t parties
are corrupted: every honest party outputs.

• Validity liveness: Π is t-live valid if the following holds whenever
up to t parties are corrupted: If all honest parties start with the
same input, then every honest party outputs.

• Set quality: Π has (t, h)-set quality if the following holds whenever
up to t parties are corrupted: if an honest party outputs a set, it
contains the inputs of at least h honest parties.

7.3.4 Multi-Party Computation
At a high level, a protocol for multi-party computation (MPC) allows n
parties P1, . . . , Pn, where each party Pi has an initial input xi, to jointly
compute a function over the inputs f(x1, . . . , xn) in such a way that
nothing beyond the output is revealed.

We consider different types of security guarantees for our MPC pro-
tocols. The first one is the strongest guarantee that an MPC proto-
col can offer: MPC with guaranteed output delivery, or full security (cf.
[GMW87, BGW88, CCD88, RB89, BMR90, CDN01] ). Here, honest par-
ties are guaranteed to obtain the correct output. Formally, in UC this
is modeled as the protocol realizing the ideal functionality where each
party Pi inputs xi to the functionality, and it then outputs f(x1, . . . , xn)
to the parties.

When the network is asynchronous, it is provably impossible that
the computed function takes into account all inputs from honest parties
[BCG93, BKR94, HNP05, BH07, CGHZ16, Coh16]. The reason is that
one cannot distinguish between a dishonest party not sending its input,
or an honest party’s input being delayed. Hence, we say that a protocol
achieves ℓ-output quality, if the output to be computed contains the
inputs from at least ℓ parties. Traditional asynchronous protocols in
the literature (e.g. [BCG93, BKR94, HNP05]) achieve (n − t)-output
quality under t corruptions, since the computed output ignores up to t
inputs. Formally this is modelled in the ideal functionality as allowing
the ideal adversary to choose a subset S of ℓ parties. The functionality
then computes f(x1, . . . , xn), where xi = vi is the input of Pi in the case
that Pi ∈ S, and otherwise xi = ⊥.
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Fsfe is parameterized by a set P of n parties and a function
f : ({0, 1}∗ ∪ {⊥})n → ({0, 1}∗)n. For each Pi ∈ P, initialize the variables
xi = yi = ⊥. Set S = P.

1: On input (Input, v) from Pi ∈ P, set xi = v and send a message
(Input, Pi) to the adversary.

2: On input (OutputSet, S′) from the ideal adversary, where S′ ⊆ P
and |S′| ≥ ℓ, set S = S′.

3: Once all input variables from honest parties in S have been stored, set
each yi = f(x′

1, . . . , x′
n), where x′

i = xi for each Pi ∈ S, and otherwise
x′

i = ⊥. Ignore further instructions from Steps 1 and 2.
4: On input (GetOutput) from Pi, output (Output, yi) to Pi.

Functionality Fsec,ℓ
sfe

In addition to MPC with full security, we also consider weaker notions
of security. In MPC with selective abort [IOZ14, CL17], the ideal world
adversary can choose any subset of parties to receive ⊥, instead of the
correct output. The last type of security we consider is called MPC
with unanimous abort [GMW87, FGH+02]. Under this definition, the
adversary is permitted to choose whether all honest parties receive the
correct output or all honest parties receive ⊥ as output; as such it is is
slightly stronger than MPC with selective abort, but weaker than full
security.

Let us denote the functionality Fsout,ℓ
sfe (resp. Fuout,ℓ

sfe ), the above func-
tionality, where the adversary can selectively choose any subset of parties
to obtain ⊥ as the output (resp. choose that either all honest parties re-
ceive f(x1, . . . , xn) or ⊥).

Definition 7.3.5. A protocol π achieves full security (resp. selective
abort; unanimous abort) with ℓ output-quality if it UC-realizes function-
ality Fsec,ℓ

sfe (Fsout,ℓ
sfe ; Fuout,ℓ

sfe ).

Since protocols run in a synchronous network typically achieve n-
output quality, we implicitly assume that all synchronous protocols dis-
cussed achieve n-output quality (unless otherwise specified).

Weak termination. In general, traditional protocols for MPC require
that the protocol terminates (halts). In this chapter, we capture a slightly
weaker version as a property of a protocol: we say that a protocol has
weak termination, if parties are guaranteed to terminate upon receiving
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an output different than ⊥, but do not necessarily terminate if the output
is ⊥.

7.4 Synchronous MPC with Asynchronous
Unanimous Abort and Weak Termina-
tion

In this section, we show a protocol Πts,ta
smpc that achieves full security up to

ts corruptions when the network is synchronous, and achieves unanimous
abort with weak termination up to ta corruptions when the network is
asynchronous, for any 0 ≤ ta < n

3 ≤ ts < n
2 satisfying ta + 2ts < n. The

protocol relies on a number of primitives:

• Πts,ta

bc is a broadcast protocol that is ts-secure when run in a syn-
chronous network, and is ta-weakly valid and ta-live when run in
an asynchronous network.

• Πts,ta

ba is a Byzantine agreement protocol that is ts-secure when
run in a synchronous network, and is ta-secure when run in an
asynchronous network.

• Πts,ta
acs is an asynchronous common subset protocol that is ts-valid

and ts-live valid when run in a synchronous network, and is ta-
consistent, ta-live and has (ta, 1)-set quality when run in an asyn-
chronous network.

• Πts,ta

zk is a multi-party zero-knowledge protocol that allows a party
Pi to prove knowledge of a witness w for a statement x satisfying
a certain relation R towards all parties. The protocol achieves full
security up to ts corruptions when the network is synchronous, and
achieves security with selective abort up to ta corruptions when the
network is asynchronous.

In the following, we show instantiations for each of the sub-protocols.

7.4.1 Broadcast
We use the Dolev-Strong protocol [DS83, BKL19] to achieve a broadcast
protocol that is ts-secure when run in a synchronous network, and is ta-
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weakly valid and ta-live when run in an asynchronous network. The idea
is quite simple: we run the Dolev-Strong protocol for ts + 1 rounds and
output v if v is the only value accepted, and otherwise ⊥. In the protocol,
we say that a message (v, Σ) at round r is valid if Σ contains r signatures,
where one of them is from the sender and the other r − 1 from distinct
additional parties.

Sender Ps has input v. Each party Pi keeps local variables Σi, Ωi := ∅.
Round 1. Ps signs its input v to obtain a signature σs, and sends (v, {σs})

to all parties.
Round 1 ≤ r ≤ ts. Each Pi does: Upon receiving a valid message (v, Σ),

add v to Ωi. Compute a signature σi on v and let Σi := Σi∪{σi}. Send
(v, Σi) to all parties in the next round.

Output determination

Round ts + 1. Each Pi does: Upon receiving a valid message (v, Σ), add v
to Ωi. Then, if Ωi contains exactly one value v′, output v′ and terminate.
Otherwise, output ⊥ and terminate.

Protocol Πts,ta
bc

Lemma 7.4.1. Let n, ts, ta be such that ta, ts < n. Πts,ta

bc is a broadcast
protocol that is ts-secure when run in a synchronous network, and is ta-
weakly valid and ta-live when run in an asynchronous network.

Proof. Security under a synchronous network is achieved via the standard
analysis of the Dolev-Strong protocol: If the sender is honest, each honest
party Pi adds the sender’s input v to Ωi, and no honest party adds any
other value. Moreover, if an honest Pi adds v to Ω at round r ≤ ts, every
honest Pj adds v at round r + 1. And if Pi adds v at round ts + 1, then
there are ts + 1 signatures on v and hence an honest Pk added v at some
round r′ ≤ ts and every honest party added v at round r′ + 1. If the
network is asynchronous, ta-liveness is trivial, since every honest party
outputs at (local) time (ts + 1)∆. The protocol is also ta-weakly valid
because the adversary cannot forge signatures from the sender Ps.
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7.4.2 Byzantine Agreement
In [BKL19], the authors show a Byzantine agreement protocol that is
ts-secure when run in a synchronous network, and is ta-secure when run
in an asynchronous network. We briefly sketch the construction here.

At a high level, their protocol consists of two phases: a round-based
BA followed by an event-based BA. An honest party Pi with input vi

uses vi as their input for the round-based phase. If the round-based
phase terminates with output v′ ∈ {0, 1} within some (local) time limit,
Pi uses v′ as input for the event-based phase. (The timeout is chosen
such that the honest parties are guaranteed to receive output from the
round-based BA before the timeout when the network is synchronous and
at most ts parties are corrupted.) Otherwise, if the round-based phase
times out without producing boolean output, Pi proceeds directly to the
event-based phase, using their original input vi as their input. Pi then
outputs the output they receive from the event-based phase.

Intuitively, when the network is synchronous and there are ts corrup-
tions, the security guarantees for the full protocol are primarily inherited
from the round-based BA sub-protocol (with the caveat that the event-
based BA sub-protocol guarantees ts-validity and therefore preserves the
results of the first phase). When the network is asynchronous and there
are ta corruptions, the round-based BA protocol need only be ta-weakly
valid, after which the desired security guarantees follow from the security
properties of the event-based BA sub-protocol. We state the following
lemma. The proof can be found in [BKL19].

Lemma 7.4.2. Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and
ta +2ts < n. There is a protocol Πts,ta

ba satisfying the following properties:

1. When run in a synchronous network, it is ts-secure.

2. When run in an asynchronous network, it is ta-secure.

7.4.3 Asynchronous Common Subset
We describe the protocol Πts,ta

acs presented in [BKL20], which is an asyn-
chronous common subset protocol that is ts-valid and ts-live valid when
run in a synchronous network, and is ta-consistent, ta-live and has (ta, 1)-
set quality when run in an asynchronous network.
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The protocol is based on previous asynchronous common subset pro-
tocols [BKR94, Can96, MXC+16], but the output decision differs. The
general idea is that parties run n executions of Bracha’s reliable broad-
cast protocol [Bra87], where each party Pi acts as the sender in each
execution, followed by n executions of Byzantine agreement to agree on
a subset of parties that finished the reliable broadcast protocol. If a
party sees n− ts broadcasts terminate on the same value, it outputs this
value. Otherwise, it waits until all Byzantine agreement protocols have
terminated and then outputs based on the set C of senders for whom
the corresponding BA output 1: If there is a majority v of broadcasted
values from parties in C, output v, and otherwise output the union of all
broadcasted values from parties in C.

In order to achieve the guarantees described above, the protocol needs
a reliable broadcast protocol which, under an asynchronous network,
achieves validity up to ts corruptions, and consistency up to ta corrup-
tions. Let us denote RBCi the reliable broadcast protocol where Pi acts
as the sender, and BAi the Byzantine agreement protocol which outputs
whether RBCi has terminated or not.

1: Participate in each protocol RBCj , j ̸= i, as the receiver, and participate
in RBCi as the sender.

2: On output from RBCj , if an input has not yet been provided to BAj , then
input 1 to BAj .

3: When n− ta of the protocols BAj have output 1, provide input 0 to each
instance BAj that has not yet been provided input.

Output determination

1: if at least n− ts executions of RBCj output a value v then
2: Output {v}.
3: else
4: let C := {j | BAj output 1}. Once all instances BAj have been com-

pleted and |C| ≥ n− ta, wait for the output vj of each RBCj , j ∈ C.
5: if A majority of the executions {RBCj}j∈C output a value v then
6: Output {v}.
7: else
8: Output

⋃
j∈C
{vj}.

Protocol Πts,ta
acs (Pi)
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We state the following lemma. The proof can be found in [BKL20].

Lemma 7.4.3. Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and
ta + 2ts < n. Protocol Πts,ta

acs satisfies the following properties:

1. When run in a synchronous network, it is ts-valid and ts-live valid.

2. When run in an asynchronous network, it is ta-consistent, ta-live
and has (ta, 1)-set quality.

7.4.4 Zero-Knowledge Proofs
Let us assume a binary relation R, consisting of pairs (x, w), where x is
the statement, and w is a witness to the statement. A zero-knowledge
proof allows a prover P to prove to a verifier V knowledge of w such that
R(x, w) = 1. We are interested in zero-knowledge proofs for three types
of relations, parameterized by a threshold encryption scheme with public
encryption key ek:

1. Proof of Plaintext Knowledge: The statement consists of ek, and a
ciphertext c. The witness consists of a plaintext m and randomness
r such that c = Encek(m, r).

2. Proof of Correct Multiplication: The statement consists of ek, and
ciphertexts c1, c2 and c3. The witness consists of a plaintext m1
and randomness r1, r3 such that c1 = Encek(m1, r1) and c3 = m1 ·
c2 + Encek(0; r3).

3. Proof of Correct Decryption: The statement consists of ek, a ci-
phertext c, and a decryption share d. The witness consists of a
decryption key share dki, such that d = Decdki

(c).

Examples of bilateral zero-knowledge proofs of knowledge can be
found for example in [Dam00, CDN01]. The bilateral UC zero-knowledge
functionality ZK for a relation R and a pair prover P and a verifier V
is defined as follows: P inputs a pair (x, w) instance-witness, and the
functionality outputs (x, b) to the verifier, where b = 1 if and only if
R(x, w) = 1. It is known that assuming a CRS, one can realize a bilat-
eral UC zero-knowledge functionality ZK [CF01, DN02, Coh16].
Multi-party zero-knowledge protocols. A multi-party ZK protocol
allows a prover P to prove towards all parties knowledge of a witness w
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for a statement x such that R(x, w) = 1. The ideal functionality can
be seen as a special case of secure function evaluation, where the prover
inputs (x, w), and the parties obtain the statement x and 1 if and only if
R(x, w) = 1.

Assuming a bilateral UC zero-knowledge functionality ZK, one can
construct a UC multi-party zero-knowledge functionality Fmzk using so-
called certificates [HNP05] as follows: The prover bilaterally performs
the zero-knowledge proofs towards each of the recipients, who upon a
successful proof, send a signature that the proof was correct. Once the
prover collects a list L of ts + 1 signatures, the list works as a certificate
that proves non-interactively that at least one honest party accepted the
proof. The prover can hence broadcast the list L to let all honest parties
know that the proof is correct. If the last broadcast is executed with
the protocol Πts,ta

bc , it is easy to see that under ts corruptions and a syn-
chronous network the multi-party zero-knowledge functionality achieves
full security. Moreover, if there are up to ta corruptions and an asyn-
chronous network, broadcast guarantees weak validity, so the protocol
achieves security with selective abort (in the last step, if the prover has a
certificate, it is guaranteed that parties receive the certificate or ⊥, and
a dishonest party who did not collect such certificate cannot make the
parties accept the proof).

Prover P proves knowledge of a witness w for a statement x satisfying a
certain relation R towards all parties.

1: P inputs (x, w) to each bilateral ZK.
2: Each Pi does: Upon a successful proof, compute σi = Signski

(x) and
send σi to P .

3: P collects a list L of ts + 1 signatures and broadcasts using protocol
Πts,ta

bc the list L.
4: Each Pi does: Upon receiving a list L as output of the broadcast proto-

col, if L contains ts +1 signatures on the same instance x, output (x, 1).
In any other case, output ⊥.

Protocol Πts,ta
zk

Lemma 7.4.4. Let R be a relation. Let n, ts, ta be such that ta, ts <
n. Πts,ta

zk realizes the multi-party zero-knowledge functionality for P as
prover with the following guarantees:
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1. When run in a synchronous network, it achieves full security up to
ts corruptions.

2. When run in an asynchronous network, it achieves security with
selective abort up to ta corruptions.

Proof. We prove each of the cases separately. We simulate in the hybrid
where there is a trusted setup generating the keys in the real world. In
the ideal world, the simulator S generates the PKI keys, and outputs the
public keys to the adversary along with its secret keys.

Synchronous network and up to ts corruptions. We describe the
simulator S for the case where the network is synchronous and there are
up to ts corruptions. Let us first consider the case where the prover P is
honest.

• S forwards the result from Fmzk to the adversary. If the result is
positive, generate a signature σi on behalf of each honest party. Let
L be list of signatures.

• On input correct signatures from the dishonest parties, it adds it
to L.

• S emulates the messages of the broadcast protocol.

Now assume that P is dishonest.

• S gets the instance-witness pairs that P inputs to prove to each
party. To the dishonest parties, output the instance and the bit 1
if and only if the witness is correct.

• For each of the pairs, forward a signature on behalf of the hon-
est party if the witness is a correct witness to the corresponding
instance.

• S receives a list L of ts + 1 signatures on the same instance: input
the instance and the witness to Fmzk.

Asynchronous network and up to ta corruptions. The only differ-
ence with respect to the case where the network is synchronous, is that
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the protocol Πts,ta

bc only provides weak-validity. In the simulation, it im-
plies that the simulator will also need to simulate the ⊥ messages from
the broadcast protocols.

It is easy to see that the simulation goes through. In the case of
a synchronous network and ts corruptions, an honest prover collects at
least ts + 1 signatures and every honest receiver outputs 1. In the case
the prover is dishonest, it cannot collect ts + 1 signatures for an instance
without having succeeded in one of the proofs, and hence each honest
party outputs ⊥. If the network is asynchronous, when the prover is
honest, every honest party outputs 1 or ⊥, where the set of parties that
output ⊥ is chosen by the adversary. In the case the prover is dishonest,
the case is analogous as the synchronous case and every honest party
outputs ⊥.

7.4.5 Description of the Synchronous MPC Protocol
We start from the MPC protocol that uses homomorphic encryption pre-
sented in [CDN01, DN03]. The protocol was originally designed for the
synchronous setting and guarantees full security up to ts < n

2 corrup-
tions. We modify the protocol to also achieve unanimous abort up
to ta corruptions even when the network is asynchronous, as long as
0 ≤ ta < n

3 ≤ ts < n
2 satisfies ta + 2ts < n.

We assume that the computation is specified as a circuit with addition
and multiplication gates. We assume that the plaintext space does not
contain a special symbol ⊥. For example, we can assume that the plain-
text space is ZN for some RSA modulus N and that we use a threshold
version of the Paillier cryptosystem (see Section C.1).

When the network is synchronous, we need to ensure that parties
start simultaneously in each of the sub-protocols in order to ensure that
the security guarantees are preserved. For example, in Πts,ta

ba there is a
timeout chosen such that honest parties are guaranteed to receive output
when the network is synchronous. As a consequence, if parties start at
different times, we lose the security guarantees in the synchronous case.
In order to solve this, we wait at least for an upper bound on the running
time of each sub-protocol. This allows parties to simultaneously start
at each sub-protocol when the network is synchronous. Let us denote
Tbc, Tzk, Tba, Tdec upper bounds on the running time of Πts,ta

bc , Πts,ta

zk , n
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parallel executions of Πts,ta

ba , and the Threshold Decryption sub-protocols
respectively, in the case the network is synchronous.

Let xi denote the input value of party Pi. Let abort = 0.
Input Distribution

1: Pi computes xi and broadcasts using Πts,ta
bc the ciphertext xi and uses

the multi-party zero-knowledge functionality Fmzk to prove knowledge
of the plaintext of xi towards all parties. Wait until max{Tbc, Tzk} clock
ticks passed.

2: If there is a broadcast or zero-knowledge proof that has not terminated,
or the number of correct encryptions received is less than n− ts inputs,
set abort = 1. Continue participating in the sub-protocols, but do not
compute any ciphertext.

Addition Gates Input: a, b. Output: c.

1: Pi locally computes c = a � b.
Multiplication Gates Input: a, b. Output: c.

1: Pi chooses a random plaintext di and broadcasts using Πts,ta
bc the cipher-

texts di and dib and uses the multi-party zero-knowledge functionality
Fmzk to prove knowledge of di and that dib is a correct encryption of the
multiplication. Wait for max{Tbc, Tzk}.

2: Let Si be the subset of the parties succeeding with both proofs. Run n
times the protocol Πts,ta

ba , each one to decide for each party Pj ’s proof.
Input 1 to party j’s BA if and only if j ∈ Si. Wait for Tba. // Crucial
to agree on the same S, otherwise privacy breaks.

3: Let S be the subset of the parties for which Πts,ta
ba outputs 1.

4: if |S| > ts then
5: Pi computes a �

(
�i∈Sdi

)
. Pi executes the Threshold Decryption

sub-protocol on this ciphertext. Wait for Tdec.
6: Pi learns a +

∑
i∈S

di and computes c =
(
a +

∑
i∈S

di

) � b �(
�i∈Sdib

)
.

7: else
8: Set abort = 1.

Output Determination Input x, where x = ci is the output ciphertext
of the circuit if abort = 0, and otherwise x = ⊥.

Protocol Πts,ta
smpc (Pi)
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1: Pi executes the protocol Πts,ta
acs with x as input. Let Si be the output of

the protocol.
2: if Si = {c} then
3: Execute the Threshold Decryption sub-protocol on c.
4: After an output is given, terminate.
5: else
6: Output ⊥. // Observe that parties do not terminate, since Πts,ta

acs

does not guarantee termination.
Threshold Decryption Input: ciphertext c.

1: Pi computes its decryption share si sends it to every other party.
2: Pi proves that the value si is a correct decryption share of c bilaterally.
3: Once ts +1 correct decryption shares are collected, send the list to every

party and output the corresponding plaintext.

Theorem 7.4.5. Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and
ta + 2ts < n. Protocol Πts,ta

smpc satisfies the following properties:

1. When run in a synchronous network, it achieves full security up to
ts corruptions.

2. When run in an asynchronous network, it achieves unanimous abort
with weak termination up to ta corruptions and has n − ts output
quality.

Proof. We prove each of the cases individually. We simulate in the hy-
brid where there is a trusted setup generating the keys for the PKI, the
threshold encryption scheme and the CRS in the real world. In the ideal
world, the simulator S generates the PKI keys, threshold encryption keys
and CRS, and outputs the corresponding public keys and CRS to the ad-
versary along with its secret keys.

Case 1: Synchronous network. We describe the simulator S for the
case where the network is synchronous and there are up to ts corruptions.

• Input Distribution: Emulate the messages of the broadcast proto-
col. This means that, on behalf of each honest party, emulate the
broadcast protocol using an encryption of 0 as the input. Also,
emulate the Fmzk functionality by outputting 1 on behalf of each
honest parties, and from each corrupted party, on input (c, (x, r))
check that c = Encek(x, r) and output 1 to the adversary and 0
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otherwise. The simulator waits for max{Tbc, Tzk}. For each honest
party Pi, it keeps track of the correct encrypted inputs Ii that Pi

received. If the number of correct ciphertexts is less than n − ts,
the simulator does not compute on its ciphertexts on his behalf and
sets a local variable aborti = 1.

• Addition Gates: S simply adds the corresponding ciphertexts lo-
cally.

• Multiplication Gates: S emulates the broadcast protocols on ran-
dom encryptions, and outputs 1 when emulating Fmzk on behalf of
them. For each honest party Pi, keep track of the set of parties
Si succeeding in the proofs. The simulator waits for max{Tbc, Tzk}.
Then, emulate the messages in the Byzantine agreement protocols
and compute the set S. Then it waits for waits for Tba. If the set
S is greater than ts, it computes a �

(
�i∈Sdi

)
and emulates the

threshold decryption sub-protocol. After waiting for Tdec, it com-
putes the output ciphertext of the multiplication gate. Otherwise,
it sets aborti = 1.

• Output Determination: For each party Pi, emulate the messages in
the asynchronous common subset protocol with the corresponding
input (either a ciphertext, which is the result of the computation,
or ⊥ in the case aborti = 1). If the output is a single ciphertext c,
emulate the threshold decryption sub-protocol.

• Threshold Decryption: In a multiplication gate, simply compute the
decryption shares and emulate the sending messages. In the Output
Determination stage, S obtains the output y of the computation,
and adjusts the shares such that the shares decrypt to y. In both
cases, the simulator always outputs 1 on behalf of the honest parties
indicating that the proofs of correct decryptions are correct.

Case 2: Asynchronous network. The only difference with respect to
the case where the network is synchronous, is that the protocol Πts,ta

bc only
provides weak-validity. In the simulation, it implies that the simulator
will also need to simulate the ⊥ messages from the broadcast protocols,
and not simulate on behalf of the honest parties which stop participating
in the protocol after they aborted.
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We define a series of hybrids to argue that no environment can distin-
guish between the real world and the ideal world.

Hybrids and security proof.

Hybrid 1. This corresponds to the real world execution. Here, the
simulator knows the inputs and keys of all honest parties.

Hybrid 2. We modify the real-world execution in the zero-knowledge
proofs. In the case of a synchronous network, when a corrupted party
requests a proof of any kind from an honest party, the simulator simply
gives a valid response without checking the witness from the honest party.
In the case of an asynchronous network, the simulator is allowed to set
outputs to ⊥ as the adversary does.

Hybrid 3. This is similar to Hybrid 2, but the computation of the
decryption shares is different. Here, the simulator obtains the output y
from the ideal functionality, and if it is not ⊥, it computes the decryption
shares of corrupted parties, and then adjusts the decryption shares of
honest parties such that the decryption shares (d1, . . . , dn) reconstruct to
the output value y.

Hybrid 4. We modify the previous hybrid in the Input Stage. Here, the
honest parties, instead of sending an encryption of the actual input, they
send an encryption of 0.

Hybrid 5. This corresponds to the ideal world execution.
In order to prove that no environment can distinguish between the real

world and the ideal world, we prove that no environment can distinguish
between any two consecutive hybrids.

Claim 1. No efficient environment can distinguish between Hybrid 1 and
Hybrid 2.

Proof of claim. This follows trivially, since the honest parties always send
a valid witness to Fmzk in the case of a synchronous network. In the case
of an asynchronous network, the simulator chooses the set of parties that
get ⊥ as the real-world adversary. ♦

Claim 2. No efficient environment can distinguish between Hybrid 2 and
Hybrid 3.
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Proof of claim. This follows from properties of a secret sharing scheme
and the security of the threshold encryption scheme. Given that the
threshold is ts + 1, any number corrupted decryption shares below ts + 1
does not reveal anything about the output y. Moreover, one can find
shares for honest parties such that (d1, . . . , dn) is a sharing of y. ♦

Claim 4. No efficient environment can distinguish between Hybrid 3 and
Hybrid 4.

Proof of claim. This follows from the semantic security of the used thresh-
old encryption scheme. ♦

Claim 5. No efficient environment can distinguish between Hybrid 4 and
Hybrid 5.

Proof of claim. The simulator in the ideal world and the simulator in
Hybrid 4 emulate the joint behavior of the ideal functionalities exactly
in the same way. ♦

We conclude that the real world and the ideal world are indistinguish-
able.
Finally, let us argue why the protocol has weak termination. Observe that
when the protocol outputs ⊥, parties do not terminate. This is because
the protocol Πts,ta

acs does not guarantee termination, i.e. might need to
run forever (see [BKL20]). However, when parties have agreement on a
ciphertext to decrypt (in particular, this is the case when the network is
synchronous), the threshold decryption sub-protocol ensures that honest
parties can jointly collect ts + 1 ≤ n − ts ≤ n − ta decryption shares,
decrypt the ciphertext and terminate.

7.5 Main Protocol
In this section, we present the protocol Πts,ta

mpc for secure function evalu-
ation which tolerates up to ts (resp. ta) corruptions when the network
is synchronous (resp. asynchronous), for any 0 ≤ ta < n

3 ≤ ts < n
2

satisfying ta + 2ts < n. The protocol is based on two sub-protocols:
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• Πts,ta
smpc is a secure function evaluation protocol which gives full secu-

rity up to ts corruptions when run in a synchronous network, and
achieves unanimous abort with weak termination up to ta corrup-
tions and has n − ts output quality when run in an asynchronous
network.

• Πta
ampc is a secure function evaluation protocol which gives full secu-

rity up to ta corruptions and has n − ta output quality when run
in an asynchronous network.

Let xi denote the input value of party Pi.
1: Run Πts,ta

smpc using xi as input. Let yi be the output of Pi.
2: If yi ̸= ⊥, output yi and terminate. Otherwise, run Πta

ampc using xi as
input, output the result and terminate.

Protocol Πts,ta
mpc (Pi)

Theorem 7.5.1. Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and
ta + 2ts < n. Protocol Πts,ta

mpc satisfies the following properties:

1. When run in a synchronous network, it achieves full security up to
ts corruptions.

2. When run in an asynchronous network, it achieves full security up
to ta corruptions and has n− ts output quality.

Proof. The case where the network is synchronous and there are up to ts

corruptions is trivial, since Πts,ta
smpc is guaranteed to provide full security,

and Πta
ampc is never executed. In the other case where the network is

asynchronous and there are up to ta corruptions, observe that after Πts,ta
smpc

gives output (which is guaranteed to happen), in the case where there
is a non-⊥ output, every honest party is guaranteed to get this output
(which take into account at least n − ts inputs) and also terminate. If
the output is ⊥, the adversary learned no information so far about the
inputs, so it is safe to execute Πta

ampc. In this case, since Πta
ampc has output

quality n− ta, the overall protocol also has n− ts ≤ n− ta output quality.
Observe that in this case the honest parties terminate as soon as Πta

ampc
terminates, since Πta

ampc guarantees termination.
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7.6 Impossibility Proof
We now discuss two lower bounds in this setting. Our first result shows
that our feasibility result in Section 7.5 is tight with respect to the output
quality. More concretely, we show that there are basic functions for which
it is impossible to achieve both (1) full security up to t corruptions in
a synchronous network and (2) (n − t + 1)-output quality for even 0
corruptions in an asynchronous network. Put simply, a protocol secure
against t corruptions cannot rely on receiving more than n − t inputs,
even in executions in which all participants happen to be honest.

Our second result shows that the construction presented in Section 7.5
is tight with respect to the corruption thresholds. That is, we show
that there is no protocol for secure function evaluation achieving the
guarantees of Theorem 7.5.1 when ta + 2ts ≥ n. As an example, we
show that the majority function cannot be computed with full security
up to ts corruptions in a synchronous network as well as security up to
ta corruptions in an asynchronous network (in fact, in an asynchronous
network, it cannot be computed even if we require only unanimous abort).

Theorem 7.6.1. Fix any t. There is no protocol Π for MPC with the
following properties:

• When run in a synchronous network, it achieves full security up to
t corruptions.

• When run in an asynchronous network, it achieves (n−t+1)-output
quality when every party is honest.

Proof. We show the proof for the case of the OR function. More con-
cretely, the function computes the OR of all the inputs that are received
by the ideal functionality (i.e. all inputs that are not ⊥).

We partition the n parties into two sets St, Sn−t, where |St| = t and
|Sn−t| = n − t. Consider an execution of Π in a synchronous network
where parties in St are corrupted and abort, and parties in Sn−t input
0. In this case, since the protocol achieves full security, all honest parties
obtain 0 as output and terminate by some time T .

Next consider an execution of Π in an asynchronous network where all
parties are honest, parties in St have input 1, and parties in Sn−t have
input 0. All communication between St and Sn−t is delayed for more
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than T clock ticks. Since the view of the parties in Sn−t is exactly the
same, these parties output 0. This contradicts the fact that Π achieves
(n− t + 1)-output quality.

Theorem 7.6.2. Fix any ta, ts such that ta + 2ts ≥ n. There is no
protocol Π for MPC with the following properties:

• When run in a synchronous network, it achieves full security up to
ts corruptions.

• When run in an asynchronous network, it achieves unanimous abort
up to ta corruptions.

Proof. Case 1: ts ≥ n/2 or ta ≥ n/3. These bounds follow from classical
impossibility results for synchronous and asynchronous MPC protocols
with full security (c.f. [Cle86, BKR94]).

Case 2: ts < n/2, ta < n/3, and ta + 2ts ≥ n.
Assume without loss of generality that ta + 2ts = n. We prove the

impossibility for the case of the majority function. Partition the n parties
into three sets, S0

ts
, S1

ts
, and Sta , where |S0

ts
| = |S1

ts
| = ts and |Sta | = ta.

First, consider an execution of Π in which the network is synchronous
and the ts parties in S1

ts
are corrupted and crash, and furthermore the

honest parties all input 0. Since ts is less than n/2, the protocol must
output 0.

Next, consider an execution of Π in which the network is asynchronous,
the ta parties in Sta are corrupted, and the parties in S0

ts
and S1

ts
input 0

and 1, respectively. In the real world, the adversary can use the following
attack: block all messages between S0

ts
and S1

ts
throughout, and have

all corrupted parties simulate an honest protocol execution with input
b ∈ {0, 1} with the parties in Sb

ts
. A party in S0

ts
cannot distinguish

between this execution and the first execution, and thus the protocol
outputs 0; for the same reason a party in S1

ts
outputs 1. By contrast, in

the ideal world, the output will of course be the same for all parties. This
proves that there is no protocol for the majority function Π that achieves
both properties.





Appendix C

Details of Chapter 7

C.1 Paillier Cryptosystem
In this section we describe the Paillier cryptosystem [Pai99]. The public
key pk is a k-bit RSA modulus N = pq, where p, q have k

2 bits and are
such that p = 2p′ + 1, q = 2q′ + 1 for p′, q′ primes. The secret key is
sk = ϕ(N)(ϕ(N)−1 mod N).

In order to encrypt a message a ∈ ZN , one computes the ciphertext
a = Encpk(a, r) = garN mod N2, where r ∈ Z∗

N is chosen uniformly at
random, and g = N + 1. To decrypt a message, one simply computes csk

mod N2 = Na + 1, from which a mod N can be obtained.
The encryption scheme is additively homomorphic in the sense that

a � b = Encpk(a, ra) · Encpk(b, rb) = Encpk(a + b, rarb).
Semantic security can be shown under the so-called decisional com-

posite residual assumption (DCRA), which states that random elements
in Z∗

N2 are computationally indistinguishable from random elements of
the form rN .

A threshold version of this cryptosystem can be found in [DJ01], based
on a variant of Shoup’s technique [Sho00] for threshold RSA.





Chapter 8

Synchronous MPC with
Asynchronous
Responsiveness

8.1 Introduction

In the context of multiparty computation (MPC), a set of mutually dis-
trustful parties wish to jointly compute a function by running a dis-
tributed protocol. The protocol is deemed secure if every party obtains
the correct output and if it does not reveal any more information about
the parties’ inputs than what can be inferred from the output. Moreover,
these guarantees should be met even if some of the parties can maliciously
deviate from the protocol description. Broadly speaking, MPC protocols
exist in two regimes of synchrony. First, there are synchronous protocols
which assume that parties share a common clock and messages sent by
honest parties can be delayed by at most some a priori known bounded
time. Synchronous protocols typically proceed in rounds of length ∆,
ensuring that any message sent at the beginning of a round by an hon-
est party will arrive by the end of that round at its intended recipient.
On the upside, such strong timing assumptions allow to obtain protocols
with an optimal resilience of 1

2 n corruptions for the case of full security
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[RB89, GMW87, BMR90, CDN01], and of arbitrary number of corrup-
tions for the case of security with (unanimous) abort and no fairness
[FGH+02, GL02]. On the downside, especially in real-world networks
where the actual maximal network delay δ is hard to predict, ∆ has to
be chosen rather pessimistically, and synchronous protocols fail to take
advantage of a fast network.

The second type of protocols that we will study in this work are asyn-
chronous protocols. Such protocols do not require synchronized clocks
or an a priori known bounded network delay to work properly. As such,
they function correctly under much more realistic network assumptions.
Moreover, asynchronous protocols have the benefit of running at the ac-
tual speed of the network, i.e., they run in time that depends only on δ,
but not on ∆; a notion that we shall refer to as responsiveness [PS17a].
This speed and robustness comes at a price, however: it can easily be
seen that no asynchronous protocol that implements an arbitrary func-
tion can tolerate 1

3 n maliciously corrupted parties [BKR94]. We ask the
natural question of whether it is possible to leverage synchronous MPC
protocols to also achieve responsiveness:

Is there a (synchronous) MPC protocol that allows to simultaneously
achieve full security with responsiveness up to t corruptions, and some
form of extended security (full security, unanimous abort) up to T ≥ t
corruptions?

We settle the question with tight feasibility and impossibility results:

• For the case where unanimous abort is required as extended security,
this is possible if and only if T + 2t < n.

• For the case where full security is required as extended security, this
is possible if and only if T < n

2 and T + 2t < n.

8.1.1 Technical Overview of Our Results

The Model. We first introduce a new composable model of functional-
ities in the UC framework [Can01], which captures the guarantees that
protocols from both asynchronous and synchronous worlds achieve in a
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very general fashion. Our model allows to capture multiple distinct guar-
antees such as privacy, correctness, or responsiveness, each of which is
guaranteed to hold for (possibly) different thresholds of corruption. In
contrast to previous works, we do not capture the guarantees as protocol
properties, but rather as part of the ideal functionality. This allows to
use the ideal functionality as an assumed functionality in further steps of
the composition, without the need to keep track of the properties of the
real-world protocols.

Real World Functionalities. Our protocols work with public-key infras-
tructure (PKI) and common-reference string (CRS) as setup. Parties
have access to a synchronized global clock functionality Gclk and a com-
munication network of authenticated channels with unknown upper bound
δ, corresponding to the maximal network delay. This value is unknown
to the honest parties. Instead, protocols make use of a conservatively
assumed worst-case delay ∆ ≫ δ. Within δ, the adversary can schedule
the messages arbitrarily.

Ideal Functionality. In order to capture the guarantees that asynchronous
and synchronous protocols achieve in a fine-grained manner, we describe
an ideal functionality Fhyb which allows parties to jointly evaluate a func-
tion. At a high level, Fhyb is composed of two phases; an asynchronous
and a synchronous phase, separated by some pre-defined time-out. Each
party can obtain a unique identical output in either phase. As in asyn-
chronous protocols, the outputs obtained during the asynchronous phase
are obtained fast, i.e., at a time which depends on the actual maximal net-
work delay δ, but not on the conservatively assumed worst-case network
delay ∆. Let us describe the guarantees that Fhyb provides.

If there are up to t corruptions, Fhyb achieves full security with respon-
siveness. That is, honest parties obtain a correct and identical output,
and honest parties’ inputs remain private. Moreover, they obtain an
output yasynch by a time proportional to the actual network delay δ. Un-
avoidably, this means that Fhyb may ignore up to t inputs from honest
parties.

If there are up to T ≥ t corruptions, Fhyb can give output at two differ-
ent points in time τ1 ≤ τ2. Either all parties obtain yasynch before time τ1
(there might be some parties which obtained yasynch in the asynchronous
phase), or all parties obtain the output ysync by time τ2, which is guaran-
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teed to take into account all inputs from honest parties. For the output
ysync, we consider two versions: Ffs

hyb which guarantees full security up to
T corruptions implying that ysync is the correct output, and Fua

hyb which
guarantees security with unanimous abort up to T corruptions, meaning
that the adversary can set ysync to ⊥.

We depict in Figure 8.1 a time-line showing the point in time at
which the honest parties obtain the output, depending on the number of
corruptions.

Figure 8.1: The dotted vertical line separates the asynchronous and the
synchronous phase. The orange dot shows the latest point in time when
honest parties get output. The output yasynch takes into account n − t
inputs, whereas ysync takes into account all inputs. Up to t corruptions
all parties obtain yasynch fast. In the other case, either all parties obtain
yasynch by τ1, or all parties obtain ysync by τ2, which is the correct output
for Ffs

hyb, and may be ⊥ for Fua
hyb.

Black-Box Compiler. We give a generic black-box compiler that com-
bines an asynchronous MPC protocol with a synchronous MPC protocol
and gives a hybrid protocol that combines beneficial properties from both
the synchronous and asynchronous regime, very roughly in the following
way: Using threshold encryption and assuming 1) a two-threshold asyn-
chronous protocol with full security up to t corruptions and security with
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no termination (correctness and privacy) up to T ≥ t corruptions, and 2)
a synchronous protocol with extended security (full security or security
with unanimous abort) up to T corruptions, the compiler provides full
security with responsiveness up to t corruptions, and extended security
up to T corruptions, for any T + 2t < n.

For the first sub-protocol 1), we show how to modify the asynchronous
MPC protocol by Cohen [Coh16] to obtain the trade-off mentioned above
when used in our aforementioned compiler. We separate the termination
threshold from all other security guarantees. That is, we achieve an
asynchronous protocol that terminates (in a responsive and fully-secure
manner) for any t < 1

3 n, and provides security without termination up
to T < n− 2t corruptions.

The second sub-protocol 2) can be achieved with known protocols;
for T < n in the case of security with unanimous abort (e.g. [FGH+02,
GL02]) and for T < n/2 for full security (e.g. [RB89, GMW87, BMR90,
CDN01]).

Compiler Description. We now give an outline of our compiler. At a high
level, the idea of our compiler is to first run an asynchronous protocol
until some pre-defined timeout. Upon timing out, the parties switch to
a synchronous computation. If sufficiently many parties are honest, the
honest parties obtain their output at the actual speed of network. The
main challenge is to ensure that if even a single party obtains output
during the asynchronous phase, the output will not be changed during
the synchronous phase. This would be problematic for two reasons: First,
because the combined protocol would offer no improvement over a stan-
dard synchronous protocol in terms of responsiveness; if a party does not
know if the output it obtains during the asynchronous phase will be later
changed during the synchronous phase, then this output is essentially use-
less to that party. Therefore, if this were indeed the case, then one could
run just the synchronous part of the protocol. Second, computing two
different outputs may be problematic for privacy reasons, as two different
outputs give the adversary more information about the honest parties’ in-
puts than what it should be able to infer. Our solution to this problem is
to have the asynchronous protocol output a threshold ciphertext [y] of the
actual output y. Prior to running the hybrid protocol, the parties each
obtain a key share di such that k out of n parties can jointly decrypt the
ciphertext by pooling their shares. This way, if we set k = n − t, where
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t is the responsiveness threshold, we are ensured that sufficiently many
parties will pool their shares during the asynchronous phase, given that
fewer than t parties are corrupt. Therefore, every honest party should
be able to decrypt and learn the output during the asynchronous phase,
thus ensuring responsiveness. On the other hand, our compiler ensures
that if any honest party gives out its share during the asynchronous phase
after seeing the ciphertext [y] being output by the asynchronous proto-
col, then the only possible output during the synchronous phase can be y.
Finally, our compiler has a mechanism to detect whether no honest party
has made its share public yet. In this case, we can safely recompute the
result during the synchronous phase of the hybrid protocol, as we can
be certain that the adversary does not have sufficient shares to learn the
output from the asynchronous phase.

Two-Threshold Asynchronous MPC Protocol. Finally, in Section 8.5, we
show how to obtain an asynchronous MPC protocol to achieve trade-
offs between termination and security (correctness and privacy). While
many asynchronous MPC protocols (e.g. [PCR09, CP15, Cho20, Coh16,
HNP05]) can be adapted to the two-threshold setting, we choose to adapt
the protocol in [Coh16] for simplicity.

The protocol in [Coh16] achieves all guarantees simultaneously for
the corruption threshold 1

3 n. At a high level, the idea of this protocol is
to use a threshold fully homomorphic encryption scheme (TFHE) with
threshold k = 1

3 n and let parties distribute encryption shares of their
inputs to each other. Then, parties agree on a common set of at least 2

3 n
parties, whose inputs will be taken into account during the function eval-
uation. In this step, n Byzantine Agreement protocols are run. Parties
can then locally evaluate the function which is to be computed on their
respective input shares by carrying out the corresponding (homomorphic)
arithmetic operations on these shares. After this local computation has
succeeded, parties pool their shares of the computation’s result to decrypt
the final output of the protocol. We modify the thresholds in this proto-
col in the following manner. Instead of setting k = 1

3 n, we set k = 3
4 n.

Intuitively, assuming a perfect Byzantine Agreement (BA) functionality,
this modification has the effect that the adversary needs to corrupt 3

4 n
parties to break privacy, but can prevent the protocol from terminating
by withholding decryption shares whenever it corrupts more than 1

4 n par-
ties. However, one can see that if one realizes the BA functionality using
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a traditional protocol with validity and consistency thresholds 1
3 n, the

overall statement will only have security 1
3 n.

We show how to improve the security threshold T of the protocol by
using, as a sub-component, an asynchronous BA protocol which trades
liveness for consistency without sacrificing validity. Our protocol inherits
the thresholds of the improved BA protocol, achieving any T < n − 2t,
where t is the termination threshold.

8.1.2 Synchronous Protocols over an Asynchronous
Network

We argue that it is not trivial to enhance a synchronous MPC protocol
to achieve responsiveness. Two ways to execute a synchronous protocol
over a network with unknown delay δ are as follows:

Time-Out Based. Perhaps the easiest approach to execute a syn-
chronous protocol over this network is to model each round using ∆ clock
ticks, where ∆ is a known upper bound on the network delay. In this
case, the output is obtained at a time which depends on ∆. Note that ∆
has to be set high enough to accommodate any conditions, and such that
any honest party has enough time to perform its local computation; if an
honest party is slightly later than ∆ in any round, it will be considered
corrupted throughout the whole computation. In realistic settings where
δ is hard to predict, we will have that ∆ ≫ δ. Hence, any synchronous
protocol (even constant-round) is slow.

Notification Based. A well-known approach (see e.g. [KLR06]) to
“speed up” a synchronous protocol is to let the parties simulate a syn-
chronized clock in an event-based fashion over an asynchronous network.
More concretely, the idea is that each party broadcasts a notification
once it finishes a particular round i and only advances to round i + 1
upon receiving a notification for round i from all parties. It is not hard
to see that this approach does not achieve the responsiveness guarantees
we aim for. To this end, observe that a single corrupted party Pj can
make all parties wait ∆ clock ticks in each round, simply by not sending a
notification in this particular round. Note that parties cannot infer that
Pi is corrupted, unless they wait for ∆ clock ticks, because δ is unknown.
Hence, unless there are no corruptions, an approach along these lines
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can not ensure responsiveness. In contrast, our protocol guarantees that
parties obtain fast outputs as long as there are up to t corruptions.

8.1.3 Related Work
Despite being a very natural direction of research, compilers for achiev-
ing tradeoffs between asynchronous and synchronous protocol have only
begun to be studied in relatively recent works.

Pass and Shi study a hybrid type of state-machine replication (SMR)
protocol in [PS17a] which confirms transactions at an asynchronous speed
and works in the model of mildly adaptive malicious corruptions; such
corruptions take a short time to take effect and as such model a slightly
weaker adversary than one that is fully adaptive. Subsequently, Pass and
Shi show a general paradigm for SMR protocols with optimistic confirma-
tion of transactions called Thunderella [PS18]. In their work, they show
how to achieve optimistic transaction confirmation (at asynchronous net-
work speed) as long as the majority of some designated committee and
a party called the ‘accelerator’ are honest and faithfully notarize trans-
actions for confirmation. If the committee or the accelerator become
corrupted, the protocol uses a synchronous SMR protocol to recover and
eventually switch back to the asynchronous path of the protocol. Their
protocol achieves safety and liveness against a fully adaptive adversary,
but can easily be kept on the slow, synchronous path forever in this case.
Subsequently, Loss and Moran [LM18] showed how to obtain compilers
for the simpler case of BA that achieve tradeoffs between responsiveness
and safety against a fully adaptive adversary.

The work by Guo et al. [GPS19] introduced a model which weakens
classical synchrony. There, the adversary can interrupt the communica-
tion between certain sets of parties, as long as in each round there is
a (possibly different) connected component with an honest majority of
the nodes. Although their focus is not on responsive protocols, the au-
thors include an MPC responsive protocol, based on threshold FHE for
the case of full-security as extended security. Our protocols differ from
theirs in various aspects: 1) In contrast to their protocol, our approach
is conceptually simpler and allows to plug-in any asynchronous and syn-
chronous protocol in a black-box manner and automatically inherit the
thresholds for each of the guarantees, and the assumptions from each of
the protocols. For example, we can plug-in a synchronous protocol with
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full security and unanimous abort, and obtain the corresponding guar-
antees; one could further consider other types of guarantees, or design
MPC protocols from different types of assumptions which would all be
inherited automatically from our compiler; 2) We phrase all our results in
the UC framework and capture in a very general fashion the guarantees
that the protocol provides as part of the ideal functionality. This leads
to some differences, e.g. our ideal functionality allows to capture respon-
siveness guarantees; also allows to take into account in the computation
the inputs from all parties in some cases.

Further Related Work. Best-of-both worlds compilers for distributed
protocols (in particular MPC protocols) come in many flavours and we
are only able to list an incomplete summary of related work. Goldre-
ich and Petrank [GP90] give a black-box compiler for Byzantine agree-
ment which focuses on achieving protocols which have expected constant
round termination, but in the worst case terminate after a fixed num-
ber of rounds. Kursawe [Kur00] gives a protocol for Byzantine agree-
ment that has an optimistic synchronous path which achieves Byzan-
tine agreement if every party behaves honestly and the network is well-
behaved. If the synchronous path fails, then parties fall back to an asyn-
chronous path which is robust to network partitions. However, the over-
all protocol tolerates only 1

3 n corrupted parties in order to still achieve
safety and liveness. A recent line of works [BKL19, BKL20, BLL20]
studied protocols resilient to t2 corruptions when run in a synchronous
network and also to t1 corruptions if the network is asynchronous, for
0 < t1 < 1

3 n ≤ t2 < 1
2 n. A line of works [BHN10, CPR17, PR18] consider

the setting where parties have a few synchronous rounds before switch-
ing to fully asynchronous computation. Here, one can achieve protocols
with better security guarantees than purely asynchronous ones. Finally,
the line of works [FHHW03, IKLP06, Kat07, FHW04, HLM13] consider
different thresholds to achieve more fine-grained security guarantees.

Worth mentioning, are the works of [IKLP06, Kat07], which consider
MPC protocols with full security up for an honest majority t, and security
with abort for a dishonest majority T . Our protocols achieve results in
this direction as well, except that our threshold t includes responsiveness
as well. Note that the impossibility of [Kat07], where it is shown that
T + t ≥ n is impossible does not apply to our work, since we consider a
weaker trade-off T + 2t < n. Moreover, the fact that our threshold t for
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full security case includes responsiveness as well is essential to prove that
the bound T + 2t < n is tight.

8.2 Preliminaries

Threshold Encryption Scheme. We assume the existence of a secure
public-key encryption scheme which enables threshold decryption. (See
Section 2.2)

Digital Signature Scheme. We assume the existence of a digital sig-
nature scheme unforgeable against adaptively chosen message attacks.
Given a signing key sk and a verification key vk, let Signsk and Vervk the
signing and verification functions. We write σ = Signsk(m) meaning us-
ing sk, sign a plaintext m to obtain a signature σ. Moreover, we write
Vervk(m, σ) = 1 to indicate that σ is a valid signature on m.

8.3 Model
8.3.1 Adversary
We consider a static adversary, who can corrupt up to f parties at the on-
set of the execution and make them deviate from the protocol arbitrarily.
The adversary is also computationally bounded.

8.3.2 Real and Ideal World
We consider a real world where parties have access to a synchronized
global clock functionality Gclk, and a network functionality N δ of pair-
wise authenticated channels with an unknown upper bound on the mes-
sage delay δ, as defined in Section 6.1.4.

We introduce ideal functionality Ffs
hyb (resp. Fua

hyb) which allows to
capture the guarantees that asynchronous and synchronous protocols for
secure function evaluation offer in a fine-grained manner. The function-
ality has access to the global functionality Gclk, and allows parties to
evaluate a function f . The idea is that up to t corruptions, parties have
full security and responsiveness. Moreover, in the case of Ffs

hyb, if up to
t ≤ T < n/2 parties are corrupted, full security is guaranteed, i.e. all
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honest parties obtain the correct and identical output, and the inputs
from honest parties remain secret. The functionality Fua

hyb is the same,
except that it guarantees security with unanimous abort up to t ≤ T < n
corruptions instead of full security, i.e., honest parties obtain the correct
output or unanimously obtain ⊥.

The number of inputs that the function is guaranteed to take into
account and the time at which it provides output depends the number
of corruptions. The time-out divides the execution into two phases: an
asynchronous and a synchronous phase.

• If there are up to t corruptions, parties are guaranteed to obtain
an output at time τasynch, which depends on δ. This fast output is
identical to every party and is guaranteed to take into account at
least n − t inputs, i.e. can ignore the inputs from up to t honest
parties.

• Otherwise, the parties are guaranteed to obtain the same output,
but at a time which depends on ∆. More concretely, there are two
latest points in time at which parties can obtain an output after the
time-out occurs: τOD < τOND. Either all parties obtain the output by
τOD, which is guaranteed to take into account n − t inputs, or all
parties obtain output at a later time τOND, which is guaranteed to
take into account all inputs.

The adversary can in addition gain certain capabilities depending on
the amount of corruption it performs. More technically, we introduce
a tamper function Tamper, parametrized by a tuple of thresholds (t, T ).
This allows to naturally capture the different guarantees for the two cor-
ruption thresholds t and T . Basically, if the number of corruptions is
greater than t, the adversary can prevent the parties to obtain fast out-
puts. And beyond T , no security guarantee is ensured, as the adversary
learns the inputs from the honest parties and can choose the outputs as
well.

Tamper Function. The ideal functionality is parameterized by a tam-
per function, which indicates the adversary’s capabilities depending on
the threshold. We consider two thresholds: T for full security, and t for
responsiveness.



154 CHAPTER 8. SYNCH. MPC WITH RESPONSIVENESS

Definition 8.3.1. We define the ideal functionality with parameters
(t, T ) if it has the following tamper function TamperHyb

t,T :

// Flags indicating violation of c correctness, p privacy, r responsiveness
(c, p, r) = TamperHyb

t,T , where:
• c = 1, p = 1 if and only if |P \ H| > T .
• r = 1 if and only if |P \ H| > t

Function TamperHyb
t,T

The ideal functionality has in addition a set of parameters. It con-
tains a parameter τasynch which models the maximum output delay in the
asynchronous phase, and parameters τOD and τOND which model the output
delays for an output that takes into account n − t inputs, or an output
with all the inputs. One can think of τasynch = O(δ), and τOD < τOND are
times which depend on ∆.

In addition, it keeps the following local variables:

• FastOutput indicates if the output contains n − t inputs or all
inputs.

• τ keeps the current time.

• τtout is the pre-defined time-out to switch between the two phases.

• sync is the phase being executed (asynchronous or synchronous).

• xi, yi the input and output for party Pi.

• wi indicates if the adversary decided to not deliver output yi in the
asynchronous phase. The adversary can only use this capability if
the number of corruptions is larger than t.

• I keeps the set of parties whose input are taken into account for
the fast output.
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The functionality keeps track of the current time τ .
The functionality is parametrized by δ, τasynch, τOD, τOND, Tamper, τtout and
the function to evaluate f .
The functionality stores variables FastOutput, τ , sync, xi, yi, wi. These
variables are initialized as FastOutput = false, τ = 0, sync = false,
xi = ⊥, and yi = wi = ⊥.
It keeps I = H, where H is the set of honest parties, and a set C = ∅.

Timeout/Clock :

Each time the functionality is activated, update τ accordingly.
If τ ≥ τtout, set sync = true. If FastOutput = false, compute y1 =
· · · = yn = f(x1, . . . , xn).

Asynchronous Phase If sync = false do the following:

• At the onset of the execution, output δ and τasynch to the adversary.
• On input (Input, vi, sid) from party Pi:

– If some party has received output, ignore this message. Otherwise,
set xi = vi.

– If xi ̸= ⊥ for each Pi ∈ I, set each output to yj = f(x′
1, . . . , x′

n),
where x′

i = xi for each Pi ∈ I ∪ (P \ H) and x′
i = ⊥ otherwise.

– Output (Input, Pi, sid) to the adversary.

• On input (GetOutput, sid) from Pi do the following:

– If the output has not been set yet or is blocked, i.e., yi = ⊥ or
wi = aBlocked, ignore this message.

– If τ ≥ τasynch output (output, yi, sid) to Pi and set
FastOutput = true.

– Otherwise, output (output, Pi, sid) to the adversary.

Synchronous Phase If sync = true do the following:

• On input (GetOutput, sid) from party Pi

– If FastOutput = true and τ ≥ τtout + τOD, it outputs
(Output, yi, sid) to Pi.

– If FastOutput = false and τ ≥ τtout + τOND, it outputs
(Output, yi, sid) to Pi.

Functionality Ffs
hyb
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Adversary
Upon each party corruption, update (c, p, r) = TamperHyb

t,T .
// Core Set and Delivery of Outputs

1: Upon receiving a message (No-Input,P ′, sid) from the adversary, if
sync = false, P ′ is a subset of P of size |P ′| ≤ tr and y1 = · · · = yn = ⊥,
set I = H \ P ′.

2: On input (DeliverOutput, i, sid) from the adversary, if yi ̸= ⊥ and
sync = false, output (output, yi, sid) to Pi and set FastOutput =
true.
// Adversary’s capabilities

3: On input (TamperOutput, Pi, y′
i, sid) from the adversary, if c = 1,

set yi = y′
i.

4: If p = 1, output (x1, . . . , xn) to the adversary.
5: On input (BlockAsynchOutput, Pi, sid) from the adversary, if r = 1

and sync = false, set wi = aBlocked.

In the version where Fua
hyb provides security with unanimous abort and

no fairness, the adversary can in addition choose to set the output to ⊥ for
all honest parties and learn the output ysync, in the case FastOutput =
false.

8.4 Compiler
In this section, we present a protocol which realizes the ideal functional-
ity presented in the previous section. The protocol works with a setup
FSetup, where parties have access to a public-key infrastructure used to
sign values, and keys for a threshold encryption scheme.

The protocol uses a number of sub-protocols:

• Πzk is a bilateral zero-knowledge protocol which allows a party to
prove knowledge of a witness corresponding to a statement.

• ΠaMPC is an asynchronous MPC protocol that provides full security
up to t corruptions, and security without termination (correctness
and privacy) up to T ≥ t corruptions.

• Πfs
sMPC (resp. Πua

sMPC) is a synchronous MPC protocol with full security
(resp. security with unanimous abort) up to T corruptions.
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• ΠsBC is a synchronous broadcast protocol secure up to T corrup-
tions.

8.4.1 Key-Distribution Setup
The compiler works with a key distribution setup. The setup can be
computed once for multiple instances of the protocol, without knowing
the parties’ inputs nor the function to evaluate.

As usual, we describe our compiler in a hybrid model where parties
have access to an ideal functionality FSetup. At a very high level, FSetup
allows to distribute the keys for a threshold encryption scheme and a
digital signature scheme. The threshold encryption scheme here does not
need to be homomorphic. More concretely, it provides to each party Pi

a global public key ek and a private key share dki. Moreover, it gives a
PKI infrastructure. That is, it gives to each party Pi a signing key ski

and the verification keys of all parties (vk1, . . . , vkn).
We describe the two setups, PKI setup FPKI and threshold encryption

setup FTE independently. The setup of the protocol consists of includes
both functionalities FSetup = [FPKI,FTE].

Digital Signature Setup. The protocol assumes a signature setup.
That is, each party Pi has a pair secret key and verification key (ski, vki),
where vki is known to all parties.

Threshold Encryption Setup. The protocol assumes also a threshold
encryption setup, which allows each party to access a global public key
ek and a private key share dki.

8.4.2 Zero-Knowledge
The protocol Πzk is a bilateral zero-knowledge protocol which allows a
party to prove knowledge of a witness corresponding to a statement. The
protocol must be UC-secure, meaning that it has to UC-realize the ZK
functionality (described in Section D.1 for completeness). As shown in
[DDO+01], such a protocol exists in the FCRS-hybrid model for any rela-
tion. For this protocol, we need proofs of correct decryption, where the
relation is parametrized by a threshold encryption scheme. The statement
consists of ek, a ciphertext c, and a decryption share d. The witness is a
decryption key share dki such that d = Decdki(c).
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8.4.3 Synchronous MPC
Classical synchronous MPC protocols [RB89, GMW87, BMR90, CDN01],
for Πfs

sMPC can be proven to UC-realize an ideal MPC functionality Ffs
sync

(described in Section D.1 for completeness) up to T < n/2 corruptions,
which allows a set of n parties to evaluate a specific function f . For the
case of unanimous abort, where the adversary is allowed to set the output
⊥, one can instantiate Πua

sMPC for any T < n [FGH+02, GL02].

8.4.4 Synchronous Byzantine Broadcast
A Byzantine broadcast primitive allows a party Ps, called the sender, to
consistently distribute a message among a set of parties P.

Definition 8.4.1. Let Π be a protocol executed by parties P1, . . . , Pn,
where a designated sender Ps initially holds an input v, and parties ter-
minate upon generating output. Π is a T -secure broadcast protocol if the
following conditions hold up to T corruptions:

• Validity: If the sender Ps is honest, every honest party outputs the
sender’s message v.

• Consistency: All honest parties output the same message.

The classical result of Dolev-Strong [DS83] shows that synchronous
broadcast protocol ΠsBC can be achieved for any T < n, assuming a public-
key infrastructure. The protocol UC-realizes the synchronous broadcast
functionality FsBC (which is a synchronous MPC functionality, where
the output is the sender’s input) for our setting with static corruptions
[GKKZ11a, KMTZ13].

8.4.5 Asynchronous MPC
In this section we formally define what it means for a protocol ΠaMPC to
achieve full security up to t corruptions and security without termination
(correctness and privacy) up to T ≥ t corruptions. In Section 8.5.2 we
show how to achieve such a protocol.

In a nutshell, the idea is that the protocol realizes an ideal MPC
functionality which is parametrized with the two thresholds (t, T ). If
the adversary corrupts up to t parties, all honest parties obtain all the
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security guarantees as a conventional asynchronous MPC functionality.
If the adversary corrupts t ≤ f ≤ T parties, it is allowed to block any
party from obtaining output; however, those parties that obtain output,
are ensured to obtain the correct output, and privacy is still guaranteed.
Finally, if the adversary corrupts f > T parties, no guarantees remain:
the adversary learns the inputs from all honest parties and can choose
the outputs to be anything.

To model formally an asynchronous MPC functionality, we borrow
ideas from [KMTZ13, CGHZ16]. In traditional asynchronous protocols,
the parties are guaranteed to eventually receive output, meaning that the
adversary can delay the output of honest parties in an arbitrary but fi-
nite manner. The reason for this is that the assumed network guarantees
eventual delivery. One can make the simple observation that if the net-
work has an unknown upper bound δ, then the adversary can delay the
outputs of honest parties up to time τasynch = τ(δ), which is a function
of δ. The guarantee obtained in an asynchronous MPC with eventual de-
livery (e.g. as in [CGHZ16]) is a special case of our functionality, namely
when τasynch = ∞. We describe it for the case where τasynch is a fixed
time, but one can model τasynch to be probabilistic as well.

It is known that asynchronous protocols cannot achieve simultane-
ously fast termination (at a time which depends on δ) and input com-
pleteness. This is because δ is unknown and hence it is impossible to
distinguish between an honest slow party and an actively corrupted party.
If fast termination must be ensured even when up to t parties are cor-
rupted, the parties can only wait for n − t inputs. Since the adversary
is able to schedule the delivery of messages from honest parties, it can
also typically choose exactly a set of parties P ′ ⊆ P, |P ′| ≤ t, whose
input is not considered. Therefore, the ideal functionality also allows the
simulator to choose this set. As in [CGHZ16], and similar to the network
functionality N δ, we use a “fetch-based” mode functionality and allow
the simulator to specify a delay on the delivery to every party.

Fasync is connected to a global clock functionality Gclk. It is parameterized
by a set P of n parties, a function f , a tamper function Tampert,T , a delay

Functionality Fasync
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δ, and a maximum delay τasynch. It initializes the variables xi = yi = ⊥,
τin = ⊥ and τi = 0 for each party Pi ∈ P and the variable I = H, where H
is the set of honest parties.
Upon receiving input from any party or the adversary, it queries Fclock for
the current time and updates τ accordingly.
Party Pi:

1: On input (Input, vi, sid) from party Pi:
• If some party has received output, ignore this message. Otherwise,

set xi = vi.
• If xi ̸= ⊥ for each Pi ∈ I, set each output to yj = f(x′

1, . . . , x′
n),

where x′
i = xi for each Pi ∈ I ∪ (P \ H) and x′

i = ⊥ otherwise. Set
τin = τ .

• Output (Input, Pi, sid) to the adversary.
2: On input (GetOutput, sid) from Pi, if the output is not set or is

blocked, i.e., yi ∈ {⊥,⊤}, ignore the message. Otherwise, if the cur-
rent time is larger than the time set by the adversary, τ ≥ τi, output
(Output, yi, sid) to Pi.

Adversary:

1: Upon receiving a message (No-Input,P ′, sid) from the adversary, if P ′

is a subset of P of size |P ′| ≤ t and y1 = · · · = yn = ⊥, set I = H \ P ′.
2: On input (SetOutputTime, Pi, τ ′, sid) from the adversary, if τin ̸= ⊥

and τ ′ < τin + τasynch, set τi = τ ′.
Upon each party corruption, update (c, p, l) = TamperAsynch

t,T .
1: On input (TamperOutput, Pi, y′

i, sid) from the adversary, if c = 1, set
yi = y′

i.
2: If p = 1, output (x1, . . . , xn) to the adversary.
3: On input (BlockOutput, Pi, sid) from the adversary, if l = 1, set yi =
⊤.

Similar to Fhyb, we parametrize the functionality by a tamper func-
tion to capture the guarantees depending on the set of corrupted parties.
The Fasync functionality has the tamper function TamperAsynch

t,T , where
the adversary can tamper with the output value and learn the inputs if
the number of corruptions is larger than T , and is allowed to block the
delivery of the outputs if the number of corruptions is larger than t.
Definition 8.4.2. We define an asynchronous MPC functionality with
full security t and security without termination T , if it has the tamper



8.4. COMPILER 161

function TamperAsynch
t,T :

(c, p, l) = TamperAsynch
t,T , where:

• c = 1, p = 1 if and only if |P \ H| > T .
• l = 1 if and only if |P \ H| > t.

Function TamperAsynch
t,T

8.4.6 Protocol Compiler
The protocol has two phases: an asynchronous phase and a synchronous
phase, separated by a pre-defined timeout. The timeout is set large
enough (using ∆ and the number of asynchronous rounds) so that the
asynchronous phase should have supposedly terminated if there were not
too many corruptions.

During the asynchronous phase, parties may obtain an output yasynch.
We need to ensure (1) that if an honest party obtains an output yasynch
during the asynchronous phase, then every other honest party obtains this
output as well; and (2) that the adversary does not learn two outputs.
We remark that even if the function to evaluate is the same, the output
obtained from the synchronous MPC protocol ΠsMPC is not necessarily
yasynch. This is because in an asynchronous protocol ΠaMPC, up to t inputs
from honest parties can be ignored. This is the reason why we require
that ΠaMPC evaluates the function f ′ = Encek(f). During the synchronous
phase, parties agree on whether they execute the synchronous protocol
ΠsMPC. The parties will invoke ΠsMPC only if it is guaranteed that the
adversary did not obtain yasynch. Also, if the parties do not invoke ΠsMPC,
it is guaranteed that they can jointly decrypt the output yasynch.

Asynchronous Phase. In this phase, parties optimistically execute
ΠaMPC. When a party Pi obtains as output a ciphertext c = [y] from ΠaMPC,
it sends a signature of c and collects a list L of n − t signatures on the
same c. Once such list L is collected, it runs a robust threshold decryption
protocol. For that, Pi computes a decryption share di = Decdki

(c), and
proves using Πzk to each Pj that di is a correct decryption share of c.
Upon receiving di and a correct proof of decryption share for c from n− t
parties, compute and output yi = Rec({dj}).

Synchronous Phase. After the timeout, parties execute a synchronous
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broadcast protocol to send a pair list-ciphertext (c, L), where L contains
at least n− t signatures on c, if such a list was collected during the asyn-
chronous phase. If a party receives via broadcast any valid L, then it
sends its decryption share di and runs the same robust threshold decryp-
tion protocol as above. Otherwise, parties execute the synchronous MPC
ΠsMPC.

Observe that if an honest party collects a list L of n − t signatures
on a ciphertext [y] during the asynchronous phase, it broadcasts the pair
([y], L) during the synchronous phase. Then, every honest party obtains
at least a valid pair ([y], L) after the broadcast round finishes. By a stan-
dard quorum argument, if there are up to T < n− 2t corruptions, there
cannot be two signature lists of size n− t on different values. Given that
honest parties only sign the correct output ciphertext [yasynch] from ΠaMPC,
this is the only value that can gather a list of signatures. Hence, all par-
ties are instructed to run the robust threshold decryption protocol, and
if there are up to t corruptions, every honest party is guaranteed to re-
ceive enough decryption shares to obtain the output yasynch. On the other
hand, if no honest party obtained such a pair during the asynchronous
phase, it is guaranteed that the adversary did not learn yasynch, since no
honest party sent its decryption share. However, it might be that the
adversary collected a valid ([yasynch], L′). The adversary can then decide
whether to broadcast a valid pair. If it does, every party will hold this
pair and everyone outputs yasynch as before. And if it does not, no honest
party holds a valid pair after the broadcast round, and every party can
safely run the synchronous MPC protocol ΠsMPC.

We remark that it is not enough that upon the timeout parties simply
send ([y], L), because the parties need to have agreement on whether or
not to invoke ΠsMPC. It can happen that the adversary is the only one
who collected ([y], L).

The party stores the current time τ , a flag sync = false and a variable
τsync = ⊥. Let τtout = Tasynch(∆) + Tzk(∆) + ∆ be a known upper bound on
the time to execute the asynchronous phase, composed of protocols ΠaMPC,
Πzk and a network transmission message. Also, let Tzk(∆) denote an upper
bound on the time to execute Πzk.

Protocol Π∆
mpc(Pi)
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Clock / Timeout Each time the party is activated do the following:

1: Query Gclk for the current time and updates τ accordingly.
2: If τ ≥ τtout, set sync = true and τsync = τ .

Setup:

1: If activated for the first time input (GetKeys, sid) to FSetup. We denote
the public key ek, a (n− t, n)-share dki of the corresponding secret key
dk, the signing key sk and the verification key vk.

Asynchronous Phase: If sync = false handle the following commands.

• On input (Input, xi, sid) (and following activations) do
1: Execute ΠaMPC with input xi and wait until an output c is received.
2: Send (c, Sign(c, sk)) to every other party using N .
3: Receive signatures and values viaN until you received n−t signatures

L = (σ1, . . . , σl) on a value c.
4: Send (c, L) to every party using N .
5: Receive message lists (c, L′). For each such list send (c, L′) to every

party using N .
6: Once done with the above, compute di = Decdki (c), and prove, using

ZK, to each Pj , that di is a correct decryption share of c.
7: Upon receiving n− t correct decryption shares for c, compute and

output y = Rec({dj}).
• At every clock tick, if it is not possible to progress with the list above,

send (ClockReady) to Gclk.

Synchronous Phase: If sync = true and τ ≥ τsync, stop all previous
steps and do the following commands.
• On input (ClockReady) do:

1: Send (ClockReady) to Gclk.
2: if τ ≥ τsync then
3: Use ΠsBC to broadcast (c, L), for each pair (c, L) received during

the Asynchronous Phase.
4: Wait until ΠsBC terminated. If a pair (c, L) was received as output,

compute di = Decdki (c), and prove, using ZK, to each Pj , that di

is a correct decryption share of c. Otherwise, if no pair (c, L) was
received, run the synchronous MPC protocol Πfs

sMPC with input xi.
• If there was an output (c′, L′) from ΠsBC, wait for Tzk(∆) clock ticks.

After that, if n− t correct decryption shares dj are received from N ,
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compute and reconstruct the value y = Rec({dj}) from c, and output y.
Otherwise, if there was no output (c, L′) from ΠsBC, output the output
received from Πfs

sMPC.

Let Tzk(δ), Tsync(∆), TBC(∆), Tasynch(δ) be the corresponding time to
execute the protocols Πzk, ΠsMPC, ΠsBC and ΠaMPC, respectively. We state
the following theorem, and the proof is formally described in Section D.2.
The communication complexity is inherited from the corresponding sub-
protocols.

Theorem 8.4.3. Assuming PKI and CRS, for any ∆ ≥ δ, Π∆
mpc realizes

Ffs
hyb with full security with responsiveness t and full security min{T, n−

2t}. The maximum delay of the asynchronous phase is τasynch = Tasynch(δ)
+Tzk(δ) + δ, and of the synchronous phase is τOD = TBC(∆) + Tzk(∆) for
a fast output with n− t inputs, and otherwise is τOND = TBC(∆) + Tsync(∆)
for an output with all the inputs.

By replacing the invocation of Πfs
sMPC to Πua

sMPC, one realizes Fua
hyb for the

same parameters. Let Π∆
hyb-ua denote the same protocol as Π∆

mpc, except
that the invocation of Πfs

sMPC is replaced by Πua
sMPC.

Theorem 8.4.4. Assuming PKI and CRS, for any ∆ ≥ δ, Π∆
hyb-ua real-

izes Fua
hyb with full security with responsiveness t and security with unan-

imous abort min{T, n − 2t}. The maximum delay of the asynchronous
phase is τasynch = Tasynch(δ) + Tzk(δ) + δ, and of the synchronous phase is
τOD = TBC(∆) + Tzk(∆) for a fast output with n− t inputs, and otherwise
is τOND = TBC(∆) + Tsync(∆) for an output with all the inputs.

8.5 Asynchronous Protocols
In this section, we show how to obtain ΠaMPC with full security with re-
sponsiveness up to t corruptions and security (correctness and privacy)
up to T corruptions, for any t < n

3 and any T < n− 2t.

Technical Remark. In our model, parties have access to a synchronized
clock. The asynchronous protocols do not read the clock, but in our model
they need to specify at which point the parties send a (ClockReady)
message to Gclk, so that the clock advances. Observe that we do not
model time within a single asynchronous round (between fetching and
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sending messages), or computation time. Hence, in an asynchronous
protocol, at every activation, each party Pi fetches the messages from
the assumed functionalities, and then checks whether it has any message
available that it can send. If so, it sends the corresponding message.
Otherwise, it sends a (ClockReady) message to Gclk.

8.5.1 Asynchronous Byzantine Agreement
The goal of Byzantine agreement is to allow a set of parties to agree on
a common value (see Definition 7.3.3).

The first step is to obtain an asynchronous Byzantine Agreement pro-
tocol BA with higher consistency threshold. In Section D.3, we formally
prove security of such a protocol BA in the UC framework for any va-
lidity tv, consistency tc and termination tl, such that tl ≤ tv < n

3 and
tc + 2tl < n.

The general idea is to trade termination by consistency, while keeping
validity. The protocol is quite simple. First, each party Pi runs with input
xi a regular Byzantine agreement protocol secure up to a single threshold
t′ = tv < n/3. Once an output x is obtained from the BA, it computes a
signature σ = Sign(x, sk) and sends it to every other party. Once n − tl

signatures on a value x′ are collected, the party sends the list containing
the signatures along with the value x′ to every other party, and terminates
with output x′. Since there cannot be two lists of n − tl signatures on
different values if there are up to tc < n − 2tl corruptions, this prevents
parties to output different values if there are up to tc < n−2tl corruptions.
On the other hand, termination is reduced to tl. One can also verify that
validity is inherited from the regular BA protocol: if every honest party
starts with input x, no honest party signs any other value x′ ̸= x, and
hence there cannot be a list of n− tl signatures on x′, given that tl ≤ tv.
Lemma 8.5.1. There is a Byzantine agreement protocol BA with validity,
consistency and termination parameters (tv, tc, tl), for any tl < n

3 , tl ≤
tv < n

3 and tc < n− 2tl, assuming a PKI infrastructure setup FPKI. The
expected maximum delay for the output is τaba = O(δ).

8.5.2 Two-Threshold Asynchronous MPC
In order to realize Fasync with full security up to t and security with
no termination (correctness and privacy) up to T , where t < n

3 and
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T + 2t < n, we follow the ideas from [Coh16, HNP05, HNP08], and
replace the single-threshold asynchronous BA protocol for the one that
we obtained in Section 8.5.1 with increased consistency tc < n− 2tl.

The protocol works with a threshold FHE setup, similar to [Coh16],
which we model with the functionality FFHE

Setup, which is the same as
FSetup from Section 8.4.1, except that the threshold encryption scheme is
fully-homomorphic. For completeness, we review the definition of a FHE
scheme in Section 2.2.3.

The protocol uses in addition a number of sub-protocols:

• BA is a Byzantine agreement protocol with liveness threshold tl =
t < n/3, validity t ≤ tv < n/3 and consistency tc = T < n− 2t.

• Πzk is a bilateral zero-knowledge protocol, similar to the one in
Section 8.4.

Very roughly, the protocol asks each party Pi to encrypt its input xi

and distribute it to all parties. Then, parties homomorphically evaluate
the function over the encrypted inputs to obtain an encrypted output, and
jointly decrypt the output. Of course, the protocol does not work like
that. In order to achieve robustness, we need that every party proves in
zero-knowledge the correctness of essentially every value provided during
the protocol execution.

We are interested in ZK proofs for two relations, parametrized by a
threshold encryption scheme with public encryption key ek:

1. Proof of Plaintext Knowledge: The statement consists of ek, and a
ciphertext c. The witness consists of a plaintext m and randomness
r such that c = Encek(m; r).

2. Proof of Correct Decryption: The statement consists of ek, a ci-
phertext c, and a decryption share d. The witness consists of a
decryption key share dki, such that d = Decdki

(c).

The protocol proceeds in three phases: the input stage, the computa-
tion and threshold-decryption stage, and the termination stage.

Input Stage. The goal of the input stage is to define an encrypted input
for each party. In order to ensure that the inputs are independent, the
parties are required to perform a proof of plaintext knowledge of their
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ciphertext. It is known that input completeness and guaranteed termina-
tion cannot be simultaneously achieved in asynchronous networks, since
one cannot distinguish between an honest slow party and an actively
corrupted party. Given that we only guarantee termination up to t cor-
ruptions, we can take into account n− t input providers.

The input stage is as follows: each party Pi encrypts its input to
obtain a ciphertext ci. It then constructs a certificate πi that Pi knows
the plaintext of ci and that ci is the only input of Pi, using bilateral zero-
knowledge proofs and signatures. It then sends (ci, πi) to every other
party, and constructs a certificate of distribution disti, which works as a
non-interactive proof that (ci, πi) was distributed to at least n− t parties.
This certificate is sent to every party.

After Pi collects n − t certificates of distribution, it knows that at
least n− t parties have proved knowledge of the plaintext of their input
ciphertext and distributed the ciphertext correctly to n − t parties. If
the number of corruptions is smaller than n− t, this implies that each of
the n − t parties have proved knowledge of the plaintext of their input
ciphertext and also have distributed the ciphertext to at least 1 honest
party. At this point, if each party is instructed to echo the certified
inputs they saw, then every honest party will end up holding the n −
t certified inputs. To determine who they are, the parties compute a
common set of input providers. For that, n asynchronous Byzantine
Agreement protocols are run, each one to decide whether a party’s input
will be taken into account. To ensure that the size of the common set
is at least n − t, each party Pi inputs 1 to the BAs of those parties for
which it saw a certified input. It then waits until there are n − t ones
from the BAs before inputting any 0.

The protocol keeps sets Si and Di, initially empty. Let xi be the input for
Pi.
Setup:

1: If activated for the first time input (GetKeys, sid) to FFHE
Setup. We denote

the public key ek, a (n− t, n)-share dki of the corresponding secret key
dk, the signing key sk and the verification key vk.

Protocol Πinput
aMPC (Pi)
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Plaintext Knowledge and Distribution:

1: Compute ci = Encek(xi).
2: Prove to each Pj knowledge of the plaintext of ci, using Πzk.
3: Upon receiving a correct proof of plaintext knowledge for a ciphertext

cj from Pj , send σpopk
i = Signski

(cj) to Pj .
4: Upon receiving n− t signatures {σpopk

j }, compute πi = {σpopk
j } and send

(ci, πi) to all parties.
5: Upon receiving a message (cj , πj) from Pj , send σdist

i = Signski
((cj , πj))

to Pj . Add (j, (cj , πj)) to Si.
6: Upon receiving n− t signatures {σdist

j }, compute disti = {σdist
j } and

send ((ci, πi), disti) to all parties.
7: Upon receiving ((cj , πj), distj) from Pj , add j to Di.

Select Input Providers: Once |Di| > n− t, stop the above rules and
proceed as follows:

1: Send Si to every party.
2: Once n − t sets {Sj} are collected, let R =

⋃
j

Sj and enter n asyn-
chronous Byzantine agreement protocols BA with inputs v1, . . . , vn ∈
{0, 1}, where vj = 1 if ∃(j, (cj , πj)) ∈ R. Keep adding possibly new
received sets to R.

3: Wait until there are at least n− t outputs which are one. Then, input
0 for the BAs which do not have input yet.

4: Let w1, . . . , wn be the outputs of the BAs.
5: Let CoreSet := {j|wj = 1}.
6: For each j ∈ CoreSet with (j, (cj , πj)) ∈ R, send (j, (cj , πj)) to all

parties. Wait until each tuple (j, (cj , πj)), j ∈ CoreSet is received.

Computation and Threshold-Decryption Stage. After input stage,
parties have agreed on a common subset CoreSet of size at least n − t
parties, and each party holds the n− t ciphertexts corresponding to the
encryption of the input from each party in CoreSet. In the computa-
tion stage, the parties homomorphically evaluate the function, resulting
on the ciphertext c encrypting the output. In the threshold-decryption
stage, each party Pi computes the decryption share di = Decdki

(c), and
proves in zero-knowledge simultaneously towards all parties that the de-
cryption share is correct. Once n − t correct decryption shares on the
same ciphertext are collected, Pi reconstructs the output yi.
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Start once Πinput
aMPC (Pi) is completed. Let CoreSet be the resulting set of at

least n− t parties, and let the input ciphertexts be cj , for each
j ∈ CoreSet.
Function Evaluation:

1: For each j /∈ CoreSet, assume a default valid ciphertext cj for Pj .
2: Locally compute the homomorphic evaluation of the function c =

fek(c1, . . . , cn).
Threshold Decryption:

1: Compute a decryption share di = Decdki (c).
2: Prove, using Πzk, to each Pj that di is a correct decryption share of c.
3: Upon receiving a correct proof of decryption share for a ciphertext c′

and decryption share dj from Pj , send σpocs
i = Signski

((dj , c′)) to Pj .
4: Upon receiving n−t signatures {σpocs

j } on the same pair (di, c′), compute
ProofSharei = {σpocs

j } and send ((di, c′), ProofSharei) to all parties.
5: Upon receiving n− t valid pairs ((dj , c′), ProofSharej) for the same c′,

compute the output yi = Rec({dj}).

Protocol Πcomp
aMPC(Pi)

Termination Stage. The termination stage ensures that all honest
parties terminate with the same output. This stage is essentially a Bracha
broadcast [BT85] of the output value. The idea is that each party Pi

votes for one output yi and continuously collects outputs votes. More
concretely, Pi sends yi to every other party. If Pi receives n− 2t votes on
the same value y, it knows that y is the correct output (because at least
an honest party obtained the value y as output if the security threshold
T < n − 2t is satisfied). Hence, if no output was computed yet, it sets
yi = y as its output and sends yi to every other party. Observe that
if the security threshold is not satisfied, the adversary can tamper the
outputs, but so can the simulator. Once n − t votes on the same value
y are collected, terminate with output y. If a party receives n − t votes
on y, and termination should be guaranteed (f ≤ t), there are n − 2t
honest parties that voted for y, and hence every honest party which did
not output will at some point collect n − 2t votes on y, and hence will
also vote for y. Since each honest party which terminated voted for y
and each honest party which did not terminated voted for y as well, this
means that all honest parties which did not terminate will receive n − t
votes for y.
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During the overall protocol, execute this protocol concurrently.
Waiting for Output:

1: Wait until the output c is computed from Πcomp
aMPC(Pi).

Adopt Output:

1: Wait until receiving n− 2t votes for the same value y.
2: Adopt y as output, and send y to every other party.

Termination:

1: Wait until receiving n− t votes for the same value y.
2: Terminate.

Protocol Πterm
aMPC(Pi)

Let us denote ΠaMPC the protocol that executes concurrently the pro-
tocols Πinput

aMPC , Πcomp
aMPC and Πterm

aMPC. Each party, at every activation, tries
to progress with any of the subprotocols. If they cannot, they output
(ClockReady) to Gclk so that the clock advances. In Section D.4, we
prove the following theorem.

Theorem 8.5.2. The protocol ΠaMPC uses FFHE
Setup as setup and realizes

Fasync on any function f on the inputs, with full security up to t cor-
ruptions and security without termination up to T , for any t < n/3 and
T + 2t < n. The total maximum delay for the honest parties to obtain
output is τasynch = τaba(δ) + 2τzk(δ) + 9δ.

8.6 Impossibility Results
In this section we argue that the obtained trade-offs are optimal. We
prove that any MPC protocol that achieves full security with responsive-
ness up to t corruptions, and extended security with unanimous abort
up to T corruptions needs to satisfy T + 2t < n. Since full security is
stronger than security with unanimous abort, these bounds also hold for
the case where the extended security is full security.

Lemma 8.6.1. Let t, T be such that T + 2t ≥ n. There is no MPC pro-
tocol Π that achieves full security with responsiveness up to t corruptions,
and extended security with unanimous abort up to T ≥ t corruptions.

Proof. Let δ be the unknown delay upper bound. Moreover, let δ′ ≪ δ
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be such that the time to execute Π when messages are scheduled within
δ′ is τ(δ′) < δ.

Assume without loss of generality that 3t = n. We prove impossibility
for the case where the function to be computed is the majority function.
Consider three sets S0, S1 and S, where |S0| = |S1| = t and |S| = T .

First, consider an execution where parties in S0 and S are honest and
have input 0, and parties in S1 are corrupted and crash. Moreover, the
adversary instantly delivers the messages between S0 and S (within δ′).
Since full security with responsiveness is guaranteed, parties in S0 output
0 at time τ(δ′). Similarly, in an execution where parties in S1 and S are
honest and have input 1, the parties in S1 output at time τ(δ′).

Now, consider an execution where S is corrupted, and the parties in
S0 and S1 have inputs 0 and 1 respectively. The corrupted parties in
S emulate an honest protocol execution with input b ∈ {0, 1} with the
parties in Sb. Moreover, the adversary delays δ the messages between S0
and S1. A party in S0 (resp. S1) cannot distinguish between the two
executions, because it outputs at time τ(δ′) < δ, and hence outputs 0
(resp. 1).

However, since T parties are corrupted, the protocol provides security
with unanimous abort meaning that in the ideal world all honest parties
output the same value (which may be ⊥).

This contradicts the fact that Π achieves full security with responsive-
ness up to t corruptions and unanimous abort up to T corruptions.

In addition, classical bounds in synchronous MPC with full security,
show that full security for dishonest majority T ≥ n/2 is impossible
[Cle86]. As a consequence, MPC with extended full security is impossible
for dishonest majority.

8.7 Conclusions
We summarize all our results. Using the compiler from Section 8.4 and
the following instantiations:

• A bilateral zero-knowledge protocol like in [DDO+01], which uses
CRS.
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• A synchronous MPC with full security (resp. unanimous abort) for
T < n/2 (resp. T < n), using a protocol such as [RB89] (resp.
[FGH+02, GL02]).

• A synchronous broadcast protocol for T < n such as [DS83] from
PKI.

• An asynchronous MPC with full security up to t < n/3 and security
without termination up to T < n−2t, as described in Section 8.5.2,
based on PKI and threshold FHE (achievable from CRS [AJL+12]).

We obtain the following corollaries, where Tsync(∆) and TBC(∆) are the
running times for the synchronous MPC protocol and the synchronous
broadcast:

Corollary 8.7.1. There exists a protocol parametrized by ∆ ≥ δ, which
realizes Ffs

hyb on any function f , with full security with responsiveness
t and full security T for any t < n

3 and T < min{n/2, n − 2t}, in the
(Gclk,N δ,FPKI,FCRS)-hybrid world. The expected maximum delay of the
asynchronous phase is τasynch = O(δ), and the maximum delay of the
synchronous phase is τOD = TBC(∆) + Tzk(∆) if an output was delivered in
the asynchronous phase, and otherwise is τOND = TBC(∆) + Tsync(∆).

For tr = n
4 , we obtain Ffs

hyb with correctness with privacy for any
ts < n

2 .

Corollary 8.7.2. There exists a protocol parametrized by ∆ ≥ δ, which
realizes Fua

hyb on any function f , with full security with responsiveness
t and full security T for any t < n

3 and T < n − 2t, in the hybrid
world (Gclk,N δ,FPKI,FCRS). The expected maximum delay of the asyn-
chronous phase is τasynch = O(δ), and the maximum delay of the syn-
chronous phase is τOD = TBC(∆)+Tzk(∆) if an output was delivered in the
asynchronous phase, and otherwise is τOND = TBC(∆) + Tsync(∆).



Appendix D

Details of Chapter 8

D.1 UC Zero-Knowledge and Synchronous
MPC

For completeness, we formally describe the UC functionalities for zero-
knowledge [CF01] and synchronous MPC [KMTZ13].

D.1.1 Zero-Knowledge
We formally describe the UC ZK functionality, which allows a prover to
prove knowledge of a certain witness w for a statement x satisfying a
relation R.

ZK is connected to a global clock functionality Gclk. It is parameterized by
a prover P , verifier V , a relation R, and a delay time τzk. It also stores the
current time τ and keeps a buffer buffer of messages containing the proofs
that is initially empty.
Each time the functionality is activated, it first queries Gclk for the current
time and updates τ accordingly.

Functionality ZK
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Zero-Knowledge Proof:

1: On input (x, w) from P , if R(x, w) = 1, create a new identifier sid and
record the tuple (τ, τ +1, (x, w), sid).Then sends (x, sid) to the adversary.

2: On input (GetProof, sid) from V , for each tuple (Tinit, Tend, (x, w), sid)
such that Tend ≤ τ , remove it from buffer and output (x, sid) to V .

3: On input (Delay, T, sid) from the adversary, if there is a tuple
(Tinit, Tend, (x, w), sid) in buffer and Tend + T ≤ Tinit + τzk, then set
Tend = Tend + T and return (Delay-OK) to the adversary. Otherwise,
ignore the message.

D.1.2 Synchronous MPC
We describe the ideal functionality Ffs

sync for full security and Fua
sync. The

functionality is connected to a global clock Gclk and is parametrized by
the delay time τsync for which the honest parties obtain the output. For
simplicity, we model the synchronous functionality with deterministic
termination, but one can extend this to probabilistic termination using
the frameworks presented in [CCGZ16, CCGZ17].

Tamper Function for Synchronous SFE. The function TamperSynch
T

models the adversary’s capabilities for a SFE functionality secure up to a
single threshold T . The adversary can tamper with the output and learn
the inputs from honest parties if and only if the number of corruptions
is larger than T .

Definition D.1.1. We define a synchronous SFE functionality secure up
to T corruptions if it has the following tamper function TamperSynch

T :

(c, p) = TamperSynch
T , where:

• c = 1, p = 1 if and only if |P \ H| > T .

Function TamperSynch
T

Fsync is connected to a global clock Gclk. Fsync is parameterized by a set P

Functionality Ffs
sync



D.2. PROOF OF THEOREM 8.4.3 175

of n parties, a function f and a tamper function TamperSynch
T , and a delay

time at which the parties obtain output τsync. Additionally, it initializes
τ = 0 and, for each party Pi, xi = yi = ⊥. It keeps the set of honest
parties H.
Upon receiving input from any party or the adversary, it queries Fclock for
the current time and updates τ accordingly.
Party:

1: On input (Input, vi, sid) from each party Pi ∈ H at a fixed time τ ′:
• If xi = ⊥, it sets xi = vi.
• Set τout = τ ′ + τsync.

2: If for each party Pi ∈ H xi ̸= ⊥, set each yi = f(x1, . . . , xn).
3: On input (GetOutput, sid) from honest party Pi or the adversary

(for corrupted Pi), if τ ≥ τout, it outputs (Output, yi, sid) to Pi.

Adversary: Upon party corruption, set (c, p) = TamperSynch
T ((x1, . . . ,

xn),H).
1: On input (TamperOutput, Pi, y′

i, sid) from the adversary, if c = 1, set
yi = y′

i.
2: If p = 1, output (x1, . . . , xn) to the adversary.
3: On input (Input, vi, sid) from the adversary on behalf of Pi, set xi = vi.

In the version where Fua
sync provides security with unanimous abort,

the adversary can in addition choose to set the output to ⊥ for all parties
after learning the output.

D.2 Proof of Theorem 8.4.3
In this section, we show the proof of the Theorem 8.4.3, stated in Sec-
tion 8.4.

Completeness. We first show that the protocol is complete. That is, if
there are no corruptions, no environment can distinguish the real world
from the ideal world. To this end, we need to argue that the output the
parties obtain in both worlds are exactly the same. Observe that even if
the adversary does not corrupt any party, it can still delay messages.

Given that the time-out occurs after τasynch = Tasynch(δ) + Tzk(δ) +
δ clock ticks and there are no corruptions, every honest party obtains
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output during the asynchronous phase. More concretely, each honest
party obtains an output [yasynch] from ΠaMPC and manages to collect a list
L of n − t signatures on this ciphertext during the asynchronous phase,
decrypts [yasynch] and obtains the output yasynch.

Soundness. To argue soundness, we first describe the simulator. The
simulator Shyb has to simulate the view of the dishonest parties during
the protocol execution.

Clock / Timeout At every activation, the simulator does the following:

1: Query Gclk for the current time and updates τ accordingly.
2: If τ ≥ τtout, set sync = true, τsync = τ .

Network Messages:
The simulator prepares a set buffer = ∅ to simulate the messages that are
sent to corrupted parties throughout the simulation (recall the variable
buffer in N ). More concretely, it does the following:

1: On input δ from Fhyb, output δ to the adversary.
2: On input (FetchMessages, i) from Pi, for each message tuple

(Tinit, Tend, Pk, Pi, m, idm) from buffer where Tend ≤ τ , output (k, m)
to Pi.

3: On input (Delay, D, id) from the adversary, if there exists a tuple
(Tinit, Tend, Pi, Pj , m, id) in buffer and Tend + D ≤ Tinit + δ, then set
Tend = Tend + D and return (Delay-ok) to the adversary. Otherwise,
ignore the message.

Setup:

1: The simulator generates the keys at the beginning of the execution. That
is, it computes (ek, dk)← Keygen(n−t,n)(1κ), where dk = (dk1, . . . , dkn),
and (vkj , skj)← SigGen(1κ) for each party Pj . Then, it records the tuple
(sid, ek, dk, vk, sk), where vk = (vk1, . . . , vkn) and sk = (sk1, . . . , skn).

2: On input (GetKeys, sid) from a corrupted party Pi, send output
(sid, ek, dki, vk, ski) to Pi.

Asynchronous Phase:
It receives the time output τasynch from Ffs

hyb. It keeps a variable τi for each
party Pi.

// Internal emulation of ΠaMPC

Algorithm Shyb
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1: Emulate the messages of the protocol ΠaMPC. If a corrupted party Pi

is supposed to gets an output from the protocol, output c0 = [0], an
encryption of 0.
// Internal emulation of N .

2: As soon as τi = 0 for an honest party Pi, input to buffer, the tuple (τ, τ+
1, i, j, [y], Sign([y], ski)), id), for each party Pj and freshly generated id.
Output (Sent, i, j, ([y], Sign([y], ski))), id) to the adversary.

3: As soon as the current time τ is such that there are n − t tuples
(τ1, τ2, j, i, ([y], Sign([y], skj))) such that τ2 ≤ τ for the same i in buffer,
input to buffer the tuple (τ, τ + 1, i, j, ([y], L′), id), for each Pj , where
L′ contains the list of signatures.
// Internal emulation of Πzk.

4: The simulator internally emulate the delays of Πzk. Upon receiving
an output y from Ffs

hyb, it computes an encryption [y] under the key
ek. Then, it computes the decryption shares of the corrupted parties
di = DecShareski (c0), and sets the decryption shares from honest parties
such that (d1, . . . , dn) forms a secret sharing of the output value y.

5: Every time the adversary requests validity of the decryption share di

from an honest party Pi, it responds with a confirmation of the validity
of di.

6: Every time a corrupted Pi provides a proof of correct decryption (c′, d′),
check whether c′ = c0 and d′ = di. If so, record that a correct proof of
decryption was input by Pi.
// Delivery of honest parties’ outputs.

7: On input (Output, Pi, sid) from Ffs
hyb, where Pi is an honest

party, if Pi obtained n − t correct decryption shares, input
(DeliverOutput, Pi, sid) to Ffs

hyb.
Synchronous Phase:

// Internal emulation of ΠsBC

1: The simulator emulates the messages from the broadcast protocol. For
each emulated honest party Pi that received a valid pair ([y], L) in the
asynchronous phase, output ([y], L) to the adversary after TBC(∆) clock
ticks.

2: On input a valid pair ([y], L) from the adversary, after TBC(∆) start the
emulation of Πzk.
// Internal emulation of Πzk
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3: Output the message (c0, di) at the corresponding time, for each honest
Pi. That is, keep a local delay ui for each honest party, which can
be updated on input (Delay, D, id), and output the message if τ ≥
τsync + TBC(∆) + ui.
// Internal emulation of ΠsMPC.

4: If no valid pair was received from the adversary, and no honest party
received a valid pair in the asynchronous phase, emulate the messages
of the synchronous MPC protocol.

Tamper Function:

1: On input (TamperOutput, Pi, y′
i, sid) from the adversary, forward the

input to Ffs
hyb.

2: On input (x1, . . . , xn) from Ffs
hyb, output it to the adversary.

3: When the adversary blocks an output from the asynchronous
MPC protocol in the real world, the simulator forwards the input
(BlockAsynchOutput, Pi, sid) to Ffs

hyb.

We need to prove that the real and ideal worlds are indistinguishable.
First, we remark that the simulator emulates the network by keeping a
variable buffer which stores the messages that are sent. If a corrupted
party inputs a message to N in the real world, the simulator inputs the
corresponding tuple to buffer exactly the same way as N . Moreover, the
simulator have to input to buffer all messages that are sent from honest
parties to corrupted parties in the real world. One can see that such
messages correspond to signatures on an encrypted output and lists of
such signatures. All these messages can be simulated. Observe that the
simulator uses an encryption of 0 instead of [y] in all the messages above.
By the security of the threshold encryption scheme, both messages are
indistinguishable. We remark that the simulator has knowledge of all the
keys from the parties, since it simulates the setup functionality FSetup.

Now we analyze each phase individually.

Setup Phase. It is straightforward to see that the messages that the
adversary sees during the setup phase are identical in both worlds. This is
because the simulator executes the key generation algorithms for both the
threshold encryption and the digital signature scheme as the functionality
FSetup in the ideal world.

Asynchronous Phase. We argue that the view of the adversary is
indistinguishable in both worlds.
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Internal emulation of ΠaMPC. The simulator keeps a delay variable τi for
each party Pi, which it sets the same way as the adversary. When τi = 0,
a corrupted party Pi gets the encryption [y] in the real world. In the ideal
world, the simulator outputs an encryption of 0, c0 = [0], when τi = 0 as
well.
Internal emulation of N . In the real world, the corrupted parties obtain
two types of messages after obtaining the ciphertext [y]: signatures on
[y] and lists of signatures. Once an honest party obtains [y] from the
asynchronous MPC protocol, it inputs to N a signature of [y] towards
every party. Then, when n− t signatures are collected, the honest party
inputs the list to N towards every party.

The simulator maintains a variable buffer which stores the messages
that are sent via the network. It then inputs signatures of [0] on behalf
of each honest party Pi to buffer, towards every party (in particular,
towards corrupted parties), and at the corresponding time. Once n −
t signatures are collected with destination Pi, the simulator emulates
internally the protocol of Pi, and inputs to buffer the corresponding
list, towards every party.
Internal emulation of Πzk. The simulator keeps a delay variable ui for
each party Pi, which it sets the same way as the adversary. When the de-
lay is met, a corrupted party Pi gets a proof of correct decryption ([y], di),
where di = DecShareski([y]) from Πzk in the real world. In the ideal world,
the simulator outputs a pair (c0, di), where di = DecShareski

(c0), where
the decryption shares from honest parties are set such that they recon-
struct the value y.
Delivery of honest parties’ outputs. The simulator has the power to de-
liver the outputs of honest parties in the ideal world. Hence, it delivers
the outputs at the corresponding time. Namely, when the honest party
has the output ciphertext [y] and collects n− t decryption shares in the
real world.

Synchronous Phase. We argue again that the view of the adversary is
exactly the same in both worlds.
Internal emulation of ΠsBC. In the real world, the parties broadcast all
valid pairs ([y], L) that were received in the Asynchronous phase. This
behavior is emulated by the simulator as follows: the simulator keeps
track of the honest parties that obtained a valid pair ([y], L) during the
asynchronous phase. The simulator then internally emulates ΠsBC and
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outputs the valid pairs ([y], L) at the end of the broadcast round, after
TBC clock ticks. Also, if the adversary inputs a valid pair ([y], L) during
the broadcast round, it also outputs the valid pair ([y], L) to each party
at the corresponding time.
Internal emulation of Πzk. After the round of synchronous broadcasts
terminated, if a valid pair ([y], L) was received, then in the real world
the honest parties send the decryption shares along with proofs of cor-
rect decryption using Πzk. In the ideal world, the simulator the internal
emulation of Πzk is similar to the one during the asynchronous phase.
Internal emulation of ΠsMPC. If no valid pair was received, in the real
world the parties execute ΠsMPC, whose behavior is directly emulated by
the Ffs

hyb functionality in the ideal world. That is, the simulator forwards
the output from Ffs

hyb to the adversary.
All that is left to do is to argue about the messages the adversary ob-

tains from breaking the correctness, privacy and termination thresholds.
Full Security. In the real world, if the adversary corrupts more than

T parties, it can set the output of the asynchronous protocol ΠaMPC to any
output y, and it can also obtain the inputs from the honest parties. In
this case, the simulator learns the inputs from the honest parties as well
and can set the output correspondingly.

Similarly, if the adversary corrupts more than n − 2t parties, it can
forge a list of signatures on any value and choose the output, potentially
violating security. But in this case the simulator can also set the output
of Ffs

hyb in the ideal world and learn the inputs from Ffs
hyb, since the full

security threshold is min(T, n− 2t).
Termination. We remark that even if the responsiveness bound t of is

violated, all the adversary can do in the real world is to prevent a party
to obtain an output from ΠaMPC. Hence, responsiveness is lost and the
simulator will block the output from the asynchronous phase.

One can prove similarly the theorem with the variant where the hybrid
offers unanimous abort (Theorem 8.4.4). The proof is exactly the same
as in Theorem 8.4.3, except that the emulation of the synchronous MPC
protocol is according to the messages of the protocol Πua

sMPC that gives
security with unanimous abort instead of full security.

D.3 ABA with Increased Consistency
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D.3.1 Ideal Functionality
We introduce the asynchronous functionality for Byzantine Agreement,
FaBA. The asynchronous Byzantine Agreement functionality FaBA can
be seen as a instantiation of the asynchronous MPC functionality Fasync
introduced in Section 8.4.5 with a specific function and tamper function.
The function fFaBA to evaluate is defined as follows: If the honest parties
in the core set have preagreement on an input value x, the output value
is also x. Otherwise, the output value is the same for every honest party,
but is defined by the adversary.

We define the functionality FaBA to be an asynchronous MPC func-
tionality Fasync evaluating the function fFaBA , and parametrized by the
tamper function TamperBA

tv,tc,tl
defined below.

Definition D.3.1. We say that a Byzantine Agreement functionality
has validity, consistency and termination parameters T = (tv, tc, tl) if it
has the following tamper function TamperBA

tv,tc,tl
:

(c, p, d) = TamperBA
tv,tc,tl

(x1, ..., xn,H), where:
• c = 0 if and only if |P \ H| ≤ tv and there exists x such that for all

Pi ∈ H : xi = x, or |P \ H| < tc.
• p = 1.
• l = 1 if and only if |P \ H| ≥ tl.

Function TamperBA
tv,tc,tl

(x1, ..., xn,H)

D.3.2 Protocol Description
In this section we show how to increase the consistency of an ABA pro-
tocol by sacrificing liveness.

In the following, we describe a protocol which operates with PKI setup
FPKI and uses a secure ABA protocol BA with parameters (tv, tc, tl) as
primitive. It then realizes a binary asynchronous Byzantine Agreement
functionality with the same validity t′

v = tv and termination t′
l = tl, but

with consistency t′
c < n− 2tl.

The protocol is quite simple. First, each party Pi run with input xi the
protocol BA′, and once an output x is obtained, it computes a signature
σ = Sign(x, sk) and sends it to every other party. Once n−tl signatures on
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a value x′ are collected, the party sends the list containing the signatures
along with the value x′ to every other party, and terminates with output
x′. The idea is that there cannot be two lists of n − tl signatures on
different values if there are up to tc < n− 2tl corruptions.

Setup:

1: Input (GetDSSKeys, sid) to FPKI. Let the signing key be sk and the
corresponding verification key vk.

Asynchronous Phase: Upon every activation, progress with the
following list of instructions. If not possible, output (ClockReady) to
Gclk.

1: On input xi, execute BA on input xi. Let x denote the output.
2: Compute the signature σ = Sign(x, sk).
3: Input (Send, i, j, (x, σ)), for each party Pj , to N .
4: Upon receiving ℓ ≥ n− t valid messages of the form (x′, σ) from N , let

L = (x′, σ1, . . . , σl) be the list containing these ℓ signatures on x′. Input
(Send, i, j, L), for each party Pj , to N , and terminate with output x′.

Protocol Πcon
aBA(Pi)

Let τaba(δ) denote the running time of BA′ that has validity, consis-
tency and termination parameters (tv, tc, tl), tl ≤ n

3 .

Lemma D.3.2. The protocol Πcon
aBA operates with PKI setup FPKI, and is

a secure ABA protocol with validity, consistency and termination param-
eters (tv, t′

c, tl), for any t′
c < n− 2tl. The maximum delay for the output

is τcon = τaba(δ) + δ.

Proof. Completeness. We first argue that if the adversary does not
corrupt any party, the real world and the ideal world are indistinguishable.
The output is the same in both worlds. If every party has the same input
b, in the real world, BA′ outputs b, and then each party signs b and collects
n−tl signatures on b. This implies that the parties terminate with output
b, which is the value that is output in the ideal world as well. The same
happens if the parties do not hold the same input. In this case, in the
real world, each party obtains the input x1, signs this value, collects n−tl

signatures and terminates with output x1. This is also the output of the
ideal world.
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Soundness. We start describing the simulator. The job of the simulator
Scon is to simulate the view of the adversary during the protocol execu-
tion. For readability, let us denote the ideal world Byzantine agreement
functionality with improved consistency FaBA.

On a very high level, the simulator simulates internally the messages
that the real world functionalities N , FSetup and the protocol BA′ output
to the adversary. In order to simulate the messages that the adversary
obtains from the asynchronous network N , the simulator simply keeps
the variable buffer as in N , which records the messages sent via N
in the real world, with the delays of the messages. It also records the
delays that the adversary inputs, and only delivers the messages when
the corresponding party fetches the messages and the delay of the message
is 0. To simulate the messages from FSetup, the simulator executes the
DSS key generation algorithm at the onset of the execution, and outputs
the signing keys of the corrupted parties and all the verification keys to
the adversary. Finally, to simulate the messages from BA′, the simulator
waits for the adversary to define a core set I (which by default is the
set of honest parties), and after all parties in I provide his input bit, the
simulator computes the output as in BA′: if there is preagreement on a
value x, that is the output, and otherwise, the output corresponds to the
input of the corrupted party with lowest index.

Network Messages:
The simulator prepares a set buffer = ∅ to simulate the messages that are
sent to corrupted parties throughout the simulation (recall the variable
buffer in N ). More concretely, it does the following:

1: On input (FetchMessages, i) from Pi, for each message tuple
(0, Pk, Pi, m, idm) in buffer, output (k, m) to Pi.

2: On input (Delay N , T, id) from the adversary, if there exists a tuple
(D, Pi, Pj , m, id) in buffer then set D = D +T and return (Delay-ok)
to the adversary. Otherwise, ignore the message.

Setup:

Algorithm Scon
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1: The simulator generates the keys at the beginning of the execution.
That is, it computes (vkj , skj)← SigGen(1κ) for each party Pj . Then,
it records the tuple (sid, vk, sk), where vk = (vk1, . . . , vkn) and sk =
(sk1, . . . , skn).

2: On input (GetKeys, sid) from a corrupted party Pi, send (sid, vk, ski)
to Pi.

Main:

1: On input (No-Input,P ′, sid) from the adversary, set a variable I =
H \ P ′, and forward (No-Input,P ′, sid) to FaBA.

2: Upon receiving the input bi from honest party Pi or the adversary on
behalf of a party, set xBA

i = bi. Moreover, if it is from the adversary,
forward xBA

i to FaBA.
3: On input (Output, x, sid) from FaBA, output (Output, x, sid) to the

adversary.
4: Emulate the messages of the sub-protocol BA by keeping the delays of

each honest party.
5: As soon as Pi obtains output from BA, input to buffer, on behalf of Pi,

the tuple (τ, τ + 1, i, j, (x, Sign(x, ski)), id) for each corrupted party Pj

and freshly generated id. Output (Sent, i, j, (x, Sign(x, ski)), id) to the
adversary.

6: Once there are n − tl tuples of the form (τ1, τ2, j, i, (x′, Sign(x′, skj)))
have been delivered from buffer to a fixed honest party Pi, input, for
each j, to buffer the tuple (τ, τ +1, i, j, L, id), where L contains the list
of signatures on the value x′. Output (Sent, i, j, L, id) to the adversary.

7: Keep track of the delays so that the parties receive the output at the
same time as in the real world.

Tamper Function:

1: On input (TamperOutput, Pi, y′
i, sid), where Pi is honest, from the

adversary, forward the input to FaBA.
2: On input (x1, . . . , xn) from FaBA, output it to the adversary.
3: On input (BlockOutput, Pi, sid), where Pi is honest, from the adver-

sary, forward the input to FaBA.

In order to prove that the real world and the ideal world are indistin-
guishable, we divide cases depending on the adversary’s capabilities.

If the validity threshold is satisfied, i.e. |P \H| ≤ tv and the parties in
the core-set have the same input, or the consistency threshold is satisfied,
i.e. |P \ H| ≤ tc, then BA ensures that the output at Step 1 is consistent
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among the honest parties. Let us denote this value x. In this case, if
|P \ H| ≤ tl, then every honest party eventually receives a list of n− TL

signatures on x. In the ideal world, the output is x as well. Otherwise, if
|P \H| > tl, some honest parties may not receive a list of n−tl signatures
on x, and hence they do not receive any output. For these honest parties,
the simulator blocks the output value of these parties.

On the other hand, if it is not the case that |P \ H| ≤ tv where the
parties in the core-set have the same input, nor the consistency threshold
is satisfied, i.e. |P \ H| > tc, then it is not guaranteed that the output
after Step 1. (from FaBA) is consistent. However, we still need that if
|P \ H| ≤ t′

c < n− 2tl, all final outputs are consistent. That is the case,
because there cannot be two lists of signatures of size at least n − tl on
different values. Assume towards contradiction, that there are such two
lists. Observe that any two lists of size n− tl, intersect in at least n− 2tl

parties. Since |P \ H| ≤ t′
c < n − 2tl, there must be at least one honest

party in this intersection. But honest parties do not send signatures on
different values.

Moreover, let us remark that in the real world, the parties only send
messages in Step 2 via the network, and in Step 1 via the protocol BA′.
This means, since the adversary can only delay each network message by
up to δ clock ticks, and the output from FaBA up to τaba(δ) clock ticks,
then the maximum delay for the output is τcon = τaba(δ) + δ. Hence, it is
enough that the simulator has the power to delay the output up to τcon
clock ticks.

If we assume an asynchronous Byzantine Agreement BA′ which runs
concurrently in expected constant time as in [BEY03], with validity, con-
sistency and termination for any t < n

3 corruptions, Corollary 8.5.1 fol-
lows.

D.4 Proof of Theorem 8.5.3
In this section, we prove the theorem stated in Section 8.5.2.

Completeness. We first show that the protocol is complete. It is easy
to see that, if there are no corruptions, no environment can distinguish
the real world from the ideal world. First, observe that the output that is
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evaluated in both worlds is the same, since the simulator sets the core set
containing the same parties as in the real world. Moreover, the simulator
delivers the outputs of honest parties at the time at which the honest
parties obtain the output and terminate in the real execution.

One can readily verify, that in the protocol, the parties send messages
in 9 steps, performs calls to Πzk in two steps, and executes in parallel n
BAs during the input provider selection. Hence, the protocol takes at
most τaba(δ) + 2τzk(δ) + 9δ clock ticks to execute.

Soundness. At a very high level, the consistency property of BA can
affect both correctness and privacy of the overall SFE. Moreover, it is
important that the validity of BA is higher than the termination threshold
tl. Otherwise, when parties wait for the input ciphertexts from each
j ∈ CoreSet, it might be that no party has this input ciphertext and
the protocol does not terminate. Given that tv ≥ tl, then in the region
of thresholds where there are up to tl corruptions, validity is guaranteed
to hold and hence in the input phase parties are guaranteed to collect
all tuples (j, (cj , πj)) such that j ∈ CoreSet. Let us now describe the
simulator.

Network Messages:
The simulator prepares a set buffer = ∅ to simulate the messages that are
sent to corrupted parties throughout the simulation (recall the variable
buffer in N ). More concretely, it does the following:

1: Let δ be the network delay, received from Fasync
2: On input (FetchMessages, i) from Pi, for each message tuple

(0, Pk, Pi, m, idm) in buffer, output (k, m) to Pi.
3: On input (Delay N , T, id) from the adversary, if there exists a tuple

(D, Pi, Pj , m, id) in buffer and T ≤ δ, then set D = D + T and return
(Delay-ok) to the adversary. Otherwise, ignore the message.

Setup:

1: The simulator generates the keys at the beginning of the execution. That
is, it computes and records (ek, dk) ← Keygen(n−tl,n)(1κ), where dk =
(dk1, . . . , dkn).

2: On input (GetKeys, sid) from a corrupted party Pi, output (sid, ek, dki)
to Pi.

Algorithm SMPC
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Input Stage:

// Plaintext Knowledge and Distribution.
1: Set ci = Encek(0), for each honest party Pi.
2: The simulator keeps track of the delays the adversary sets for the outputs

from Πzk. Then, when the adversary requests the output of Pi from Πzk

at the corresponding time, the simulator responds with a confirmation
of the validity of the ciphertext ci.

3: On input σpopk
j from corrupted party Pj to Pi, input the tuple (τ, τ +

1, Pj , Pi, σpopk
j , id) to buffer.

4: When a corrupted party Pi inputs ((ek, ci), (xi, ri)) to prove plaintext
knowledge of ci to a party Pj , the simulator checks that ci = Encek(xi, ri).
If so, it inputs (τ, τ + 1, Pj , Pi, σpopk

j , id) to buffer.
5: As soon as there are n − t tuples (τ1, τ2, Pj , Pi, σpopk

j , id) for different
Pj , such that τ ≥ τ2 in buffer, then compute πi = {σpopk

j } and input
(τ, τ + 1, i, j, (ci, πi), id) for each Pj .

6: On input (ci, πi) from a corrupted party Pi to Pj , the simulator inputs
(τ, τ + 1, Pi, Pj , (ci, πi), id) to buffer.

7: As soon as there is a tuple (τ1, τ2, Pj , Pi, (cj , πj), id), such that τ ≥ τ2 in
buffer, input a signature to buffer. That is, input (τ, τ+1, i, j, σdist

i , id)
to buffer.

8: As soon as there are n− t tuples (τ1, τ2, Pj , Pi, σdist
j , id) for different Pj ,

such that τ ≥ τ2 in buffer, then start simulating the input provider
selection.
// Input Providers.

9: For each party Pi, keep track of the parties which successfully proved
plaintext knowledge to Pi. We denote that set Si.

10: The simulator inputs to buffer each set Si towards every party. That
is, input (τ, τ + 1, i, j, Si, id) to buffer, for each Pj .

11: Once an emulated honest party Pi received n− t such sets, emulate for
that party the execution of the BAs. That is, input a 1 to Pj ’s BA, if
Pj is in one of the received sets. Take into account all the commands
tampering the outputs or blocking the outputs of the BAs that come
from the adversary, and change the output accordingly.

12: Wait until there are n− t ones as outputs from the BAs. Then, input 0
to the remaining BAs.
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13: Define CoreSeti as the set of parties such that the emulated BA for that
party outputted 1. Observe that if the adversary corrupted more than
n− 2t, the consistency of the BAs is not satisfied, since tc < n− 2t, and
hence the core sets can be different.

14: The simulator emulates each party Pi, by inputting the pairs (cj , πj)
that it collected in the n− t sets Sj , to buffer.

Computation and Threshold Stage:

// Setting the Core Set.
1: Once the simulator computes CoreSeti from the previous Stage, do the

following: if the core sets are consistent, it sends to Fasync the input
values xi from each corrupted party, and also inputs (No-Input,P \
CoreSet, id) to Fasync. It obtains the output y. Otherwise, input any of
the core sets CoreSeti to Fasync. Then, obtain the inputs from honest
parties (if the core set are not consistent, f ≥ n − 2t, the simulator is
allowed to obtain the inputs since privacy is not satisfied).
// Computation.

2: For each honest party Pi, the simulator internally computes the evalu-
ated ciphertext ci = fek(c1, . . . , c|CoreSeti|), based on the ciphertext from
the input providers.
// Threshold Decryption.

3: The simulator computes the decryption share di = DecSharedki (ci) for
each corrupted party Pi, and sets the decryption shares from honest
parties such that (d1, . . . , dn) forms a secret sharing of the output value
y, if the core sets are consistent. Otherwise, for each honest Pi it can
evaluate the function on the inputs in CoreSeti to obtain yi, encrypt it,
and set the decryption share exactly as in the real world. In this case,
the simulator also fixes the output of Pi to yi.

4: Each time the adversary requests validity of the decryption share di

from an honest party Pi, the simulator responds with a confirmation of
the validity of di.

5: As soon as the adversary inputs a decryption share di for ciphertext c′,
the simulator checks the validity of the decryption share, and if it is
valid, inputs to buffer a signature on (di, c′).

6: Once an emulated honest party Pi received n− t signatures on the
same pair (di, c′), it computes a proof that the decryption share di

for c′ is correct ProofSharei = {σpocs
j }. It inputs to buffer the tu-

ple ((di, c′), ProofSharei) to every party.
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7: When an honest party receives n − t tuples of the form
((di, c′), ProofSharei) with the same c′, it sets his output bit to y.

Termination Stage:

1: The simulator keeps track of the votes that each party performs. That
is, if an emulated honest party Pi received an output y in the previous
stage, it inputs y to buffer, towards every other party.

2: As soon as an emulated honest party receives n − 2t votes on y, if the
party Pi did not vote yet, it sets its output to y, and inputs y to buffer,
towards every other party.

3: As soon as an emulated honest party receives n− t votes on y, the
simulator delivers the party’s output in the ideal world.

We define a series of hybrids to argue that no environment can distin-
guish between the real world and the ideal world.

Hybrids and security proof.

Hybrid 1. This corresponds to the real world execution. Here, the
simulator knows the inputs and keys of all honest parties.

Hybrid 2. We modify the real-world execution in the computation stage.
Here, when a corrupted party requests a proof of decryption share from
an honest party, the simulator simply gives a valid response without
checking the witness from the honest party.

Hybrid 3. This is similar to Hybrid 2, but in the computation of the
decryption shares is different. In this case, the simulator obtains the out-
put y from Fasync, computes the decryption shares of corrupted parties,
and then adjusts the decryption shares of honest parties such that the
decryption shares (d1, . . . , dn) form a secret sharing of the output value y.
That is, here the simulator does not need to know the secret key share of
honest parties to compute the decryption shares. If there are more than
n− 2t corrupted parties, privacy is broken, so the simulator obtains the
inputs from the honest parties and computes the decryption shares as in
the previous hybrid.

Hybrid 4. We modify the previous hybrid in the Input Stage. Here,
when a corrupted party requests a proof of plaintext knowledge from an
honest party, the simulator simply gives a valid response without checking
the witness from the honest party.
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Hybrid 5. We modify the previous hybrid in the Input Stage. Here, the
honest parties, instead of sending an encryption of the actual input, they
send an encryption of 0.

Hybrid 6. This corresponds to the ideal world execution.
In order to prove that no environment can distinguish between the real

world and the ideal world, we prove that no environment can distinguish
between any two consecutive hybrids.

Claim 1. No efficient environment can distinguish between Hybrid 1 and
Hybrid 2.

Proof of claim. This follows trivially, since the honest parties always have
a valid witness in Πzk. ♦

Claim 2. No efficient environment can distinguish between Hybrid 2 and
Hybrid 3.

Proof of claim. This follows from properties of a secret sharing scheme
and the security of the threshold encryption scheme. Given that the
threshold is n − t, any number corrupted decryption shares below n − t
does not reveal anything about the output y. Moreover, one can find
shares for honest parties such that (d1, . . . , dn) is a sharing of y. Above
n − t corruptions, the simulator obtains the inputs from honest parties,
and hence both hybrids are trivially indistinguishable. ♦

Claim 3. No efficient environment can distinguish between Hybrid 3 and
Hybrid 4.

Proof of claim. This follows trivially, since the honest parties always have
a valid witness in Πzk. ♦

Claim 4. No efficient environment can distinguish between Hybrid 4 and
Hybrid 5.

Proof of claim. This follows from the semantic security of the encryption
scheme. ♦

Claim 5. No efficient environment can distinguish between Hybrid 5 and
Hybrid 6.
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Proof of claim. This follows, because the simulator in the ideal world
and the simulator in Hybrid 5 emulate internally the joint behavior of
the ideal assumed functionalities, exactly the same way. ♦

We conclude that the real world and the ideal world are indistinguish-
able.





Chapter 9

Topology-Hiding
Computation

9.1 Introduction

9.1.1 Topology-Hiding Computation
Secure communication over an insecure network is one of the fundamental
goals of cryptography. The security goal can be to hide different aspects of
the communication, ranging from the content (secrecy), the participants’
identity (anonymity), the existence of communication (steganography),
to hiding the topology of the underlying network in case it is not complete.

Incomplete networks arise in many contexts, such as the Internet of
Things (IoT) or ad-hoc vehicular networks. Hiding the topology can,
for example, be important because the position of a node within the
network depends on the node’s location. This could in information about
the node’s identity or other confidential parameters. The goal is that
parties, and even colluding sets of parties, can not learn anything about
the network, except their immediate neighbors.

Incomplete networks have been studied in the context of communica-
tion security, referred to as secure message transmission (e.g.[DDWY90]),
where the goal is to enable communication between any pair of entities,
despite an incomplete communication graph. Also, anonymous commu-
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nication has been studied extensively (see, e.g. [Cha81, RC88, SGR97]).
Here, the goal is to hide the identity of the sender and receiver in a
message transmission. A classical technique to achieve anonymity is the
so-called mix-net technique, introduced by Chaum [Cha81]. Here, mix
servers are used as proxies which shuffle messages sent between peers to
disable an eavesdropper from following a message’s path. The onion rout-
ing technique [SGR97, RC88] is perhaps the most known instantiation of
the mix-technique. Another anonymity technique known as Dining Cryp-
tographers networks, in short DC-nets, was introduced in [Cha88] (see also
[Bd90, GJ04]). However, none of these approaches can be used to hide
the network topology. In fact, message transmission protocols assume
(for their execution) that the network graph is public knowledge.

The problem of topology-hiding communication was introduced by
Moran et al. [MOR15]. The authors propose a broadcast protocol in the
cryptographic setting, which does not reveal any additional information
about the network topology to an adversary who can access the internal
state of any number of passively corrupted parties (that is, they consider
the semi-honest setting). This allows to achieve topology-hiding MPC
using standard techniques to transform broadcast channels into secure
point-to-point channels. At a very high level, [MOR15] uses a series of
nested multi-party computations, in which each node is emulated by a
secure computation of its neighbor. This emulation then extends to the
entire graph recursively. In [HMTZ16], the authors improve this result
and provide a construction that makes only black-box use of encryption
and where the security is based on the DDH assumption. However, both
results are feasible only for graphs with logarithmic diameter. Topology
hiding communication for certain classes of graphs with large diameter
was described in [AM17]. This result was finally extended to allow for
arbitrary (connected) graphs in [ALM17a].

A natural next step is to extend these results to settings with more
powerful adversaries. Unfortunately, even a protocol in the setting with
fail-corruptions (in addition to passive corruptions) turns out to be dif-
ficult to achieve. In fact, as shown already in [MOR15], some leakage
in the fail-stop setting is inherent. It is therefore no surprise that all
previous protocols (secure against passive corruptions) leak information
about the network topology if the adversary can crash parties. The core
problem is that crashes can interrupt the communication flow of the pro-
tocol at any point and at any time. If not properly dealt with by the
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protocol, those outages cause shock waves of miscommunication, which
allows the adversary to probe the network topology.

A first step in this direction was recently achieved in [BBMM18] where
a protocol for topology-hiding communication secure against a fail-stop
adversary is given. However, the resilience against crashes comes at a
hefty price; the protocol requires that parties have access to secure hard-
ware modules which are initialized with correlated, pre-shared keys. Their
protocol provides security with abort and the leakage is arbitrarily small.

In the information-theoretic setting, the main result is negative [HJ07]:
any MPC protocol in the information-theoretic setting inherently leaks
information about the network graph. They also show that if the rout-
ing table is leaked, one can construct an MPC protocol which leaks no
additional information. However, the work in [BBC+19] shows that for
specific types of graphs, and assuming a bound on the corruption thresh-
old, one can achieve information-theoretic THC.

Finally, in [BBC+20], the authors investigate the minimal assump-
tions required for topology-hiding broadcast and anonymous broadcast.

9.1.2 Comparison to Previous Work

In [ALM17a] the authors present a broadcast protocol for the semi-honest
setting based on random walks. This broadcast protocol is then compiled
into a full topology-hiding computation protocol. However, the random
walk protocol fails spectacularly in the presence of fail-stop adversaries,
leaking a lot of information about the structure of the graph. Every time
a node aborts, any number of walks get cut, meaning that they no longer
carry any information. When this happens, adversarial nodes get to see
which walks fail along which edges, and can get a good idea of where the
aborting nodes are in the graph.

We also note that, while we use ideas from [BBMM18], which achieves
the desired result in a trusted-hardware model, we cannot simply use their
protocol and substitute the secure hardware box for a standard primitive.
In particular, they use the fact that each node can maintain an encrypted
“image” of the entire graph by combining information from all neighbors,
and use that information to decide whether to give output or abort. This
appears to require both some form of obfuscation and a trusted setup,
whereas our protocol uses neither.
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9.1.3 Contributions
We propose the first topology-hiding MPC protocol secure against pas-
sive and fail-stop adversaries (with arbitrarily small leakage) that is based
on standard assumptions. Our protocol does not require setup, and its
security can be based on either the DDH, QR or LWE assumptions. A
comparison of our results to previous works in topology-hiding communi-
cation is found in Table 9.1.

Theorem 9.1.1 (informal). If DDH, QR or LWE is hard, then for any
MPC functionality F, there exists a topology-hiding protocol realizing F
for any network graph G leaking at most an arbitrarily small fraction p of
a bit, which is secure against an adversary that does any number of static
passive corruptions and adaptive crashes. The round and communication
complexity is polynomial in the security parameter κ and 1/p.

Adversary Graph Hardness Asm. Model Reference

semi-honest

log diam. Trapdoor Perm. Standard [MOR15]
log diam. DDH Standard [HMTZ16]

cycles, trees,
log circum. DDH Standard [AM17]

arbitrary DDH or QR Standard [ALM17a]
fail-stop arbitrary OWF Trusted Hardware [BBMM18]

semi-malicious
& fail-stop arbitrary DDH or QR

or LWE Standard [This work]

Table 9.1: Adversarial model and security assumptions of existing
topology-hiding broadcast protocols. The table also shows the class of
graphs for which the protocols have polynomial communication complex-
ity in the security parameter and the number of parties.

Our topology-hiding MPC protocol is obtained by compiling a MPC
protocol from a topology-hiding broadcast protocol leaking at most a
fraction p of a bit. We note that although it is well known that without
leakage any functionality can be implemented on top of secure communi-
cation, this statement cannot be directly lifted to the setting with leakage.
In essence, if a communication protocol is used multiple times, it leaks
multiple bits. However, we show that our broadcast protocol, leaking
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at most a fraction p of a bit, can be executed sequentially and in par-
allel, such that the result leaks also at most the same fraction p. As a
consequence, any protocol can be compiled into one that hides topology
and known results on implementing any multiparty computation can be
lifted to the topology hiding setting. However, this incurs a multiplicative
overhead in the round complexity.

We then present a topology hiding protocol to evaluate any poly-
time function using FHE whose round complexity will amount to that
of a single broadcast execution. To do that, we first define an enhanced
encryption scheme, which we call Deeply Fully-Homomorphic Public-Key
Encryption (DFH-PKE), with similar properties as the PKCR scheme
presented in [AM17, ALM17a] and provide an instantiation of DFH-PKE
under FHE. Next, we show how to obtain a protocol using DFH-PKE to
evaluate any poly-time function in a topology hiding manner.

We also explore another natural extension of semi-honest corruption,
the so-called semi-malicious setting. As for passive corruption, the ad-
versary selects a set of parties and gets access to their internal state.
But in addition, the adversary can also set their randomness during the
protocol execution. This models the setting where a party uses an un-
trusted source of randomness which could be under the control of the
adversary. This scenario is of interest as tampered randomness sources
have caused many security breaches in the past [HDWH12, CNE+14]. In
this chapter, we propose a general compiler that enhances the security of
protocols that tolerate passive corruption with crashes to semi-malicious
corruption with crashes.

9.2 Preliminaries

9.2.1 Notation
For a public-key pk and a message m, we denote the encryption of m
under pk by [m]pk. Furthermore, for k messages m1, . . . , mk, we denote
by [m1, . . . , mk]pk a vector, containing the k encryptions of messages mi

under the same key pk.
For an algorithm A(·), we write A(· ; U∗) whenever the randomness

used in A(·) should be made explicit and comes from a uniform distribu-
tion. By ≈c we denote that two distribution ensembles are computation-
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ally indistinguishable.

9.2.2 Model of Topology-Hiding Communication

Adversary. Most of our results concern an adversary, who can statically
passively corrupt an arbitrary set of parties Zp, with

∣∣Zp
∣∣ < n. Passively

corrupted parties follow the protocol instructions (this includes the gen-
eration of randomness), but the adversary can access their internal state
during the protocol.

A semi-malicious corruption (see, e.g., [AJL+12]) is a stronger vari-
ant of a passive corruption. Again, we assume that the adversary selects
any set of semi-malicious parties Zs with

∣∣Zs
∣∣ < n before the protocol

execution. These parties follow the protocol instructions, but the ad-
versary can access their internal state and can additionally choose their
randomness.

A fail-stop adversary can adaptively crash parties. After crashing
a party, it stops sending messages. Note that crashed parties are not
necessarily corrupted. In particular, the adversary has no access to the
internal state of a crashed party unless it is in the set of corrupted parties.
This type of fail-stop adversary is stronger and more general than the one
used in [BBMM18], where only passively corrupted parties can be crashed.
In particular, in our model the adversary does not necessarily learn the
neighbors of crashed parties, whereas in [BBMM18] they are revealed to
it by definition.

Communication Model. We state our results in the UC framework.
We consider a synchronous communication network. Following the ap-
proach in [MOR15], to model the restricted communication network we
define the N -hybrid model. The N functionality takes as input a de-
scription of the graph network from a special “graph party” Pgraph and
then returns to each party Pi a description of its neighborhood. After
that, the functionality acts as an “ideal channel” that allows parties to
communicate with their neighbors according to the graph network.

Similarly to [BBMM18], we change theN functionality from [MOR15]
to deal with a fail-stop adversary.
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The functionality keeps the following variables: the set of crashed parties C
and the graph G. Initially, C = ∅ and G = (∅,∅).

Initialization Step:

1: The party Pgraph sends graph G′ to N . N sets G = G′.
2: N sends to each party Pi its neighborhood NG(Pi).

Communication Step:

1: If the adversary crashes party Pi, then N sets C = C ∪ {Pi}.
2: If a party Pi sends the command (Send, j, m), where Pj ∈ NG(Pi) and

m is the message to Pj , to N and Pi /∈ C, then N outputs (i, m) to
party Pj .

Functionality N

Observe that since N gives local information about the network graph
to all corrupted parties, any ideal-world adversary should also have access
to this information. For this reason, similar to [MOR15], we use in the
ideal-world the functionality Finfo, which contains only the Initialization
Step of N .

To model leakage we extend Finfo by a leakage phase, where the
adversary can query a (possibly probabilistic) leakage function L once.
The inputs to L include the network graph, the set of crashed parties and
arbitrary input from the adversary.

We say that a protocol leaks one bit of information if the leakage
function L outputs one bit. We also consider the notion of leaking a
fraction p of a bit. This is modeled by having L output the bit only
with probability p (otherwise, L outputs a special symbol ⊥). Here our
model differs from the one in [BBMM18], where in case of the fractional
leakage, L always gives the output, but the simulator is restricted to
query its oracle with probability p over its randomness. As noted there,
the formulation we use is stronger. We denote by FL

info the information
functionality with leakage function L.

The functionality keeps the following variables: the set of crashed parties C

Functionality FL
info
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and the graph G. Initially, C = ∅ and G = (∅,∅).

Initialization Step:

1: The party Pgraph sends graph G′ = (V, E) to FL
info. FL

info sets G = G′.
2: FL

info sends to each party Pi its neighborhood NG(Pi).
Leakage Step:

1: If the adversary crashes party Pi, then FL
info sets C = C ∪ {Pi}.

2: If the adversary sends the command (Leak, q) to FL
info for the first

time, then FL
info outputs L(q, C, G) to the adversary.

Security Model. Our protocols provide security with abort. In particu-
lar, the adversary can choose some parties, who do not receive the output
(while the others still do). That is, no guaranteed output delivery and no
fairness is provided. Moreover, the adversary sees the output before the
honest parties and can later decide which of them should receive it.

Technically, we model such ability in the UC framework as follows:
First, the ideal world adversary receives from the ideal functionality the
outputs of the corrupted parties. Then, it inputs to the functionality an
abort vector containing a list of parties who do not receive the output.

Definition 9.2.1. We say that a protocol Π topology-hidingly realizes a
functionality F with L-leakage, in the presence of an adversary who can
statically passive corrupt and adaptively crash any number of parties, if
it UC-realizes (FL

info ∥ F) in the N -hybrid model.

9.2.3 Background

Graphs and Random Walks. In an undirected graph G = (V, E) we
denote by NG(Pi) the neighborhood of Pi ∈ V . The k-neighborhood of
a party Pi ∈ V is the set of all parties in V within distance k to Pi.

In our work we use the following lemma from [ALM17a]. It states
that in an undirected connected graph G, the probability that a random
walk of length 8|V |3τ covers G is at least 1− 1

2τ .

Lemma 9.2.2 ([ALM17a]). Let G = (V, E) be an undirected connected
graph. Further let W(u, τ) be a random variable whose value is the set of
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nodes covered by a random walk starting from u and taking 8|V |3τ steps.
We have

Pr
W

[W(u, τ) = V ] ≥ 1− 1
2τ

.

PKCR Encryption. As in [ALM17a], our protocols require a public
key encryption scheme with additional properties, called Privately Key
Commutative and Rerandomizable encryption. We assume that the mes-
sage space is bits. Then, a PKCR encryption scheme should be: privately
key commutative and homomorphic with respect to the OR operation1.
We formally define these properties below.

Let PK, SK and C denote the public key, secret key and ciphertext
spaces. As any public key encryption scheme, a PKCR scheme contains
the algorithms Keygen : {0, 1}∗ → PK × SK, Enc : {0, 1} × PK → C and
Dec : C × SK → {0, 1} for key generation, encryption and decryption
respectively (where Keygen takes as input the security parameter).

Privately Key-Commutative. We require PK to form a commutative
group under the operation ~. So, given any pk1, pk2 ∈ PK, we can
efficiently compute pk3 = pk1 ~ pk2 ∈ PK and for every pk, there exists
an inverse denoted pk−1.

This group must interact well with ciphertexts; there exists a pair of
efficiently computable algorithms AddLayer : C × SK → C and DelLayer :
C × SK → C such that

• For every public key pair pk1, pk2 ∈ PK with corresponding secret
keys sk1 and sk2, message m ∈M, and ciphertext c = [m]pk1 ,

AddLayer(c, sk2) = [m]pk1~pk2 .

• For every public key pair pk1, pk2 ∈ PK with corresponding secret
keys sk1 and sk2, message m ∈M, and ciphertext c = [m]pk1 ,

DelLayer(c, sk2) = [m]pk1~pk−1
2

.

1PKCR encryption was introduced in [AM17, ALM17a], where it had three ad-
ditional properties: key commutativity, homomorphism and rerandomization, hence,
it was called Privately Key Commutative and Rerandomizable encryption. However,
rerandomization is actually implied by the strengthened notion of homomorphism.
Therefore, we decided to not include the property, but keep the name.
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Notice that we need the secret key to perform these operations, hence
the property is called privately key-commutative.

OR-Homomorphic. We also require the encryption scheme to be OR-
homomorphic, but in such a way that parties cannot tell how many 1’s or
0’s were OR’d (or who OR’d them). We need an efficiently-evaluatable
homomorphic-OR algorithm, HomOR : C×C → C, to satisfy the following:
for every two messages m, m′ ∈ {0, 1} and every two ciphertexts c, c′ ∈ C
such that Dec(c, sk) = m and Dec(c, sk) = m′,

{(m, m′, c, c′, pk, Enc(m ∨m′, pk; U∗))}
≈c

{(m, m′, c, c′, pk, HomOR(c, c′, pk; U∗))}

Note that this is a stronger definition for homomorphism than usual; usu-
ally we only require correctness, not computational indistinguishability.

In [HMTZ16], [AM17] and [ALM17a], the authors discuss how to get
this kind of homomorphic OR under the DDH assumption, and later
[ALM17b] show how to get it with the QR assumption. For more details
on other kinds of homomorphic cryptosystems that can be compiled into
OR-homomorphic cryptosystems, see [ALM17b].
Random Walk Approach [ALM17a]. Our protocol builds upon the
protocol from [ALM17a]. We give a high level overview. To achieve
broadcast, the protocol computes the OR. Every party has an input bit:
the sender inputs the broadcast bit and all other parties use 0 as input bit.
Computing the OR of all those bits is thus equivalent to broadcasting the
sender’s message.

First, let us explain a simplified version of the protocol that is unfortu-
nately not sound, but gets the basic principal across. Each node encrypts
its bit under a public key and forwards it to a random neighbor. The
neighbor OR’s its own bit, adds a fresh public key layer, and it forwards
the ciphertext to a randomly chosen neighbor. Eventually, after about
O(κn3) steps, the random walk of every message visits every node in the
graph, and therefore, every message will contain the OR of all bits in
the network. Now we start the backwards phase, reversing the walk and
peeling off layers of encryption.

This scheme is not sound because seeing where the random walks are
coming from reveals information about the graph! So, we need to disguise
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that information. We will do so by using correlated random walks, and
will have a walk running down each direction of each edge at each step
(so 2× number of edges number of walks total). The walks are correlated,
but still random. This way, at each step, each node just sees encrypted
messages all under new and different keys from each of its neighbors. So,
intuitively, there is no way for a node to tell anything about where a walk
came from.

9.3 Topology-Hiding Broadcast
In this section we present a protocol, which securely realizes the broadcast
functionality BC (with abort) in the N -hybrid world and leaks at most
an arbitrarily small (but not negligible) fraction of a bit. If no crashes
occur, the protocol does not leak any information. The protocol is secure
against an adversary that (a) controls an arbitrary static set of passively
corrupted parties and (b) adaptively crashes any number of parties. Se-
curity can be based either on the DDH, the QR or the LWE assumption.
To build intuition we first present the simple protocol variant which leaks
at most one bit.

When a party Pi sends a bit b ∈ {0, 1} to the functionality BC, then BC
sends b to each party Pj ∈ P.

Functionality BC

9.3.1 Protocol Leaking One Bit
We first introduce the broadcast protocol variant BC-OB which leaks at
most one-bit. The protocol is divided into n consecutive phases, where,
in each phase, the parties execute a modification of the random-walk
protocol from [ALM17a]. More specifically, we introduce the following
modifications:

Single Output Party: There will be n phases. In each phase only one
party, Po, gets the output. Moreover, it learns the output from
exactly one of the random walks it starts.



204 CHAPTER 9. TOPOLOGY-HIDING COMPUTATION

To implement this, in the respective phase all parties except Po

start their random walks with encryptions of 1 instead of their input
bits. This ensures that the outputs they get from the random walks
will always be 1. We call these walks dummy since the contain
no information. Party Po, on the other hand, starts exactly one
random walk with its actual input bit (the other walks it starts
with encryptions of 1). This ensures (in case no party crashes) that
Po actually learns the broadcast bit.

Happiness Indicator: Every party Pi holds an unhappy-bit ui. Ini-
tially, every Pi is happy, i.e., ui = 0. If a neighbor of Pi crashes,
then in the next phase Pi becomes unhappy and sets ui = 1. The
idea is that an unhappy party makes all phases following the crash
become dummy.
This is implemented by having the parties send along the random
walk, instead of a single bit, an encrypted tuple [b, u]pk. The bit u
is the OR of the unhappy-bits of the parties in the walk, while b is
the OR of their input bits and their unhappy-bits. In other words,
a party Pi on the walk homomorphically ORs bi ∨ui to b and ui to
u.
Intuitively, if all parties on the walk were happy at the time of
adding their bits, b will actually contain the OR of their input bits
and u will be set to 0. On the other hand, if any party was unhappy,
b will always be set to 1, and u = 1 will indicate an abort.

Intuitively, the adversary learns a bit of information only if it manages
to break the one random walk which Po started with its input bit (all
other walks contain the tuple [1, 1]). Moreover, if it crashes a party, then
all phases following the one with the crash abort, hence, they do not leak
any information. More formally, parties execute, in each phase, protocol
RandomWalkPhase. This protocol takes as global inputs the length T of
the random walk and the Po which should get output. Additionally, each
party Pi has input (di, bi, ui) where di is its number of neighbors, ui is
its unhappy-bit, and bi is its input bit.
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Initialization Stage:

1: Each party Pi generates T · di keypairs (pk(r)
i→j , sk(r)

i→j) � Keygen(1κ)
where r ∈ {1, . . . , T} and j ∈ {1, . . . , di}.

2: Each party Pi generates T− 1 random permutations on di elements{
π

(2)
i , . . . , π

(T)
i

}
3: For each party Pi, if any of Pi’s neighbors crashed in any phase before

the current one, then Pi becomes unhappy, i.e., sets ui = 1.
Aggregate Stage: Each party Pi does the following:

1: if Pi is the recipient Po then
2: Party Pi sends to the first neighbor the ciphertext [bi∨ui, ui]pk(1)

i→1

and the public key pk(1)
i→1, and to any other neighbor Pj it sends

ciphertext [1, 1]pk(1)
i→j

and the public key pk(1)
i→j .

3: else
4: Party Pi sends to each neighbor Pj ciphertext [1, 1]pk(1)

i→j

and the

key pk(1)
i→j .

5:
// Add layer while ORing own input bit

6: for any round r from 2 to T do
7: For each neighbor Pj of Pi, do the following (let k = π

(r)
i (j)):

8: if Pi did not receive a message from Pj then
9: Party Pi sends ciphertext [1, 1]pk(r)

i→k

and key pk(r)
i→k to neighbor

Pk.
10: else // AddLayer and HomOR are applied component-wise
11: Let c(r−1)

j→i and pk(r−1)
j→i be the ciphertext and the public

key Pi received from Pj . Party Pi computes pk(r)
i→k =

pk(r−1)
j→i ~ pk(r)

i→k and

ĉ(r)
i→k ← AddLayer

(
c(r−1)

j→i , sk(r)
i→k

)
.

12: Pi computes [bi ∨ ui, ui]pk(r)
i→k

and

c(r)
i→k = HomOR

(
[bi ∨ ui, ui]pk(r)

i→k

, ĉ(r)
i→k, pk(r)

i→k

)
.

13: Party Pi sends ciphertext c(r)
i→k and public key pk(r)

i→k to neighbor
Pk.

Decrypt Stage: Each party Pi does the following:

Protocol RandomWalkPhase(T, Po, (di, bi, ui)Pi∈P)
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1: For each neighbor Pj of Pi, if Pi did not receive a message from
Pj at round T of the Aggregate Stage, then it sends ciphertext
e(T)

i→j = [1, 1]
pk(T)

j→i

to Pj . Otherwise, Pi sends to Pj e(T)
i→j =

HomOR
(

[bi ∨ ui, ui]pk(T)
j→i

, c(T)
j→i, pk(T)

j→i

)
.

2: for any round r from T to 2 do
3: For each neighbor Pk of Pi:
4: if Pi did not receive a message from Pk then
5: Party Pi sends e(r−1)

i→j = [1, 1]
pk(r−1)

j→i

to neighbor Pj , where k =

π
(r)
i (j).

6: else
7: Denote by e(r)

k→i the ciphertext Pi received from Pk,
where k = π

(r)
i (j). Party Pi sends e(r−1)

i→j =

DelLayer
(

e(r)
k→i, sk(r)

i→k

)
to neighbor Pj .

8: If Pi is the recipient Po, then it computes (b, u) = Decrypt(e(1)
1→i, sk(1)

i→1)
and outputs (b, u, ui). Otherwise, it outputs (1, 0, ui).

The actual protocol BC-OB consists of n consecutive runs of the ran-
dom walk phase protocol RandomWalkPhase.

Each party Pi keeps bits bout
i , uout

i and ui, and sets ui = 0.
for o from 1 to n do

Parties jointly execute(
(btmp

i , vtmp
i , utmp

i )Pi∈P
)

= RandomWalkPhase(T, Po, (di, bi, ui)Pi∈P).
Each party Pi sets ui = utmp

i .
Party Po sets bout

o = btmp
o , uout

o = vtmp
o .

For each party Pi, if uout
i = 0 then party Pi outputs bout

i .

Protocol BC-OB(T, (di, bi)Pi∈P)

The protocol BC-OB leaks information about the topology of the
graph during the execution of RandomWalkPhase, in which the first crash
occurs. (Every execution before the first crash proceeds almost exactly
as the protocol in [ALM17a] and in every execution afterwards all values
are blinded by the unhappy-bit u.) We model the leaked information by
a query to the leakage function LOB . The function outputs only one bit
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and, since the functionality FL
info allows for only one query to the leakage

function, the protocol leaks overall one bit of information.
The inputs passed to LOB are: the graph G and the set C of crashed

parties, passed to the function by FL
info, and a triple (F, Ps, T′), passed

by the simulator. The idea is that the simulator needs to know whether
the walk carrying the output succeeded or not, and this depends on the
graph G. More precisely, the set F contains a list of pairs (Pf , r), where r
is the number of rounds in the execution of RandomWalkPhase, at which
Pf crashed. LOB tells the simulator whether any of the crashes in F
disconnected a freshly generated random walk of length T′, starting at
given party Ps.

if for any (Pf , r) ∈ F , Pf ̸∈ C then Return 0.
else

Generate in G a random walk of length T′ starting at Ps.
Return 1 if for any (Pf , r) ∈ F removing party Pf after r rounds
disconnects the walk and 0 otherwise.

Function LOB((F, Ps, T′), C, G)

We prove the following theorem in Section E.1.1.

Theorem 9.3.1. For κ security parameter and T = 8n3(log(n) + κ) pro-
tocol BC-OB(T, (di, bi)Pi∈P)) topology-hidingly realizes FLOB

info ||BC (with
abort) in the N hybrid-world, where the leakage function LOB is the one
defined as above. If no crashes occur, then there is no abort and there is
no leakage.

9.3.2 Protocol Leaking a Fraction of a Bit
We now show how to go from BC-OB to the actual broadcast protocol
BC-FBp which leaks only a fraction p of a bit. The leakage parameter
p can be arbitrarily small. However, the complexity of the protocol is
proportional to 1/p. As a consequence, 1/p must be polynomial and p
cannot be negligible.

The idea is to leverage the fact that the adversary can gain informa-
tion in only one execution of RandomWalkPhase. Imagine that a single
execution succeeds only with a small probability p, and otherwise the
output bit b is 1. Moreover, assume that during RandomWalkPhase the
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adversary does not learn whether it will fail until it can decrypt the out-
put.

We can now, for each phase, repeat RandomWalkPhase ρ times, so
that with overwhelming probability one of the repetitions does not fail.
A party Po can then compute its output as the AND of outputs from
all repetitions (or abort if any repetition aborted). On the other hand,
the adversary can choose only one execution of RandomWalkPhase, in
which it learns one bit of information (all subsequent repetitions will
abort). Moreover, it must choose it before it knows whether the execution
succeeds. Hence, the adversary learns one bit of information only with
probability p.

What is left is to modify RandomWalkPhase, so that it succeeds only
with probability p, and so that the adversary does not know whether
it will succeed. We only change the Aggregate Stage. Instead of an
encrypted tuple [b, u], the parties send along the walk ⌊1/p⌋+1 encrypted
bits [b1, . . . , b⌊1/p⌋, u], where u again is the OR of the unhappy-bits, and
every bk is a copy the bit b in RandomWalkPhase, with some caveats. For
each phase o, and for every party Pi ̸= Po, all bk are copies of b in the
walk and they all contain 1. For Po, only one of the bits, bk, contains the
OR, while the rest is initially set to 1.

During the Aggregate Stage, the parties process every ciphertext cor-
responding to a bit bk the same way they processed the encryption of b in
the RandomWalkPhase. Then, before sending the ciphertexts to the next
party on the walk, the encryptions of the bits bk are randomly shuffled.
(This way, as long as the walk traverses an honest party, the adversary
does not know which of the ciphertexts contain dummy values.) At the
end of the Aggregate Stage (after T rounds), the last party chooses uni-
formly at random one of the ⌊1/p⌋ ciphertexts and uses it, together with
the encryption of the unhappy-bit, to execute the Decrypt Stage as in
RandomWalkPhase. The information leaked by BC-FBp is modeled by the
following function LF Bp

.

Let p′ = 1/⌊1/p⌋. With probability p′, return LOB((F, Ps, T′), C, G) and
with probability 1− p′ return ⊥.

Function LF Bp ((F, Ps, T′), C, G)

A description of the modified protocol ProbabilisticRandomWalkPhasep
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and a proof of the following theorem can be found in Section E.1.2.

Theorem 9.3.2. Let κ be the security parameter. For τ = log(n) +
κ, T = 8n3τ , and ρ = τ/(p′ − 2−τ ), where p′ = 1/⌊1/p⌋, protocol
BC-FBp(T, ρ, (di, bi)Pi∈P)) topology-hidingly realizes FLF Bp

info ||BC in the N
hybrid-world with abort, where the leakage function LF Bp is the one de-
fined as above. If no crashes occur, then there is no abort and there is no
leakage.

9.4 From Broadcast to Topology-Hiding
Computation

We showed how to get topology-hiding broadcasts. To get additional
functionality (e.g. for compiling MPC protocols), we have to be able to
compose these broadcasts. When there is no leakage, this is straightfor-
ward: we can run as many broadcasts in parallel or in sequence as we
want and they will not affect each other. However, if we consider a broad-
cast secure in the fail-stop model that leaks at most 1 bit, composing t
of these broadcasts could lead to leaking t bits.

The first step towards implementing any functionality in a topology-
hiding way is to modify our broadcast protocol to a topology-hiding all-to-
all multibit broadcast, without aggregating leakage. Then, we show how
to sequentially compose such broadcasts, again without adding leakage.
Finally, one can use standard techniques to compile MPC protocols from
broadcast. In the following, we give a high level overview of each step. A
detailed description of the transformations can be found in Section E.2.

All-to-all Multibit Broadcast. The first observation is that a modifi-
cation of BC-FBp allows one party to broadcast multiple bits. Instead of
sending a single bit b during the random-walk protocol, each party sends a
vector b⃗ of bits encrypted separately under the same key. That is, in each
round of the Aggregate Phase, each party sends a vector [b1⃗, . . . , bℓ⃗, u].

We can extend this protocol to all-to-all multibit broadcast, where
each party Pi broadcasts a message (b1, . . . , bk), as follows. Each of the
vectors bi⃗ in [b1⃗, . . . , bℓ⃗, u] contains nk bits, and Pi uses the bits from
n(i − 1) to ni to communicate its message. That is, in the Aggregate
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Stage, every Pi homomorphically OR’s bi⃗ = (0, . . . , 0, b1, . . . , bk, 0, . . . , 0)
with the received encrypted vectors.

Sequential execution. All-to-all broadcasts can be composed sequen-
tially by preserving the state of unhappy bits between sequential execu-
tions. That is, once some party sees a crash, it will cause all subsequent
executions to abort.

Topology-Hiding computation. With the above statements, we con-
clude that any MPC protocol can be compiled into one that leaks only
a fraction p of a bit in total. This is achieved using a public key in-
frastructure, where in the first round the parties use the topology hiding
all-to-all broadcast to send each public key to every other party, and then
each round of the MPC protocol is simulated with an all-to-all multibit
topology-hiding broadcast. As a corollary, any functionality F can be
implemented by a topology-hiding protocol leaking any fraction p of a
bit.

9.5 Efficient Topology-Hiding Computation
with FHE

One thing to note is that compiling MPC from broadcast is rather expen-
sive, especially in the fail-stop model; we need a broadcast for every round.
However, we will show that an FHE scheme with additive overhead can
be used to evaluate any polynomial-time function f in a topology-hiding
manner. Additive overhead applies to ciphertext versus plaintext sizes
and to error with respect to all homomorphic operations if necessary. We
will employ an altered random walk protocol, and the total number of
rounds in this protocol will amount to that of a single broadcast. We
remark that FHE with additive overhead can be obtained from subex-
ponential iO and subexponentially secure OWFs (probabilistic iO), as
shown in [CLTV15].

9.5.1 Deeply-Fully-Homomorphic Public-Key Encryp-
tion

In the altered random walk protocol, the PKCR scheme is replaced by a
deeply-fully-homomorphic PKE scheme (DFH-PKE). Similarly to PKCR,
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a DFH-PKE scheme is a public-key encryption scheme enhanced by algo-
rithms for adding and deleting layers. However, we do not require that
public keys form a group, and we allow the ciphertexts and public keys
on different levels (that is, for which a layer has been added a different
number of times) to be distinguishable. Moreover, DFH-PKE offers full
homomorphism.

This is captured by three additional algorithms: AddLayerr, DelLayerr,
and HomOpr, operating on ciphertexts with r layers of encryption (we will
call such ciphertexts level-r ciphertexts). A level-r ciphertext is encrypted
under a level-r public key (each level can have different key space).

Adding a layer requires a new secret key sk. The algorithm AddLayerr

takes as input a vector of level-r ciphertexts Jm⃗Kpk encrypted under a
level-r public key, the corresponding level-r public key pk, and a new
secret key sk. It outputs a vector of level-(r + 1) ciphertexts and the
level-(r + 1) public key, under which it is encrypted. Deleting a layer is
the opposite of adding a layer.

With HomOpr, one can compute any function on a vector of encrypted
messages. It takes a vector of level-r ciphertexts encrypted under a level-r
public key, the corresponding level-r public key pk and a function from a
permitted set F of functions. It outputs a level-r ciphertext that contains
the output of the function applied to the encrypted messages.

Intuitively, a DFH-PKE scheme is secure if one can simulate any level-
r ciphertext without knowing the history of adding and deleting layers.
This is captured by the existence of an algorithm Leveled-Encryptr, which
takes as input a plain message and a level-r public key, and outputs a
level-r ciphertext. We require that for any level-r encryption of a message
m⃗, the output of AddLayerr on that ciphertext is indistinguishable from
the output of Leveled-Encryptr+1 on m⃗ and a (possibly different) level-
(r + 1) public key. An analogous property is required for DelLayerr. We
will also require that the output of HomOpr is indistinguishable from a
level-r encryption of the output of the functions applied to the messages.
We refer to Section E.3 for a formal definition of a DFH-PKE scheme
and to Section E.3.1 for an instantiation from FHE.

Remark. If we relax DFH-PKE and only require homomorphic eval-
uation of OR, then this relaxation is implied by any OR-homomorphic
PKCR scheme (in PKCR, additionally, all levels of key and ciphertext
spaces are the same, and the public key space forms a group). Such
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OR-homomorphic DFH-PKE would be sufficient to prove the security of
the protocols BC-OB and BC-FBp. However, for simplicity and clarity,
we decided to describe our protocols BC-OB and BC-FBp from a OR-
homomorphic PKCR scheme.

9.5.2 Topology-Hiding Computation from DFH-PKE
To evaluate any function f , we modify the topology-hiding broadcast pro-
tocol (with PKCR replaced by DFH-PKE) in the following way. During
the Aggregate Stage, instead of one bit for the OR of all inputs, the
parties send a vector of encrypted inputs. At each round, each party ho-
momorphically adds its input together with its id to the vector. The last
party on the walk homomorphically evaluates f on the encrypted inputs,
and (homomorphically) selects the output of the party who receives it
in the current phase. The Decrypt Stage is started with this encrypted
result.

Note that we still need a way to make a random walk dummy (this
was achieved in BC-OB and BC-FBp by starting it with a 1). Here, we will
have an additional input bit for the party who starts a walk. In case this
bit is set, when homomorphically evaluating f , we (homomorphically)
replace the output of f by a special symbol. We refer to Section E.4 for a
detailed description of the protocol and a proof of the following theorem.

Theorem 9.5.1. For security parameter κ, τ = log(n) + κ, T = 8n3τ ,
and ρ = τ/(p′−2−τ ), where p′ = 1/⌊1/p⌋, the protocol DFH-THC topology-
hidingly evaluates any poly-time function f , FLF Bp

info ||f in the N hybrid-
world.

9.6 Security Against Semi-malicious Adver-
saries

In this section, we show how to generically compile our protocols to pro-
vide in addition security against a semi-malicious adversary. The trans-
formed protocol proceeds in two phases: Randomness Generation and
Deterministic Execution. In the first phase, we generate the random
tapes for all parties and in the second phase we execute the given pro-
tocol with parties using the pre-generated random tapes. The tapes are
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generated in such a way that the tape of each party Pi is the sum of
random values generated from each party. Hence, as long as one party is
honest, the generated tape is random.

Randomness Generation. The goal of the first phase is to generate
for each party Pi a uniform random value ri, which can then be used as
randomness tape of Pi in the phase of Deterministic Execution.2

1: Each party Pi generates n + 1 uniform random values s
(0)
i , s

(1)
i , . . . , s

(n)
i

and sets r
(0)
i := s

(0)
i .

2: for any round r from 1 to n do
3: Each party Pi sends r

(r−1)
i to all its neighbors.

4: Each party Pi computes r
(r)
i as the sum of all values received from

its (non-crashed) neighbors in the current round and the value s
(k)
i .

5: Each party Pi outputs ri := r
(n)
i .

Protocol GenerateRandomness

Lemma 9.6.1. Let G′ be the network graph without the parties which
crashed during the execution of GenerateRandomness. Any party Pi whose
connected component in G′ contains at least one honest party will output
a uniform value ri. The output of any honest party is not known to the ad-
versary. The protocol GenerateRandomness does not leak any information
about the network-graph (even if crashes occur).

Proof. First observe that all randomness is chosen at the beginning of the
first round. The rest of the protocol is completely deterministic. This
implies that the adversary has to choose the randomness of corrupted
parties independently of the randomness chosen by honest parties.

If party Pi at the end of the protocol execution is in a connected
component with honest party Pj , the output ri is a sum which contains
at least one of the values s

(r)
j from Pj . That summand is independent

of the rest of the summands and uniform random. Thus, ri is uniform
random as well.

Any honest party will (in the last round) compute its output as a
2To improve overall communication complexity of the protocol the values generated

in the first phase could be used as local seeds for a PRG which is then used to generate
the actual random tapes.
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sum which contains a locally generated truly random value, which is
not known to the adversary. Thus, the output is also not known to the
adversary.

Finally, observe that the message pattern seen by a party is deter-
mined by its neighborhood. Moreover, the messages received by cor-
rupted parties from honest parties are uniform random values. This
implies, that the view of the adversary in this protocol can be easily
simulated given the neighborhood of corrupted parties. Thus, the proto-
col does not leak any information about the network topology.

Transformation to Semi-malicious Security. In the second phase of
Deterministic Execution, the parties execute the protocol secure against
passive and fail-stop corruptions, but instead of generating fresh random-
ness during the protocol execution, they use the random tape generated
in the first phase.

1: The parties execute GenerateRandomness to generate random tapes.
2: If a party witnessed a crash in GenerateRandomness, it pretends that it

witnessed this crash in the first round of the protocol Π.
3: The parties execute Π, using the generated randomness tapes, instead

of generating randomness on the fly.

Protocol EnhanceProtocol(Π)

Theorem 9.6.2. Let F be an MPC functionality and let Π be a pro-
tocol that topology-hidingly realizes F in the presence of static passive
corruptions and adaptive crashes. Then, the protocol EnhanceProtocol(Π)
topology-hidingly realizes F in the presence of static semi-malicious cor-
ruption and adaptive crashes. The leakage stays the same.

Proof. (sketch) The randomness generation protocol GenerateRandomness
used in the first phase is secure against a semi-malicious fail-stopping ad-
versary. Lemma 9.6.1 implies that the random tape of any semi-malicious
party that can interact with honest parties is truly uniform random.
Moreover, the adversary has no information on the random tapes of hon-
est parties. This implies that the capability of the adversary in the exe-
cution of the actual protocol in the second phase (which for fixed random
tapes is deterministic) is the same as for an semi-honest fail-stopping ad-
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versary. This implies that the leakage of EnhanceProtocol(Π) is the same
as for Π as the randomness generation protocol does not leak information
(even if crashes occur).

As a corollary of Theorems 9.3.2 and 9.6.2, we obtain that any MPC
functionality can be realized in a topology-hiding manner secure against
an adversary that does any number of static semi-malicious corruptions
and adaptive crashes, leaking at most an arbitrary small fraction of in-
formation about the topology.





Appendix E

Details of Chapter 9

E.1 Topology-Hiding Broadcast
This section contains supplementary material for Section 9.3.

E.1.1 Protocol Leaking One Bit
In this section we prove Theorem 9.3.1 from Section 9.3.1.

Theorem 9.3.1. For κ security parameter and T = 8n3(log(n) + κ) pro-
tocol BC-OB(T, (di, bi)Pi∈P)) topology-hidingly realizes FLOB

info ||BC (with
abort) in the N hybrid-world, where the leakage function LOB is the one
defined as above. If no crashes occur, then there is no abort and there is
no leakage.

Proof. Completeness. We first show that the protocol is complete. To
this end, we need to ensure that the probability that all parties get the
correct output is overwhelming in κ. That is, the probability that all non-
dummy random walks (of length T = 8n3(log(n) + κ)) reach all nodes is
overwhelming.

By Lemma 9.2.2, a walk of length 8n3τ does not reach all nodes with
probability at most 1

2τ . Then, using the union bound, we obtain that the
probability that there is a party whose walk does not reach all nodes is
at most n

2τ . Hence, all n walks (one for each party) reach all nodes with
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probability at least 1− n
2τ . If we want this value to be overwhelming, e.g.

1− 1
2κ , we can set τ := κ + log(n).

Soundness. We now need to show that no environment can distinguish
between the real world and the simulated world, when given access to
the adversarially-corrupted parties. We first describe on a high level the
simulator SOB and argue that it simulates the real execution.

In essence, the task of SOB is to simulate the messages sent by hon-
est parties to passively corrupted parties. Consider a corrupted party
Pc and its honest neighbor Ph. The messages sent from Ph to Pc dur-
ing the Aggregate Stage are ciphertexts, to which Ph added a layer, and
corresponding public keys. Since Ph is honest, the adversary does not
know the secret keys corresponding to the sent public keys. Hence, SOB

can simply replace them with encryptions of a pair (1, 1) under a freshly
generated public key. The group structure of keys in PKCR guarantees
that a fresh key has the same distribution as the composed key (after ex-
ecuting AddLayer). Semantic security implies that the encrypted message
can be replaced by (1, 1).

Consider now the Decrypt Stage at round r. Let pk(r)
c→h be the public

key sent by Pc to Ph in the Aggregate Stage (note that this is not the
key discussed above; there we argued about keys sent in the opposite
direction). SOB will send to Pc a fresh encryption under pk(r)

c→h. We now
specify what it encrypts.

Note that the only interesting case is when the party Po receiving
output is corrupted and when we are in the round r in which the (only
one) random walk carrying the output enters an area of corrupted parties,
containing Po (that is, when the walk with output contains from Ph all
the way to Po only corrupted parties). In this one message in round r
the adversary learns the output of Po. All other messages are simply
encryptions of (1, 1).

For this one meaningful message, we consider three cases. If any party
crashed in a phase preceding the current one, SOB sends an encryption of
(1, 1) (as in the real world the walk is made dummy by an unhappy party).
If no crashes occurred up to this point (round r in given phase), SOB

encrypts the output received from BC. If a crash happened in the given
phase, SOB queries the leakage oracle LOB , which essentially executes
the protocol and tells whether the output or (1, 1) should be sent.
Simulator. Below, we present the pseudocode of the simulator. The es-
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sential part of it is the algorithm PhaseSimulation, which is also illustrated
in Figure E.1.

1. SOB corrupts passively Zp.
2. SOB sends inputs for all parties in Zp to BC and receives the output bit

bout.
3. For each Pi ∈ Zp, SOB receives NG(Pi) from FL

info.
4. Throughout the simulation, if A crashes a party Pf , so does SOB .
5. Now SOB has to simulate the view of all parties in Zp.

In every phase in which Po should get the output, first of all the
Initialization Stage is executed among the parties in Zp and the T key
pairs are generated for every Pi ∈ Zp. Moreover, for every Pi ∈ Zp the
permutations π

(r)
i are generated, defining those parts of all random

walks, which pass through parties in Zp.
The messages sent by parties in Zp are generated by executing the
protocol RandomWalkPhase. The messages sent by correct parties
Pi ̸∈ Zp are generated by executing PhaseSimulation(Po, Pi), described
below.

6. SOB sends to BC the abort vector (in particular, the vector contains all
parties Po who should receive their outputs in phases following the first
crash and, depending on the output of LOB , the party who should
receive its output in the phase with first crash).

Simulator SOB

If Po ∈ Zp, let w denote the random walk generated in the Initialization
Stage (at the beginning of the simulation of this phase), which starts at Po

and carries the output bit. Let ℓ denote the number of parties in Zp on w
before the first correct party. If Po ̸∈ Zp, w and ℓ are not defined.
For every Pj ∈ Zp ∩NG(Pi), let pk(r)

j→i denote the public key generated in
the Initialization Stage by Pj for Pi and for round r.
Initialization Stage

Algorithm PhaseSimulation(Po, Pi)
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1: For every neighbor Pj ∈ Zp of the correct Pi, SOB generates T key pairs
(pk(1)

i→j , sk(1)
i→j), . . . , (pk(T)

i→j , sk(T)
i→j).

Aggregate Stage

1: In round r, for every neighbor Pj ∈ NG(Pi) ∩ Zp, SOB sends
([1, 1]pk(r)

i→j

, pk(r)
i→j) to Pj .

Decrypt Stage

1: if A crashed any party in any phase before the current one or Po ̸∈ Zp

then
2: In every round r and for every neighbor Pj ∈ NG(Pi)∩Zp, SOB

sends [1, 1]pk(r)
j→i

to Pj .
3: else
4: In every round r and for every neighbor Pj ∈ NG(Pi)∩Zp, SOB

sends [1, 1]pk(r)
j→i

to Pj unless the following three conditions hold:

(a) Pi is the first party not in Zp on w, (b) Pj is the last party
in Zp on w, and (c) r = 2T− ℓ.

5: If the three conditions hold (in particular r = 2T− ℓ), SOB does
the following. If A did not crash any party in a previous round,
SOB sends [bout, 0]pk(r)

j→i

to party Pj .

6: Otherwise, let F denote the set of pairs (Pf , s− ℓ + 1) such that
A crashed Pf in round s. SOB queries FLOB

info for the leakage on
input (F, Pi, T− ℓ). If the returned value is 1, it sends [1, 1]pk(r)

j→i

to Pj . Otherwise it sends [bout, 0]pk(r)
j→i

to party Pj .

We prove that no environment can tell whether it is interacting with
N and the adversary in the real world or with FL

info and the simulator in
the ideal world.

Hybrids and security proof.

Hybrid 1. S1 simulates the real world exactly. This means, S has infor-
mation on the entire topology of the graph, each party’s input, and
can simulate identically the real world.

Hybrid 2. S2 replaces the real keys with the simulated public keys, but
still knows everything about the graph as in the first hybrid.



E.1. TOPOLOGY-HIDING BROADCAST 221

Pi

Pj

Po

Figure E.1: An example of the algorithm executed by the simulator SOB .
The filled circles are the corrupted parties. The red line represents the
random walk generated by SOB in Step 5, in this case of length ℓ = 3.
SOB simulates the Decrypt Stage by sending fresh encryptions of (1, 1) at
every round from every honest party to each of its corrupted neighbors,
except in round 2T − 3 from Pi to Pj . If no crash occurred up to that
point, SOB sends encryption of (bout, 0). Otherwise, it queries the leakage
oracle about the walk of length T− 3, starting at Pi.

More formally, in each random walk phase and for each party
Pi ∈ P \ Zp where NG(Pi) ∩ Zp ̸= ∅, S2 generates T key pairs
(pk(1)

i→j , sk(1)
i→j), . . . , (pk(T)

i→j , sk(T)
i→j) for every neighbor Pj ∈ NG(Pi)∩

Zp. In each round r of the corresponding Aggregate Stage and for
every neighbor Pj ∈ NG(Pi)∩Zp, S2 does the following. Pi receives
ciphertext [b, u]pk(r)

∗→i

and the public key pk(r)
∗→i destined for Pj . In-

stead of adding a layer and homomorphically OR’ing the bit bi, S2
computes (b′, u′) = (b∨ bi ∨ ui, u∨ ui), and sends [b′, u′]pk(r)

i→j

to Pj .
In other words, it sends the same message as S1 but encrypted with
a fresh public key. In the corresponding Decrypt Stage, Pi will get
back a ciphertext from Pj encrypted under this exact fresh public
key.

Hybrid 3. S3 now simulates the ideal functionality during the Aggre-
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gate Stage. It does so by sending encryptions of (1, 1) instead
of the actual messages and unhappy bits. More formally, in each
round r of the Aggregate Stage and for all parties Pi ∈ P \Zp and
Pj ∈ NG(Pi) ∩ Zp, S3 sends [1, 1]pk(r)

i→j

instead of the ciphertext
[b, u]pk(r)

i→j

sent by S2.

Hybrid 4. S4 does the same as SOB during the Decrypt Stage for all
steps except for round 2T−ℓ of the first random walk phase in which
the adversary crashes a party. This corresponds to the original
description of the simulator except for the ’Otherwise’ condition of
Step 6 in the Decrypt Stage.

Hybrid 5. S5 is the actual simulator SOB .

In order to prove that no environment can distinguish between the
real world and the ideal world, we prove that no environment can dis-
tinguish between any two consecutive hybrids when given access to the
adversarially-corrupted nodes.

Claim 1. No efficient distinguisher D can distinguish between Hybrid 1
and Hybrid 2.

Proof of claim. The two hybrids only differ in the computation of the
public keys that are used to encrypt messages in the Aggregate Stage from
any honest party Pi ∈ P\Zp to any dishonest neighbor Pj ∈ NG(Pi)∩Zp.

In Hybrid 1, party Pi sends to Pj an encryption under a fresh public
key in the first round. In the following rounds, the encryption is sent
either under a product key pk(r)

i→j = pk(r−1)
k→i ~ pk(r)

i→j or under a fresh
public key (if Pi is unhappy). Note that pk(r−1)

k→i is the key Pi received
from a neighbor Pk in the previous round.

In Hybrid 2, party Pi sends to Pj an encryption under a fresh public
key pk(r)

i→j in every round.
The distribution of the product key used in Hybrid 1 is the same as the

distribution of a freshly generated public-key. This is due to the (fresh)
pk(r)

i→j key which randomizes the product key. Therefore, no distinguisher
can distinguish between Hybrid 1 and Hybrid 2. ♦

Claim 2. No efficient distinguisher D can distinguish between Hybrid 2
and Hybrid 3.
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Proof of claim. The two hybrids differ only in the content of the en-
crypted messages that are sent in the Aggregate Stage from any honest
party Pi ∈ P \ Zp to any dishonest neighbor Pj ∈ NG(Pi) ∩ Zp.

In Hybrid 2, party Pi sends to Pj in the first round an encryption of
(bi ∨ ui, ui). In the following rounds, Pi sends to Pj either an encryption
of (b ∨ bi ∨ ui, u ∨ ui), if message (b, u) is received from neighbor π−1

i (j),
or an encryption of (1, 1) if no message is received.

In Hybrid 3, all encryptions that are sent from party Pi to party Pj

are replaced by encryptions of (1, 1).
Since the simulator chooses a key independent of any key chosen by

parties in Zp in each round, the key is unknown to the adversary. Hence,
the semantic security of the encryption scheme guarantees that the dis-
tinguisher cannot distinguish between both encryptions. ♦

Claim 3. No efficient distinguisher D can distinguish between Hybrid 3
and Hybrid 4.

Proof of claim. The only difference between the two hybrids is in the
Decrypt Stage. We differentiate two cases:

• A phase where the adversary did not crash any party in this or any
previous phase. In this case, the simulator S3 sends an encryption
of (bW , uW ), where bW =

∨
Pj∈W bj is the OR of all input bits in the

walk and uW = 0, since no crash occurred. S4 sends an encryption
of (bout, 0), where bout =

∨
Pi∈P bi. Since the graph is connected,

bout = bW with overwhelming probability, as proven in Corollary
9.2.2. Also, the encryption in Hybrid 4 is done with a fresh public
key which is indistinguishable with the encryption done in Hybrid
3 by OR’ing many times in the graph, as shown in Claim 2.1 in
[ALM17a].

• A phase where the adversary crashed a party in a previous phase
or any round different than 2T − ℓ of the first phase where the
adversary crashes a party. In Hybrid 4 the parties send an encryp-
tion of (1, 1). This is also the case in Hybrid 3, because even if a
crashed party disconnected the graph, each connected component
contains a neighbor of a crashed party. Moreover, in Hybrid 4, the
messages are encrypted with a fresh public key, and in Hybrid 3,
the encryptions are obtained by the homomorphic OR operation.
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Both encryptions are indistinguishable, as shown in in Claim 2.1 in
[ALM17a].

♦

Claim 4. No efficient distinguisher D can distinguish between Hybrid 4
and Hybrid 5.

Proof of claim. The only difference between the two hybrids is in the
Decrypt Stage, at round 2T − ℓ of the first phase where the adversary
crashes.

Let F be the set of pairs (Pf , r) such that A crashed Pf at round r of
the phase. In Hybrid 4, a walk W of length T is generated from party Po.
Let W1 be the region of W from Po to the first not passively corrupted
party and let W2 be the rest of the walk. Then, the adversary’s view at
this step is the encryption of (1, 1) if one of the crashed parties breaks
W2, and otherwise an encryption of (bW , 0). In both cases, the message
is encrypted under a public key for which the adversary knows the secret
key.

In Hybrid 5, a walk W ′
1 is generated from Po of length ℓ ≤ T ending

at the first not passively corrupted party Pi. Then, the simulator queries
the leakage function on input (F, Pi, T − ℓ), which generates a walk W ′

2
of length T − ℓ from Pi, and checks whether W ′

2 is broken by any party
in F . If W ′

2 is broken, Pi sends an encryption of (1, 1), and otherwise
an encryption of (bW , 0). Since the walk W ′ defined as W ′

1 followed by
W ′

2 follows the same distribution as W , bW = bout with overwhelming
probability, and the encryption with a fresh public key which is indistin-
guishable with the encryption done by OR’ing many times in the graph,
then it is impossible to distinguish between Hybrid 4 and Hybrid 5.

♦

This concludes the proof of soundness.

E.1.2 Protocol Leaking a Fraction of a Bit
We give a description of ProbabilisticRandomWalkPhasep which is the
random-walk phase protocol for BC-FBp, from Section 9.3.2. Note that
this protocol should be repeated ρ times in the actual protocol. The boxes
indicate the parts that differ from RandomWalkPhase (cf. Section 9.3.1).
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Initialization Stage:

1: Each party Pi generates T · di keypairs (pk(r)
i→j , sk(r)

i→j) � Keygen(1κ)
where r ∈ {1, . . . , T} and j ∈ {1, . . . , di}.

2: Each party Pi generates T− 1 random permutations on di elements{
π

(2)
i , . . . , π

(T)
i

}
3: For each party Pi, if any of Pi’s neighbors crashed in any phase before

the current one, then Pi becomes unhappy, i.e., sets ui = 1.
Aggregate Stage: Each party Pi does the following:

1: if Pi is the recipient Po then
2: Party Pi sends to the first neighbor the public key pk(1)

i→1 and the
ciphertext [bi ∨ ui, 1, . . . , 1, ui]pk(1)

i→1
(⌊1/p⌋ − 1 ciphertexts con-

tain 1), and to any other neighbor Pj it sends [1, . . . , 1, 1]pk(1)
i→j

and the public key pk(1)
i→j .

3: else
4: Party Pi sends to each neighbor Pj ciphertext [1, . . . , 1, 1]pk(1)

i→j

and the public key pk(1)
i→j .

5: for any round r from 2 to T do
6: For each neighbor Pj of Pi, do the following (let k = π

(r)
i (j)):

7: if Pi did not receive a message from Pj then
8: Party Pi sends [1, . . . , 1, 1]pk(r)

i→k

and pk(r)
i→k to neighbor Pk.

9: else
10: Let c(r−1)

j→i and pk(r−1)
j→i be the ciphertext and the public key Pi

received from Pj . Party Pi computes pk(r)
i→k = pk(r−1)

j→i ~ pk(r)
i→k

and ĉ(r)
i→k ← AddLayer

(
c(r−1)

j→i , pk(r)
i→k

)
.

11: Party Pi computes [bi ∨ ui, . . . , bi ∨ ui, ui]pk(r)
i→k

and

c(r)
i→k = HomOR

(
[bi ∨ ui, . . . , bi ∨ ui, ui]pk(r)

i→k

, ĉ(r)
i→k

)
.

12: Party Pi sends ciphertext c(r)
i→k and public key pk(r)

i→k to neighbor
Pk.

Protocol ProbabilisticRandomWalkPhasep(T, Po, (di, bi, ui)Pi∈P)
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Decrypt Stage: Each party Pi does the following:

1: For each neighbor Pj of Pi:
2: if Pi did not get a message from Pj at round T of the Aggregate Stage

then
3: Party Pi sends ciphertext e(T)

i→j = [1, 1]
pk(T)

j→i

to Pj .
4: else
5: Party Pi chooses uniformly at random one of the first ⌊1/p⌋ ci-

phertexts in c(T)
j→i. Let c̄(T)

j→i denote the tuple containing the
chosen ciphertext and the last element of c(T)

j→i (the encryp-
tion of the unhappy bit). Party Pi computes and sends

e(T)
i→j = HomOR

(
[bi ∨ ui, ui]pk(T)

j→i

, c̄(T)
j→i

)
to Pj .

6: for any round r from T to 2 do
7: For each neighbor Pk of Pi:
8: if Pi did not receive a message from Pk then
9: Party Pi sends e(r−1)

i→j = [1, 1]
pk(r−1)

j→i

to neighbor Pj , where k =

π
(r)
i (j).

10: else
11: Denote by e(r)

k→i the ciphertext Pi received from Pk,
where k = π

(r)
i (j). Party Pi sends e(r−1)

i→j =

DelLayer
(

e(r)
k→i, sk(r)

i→k

)
to neighbor Pj .

12: If Pi is the recipient Po, then it computes (b, u) = Decrypt(e(1)
1→i, sk(1)

i→1)
and outputs (b, u, ui). Otherwise, it outputs (1, 0, ui).

Security Proof of the Protocol Leaking a Fraction of a Bit.
In this section we prove Theorem 9.3.2 from Section 9.3.2.

Theorem 9.3.2. Let κ be the security parameter. For τ = log(n) +
κ, T = 8n3τ and ρ = τ/(p′ − 2−τ ), where p′ = 1/⌊1/p⌋, the proto-
col BC-FBp(T, ρ, (di, bi)Pi∈P)) topology-hidingly realizes the functionalities
FLF Bp

info ||BC (with abort) in the N hybrid-world, where the leakage func-
tion LF Bp

is the one defined as above. If no crashes occur, then there is
no abort and there is no leakage.

Proof. Completeness. We first show that the protocol is complete.
That is, that if the adversary does not crash any party, then every party
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gets the correct output (the OR of all input bits) with overwhelming prob-
ability. More specifically, we show that if no crashes occur, then after ρ
repetitions of a phase, the party Po outputs the correct value with proba-
bility at least 1− 2−(κ+log(n)). The overall completeness follows from the
union bound: the probability that all n parties output the correct value
is at least 1− 2−κ.

Notice that if the output of any of the ρ repetitions intended for Po

is correct, then the overall output of Po is correct. A given repetition
can only give an incorrect output when either the random walk does
not reach all parties, which happens with probability at most 2−τ , or
when the repetition fails, which happens with probability 1− p′. Hence,
the probability that a repetition gives the incorrect result is at most
1− p′ + 2−τ . The probability that all repetitions are incorrect is then at
most (1−p′+2−τ )ρ ≤ 2−(κ+log(n)) (the inequality holds for 0 ≤ p′−2−τ ≤
1).

Soundness. We show that no environment can distinguish between the
real world and the simulated world, when given access to the adversarially-
corrupted nodes. The simulator SF B for BC-FBp is a modification of SOB .
Here we only sketch the changes and argue why SF B simulates the real
world.

In each of the ρ repetitions of a phase, SF B executes a protocol very
similar to the one for SOB . In the Aggregate Stage, SF B proceeds almost
identically to SOB (except that it sends encryptions of vectors (1, . . . , 1)
instead of only two values). In the Decrypt Stage the only difference
between SF B and SOB is in computing the output for the party Po (as
already discussed in the proof of Theorem 9.3.1, SF B does this only when
Po is corrupted and the walk carrying the output enters an area of cor-
rupted parties). In the case when there were no crashes before or during
given repetition of a phase, SOB would simply send the encrypted output.
On the other hand, SF B samples a value from the Bernoulli distribution
with parameter p and sends the encrypted output only with probability p,
while with probability 1− p it sends the encryption of (1, 0). Otherwise,
the simulation is the same as for SOB .

It can be easily seen that SF B simulates the real world in the Ag-
gregate Stage and in the Decrypt Stage in every message other than the
one encrypting the output. But even this message comes from the same
distribution as the corresponding message sent in the real world. This
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is because in the real world, if the walk was not broken by a crash, this
message contains the output with probability p. The simulator encrypts
the output also with probability p in the two possible cases: when there
was no crash (SF B samples from the Bernoulli distribution) and when
there was a crash but the walk was not broken (LF B is defined in this
way).

Simulator. The simulator SF B proceeds almost identically to the simu-
lator SOB given in the proof of Theorem 9.3.1 (cf. Section E.1.1). We only
change the algorithm PhaseSimulation to ProbabilisticPhaseSimulation and
execute it ρ times instead of only once.

If Po ∈ Zp, let w denote the random walk generated in the Initialization
Stage (at the beginning of the simulation of this phase), which starts at Po

and carries the output bit. Let ℓ denote the number of parties in Zp on w
before the first correct party. If Po ̸∈ Zp, w and ℓ are not defined.
For every Pj ∈ Zp ∩NG(Pi), let pk(r)

j→i denote the public key generated in
the Initialization Stage by Pj for Pi and for round r.
Initialization Stage

1: For every neighbor Pj ∈ Zp of the correct Pi, SF B generates T key pairs
(pk(1)

i→j ,sk(1)
i→j),. . . ,(pk(T)

i→j , sk(T)
i→j).

Aggregate Stage

1: In round r, for every neighbor Pj ∈ NG(Pi) ∩ Zp, SF B sends the tuple
([1, . . . , 1]pk(r)

i→j

, pk(r)
i→j) (with ⌊1/p⌋+ 1 ones) to Pj .

Decrypt Stage

1: if Po ̸∈ Zp or A crashed any party in any phase before the current one
or in any repetition of the current phase then

2: In every round r and for every neighbor Pj ∈ NG(Pi)∩Zp, SF B

sends [1, 1]pk(r)
j→i

to Pj .
3: else

Algorithm ProbabilisticPhaseSimulation(Po, Pi)
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4: In every round r and for every neighbor Pj ∈ NG(Pi)∩Zp, SF B

sends [1, 1]pk(r)
j→i

to Pj unless the following three conditions hold:

(a) Pi is the first party not in Zp on w, (b) Pj is the last party
in Zp on w, and (c) r = 2T− ℓ.

5: If the three conditions hold (in particular r = 2T− ℓ), SF B does
the following. If A did not crash any party in a previous round,

6: SF B samples a value x from the Bernoulli distribution with pa-
rameter p′. If x = 1 (with probability p′), SF B sends to Pj the
ciphertext [bout, 0]

pk
(r)
j→i

and otherwise it sends [1, 0]
pk

(r)
j→i

.

7: Otherwise, let F denote the set of pairs (Pf , s−ℓ+1) such that A

crashed Pf in round s. SF B queries F
LF Bp
info for the leakage on

input (F, Pi, T− ℓ). If the returned value is 1, it sends [1, 1]pk(r)
j→i

to Pj . Otherwise it sends [bout, 0]pk(r)
j→i

to party Pj .

Hybrids and security proof. We consider similar steps as the hybrids
from Paragraph E.1.1.

Hybrid 1. S1 simulates the real world exactly. This means, S1 has
information on the entire topology of the graph, each party’s input,
and can simulate identically the real world.

Hybrid 2. S2 replaces the real keys with the simulated public keys, but
still knows everything about the graph as in the first hybrid.
More formally, in each subphase of each random walk phase and
for each party Pi ∈ P \Zp where NG(Pi)∩Zp ̸= ∅, S2 generates T

key pairs (pk(1)
i→j , sk(1)

i→j), . . . , (pk(T)
i→j , sk(T)

i→j) for every neighbor Pj ∈
NG(Pi) ∩ Zp. Let α := ⌊ 1

p⌋. In each round r of the corresponding
Aggregate Stage and for every neighbor Pj ∈ NG(Pi) ∩ Zp, S2
does the following: Pi receives ciphertext [b1, . . . , bα, u]pk(r)

∗→i

and

the public key pk(r)
∗→i destined for Pj . Instead of adding a layer and

homomorphically OR’ing the bit bi, S2 computes (b′
1, . . . , b′

α, u′) =
(b1∨bi∨ui, · · · , bα∨bi∨ui, u∨ui), and sends [b′

σ(1), · · · , b′
σ(α), u′]pk(r)

i→j

to Pj , where σ is a random permutation on α elements. In other
words, it sends the same message as S1 but encrypted with a fresh
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public key. In the corresponding Decrypt Stage, Pi will get back a
ciphertext from Pj encrypted under this exact fresh public key.

Hybrid 3. S3 now simulates the ideal functionality during the Aggre-
gate Stage. It does so by sending encryptions of (1, . . . , 1) instead of
the actual messages and unhappy bits. More formally, let α := ⌊ 1

p⌋.
In each round r of a subphase of a random walk phase and for all
parties Pi ∈ P\Zp and Pj ∈ NG(Pi)∩Zp, S3 sends [1, 1, . . . , 1]pk(r)

i→j

instead of the ciphertext [b1, . . . , bα, u]pk(r)
i→j

sent by S2.

Hybrid 4. S4 does the same as SF B during the Decrypt Stage for all
phases and subphases except for the first subphase of a random
walk phase in which the adversary crashes a party.

Hybrid 5. S5 is the actual simulator SF B .

The proofs that no efficient distinguisher D can distinguish between
Hybrid 1, Hybrid 2 and Hybrid 3 are similar to the Claim 1 and Claim
2. Hence, we prove indistinguishability between Hybrid 3, Hybrid 4 and
Hybrid 5.

Claim 5. No efficient distinguisher D can distinguish between Hybrid 3
and Hybrid 4.

Proof of claim. The only difference between the two hybrids is in the
Decrypt Stage. We differentiate three cases:

• A subphase l of a phase k where the adversary did not crash any
party in this phase, any previous subphase, or any previous phase.
In this case, S3 sends with probability p an encryption of (bW , uW ),
where bW =

∨
u∈W bu is the OR of all input bits in the walk and

uW = 0 (since no crash occurs), and with probability 1 − p an en-
cryption of (1, 0). On the other hand, S4 samples r from a Bernoulli
distribution with parameter p, and if r = 1, it sends an encryption
of (bout, 0), where bout =

∨
i∈[n] bi, and if r = 0 it sends an en-

cryption of (1, 0). Since the graph is connected, bout = bW with
overwhelming probability, as proven in Corollary 9.2.2. Also, the
encryption in Hybrid 4 is done with a fresh public key which is
indistinguishable with the encryption done in Hybrid 3 by OR’ing
many times in the graph, as shown in Claim 2.1. in [ALM17a].
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• A subphase l of a phase k where the adversary crashed a party in
a previous subphase or a previous phase.
In Hybrid 3 the parties send encryptions of (1, 1). This is also the
case in Hybrid 4, because even if a crashed party disconnected the
graph, each connected component contains a neighbor of a crashed
party. Moreover, in Hybrid 4, the messages are encrypted with
a fresh public key, and in Hybrid 3, the encryptions are obtained
by the homomorphic OR operation. Both encryptions are indistin-
guishable, as shown in Claim 2.1. in [ALM17a].

♦

Claim 6. No efficient distinguisher D can distinguish between Hybrid 4
and Hybrid 5.

Proof of claim. The only difference between the two hybrids is in the De-
crypt Stage of the first subphase of a phase where the adversary crashes.

Let F be the set of pairs (Pf , r) such that A crashed Pf at round r of
the phase. In Hybrid 4, a walk W of length T is generated from party Po.
Let W1 be the region of W from Po to the first not passively corrupted
party and let W2 be the rest of the walk. Then, the adversary’s view at
this step is the encryption of (1, 1) if one of the crashed parties breaks
W2 or if the walk became dummy (which happens with probability 1− p,
since the ciphertexts are permuted randomly and only one ciphertext out
of 1

p contains bW ). Otherwise, the adversary’s view is an encryption of
(bW , 0). In both cases, the message is encrypted under a public key for
which the adversary knows the secret key.

In Hybrid 5, a walk W ′
1 is generated from Po of length ℓ ≤ T ending

at the first not passively corrupted party Pi. Then, the simulator queries
the leakage function on input (F, Pi, T − ℓ). Then, with probability p it
generates a walk W ′

2 of length T − ℓ from Pi, and checks whether W ′
2 is

broken by any party in F . If W ′
2 is broken, Pi sends an encryption of

(1, 1), and otherwise an encryption of (bW , 0). Since the walk W ′ defined
as W ′

1 followed by W ′
2 follows the same distribution as W , bW = bout

with overwhelming probability, and the encryption with a fresh public
key which is indistinguishable with the encryption done by OR’ing many
times in the graph, then it is impossible to distinguish between Hybrid 4
and Hybrid 5. ♦
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This concludes the proof of soundness.

E.2 From Broadcast to Topology-Hiding
Computation

This section contains supplementary material for Section 9.4.

Naive composition of broadcast. We first argue that composing t
broadcasts with one bit leakage can in general leak t bits.

Given black-box access to a fail-stop secure topology-hiding broadcast
with a leakage function, the naive thing to do to compose broadcasts
is run both broadcasts, either in parallel or sequentially. So, consider
composing two broadcasts together, first in parallel. Each protocol is
running independently, and so if there is an abort, the simulator will need
to query the leakage function twice, unless we can make the specific claim
that the leakage function will output a correlated bit for independent
instances given the same abort (note that our construction does not have
this property).

If we run the protocols sequentially, we’ll need to make a similar claim.
If we are simulating this composition and there is both an abort in the first
broadcast and the second, then we definitely need to query the leakage
function for the first abort. Then, unless we can make specific claims
about how we could start a broadcast protocol after there has already
been an abort, we will need to query the leakage oracle again.

E.2.1 All-to-all Multibit Broadcast
We show how to edit the protocol BC-FBp to implement all-to-all multibit
broadcasts, meaning we can broadcast k multibit messages from k not-
necessarily distinct parties in a single broadcast. The edited protocol
leaks a fraction p of a bit in total. While this transformation is not
essential to compile MPC protocols to topology-hiding ones, it will cut
down the round complexity by a factor of n times the size of a message.

First observe that BC-FBp actually works also to broadcast multiple
bits. Instead of sending a single bit during the random-walk protocol, it
is enough that parties send vectors of ciphertexts. That is, in each round
parties send a vector [b1⃗, . . . , bℓ⃗, u].
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Now we show how to achieve an all-to-all broadcast. Assume each
party Pi wants to broadcast some k-bit message, (b1, . . . , bk). We consider
a vector of length nk, where each of the n parties is assigned to k slots
for k bits of its message. Each of the vectors bi⃗ in the vector [b1⃗, . . . , bℓ⃗, u]
described above will be of this form. Pi will use the slots from n(i − 1)
to ni to communicate its message. This means that Pi will have as input
vector bi⃗ = (0, . . . , 0, b1, . . . , bk, 0, . . . , 0). Then, in the Aggregate Stage,
the parties will input their input message into their corresponding slots
(by homomorphically OR’ing the received vector with its input message).
At the end of the protocol, each party will receive the output containing
the broadcast message of each party Pj in the slots n(j − 1) to nj.

Lemma E.2.1. Protocol BC-FBp can be edited to an all-to-all multi-bit
broadcast MultibitBCp, which is secure against an adversary, who stati-
cally passively corrupts and adaptively crashes any number of parties and
leaks at most a fraction p of a bit. The round complexity of MultibitBCp

is the same as for BC-FBp.

Proof. This involves the following transformation of protocol BC-FBp.
Note that BC-FBp is already multibit; during the random-walk protocol,
parties send around vectors of ciphertexts: [b⃗, u] := [b1, . . . , bℓ, u]. In the
transformed protocol we will substitute each ciphertext encrypting a bit
bi with a vector of ciphertexts of length m, containing encryptions of a
vector of bits bi⃗ . That is, we now think of parties sending a vector of
vectors [b1⃗, . . . , bℓ⃗, u]. Technically, we “flatten” these vectors, that is, the
parties will send vectors of length mℓ + 1 of ciphertexts.

Let us now explain the transformation. For an all-to-all broadcast,
each party, Pi, wants to broadcast some k-bit message, (b1, . . . , bk). Con-
sider a vector of ciphertexts of length nk, where each of the n parties is
assigned to k slots for k bits of its message. Each of the vectors bi⃗ in the
vector [b1⃗, . . . , bℓ⃗, u] described above will be of this form. Pi will use the
slots from n(i− 1) to ni to communicate its message.

We now have a look at the Aggregate Stage in the transformed pro-
tocol MultibitBCp.

• Every party Pi who wants to send the k bit message (b1, . . . , bk) pre-
pares its input vector bi⃗ = (0, . . . , 0, b1, . . . , bk, 0, . . . , 0) by placing
the bits b1, . . . , bk in positions from n(i− 1) to ni.
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• At the beginning of the Aggregate Stage, the recipient Po with the
input vector bo⃗ sends the ciphertext [bo⃗ ∨uo, 1⃗, . . . , 1⃗, uo]pk(1)

i→1
to its

first neighbor. All other ciphertexts to all other neighbors j are just
[1⃗, . . . , 1⃗, 1]pk(1)

i→j

1.

Every other party Pi starts the protocol with sending the ciphertext
tuple [1⃗, . . . , 1⃗, 1]pk(1)

i→j

to every neighbor j.

• Upon receiving a ciphertext [b⃗1, . . . , b⃗ℓ, u]
pk

(t)
j→i

at round r from a

neighbor j, party Pi takes its input vector bi⃗ and homomorphically
OR’s the vector (bi⃗ ∨ ui, . . . , bi⃗ ∨ ui, ui) containing ℓ copies of the
vector bi⃗ ∨ ui to the ciphertext. The result is sent along the walk.

The rest of the protocol MultibitBCp proceeds analogously to BC-FBp.
A quick check of correctness tells us that when a message is not made

unhappy, and starts with 0’s in the appropriate places, every party’s
broadcast message eventually gets OR’d in a different spot in the message
vector, and so every party will get that broadcast.

A quick check of soundness tells us that the simulator works just as
before: it simulates with the encrypted output (all nk bits) when there
was no abort, and with a query to the leakage function if there was one.

E.2.2 Sequential Execution Without Aggregated
Leakage

We show how to construct a protocol, which implements any number
of sequential executions of the protocol MultibitBCp, while preserving
the leakage of a fraction p of a bit in total. The construction makes
non-black-box use of the unhappy bits used in MultibitBCp. The idea is
simply to preserve the state of the unhappy bits between sequential exe-
cutions. That is, once some party sees a crash, it will cause all subsequent
executions to abort.

Lemma E.2.2. There exists a protocol, which implements any number k
of executions of the protocol MultibitBCp, is secure against an adversary,

1We are abusing notation: bo⃗ ∨ uo means that we OR ui with every coordinate in
b⃗.
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who statically passively corrupts and adaptively crashes any number of
parties and leaks at most a fraction p of a bit in total. The complexity of
the constructed protocol is k times the complexity of MultibitBCp.

Proof. The construction makes non-black-box use of the unhappy bits
used in MultibitBCp. The idea is simply to preserve the state of the
unhappy bits between sequential executions. That is, once some party
sees a crash, it will cause all subsequent executions to abort.

Correctness and complexity of the above construction are trivial, since
it simply executes the protocol MultibitBCp k times.

We now claim that any leakage happens only in the one execution of
protocol MultibitBCp, in which the first crash occurs. Once we show this,
it is easy to see that the constructed protocol executing MultibitBCp k
times leaks at most a fraction p of a bit.

By Theorem 9.3.2, any execution without crashes causes no leakage
(it an be easily simulated as in the setting with only passive corruptions
and no fail-stop adversary). Further, assume that any party Pc crashes
before BC-FBp starts. Let NG(a) be all of Pa’s neighbors; all of them
will have their unhappy bit set to 1. Because of the correctness of the
random-walk protocol embedded within BC-FBp, the random walk will
hit every node in the connected component, and so is guaranteed to visit
a node in NG(a). Therefore, every walk will become a dummy walk,
which is easily simulated.

Remark. We note that the above technique to sequentially execute pro-
tocols which leak p bits and are secure with abort can be applied to a
more general class of protocols (in particular, not only to our topology-
hiding broadcast). The idea is that if a protocol satisfies the property
that any abort before it begins implies that the protocol does not leak
any information, then it can be executed sequentially leaking at most p
bits.

E.2.3 Topology-Hiding Computation
We are now ready to compile any MPC protocol (secure against an adver-
sary, who statically passively corrupts and adaptively crashes any number
of parties) into one that is topology-hiding and leaks at most a fraction
p of a bit.
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To do this, it is enough to do a standard transformation using public
key infrastructure. Let ΠMP C be a protocol that runs in M rounds. First,
the parties use one all-to-all multi-bit topology-hiding broadcast protocol
to send each public key to every other party. Then, each round of ΠMP C

is simulated: the parties run n all-to-all multi-bit topology hiding broad-
casts simultaneously to send the messages sent in that round encrypted
under the corresponding public keys. After the broadcasts, each party
can use their secret key to decrypt their corresponding messages.

Theorem E.2.3. Assume PKCR exists. Then, we can compile any MPC
protocol ΠMP C that runs in M rounds into a topology-hiding protocol with
leakage function LF Bp

, that runs in MR+1 rounds, where R is the round
complexity of BC-FBp. 2

Proof. Recall the generic transformation for taking UC-secure topology-
hiding broadcast and compiling it into UC-secure topology-hiding MPC
using a public key infrastructure. Every MPC protocol with M rounds,
ΠMP C , has at each round each party sending possibly different messages
to every other party. This is a total of O(n2) messages sent at each round,
but we can simulate this with n separate multi-bit broadcasts.

To transform ΠMP C into a topology-hiding protocol in the fail-stop
model, given a multi-bit topology-hiding broadcast, we do the following:

• Setup phase. The parties use one multi-bit topology-hiding broad-
cast to give their public key to every other party.

• Each round of ΠMP C . For each party Pi that needs to send a mes-
sage of k bits to party Pj , Pi encrypts that message under Pj ’s
public key. Then, each party Pi broadcasts the n − 1 messages it
would send in that round of ΠMP C , one for each j ̸= i, encrypted
under the appropriate public keys. That is, Pi is the source for
one multi-bit broadcast. All these multi-bit broadcasts are simulta-
neously executed via an all-to-all multi-bit broadcast, where each
party broadcast a message of size (n− 1)k times.
After the broadcasts, each node can use their secret key to decrypt
the messages that were for them and continue with the protocol.

2In particular, the complexity of BC-FBp is n · ρ · 2T, where κ is the security
parameter, τ = log(n) + κ, T = 8n3τ is the length of a walk and ρ = τ/(p′ − 2−τ ) is
the number of repetitions of a phase (with p′ = 1/⌊1/p⌋).



E.2. FROM BROADCAST TO THC 237

• At the end of the protocol, each party now has the output it would
have received from running ΠMP C , and can compute its respective
output.

First, this is a correct construction. We will prove this by inducting
on the rounds of ΠMP C . To start, all nodes have all information they
would have had at the beginning of ΠMP C as well as public keys for all
other parties and their own secret key. Assume that the graph has just
simulated round r − 1 of ΠMP C and each party has the information it
would have had at the end of round r− 1 of ΠMP C (as well as the public
keys etc). At the end of the r’th simulated round, each party Pi gets
encryptions of messages sent from every other party Pj encrypted under
Pi’s public key. These messages were all computed correctly according
to ΠMP C because all other parties had the required information by the
inductive hypothesis. Pi can then decrypt those messages to get the
information it needs to run the next round. So, by the end of simulating
all rounds of ΠMP C , each party has the information it needs to complete
the protocol and get its respective output.

Security of this construction (and, in particular, the fact that it
only leaks a fraction p of a bit) follows directly from Lemma E.2.1 and
Lemma E.2.2.

We can now conclude that any MPC functionality can be implemented
by a topology-hiding protocol. Since PKCR is implied by either DDH,
QR or LWE, we get the following theorem as a corollary.

Theorem 9.1.1. If DDH, QR or LWE is hard, then any MPC func-
tionality F can be realized by a topology-hiding protocol which is secure
against an adversary that does any number of static passive corruptions
and adaptive crashes, leaking an arbitrarily small fraction p of a bit. The
round and communication complexity is polynomial in κ and 1/p.

Proof. Because every poly-time computable functionality F has an MPC
protocol [CLOS02], we get that Theorem E.2.3 implies that we can get
topology-hiding computation. The round and communication complexity
is implied by Theorem E.2.3 and the complexity of MultibitBCp.
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E.3 Deeply Fully-Homomorphic Public-Key
Encryption

We present the formal definition of a deeply fully-homomorphic public-
key encryption from Section 9.5.1.

Our protocol requires a PKE scheme E where (a) one can add and
remove layers of encryption, while (b) one can homomorphically com-
pute any function on encrypted bits (independent of the number of lay-
ers). This will be captured by three additional algorithms: AddLayerr,
DelLayerr, and HomOpr, operating on ciphertexts with r layers of encryp-
tion (we will call such ciphertexts level-r ciphertexts). A level-r cipher-
text is encrypted under a level-r public key (we assume that each level
can have different key space).

Definition E.3.1. A deeply fully-homomorphic public-key encryption
(DFH-PKE) scheme is a PKE scheme with three additional algorithms
AddLayerr, DelLayerr, and HomOpr. We define additional public-key
spaces PKr and ciphertext spaces Cr, for public keys and ciphertexts
on level r. We require that PK1 = PK and C1 = C. Let F be the family
of efficiently computable functions.

• The algorithm AddLayerr : C∗
r×PKr×SK → C∗

r+1×PKr+1 takes as
input a level-r ciphertext JmKpk, the corresponding level-r public
key pk, and a new secret key sk. It outputs a level-(r+1) ciphertext
and the level-(r + 1) public key, under which it is encrypted.

• The algorithm DelLayerr : C∗
r+1×PKr+1×SK → C∗

r ×PKr deletes
a layer from a level-(r + 1) ciphertext.

• The algorithm HomOpr : C∗
r × PKr × F → Cr takes as input some

k level-r ciphertexts encrypted under the same level-r public key,
the corresponding public key, and a k-ary function f . It outputs a
level-r ciphertext that contains f of the encrypted messages.

For convenience, it will be easy to describe the security of our en-
hanced encryption scheme with the help of an algorithm Leveled-Encryptr,
which takes as input a vector of plain messages and a level-r public key,
and outputs a vector of level-r ciphertexts3.

3This algorithm can be obtained by keeping an encryption of 0 and 1 as part of
the leveled public key and rerandomizing the ciphertext using HomOpr.
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Definition E.3.2. For a DFH-PKE scheme, we additionally define the
algorithm Leveled-Encryptr : M∗ × PKr → C∗

r × PKr that outputs the
level-r encryptions of the messages m⃗ and the corresponding level-r public
key.

Intuitively, we will require that one cannot obtain any information
on the underlying layers of encryption from the output of AddLayerr

(DelLayerr). That is, that the output of AddLayerr (DelLayerr) is indis-
tinguishable from a level-(r + 1) (level-r) encryption of the message. We
will also require that the output of HomOpr is indistinguishable from a
level-r encryption of the output of the functions applied to the messages.

Definition E.3.3. We require that a DFH-PKE scheme satisfies the
following properties:

Aggregate Soundness. For every r, every vector of messages m⃗ and
every efficiently computable pair of level-r public keys pk1 and pk2,

{AddLayerr(Jm⃗Kpk1 , pk1, sk; U∗) : (pk, sk)← Keygen(1κ; U∗)}

≈c{
(Leveled-Encryptr+1(m⃗, pk′

2; U∗), pk′
2) : (pk, sk)← Keygen(1κ; U∗),

(J0Kpk′
2
, pk′

2)← AddLayerr(J0Kpk2 , pk2, sk; U∗)

}

Decrypt Soundness. For every r, every vector m⃗ and every efficiently
computable level-r public key pk1,
{

DelLayerr(Jm⃗Kpk, pk, sk; U∗) : (pk, sk)← Keygen(1κ; U∗),
(J0Kpk, pk)← AddLayerr(J0Kpk1 , pk1, sk; U∗)

}
≈c

{(Leveled-Encryptr(m⃗, pk1; U∗), pk1)}

Full-Homomorphism. For every vector of messages m⃗ ∈ M∗, every
level-r public key pk, every vector of ciphertexts c⃗ ∈ C∗ and every
function f ∈ F where Leveled-Encryptr(m⃗, pk) = c⃗,

{(m⃗, c⃗, pk, f, Leveled-Encryptr(f(m⃗), pk; U∗))}

≈c

{(m⃗, c⃗, pk, f, HomOpr(c⃗, pk, f ; U∗))}
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Note that AddLayerr and DelLayerr produce both the level-r encrypted
messages and the level-r public key. In the case where we only need the
public key, we will just call the procedure AddLayerr(J0Kpk, pk, sk), since
the encrypted message does not matter for producing a new public key

— the same applies for DelLayerr.
Also note that one can create a level-r public key generating r level-1

key pairs (pki, ski) ← Keygen(1κ) and using AddLayer to add the public
keys one by one. Furthermore, with all secret keys (sk1, . . . , skr) used in
the creation of some level-r public key pk, we can define a combined level-
r secret key sk = (sk1, . . . , skr), which we can use to decrypt a level-r
ciphertext by calling DelLayer r times.

E.3.1 Instantiation of DFH-PKE from FHE
We show how to instantiate DFH-PKE from FHE. As required from the
DFH-PKE scheme, the level-1 public key space and ciphertext space are
the FHE public key space and FHE ciphertext space respectively, i.e.,
PK1 = PK and C1 = C. For r > 1, a level-r public key and ciphertext
spaces are PKr = PK × C and Cr = C, respectively.
Notation. We denote by FHE.Enc(m, pk) the FHE encryption algorithm
that takes message m and encrypts under public key pk. In the same
way, the FHE decryption algorithm is denoted by FHE.Dec. The FHE
evaluation algorithm is defined as

FHE.HomOp([m1, . . . , mn]pk, pk, f) := [f(m1, . . . , mn)]pk.

It gets as input a vector of encrypted messages under pk, the public key
pk and the function to evaluate, and it returns the output of f applied
to the messages.

In the following we define the algorithms to add and delete layers of
encryption. Both algorithms receive as inputs a vectors of ciphertexts, a
leveled public key and a secret key.

Let pk be the corresponding public key of sk.
c′

i ← FHE.Enc(ci, pk).
pk′ ← (pk, FHE.Enc(pk, pk)).

Algorithm AddLayerr((c1, . . . , cn), pk, sk)
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return ((c′
1, . . . , c′

n), pk′).

Parse pk′ = (pk, [pk]pk).
pk← FHE.Dec([pk]pk, sk).
ci ← FHE.Dec(c′

i, sk).
return ((c1, . . . , cn), pk).

Algorithm DelLayerr((c′
1, . . . , c′

n), pk′, sk)

Notice the recursive nature of leveling; to make notation less cum-
bersome, let pkr = (pkr, [pkr−1, [. . . [pk1]pk2 . . . ]pkr−1 ]pkr

), and JmKpkr

denotes the leveled ciphertext, i.e., JmKpkr
= [[. . . [m]pk1 . . . ]pkr−1 ]pkr

.
Hence, it is easy to see that the two algorithms above accomplish the
following:

AddLayerr(Jm⃗Kpkr
, pkr, skr+1) = (Jm⃗Kpkr+1 , pkr+1)

and
DelLayerr(Jm⃗Kpkr+1 , pkr+1, skr) = (Jm⃗Kpkr

, pkr)

In the following, we show how to apply any function f on any vector
of level-r ciphertexts. It is clear that if the ciphertexts are level-1 cipher-
texts, we can apply f using FHE directly. If the ciphertexts are level-r
ciphertexts for r > 1, we FHE evaluate the ciphertexts and public key
with a recursive function call on the previous level. More concretely, we
use the following recursive algorithm to apply f to any vector of level-r
ciphertexts:

if r = 1 then
Parse pk = pk.
return FHE.HomOp((c1, . . . , cn), pk, f).

Parse pk = (pk, [pkr−1]pk), ci = [c′
i]pk.

Let f ′(·, ·) := HomOpr−1(·, ·, f).
return FHE.HomOp(([(c′

1, . . . , c′
n)]pk, [pkr−1]pk), pk, f ′).

Algorithm HomOpr((c1, . . . , cn), pk, f)
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Lemma E.3.4. For any r, algorithm HomOpr is correct on leveled ci-
phertexts.

Proof. We want to show that for a vector of level-r ciphertexts c⃗ = Jm⃗Kpk ,
HomOpr(c, pk, f) = Jf(m⃗)Kpk . We will prove this via induction on r.

For the base case, consider r = 1. Here we go into the if statement,
and the algorithm returns FHE.HomOp([m⃗]pk, pk, f) = [f(m⃗)]pk by the
correctness of the FHE scheme.

Now, assume that HomOpr−1(Jm⃗Kpkr−1 , pkr−1, f) = Jf(m⃗)Kpkr−1 for
all messages m⃗ encrypted under r− 1 levels of keys. Calling HomOpr onJm⃗Kpkr

results in returning

FHE.HomOp((Jm⃗Kpkr
, [pkr−1]pkr

), pkr, HomOpr−1(·, ·, f))
= [HomOpr−1(Jm⃗Kpkr−1 , pkr−1, f)]pkr

= Jf(m⃗)Kpkr

by correctness of the FHE homomorphic evaluation.

We are also able to encrypt in a leveled way by exploiting the fully-
homomorphic properties of the scheme, using the FHE.HomOp algorithm
to apply encryption.

if r = 1 then
Parse pk = pk
return (FHE.Enc(mi, pk))i

Parse pk = (pk, [pkr−1]pk).
Let [m⃗]pk = (FHE.Enc(mi, pk))i.
return FHE.HomOp(([m⃗]pk, [pkr−1]pk), pk, Leveled-Encryptr−1)

Algorithm Leveled-Encryptr(m⃗, pk)

Finally, we need to prove that adding a fresh layer is equivalent to
looking like a fresh random encryption.

Lemma E.3.5. Leveled-Encryptr(m⃗, pkr) = Jm⃗Kpkr
.

Proof. We will prove this by induction on r. For r = 1, it follows from
the base case that

Leveled-Encrypt1(m⃗, pk1) = FHE.Enc(m⃗, pk1) = Jm⃗Kpk1 .
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Now, assume that for r−1, Leveled-Encryptr−1(m⃗, pkr−1) = Jm⃗Kpkr−1 .
This means that when we call Leveled-Encryptr(m⃗, pkr), we return

FHE.HomOp([m⃗]pkr
, [pkr−1]pkr

, pkr, Leveled-Encryptr−1)
= [Jm⃗Kpkr−1 ]pkr

= Jm⃗Kpkr
,

as desired.

Lemma E.3.6. The instantiation of DFH-PKE from FHE presented
above satisfies the properties Aggregate Soundness, Decrypt Soundness
and Full-Homomorphism, presented in Definition E.3.3.

Proof. Aggregate Soundness. The algorithm AddLayer returns a pair
(Jm⃗Kpk , pk′), where m⃗ is a vector, and pk′ = (pk, FHE.Enc(pk, pk)) is a
pair containing a fresh public key pk and an encryption of a level-r key pk
under the fresh public key pk. Observe that this is exactly a level-(r + 1)
key.

The tuple (Leveled-Encryptr+1(m⃗, pk1; U∗), pk1), where pk1 is a level-
(r+1) public key obtained from adding a fresh layer to a level-r public key,
has the same distribution: the first part of both tuples contain fresh FHE
encryptions of level-r ciphertexts, and the second part is a level-(r + 1)
public key.

Decrypt Soundness. This property is trivially achieved given the cor-
rectness of the FHE decryption algorithm and Leveled-Encryptr.

Full-Homomorphism. The Leveled-Encryptr algorithm returns a level-
r encryption of f(m⃗) which is the result of applying FHE homomorphic
operations on a level-r ciphertext. The algorithm HomOpr also returns
a level-r ciphertext output by the FHE homomorphic operation.

E.4 THC from DFH-PKE
In this section, we present a detailed description of protocol DFH-THC
from Section 9.5.2.

We will use DFH-PKE to alter the RandomWalkPhase protocol (and
by extension we can alter ProbabilisticRandomWalkPhasep). Then, execut-
ing protocols BC-OB and BC-FBp that leak one bit and a fraction of a bit
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respectively will be able to evaluate any poly-time function instead, while
still leaking the same amount of information as a broadcast using these
random walk protocols. The concept is simple. During the Aggregate
Stage, parties will add a leveled encryption of their input and identifying
information to a vector of ciphertexts, while adding a layer — we will not
need sequential id’s if each party knows where their input should go in
the function. Then, at the end of the Aggregate Stage, nodes homomor-
phically evaluate f ′, which is the composition of a parsing function, to
get one of each input in the right place, and f , to evaluate the function
on the parsed inputs. The result is a leveled ciphertext of the output of
f . This ciphertext is un-layered in the Decrypt Stage so that by the end,
the relevant parties get the output.

For completeness, we give a detailed description of the modified proto-
col RandomWalkPhase leaking one bit, denoted DFH-RandomWalkPhase:

Initialization Stage. Each party Pi has its own input bit bi and unhap-
piness bit ui. Each party Pi knows the function f on n variables
that the graph wants to compute, and generates T · di keypairs and
T−1 permutations on di elements (di is the number of neighbors for
party i). Pi also generates a unique ID (or uses a given sequential
or other ID) pi. If party Pi witnessed an abort from the last phase,
it becomes unhappy, setting its unhappy bit ui = 1.

Aggregate Stage. Round 1. Each party Pi sends to each neighbor Pj

a vector of level-1 ciphertexts under pk(1)
i→j containing the input bit

bi, id pi, unhappy bit ui and a bit vi indicating whether the walk
is dummy or not.
If Pi is the party that gets the output in that phase, i.e., Pi = Po,
then it sends to the first neighbor an encryption of bi, pi, ui and a
bit vi = 0 indicating that the walk should not be dummy. To all
other neighbors, vi = 1. In the case where Pi ̸= Po, vi = 1 as well.

Round r ∈ [2, T ]. Let k = π
(r)
i (j). Upon receiving a vector of level-

(r−1) ciphertexts from Pj . Party Pi uses sk(r)
i→k to add a fresh layer

with AddLayer to the vector of ciphertexts. The function AddLayer
will return the vector c⃗ of level-r ciphertexts with the corresponding
level-r public key pk. Then, Pi will encrypt its own input, id
and unhappybit via Leveled-Encrypt under pk and appends these
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ciphertexts to c⃗. It then sends to Pk the level-r public key and all
the level-r ciphertexts.
If no vector of ciphertexts was received from Pj (i.e. Pj aborted),
Pi generates a fresh level-r public key pk and secret key sk. It then
generates a vector of level-r ciphertexts containing the bit 1 using
Leveled-Encrypt under pk. The size of this vector corresponds to
the size of the vector containing the dummy bit, r input bits, r ids,
and r unhappy bits.

Evaluation. We are now at the last step in the walk. If Pi received
an encrypted vector of level-T ciphertexts from Pj , it evaluates the
vector using HomOpT on the function f ′ which does the following:
if the dummy bit is 1 or any unhappy bit set to 1, the function
evaluates to ⊥. Otherwise, it arranges the inputs by ids and evalu-
ates f on the arranged inputs. That is, it evaluates f ◦parse, where
parse((mi1 , pi1), . . . , (miT

, piT
)) = (m1, . . . , mn). More concretely,

for the vector of ciphertexts c⃗ and level-T public key pk received
from Pj , Pi evaluates ĉ← HomOp(c⃗, pk, f ′), and sends ĉ to Pj .
If Pi did not receive a message from Pj , or ui has been set to 1, Pi

sends a ciphertext containing ⊥: it generates a fresh level-T public
key pk and secret key sk, and uses Leveled-Encrypt under pk to
send to Pj a level-T ciphertext containing ⊥.

Decrypt Stage. Round r ∈ [T, 2] If Pi receives a level-r ciphertext c
from Pj , party Pi will delete a layer using the secret key sk(r)

i→j that
was used to add a layer of encryption at round r of the Aggregate
Stage. Otherwise, it uses Leveled-Encrypt to encrypt the message
⊥ under the level-(r − 1) public key that was received in round r
during the Aggregate Stage.

Output. If Pi is the party that gets the output in that phase, i.e., Pi =
Po and it receives a level-1 ciphertext c from its first neighbour,
Pi computes the output message using Decrypt using the secret key
sk(1)

i→1. In any other case, Pi outputs ⊥. Pi also outputs its unhappy
bit ui.

Now, DFH-THC runs the protocol DFH-RandomWalkPhase n times,
similarly to BC-OB.
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Each party Pi sets outputi = 1 and ui = 0.
for o from 1 to n do

Parties jointly execute
(
(inputtemp

i , utemp
i )Pi∈P

)
=

DFH-RandomWalkPhase(T, Po, (di, inputi, ui)Pi∈P , f).
Party Po sets outputo = inputtemp

o .
Each party Pi sets ui = utemp

i ∨ ui.
Each party Pi outputs outputi if outputi ̸= ⊥.

Protocol DFH-THC(T, (di, inputi)Pi∈P , f)

Theorem 9.5.1. For security parameter κ, τ = log(n) + κ, T = 8n3τ ,
and ρ = τ/(p′−2−τ ), where p′ = 1/⌊1/p⌋, the protocol DFH-THC topology-
hidingly evaluates any poly-time function f , FLF Bp

info ||f in the N hybrid-
world.

Sketch. This proof will look almost exactly like the proof of Theorem 9.3.2.
The simulator and its use of the leakage oracle will behave in nearly the
same manner as before.

• During the Aggregate Stage, the simulator sends leveled encryp-
tions of 1 of the appropriate size with the appropriate number of
layers.

• During the Decrypt Stage, the simulator sends the output encrypted
with the appropriate leveled keys.

Because Leveled-Encryptr is able to produce a distribution of ciphertexts
that looks identical to AddLayerr, and by semantic security of the FHE
scheme, no party can tell what other public keys were used except the
most recently added one, the simulated ciphertexts and public keys are
computationally indistinguishable from those in the real walk. It is also
worth pointing out that as long as the FHE scheme only incurs additive
blowup in error and size, and T = poly(κ), the ciphertexts being passed
around are only poly(κ) in size.
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Chapter 10

Expand-and-Extract: A
New Design for
Round-Efficient
Byzantine Agreement

10.1 Introduction
In the problem of Byzantine Agreement (BA), a set of n parties want
to agree on a common output y by running a distributed protocol. The
protocol must remain secure even when up to some t out of the n parties
are corrupted by arbitrarily deviating from the protocol. First formalized
in the seminal work of Lamport et al. [LSP82], BA is one of the most
fundamental problems in cryptography and distributed computing.

A key efficiency metric for high-performance BA protocols is their
round efficiency: how many coordinated rounds of communication are
needed to reach agreement? As proven by Dolev and Strong [DS83], no
deterministic BA protocol can run in less than t + 1 rounds. As first
demonstrated by Ben-Or [Ben83], and Rabin [Rab83], the lower bound
of Dolev and Strong does not apply to randomized protocols. Feldman
and Micali [FM97] (FM) gave the first expected-constant-round protocol
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with optimal resilience (t < n/3) and unconditional security. Expected-
constant-round protocols are important from both a theoretical and prac-
tical perspective. However, as proven by Dwork and Moses [DM90], and
Moses and Tuttle [MT88], they inherently cannot achieve simultaneous
termination, i.e., that all parties terminate the protocol during the same
communication round. This can make such protocols unwieldy when used
as building blocks in larger protocol contexts—as was for instance nicely
exposed by Lindell et al. [LLR02] or Cohen et al. [CCGZ16]. Hence, an
important implication of the FM paradigm also lies in its use to build pro-
tocols which achieve simultaneous termination, yet circumvent the lower
bound of Dolev and Strong: it immediately yields a protocol with error
probability at most 2−k and simultaneous termination in O(k) rounds.
Several protocols have subsequently improved over the round and com-
munication complexity of the original FM protocol, both with respect to
unconditional and computational security. In this work, we revisit and
refine the FM approach to obtain fixed-round protocols with improved
round complexity.

Refining the FM paradigm: expand and extract. Informally speak-
ing, FM achieves BA from a weaker type of agreement called graded con-
sensus (GC). In GC, parties output a grade g along with their output y,
where g indicates the party’s confidence in whether or not agreement on
y has been achieved. FM gives a GC protocol with grades {0, 1, 2} (grade
range 3). To achieve BA, instances of GC are alternated with a coin toss
until a certain termination condition is met. Our main contribution is
to present a generalized view of the FM paradigm which we refer to as
expand and extract.

Whereas FM uses a GC protocol with a grade range of 3, we give a
notion of GC called Proxcensus that allows for an arbitrary grade range
of k, and demonstrate protocols for k-grade Proxcensus for different cor-
ruption thresholds—the ‘expand’ step.

For the ‘extract’ step, we apply a different randomization method (as
opposed to the FM coin) that increases the per-iteration probability of
meeting the FM termination condition, based on the fact that we allow
for a higher grade range for GC.

Put together, we obtain improvements for randomized protocols in
various models, but, to avoid too many case distinctions, we focus on
the most interesting cases in this thesis. These cases assume a setup for
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threshold signatures among the parties. Protocol security is proven in
the random-oracle model.

Concretely, we give the following protocols for expand and extract:

• For t < n/3, we demonstrate a (perfectly secure) protocol for k-
grade Proxcensus requiring O(log k) communication rounds (for the
‘expand’ step). We then show how to achieve BA (with overwhelm-
ing probability) from a single instance of Proxcensus (with a grade
range exponential in the security parameter) and a (single) multival-
ued coin toss (via the ‘extract’ step)—in contrast to the traditional
FM approach in which several instances of GC (and coin tosses) are
iterated. This yields a binary BA protocol involving κ+1 rounds in
order to achieve a target error probability of 2−κ. The best known
fixed-round binary BA protocol [MV17] for t < n/3 requires 2κ
rounds to achieve the same target error probability. Both protocols
can be extended to any finite input domain at the expense of 2
additional communication rounds.

• For t < n/2, we demonstrate (computationally secure) protocols for
k-grade Proxcensus for the ‘expand’ step. One requires about k/2,
and another (roughly) about

√
k (yet much more complex than the

k/2-round version) communication rounds. Then we show how to
achieve BA from 3-grade Proxcensus, applying the same ‘extract’
step as above. Note, however, that for this case, we also have to
reiterate this process as in the original FM protocol. This yields a
binary BA protocol involving 3κ/2 rounds to achieve a target error
probability of 2−κ while the best known previous protocol [MV17]
for t < n/2 required 2κ rounds. Both protocols can be extended to
any finite input domain at the expense of 3 additional communica-
tion rounds.

For completeness, as this may be of independent interest, in the ap-
pendix, we also give protocols for k-grade Proxcast (the respective single-
sender version) computationally secure against t < n requiring k−1 com-
munication rounds—improving over the M-gradecast protocol by Garay
et al. [GKKO07]—which easily adapts to the player-replaceable setting
in [CM16] for t < n/2.



252 CHAPTER 10. A NEW DESIGN FOR ROUND-EFFICIENT BA

10.1.1 More on previous work
Protocols use different constructions for iterated randomization by use of
a distributed-coin subprotocol with different security guarantees. To give
a direct comparison between the basic BA constructions of prior art, we
interpret all of them as using an idealized coin (zero error and no bias)
requiring 1 round of communication and O(n2) message complexity in the
number of parties. Such coin protocols exist (except for negligible error)
under standard cryptographic assumptions and a random oracle [CKS05,
LJY14, LM18].

It should be noted that in order to achieve the claimed round com-
plexity improvements, our BA constructions require a coin that is ideal
(except for negligible error). Exploring improvements in settings where
the coin may fail with substantial probability is left for future work.

Chen and Micali [CM16] proposed an expected-9-rounds BA protocol
for a binary input domain achieving computational security for t < n/3.
Constant-round protocols with computational security for t < n/2 were
given in [FG03, KK06] (where the former, in contrast to the latter, relies
on specific computational-hardness assumptions). Micali and Vaikun-
tanathan [MV17] gave a (2κ + 3)-round computationally secure proto-
col with guaranteed termination and error probability ε = 2−κ (in an
ideal model with unforgeable signatures and a random oracle). Recently,
Abraham et al. [ADD+19] gave an expected 16-round protocol for BA
computationally secure against t < n/2 with expected message complex-
ity Θ(n2) improving over the prior expected 29-round protocol in [KK06]
with expected message complexity Θ(n3). Note that their gain in mes-
sage complexity is due to the use of threshold signatures (in contrast to
the protocol in [KK06]) which requires special setup assumptions. The
construction of [ADD+19] is based on the PBFT paradigm in [CL99]
(who gave a partially synchronous protocol for state-machine replication
safe against t < n/3 with guaranteed liveness in case of no corruptions).
PBFT is a deterministic iteration-based protocol where, in contrast to
the compact 2-round graded-consensus in the FM paradigm, each itera-
tion consists of a non-uniform sequence of 5 communication rounds. The
solution of [ADD+19] is essentially achieved by applying the election of a
random leader for each iteration, and by applying threshold signatures.

The concept of graded broadcast (and graded consensus) was gener-
alized to grades larger than 2 in [CFF+05], called proxcast – achieving
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stronger security properties with growing grade ranges. Our BA protocols
make use of this generalization.

In [GKKO07], a solution for a subclass of proxcast (called gradecast
with multiple grades therein) for t < n was given. We generalize their
construction to general proxcast (by example of its consensus variant we
call Proxcensus).

10.2 Model and Preliminaries
10.2.1 Communication and adversary model
We consider a synchronous communication network with authenticated
point-to-point channels. We describe the protocols as proceeding in a
series of rounds. A message sent by an honest party Pi at the beginning
of a round is guaranteed to be delivered by the end of that round. We
consider an adversary who can corrupt up to t parties in a malicious
(a.k.a. Byzantine) way. That is, a corrupted party may deviate from the
protocol arbitrarily.

We consider a strongly rushing, adaptive adversary who can corrupt
parties at any given point of the protocol execution. In every round of the
protocol, it can observe the messages that the honest parties sent before
choosing its own messages for that round. It has the following additional
capability: when it observes that an honest party P sends a message m
during some round i, it can immediately corrupt that party and replace
m with a message m′ of its choice (in particular, it can decide to drop
m).

10.2.2 Cryptographic primitives

Threshold signatures. We use a t-out-of-n threshold signature scheme
consisting of a tuple (DistKeyGen, SignShare, VerShare, Ver, Combine) of al-
gorithms that behave as follows.

• Protocol DistKeyGen is an interactive key generation protocol among
n parties. Parties take as input common public parameters, the se-
curity parameter κ, and the integers t and n, where 1 ≤ t ≤ n.
At the end of the protocol, all parties have as output the same
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public key pk, and each Pi holds a secret key ski. Note that all
existing protocols for key generation assume the existence of either
a broadcast channel or a trusted dealer.

• Given a message m and a secret key ski, one can use the function
SignShareski

(·) := SignShare(ski, ·) : {0, 1}∗ → {0, 1}κ to compute a
signature share σi = SignShareski

(m).

• Given the public key pk, one can use the function VerSharei
pk(·, ·) :=

VerShare(pk, i, ·, ·) : {0, 1}∗ × {0, 1}κ → {0, 1} to verify the validity
of a signature share σi; we say that a signature share σi for a
message m is valid if and only if VerShare(pk, σi, m) = 1.

• Given a set S of valid signature shares from t + 1 distinct parties,
it is possible to compute a signature Σ = Combine({σ}σ∈S).

• Given the public key pk, one can use the function Verpk(·, ·) :=
Ver(pk, ·, ·) : {0, 1}∗ × {0, 1}κ → {0, 1} to verify the validity of a
signature Σ; we say that a signature Σ for a message m is valid if
and only if Ver(pk, Σ, m) = 1.

As is common in the literature, we treat (threshold) signatures as ideal-
ized objects: we require that for any given threshold t, signatures remain
perfectly unforgeable for a message m, given t signature shares on m.
In reality, one can instantiate the scheme accordingly using any scheme
which is unforgeable under chosen-message attack and use a standard
hybrid argument to achieve security against a computationally-bounded
adversary. Moreover, we assume that all parties start the protocol after
the setup phase has been completed, i.e., they agree on a public key pk
and all hold secret keys with the properties described above.

Coin-Flip. We assume the availability of an atomic primitive CoinFlip
which, on input k, returns a uniform value Coink (uniform in some range
depending on the protocol of choice). Moreover, the value of Coink re-
mains uniform from the view of the adversary until the first honest party
has queried CoinFlip on input k. Such a primitive can easily be con-
structed from a threshold signature scheme with threshold t + 1 and
unique signatures per message and public key and assuming random or-
acle, such as the ones in [LJY14]. To obtain a uniform value on input
k, parties simply sign the value k and send their signature share to all
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parties. Parties can then hash the reconstructed signature on the value
k into a suitable domain to obtain a random value. Unforgeability of the
scheme ensures that until at least one honest party sends its share, the
value of Coink remains uniform from the adversary’s view. Uniqueness
ensures that all honest parties obtain the same coin.

10.2.3 Byzantine Agreement and Proxcensus
We first recall the definition of Byzantine agreement (BA).

Definition 10.2.1. A protocol among parties P where every party Pi

inputs a value xi ∈ D from some finite domain D, and, upon termination,
every party Pi ∈ P outputs a value yi ∈ D, achieves Byzantine agreement
iff the following conditions hold with overwhelming probability in κ:

Validity. If all honest parties Pi input the same value xi = x then they
all output yi = x.

Consistency. Any two honest parties Pi and Pj compute the same out-
put, yi = yj .

Termination. All honest parties eventually terminate the protocol.

Degraded versions of BA that require weaker conditions than Defini-
tion 10.2.1 were introduced in [Dol82, FM97] as building-blocks for more
powerful protocols. These versions can both be seen as accompanying
the output value with an additional grade value from a small domain
to express the degree of agreement achieved after the protocol execution.
In [CFF+05], this approach was generalized to arbitrary finite domains
along the following lines (yielding their definition of Proxcast, the single-
sender version of the following definition):

Definition 10.2.2. Let s ∈ N and G = ⌊ s−1
2 ⌋. A protocol among

parties P where every party Pi ∈ P inputs a value xi ∈ D from some
finite domain D, and, upon termination, every party Pi ∈ P outputs a
value yi ∈ D and a grade gi ∈ [0, G], achieves s-slot Proxcensus, or Proxs

iff the following conditions hold:

Validity. If all honest parties input the same value x ∈ D then every
honest party Pi outputs yi = x and gi = G.
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Consistency. For any two honest parties Pi and Pj :

• |gi − gj | ≤ 1.
• If s is odd: min(gi, gj) ≥ 1 ⇒ yi = yj .
• If s is even: max(gi, gj) ≥ 1 ⇒ yi = yj .

Termination. All honest parties eventually terminate the protocol.

Note that, for even (odd) s, a grade of at least 1 (2) implies agreement
detection with respect to the value y.

Proxs (see Fig. 10.1) can be seen as a functionality wherein all parties
output on one of s sequential slots such that all honest parties end up
in two adjacent slots (brace (a) in Figure 10.1), and all honest parties
decide on the maximally graded slot for their input value in case of pre-
agreement (brace (b) in Figure 10.1 in case of pre-agreement on z′).

Figure 10.1: Proxcensus for odd s (left) and even s (right).

In particular, the well-known special cases mentioned above are Prox3
known as Crusader Agreement [Dol82] and Prox5 known as graded con-
sensus [FM97] (originally defined in its single-sender broadcast version).

10.3 A Generalized Iteration Paradigm for
Byzantine Agreement

10.3.1 Revisiting the Feldman-Micali Construction
We give a high-level review of their fixed-round protocol variant with
respect to a binary input domain; assuming GC and the common coin as
black boxes. Note that, in contrast of GC (Prox5) for the expected-round
case, Prox3 is sufficient as a substitute for GC in the fixed-round case.
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Each party Pi starts every iteration with their initial input value
xi ∈ {0, 1}, and at the end of the iteration, overwrites xi for use during the
next iteration. Each protocol iteration consists of one execution of Prox3
on the inputs xi, yielding outputs yi, gi ∈ {0, 1}; followed by a common
coin c ∈ {0, 1}. At the end of the iteration, a party Pi overwrites their
input xi := yi if gi = 1 (keep the output of Prox3), and x := c if gi = 0
(adopt the value of the coin). At the end of the k protocol iterations,
each party Pi outputs xi.

Validity: If all honest parties start an iteration (the protocol) with the
same bit xi ≡ b then, by the validity of Prox3, they all hold xi = yi ≡ b
and gi ≡ 1 at the end of the iteration (the protocol).

Consistency: An iteration where an honest party outputs gi = 1 and
the coin yields c = yi (or all honest parties output gi = 0) puts the honest
parties into agreement. This event happens with probability at least 1/2.
Thus, by the validity argument above, the protocol fails to achieve BA
with a probability of at most 2−k.

10.3.2 Generalization
We propose a generalization of the Feldman-Micali iteration paradigm
and show how it can be applied to achieve faster Byzantine agreement
protocols. A generalized iteration with input x is composed of three
components:

Expansion. Execution of an s-slot Proxcensus: (z, g)← Proxs(x)

Coin-Flip. Execution of a multivalued coin-flip: Coin← CoinFlip

Extraction. A function f that takes as input (z, g, Coin) and out-
puts a value y, which is the output of the iteration.

Using this approach, we are able to substantially increase the probability
of agreement per iteration round. For simplicity, we focus on protocols us-
ing ideal coins, meaning that the coin-flip component is an ideal 1-round
multivalued coin-toss, which returns a uniform value with probability 1.
Such a coin can be instantiated (tolerating a negligible failure probability)
using unique threshold signatures in the random-oracle model [LJY14].
However, our techniques can similarly be applied with other coins.
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In the following, we show two binary fixed-round Byzantine agreement
protocols achieving a target error of 2−κ. The first tolerates t < n/3
corruptions, runs in κ + 1 rounds and uses a single coin-flip. The second
protocol tolerates t < n/2 and runs in 3

2 κ rounds. The protocols can be
made multivalued with an additional cost of 2 (resp. 3) rounds for the
case where t < n/3 (resp. t < n/2) [TC84].

10.3.3 Expansion
We show the two Proxcensus protocols used in the BA protocols. First, we
show a Proxcensus that tolerates up to t < n/3 corruptions and achieves
2r + 1 slots in r rounds. Second, we show a protocol for t < n/2 that
achieves 2r − 1 slots in r rounds. Further protocols for Proxcensus up
to t < n/2 (with quadratic number of slots w.r.t the number of rounds)
and for proxcast up to t < n (with linear number of slots) are shown in
Section F.1 and F.2 for completeness.

Proxcensus for t < n/3

We show an expansion technique with unconditional security, which al-
lows to expand a Proxcensus with s slots to a Proxcensus with 2s − 1
slots in one additional round. Applying the expansion technique iter-
atively, we obtain a Proxcensus protocol with exponential slots in the
number of rounds. The general idea is to run the Proxcensus protocol
with s slots, Proxs, and echo the result. We know that all honest parties
lie in two consecutive slots out of the s slots after Proxs. This implies
that, after the echo, there will be n − t values within two consecutive
slots s0 and s1. Then, two consecutive slots accumulating n − t votes
constitute two consecutive slots in the new range, where the particular
new slot is determined by which slot had n − 2t values (in case of a tie,
the upper slot is chosen). The parties then output the highest possible
slot. See Figure 10.2 for an illustrative example.

Let G = ⌊ s−1
2 ⌋ and b = (s mod 2). We describe the protocol from the

point of view of party Pi with input x.

Protocol Prox2s−1(Pi)
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1: Run Proxs(x). Let (z, h) denote the output value.
2: Send (z, h) to all parties. Denote as (zj , hj) the message received from

party Pj .
3: Output Determination:
4: yi := 0; gi := 0
5: S0 := {j : hj = 0}
6: Sz,g := {j : zj = z ∧ hj = g}
7: if b = 1 ∧ ∃z : |S0 ∪ Sz,1| ≥ n− t ∧ |Sz,1| ≥ n− 2t then
8: Set yi := z, gi := 1
9: for g = b to G− 1 do

10: if ∃z : |Sz,g ∪ Sz,g+1| ≥ n− t ∧ |Sz,g+1| ≥ n− 2t then
11: Set yi := z, gi := 2g + 2− b
12: else if ∃z : |Sz,g ∪ Sz,g+1| ≥ n− t ∧ |Sz,g| ≥ n− 2t then
13: Set yi := z, gi := 2g + 1− b
14: if ∃z : |Sz,G| ≥ n− t then
15: Set yi := z, gi := 2G + 1− b = ⌊ 2s−1

2 ⌋
16: Output (yi, gi)

Lemma 10.3.1. Let s ≥ 2. Protocol Prox2s−1 satisfies validity.

Proof. Suppose that all honest parties start with input v. Then, every
honest party obtains (v, G) as output of Proxs and send it to every party.
As a result, every honest party has |Sv,G| ≥ n− t and sets yi = v and the
maximal grade gi = 2G + 1− b = ⌊ 2s−1

2 ⌋.

Lemma 10.3.2. Let s ≥ 2. Protocol Prox2s−1 satisfies consistency.

Proof. Let Pi be an honest party that outputs yi with the maximal grade
gi among all honest parties.

We prove that |gi − gj | ≤ 1. Consider the case where gi > 1, as
otherwise it is trivial. We divide three cases for Pi:

• ∃z : |Sz,g ∪ Sz,g+1| ≥ n− t ∧ |Sz,g| ≥ n− 2t, where gi = 2g + 1− b.
If Sz,g+1 contains an honest party, since gi is maximal, all honest
parties sent (z, g) or (z, g + 1) after Proxs. In this case, any honest
Pj has gj = gi because gi is maximal. If all parties in Sz,g+1
are corrupted, this implies that there are at least n − 2t honest
parties in Sz,g and all honest parties are in Sz,g−1 ∪ Sz,g. Hence,
any honest Pj has |Sz,g−1 ∪ Sz,g| ≥ n − t ∧ |Sz,g| ≥ n − 2t, so
gj ≥ 2(g − 1) + 2− b = 2g − b ≥ gi − 1.
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Figure 10.2: Example of the Proxcensus expansion starting from Prox4
and Prox5, respectively, for binary values. The expanded Proxcensus have
7 and 9 slots respectively. Each row indicates the condition to achieve
each output written on the side. The red line indicates the region where
it is required that n − t echoed pairs are received, and the upper text
“n− 2t” indicates that n− 2t on that specific slot.

• ∃z : |Sz,g ∪Sz,g+1| ≥ n− t∧ |Sz,g+1| ≥ n− 2t, where gi = 2g + 2− b.
Here, any honest Pj also received |Sz,g ∪ Sz,g+1| ≥ n − t as gi is
maximal, and either |Sz,g| ≥ n − 2t or |Sz,g+1| ≥ n − 2t. Hence,
gj ≥ 2g + 1− b = gi − 1.

• ∃z : |Sz,G| ≥ n− t. Here, any honest Pj received |Sz,G−1 ∪ Sz,G| ≥
n − t, as honest parties obtain adjacent grades from Proxs, and
moreover |Sz,G| ≥ n− 2t. Hence, gj ≥ 2(G− 1) + 2− b = 2G− b ≥
gi − 1.

We prove that min(gi, gj) ≥ 1 ⇒ yi = yj . Note that the above argu-
ment also covers this statement if max(gi, gj) > 1. Hence, we consider
the case where gi = gj = 1. Towards a contradiction, assume that yi ̸= yj .
We divide two cases, depending on b:
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b = 1: In this case, from Pi we have that : |S0 ∪ Syi,1| ≥ n− t∧ |Syi,1| ≥
n − 2t. This means that there is an honest party P that had (yi, 1) as
output of Proxs. Symmetrically for Pj , there is also an honest party P ′

that had (yj , 1) as output of Proxs. This immediately contradicts the
consistency of Proxs.

b = 0: In this case, from Pi we have |Syi,0 ∪ Syi,1| ≥ n − t ∧ |Syi,0| ≥
n−2t > t. Symmetrically, from Pj we have |Syj ,0∪Syj ,1| ≥ n−t∧|Syj ,0| ≥
n − 2t > t. Since honest parties lie in adjacent slots, we know that all
honest parties lie in Syi,0∪Syj ,0. Moreover, we know that there are n−2t
honest parties in Syi,0 and another n − 2t honest parties in Syj ,0. This
leads to a contradiction, since Syi,0 ∪ Syi,1 contains n − t parties and in
addition Syj ,0 contains n−2t additional parties, which amount to a total
of n− t + n− 2t = 2n− 3t > n parties.

As a result, we obtain a Proxcensus protocol for the case of t <
n/3 corruptions that, given Proxs, in r additional rounds it achieves
Prox2r(s−1)+1. Interpreting the parties’ input configuration as the base
case Prox2 (setting gi ≡ 0), we obtain the following corollary.

Corollary 10.3.3. Let t < n/3. For any r ≥ 0, Prox2r+1 achieves
Proxcensus with 2r + 1 slots and perfect security. The protocol runs in r
rounds and has O(rn2) message complexity.

Proxcensus for t < n/2

We introduce a Proxcensus protocol that runs in r rounds and achieves
2r−1 slots. The protocol is similar to the proxcast in Section F.1 (adapted
to the agreement case): each party signs its input and sends it to all
parties. Then, each party tries to collect a threshold signature on a
value, and upon receiving such a threshold signature, it forwards it to all
parties. However, parties now send in addition an extra message ω at
the beginning of round two indicating whether a threshold signature Σ
was reconstructed in round one. At the end of round two, if n − t such
ω are received, one computes a threshold signature Ω that proves that
there was an honest party which reconstructed Σ. By propagating Ω, we
are able to increase the number of slots to 2r− 1. The way to determine
the output and grade is different: a party Pi sets its output to (y, g) if
it has a threshold signature Σ on y at round r − g, does not have any
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threshold signature on any y′ ̸= y by round g +1, and obtained the proof
Ω at round r − g + 1. See Table 10.1 for an example.

1|0 ?|0 ?|? 0|? 0|1
Ω 1|0 1|0 ?|? 0|1 0|1 Ω

1|0 Ω 1|? ?|? ?|1 Ω 0|1
(v,g): (0,2) (0,1) (⊥,0) (1,1) (1,2)

Table 10.1: Conditions for each slot in Prox5 for binary values. Row i
indicates the condition to be satisfied at the end of round i. b0|b1, b0, b1 ∈
{0, 1}, indicates whether a threshold signature Σ on 0 or 1 was received,
and ? indicates that anything could happen. Ω indicates that a proof Ω
was received.

Setup: Parties make use of a unique (n− t)-out-n threshold signature
scheme.
Party P starts with input v. Let Ik ⊂ [n] denote the parties that send
correctly formed messages m in round k, i.e., where m is of the form
{(x, Σ)|Verify(pk, Σ, x) = 1}. Initialize Ω2 := ⊥.

1: Round 1:
2: σ ← SignShare(sk, v).
3: Send (v, σ) to all parties. Denote as (v1

i , σ1
i ) the message received from

party Pi.
4: Set S1 := {(v, Σ)|∃k1, ..., kn−t : Σ1 ← Combine(σ1

k1 , . . . , σ1
kn−t

) ∧
Ver(pk, Σ1, v) = 1}.

5: if S1
i = {(v, Σ)} then

6: ω ← SignShare(sk, v)
7: Round 2:
8: Send S1 and ω to all parties. Denote as S1

i , ωi the values received from
party Pi

9: Set S2 :=
⋃

i∈I2
S1

i

10: if ∃k1, . . . , kn−t : ∀j : VerShare(pk, ωkj , v) = 1 then
11: Ω2 ← Combine(ωk1 , . . . , ωkn−t )
12: Rounds j = 3 to s:
13: Send Sj−1, Ωj−1 to all parties. Denote as Sj−1

i , Ωj−1
i the values received

from party Pi

Protocol Prox2r−1(P )
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14: Set Sj :=
⋃

i∈Ij
Sj−1

i ; Ωj :=
⋃

i∈Ij
Ωj−1

i

15: Output Determination:
16: y := 0; g := 0
17: for j = 1 to s− 1 do
18: if ∃z, j : (z, ·) ∈ Ss−j ∧ ∃Ω ∈ Ωs−j+1 : Verify(pk, Ω, z) = 1 ∧ ∀z′ ̸=

z : (z′, ·) /∈ Sj+1 then
19: Set y := z, g := j
20: Output (y, g)

Lemma 10.3.4. Let t < n/2 and r ≥ 3. Assuming unique threshold
signatures, Prox2r−1 achieves a (2r− 1)-slot Proxcensus in r rounds and
O(rn2) message complexity.

We prove validity and consistency in the following lemmas.

Lemma 10.3.5. Let r ≥ 3. Protocol Prox2r−1 satisfies validity.

Proof. Suppose that all honest parties start with input v. Observe that,
there is no threshold signature computed on any value v′ ̸= v. In the
first round, all honest parties send (v, σ0) and so all honest parties hold
S1 = {(v, Σ)} after the first round. Now, all honest parties compute a
signature share ω on v and send it to all parties, together with S1 in the
second round. Therefore, honest parties will all hold S2 = {(v, Σ)} in
round 2 and moreover are able to compute a threshold signature Ω2 in
that round. In each following round j = 3 to r, honest parties all send
Sj−1 and Ω, and so Sj = {(v, Σ)}. Therefore, all honest parties hold a
threshold signature Ω2 on v (that was computed in round two) and for all
honest parties, S1 = S2 = · · · = Sr = {(v, ·)}. Thus, all honest parties
output v, as required.

Lemma 10.3.6. Let r ≥ 3. Protocol Prox2r−1 satisfies consistency.

Proof. Let Pi be the honest party that outputs yi the maximal grade gi

among all honest parties.
We prove that |gi − gj | ≤ 1. Consider the case where gi > 1, as

otherwise the statement is trivial. From Pi, we know:

• (yi, ·) ∈ Sr−gi . This implies that any honest Pj has (yi, ·) ∈
Sr−gi+1.
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• There is Ω ∈ Ωr−gi+1 such that Verify(pk, Ω, yi) = 1. This implies
that any honest Pj received Ω and hence has stored Ω ∈ Ωr−gi+2.

• ∀z′ ̸= yi : (z′, ·) /∈ Sgi+1. This implies that any honest Pj has
∀z′ ̸= yi : (z′, ·) /∈ Sgi .

With the above facts, we see that any Pj has grade gj ≥ gi − 1.
Now we prove that min(gi, gj) ≥ 1 ⇒ yi = yj . Toward contradiction,
assume that yi ̸= yj . Since gi ≥ 1 (resp. gj ≥ 1), Pi (resp. Pj) obtained
a threshold signature Ω on yi (resp. yj) at round r − gi + 1 (resp. r −
gj + 1). This implies that there must be an honest party P that has sent
a signature share ω in round 2. This implies, that for P , yi ∈ S1, which
implies that also yi in S2 for Pj , which contradicts the requirement that
∀z′ ̸= yj : (z′, ·) /∈ S2.

10.3.4 Extraction
The extraction function can be interpreted pictorially as a cut that splits
the slots in Proxcensus at the position indicated by the coin into two
sides. If a party is placed at a position on the right (resp. left) side of
the coin, it will decide on the output value 1 (resp. 0) (see Figure 10.3).

More formally, let s be the number of slots in Proxcensus, G := ⌊ s−1
2 ⌋

be the maximal grade, and r := (s mod 2) be the remainder modulo 2
of s. The extraction function takes as input a binary value b ∈ {0, 1}, a
grade g ∈ [0, G] and a coin value c ∈ [1, s], and it outputs a binary value
f(b, g, c) ∈ {0, 1}, defined as follows:

f(b, g, c) =

{
1, if (b = 1 ∧ c ≤ g + G + 1− r) ∨ (b = 0 ∧ c ≤ G− g)
0, otherwise

10.3.5 Efficient Fixed κ-Round Byzantine Agreement
We put the pieces together and show an efficient binary BA protocol. Us-
ing standard techniques [TC84], one can achieve a multivalued Byzantine
agreement protocol with an additional cost of 2 (resp. 3) rounds when
t < n/3 (resp. t < n/2).
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Figure 10.3: Extraction function applied to Prox10. The coin takes values
from [1, 9]. If the slot (value b ∈ {0, 1} and grade g ∈ {0, 4}) lies in the
left (resp. right) side of the coin value c, the function f(b, g, c) outputs
the value y = 0 (resp. y = 1).

The idea is to run the expansion component with one of the Prox-
census protocols Proxs from Section 10.3.3, followed by a (s − 1)-valued
coin-flip, and the extraction function described in Section 10.3.4.

It is not hard to see that our approach allows to have an error per-
iteration which is inversely proportional to the number of slots in Prox-
census. More precisely, since honest parties lie in two adjacent slots after
the invocation of Proxs, there is only one possible coin value (out of s−1)
that lead to parties having different inputs.

The protocol is described from the point of view of party Pi and for
a general Proxcensus protocol with s slots.

Let G := ⌊ s−1
2 ⌋, and s be a positive number. Let f be the extraction

function from Section 10.3.4. Let b denote the input bit.
1: (b′, g)← Proxs(b)
2: c← CoinFlip // CoinFlip returns a uniform value in [1, s− 1]
3: Output f(b′, g, c)

Protocol Πs
iter(Pi)

Theorem 10.3.7. Let t < n. Πs
iter achieves binary Byzantine Agree-

ment against an adaptive, strongly rushing adversary with probability
1− 1

s−1 . The protocol makes a single invocation to Proxs and to a (s−1)-
valued ideal Coin-Flip protocol.

Proof. Validity. If all honest parties Pi input the same value b, then
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b′ = b and g = G by validity of Proxs. Parties then output b because
c ∈ [1, s − 1]. More concretely, if b′ = 1, then c ≤ 2G + 1 − j = s − 1,
so all parties output 1. And if b′ = 0, then all parties output 0 because
c > 0.

Consistency. Consistency of Proxs guarantees that any two honest par-
ties Pi and Pj lie on two consecutive slots. Parties only output different
bits if the coin fails or the coin splits the two slots into different sides.
Conversely, if the coin does not split the parties into different sides (which
happens with probability 1

s−1 ), then parties reach agreement. More con-
cretely, we consider the following cases where honest parties lie on two
consecutive slots (if all honest parties lie on the same slot, agreement is
reached regardless of the coin value):

• s even: If there are honest parties that obtain (0, 0) and (1, 0),
respectively, as output of Proxs, then parties output different bits
only if c = G + 1. Otherwise, assume that there are honest parties
that output (b′, g− 1) and (b′, g), 1 ≤ g ≤ G, respectively. If b′ = 1
(resp. b′ = 0), then parties output different bits only if c = g+G+1
(resp. c = G− g + 1).

• s odd: We only need to consider the case where honest parties
output (b′, g − 1) and (b′, g), 1 ≤ g ≤ G, respectively, since we
assume that not all honest parties lie on the same slot. If b′ = 1
(resp. b′ = 0), then parties output different bits only if c = g + G
(resp. c = G− g + 1).

Termination. Obvious.

We obtain the following corollary:

Corollary 10.3.8. Assuming unique threshold signatures and a 1-round
ideal Coin-Flip protocol, there are protocols that achieve binary Byzan-
tine Agreement with probability 1− 2−κ secure against a strongly rushing
adaptive adversary corrupting up to t parties, achieving the following:

• For t < n/3, it runs in κ + 1 rounds and has O(κn2) message
complexity. The protocol makes a single multivalued coin-flip invo-
cation.
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• For t < n/2, it runs in 3
2 κ rounds, and has O(κn2) message com-

plexity.

Proof. Case t < n/3: The statement follows from Theorem 10.3.7 and
the use of a 1-round 1-fair ideal Coin-Flip protocol, setting s = 2κ + 1,
and using the Proxcensus protocol that achieves s slots in κ rounds and
O(n2) message complexity from Corollary 10.3.3.
Case t < n/2: Security follows from Theorem 10.3.7 and the use of a 1-
round 1-fair ideal Coin-Flip protocol, setting the number of slots to s = 5
and running the protocol Πs

iter sequentially κ
2 times. Each invocation

to Πs
iter takes 3 rounds, where we run the 3-round Prox5 protocol from

Section 10.3.3, and the coin-flip in parallel to the third round of Prox5.
Note that after round 2 of Prox5, the slot-pair where the honest parties
lie is already fixed. The probability of not reaching agreement in each
invocation to Πs

iter is 1
4 = 2−2. Running the protocol sequentially κ

2 times
therefore allows to achieve agreement except with probability 2−2· κ

2 =
2−κ. The total number of rounds is 3

2 κ. The claim on message complexity
is inherited from the message complexity of the Proxcensus sub-protocol
from Section 10.3.3.

Efficiency Comparison with Micali and Vaikuntanathan [MV17].
We give a brief comparison with the most efficient, fixed-round protocol
that we are aware of in the n/3 and n/2 regime. To the best of our knowl-
edge, this is the protocol by Micali and Vaikuntanathan (MV) [MV17].
The binary version of their protocol requires 2κ rounds to achieve a ter-
mination error of 2−κ, and incurs a communication complexity of O(κn3)
complexity, even assuming threshold signatures.

Our protocol for t < n/3 requires only κ+1 rounds, with O(κn2) mes-
sage complexity. This means that we achieve the same error probability
within roughly half the number of rounds, and save a factor of n in the
message complexity.

Our protocol for t < n/2 regime requires 3
2 κ rounds and O(κn2) mes-

sage complexity, which gives an improvement of about 25% in the round
complexity, and a factor of n in the message complexity with respect to
MV.

Both our protocols and MV can be extended to arbitrary finite do-
mains with an additional cost of 2 (resp. 3) rounds when t < n/3
(resp. t < n/2) by applying the construction of Turpin and Coan [TC84].
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Finally, in context of MV and the Turpin-Coan construction, we ob-
serve an additional advantage of carefully adjusting the slot range of
Proxcensus. In their original model (standard signatures, player replace-
ability), the communication complexity of the MV protocol (for t < n/2)
can be reduced by a factor of n by substituting their 3-round {0, 1, 2}-
gradecast protocol by 3-round Prox4

s, the single-sender version of Prox4—
see Appendix F.1.



Appendix F

Details of Chapter 10

F.1 Efficient Generic Proxcast for t < n

In [GKKO07], under the notion M-gradecast, it was demonstrated how
to achieve s-round s-slot Proxcast for odd s secure against t < n. We
extend their result to achieving (s− 1)-round s-slot Proxcast for general
s ≥ 2, secure against t < n, using essentially the same construction.

Definition F.1.1. Let s ∈ N and G
△= ⌊ s−1

2 ⌋. A protocol among parties
P where a distinguished dealer (or sender) Pd ∈ P inputs a value xd ∈ D
from some finite domain D, and, upon termination, every party Pi ∈ P
outputs a value yi ∈ D and a grade gi ∈ [0, G], achieves s-slot proxcast,
or Proxd

s (or Proxs, in generic use) if and only if the following conditions
hold:

Validity. If the dealer Pd is honest then every honest party Pi outputs
yi = xd and gj = G.

Consistency. For any two honest parties Pi and Pj :

• |gi − gj | ≤ 1.
• min(gi, gj) ≥ 1 ⇒ yi = yj .
• if s = 2k (k ∈ N) and gi > 0 then yi = yj .

Proxcensus
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Let s = 2k + b, b ∈ {0, 1}. The protocol is similar to Dolev-Strong
broadcast with the difference that parties do not add their signatures. In
the first round, the dealer signs his input and sends the signed message
to every other player. For the next k − 1 rounds, the parties collect
all validating message/signature pairs originating from the dealer. If,
during any one of these rounds, a “new” valid message/signature pair is
received then this pair is sent to all parties (but only up to the second
time as the existence of two contradicting signed messages by the dealer
is sufficient to detect the dealer’s misbehavior). At the end, a player
accepts a message with grade g ∈ [0, G] if, at the end of any 2g + 1 − b
consecutive rounds, the same unique message/signature pair from the
dealer was seen; and on grade g = 0, otherwise.

Setup: Parties know the dealer’s public key pk, and the dealer has the
secret key sk as well.
Let G := ⌊ s−1

2 ⌋, and s := 2k + b for b ∈ {0, 1}.
The dealer Pd starts with input x.

1: Round 1: Dealer Pd sends (x, σ), σ = Signsk(x), to all Pj . Each party
Pi sets S1

i = {(z, σ) | Verpk(z, σ) = 1}.
2: for r = 2 to s− 1 do
3: Round r: Party Pi sends Sr−1

i . Receive Sr−1
j from each party Pj ,

and let Sr
i =

⋃
j

Sr−1
j .

4: yi := 0; gi := 0;
5: for g = 0 to G do
6: if ∃z, r : Sr

i = · · · = Sr+2g−b
i = {(z, σ)} then

7: Set yi := z, gi = g.
8: Pi outputs (yi, gi).

Protocol ΠProxcast(Pd, Pi)

Lemma F.1.2. Let t < n. Assuming that the dealer has a public-key
setup, ΠProxcast achieves a s-slot Proxcensus in s− 1 rounds and O(sn2)
message complexity.

Proof. Validity. If the dealer is honest, then each honest party Pi col-
lects the same set Sr

i = {(x, σ)} at the end of every round r.

Consistency. The cases s ≤ 3 are trivial — thus consider s > 3.
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• |gi − gj | ≤ 1: Consider a party Pi with a maximal grade gi > 1
among all honest parties (the case gi ≤ 1 is trivial). This means,
there are L = 2g+1−b > 2 consecutive rounds such that Sr

i = · · · =
Sr+2g−b

i = {(z, σ)}. We claim that every honest party Pj sees at
least L−2 > 0 such rounds, namely rounds r +1, . . . , r +2g− b−1:

– As Pi sees a unique (z, σ)-pair at round r + 2g − b, Pj cannot
have seen a conflicting pair in any round before as, otherwise,
he would have sent it to Pi.

– As Pi sees an (z, σ)-pair at round r, Pj sees it at round r + 1
as Pi sent it to Pj .

• min(gi, gj) ≥ 1 ⇒ yi = yj : Assume that gi > 0 for an honest
party Pi. This implies a sequence of at least two rounds such that
Sr

i = Sr+1
i = {(z, σ)}. As Sr

j ⊆ Sr+1
i , and the sets grow monotoni-

cally, it follows that there is no round r′ such that Sr′

j = {(z′, σ′)}
with z′ ̸= z. Hence, yj = yi or gj = 0.

• If s = 2k (k ∈ N) and gi > 0 then yi = yj : Assume an honest party
Pi with gi = 1 implying that there are L = 2g + 1− b = 2g + 1 ≥ 3
consecutive rounds such that Sr

i = · · · = Sr+2g−b
i = {(z, σ)}. Thus,

an honest party Pj sees at least one such round, and yj = yi due
to the monotone growth of the sets.

A player-replaceable variant for t < n/2. The above proxcast pro-
tocol for t < n relies on the fact that a player seeing a signature relays
it during the next round in order to make it public. With player re-
placement, this is not guaranteed anymore since the participating player
set is now different during every round. However, this can be compen-
sated for by lowering the threshold to t < n/2, and strengthening the
grade-determination condition

∃z, r : Sr
i = · · · = Sr+2g−b

i = {(z, σ)}

with the additional requirement that each such Sr
i (r > 1) must have been

forwarded by at least n−t parties during round r; implicitly guaranteeing
the global forwarding of such a signature already during the same round
as at least one of these n− t forwarding parties must be honest.
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F.2 Quadratic Proxcensus for t < n/2
We introduce an improved version (for large r) of Proxcensus that runs
in r rounds and achieves 3+(r−3)(r−2) slots. The protocol develops on
the ideas from the previous Proxcensus protocols in Section 10.3.3, with
some changes: instead of forwarding a signature only after the first round
and propagating it, parties repeatedly create and send an additional sig-
nature ωj at each round j > 1 indicating whether a threshold signature
was reconstructed in the previous round. More precisely, the protocol
proceeds as follows. Each party Pi sends a signature share at round 1 on
their input value. If Pi collects n−t signature shares on the same value v,
Pi forms a threshold signature Ω1 for v at the end of round 1. At round
2, if Ω1 was formed only for v, Pi echoes Ω1 and also sends a signature
share ω2 indicating that Ω1 was formed only for v. If n − t such ω2 are
received at the end of round 2, Pi computes a threshold signature Ω2. In
general, Pi sends (resp. echoes) each formed (resp. received) threshold
signature, and in addition sends a signature share ωj for v at round j if
Pi formed a threshold signature Ωj−1 for v at the end of round j−1, and
was not able to form any threshold signature Ωk, k ∈ [1, j − 1], for any
value v′ ̸= v.

By propagating all these additional signatures ωj , we are able to in-
crease the number of slots to 3 + (r − 3)(r − 2), for r ≥ 3. At the end of
the protocol, Pi determines the output and grade checking a sequence of
condition predicates. Pi evaluates a sequence of predicates, each indicat-
ing whether Pi received a certain threshold signature at a specific round.
We denote Conditiony,g,j the predicate checking that a certain threshold
signature needs to be formed or received at round j to output a value y
with grade g. Moreover, we denote Conditiony,g the set of all conditions
that need to be satisfied to output value y with grade g, over all rounds.

The condition predicates are defined inductively, starting from the
highest grade (see Table F.1 for a concrete example):

• Let G = 1 + (j−3)(j−2)
2 . Then, Conditiony,G,j indicates whether Pi

formed the threshold signature Ωj for value y at round j.

• Conditiony,g,j , 0 < g < G, is inductively derived as follows: Pi

formed or received a threshold signature Σ for value y by the end
of round j, where Σ = Ωj−1 if there is a predicate Conditiony,g+1,j′ ,
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j′ > r, indicating that Ωj is obtained for value y by round j′.
Otherwise, Σ is the threshold signature that is obtained according
to Conditiony,g+1,j−1.

• Conditiony,0,j is always true.

Intuitively, if an honest party satisfies Conditiony,g, g ≥ 1, then every
honest party satisfies Conditiony,g−1 for two reasons: 1) honest parties
forward each threshold signature that they receive or form, and 2) the
existence of a threshold signature Ωj , j > 1, implies that an honest party
Pk sent ωj at the beginning of round j, meaning that Pk obtained Ωj−1
at the end of round j − 1. This Pk therefore sent Ωj−1 at the beginning
of round j, and every honest party received Ωj−1 by the end of round j.

Moreover, the conditions are designed such that any Conditiony,g, g ≥
1, requires that the threshold signature Ω3 is obtained in some round.
This guarantees that the conditions Conditiony,1 and Conditiony′,1 are
mutually disjoint, for y ̸= y′. To see this, suppose Pi outputs (y, 1), and
thereby received Ω3 at the last round. Note that this condition implies
that there is an honest Pk that obtained Ω2 for y and did not receive
Ω1 for any other value y′ by round 2. This implies that no honest party
received Ω1 for y′ by round 1, and therefore no honest party can output
(y′, 1).

Ω1 ? ? ? ? ? ? ? ? ? ? ? ? ? Ω1
Ω2 Ω1 Ω1 Ω1 Ω1 Ω1 Ω1 ? Ω1 Ω1 Ω1 Ω1 Ω1 Ω1 Ω2
Ω3 Ω2 Ω2 Ω2 Ω2 Ω2 Ω2 ? Ω2 Ω2 Ω2 Ω2 Ω2 Ω2 Ω3
Ω4 Ω3 Ω3 Ω3 Ω3 Ω2 Ω2 ? Ω2 Ω2 Ω3 Ω3 Ω3 Ω3 Ω4
Ω5 Ω4 Ω4 Ω3 Ω3 Ω3 Ω2 ? Ω2 Ω3 Ω3 Ω3 Ω4 Ω4 Ω5
Ω6 Ω5 Ω4 Ω4 Ω3 Ω3 Ω3 ? Ω3 Ω3 Ω3 Ω4 Ω4 Ω5 Ω6

(v,g): (0,7) (0,6) (0,5) (0,4) (0,3) (0,2) (0,1) (⊥,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

Table F.1: Conditions for each slot in Prox15 for binary values. Row i
indicates the condition to be satisfied at the end of round i. To output the
pair (v, g), all conditions in the column for that pair need to be satisfied,
where Ωr at row i indicates that a threshold signature Ωr was received
at round i, and ? indicates that there is no requirement. Note that Ω3 is
required at some position for every grade g > 0.
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Setup: Parties make use of a unique (n− t)-out-n threshold signature
scheme.
Party Pi starts with input v.

1: Round 1:
2: σ ← SignShare(sk, v).
3: Send (v, σ) to all parties. Denote as (vi, σi) the message received from

party Pi.
4: Set S1 := {(v, Σ)|∃k1, ..., kn−t : Σ← Combine(σk1 , . . . , σkn−t ) ∧

Ver(pk, Σ, v) = 1}.
5: Set T := ∅;
6: Rounds j = 2 to r:
7: if Sj−1 = {(v, Ωj−1)} ∧ ∀v′ ̸= v ∀ℓ < j (v′, Ωℓ) /∈ T then
8: ωj ← SignShare(sk, (v, j − 1))
9: Forward all new pairs of value and threshold signature received or formed

in the previous round. Moreover, if a signature share ωj was computed
on a value v, also send (v, ωj) to all parties. Denote as (vi, ωi

j) the
message received from party Pi.

10: Set Sj := {(v, Σ)|∃k1, ..., kn−t : Σ← Combine(ωk1
j , . . . , ω

kn−t

j ) ∧
Ver(pk, Σ, v) = 1}.

11: Add to T all newly formed or received threshold signature schemes (with
the corresponding value).

12: Output Determination:
13: Output (y, g) with the highest grade such that Conditiony,g is satisfied.

Protocol Prox3+(r−3)(r−2)(Pi)

Lemma F.2.1. Let t < n/2 and r ≥ 3. Assuming unique threshold
signatures, Prox3+(r−3)(r−2) achieves a (3+(r−3)(r−2))-slot Proxcensus
in r rounds and O(rn2) message complexity.

We prove validity and consistency in the following lemmas.

Lemma F.2.2. Let r ≥ 3. Protocol Prox3+(r−3)(r−2) satisfies validity.

Proof. Suppose that all honest parties start with input v. Thus, all honest
parties send a signature share on v in the first round, and so all honest
parties hold a S1 = {v, Ω1} after the first round. Note that since no
honest party ever signs a signature share on any other value v′ ̸= v, at
each round j ∈ [2, r], all honest parties compute a signature share ωj on
v and send it to all parties, and all honest parties compute a threshold
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signature Ωj by the end of round j. Thus, Conditiony,G is satisfied and
all honest parties output v.

Lemma F.2.3. Let r ≥ 3. Protocol Prox3+(r−3)(r−2) satisfies consis-
tency.

Proof. We first prove that any two honest parties Pi and Pℓ output grades
gi and gℓ with |gi − gℓ| ≤ 1.

Let Pi be the honest party that outputs the maximal grade gi among
all honest parties. If gi ≥ 1, then trivially |gi − gℓ| ≤ 1. Hence, suppose
that Pi outputs (v, gi), gi > 1. This implies that Pi satisfies Conditiony,gi

.
We show that any honest party Pj satisfies Conditiony,gi−1. Let j ∈ [2, r].
We show that Pℓ satisfies Conditiony,gi−1,j . There are two cases: 1) Pi

obtained Ωj at some round j′ > j, then there is an honest party Pk that
sent ωj at the beginning of round j. This means that Pk obtained Ωj−1 at
the end of round j−1, and therefore sent Ωj−1 at the beginning of round j,
and every honest party received Ωj−1 by the end of round j; 2) Pi did not
obtain such Ωj , in which case every honest party satisfies Conditiony,gi−1,j

by the fact that Pi echoes all formed threshold signatures.
Now we prove that if gi ≥ 1 and gℓ ≥ 1, then the parties output the

same value, i.e. yi = yℓ.
This follows from the fact that the conditions are designed in such a

way that any condition Conditiony,g, g ≥ 1, requires that the threshold
signature Ω3 is obtained in some round for the corresponding value. That
is, Conditionyi,gi

(resp. Conditionyℓ,gℓ
) requires obtaining Ω3 for value

yi (resp. yℓ). We show that both conditions cannot be simultaneously
satisfied. From Conditionyi,gi , we know that there is an honest Pk that
obtained Ω2 for yi and did not receive Ω1 for yℓ by round 2. This implies
that no honest party received Ω1 for yℓ by round 1, and therefore no
honest party created a signature share ω2 for yjℓ. As a result, Ω2 (and
hence also Ω3) cannot be computed for yℓ, and no honest party can satisfy
Conditionyℓ,gℓ

.





Chapter 11

Asynchronous Byzantine
Agreement with
Subquadratic
Communication

11.1 Introduction
Byzantine agreement (BA) [LSP82] is a fundamental problem in dis-
tributed computing. In this context, n parties wish to agree on a common
output even when f of those parties might be adaptively corrupted. Al-
though BA is a well-studied problem, it has recently received increased
attention due to its application to blockchain (aka state machine repli-
cation) protocols. Such applications typically involve a large number of
parties, and it is therefore critical to understand how the communication
complexity of BA scales with n. While protocols with adaptive security
and o(n2) communication complexity have been obtained in both the syn-
chronous [KS10] and partially synchronous [ACD+19] settings, there are
currently no such solutions for the asynchronous model.1 This leads us
to ask:

1Tolerating f < n/3 static corruptions is easy; see Section 11.1.1.
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Is it possible to design an asynchronous BA protocol with subquadratic
communication complexity that tolerates Θ(n) adaptive corruptions?

We positively answer this question.
We show asynchronous BA protocols with (expected) subquadratic

communication complexity that can tolerate adaptive corruption of any
f < (1− ϵ)n/3 of the parties, for arbitrary constant ϵ > 0. (This corrup-
tion threshold is almost optimal, as it is known [Bra87] that asynchronous
BA is impossible altogether for f ≥ n/3, even assuming prior setup and
static corruptions.) Our solutions rely on two building blocks, each of
independent interest:

1. We show a BA protocol ΠBA tolerating f adaptive corruptions and
having subquadratic communication complexity. This protocol as-
sumes prior setup by a trusted dealer for each BA execution, but
the size of the setup is independent of n.

2. We construct a secure-computation protocol ΠMPC tolerating up to
f adaptive corruptions, and relying on a subquadratic BA protocol
as a subroutine. For the special case of no-input functionalities,
the number of BA executions depends only on the security param-
eter, and the communication complexity is subquadratic when the
output length is independent of n.

We can combine these results to give an affirmative answer to the orig-
inal question. Specifically, using a trusted dealer, we can achieve an
unbounded number of BA executions with o(n2) communication per ex-
ecution. The idea is as follows. Let L be the number of BA executions
required by ΠMPC for computing a no-input functionality. The dealer pro-
vides the parties with the setup needed for L + 1 executions of ΠBA; the
total size of this setup is linear in L but independent of n. Then, each
time the parties wish to carry out Byzantine agreement, they will use one
instance of their setup to run ΠBA, and use the remaining L instances to
refresh their initial setup by running ΠMPC to simulate the dealer. Since
the size of the setup for ΠBA is independent of n, the total communication
complexity is subquadratic in n.

Alternately, we can avoid a trusted dealer (though we do still need
to assume a PKI) by having the parties run an arbitrary adaptively se-
cure protocol to generate the initial setup. This protocol may not have
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subquadratic communication complexity; however, once it is finished the
parties can revert to the solution above which has subquadratic com-
munication per BA execution. Overall, this gives BA with amortized
subquadratic communication.

11.1.1 Related Work
The problem of BA was initially introduced by Lamport, Shostak and
Pease [LSP82]. Without some form of setup, BA is impossible (even in
a synchronous network) when f ≥ n/3. Fischer, Lynch, and Patterson
[FLP85] ruled out deterministic protocols for asynchronous BA even when
f = 1. Starting with the work of Rabin [Rab83], randomized protocols for
asynchronous BA have been studied in both the setup-free setting [CR93,
MHR14] as well as the setting with a PKI and a trusted dealer [CKS00].

Dolev and Reischuk [DR85] show that any BA protocol achieving
subquadratic communication complexity (even in the synchronous set-
ting) must be randomized. BA with subquadratic communication com-
plexity was first studied in the synchronous model by King et al., who
gave setup-free almost-everywhere BA protocols with polylogarithmic
communication complexity for the case of f < (1 − ϵ)n/3 static cor-
ruptions [KSSV06] and BA with O(n1.5) communication complexity for
the same number of adaptive corruptions [KS10]. Subsequently, several
works [Mic17, MV17, PS17b, ACD+19, GPS19] gave improved protocols
with subquadratic communication complexity (in the synchronous model
with an adaptive adversary) using the “player replaceability paradigm,”
which requires setup in the form of verifiable random functions.

Abraham et al. [ACD+19] show a BA protocol with adaptive security
and subquadratic communication complexity in the partially synchronous
model. They also give a version of the Dolev-Reischuk bound that rules
out subquadratic BA (even with setup, and even in the synchronous com-
munication model) against a strong adversary who is allowed to remove
messages sent by honest parties from the network after those parties
have been adaptively corrupted. One can obtain a similar lower bound
adapting their ideas to the standard asynchronous model where honest
parties’ messages can be arbitrarily delayed, but cannot deleted once they
are sent (see e.g.[BKLL20, Ram20]). We refer to the work of Garay et
al. [GKKZ11b] for further discussion of these two models.

Cohen et al. [CKS20] show an adaptively-secure asynchronous BA pro-
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tocol with o(n2) communication. However, they consider a non-standard
asynchronous model in which the adversary cannot arbitrarily schedule
delivery of messages. In particular, the adversary in their model cannot
reorder messages sent by honest parties in the same protocol step. We
work in the standard asynchronous model. On the other hand, our work
requires stronger computational assumptions and a trusted dealer (unless
we settle for amortized subquadratic communication complexity).

We remark for completeness that asynchronous BA with subquadratic
communication complexity for a static adversary corrupting f < n/3
of the parties is trivial using a committee-based approach, assuming a
trusted dealer. Roughly, the dealer chooses a random committee of Θ(κ)
parties (where κ is a security parameter) who then run BA on behalf of
everyone. Achieving subquadratic BA without any setup in the static-
corruption model is an interesting open question.

Asynchronous secure multi-party computation (MPC) was first stud-
ied by Ben-Or, Canetti and Goldreich [BCG93]. Since then, improved
protocols have been proposed with both unconditional [SR00, PSR02,
PCR08] and computational [HNP05, HNP08, CP15, Coh16] security. All
these protocols achieve optimal output quality, and incur a total commu-
nication complexity of at least Θ(n3κ) assuming the output has length κ.
Our MPC protocol gives a trade-off between the communication com-
plexity and the output quality. In particular, we achieve subquadratic
communication complexity when the desired output quality is sublinear
(as in the case of no-input, randomized functions).

11.1.2 Overview

In Section 11.2 we discuss our model and recall some standard defini-
tions. We show how to achieve asynchronous reliable consensus and re-
liable broadcast with subquadratic communication in Section 11.3. In
Section 11.4 we present an asynchronous BA protocol with subquadratic
communication complexity, assuming prior setup by a trusted dealer for
each execution. In Section 11.5 we show a communication-efficient asyn-
chronous protocol for secure multi-party computation (MPC). We de-
scribe how these components can be combined to give our main results
in Section 11.6.
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11.2 Preliminaries and Definitions
We denote the security parameter by κ, and assume κ < n = poly(κ).
In all our protocols, we implicitly assume parties take 1κ as input; in
our definitions, we implicitly allow properties to fail with probability
negligible in κ. We let ppt stand for probabilistic polynomial time. We
use standard digital signatures, where a signature on a message m using
secret key sk is computed as σ ← Signsk(m); a signature is verified relative
to public key pk by calling Vrfypk(m, σ). For simplicity, we assume in our
proofs that the adversary cannot forge valid signatures on behalf of honest
parties. When replacing the signatures with real-world instantiations, our
theorems follow except with an additive negligible failure probability.

Model. We consider a setting where n parties P1, . . . , Pn run a dis-
tributed protocol over a network in which all parties are connected via
pairwise authenticated channels. We work in the asynchronous model,
meaning the adversary can arbitrarily schedule the delivery of all mes-
sages, so long as all messages are eventually delivered. We consider an
adaptive adversary that can corrupt some bounded number f of the par-
ties at any point during the execution of some protocol, and cause them
to deviate arbitrarily from the protocol specification. However, we as-
sume the “atomic send” model, which means that (1) if at some point in
the protocol an honest party is instructed to send several messages (pos-
sibly to different parties) simultaneously, then the adversary can corrupt
that party either before or after it sends all those messages, but not in
the midst of sending those messages; and (2) once an honest party sends
a message, that message is guaranteed to be delivered eventually even if
that party is later corrupted. In addition, we assume secure erasure.

In many cases we assume an incorruptible dealer who can initialize
the parties with setup information in advance of any protocol execution.
Such setup may include both public information given to all parties, as
well as private information given to specific parties; when we refer to the
size of a setup, we include the total private information given to all parties
but count the public information only once. A public key infrastructure
(PKI) is one particular setup, in which all parties hold the same vector
of public keys (pk1, . . . , pkn) and each honest party Pi holds the honestly
generated secret key ski corresponding to pki.

Byzantine agreement. We include here the standard definition of
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Byzantine agreement. Definitions of other primitives are given in the
relevant sections.

Definition 11.2.1. (Byzantine agreement) Let Π be a protocol exe-
cuted by parties P1, . . . , Pn, where each party Pi holds an input vi and
parties terminate upon generating output. Π is an f -secure Byzantine
agreement protocol if the following hold when at most f parties are cor-
rupted:

• Validity: if every honest party has the same input value v, then
every honest party outputs v.

• Consistency: all honest parties output the same value.

11.3 Building Blocks
In this section we show asynchronous protocols with subquadratic com-
munication for reliable consensus, reliable broadcast, graded consensus,
and coin flipping.

11.3.1 Reliable Consensus
Reliable consensus is a weaker version of Byzantine agreement where
termination is not required. The definition follows.

Definition 11.3.1. (Reliable consensus) Let Π be a protocol executed
by parties P1, . . . , Pn, where each party Pi holds an input vi and parties
terminate upon generating output. Π is an f -secure reliable consensus
protocol if the following hold when at most f parties are corrupted:

• Validity: if every honest party has the same input value v, then
every honest party outputs v.

• Consistency: either no honest party terminates, or all honest par-
ties output the same value.

We show a reliable consensus protocol ΠRC with subquadratic com-
munication. The protocol can be viewed as a variant of Bracha’s reliable
broadcast protocol [Bra87, BT85] for the case where every party has in-
put. The protocol assumes prior setup initialized by a trusted dealer.



11.3. BUILDING BLOCKS 283

The trusted setup has expected size O(κ2) and takes the following form.
First, the dealer selects two secret committees C1, C2 by independently
placing each party in C1 (resp., C2) with probability κ/n. Then, for each
party Pi in C1 (resp., C2), the dealer generates a public/private key pair
(pk1,i, sk1,i) (resp., (pk2,i, sk2,i)) for a digital signature scheme and gives
the associated private key to Pi; the public keys (but not the identities
of the members of the committees) are given to all parties.

The protocol itself is described below. It begins by having each party
in C1 send its signed input to all the parties. The parties in C2 then send
a signed ready message on a value v the first time they either (1) receive
v from κ− t parties in C1 or (2) receive ready messages on v from t + 1
parties in C2. All parties terminate upon receiving ready messages on
the same value from κ − t parties in C2. Each committee has expected
size O(κ), and each member of a committee sends a single message to
all parties; thus, O(κn) messages are sent (in expectation) during the
protocol.

Security relies on the fact that an adversary cannot corrupt too many
members of C1 (resp., C2) “until it is too late,” except with negligible
probability. For a static adversary this is immediate. For an adaptive
adversary this follows from the fact that each member of a committee
sends only a single message and erases its signing key after sending that
message; thus, once the attacker learns that some party is in a committee,
adaptively corrupting that party is useless.

Let ϵ be a constant parameter. We describe the protocol from the point of
view of a party Pi with input vi, assuming the setup described in the text.
Set t = (1− ϵ) · κ/3.

1: If Pi ∈ C1: Compute σi ← Signsk1,i
(vi), erase sk1,i, and send

(echo, (i, vi, σi)) to all parties.
2: If Pi ∈ C2: As long as no ready message has yet been sent, do: upon

receiving (echo, (j, v, σj)) with Verpk1,j
(v, σj) = 1 on the same value v

from at least κ − t distinct parties, or receiving (ready, (j, v, σj)) with
Verpk2,j

(v, σj) = 1 on the same value v from strictly more than t distinct
parties, compute σi ← Signsk2,i

(v), erase sk2,i, and send (ready, (i, v, σi))
to all parties.

Protocol ΠRC(Pi)
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3: Upon receiving (ready, (j, v, σj)) with Verpk2,j
(v, σj) = 1 on the same

value v from at least κ− t distinct parties and, output v and terminate.

Theorem 11.3.2. Let 0 < ϵ < 1/3 and f ≤ (1 − 2ϵ) · n/3. Then ΠRC
is an f -secure reliable consensus protocol with expected setup size O(κ2)
and expected communication complexity O((κ + I) · κn), where I is the
size of each party’s input.

Proof. Recall that t = (1−ϵ)·κ/3. Say a party is 1-honest if it is in C1 and
is not corrupted when executing step 1 of the protocol, and 1-corrupted
if it is in C1 but corrupted when executing step 1 of the protocol. Define
2-honest and 2-corrupted analogously. Lemma G.1.3 shows that with
overwhelming probability C1 (resp., C2) contains fewer than (1 + ϵ) · κ
parties; there are more than κ − t parties who are 1-honest (resp., 2-
honest); and there are fewer than t < κ − t parties who are 1-corrupted
(resp., 2-corrupted). For the rest of the proof we assume these hold. We
also use the fact that once a 1-honest (resp., 2-honest) party P sends
a message, that message is the only such message that will be accepted
by honest parties on behalf of P (even if P is adaptively corrupted after
sending that message).

We first prove that ΠRC is f -valid. Assume all honest parties start
with the same input v. Each of the parties that is 1-honest sends an echo
message on v to all other parties, and so every honest party eventually
receives valid echo messages on v from more than κ − t distinct parties.
Since there are fewer than κ − t parties that are 1-corrupted, no honest
party receives valid echo messages on v′ ̸= v from κ− t or more distinct
parties. It follows that every 2-honest party sends a ready message on v
to all other parties. A similar argument then shows that all honest parties
output v and terminate.

Toward showing consistency, we first argue that if honest Pi, Pj send
ready messages on vi, vj , respectively, then vi = vj . Assume this is not
the case, and let Pi, Pj be the first honest parties to send ready messages
on distinct values vi, vj . Then Pi (resp., Pj) must have received at least
κ− t valid ready messages on vi (resp., vj). But then at least

(κ− t) + (κ− t) = (1 + ϵ) · κ + t

valid ready messages were received by Pi, Pj overall. But this is impos-
sible, since the maximum number of such messages is at most |C2| plus
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the number of 2-corrupted parties (because 2-honest parties send at most
one ready message), which is strictly less than (1 + ϵ) · κ + t.

Now, assume an honest party Pi outputs v. Then Pi must have re-
ceived valid ready messages on v from at least κ − t distinct parties
in C2, more than κ − 2t > t of whom are 2-honest. As a consequence,
all 2-honest parties eventually receive valid ready messages on v from
more than t parties, and so all 2-honest parties eventually send a ready
message on v. Thus, all honest parties eventually receive valid ready
messages on v from at least κ− t parties, and so output v also.

11.3.2 Reliable Broadcast
Reliable broadcast allows a sender to consistently distribute a message
to a set of parties. In contrast to full-fledged broadcast (and by analogy
to reliable consensus), reliable broadcast does not require termination.

Definition 11.3.3. (Reliable broadcast) Let Π be a protocol executed
by parties P1, . . . , Pn, where a designated sender P ∗ initially holds in-
put v∗, and parties terminate upon generating output. Π is an f -secure
reliable broadcast protocol if the following hold when at most f parties are
corrupted:

• Validity: if P ∗ is honest at the start of the protocol, then every
honest party outputs v∗.

• Consistency: either no honest party terminates, or all honest par-
ties output the same value.

It is easy to obtain a reliable broadcast protocol ΠRBC from reliable
consensus: the sender P ∗ simply signs its message and sends it to all par-
ties, who then run reliable consensus on what they received. In addition
to the setup for the underlying reliable consensus protocol, ΠRBC assumes
P ∗ has a public/private key pair (pk∗, sk∗) with pk∗ known to all other
parties.

Let ϵ be a constant parameter.

Protocol ΠRBC
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1: P ∗ does: compute σ∗ ← Signsk∗ (v∗), erase sk∗, and send (v∗, σ∗) to all
parties.

2: Upon receiving (v∗, σ∗) with Verpk∗ (v, σ) = 1, input v to ΠRC (with
parameter ϵ).

3: Upon receiving output v from ΠRC, output v and terminate.

Theorem 11.3.4. Let 0 < ϵ < 1/3 and f ≤ (1− 2ϵ) ·n/3. Then ΠRBC is
an f -secure reliable broadcast protocol with expected setup size O(κ2) and
expected communication complexity O((κ + I) · κn), where I is the size
of the sender’s input.

Proof. Consistency follows from consistency of ΠRC. As for validity, if
P ∗ is honest at the outset of the protocol then P ∗ sends (v∗, σ∗) to all
parties in step 1; even if P ∗ is subsequently corrupted, that is the only
valid message from P ∗ that other parties will receive. As a result, every
honest party runs ΠRC using input v, and validity of ΠRC implies validity
of ΠRBC.

11.3.3 Graded Consensus
Graded consensus [FM88] can be viewed as a weaker form of consen-
sus where parties output a grade along with a value, and agreement is
required to hold only if some honest party outputs a grade of 1. Our
definition does not require termination upon generating output.

Definition 11.3.5. (Graded consensus) Let Π be a protocol executed
by parties P1, . . . , Pn, where each party Pi holds an input vi and is sup-
posed to output a value wi along with a grade gi ∈ {0, 1}. Π is an f -secure
graded-consensus protocol if the following hold when at most f parties are
corrupted:

• Graded validity: if every honest party has the same input value v,
then every honest party outputs (v, 1).

• Graded consistency: if some honest party outputs (w, 1), then
every honest party Pi outputs (w, gi).

We formally describe a graded-consensus protocol ΠGC inspired by the
graded consensus protocol of Canetti and Rabin [CR93], and prove the
following theorem in Appendix G.2.



11.3. BUILDING BLOCKS 287

Theorem 11.3.6. Let 0 < ϵ < 1/3 and f ≤ (1− 2ϵ) · n/3. Then ΠGC is
an f -secure graded-consensus protocol with expected setup size O(κ3) and
expected communication complexity O((κ + I) · κ2n), where I is the size
of each party’s input.

11.3.4 A Coin-Flip Protocol

We describe here a protocol that allows parties to generate a sequence
of random bits (coins) Coin1, . . . , CoinT for a pre-determined parame-
ter T . We denote the sub-protocol to generate the ith coin by CoinFlip(i).
Roughly speaking, the protocol guarantees that (1) when all honest par-
ties invoke CoinFlip(i), all honest parties output the same value Coini and
(2) until the first honest party invokes CoinFlip(i), the value of Coini is
uniform.

Our coin-flip protocol assumes setup provided by a trusted dealer that
takes the following form: For each iteration 1, . . . , T , the dealer chooses
uniform Coini ∈ {0, 1}; chooses a random subset Ei of the parties by
including each party in Ei with probability κ/n; and then gives authen-
ticated secret shares of Coini (using a perfectly secret ⌈κ/3⌉-out-of-|Ei|
secret-sharing scheme) to the members of Ei. (Authentication is done
by having the dealer sign the shares.) Since each share (including the
signature) has size O(κ), the size of the setup is O(κ2T ).

The coin-flip protocol itself simply involves having the parties in the
relevant subset send their shares to everyone else. The communication
complexity is thus O(κ2n) per iteration.

Lemma 11.3.7. Let 0 < ϵ < 1/3 and f ≤ (1 − 2ϵ) · n/3. Then as long
as at most f parties are corrupted, CoinFlip(i) satisfies the following:

1. all honest parties obtain the same value Coini,

2. until the first honest party invokes CoinFlip(i), the value of Coini is
uniform from the adversary’s perspective.

Proof. Lemma G.1.3 implies that, except with negligible probability, Ei

contains more than ⌈κ/3⌉ honest parties and fewer than (1 − ϵ) · κ/3
corrupted parties. The stated properties follow.
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11.4 Single-Shot BA

In this section we describe a BA protocol ΠBA with subquadratic com-
munication complexity. (See Figure 11.4.) ΠBA assumes setup that is
then used for a single execution of the protocol. The setup for ΠBA cor-
responds to the setup required for O(κ) executions of graded consensus,
O(κ) iterations of the coin-flip sub-protocol, and a single execution of
reliable consensus. Using the protocols from the previous section, ΠBA
thus requires setup of size O(κ4) overall.

Following ideas by Mostéfaoui et al. [MHR14], our protocol consists
of a sequence of Θ(κ) iterations, where each iteration invokes a graded-
consensus subprotocol and a coin-flip subprotocol. In each iteration there
is a constant probability that honest parties reach agreement; once agree-
ment is reached, it cannot be undone in later iterations. The coin-flip
protocol allows parties to adopt the value of a common coin if agreement
has not yet been reached (or, at least, if parties are unaware that agree-
ment has been reached). Reliable consensus is used so parties know when
to terminate.

We prove security via a sequence of lemmas. Throughout the follow-
ing, we fix some value 0 < ϵ < 1/3 and let f ≤ (1 − 2ϵ)n/3 be a bound
on the number of corrupted parties.

Let ϵ be a constant parameter. We describe the protocol from the point of
view of a party with input v ∈ {0, 1}.
Protocol Loop Set b := v and ready := false.

1: for k = 1 to κ + 1 do
2: Run ΠGC on input b, and let (b, g) denote the output.
3: Invoke CoinFlip(k) to obtain Coink.
4: If g = 0 then set b := Coink.
5: Run ΠGC on input b, and let (b, g) denote the output.
6: If g = 1 and ready = false, then set ready := true and run ΠRC on

input b.
Termination

1: If ΠRC terminates with output b′, output b′ and terminate.

Protocol ΠBA(P )
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Lemma 11.4.1. If at most f parties are corrupted during an execution
of ΠBA, then with all but negligible probability some honest party sets
ready = true within the first κ iterations.

Proof. Consider an iteration k of ΠBA such that no honest party set
ready = true in any previous iteration. (This is trivially true in the first
iteration). We begin by showing that some honest party sets ready = true
in that iteration with probability at least 1/2. Consider two cases:

• If some honest party outputs (b, 1) in the first execution of ΠGC
during iteration k, then graded consistency of ΠGC guarantees that
every other honest party outputs (b, 1) or (b, 0) in that execution.
The value b is independent of Coink, because b is determined prior
to the point when the first honest party invokes CoinFlip(i); thus,
Coink = b with probability 1/2. If that occurs, then all honest par-
ties input b to the second execution of ΠGC and, by graded validity,
every honest party outputs (g, 1) in the second execution of ΠGC
and sets ready = true.

• Say no honest party outputs grade 1 in the first execution of ΠGC
during iteration k. Then all honest parties input Coink to the sec-
ond execution of ΠGC and, by graded validity, every honest party
outputs (g, 1) in the second execution of ΠGC and sets ready = true.

Thus, in each iteration where no honest party has yet set ready = true,
some honest party sets ready = true in that iteration with probability at
least 1/2. We conclude that the probability that no honest party has set
ready = true after κ iterations is negligible.

Lemma 11.4.2. Assume at most f parties are corrupted during execu-
tion of ΠBA. If some honest party executes ΠRC using input b in itera-
tion k, then (1) honest parties who execute ΠGC in any iteration k′ > k
use input b, and (2) honest parties who execute ΠRC in any iteration
k′ ≥ k use input b.

Proof. Consider the first iteration k in which some honest party P sets
ready = true, and let b denote P ’s input to ΠRC. P must have received
(b, 1) from the second execution of ΠGC in iteration k. By graded con-
sistency, all other honest parties must receive (b, 0) or (b, 1) from that
execution of ΠGC as well. Thus, any honest parties who execute ΠRC in
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iteration k use input b, and any honest parties who run2 the first execu-
tion of ΠGC in iteration k + 1 will use input b as well. Graded validity
ensures that any honest party who receives output from that execution of
ΠGC will receive (b, 1), causing them to use input b to the next execution
of ΠGC as well as ΠRC (if they execute those protocols), and so on.

Lemma 11.4.3. Assume at most f parties are corrupted during an exe-
cution of ΠBA. If some honest party sets ready = true within the first κ
iterations and executes ΠRC using input b, then all honest parties termi-
nate with output b.

Proof. Let k ≤ κ be the first iteration in which some honest party sets
ready = true and executes ΠRC using input b. By Lemma 11.4.2, any
other honest party who executes ΠRC must also use input b, and further-
more all honest parties who execute ΠGC in any subsequent iteration use
input b there as well. We now consider two cases:

• If no honest party terminates before all honest parties receive out-
put from the second execution of ΠGC in iteration k + 1, then graded
validity of ΠGC ensures that all honest parties receive (b, 1) as out-
put from that execution, and thus all parties execute ΠRC using
input b at this point if they have not done so already. Validity of
ΠRC then ensures that all honest parties output b and terminate.

• If some honest party P has terminated before all honest parties
receive output from the second execution of ΠGC in iteration k + 1,
validity of ΠRC implies that P must have output b. In that case, con-
sistency of ΠRC guarantees that all parties will eventually output b
and terminate.

This completes the proof.

Theorem 11.4.4. Let 0 < ϵ < 1/3 and f ≤ (1 − 2ϵ) · n/3. Then ΠBA
is an f -secure BA protocol with expected setup size O(κ4) and expected
communication complexity O(κ4n).

Proof. By Lemma 11.4.1, with overwhelming probability some honest
party sets ready = true within the first κ iterations and thus executes

2Note that some honest parties may terminate before others, and in particular it
may be the case that not all honest parties run some execution of ΠGC.
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ΠRC using some input b. It follows from Lemma 11.4.3 that all honest
parties eventually output b and terminate. This proves consistency.

Assume all honest parties have the same input v. Unless some hon-
est party terminates before all honest parties have concluded the first
iteration, one can verify (using graded validity of ΠGC) that in the first
iteration all honest parties output (v, 1) from the first execution of ΠGC;
use input v to the second execution of ΠGC; output (v, 1) from the second
execution of ΠGC; and execute ΠRC using input v. But the only way some
honest party could terminate before all honest parties have concluded
the first iteration is if that party executes ΠRC using input v. Either way,
Lemma 11.4.3 shows that all honest parties will terminate with output v,
proving validity.

11.5 MPC with Subquadratic Communica-
tion

In this section we give a protocol for asynchronous secure multiparty com-
putation (MPC). Our protocol uses a Byzantine agreement protocol as
a subroutine; importantly, the number of executions of Byzantine agree-
ment is independent of the number of parties as well as the output length,
as long as the desired input quality is low enough. Our MPC protocol
also relies on a sub-protocol for (a variant of the) asynchronous common
subset problem; we give a definition, and a protocol with subquadratic
communication complexity, in the next section.

11.5.1 Validated ACS with Subquadratic Communi-
cation

A protocol for the asynchronous common subset (ACS) problem [BKR94,
Can96] allows n parties to agree on a subset of their initial inputs of some
minimum size. We consider a validated version of ACS (VACS), where
it is additionally ensured that all values in the output multiset satisfy a
given predicate Q [CHP12, CKPS01].

Definition 11.5.1. Let Q be a predicate, and let Π be a protocol exe-
cuted by parties P1, . . . , Pn, where each party outputs a multiset of size
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at most n, and terminates upon generating output. Π is an f-secure Q-
validated ACS protocol with ℓ-output quality if the following hold
when at most f parties are corrupted and every honest party’s input
satisfies Q:

• Q-Validity: if an honest party outputs S, then each v ∈ S satisfies
Q(v) = 1.

• Consistency: every honest party outputs the same multiset.

• ℓ-Output quality: all honest parties output a multiset of size at
least ℓ that contains inputs from at least ℓ − f parties who were
honest at the start of the protocol.

Our VACS protocol Πℓ,Q
acs is inspired by the protocol of Ben-Or et

al. [BKR94]. During the setup phase, a secret committee C is chosen by
independently placing each party in C with probability s/n, where s =

3
2+ϵ ℓ and ℓ is the desired output quality. Each party in the committee acts
as a sender in a reliable-broadcast protocol, and then the parties run |C|
instances of Byzantine agreement to agree on the set of reliable-broadcast
executions that terminated. The expected communication complexity
and setup size for Πℓ,Q

acs are thus (in expectation) a factor of O(ℓ) larger
than those for reliable broadcast and Byzantine agreement.

Let ϵ be a constant parameter. The protocol has ℓ-output quality and
predicate Q. We describe the protocol from the point of view of a party P
with input v. We assume prior setup in which a committee C is chosen
(see text).

1: Execute |C| instances of reliable broadcast, denoted RBC1, . . . , RBC|C|. If
P is the ith member of C, then P executes the ith instance of ΠRBC as
the sender using input v.

2: On output vi from RBCi with Q(vi) = 1, if P has not yet begun executing
the ith instance BAi of Byzantine agreement, then begin that execution
using input 1.

3: When P has output 1 in ℓ instances of Byzantine agreement, then begin
executing any other instances of Byzantine agreement that have not yet
begun using input 0.

Protocol Πℓ,Q
acs (P )
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4: Once P has terminated in all instances of Byzantine agreement, let
CoreSet be the indices of those instances that resulted in output 1. After
receiving output vi from RBCi for all i ∈ CoreSet, output the multiset
{vi}i∈CoreSet.

Using the protocols from the previous sections, we thus obtain:

Theorem 11.5.2. Let 0 < ϵ < 1/3, f ≤ (1−2ϵ) ·n/3, and ℓ ≤ (1+ ϵ/2) ·
2n/3. Then Πℓ,Q

acs is an f -secure Q-validated ACS protocol with ℓ-output
quality. It has expected setup size O(ℓκ4) and expected communication
complexity O(ℓ · (I + κ3) · κn), where I is the size of each party’s input,
and uses O(ℓ) invocations of Byzantine agreement in expectation.

Proof. Say v is in the multiset output by some honest party, where v was
output by RBCi. BAi must have resulted in output 1, which (by validity
of BA) can only occur if some honest party used input 1 when executing
BAi. But then Q(v) = 1. This proves Q-validity of Πℓ,Q

acs .
By consistency of BA, all honest parties agree on CoreSet. If i ∈

CoreSet, then BAi must have resulted in output 1 which means that some
honest party P must have used input 1 to BAi. (Validity or BAi ensures
that if all honest parties used input 0, the output of BA must be 0). But
then P must have terminated in RBCi; consistency of RBCi then implies
that all honest parties eventually terminate RBCi with the same output vi.
Consistency of Πℓ,Q

acs follows.
Lemma G.1.3 shows that with overwhelming probability there are

more than 2+ϵ
3 ·

3
2+ϵ ℓ = ℓ honest parties in C at step 1 of the protocol.

Validity of RBC implies that in the corresponding instances of RBC, all
honest parties terminate with an output satisfying Q. If every honest
party begins executing all the corresponding instances of BA, those ℓ
instances will all yield output 1. The only way all honest parties might
not begin executing all those instances of BA is if some honest party
outputs 1 in some (other) ℓ instances of BA, but then consistency of BA
implies that all honest parties output 1 in those same ℓ instances. We
conclude that every honest party outputs 1 in at least ℓ instances of BA,
and so outputs a multiset S of size at least ℓ. Since each instance of RBC
(and so each corrupted party) contributes at most one value to S, this
proves ℓ-output quality.



294 CHAPTER 11. ASYNCH. BA WITH SUBQUADRATIC CC

11.5.2 Secure Multiparty Computation
We construct an MPC protocol Πℓ

MPC that offers a tradeoff between com-
munication complexity and output quality, the number of inputs taken
into the account for the computation. We say that the protocol has ℓ-
output quality, if the computation takes into account at least ℓ inputs.3
Our protocol has subquadratic communication complexity when the out-
put quality and the output length of the functionality being computed
are sublinear in the number of parties. A similar protocol that uses ad-
ditive homomorphic encryption for the synchronous setting has recently
been proposed in [GHK+21], following the player-replaceable paradigm
where entities are only in charge of sending a single message (denoted as
the You-Only-Speak-Once YOSO property).

We provide a high-level overview of our protocol next, with a full
description afterwards.

Let t = (1− ϵ) · κ/3. Our protocol assumes trusted setup as follows:

1. A random committee C is selected by including each party in C
independently with probability κ/n. This is done in the usual way
by giving each member of the committee a secret key for a signature
scheme, and giving the corresponding public keys to all parties. In
addition:

(a) We assume a threshold fully homomorphic encryption scheme
[AJL+12, BGG+18] TFHE = (KGen, Enc, DecShare, Rec, Eval)
with non-interactive decryption whose secret key is shared in
a t-out-of-|C| manner among the parties in C. (We refer to
Section G.3.1 for its security definition.)
Specifically, we assume a TFHE public key ek is given to all
parties, while a share dki of the corresponding secret key is
given to the ith party in C.

(b) The setup for Πℓ
MPC includes setup for |C| instances of ΠRBC

(with the ith party in C the sender for the ith instance of ΠRBC),
as well as one instance of ΠRC.

2. All parties are given a list of |C| commitments to each of the TFHE
shares dki; the randomness ωi for the ith commitment is given to

3Usually asynchronous MPC protocols are described with optimal n − f output
quality.
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the ith member of C.

3. All parties are given the TFHE encryption of a random κ-bit value r.
We denote the resulting ciphertext by crand ← Encek(r).

4. Parties are given the setup for one instance of VACS protocol Πℓ,Q
acs .

We further assume that each party in the committee that is chosen
as part of the setup for that protocol is given a secret key for a
signature scheme, and all parties are given the corresponding public
keys.

5. All parties are given a common reference string (CRS) for a univer-
sally composable non-interactive zero-knowledge (UC-NIZK) proof
[DDO+01] (see below).

The overall expected size of the setup is O((ℓ + κ) · poly(κ)).
Fix a (possibly randomized) functionality g the parties wish to com-

pute. We assume without loss of generality that g uses exactly κ random
bits (one can always use a PRG to ensure this). To compute g, each
party Pi begins by encrypting its input xi using the TFHE scheme, and
signing the result; it also computes an NIZK proof of correctness for the
resulting ciphertext. The parties then use VACS (with ℓ-output quality)
to agree on a set S containing at least ℓ of those ciphertexts. Following
this, parties carry out a local computation in which they evaluate g ho-
momorphically using the set of ciphertexts in S as the inputs and the
ciphertext crand (included in the setup) as the randomness. This results
in a ciphertext c∗ containing the encrypted result, held by all parties.
Parties in C enable decryption of c∗ by using reliable broadcast to dis-
tribute shares of the decrypted value (along with a proof of correctness).
Finally, the parties use reliable consensus to agree on when to terminate.

In the description above, we have omitted some details. In particular,
the protocol ensures adaptive security by having parties erase certain
information once it is no longer needed. This means, in particular, that
we do not need to rely on equivocal TFHE [CsW19].

In our protocol, parties generate UC-NIZK proofs for different state-
ments. (Note that UC-NIZK proofs are proofs of knowledge; they are
also non-malleable.) In particular, we define the following languages, pa-
rameterized by values (given to all parties) contained in the setup:

1. (i, ci) ∈ L1 if there exist xi, ri such that ci = Encek(xi; ri).
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2. (i, c∗, di) ∈ L2 if di = DecSharedki(c∗) and comi = Com(dki; ωi).
(Here, comi is the commitment to dki included in the setup.)

Let ϵ be a constant parameter. The protocol has ℓ-output quality. and
predicate Q. We describe the protocol from the point of view of a party Pi

with input xi, assuming the setup described in the text. Let
t = (1− ϵ) · κ/3.

1: Compute ci ← Encek(xi) along with a UC-NIZK proof πi that (i, ci) ∈
L1. Erase xi and the randomness used to generate c1 and πi.
Execute Πℓ,Q

acs using input (i, Signski
(ci), ci, πi), where Q(i, σ, c, π) = 1 iff

Vrfypki
(c, σ) = 1 and π is a correct proof for (i, c). Let S′ denote the

multiset output by Πℓ,Q
acs . Let S ⊆ S′ be the set obtained by including,

for all i, only the lexicographically first tuple (i, ⋆, ⋆, ⋆) in S′. Let I =
{i|∃ (i, ⋆, ⋆, ⋆) ∈ S}.

2: Define the circuit Cg taking |I| + 1 inputs, where Cg({xi}i∈I , r) =
g({xi}i∈I , {⊥}i̸∈I ; r). Compute c∗ := Evalek(Cg, {ci}i∈I , crand).
If Pi ∈ C, compute di := DecSharedki (c∗) and a UC-NIZK proof π′

i that
(i, c∗, di) ∈ L2. Erase dki, ωi, and the randomness used to generate π′

i.
Execute |C| instances of ΠRBC. If Pi is the ith member of C, it executes
the ith instance of ΠRBC as the sender using input (i, di, π′

i).
3: Upon receiving t outputs {(j, dj , π′

j)} from the ΠRBC instances, with
valid proofs and distinct j, compute yi := Rec({dj}) and execute ΠRC
with input yi. When ΠRC terminates with output y, output (y, I) and
terminate.

Protocol Πℓ
MPC(Pi)

We prove the following theorem in Appendix G.4.

Theorem 11.5.3. Let 0 < ϵ < 1/3, f ≤ (1 − 2ϵ) · n/3, and ℓ ≤ (1 +
ϵ/2) ·2n/3. Assuming appropriate security of the NIZK proofs and TFHE,
protocol Πℓ

MPC f -securely computes g with ℓ-output quality. Πℓ
MPC requires

setup of expected size O((ℓ + κ) · poly(κ)), has expected communication
complexity O((ℓ+κ)·(I+O)·poly(κ)·n), where I is the size of each party’s
input and O is the size of the output, and invokes Byzantine agreement
O(ℓ) times in expectation.
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11.6 Putting it All Together
The BA protocol ΠBA from Section 11.4 requires prior setup by a trusted
dealer that can be used only for a single BA execution. Using multiple,
independent instances of the setup it is, of course, possible to support any
bounded number of BA executions. But a new idea is needed to support
an unbounded number of executions.

In this section we discuss how to use the MPC protocol from Sec-
tion 11.5 to achieve this goal. The key idea is to use that protocol to
refresh the setup each time a BA execution is done. We first describe how
to modify our MPC protocol to make it suitable for our setting, and then
discuss how to put everything together to obtain the desired result.

11.6.1 Securely Simulating a Trusted Dealer
As just noted, the key idea is for the parties to use the MPC protocol
from Section 11.5 to simulate a trusted dealer. In that case the parties are
evaluating a no-input (randomized) functionality, and so do not need any
output quality; let ΠMPC = Π0

MPC. Importantly, ΠMPC has communication
complexity subquadratic in n.

Using ΠMPC to simulate a dealer, however, requires us to address sev-
eral technicalities. As described, ΠMPC evaluates a functionality for which
all parties receive the same output. But simulating a dealer requires the
parties to compute a functionality where parties receive different outputs.
The standard approach for adapting MPC protocols to provide parties
with different outputs does not work in our context: specifically, using
symmetric-key encryption to encrypt the output of each party Pi using
a key that Pi provides as part of its input does not work since ΠMPC has
no output quality (and even Πℓ

MPC only guarantees ℓ-output quality for
ℓ < n). Assuming a PKI, we can fix this by using public-key encryption
instead (in the same way); this works since the public keys of the par-
ties can be incorporated into the functionality being computed—since
they are common knowledge—rather than being provided as inputs to
the computation.

Even when using public-key encryption as just described, however,
additional issues remain. ΠMPC has (expected) subquadratic communi-
cation complexity only when the output length O of the functionality
being computed is sublinear in the number of parties. Even if the dealer
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algorithm generates output whose length is independent of n, naively
encrypting output for every party (encrypting a “null” value of the ap-
propriate length for parties whose output is empty) would result in output
of total length linear in n. Encrypting the output only for parties with
non-empty output does not work either since, in general, this might re-
veal which parties get output, which in our case would defeat the purpose
of the setup!

We can address this difficulty by using anonymous public-key encryp-
tion [BBDP01]. Roughly, an anonymous public-key encryption (APKE)
scheme has the property that a ciphertext leaks no information about the
public key pk used for encryption, except to the party holding the corre-
sponding secret key sk (who is able to decrypt the ciphertext using that
key). Using APKE to encrypt the output for each party who obtains
non-empty output, and then randomly permuting the resulting cipher-
texts, allows us to compute a functionality with sublinear output length
while hiding which parties receive output. This incurs—at worst—an
additional multiplicative factor of κ in the output length.

Summarizing, we can simulate an arbitrary dealer algorithm in the
following way. View the output of the dealer algorithm as pub, {(i, si)},
where pub represents the public output that all parties should learn, and
each si is a private output that only Pi should learn. Assume the existence
of a PKI, and let pki denote a public key for an APKE scheme, where
the corresponding secret key is held by Pi. Then use ΠMPC to compute
pub, {Encpki

(si)}, where the ciphertexts are randomly permuted. As long
as the length of the dealer’s output is independent of n, the output of
this functionality is also independent of n.

11.6.2 Unbounded Byzantine Agreement with Sub-
quadratic Communication

We now show how to use the ideas from the previous section to achieve an
unbounded number of BA executions with subquadratic communication.
We describe two solutions: one involving a trusted dealer who initializes
the parties with a one-time setup, and another that does not require
a dealer (but does assume a PKI) and achieves expected subquadratic
communication in an amortized sense.

For the first solution, we assume a trusted dealer who initializes the
parties with the setup for one instance of ΠBA and one instance of ΠMPC.
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(We also assume a PKI, which could be provided by the dealer as well;
however, when we refer to the setup for ΠMPC we do not include the PKI
since it does not need to be refreshed.) Importantly, the setup for ΠMPC
allows the parties to compute any no-input functionality; the size of the
setup is fixed, independent of the size of the circuit for the functional-
ity being computed or its output length. For an execution of Byzantine
agreement, the parties run ΠBA using their inputs and then use ΠMPC to
refresh their setup by simulating the dealer algorithm. (We stress that
the parties refresh the setup for both ΠBA and ΠMPC.) The expected
communication complexity per execution of Byzantine agreement is the
sum of the communication complexities of ΠBA and ΠMPC. The former
is subquadratic; the latter is subquadratic if we follow the approach de-
scribed in the previous section. Thus, the parties can run an unbounded
number of subquadratic BA executions while only involving a trusted
dealer once.

Alternately, we can avoid a trusted dealer by having the parties simu-
late the dealer using an arbitrary adaptively secure MPC protocol. (We
still assume a PKI.) The communication complexity of the initial MPC
protocol may be arbitrarily high, but all subsequent BA executions will
have subquadratic (expected) communication complexity as above. In
this way we achieve an unbounded number of BA executions with amor-
tized (expected) subquadratic communication complexity.





Appendix G

Details of Chapter 11

G.1 Concentration Inequalities
We briefly recall the following standard concentration bounds.

Lemma G.1.1. (Markov bound) Let X be a non-negative random
variable. Then for a > 0,

Pr[X ≥ a] ≤ E[X]
a

.

Lemma G.1.2 (Chernoff bound). Let X1, ..., Xn be independent Bernoulli
random variables with parameter p. Let X :=

∑
i Xi, so µ := E[X] = p·n.

Then, for δ ∈ [0, 1]

• Pr[X ≤ (1− δ) · µ] ≤ e−δ2µ/2.

• Pr[X ≥ (1 + δ) · µ] ≤ e−δ2µ/(2+δ).

Let χs,n denote the distribution that samples a subset of the n parties,
where each party is included independently with probability s/n. The
following lemma will be useful in our analysis.

Lemma G.1.3. Fix s ≤ n and 0 < ϵ < 1/3, and let f ≤ (1 − 2ϵ) · n/3
be a bound on the number of corrupted parties. If C ← χs,n, then:

1. C contains fewer than (1+ϵ)·s parties except with probability e− ϵ2s
2+ϵ .
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2. C contains more than (1 + ϵ/2) · 2s/3 honest parties except with
probability at most e−ϵ2s/12·(1+ϵ).

3. C contains fewer than (1 − ϵ) · s/3 corrupted parties except with
probability at most e−ϵ2s/(6−9ϵ).

Proof. Let H ⊆ [n] be the indices of the honest parties. Let Xj be the
Bernoulli random variable indicating if Pj ∈ C, so Pr[Xj = 1] = s/n.
Define Z1 =

∑
j Pj , Z2 :=

∑
j∈H Xj , and Z3 :=

∑
j ̸∈H Xj . Then:

1. Since E[Z1] = s, setting δ = ϵ in Lemma G.1.2 yields

Pr [Z1 ≥ (1 + ϵ) · s] ≤ e−ϵ2s/(2+ϵ).

2. Since E[Z2] ≥ (n − f) · s/n ≥ (1 + ϵ) · 2s/3, setting δ = ϵ
2+2ϵ in

Lemma G.1.2 yields

Pr
[
Z2 ≤

(1 + ϵ/2) · 2s

3

]
≤ e−ϵ2s/12·(1+ϵ).

3. Since E[Z3] ≤ f ·s/n ≤ (1−2ϵ)·s/3, setting δ = ϵ
1−2ϵ in Lemma G.1.2

yields

Pr
[
Z3 ≥

(1− ϵ) · s
3

]
≤ e−ϵ2s/(6−9ϵ).

G.2 Graded Consensus
We describe a graded-consensus protocol ΠGC in Figure G.2. The protocol
is inspired by the graded consensus protocol of Canetti and Rabin [CR93].
ΠGC assumes setup that defines three secret committees C1, C2, C3 by in-
cluding each party independently in each committee with probability κ/n.
Each party in a committee will act as a sender in a reliable-broadcast
protocol RBC; independent setup is used for each of these. The graded-
consensus protocol itself consists of three phases, where in phase i, each
party in committee Ci uses RBC to send a phase-specific message to all
parties. In the first phase, parties in C1 reliably broadcast their input
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values. All parties wait until κ − t of these executions of reliable broad-
cast output a value (and terminate), and then set their prepare2 value to
be the majority value among those outputs. In the second phase, parties
in C2 reliably broadcast their prepare2 values. All parties wait for κ − t
of these executions of reliable broadcast to output values consistent with
the values from the first phase, and then set their prepare3 value to be the
majority among such outputs. In the third phase, parties in C3 reliably
broadcast their prepare3 values. Parties wait for κ − t of these execu-
tions of reliable broadcast to output values consistent with the received
prepare2 values, and then decide on their output.

Since each set Ci has expected size O(κ), the expected communication
complexity and setup size for ΠGC are only a factor of κ larger than their
corresponding values for RBC. Instantiating RBC using ΠRBC gives the
complexity bounds stated in Theorem 11.3.6.

We describe the protocol from the point of view of a party Pi with
input vi ∈ {0, 1}. We let RBC denote a reliable broadcast protocol.
Protocol Execution

1: Initialize Ŝ1 = Ŝ2 = S1 = S2 = S3 := ∅, b1 := v, b2 = b3 := ⊥
2: If Pi ∈ C1: participate in RBCi as the sender with input (prepare1, b1).

Participate in the remaining protocols RBCj , j ̸= i, j ∈ C1, as the re-
ceiver.

3: Upon receiving output (prepare1, j, bj) in RBCj , add (bj , j) to S1.
4: When |S1| = κ − t, do: Set S1̂ = S1 and set b2 to the majority

bit among values in Ŝ1. Participate in RBCi as the sender with in-
put (prepare2, i, Ŝ1, b2) if Pi ∈ C2. Participate in the other protocols
RBC1, . . . , RBC|C2| as the receiver.

5: Upon receiving output (prepare2, j, Ŝ1,j , bj) in RBCj do: if Ŝ1,j ⊆ S1 and
bj is the majority bit among Ŝ1,j , add (bj , j) to S2.

6: When |S2| = κ − t, do: Set S2̂ = S2 and set b3 to the majority
bit among values in Ŝ2. Participate in RBCi as the sender with in-
put (prepare3, i, Ŝ2, b3) if Pi ∈ C3. Participate in each protocol RBCj ,
j ̸= i, j ∈ C3, as the receiver.

7: Upon receiving output (prepare3, j, Ŝ2,j , bj) in RBCj do: if j ∈ C3, Ŝ2,j ⊆
S2, and bj is the majority bit among Ŝ2,j , add (bj , j) to S3.

8: When |S3| = κ− t, execute the Output Determination step.

Protocol ΠGC
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Output Determination

1: If there exists b ∈ {0, 1} s.t. for all (bj , j) ∈ S2̂ it holds that bj = b, then
output (b, 1).

2: Else if there exists b ∈ {0, 1} s.t. for all (bj , j) ∈ S3 it holds that bj = b,
then output (b, 0).

3: Else output (0, 0).

Lemma G.2.1. Let Pi and Pj be honest parties, and denote as S1,j , S1,i

the respective sets S1 of those parties in an execution of ΠGC. Then with
overwhelming probability, eventually S1,j ⊆ S1,i.

Proof. Suppose that (bℓ, ℓ) ∈ S1,j . With overwhelming probability, this
implies that Pj output (prepare1, ℓ, bℓ) in RBCℓ where Pℓ in C1. By the
consistency property of RBC, Pi either eventually outputs (prepare1, ℓ, bℓ)
in RBCℓ and hence adds (bℓ, ℓ) to S1,i or terminates ΠGC (with overwhelm-
ing probability). Thus, every value in S1,j is eventually added to S1,i

(and hence S1,j ⊆ S1,i), with overwhelming probability.

Lemma G.2.2. Let Pi and Pj be honest parties, and denote as sets
S2,j , S2,i the respective sets S2 of those parties in an execution of ΠGC.
Then with overwhelming probability, eventually S2,j ⊆ S2,i.

Proof. Denote as S1,j , S1,i the respective sets S1 of parties Pi and Pj and
suppose that (bℓ, ℓ) ∈ S2,j . With overwhelming probability, this implies
that Pj output (prepare2, ℓ, Ŝ1,ℓ, bℓ) in RBCℓ where Pℓ in C2, Ŝ1,ℓ ⊆ S1,j ,
and bℓ is the majority bit among values in Ŝ1,ℓ. By the consistency
property of RBC and the previous lemma, Pi either eventually outputs
(prepare2, ℓ, bℓ) in RBCℓ and Ŝ1,ℓ ⊆ S1,j ⊆ S1,i or or terminates ΠGC (with
overwhelming probability). Once the former happens, Pi adds (bℓ, ℓ) to
S2,i. Thus, every value in S2,j is eventually added to S2,i (and hence
S2,j ⊆ S2,i), with overwhelming probability.

Lemma G.2.3. With overwhelming probability, for every honest party
Pi the sets S1, S2, and S3 are each eventually of size κ− t.

Proof. Let Pi be an honest party. We analyze the size of the sets in
sequence.

S1: By validity, Pi outputs in all RBC instances corresponding to honest
parties in C1 with overwhelming probability and adds a corresponding
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tuple to S1 as a result. Since by Lemma G.1.3, at least κ − t parties in
C1 are honest, the claim for S1 follows.

S2: Since all honest parties S1 sets eventually become of size κ − t, all
honest parties Pj in C2 eventually send a message (prepare2, ℓ, Ŝ1,j , bj)
in RBCj . By Lemma G.2.1, Ŝ1,j ⊆ Si, with overwhelming probability,
eventually. This implies that all checks for the instance RBCj are satisfied
in Step 5 with overwhelming probability at some point. By validity of
RBC and Lemma G.1.3, Pi eventually adds at least κ − t tuples of the
form (bj , j) to S2 in this manner, with overwhelming probability.

S3: The argument for S3 is analogous to the previous one.

Lemma G.2.4. If all honest parties Pi in C1 send (prepare1, i, b) in RBCi,
then no honest party adds a tuple (1 − b, j) to S2, with overwhelming
probability.

Proof. Assume toward a contradiction that all honest parties Pi in C1
send (prepare1, i, b) in RBCi and there is an honest party P that adds a
tuple (1− b, j) to S2. This implies that it received (prepare2, j, Ŝ1,j , 1− b)
in RBCj , where j ∈ C2 and 1 − b is the majority value among values in
Ŝ1,j , and |Ŝ1,j | ≥ κ − t. By assumption, Ŝ1,j ⊆ S1, and so P outputs
in all instances of RBC that correspond to Ŝ1,j . By validity and since all
honest parties in C1 send (prepare1, i, b) in RBCi, at least κ− 2t > t of the
tuples in Ŝ1,j are of the form (b, j) and at most most t tuples in Ŝ1,j are
of the form (1 − b, j), with overwhelming probability. This contradicts
that b is the majority value among values in Ŝ1,j .

Lemma G.2.5. If an honest party Pi has Ŝ2 such that all (bj , j) ∈ Ŝ2,
bj = b for some b ∈ {0, 1}, then each honest party Pj has for all (bj , j) ∈
S3, bj = b, with overwhelming probability.

Proof. Let Ŝ2 be the set of Pi at Step 6 that contains consistently the
same value, i.e., such that all (bj , j) ∈ Ŝ2, bj = b.

We argue that the set S3 of Pj consistently contains b as well, since
any set Ŝ2,k that Pj accepts in Step 7 has the majority bit b.

Assume that there exists a set Ŝ2,k that has a different majority bit
than b. Then, the sets Ŝ2 of Pi and Ŝ2,k both have size at least κ−t. Since
there are at most t dishonest parties by Lemma G.1.3, and by validity of
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the reliable broadcast, at least κ−2t values came from prepare2 messages
from honest parties.

Since honest parties only send one prepare value, this implies that
there are 2κ − 4t = 2κ/3 · (1 + 2ϵ) distinct honest parties, which is in
contradiction with Lemma G.1.3. Hence, the majority bits in all accepted
sets Ŝ

2,k

2 is the same and the statement follows.

Lemma G.2.6. ΠGC satisfies graded validity.

Proof. By Lemma G.2.3, every honest party accumulates a set S3 of size
κ− t and hence outputs a value and a grade.

Assume all honest parties have input v. This implies that all honest
parties Pi in C1 send (prepare1, i, v). By Lemma G.2.4, no honest parties
add (1− v, j) to S2. Hence, every honest party outputs (v, 1).

Lemma G.2.7. All honest parties generate output in ΠGC.

Proof. This follows from the fact that every honest party eventually ac-
cumulates S3 with size κ− t by Lemma G.2.3.

Lemma G.2.8. ΠGC satisfies graded consistency.

Proof. Termination is argued in Lemma G.2.7. Let Pi and Pj be two
honest parties. Assume that Pi outputs (v, 1). Let Ŝ

i

2 denote the set
Ŝ2 that Pi accumulates in Step 6. Then Ŝ

i

2 contains consistently the
same bit. By Lemma G.2.2, Pj cannot output (1 − v, 1). Moreover, by
Lemma G.2.5, the set Ŝ

j

3 consistently contains v, and hence Pj outputs
(v, 1) or (v, 0).

G.3 Additional Definitions
G.3.1 Threshold Fully Homomorphic Encryption
In our application, we require simulation security defined below. The
definitions follow prior work [Gen09, vGHV10, BV11, AJL+12, BGG+18].

Definition G.3.1. We say a TFHE scheme is simulation secure if there
is a probabilistic polynomial-time simulator Sim such that for any proba-
bilistic polynomial-time adversary A, the following experiments are com-
putationally indistinguishable:
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realA,C(1κ, 1t, 1N ) :

1. Compute (ek, {dki}N
i=1)← Keygen(1κ, 1t, 1N ) and give ek to A.

2. A adaptively chooses a subset S ⊂ [N ] with |S| < t as well as
messages m1, . . . , mn and a circuit C. In return, A is given {dki}i∈S

and {ci ← Encek(mi)}n
i=1.

3. A outputs {(m′
i, r′

i)}i∈S . Define c′
i := Encek(m′

i; r′
i) for i ∈ S.

4. Let c∗ := Evalek({ci}n
i=1, {c′

i}i∈S) and give {Decdki
(c∗)}i ̸∈S to A.

idealA,C(1κ, 1t, 1N ) :

1. Compute ek← Sim(1κ, 1t, 1N ) and give ek to A.

2. A adaptively chooses a subset S of parties with |S| < t as well as
messages m1, . . . , mn and a circuit C. In return, Sim(1n) is run to
compute {dki}i∈S and {ci}n

i=1 that are given to A.

3. A outputs {(m′
i, r′

i)}i∈S .

4. Let y = C({mi}n
i=1, {m′

i}i∈S). Compute {di}i ̸∈S ← Sim(y) and
give the result to A.

G.3.2 Anonymous Public-Key Encryption
We recall the definition of anonymous public-key encryption [BBDP01].

Definition G.3.2. A CPA-secure public-key encryption scheme PE =
(Keygen, Enc, Dec) is anonymous if the following is negligible for any ppt
adversary A:∣∣∣∣Pr

[
(pk0, sk0)← Keygen(1κ); (pk1, sk1)← Keygen(1κ);

m← A(pk0, pk1); b← {0, 1}; c← Encpkb
(m) : A(c) = b

]
− 1

2

∣∣∣∣ .

G.4 Proof of Theorem 11.5.4
The claims regarding the communication complexity, size of the setup,
and the number of invocations of Byzantine agreement follow because
Πℓ

MPC runs a VACS protocol with ℓ-output quality and inputs of length
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O(I · poly(κ)) in step 2; |C| = O(κ) (in expectation) reliable broadcast
protocols on inputs of length O(O · poly(κ)) in step 4; and a reliable
consensus protocol on inputs of length O in step 5. To prove security of
the protocol, we define a simulator S that works as follows:

Setup: S generates the setup honestly, with two exceptions:

• S uses the TFHE simulator to generate the TFHE public key,
t−1 decryption keys {dki}, and n+1 ciphertexts c1, . . . , cn, crand.

• S generates the CRS for the UC-NIZK proof system using the
corresponding simulator.

In particular, this defines a set C of the parties.

Corruptions: Whenever A corrupts a party, S gives A the state held
by that party at that point in time. Let S denote the set of parties
thatA corrupts that are (1) in C and (2) corrupted before executing
step 2 of the protocol. If |S| ≥ t the simulator aborts (call this event
abort1). Otherwise, when A corrupts the ith party in S, it is given
dki as part of that party’s state.
If A corrupts a party Pi before Pi has begun executing step 1 of the
protocol, then S corrupts Pi in the ideal world to obtain Pi’s input
(which it then gives to A along with Pi’s state). When A corrupts
a party at any other point in the protocol, S delays its corruption
of that party until after S sends CoreSet to the trusted party (as
described below).

Steps 1–2: If Pi is uncorrupted when it is supposed to begin executing
step 1 of the protocol, S begins executing Πℓ,Q

acs on behalf of Pi,
using ci and a simulated proof πi. Let S be the set output by any
honest party following the execution of Πℓ,Q

acs , and define I as in
step 1 of the protocol. S sets CoreSet := I.
Let {c′

i}i∈I be the ciphertexts contained in the tuples in S. If
c′

i ̸= ci for some party Pi who was not corrupted by A when Pi

began executing Πℓ,Q
acs , the simulator aborts (call this event abort2).

For each i ∈ I corresponding to a party Pi who was corrupted by
A when Pi began executing Πℓ,Q

acs , use the NIZK simulator and πi

to extract the plaintext x′
i corresponding to c′

i. Send CoreSet and
{x′

i} to the trusted party. Receive in return an output y.
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Step 3–4: Run the TFHE simulator on input y to obtain {di}i∈C\S . For
any party Pi ∈ C that is not corrupted by step 3 of the protocol, S
runs step 3 of the protocol on Pi’s behalf using a simulated proof π′

i.
Finally, for any party that is not corrupted by step 4 of the protocol,
S runs step 5 on the protocol on that party’s behalf using input y.

Note that abort1 occurs with negligible probability by Lemma G.1.3,
and abort2 occurs with negligible probability by security of the VACS
protocol and the signature scheme. Computational indistinguishability
of the entire simulation follows straightforwardly.
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