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Sommario

I sistemi moderni per 'analisi e elaborazione di dati fanno sempre pit
affidamento su sistemi distribuiti su rack e cluster per essere in grado di
gestire la grande quantita di dati in ingresso e memoria richiesti, quando
una solo nodo di computazione non é sufficiente. L’infrastruttura per
mettere in produzione questi sistemi ha un costo elevato e quindi ogni
miglioramento dell’efficienza ha come risultato un significativo risparmio
di risorse, e permette di intraprendere analisi piu sofisticate. Allo stesso
tempo le astrazioni per le programmazione usate per I’elaborazione di dati
in parallelo che supportano ’abilita di scalare ’esecuzione in modo semi-
automatico richiedono un significativo compromesso a livello di prestazioni
del sistema; il costo di queste astrazioni pud superare i benefici portati
dalla scalabilita orizzontale.

I modelli di programmazione dataflow con coordinamento dettagliato
(fine-grained) basato su epoche sono stati sviluppati per avere un basso
overhead: i sistemi basati su questi modelli permettono di implementare
molti programmi di analisi ed elaborazioni di dati in modo efficiente.
Tuttavia i meccanismi di sistema come il re-scaling dinaminco, il ri-
partizionamento on-line di dati, la fault-tolerance (tolleranza alle anoma-
lie) e la condivisione degli indici devono tutti essere adattati in modo che
siano compatibili con il pitt ocmplesso modello di esecuzione e che intro-
ducano il minor overhead possibile, per evitare di sperperare la maggiore
efficienza di questi sistemi. Tali meccanismi sono spesso necessari per
mettere in produzione questi sistemi nel mondo reale.
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Questa tesi descrive come adattare il modello di programmazione data-
flow per permettere di implementare di meccanismi di condivisione degli
indici, ri-partizionamento, re-scaling, fault-tolerance, e gestione delle risorse
in forma di librerie opzionali scritte direttamente utilizzando il sistema
dataflow di base, il quale deve solo fornire le giuste primitive dataflow.
La tesi poi dimostra come construire tali meccanismi con un overhead
di througput accettabile e cono un costo a livello di latenza predicibile e
limitato, in modo tale che essi siano utilizzabili in applicazioni interattive.

Presentiamo una nuova astrazione per la programmazione di sitemi
dataflow con parallelismo sui dati: una primitiva di coordinamento che il
programma dataflow pud usare per comunicare in modo preciso segnali
di coordinamento dettagliati (fine-grained). Utilizzando questa astrazione
abbiamo progettato e implementato un meccanismo per la condivisione
degli indici ispirato dai sistemi di gestione delle basi dati (DBMS) che
abbiamo adattato ai sistemi dataflow distribuiti usando il coodinamento
fine-grained. Abbiamo inoltre realizzato protocolli di fault-tolerance e
re-scaling dinamico con prestazioni predicibili. Allo scopo di assicurare
la correttezza di questi meccanismi e dei programmi di elaborazione dati,
abbiamo anche formalizzato e verificato il protocollo di coordinamento
principale di uno stream processor allo stato dell’arte, che supporta la
nostra nuova primitiva di coordinamento.
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Abstract

Modern data analytics and processing systems are increasingly relying
on rack-scale or cluster-scale systems to deal with massive input rates
and memory requirements that cannot be handled by a single compute
node. The infrastructure to run these systems has an high cost: gains in
efficiency result in big savings, and enable more sophisticated analyses. At
the same time the programming abstractions used for data-parallel data
processing that provide semi-automating scaling come with a significant
performance tradeoff, and the cost of abstraction can often outweigh the
performance gains due to horizontal scaling.

Dataflow programming models with epoch-based, fine-grained coordi-
nation were developed to have significantly less intrinsic overhead: sys-
tems based on these models enable the efficient implementation of many
large-scale low-latency data analytics and processing tasks. However, sys-
tem mechanisms such as dynamic re-scaling, on-line data re-partitioning,
fault-tolerance, and index sharing need to be adapted to cope with the
more complex execution model, and need to introduce minimal overhead,
to avoid squandering these systems’ increased efficiency. These mecha-
nisms are often necessary to deploy these systems in the real world.

This thesis describes how to adapt the distributed dataflow program-
ming model to enable the implementation of low-overhead, predictable in-
dex sharing, re-scaling, re-partitioning, fault tolerance and resource man-
agement systems as optional libraries written against the core dataflow
system that only needs to provide dataflow primitives. It then demon-
strates how to build these mechanisms with acceptable throughput over-
head and predictable, bounded latency cost, so they are suitable for in-
teractive applications.



We present a new programming abstraction for data-parallel dataflow
systems: a coordination primitive that the dataflow program can use to
precisely signal fine-grained coordination information. Building on this
abstraction, we design and implement a data index sharing mechanism
inspired by DBMSes and adapted to distributed dataflow systems with
fine-grained coordination and a fault-tolerance and dynamic re-scaling
protocol with predictable performance. To help ensure correctness of
these mechanisms and of the data processing tasks, we also formalize and
verify the core coordination protocol of a state-of-the-art stream processor
that supports our new coordination primitive.

vi



A Mamma, Papa, Fraise
Non ce l'avrei fatta senza di voi

To Mom, Dad, Fraise
I couldn’t have done it without you

vii






Acknowledgements

This dissertation would not exist without the involvement of many people.

I am grateful to Prof. Mothy Roscoe for first giving me the opportunity
to work in the Systems Group and, more importantly, for believing in my
ability to be successful as a PhD student, even when more than once I
doubted that myself.

I would also like to thank Prof. David Basin and Dr. Jonathan Mace
for being part of my doctorate committee.

I owe a lot of my research style, philosophy, and (hopefully) integrity
to Dr. Frank McSherry; I am grateful he supported me and helped me
with the projects that make up this dissertation. Working with Frank on
my Master Thesis and PhD research has been an incredibly intellectually
stimulating experience.

I am privileged to have been supported financially by a Google PhD
Fellowship and I would like to thank Dennis Fetterly, my Google mentor,
who was always excited to see where my changing interests would take my
work and who listened to me when I inevitably encountered hard times
during my studies.

I am deeply grateful to Dr. Jon Howell, for helping me find my way
when due to circumstances I had to make significant changes to my re-
search direction. Thank you Jon for two great summer internships, for
all your invaluable feedback, and for your friendship. I would also like
to thank Rob Johnson, who was an excellent co-mentor alongside Jon at
VMware Research: I'm looking forward to more sailing together.

A lot of the work in this dissertation would not be the same without
the involvement of the ETH Master students I had the privilege to work
with. Thank you Matthias Brun, Sara Decova, Lorenzo Martini, and
Lorenzo Selvatici. And thank you to the Systems Group summer intern
Isitha Subasinghe. You are all incredible.

ix



I am also grateful to my ETH and external collaborators; in particular
thank you Sebastian Wicki and Moritz Hoffmann for your work on Snail-
trail and Megaphone, thank you Dr. Malte Schwarzkopf for the seemingly
endless revision work on our paper, and thank you Dr. Dmitriy Traytel
for teaching me some Isabelle and for your work on our paper.

Thank you Dr. Chris Hawblitzel for embarking with me on the journey
to build Verus; this last year and a half has been a blast.

During my PhD studies I have been privileged to work with Travis
Hance, Chanhee Cho, Yi Zhou, Jay Bosamiya, and Bryan Parno at
Carnegie Mellon University; Chris Hawblitzel at Microsoft Research; Jialin
Li at University of Washington; Gerd Zellweger, Alex Conway, and Jon
Howell at VMWare Research; Ryan Stutsman at the University of Utah.
The research work I have done with you all is not part of this dissertation
but you are all incredible people to work with.

It takes a village of unusual people to grow a Doctor. Thank you
to all my friends and colleagues at the ETH Systems Group: Abishek,
Anastasiia, Ben, Cédric, Claude, Dan, Daniel, Dario, David, Dimitris,
Fabio, Gerd, Hidde, Ingo, Kaan, Kornilios, Lazar, Lucas, Lukas, Mau-
rice, Melissa, Merve, Michal, Michal [sic.], Moritz, Nicolas, Nora, Pravin,
Renato, Reto, Roni, Simon, Simon [sic.], Tom, Vojislav, Zhenhao, Zsolt.
Thank you Michael for your moral support in these last few months. And
of course thank you to Ana, Ce, Gustavo, and Theo.

Thank you Dr. Ghislain Fourny for being an excellent lecturer for many
of the courses I had the pleasure to help with as a Teaching Assistant.
And a big thank you to the System Group’s world class admin team:
Jena, Nadia, and Simonetta.

And if you made it here, you are either bored or one of my beautiful
friends who shared the good, and the bad times with me: Benni, Chicca,
Cianciu, Dani, David, Dimitris, Donz, Forte, Frenk, Frenzo, Gallo, Georg,
Grizzo, Malte, Mau, Michi, Michael, Niko, Renato, Rik, Ste, Stefano,
Stephan, Tabo, and also you, that somehow I forgot, I owe you a Negroni.
I don’t say this much, but you’re the best, really.

Elda e Turi, thank you for supporting me through all my lows, for never
doubting I could do it, for always being proud of me, for helping me see
the bright side, and for being the best dog-family for Fraise. You can’t
read this, but thank you Fraise, you got me through the worst times.



Contents

1 Introduction 1
1.1 Overview . . . . . . . . e 5
1.2 Notes on collaborative work . . . . .. ... .. ... ... 7

2 Dataflow model 11
2.1 Dataflow graph and dataflow computation . . . . . . . .. 11
2.2 Example of a dataflow computation . .. ... ... ... 13
2.3 Batch and streaming inputs . . . . ... ... L 14

23.1 Batch ... ... ... ... ... ... ... 15
232 Streaming . . . . . ... oo 15
2.3.3 Datamodel . ... ... ... ... ... ... 17
2.4  Expressible parallelism . . . . . ... ... ... ... ... 18
2.4.1 Task parallelism . . . ... ... ... ....... 20
2.4.2 Pipeline parallelism . . . ... ... ... ... .. 21
2.4.3 Intra-operator data dependencies . . . . . . .. .. 22
2.4.4 Data parallelism . . .. ... ... ... ... .. 24
2.5 Operatorshards . . ... ... ... ... ......... 25
2.6 Timestamps . . . . . . . .. . Lo 27
2.6.1 Encoding dependencies with timestamps . . . . . . 28
2.6.2 Effect of timestamp approximation on available par-
allelism . . ... .. oo 30
2.6.3 Towards time-aware dataflow . . . . ... ... .. 31

3 Time-aware dataflow 33

3.1 Time-aware dataflow model . . . . . ... ... ... ... 34
3.1.1 Dataflow graph . . . . .. ... ... ... 34
3.1.2 Operatorstate . . . ... ... ... ... ..... 35
3.1.3 Operator ports . . . . .. ... ... ... ... .. 36
3.1.4 Instantiated dataflow graph . . . . ... ... ... 36

xi



Contents

xii

3.1.5 Internal dependencies . . . .. ... .. ... ...
3.1.6 Frontiers. . . . . . .. ... .. L.
3.2 Encoding data dependencies . . . . . . .. ... ... ...
3.2.1 Coordination with timestamps and frontiers . . . .
3.3 Time-aware dataflow systems . . . .. ... .. ... ...
3.3.1 Spark Streaming . . . .. ... ...
332 Flink. ... ... ...
3.3.3 Timely dataflow . . ... ... ... ... .....

Timestamp tokens
4.1 Background . . . ... ..o Lo
4.2 Timestamp tokens . . . . . ... ... ... ... ...,
4.2.1 The timestamp token life-cycle . . . ... ... ..
4.2.2 Coordination . . .. ... .. ... .. ... ...,
4.3 Implementation . . . . .. ... ...
4.3.1 Timestamp tokensincode . . . . . .. ... .. ..
4.3.2 Ergonomic modifications . . . . . . ... ... ...
44 Example . . . . ...
441 Examplecode. . .. ... .. ... ... .. ...,
442 Benefits . .. ... o o
4.5 Evaluation. . . . ... .. ... 0oL
4.5.1 Experimental setup. . . . .. ... ... ... ...
4.5.2 Microbenchmarks . . . . . ... ... o0
4.5.3 Complex dataflow fragments . .. ... ... ...
454 NEXMark . . . .. ... ...
4.6 Conclusions . . . . . ... ..o

Building with timestamp tokens

5.1 Co-operative control flow . . . . . ... ... ... ....
5.2 Fine-grained timestamps . . . . . . ... ... ... ...
5.3 Optimized scheduling . . . . . . ... ... ... ......

Shared arrangements

6.1 Introduction . . . . . . .. ... .. ... ...

6.2 Background and Related Work . . . ... ... ... ...

6.3 Shared Arrangements Overview . . . . . . .. ... ....
6.3.1 Shared Arrangements Example . . . . ... .. ..
6.3.2 System Features Supporting Efficiency . . . . . . .

43
44
45
46
47
48
49
92
92
54
o6
o7
o8
a8
63
66
68

69
69
70
70



Contents

8

6.4 Implementation . . . . ... .. ... ... .....
6.4.1 Collection traces . . . . ... ... .....
6.4.2 The arrange operator . . . ... .. ...
6.4.3 Trace handles . . . . . . ... ... ... ..

6.5 Arrangement-aware operators . . . . . . ... ...
6.5.1 Key-preserving stateless operators . . . . .
6.5.2 Key-altering stateless operators . . . . . . .
6.5.3 Stateful operators . . . ... ... ... ..
6.5.4 Tteration. ... .. ... ... .. ... ..

6.6 Compaction Theorems . . . . .. .. ... .....

6.7 Evaluation. . ... .. ... ... ... ... ..

6.7.1 End-to-end impact of shared arrangements

6.7.2 Design evaluation. . . . ... ... ... ..
6.7.3 Baseline performance on reference tasks . .
6.8 Conclusions . . . . . .. .. ... .. ... ...,

Fault tolerance

7.1 Imtroduction. . . . .. ... ... ... ... ...
7.2 Related work . . . ... ... ... ..
7.3 Assumptions . . .. .. ... ...
7.4 Failuremodel . . . . . . ... ... ... ...
7.5 Consistency goal . . . .. ... ... ... .....
7.6 CLoperators . ... ... ... ...........
7.7 Achieving CL . . . ... ... ... ... ... ...
7.7.1 Operator-local properties . . . .. ... ..
7.7.2 Trivial fault-tolerance . . . . ... ... ..
7.7.3 Recording state updates . . . . . ... ...
7.7.4 Reclaiming state updates . . . ... .. ..
705 CL ...
7.8 TImplementation . . . . . . ... ... ... ... ..
7.9 Preliminary evaluation . . . . . ... ... ... ..
7.10 Re-scaling with CL . . . . ... ... ... ......
7.10.1 Coordinating compaction for rescaling . . . .
7.10.2 Rescaling while recovering . . . . . . ... ..
7.11 Conclusions . . . . . . .. ... ... L.

Verified progress tracking

81 Introduction. . . . .. ... ... ... ... ...

xiii



Contents

8.2 Related Work . . . . . . .. .. o o 135
8.3 Timely Dataflow and Progress Tracking . . ... ... .. 136
8.4 Running Example: Weakly Connected Components by Prop-
agating Labels . . . ... ... . oo 0oL 138
8.5 The Clocks Protocol . . . .. ... ... ... ....... 140
8.6 Exchanging Progress . . . . . .. ... .. .. ... .... 147
8.7 Locally Propagating Progress . . . . . ... .. ... ... 153
8.8 Progress Tracking . . . . . . ... ... ... ... 158
8.9 Conclusions . . . . . . .. ... 162
9 Conclusion 165
9.1 Composing a system from libraries . . . . . ... ... .. 165
9.2 You may not need synchronization . . ... .. ... ... 166
Bibliography 175

Xiv



Introduction

Modern data analytics and processing systems are increasingly relying on
rack-scale or cluster-scale systems to deal with massive data input rates
and memory requirements that cannot be handled by a single compute
node. The infrastructure to run these systems has an high cost, thus
gains in efficiency result in big savings, and enable more sophisticated
analyses.

Distributed streaming and data processing systems provide abstraction
to make it simpler to write scale-out analyses and queries over large in-
puts. This semi-automated scalability comes with a cost. [MIM15] Many
of these systems are far from achieving the performance of a well-tuned
program written without the help of those abstractions, as the cost of
abstraction can often outweigh the performance gains due to horizon-
tal scaling. Nevertheless, the popularity of these systems indicates that
such abstractions enable rapid development, are reliable, and easier to
understand for the programmer.

The MapReduce programming model [DG04] popularized scale-out dis-
tributed data processing: in this model users "specify the computation in
terms of a map and reduce function" which are automatically parallelized
by a runtime system. Dryad [Isa+07] generalized MapReduce to a data-
flow structure where generalized map/reduce stages are chained together
to encode more complex tasks. Popular streaming dataflow systems com-
bine this scale-out approach with the streaming programming model of
stream processing engines [Aba-+03; Bal+05| and database query pro-
cessing [Gra94] to handle high-volume low-latency queries over streaming
inputs.

A streaming dataflow program is represented as a graph of such inter-
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connected operators that perform per-record data transformations. Like
MapReduce, this model enables automatic and seamless parallelization
of streaming tasks on large multiprocessor systems, and cluster-scale de-
ployments. Many research-oriented and industry-grade systems have em-
ployed this model to describe streaming transformations and aggregation
for large-scale big-data analytics, on-line analytics processing, and ma-
chine learning tasks. In addition, analysts and engineers often require
stream processing systems to also provide millisecond-scale latency guar-
antees at the 99th percentile [DB13]: scale-out dataflow systems need to
provide good latency guarantees in order to be viable for these interactive
applications.

System mechanisms such as dynamic re-scaling, on-line data re-partition-
ing, fault-tolerance, resource management, and index sharing are critical
to deploying streaming dataflow systems in the real-world. For exam-
ple, monitoring applications based on streaming dataflow systems need
to recover quickly after a failure to provide timely alerts and automatic
remediations for the monitored system.

Dataflow programming models with epoch-based, fine-grained coordi-
nation were developed to have significantly less intrinsic overhead [Mur+13]:
systems based on these models enable the efficient implementation of
many large-scale low-latency data analytics and processing tasks (Na-
iad [Mur+13] and Flink [Car+15] are among such systems). However,
the aforementioned systems mechanisms must be adapted to cope with
the more complex execution model, while introducing minimal overhead,
to avoid squandering these systems’ increased efficiency.

To the best of our knowledge mechanisms that pre-date this thesis
were either entirely unsuitable for fine-grained streaming systems, im-
posed overheads that negated the performance gains of scaling out, or
introduced latency overhead and variability that made these systems un-
suitable for interactive applications.

This thesis describes how to adapt the distributed dataflow program-
ming model to implement of low-overhead, predictable index sharing, re-
scaling, re-partitioning, fault tolerance and resource management systems
as optional libraries written against the core dataflow system that only
needs to provide dataflow primitives. It then demonstrates how to build
these mechanisms with acceptable throughput overhead and predictable,
bounded latency cost, so they are suitable for interactive applications.



In modern time-aware dataflow systems records flow through the data-
flow graph asynchronously, to enable efficiency through pipeline and task
parallelism. Concurrent updates may race along the multiple paths be-
tween dataflow operators (potentially distributed across multiple threads
of control) and arrive in different orders than they were produced. For
dataflow operators to compute correct results, time-aware dataflow sys-
tems assign a logical timestamp to messages and exchange control signals
to determine which timestamps can be retired at which operator in the
graph.

This thesis proposes a new programming abstraction for these time-
aware dataflow systems: a coordination primitive that dataflow operators
use to explicitly signal which timestamps are in-progress or retired. This
abstraction is sufficient to construct complex synchronization protocols
like the ones necessary for mechanisms such as index sharing, data re-
partitioning, and fault tolerance without modifying the core system.

This approach benefits from the ability to use timestamp to both (i)
determine which timestamps can be retired at which operator and (ii)
build the synchronization protocols for those system mechanisms. The
ordering information implicitly encoded in timestamps make them the
right signal to coordinate data re-partitioning, incremental indexing, and
recording and recovering state across failures. This thesis discusses how
to leverage this property of timestamps to implement these mechanisms
with acceptable performance overhead.

By reusing the intrinsic ordering information of timestamps, system
mechanisms do not need to introduce their own entirely separate and
potentially expensive coordination protocols and control signals. They
can instead rely on the existing coordination information that is already
computed by the system for operators to compute correct results and they
only need to induce the additional signals they require to accomplish their
function (for example, consistently re-partitioning operator state on-line).

Because these mechanisms are now libraries and need not be integrated
in the core system, an application can elect to include only the features
that are required for the target deployment scenario: a monitoring ap-
plication may require fault tolerance but may not need on-line data re-
partitioning if the input data distribution remains stable over its lifetime.
This modular design ensures that applications do not experience perfor-
mance or complexity overhead associated with a system feature they do
not need. This modularity is necessary to build "zero-cost abstractions":
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system and language features that have no cost when they are not used,
and have cost comparable to a carefully hand-coded solution otherwise.!

The refined dataflow abstraction this thesis introduces also enables a
simpler system model that can be directly expressed in a formal lan-
guage. This enabled formal verification of the correctness of the core
coordination protocol of the most advanced time-aware dataflow system
to-date, which is also the research vehicle for the projects discussed in
this thesis. Formally verifying the coordination protocol helps to ensure
the correctness of the results computed by dataflow programs running
on the system, and of the fault-tolerance, indexing, and re-partitioning
mechanisms, which rely on the coordination protocol.

1The concept of "zero-cost abstractions" as a design goal is generally attributed to
Bjarne Stroustroup [Str95].



1.1 Overview

1.1 Overview

This thesis first introduces the dataflow programming model, from the
perspective of prior work, in Chapter 2. Chapter 3 presents a new, gen-
eralized dataflow system and programming model that captures the se-
mantics of modern distributed time-aware dataflow systems designed to
process high-rate input streams with low latency.

Chapter 4 introduces a new coordination primitive for dataflow sys-
tems, the timestamp token, and a refined dataflow programming model
that minimizes the volume of information shared between the computa-
tion and host system, without surrendering precision about concurrency.
Dataflow operators can explicitly signal which timestamps are in-progress
or retired and can build more complex synchronization protocols on the
basis of this new primitive.

The following chapters, starting with Chapter 5, address operational
and system concerns of dataflow systems: indexing, re-scaling, fault-
tolerance, and flow control. In addition to independent contributions
to addressing these concerns, these chapters also discuss how timestamp
tokens allow programs and frameworks to abstractly but precisely express
sophisticated coordination protocols using exclusively timestamp tokens
and no additional coordination primitives.

Chapter 6 presents a new design for stream-based query processors
that maintains indexed views of intermediate dataflow operator state.
This shared state allows concurrent queries to reuse the same in memory
state without compromising data-parallel performance and scaling. This
design relies on timestamp tokens to encode its coordination mechanism.

Chapter 7 presents a new design for a fault-tolerance mechanism for
time-aware dataflow that moves coordination off the critical path to avoid
latency spikes when intermediate state is durably persisted. This mech-
anism is again implemented as a library that uses the timestamp tokens
abstraction to coordinate the garbage collection of durable state in steady
state and the recovery protocol.
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Finally, timestamp tokens provide a cleaner formal model and definition
of correctness for a time-aware dataflow system. Chapter 8 presents the
model, and presents a machine-checked proof of the core coordination
protocol of timely dataflow.
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Dataflow model

This chapter provides a high level intuition of the dataflow programming
model and then introduces the properties and semantics of dataflow pro-
gramming models described in prior literature.

In general, the dataflow model is designed to program data-processing
applications as a collection of potentially parallel activities and their data-
dependencies; this enable a runtime system to (semi-)automatically cor-
rectly schedule the execution of the tasks on multiple processors in paral-
lel, enabling horizontal scale-out. What varies between different dataflow
models is (i) whether they support one-shot batch jobs or continuous
streaming queries, (ii) which flavors of available parallelism (and asso-
ciated data dependencies) can be expressed, and (iii) the granularity at
which such data dependencies can be expressed.

2.1 Dataflow graph and dataflow
computation

Most dataflow model flavors we will consider have a basic common graph
structure, an example of which is depicted in Figure 2.1.

A dataflow graph (V, E) consists of a set of vertices V' and a relation
E : V. — V which represents the directed graph edges: an edge from
vy € V to vy € V is represented as (vq,v2) € E. In a dataflow program,
a complete function P : V' — (C associates each vertex with some pro-
gram behavior, generally specified as one or more fragments of sequential
program code. In the context of data processing, the graph edges E are
communication channels that transport data between the dataflow op-
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dataflow edges
data transfer

outputs

inputs I ol ’
dataﬂoW ve'rtices—
operators

Figure 2.1: The parts of a dataflow graph representing a dataflow pro-
gram.

erators, represented by the graph vertices. Each operator is associated
with some data processing function or behavior (this is represented by
the relation P above).

A computation over input data is written as a dataflow program
where vertices with no incoming edges represent the input datasets (V;,, <
V') and vertices with no departing edges represent the computation’s out-
puts (Vour € V). Each vertex (operator) performs a data transformation
on the data received from its incoming edges (input channels) which it
forwards via its departing edges (output channels) to the next operators
(or the outputs).

Channels between operators that do not act as inputs or outputs carry
intermediate computation results. These are represented by the edges
Einter = {(v1,02)[v]l ¢ Viyy A 02 ¢ Vour}. As such, the dataflow edges
represent data dependencies between the inputs, the operators, and the
outputs. The transitive closure E* of the edges relation E captures the
pair-wise direct or indirect data dependencies between inputs, operators,
and outputs: a vertex v, (output or operator) has a data dependency
on any other operator or input vg if (v4,v,) € ET. Figure 2.2 depicts
the transitive data dependencies of the vertex representing one of the

12
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Y

p— =

Figure 2.2: A dataflow graph with the transitive data dependencies of one
of the output vertices highlighted.

computation outputs in the example graph.

In the following we will use these definitions to describe variations to
the model even when they deviate from the terms used in their original
formulation: when necessary, we will relate these definitions to the terms
used in prior work. In figures, we will omit vertices representing inputs
and outputs in the diagrams for clarity.

2.2 Example of a dataflow computation

Figure 2.3 shows a diagram of an example dataflow program for high-
rate data analytics as seen in contemporary deployments. The example
is adapted from the NEXMark benchmark suite [Tuc+08] for query pro-
cessing systems over data streams: the scenario is a on-line auction house
website (like eBay [eBa]) where information about auctions and bids are
streamed into the data-processing system.

The dataflow program in the example computes and updates the results
for three continuous queries: (1) the top-k categories by number of bids in

13
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number of bids
sliding window

top-k
sliding window
average
by category

bids

winning bid

f average
auctions by seller

Figure 2.3: An example NEXMark-inspired dataflow computing the top-k
categories by the recent number of bids, the running average
winning bid for each category, and the running average win-
ning bid for each seller.

the last time window (e.g. an hour), (2) the running average winning bid
for each category, (3) and the running average winning bid for each seller.
Bid and auction updates are streamed into the system, processed by the
dataflow operators, and may result in updates to the query outputs that
are streamed out of the system.

Different flavors of the dataflow model will encode this task in different
ways, depending on their support for expressing parallelism, how data is
transferred between operators, and their data models.

2.3 Batch and streaming inputs

There are two families of data processing tasks and systems where pro-
grams are represented as dataflow programs: (i) one-shot batch processing
jobs, and (ii) continuous stream processing tasks or continuous queries.

14
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2.3.1 Batch

MapReduce [DG04], Spark [Zah+12], and Dryad [Isa+07] are represen-
tative of programming models and systems designed for scale-out batch
processing of large input datasets. These systems have been widely em-
ployed in the industry for querying and transforming large datasets for
business intelligence, operational tasks, periodic and expensive data anal-
yses (backing for example recommender or fraud detection systems), se-
curity and log analyses, indexing, and more.

For batch processing, the input vertices in a dataflow program are input
datasets (generally as collections of records) and the dataflow operators
represent transformations such as filtering, joins, and aggregations on
the datasets identified by the operator’s incoming edges. These data
transformations are data-parallel, as described later in subsection 2.4.4.

Data dependencies In the batch model the dataflow edges correspond
to data dependencies between the transformed datasets computed by the
various operators (vertices) or the inputs. To complete the data transfor-
mation associated with an operator, all its transitive data dependencies
must have been completed too.

2.3.2 Streaming

Apache Storm [Apa|, Apache Spark Streaming [Zah-+13], Naiad [Mur+13;
MT], Timely dataflow [MT], Apache Flink [Car+15], and Google Cloud
Dataflow [Aki-+15] are representative of programming models and systems
designed for scale-out stream processing over changing, high-volume input
datasets often represented by high-rate streams of incoming "updates"
(records). These updates originate from user operations (similarly to
writes to a database), monitoring services (that track hardware metrics
and events), sensors, and other continuous data sources.

These systems are widely deployed for developing micro-services which
are components of interactive web or management services, such as system
monitoring, intrusion detection, engagement metric aggregation ("view
counts and likes"), service billing, online data analytics and business in-
telligence, and machine learning inference.

15
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\ 4

Figure 2.4: A dataflow graph with the transitive data dependencies of one
of the output records highlighted. r, depends on r3 which in
turn depends on 7y and rs.

Data dependencies In streaming systems the input vertices represent
continuous streams of incoming records. The dataflow edges carry record
streams between the dataflow operators which process them one record
at a time (or one record batch at a time). The dataflow edges correspond
to data dependencies between individual records as they appear on the
output of the vertices. To complete the data transformation associated
with an operator for a record r,, all its transitive data dependencies
must have completed processing of the intermediate or input records that
resulted in r,. Figure 2.4 depicts the exact transitive data dependencies
of a record r, that appears in the output. This dependency relation for
records can be seen as a family of graphs whose edges FE, are subsets of
the dataflow graph edge set E (E, € E).

Scale-out dataflow streaming systems aim to provide scalable perfor-
mance to handle massive input streams but otherwise have similar design
goals and use cases as traditional streaming data-processing engines and
continuous query processors.

16



2.3 Batch and streaming inputs

2.3.3 Data model

Record tuple Dataflow data processors inherit the data model of databases.
Inputs, intermediate results and outputs are usually a collection of record
tuples (a1, ..., a) although some systems support hierarchical or unstruc-
tured data as records (e.g. video frames). In batch systems these collec-
tions, once fully computed, are static. Following Aurora [Aba+03], these
collections in streaming systems are append-only sequences of record tu-
ples.

Record key Aurora [Cet+16] also introduces the concept of an op-
tional tuple key for the stream. A tuple (ki, ..., km, a1, ..., an,) has a key
(K1, ..., k) for the stream and attribute values (a1, ..., a,,). This key acts
similarly to a key in a database table: it identifies records that refer to the
same entity. For example, all record tuples referring to a certain user of
a system will contain the user identifier as part of their key. This enables
data aggregations by key, like counting all of a user’s interaction with a
system in a specified amount of time.

Timestamp In Aurora and many streaming systems since, each record
tuple in a stream has a timestamp ¢ that indicates when it originated: the
timestamp can be a wall clock time of when the record tuple was generated
or a logical value shared by records generated at the same logical time (for
example a monotonic transaction counter). The timestamps of records
increase over the life-cycle of the dataflow computation.

In Aurora and Borealis the timestamp was used exclusively for qual-
ity of service calculations and hidden from data transformation logic at
operators. In modern time-aware systems the timestamp is used in data
transformations for temporal aggregation (for example, for computing
time-windowed statistics). This thesis will formally define timestamps in
section 2.6 and will discuss the time-aware dataflow model in Chapter 3.

Revision Borealis and Differential dataflow [McS+13], among others,
also support an extended model to revise the information encoded in a
stream with insertion, deletion, and replacement records. The following
definitions use a notation similar to the one introduced by Borealis; other
systems that support revisions use variations of this model.
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e An insertion message (+, d) indicates that d = (k1, ..., km, a1, ..., @)
is a new record tuple to be inserted with key value (k1, ..., kmn);

e a deletion message (—,d), where d = (kq, ..., kp, ), removes the pre-
viously inserted record tuple with key value (k1, ..., km);

e a replacement message («,d), where d = (ki,....,km,a1,...,am),
takes a previously inserted record tuple with key value (k1, ..., k)
and revises its attribute values with (a1, ..., a.,).

2.4 Expressible parallelism

Stream processing systems that process high-rate streams use the data-
flow programming model because it allows programmers to abstractly
express parallelism opportunities in the programs, which these systems
can exploit when scaling out. Figure 2.5 depicts three of the four kinds
of parallelism that can be exploited in stream processing systems: task-,
pipeline-, and data-parallelism. In addition, stream processing dataflow
models that use timestamps can leverage another epoch parallelism, an
other kind of intra-operator parallelism.

The rest of this chapter defines each form of available parallelism fol-
lowing the taxonomy introduced by Volcano [Gra94|. Volcano is an early
dataflow-based parallel query processor that identified the types of par-
allelism expressed by the dataflow model (without timestamps).

Volcano distinguished and supported both push-based and ‘demand-
driven’ dataflow: in push-based dataflow (‘flow-control’ in Volcano) op-
erators can produce and "push" records on their own schedule, while in
‘demand-driven’ dataflow operators produce records in response to a re-
quest from a consumer (which then waits for their completion): in our
dataflow model, producers and consumers are respectively the source and
destination of a dataflow edge (note that all operators, except for inputs
and outputs, acts as both producers and consumers for different chan-
nels). Almost all modern scale-out dataflow systems use the push-based
dataflow model which will focus on in the following.

This section refers to Volcano’s definitions for parallelism but uses ter-
minology more commonly used in modern systems.
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Figure 2.5: Available parallelism in a dataflow program.
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Figure 2.6: (Reproduced from [Gra94|, page 130.) Model of operator par-
allelism in Volcano.
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Figure 2.7: Example of task parallelism for records in a dataflow graph.

2.4.1 Task parallelism

Data transformations that do not have a data dependency on each other
can be executed in parallel. Formally, the code fragments P(v;) and
P(v9) associated with two operators v; and vy for which (vq,v2) ¢ ET A
(v2,v1) ¢ ET can be executed in parallel. This extends to streaming
systems where data transformations on record tuples r; and ro for which
(r1,72) ¢ E A (r2,71) ¢ E can be performed in parallel.!

Figure 2.7 shows an example of available task parallelism in a streaming
setting. Records 4 and r5 do not depend on each other and they can be
constructed in parallel by their respective operators. The same is true
for the pairs rg, r7, 74,77, and rg, 5.

A similar concept is referred to as ‘Bushy parallelism’ in Volcano [Gra94]
which defines it as different processors executing different subgraph of a
complex dataflow graph.

1As a reminder: P : V — C associates each vertex with some program behavior,
E7 is the transitive closure of the dataflow graph edge relation E, representing
direct and indirect data dependencies, and E;f is the transitive closure of the
dependencies between record tuples as described previously in this chapter.
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Figure 2.8: (Reproduced from [Gra94], page 131.) Vertical parallelism in
Volcano.

2.4.2 Pipeline parallelism

Data transformations at operators that are, potentially indirectly, con-
nected by a dataflow edge can still be executed in parallel in a streaming
dataflow when the records being processed do not have a data dependency
on each other. Intuitively, this is running in parallel separate tasks in a
pipeline when they act on different data; for example an earlier vertex in
the pipeline may process newer information while a later vertex processes
information that reached the system earlier and has already progressed
through the earlier vertex.

Formally, the code fragments P(v1) and P(vy) associated with two
operators v1 and vy for which (v1,v3) € E1 v (v2,v1) € E™ can be exe-
cuted in parallel to generate record tuples 71 and 7o for which (rq,7r2) ¢
EF A(rq,r1) ¢ EF. Figure 2.9 shows an example of pipeline parallelism
available in a dataflow graph. The records ri, and the records 7o, are
unrelated in £, meaning there are no data dependencies between these
two sets of records. For this reason, ro4 and ri3 can be generated in
parallel at their respective operators; the same is true for ro3 and r14.
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Figure 2.9: Example of pipeline parallelism for records in a dataflow
graph.

Pipeline (‘vertical’) parallelism is described in Volcano as using each
processor to run a subset of the operators in the dataflow graph, as de-
picted in Figure 2.8, where one processor runs each of the ‘Scan’ oper-
ations, one processor runs the two ‘Join’ operations, and one processor
runs the ‘Print’ operation.

2.4.3 Intra-operator data dependencies

In many cases the generation of a record at a certain operator may also
depend on a previous record having completed processing at the same
operator. For example, a rolling aggregation may require all previous
inputs having being completely processed before moving onto the next.
This can be described by extending the relation E, and its transitive
closure E;t with intra-operator data dependencies between records. Fig-
ure 2.10 extends the example of Figure 2.9 with intra-operator ordering
dependencies; in this revised example 733 can be generated in parallel with
r14 but 713 and ro4 cannot because there is an indirect data dependency
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Figure 2.10: Example of intra-operator data dependencies for records in
a dataflow graph.
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]
o - —- L

Figure 2.11: Example of data parallelism for records in a dataflow graph.

(r13,724) € Ef due to {(ri3,714), (r14,724)} € E;.

2.4.4 Data parallelism

When two (or more) records at the same operator do not have an intra-
operator data dependency (in the extended FE,.), the data transformation
can be executed in parallel for both. This is typically data that relates
to different entities, for example bids for different auctions.

Formally, the code fragment P(v,) associated with the operator v, can
be executed in parallel to generate record tuples r; and 7y for which
(r1,m2) ¢ EY A (ro,71) ¢ Ef. Figure 2.11 shows an example of data
parallelism available in a dataflow graph. The records ri3 and rq3 are
unrelated in £, meaning there are no data dependencies between them.
For this reason, r13 and ro3 can be generated in parallel; this is not true
for 714 and T24 for which (7’147 ’I“24) € E,j_

Volcano identified ‘intra-operator parallelism’ where multiple proces-
sors can be allocated to one (or more operators) to process subsets in
a partition of the dataset (or intermediate result): Figure 2.12 shows a
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Figure 2.12: (Reproduced from [Gra94], page 132.) Intra-operator hori-
zontal parallelism in Volcano.

Volcano execution plan where two of the ‘Scan’ tasks are handled jointly
by two processors each, and the two ‘Join’ operations are handled by
another two processors, each responsible of the data associated with a
subset in a partition of join key.

2.5 Operator shards

It is very often possible to group record tuples at an operator using a
stream record key function S : R — K which selects a subset of the tuple
attributes (e.g. Aurora’s record key) in such a way that Yr;,r; : S(r;) #
S(rj) = ((ri,rj) ¢ Eff A (rj,r:) ¢ EF). In other words, the record tuples
can be partitioned so that tuples in different subsets do not have a data
dependency on each other: for example, bids can be grouped by auction
at an operator that computes the top-k bids for each auction.

Any such partition of the record tuples at an operator yields subsets
that can be processed in parallel. We can then re-interpret each operator
as a collection of operator shards, one for each of these subsets. Most
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Figure 2.13: Example of dataflow graph with sharded operators. This is
a simpler dataflow graph than previous figures.
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Figure 2.14: Example of data parallelism for records in a dataflow graph.

dataflow models and systems support sharding operators; the shards are
sometimes known as operator instances.

Figure 2.13a depicts a dataflow where operators have been partitioned
in different numbers of shards; if there was a dataflow edge between two
operators in the original graph, there will be an edge for each pair of
shards of the respective operators. This is just one example: for most
dataflow programs and input datasets, there are many different ways to
partition the record tuples.

We can simplify the graph again by having vertices (V') each represent
a collection of shards, as depicted in Figure 2.13b; this is the model
commonly used by popular dataflow models and systems. Figure 2.14 is
the complete running example dataflow graph with all operators sharded.

2.6 Timestamps
In streaming dataflow programs that process incoming data continually

(as opposed to a static input), like those used for monitoring services
and on-line analytics, processing a new record may depend on a previous
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record having completed processing, as described in subsection 2.4.3. This
extends to output records, that (may) depend on a prefix of the input
record history; to provide consistent results, it is necessary to encode such
dependencies so that (i) only actural dependencies of an output record
are used when computing it, and (ii) it is possible to determine when all
the output records that depend on a certain input have been produced.
Timestamps are a widely-used to represent event ordering and causal-
ity [Lam78]. In the context of continuous queries, timestamps have been
associated with input data records since the Tapestry system [Ter+92],
are associated with all records in the system and used for QoS purposes in
Aurora and Borealis [Aba+03; Aba+05], and STREAM [BWO01; Ara+04]
which defines “a stream S [as| an unbounded bag (multiset) of pairs (s, 7),
where s is a tuple and 7 € T' is the timestamp that denotes the logical
arrival time of tuple s on stream S” (reproduced from [Ara-+04], page 2).

2.6.1 Encoding dependencies with timestamps

Following STREAM, in recent streaming dataflow systems timestamps
are used to encode potential intra-operator dependencies and, in combi-
nation with the structure of the dataflow graph, potential dependencies
on record tuples generated by earlier dataflow vertices (or in the inputs),
as depicted in Figure 2.15. Intuitively, a record produced at a certain
operator at a certain timestamp may depend on record tuples at an ear-
lier vertex with the same or an earlier timestamp; it may also depend on
record tuples at the same vertex but with an earlier timestamp.

Formally, in addition to previous relations and functions, we define:

e aset of timestamps T for which a transitive, reflexive, anti-symmetric
partial order = is defined;

e the function 7 : R — T which associates each record tuple with its
timestamp;

e the function V : R — V which relates a record to the vertex where

it’s generated (this formalizes the relationship between records and
vertices discussed in subsection 2.3.2);
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Figure 2.15: Example of timestamp encoding dependencies in a dataflow

graph.
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With these definitions, timestamps approximate the data dependencies
EF as follows?:

(rivry) € B = T(ri) 2 T(r5) & (V(rs) = Vrg) v (), V(ry) € B¥)
(2.1)

In other words, there may be a dependency between two records r;
and r; if the timestamp of r; is earlier than or equal to the timestamp of
rj, T(r;) < T(r;), and either (i) the records are generated by the data
transformation at the same operator, V(r;) = V(r;), or (ii) the records
are generated at two operators that are connected in the dataflow graph,
(?]i,’l)j) € E+).

These timestamp-based dependencies define the set &F

EY = {(ri,rj)

T(rs) 2 T(ry) A (V) = V() v V), V() € BY) }
(2.2)

which approximate the exact data dependencies EF:

EFcEf

2.6.2 Effect of timestamp approximation on available
parallelism

As we have seen, a dependency (r;,7;) € £ indicates that there may be
a data dependency on r; when computing r;, but that dependency may
not actually exist. This cuts down on available parallelism in the model,

because all
{rk‘(rk,rm) € ST*}

would need to have been completed before a certain 7, can be generated.

Fortunately, the data transformation associated with a vertex v, (via
P(v,)?) is sufficient information to determine the precise data dependen-
cies (rg,ry) where V(r;) = v,, i.e. all records generated at v,,.

2As a reminder, E, represents record data dependencies, and E[ is its transitive
closure (subsection 2.3.2); E are the edges of the dataflow graph, and E¥ is its
transitive closure (section 2.1).

3As a reminder: P : V — C associates each vertex with some program behavior.
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For example, a simple data transformation for a vertex v, that takes
every integer input record r, (V(r;)) and adds one to it (belonging to a
class of transformations generally termed as map), encodes a direct depen-
dency between each record generated r, and the corresponding incoming
record 7y at the immediately preceding operator (V(ry), V(rz)) € E) but
no intra-operator dependency (r,,7,) between records at v, (V(r,) #
Vg AV(rg))-

2.6.3 Towards time-aware dataflow

ET loses precise dependency information when compared to the exact per-
tuple data dependency information (lineage) in E; but enables tracking
these dependencies by associating a timestamp to every record (7) and
using the structure of the dataflow graph ((V, E)).

The &£ approximation, in addition to vertex-local program behavior P
that allows expressing finer grained dependencies, is the basis for the co-
ordination mechanisms of recent time-aware dataflow streaming systems.
We describe the time-aware dataflow model in the next chapter.
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Time-aware dataflow

This chapter is based in part on “Verified Progress Tracking for Timely Data-
flow” [Bru+21], Timestamp tokens: a better coordination primitive for data-
processing systems [LM22], and “Shared Arrangements: practical inter-query
sharing for streaming dataflows” [McS+20)].

This chapter introduces the time-aware dataflow programming model.
This model captures the core semantics of the underlying programming
models of modern, record-at-a-time, low-latency, time-aware dataflow sys-
tems that define their semantics use timestamps to express which outputs
are consistent in relation to which inputs: Apache Storm [Apa], Na-
iad [Mur+13; MT], timely dataflow [MT]|, Apache Flink [Car+15], and
Google Cloud Dataflow [Aki+15].

These data-parallel stream processing systems express such computa-
tions as a dataflow graph whose vertices are operators, and whose roots
constitute inputs to the dataflow. A message (e.g. a record representing
an event in stream) arrives at an input with an associated timestamp and
flows along the graph’s edges into operators. Each operator takes the in-
coming message, processes it, and emits any resulting derived messages.
Operators can also emit messages based on incoming control signals. Op-
erators have access to progress information through control signals: they
can determine which timestamps for messages can still reach their inputs
because they are still being processed in upstream operators.

Chapter 2 described dataflow models in terms of the data dependen-
cies and opportunities of parallelism they encoded. The programming
model used by time-aware dataflow systems is designed to capture those

33



Chapter 3 - Time-aware dataflow

dependencies without the need to track per-record lineage graphs (like
we did with E,., E in subsection 2.3.2 and section 2.4) and instead uses
the dataflow graph, operator logic (program behavior of a vertex), and
record timestamps for a conservative approximation of such dependencies
(like we did with £ in section 2.6).

In this chapter we refer to dataflow vertices V' and their associated
program behaviors P! as operators. We refer to record tuples as mes-
sages which flow along dataflow edges E which we call channels. This
terminology is more common in recent time-aware dataflow streaming
systems and is also used for our formal model and machine-checked proof
in Chapter 8.

As we will see, progress information tracked by time-aware dataflow
systems using control signals encodes these timestamp-based data de-
pendencies to determine when all dependencies of a certain record r, in
ET have been computed and delivered to the operator that generates it,
V(r;). Because £ is a conservative approximaton of the exact depen-
dencies, this is sufficient to determine that the data transfomration for
7, can proceed.

Some of the terminology used in this chapter follows that of timely
dataflow [Mur+13; MT], in particular the concepts of operator “ports”
and of “frontiers” as antichains.

3.1 Time-aware dataflow model

3.1.1 Dataflow graph

A time-aware dataflow computation is represented by a directed graph
of operators (the graph’s vertices), connected by channels (the graph’s
directed edges). Each operator in the dataflow graph is instantiated on
one or more workers. Each instance of an operator is responsible for
a subset, or shard, of the data being incoming to that operator: the
system partitions the key space, and creates operators to independently
process each partition. Operators communicate through channels which
carry messages: these channels are reliable, asynchronous, and FIFO.
Each message r,, is associated with a timestamp 7 (r;). Figure 3.1 and

1As a reminder: P :V — C associates each vertex with some program behavior.
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___,:operator shards

dataflow edges

channels OUtPUtS
inputs
ol L sharded
dataflow vertices . . ..Operator
operators 7 state

Figure 3.1: A time-aware dataflow graph.

Figure 3.2 show a time-aware dataflow graph, an operator, and the related
concepts described in this section.

3.1.2 Operator state

In processing an update, a dataflow operator may refer to its state: long-
lived information that the operator maintains across invocations. State
allows for efficient incremental processing, such as keeping a running
counter. For many operators, the state is indexed by a key contained
in the input update. For example, a count operator over auction bids
grouped by the user who posted them will access its state by user ID.
Each operator instance has access to a shard of the operator state that
corresponds to the key shard associated with that instance.

The operator state allows computing and storing partial results for data
transformations where the resulting record r,, has data dependencies that
span earlier timestamps: (r;,7,) € £ where T (r;) < T (ry) and T (r;) #
T(rz).? An example of these dependencies is all the auction bids for the
count operator described above: if the operator could not maintain state

2As areminder: 7T associates each record to its timestamp, as discussed in section 2.6.
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Figure 3.2: A time-aware dataflow operator.

to summarize the input so far, it would need persistent access to all of its
input messages for the entire duration of the computation.

3.1.3 Operator ports

Each operator has an arbitrary number of input and output ports. An
operator instance receives new data through its input ports performs pro-
cessing, and produces data through its output ports. A dataflow channel
is an edge from an output port of an operator o, to an input port of an
operator o, and represents all FIFO channels between the outputs of all
instances of o, and the inputs of all instances of 0.

3.1.4 Instantiated dataflow graph

Figure 3.3a depicts a time-aware dataflow graph where operators have
been instantiated as multiple shards with their associated state shards; if
there was a dataflow channel between two operators in the original graph,
there will be a concrete cannel for each pair of shards of the respective
operators.
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Figure 3.3: Example of time-aware dataflow graph with sharded opera-
tors. This is a simpler dataflow graph than Figure 3.1
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Similarly to section 2.5, we can simplify the graph again by having ver-
tices (V') each represent a collection of operator shards and edges F repre-
sent a collection of edges in the instantiated dataflow graph, as depicted
in Figure 3.3b; this is the model commonly used by popular dataflow
models and systems.

In the following, when we talk about a dataflow operator, we refer to all
its shards in the instantiated graph, and when we talk about a dataflow
channel, we refer to all the associated concrete channels that connect
operator instances.

3.1.5 Internal dependencies

Internal operator connections are edges from an input port to an output
port which are described by internal depency information: which in-
puts and output ports are causally connected and what is the minimal
increment to timestamps applied to data processed by the operator.
Most modern systems assume that all inputs are causally connected to
all outputs and that the minimal increment to timestamps is zero, i.e.
operators can produce output messages with the same timestamp as the
input message that the output message depends on. The notable excep-
tion is the timely dataflow programming model [Mur+13], which allows
operators to specify summaries: causal connections between the inputs
and outputs of each operator and the minimum timestamp increment on
that connection. This minimum increment information is necessary for
timely dataflow to support cycles in the dataflow graph without livelocks.

3.1.6 Frontiers

Operator instances must be informed of which timestamps they may still
receive from their incoming channels, to determine when they have a
complete view of data associated with a certain timestamp. The sys-
tem’s coordination mechanism tracks relevant progress information and
summarizes it to one frontier per operator input port. A frontier is a lower
bound on the timestamps that may appear at the operator instance in-
puts. It is represented by an antichain® F indicating that the operator
may still receive any timestamp ¢ for which 3t' € F. ¢/ < t.

3¢An antichain is a subset of a partially ordered set such that any two distinct ele-
ments in the subset are incomparable.” (from “Antichain” on Wikipedia [Wik])
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3.2 Encoding data dependencies

Timestamps and frontiers encode data dependencies. The time-aware
dataflow system coordination mechanism is tasked with computing fron-
tiers based on progress information to ensure results are correctly com-
puted. Frontiers properly respect data dependencies when the following
property holds.

Yo e V,r,|V(ry) =v— ((Elra|(7“a, ry) € EF A —completed,(r,)) —
frontiery, (v) < T(ra)) (3.1)
where

e completed,(r) indicates that all records r; (messages) that depend
on r and for which (V(r;),v) € E have been delivered to v;

e frontier,, (v) is the frontier on the input(s) of operator v reachable
from vp;

e we use I’ <t as a shorthand to indicate that 3t; € F|tf <t.

That is, the frontier at an operator’s input port must contain one ele-
ment ¢y that is less or equal < to (i) every timestamp that has not been
retired at any upstream operator (from which the input port is reachable),
and (ii) to every timestamp of messages in-flight on upstream dataflow
edges (from which the input port is reachable). A timestamp has been re-
tired on an output of a certain operator when the operator has produced
all messages with that timestamp on that port.

Frontiers for each input port in a time-aware dataflow graph move
forwards through time (as defined by <) as the computation advances
and timestamps are retired at operators and messages are delivered.

The concept of approximating data dependencies with using auxilliary
information is common in Computer Science and appears in stream pro-
cessing as “punctuated streams” [Tuc+03]: “punctuation” indicates that
all data pertaining to a certain logical substream has been delivered, sim-
ilarly to how a frontier advancing past a timestamp indicates that all
input data pertaining to that timestamp has been received.
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Monotonic frontiers Frontiers, like timestamps, are a conservative
approximation of the exact data dependencies E;f. Because the operator’s
behavior P(v;) only has access to the frontier to determine when it can
proceed to compute results for a certain timestamp, it is important that
the frontier at each operator input port advances monotonically during
the computation and never moves back in time (i.e. elements of a frontier
should each be beyond the prior frontier).

3.2.1 Coordination with timestamps and frontiers

In a pipelined, data-parallel time-aware dataflow system, concurrent up-
dates may race along the multiple paths (and even cycles) between data-
flow operators potentially distributed across multiple threads of con-
trol, and arrive in different orders than they were produced. With log-
ical timestamps on messages and timestamp frontiers from the system,
operators can maintain clear semantics even with asynchronous, non-
deterministic execution.

A system should guarantee that all future timestamps received at an
operator input are beyond the frontier most recently reported by the
system, and that these reports should only advance.

3.3 Time-aware dataflow systems

This model extends and abstract the timely dataflow programming model
introduced in Naiad with the goal to capture the programming model of
other modern low-latency time-aware dataflow systems. In this section,
we descrive representative systems; subsection 3.3.3 discusses timely data-
flow.

3.3.1 Spark Streaming

Spark [Zah-+12] is a batch system that models a computation as an acyclic
dataflow graph, but without distinct logical times: inputs in Spark are
either "complete" or "not yet complete". The Spark system tracks which
inputs are complete and signals operators when their inputs are all com-
plete and the operator can run to completion. Operators report back to
the system as they complete their outputs.
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Spark Streaming [Zah-13] adapts Spark to a streaming setting. Spart
Streaming partitions logical time into small batches, and for each batch
evaluates an entire dataflow. It therefore implicitly provides timestamps,
with progress indicated by the scheduling of an operator. Spark Stream-
ing operators do not have long-lived state, but each invocation can read
an input corresponding to its prior state and write an output for its up-
dated state, at greater expense than updating in-memory state.

3.3.2 Flink

Flink [Car+15] models computations as an acyclic dataflow graph, with
integer logical times. Flink streams (dataflow edges) report an increasing
integer “watermark" lower-bounding the timestamps the stream may yet
produce. These watermarks are interleaved in the stream of data itself,
and each operator is required to produce them in their output streams
as well. Flink does not have a centralized scheduler, and maintains a
fresh view of its outputs only through the continued introduction of new
watermarks in the dataflow inputs. In Flink a “watermark” for a times-
tamp ¢ indicates that all messages that follow have timestamps greater or
equal to t. Flink uses “watermarks” to maintain frontier information for
the operator inputs. Flink operators can have long-lived state, and can
themselves be the result of sharding a larger dataflow operator.

3.3.3 Timely dataflow

Timely dataflow is a model for data-parallel dataflow execution, intro-
duced by Naiad. Timely dataflow models computations as a potentially
cyclic dataflow graph, with partially ordered logical times. Each timely
dataflow operator is sharded across all workers, with data exchanged be-
tween workers for dataflow edges where the destination operator requires
it. In timely dataflow, all data carries a logical timestamp, and workers
exchange timestamp progress statements out-of-band. Workers indepen-
dently determine frontiers for each of their hosted operators.

Naiad operators request “notifications” at specified logical times, and
Naiad invokes a callback only once it determines that all messages bearing
that logical time have been delivered. Naiad does not present operators
with lower bounds for their inputs, and instead requires operators to defer
the responsibility of scheduling to the system itself, in part because the
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logic for doing so requires a holistic view of the dataflow graph and all
other pending notifications.

Timely dataflow [MT] is also the name of the current implementation of
timely dataflow which differs from the original model in two ways relevant
for the work in this thesis.

Timestamp partial order In Naiad, timestamps are tuples of integers
t = (e,c1,ca,...) where the “epochs” e are externally assigned and the
iteration counters ci, co, etc. are used to track the number of times a
piece of data has gone through a feedback edge in a cycle in the dataflow
graphs. There is a total order on epochs, so timestamps with a lower
epoch number are =< of timestamps with an higher epoch number. Within
the same epoch, timestamps are partially ordered. In modern timely
dataflow, timestamps can be of an arbitrary type for which a partial
order < is defined; the generalization to arbitrary, partially ordered (=)
timestamps precedes the work in this thesis.

Frontiers In modern timely dataflow, the system computes frontiers for
operator inputs using a distributed protocol; however, before the work in
this thesis, frontiers were not accessible by the operator behavior code and
operators were required to request “notifications” at specified timestamps,
like in Naiad. Chapter 4 describes a new operator interface that we
designed to allow operators to directly access and manipulate frontiers.
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This chapter is based on Timestamp tokens: a better coordination primitive for
data-processing systems [LM22]; some of the work presented in this chapter was
initially reported as part of my Master Thesis “Programmable scheduling in a
stream processing system” [Lat16].

As we have seen in Chapter 2 systems for data-intensive computation
have advanced through programming models that allow programs to re-
veal progressively more opportunities for concurrency. Frameworks like
MPI [MPI] allow programmers only to explicitly sequence data-parallel
computations. Systems like DryadLINQ [Yu+08] and Spark [Zah-+12] use
data-dependence graphs to allow programs to express task parallelism.
Stream processors like Flink [Car+415] and Naiad [Mur+13] (following
[Apa; Aki+13; CGMO09]) add a temporal dataflow dimension to represent
pipeline parallelism. In each case, new runtimes extract more detailed
information about the computations, allowing them greater flexibility in
their execution.

This chapter proposes a new programming abstraction for time-aware
dataflow systems (as described in Chapter 3): a coordination primitive
that dataflow operators use to explicitly signal which timestamps are in-
progress or retired. Drawing inspiration from work on capability systems,
this new coordination primitive, the timestamp token, is an in-memory
object that can be held by an operator and provides the ability to produce
timestamped data messages on a specific dataflow edge.

A timestamp token does not require repeated interaction between sys-
tem and operator to confirm, exercise, or release this ability. Instead, an
operator accumulates and summarizes its interactions with its timestamp
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tokens. The system collects this information when most convenient, main-
tains a view of outstanding timestamp tokens, and provides summaries
of potential input timestamps to each operator.

As we will see in the following chapters, this abstraction is sufficient
to construct complex synchronization protocols like the ones necessary
for system mechanisms such as index sharing, data re-partitioning, and
fault tolerance without modifying the core system. These idioms could
not be expressed easily, if at all, on top of other existing platforms. The
approach presented here benefits from the ability to use timestamp to
both (i) determine which timestamps can be retired at which operator
and (ii) build the synchronization protocols for those system mechanisms.

My early prototype for a dataflow flow control mechanism, Faucet [LMC16;
Lat16], uses timestamp tokens to allow operators (and dataflow frag-
ments) to implement their own flow control, without modifying system
code. DD, presented in Chapter 6, uses timestamp tokens to provide
arbitrary granularity timestamps for differential dataflow [McS+13], dra-
matically improving the throughput over the corresponding Naiad imple-
mentation. Megaphone [Hof+19] uses timestamp tokens to specialize the
implementations of operator-internal schedulers, for example using prior-
ity queues in operators that support them without requiring system-wide
support. In each case, timestamp tokens’ separation between system and
operators provided the flexibility to introduce behavior that would oth-
erwise require the implementation of a specialized system.

4.1 Background

Dataflow systems have become limited by the complexity of the bound-
ary between system and computation. Specifically, as computations pro-
vide progressively more fine-grained and detailed information about con-
currency opportunities, the scalability and sophistication of the system
schedulers must increase. In our experience, system complexity has in-
creased to the point that scheduling rather than computation becomes
the bottleneck that prevents higher throughputs and lower latencies.
System designers have the opportunity to reduce the volume of coordi-
nation by reconsidering the interface between system and operator. For
example, where Spark Streaming [Zah-+13] must schedule distinct events
to implement distinct logical times, Flink (and other stream processors)
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allow operators to retire batches of events corresponding to blocks of
logical times, substantially improving throughput.

Flink (and other stream processors) requires continual interaction with
operators to confirm that they have no output at a logical time: opera-
tors are presented with periodic updates on the state of the system, act
on them sequentially, and are tasked with propagating the coordination
signal. With this interface the system must periodically poll all operators
to make progress, even when no work needs to be done, and must forward
all periodic updates, even when no operator has interested in them.

Naiad avoids periodic polling by asking operators to explicitly identify
future times at which the operator should be notified, but requires the
operators to register a notification handler that’s driven by the system
scheduler. Because the system sequences the operator’s work by invoking
the handler, the operator is not free to intelligently reorder work for
increased efficiency.!

These interfaces reduce the volume of coordination, but require a deeper
involvement of the system itself: continually invoking operators in Flink
and sequencing notifications in Naiad. Each of these systems introduce
new opportunities for concurrency, and corresponding performance gains
on important tasks. However, no one system unifies the work of the
others.

We believe that unifying this work, and laying the groundwork for more
advanced behaviors, requires a simplification of the interface between sys-
tem and operator, rather than further sophistication. The programming
model proposed in this chapter exploits the unified model presented in
Chapter 3.

4.2 Timestamp tokens

We propose that dataflow systems and operator logic can coordinate pre-
cisely, efficiently, and ergonomically by explicitly handling in-memory to-
kens that represent their ability to produce outgoing data in the future.
We borrow and adapt this idiom from capability systems (e.g. object-

IThe implementation of timely dataflow, before the work in this dissertation, pre-
sented a raw interface to the operators that enabled efficient processing but — in
our experience — was very prone to subtle programming errors that caused hard-
to-debug concurrency bugs.
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capability systems [DV66; Fab74], capability-based protection and secu-
rity [CJ75; Mul+90], hardware capabilities [A F73; Chi+15]). Similarly
to capabilities?, a timestamp token represents a computing object — an
operator output — and the actions that can be performed with respect to
that object: the production of data at timestamp ¢ and dataflow location
l.

Following Naiad we refer to the pair of timestamp ¢ and location [ as a
pointstamp (t,1). A location can be either a node in V' or an edge in F.

Definition. A timestamp token is a coordination primitive that names
an associated pointstamp (¢,1), and which gives its holder the ability to
produce messages with timestamp ¢ at location [.

The location for a timestamp token is one of the output edges of the
operator that holds it.

Notwithstanding any other similarities to capabilities, our interest is in
the information that holding timestamp tokens communicates to others.
The system tracks the set of live timestamp tokens and summarizes this
information to operators as frontiers: lower bounds on the timestamps
that operators may yet observe in their inputs. By downgrading (to future
timestamps) or discarding their held timestamp tokens, operators allow
frontiers to advance and the computation as a whole to make forward
progress.

4.2.1 The timestamp token life-cycle

Each dataflow operator is initially provided with a timestamp token for
each of its output edges, each bearing some minimal “zero" timestamp.
This gives each operator the opportunity to be a source of timestamped
messages, even without receiving input messages. For many operators,
their first actions will be to discard these timestamp tokens, by which
they release their ability to produce output messages unprompted, and
unblock the dataflow system at the same time.

As a dataflow operator executes, it can receive, exercise, downgrade,
and discard timestamp tokens as depicted in Figure 4.1.

2¢Each capability [-..] locates by means of a pointer some computing object, and in-
dicates the actions that the computation may perform with respect to that object.”
(reproduced from [DV66], page 145)

46



4.2 Timestamp tokens

1. receive timestamp tokens
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Figure 4.1: Timestamp token life-cycle.

1. receive. Operators invoke a receive operation to receive times-
tamped input messages, each of which provides a timestamp token
at that timestamp for each of the operator’s outputs.

2. exercise. Operators can produce timestamped output messages
as long as they hold a timestamp token with the corresponding
timestamp and output edge.

3. downgrade and discard Lastly, operators can arbitrarily hold,
downgrade (to future timestamps), and discard their timestamp
tokens as their logic dictates.

The dataflow system is informed of the net changes to the number of
timestamp tokens for each pointstamp, but only passively in response
to operator actions, rather than actively as a gatekeeper. Through this
information the system can inform dataflow operators about the conse-
quences of operator actions, without the specific details of the reasons for
those actions.

4.2.2 Coordination

The coordination state of the dataflow system is the set of timestamp
tokens, which when combined with the dataflow graph determines lower
bounds for the timestamps at each operator input. As the set of times-
tamp tokens evolves these lower bounds advance, and the dataflow system
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has the responsibility of informing operators as this happens. The differ-
ence with timestamp tokens is that operators drive the production of this
information, instead of the system itself.?

Operators have a great deal of flexibility in how (or even if) they re-
spond to changes in their input frontiers (timestamp lower bounds). Cer-
tain streaming operators like map and filter can be oblivious to this
information and process data as it arrives. Synchronous reduction op-
erators like reduce should await the indication that they have received
all inputs for a timestamp before they apply their reduction function and
produce output. Hybrid operators like count may perform some accu-
mulation in place and await the frontier advancing before producing the
final tally for each timestamp. In each case the operator responds to in-
put data and changes in its input frontiers, with output data and changes
in its held timestamp tokens, but does not otherwise expose complexity
to the system.

4.3 Implementation

We implemented timestamp tokens for Timely dataflow [MT] in the Rust
programming language [Rus] [MK14]. In our implementation, timestamp
tokens are Rust types that wrap a timestamp, a location, and a book-
keeping data structure shared with the system. Operator logic manip-
ulates timestamp tokens through their methods—cloning, downgrading,
and discarding them—which update the shared data structure with inte-
ger changes to the numbers of timestamp tokens at each timestamp and
location.

The timely dataflow system drains shared bookkeeping data structures
outside of operator logic but on the same thread of control, which en-
sures the changes reflect atomic operator actions. Following Naiad’s
progress tracking protocol, these collected changes are broadcast among
un-synchronized workers. Any subset of atomic updates forms a con-
servative view of the coordination state (the outstanding timestamp to-

3For example, Naiad does not allow operators to hold tokens across invocations;
Timely Dataflow (without timestamp tokens) does, by allowing operators to partic-
ipate directly (and often incorrectly) in the coordination protocol. Here, timestamp
tokens are respectively more expressive, and safer.
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kens) and is sufficient to maintain a conservative view of timestamp lower
bounds for each operator across the otherwise asynchronous workers.

The Rust [Weil9] language provides several features that simplify our
implementation. Rust is type-safe, and users cannot fabricate times-
tamp tokens outside of unsafe code. Rust also does not allow users to
destructure private struct fields, ensuring that we protect the shared
bookkeeping data structure from direct user manipulation. Rust’s affine
type system ensures that users cannot casually copy timestamp tokens
without explicit method calls, which allow us to interpose and increment
counts. Finally, Rust eagerly invokes destructor logic, so that discarding
a timestamp token is immediately visible to the system.

We have implemented Naiad notifications in library operator logic, and
if in each invocation an operator processes only their least timestamp
they reproduce Naiad’s notification behavior. We can also implement
Flink-style watermarks, with operators that explicitly hold timestamp
tokens for their output watermarks and downgrade them whenever these
watermarks advance. Both these idioms are helpful but restrictive, and
they are enforced system-wide in prior work. Our intent is that operators
should be able to choose the most appealing idiom, or new idioms as
appropriate, without requiring the system to change as well.

This generality is not without some ergonomic cost: prior systems could
more easily encourage operators make forward progress. Flink operators
should eventually bring their output watermarks in line with their input
watermarks, and Naiad operators should respond to notifications with
something other than a re-notification request for the same time. From
experience, user operators can more easily “lose track” of a timestamp
token, for example when used as a key in a hash map and not discarded
once its associated values have been processed. We use Rust’s type sys-
tem to raise the programmers awareness, by providing operators only
a “timestamp token option”, which the operator must then specifically
retain to receive a timestamp token. Rust’s lifetime system ensures at
compile time that the options themselves can not be held by an operator,
forcing it to explicitly retain or pass on timestamp token options.

4.3.1 Timestamp tokens in code

We present an extract of the main definitions of the timestamp token
Rust API and implementation in Figure 4.2.
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/// The ability to send data with a
/// certain timestamp on a dataflow edge.

pub struct TimestampToken<T: Timestamp>() {
time: T,
bookkeepinq(): Bookkeeping<T>,

}

impl<T: Timestamp> TimestampToken<T> {
/// The timestamp associated with this
/// timestamp token.
pub fn time(D) (¢self) -> &T { ... }

/// Downgrades the timestamp token to
/// one corresponding to ‘new_time.
pub fn downgrade()(

smut self, new_time: &T) { ... }

impl<T: Timestamp> Clone()
for TimestampToken<T> {
fn clone (&self) -> TimestampToken<T> { ... }

impl<T: Timestamp> Drop()
for TimestampToken<T> {
fn drop (&mut self) { ... }

impl<T: Timestamp, ...> OutputHandle<T, ...><)
{

/// Obtains a session that can send data
/// at the timestamp associated with
/// timestamp token ‘tok’.

pub fn session@(
&mut self, tok: &TimestampToken) -> Session<T, ...>

{ ...

Figure 4.2: An extract of the timestamp token API and implementation
in timely dataflow. We use circled letters, similar to @), to
mark points of interest in the code.

50



4.3 Implementation

A TimestampToken(@) wraps a timestamp® and a bookkeeping data
structure(©) shared with the system. These fields are private and the
operator code cannot directly access or mutate them. The bookkeeping
data structure records the location for which the TimestampToken is valid,
which will be checked by the system should the TimestampToken be exer-
cised to send data. Operators may hold any number of TimestampTokens.

Three methods, downgrade®), clone®), and drop(G), are the only
ways user code can directly manipulate the number of timestamp tokens
at a pointstamp (without the use of Rust’s unsafe keyword). The number
of timestamp tokens at a pointstamp is indirectly manipulated by sending
timestamped messages to the location of that pointstamp, through the
session (D) method.

Operator code can directly downgrade a timestamp token to a later
timestamp with downgrade. This reduces the operator’s ability to pro-
duce output at the wrapped timestamp, potentially to the point that
the system can unblock downstream operators, though not beyond the
timestamp downgraded to. The implementation of downgrade updates
the bookkeeping data-structure to inform the system of the net changes
to the number of timestamp tokens for each pointstamp.

Operator code can also call into Rust’s c1one (deep copy) and drop (de-
structor) methods on TimestampToken. Custom implementations of these
two methods respectively increment and decrement pointstamp counts for
the wrapped timestamp in the bookkeeping data-structure. A drop call
is automatically inserted by the Rust compiler whenever an object goes
out of scope, and makes it much less likely that an operator will fail to
release a timestamp token.

In order to transmit data along an output dataflow edge, an operator
must express a timestamp token. Access to outputs is guarded by an
OutputHandle (), whose method session(I) will create an active Session
only when presented a reference to a TimestampToken. The Session
is only valid for the wrapped timestamp, or timestamps greater than
it. Rust’s lifetime system ensures that the TimestampToken cannot be
modified or dropped as long as the session is active (until it is dropped).
As long as the session is available to user code, the TimestampToken is
guaranteed to still exist unmodified. Sent data arrive at the destination
bearing a timestamp token that can be used by the recipient.
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4.3.2 Ergonomic modifications

The core timestamp token code is explained in the previous section, but
we have also made several ergonomic improvements in at attempt to
minimize the chance of unintended errors.

In addition to TimestampToken objects, which are owned by the code
and data structures that reference them, we also provide a TimestampTokenRef
structure that cannot be held longer than a fairly narrow lexical scope.
To acquire an owned token, user code must explicitly call retain which
then results in a TimestampToken. We have found this reduces the inci-
dences of user code unintentionally capturing and indefinitely holding a
timestamp token, thereby stalling out dataflows.

Both TimestampToken and TimestampTokenRef implement a Rust trait
TimestampTokenTrait that allows system code (specifically session) to
accept either. This allows users to bypass the retain method and cre-
ate a Session from a token reference, avoiding some syntax but impor-
tantly also avoiding bookkeeping when timestamp token ownership is not
needed.

Timestamp tokens by default update shared bookkeeping data struc-
tures, but do not force the system to immediately act upon the changes
they reflect. The operators that house an outputHandle inform the sys-
tem that it should consult the shared bookkeeping, when the operator
yields control. Several variants of TimestampToken take specific action
when modified, including notifying the system that it should accept any
updates and act on them. This allows these timestamp tokens to be used
outside of the operators their pointstamps reference, and are especially
useful for manual control of inputs to a dataflow when the logic cannot
easily be encapsulated in an operator.

These modifications do not change the core behavior of timestamp
tokens, but instead demonstrate how rough edges can be sanded down
using layers atop timestamp tokens.

4.4 Example
We use the example of tumbling windowed average to demonstrate the life-

cycle of timestamp tokens and how it generates coordination information.
This operator receives timestamped integer-valued messages and reports
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Figure 4.3: The windowed average operator in a sample execution with
its internal state, a held timestamp token, and the data sent
so far on its input and output edges.

the average every 10 timestamp units, at the timestamp of the start of
the next window. The operator produces no output for windows which
contain no data. Figure 4.4 list the example code.

Importantly, this is code that one can write to introduce the behavior
of a tumbling window to a system. It is not code that an end user should
be expected to write each time they want a tumbling window. Rather, it
can be written once, and then end users can simply invoke the method
with appropriate parameters.

Figure 4.3 is a snapshot of the execution after the output for the win-
dow [0, 10) has been produced. At this stage the operator maintains the
current average for open windows (for which some data has been received
but not necessarily all data) and a timestamp token to produce the output
at the timestamp of the next open window (in the Figure, time 20).

The operator has great flexibility in how it implements its specifica-
tion. For example, the operator can choose to retain only the timestamp
tokens for timestamps that are not greater than some other held times-
tamp token, reducing system interaction at the cost of local bookkeeping.
The operator can use ordered data structures to efficiently retire multiple
windows at once, should the frontier advance suddenly. The operator can
maintain partial aggregations for out-of-order data while still being clear
at which times they might emerge.
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We walk through the sample code in subsection 4.4.1 and call out the
benefits timestamp tokens provide in subsection 4.4.2

4.4.1 Example code

Figure 4.4 shows the code listing for one of the many possible imple-
mentation of the tumbling windowed average operator described in sec-
tion 4.4. The code presented closely resembles the real implementation
of the operator, with some minor syntax modifications to aid readability
and avoid Rust-isms that can be unfamiliar to the reader. Although de-
tailed, this is the implementation expected of the system implementor;
we expect end users would then access this functionality through a layer
of abstraction rather than write it themselves.

The outer anonymous function(®) is invoked once by the system to
intitialize the operator with a default timestamp token (C) at time 0 (D),
which is immediately dropped®. The operator initializes an ordered
map (®) to store partial state for open windows: the timestamp for the
end of the window maps to a tuple carrying the corresponding timestamp
token and the partial windowpata @ (the partial sum and count).

The inner anonymous function(©) contains the operator logic that is
invoked every time the operator is scheduled. For each batch of input
messages at a certain timestamp (I), it computes the end-of-window times-
tamp (@) from the message timestamp wrapped in the timestamp token
tok_ref (@ (in the form of a TimestampTokenref). If it has not seen data
for this window before(®), it captures(@® the timestamp token, immedi-
ately downgrades it to the end-of-window timestamp, and stores it along
with initialized empty window data into the windows map.

The timestamp tokens stored in the map implicitly inform the coordina-
tion state of the operator: the system is informed of pointstamp changes
after each invocation of the operator logic caused by retain, downgrade,
and drop (when a timestamp token is finally removed from the map and
dropped).

For each batch of input messages the operator logic obtains a mutable
reference ) to the corresponding window data in the map, and updates
the partial sum and count with each data point. Processing of new input
concludes here.

The operator logic then needs to determine which windows have closed
and emit the computed averages for them. This information is based on
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G NEUU

8

/// User-defined structure to maintain window data.

struct WindowData@ { pub sum: u64, pub count: u64 }
pub fn singleton_frontier (frontier: &MutableAntichain<u64>) -> u64 {

frontier.frontier().first().cloned() .unwrap_or (u64: :MAX)

// The ‘unary_frontier' method defines a new operator from a anonymous

function that specifies its logic.

stream.unary_frontier (

Exchange::new(|x| X % (peers as u64)), "tumbling_ window", | ©tok,
_info| {
@assert! (xtok.time () == 0);

@std: :mem: :drop (tok) ;
let mut windows: BTreeMap<u64, (TimestampToken<u64>, WindowData)>® =
BTreeMap: :new () ;
// Define the anonymous function that is repeatedly invoked with input
and output handles.
@move |input, output| {
for (tok_ref@, batch) in input {@
@let window_ts = round_up_to_multiple (xtok_ref.time(),
WINDOW_SIZE) ;
if !windows.contains_key (&window_ts) (®
let mut window_tok = @tok_ref.retain();
window_tok.downgrade (&§window_ts) ;

windows.insert (window_ts, (window_tok, WindowData { sum: 0, count
0 1))
}
let (_, ref mut windowﬁdata@) = windows.get_mut (&window_ts) .
unwrap () ;

for d in batch {
window_data.sum += xd; window_data.count += 1;

}
let target_ts = singleton_frontier (input.frontier () @ )
for (_, (tok@, window)) in windows.range (0..target_ts) {@
@output.session (&tok®) .give (window.sum as £64 / window.count as
£64);
}

@windows .remove_range (0. .target_ts);

}

b

Figure 4.4: A possible implementation of the tumbling window average

operator described in section 4.4. We use circled letters, sim-
ilar to (@), to mark points of interest in the code.
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the set of live timestamp tokens in the system and is summarized by the
system as per-input frontiers at each operator: input.frontier () ).
In general, timestamps in timely dataflow can be multidimensional and
result in frontiers defined by multiple minima, but in this case we know
that timestamps, and consequently frontiers, are represented by a single
unsigned integer value. The frontier value represents the lower bound on
timestamps that may still appear on the input: consequently we can safely
retire all windows with end-of-window timestamps up to, but excluding,
the frontier (target_ns).

We leverage the map order to iterate over all open windows up to
target_ns (), and because we stored timestamp tokens alongside the win-
dow data, we obtain them during iteration (0) and can immidiately lever-
age them to emit the computed averages at the correct timestamps(Q): to
do so, we are required to pass in a reference to the timestamp token ®).
This ensures at compile time that the operator logic has the capability
to send data at a certain timestamp.

The operator logic finally drops from the map all the windows it has just
processed (S). The drop code for the timestamp tokens stored in the values
removed from the map are invoked automatically (and eagerly): this again
updates the pointstamp changes that are reported to the system, and
ensures that the frontiers for other downstream operators are updated
accordingly.

4.4.2 Benefits

The operator implementation above has several benefits that are pre-
vented in other systems.

In a Spark-like system, where an operator is scheduled for each dis-
tinct timestamp, the operator would be unable to retire blocks of times
concurrently. This limitation harms the throughput of data loading, and
lowers the operator’s throughput when bursts of differently timestamped
data arrive. With timestamp tokens entire intervals of time can be closed
at once, and the operator can perform all consequent work concurrently.

In a Flink-like system, the operator must be continually interrogated
to advance its output watermark. Even if the operator input is idle for
periods of time, the operator must remain active to inform downstream
operators that there is no data. This scenario is more common than it
might seem, with monitoring applications like fraud detection in which
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one wants to quickly confirm the absence of results. With timestamp
tokens the system can bypass the operator entirely, reducing compute
load and the critical path latency.

In a Naiad-like system, the operator must defer scheduling to the sys-
tem. Should a batch of times be retired at once, as when a watermark
finally arrives, the operator must repeatedly yield to the system and be
re-invoked with advancing timestamps. With timestamp tokens the op-
erator can perform this work on its own, using an efficient ordered data
structure.

In addition, timestamp tokens avoid restrictions on dataflow structure,
for example the requirement (seen in Spark and Flink) that dataflow
graphs be acyclic. Each of these benefits derive from involving the system
less, instead providing the operator with both more information and more
agency.

4.5 Evaluation

Our hypothesis is that by reducing systems complexity and granting more
control on scheduling to individual operators, timestamp tokens remove
the scheduling bottleneck that prevents modern data processing systems
from reaching higher throughputs and lower latencies. We evaluate this
hypothesis with a set of microbenchmarks designed to compare the differ-
ent coordination mechanisms in prior art with timestamp tokens (subsec-
tion 4.5.2 and subsection 4.5.3) and with more complex workloads that
attempt to replicate real-world operating conditions (subsection 4.5.4).
We hope to observe that timestamp tokens operate robustly in all set-
tings where any coordination mechanism avoids collapse, and is never
substantially worse than the best coordination mechanism.

We compare timestamp tokens against the Naiad-style notification API
already available in Timely Dataflow. In order to compare with Flink-
style watermarks without the confounding factor of running on a differ-
ent platform (like Flink’s), we re-implemented Flink’s watermarks tech-
nique on the same communication and scheduling framework provided by
Timely Dataflow. In some of the experiments (Figure 4.5, Figure 4.6, Fig-
ure 4.7), where the technique selected has limited impact on performance,
timestamp tokens and Flink-style watermarks achieve nearly identical la-
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tency, showing that our implementation does not unfairly disadvantage
watermarks.

We observe that timestamp tokens avoid the collapse that notifica-
tions experience for high numbers of distinct timestamps (Figure 4.6,
Figure 4.7), and the collapse that watermarks experience for complex
dataflows (Figure 4.9, Figure 4.8). In all cases, timestamp tokens remain
among the best approaches.

4.5.1 Experimental setup

We run all experiments on a CloudLab[Dup-+19] server with one AMD
EPYC 7452 with 32 physical cores and 128GB of RAM. We disable simul-
taneous multi-threading (SMT) and we pin each timely dataflow worker
to a distinct physical core.

Our open-loop testing harness supplies the input at a specified rate,
even if the system itself becomes less responsive. We record the observed
latency in units of nanoseconds in a histogram of logarithmically-sized
bins. If the system becomes overloaded and end-to-end latency becomes
greater than 1 second, the testing harness regards the experiment as
failed.

4.5.2 Microbenchmarks

Our microbenchmarks use a simple dataflow program that consists of a
single stateful operator that computes the overall rolling count of unique
words observed on the inputs. Every time the operator receives a word,
it updates the internal count, and sends an output message with the
updated value.

To determine the effectiveness of handling fine-grained timestamps with
various techniques, we generate input at a given constant rate and assign
different timestamps to each input tuple based on when it was generated.
The assigned timestamps are quantized to powers-of-two ranging from

28 to 216 nanoseconds (“ns” in the following). A timestamp quantum of

2%ns means that regardless of the input rate, there can be at most 1X2£09

distinct timestamps in the ingested data per second. For example, with
a timestamp quantum of 28ns (256ns), at most 4 million timestamps per
second can be generated.
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Varying the size of the quantum allows us to evaluate how well a mech-
anism can handle coarser or finer timestamp granularities. With a smaller
timestamp quantum, the system can provide higher time resolution in the
output it produces. As previously discussed, with Naiad-style notifica-
tions, the operator needs to interact with the system for each logical time
it processes, and for which it requires a notification.

4.5.2.1 Varying timestamp granularity

Figure 4.5 shows the achieved median, p999 (99.9%), and maximum la-
tency when we vary the granularity of the timestamp quantization un-
der different offered loads: 32 million tuples/sec is below the maximum
throughput achievable with fine timestamp granularity by at least some of
the coordination mechanisms, and 64 million tuples/sec represent a very
high load that all mechanisms cannot sustain with a timestamp quantum
of 23ns or finer. The performance pattern at lower loads is similar to
what we report for 32 million tuples/sec, but with lower latency.

All mechanisms display similar performance characteristics when not
overloaded, with two notable exceptions. First, notifications are unable
to handle a timestamp granularity below 23ns; this is because they re-
quire an interaction between the operator logic and the system for each
timestamp. That is not the case for both watermarks and tokens, that
can handle any timestamp quantization. Second, the maximum latency
for watermarks is 2x smaller than timestamp tokens for timestamp quan-
tization above 2'4: for this extremely simple single-operator dataflow,
watermarks can have slightly lower overhead at the tail.

At very high load (64 million tuples/sec) (i) all mechanisms have signif-
icantly higher tail latency and cannot handle the finest timestamp gran-
ularities, (ii) both watermarks and timestamp tokens can handle times-
tamp granularities finer than notifications, (iii) notifications achieve bet-
ter p999 (when they are able to sustain the load) possibly due to addi-
tional synchronization imposed by the mechanism, and (iv) watermarks
display slightly higher median latency at this load.

In this microbenchmark, timestamp tokens perform essentially on par
with watermarks when not overloaded, and behave better when the sys-
tem is overloaded. Notifications are unable to handle highly granular
timestamps in the input data even at lower loads, because every times-
tamp requires an interaction between the operator logic and the system.
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4.5.2.2 Scaling

Figure 4.6 and Figure 4.7 show the scaling behaviour of the microbench-
mark word-count dataflow. At the coarser timestamp quantization gran-
ularity, all techniques display nearly identical scaling characteristics. In
both strong and weak scaling we can see the system’s and techniques’
minor inefficiencies starting to affect the reported latency above around 6
workers. At the finer timestamp granularity, Naiad-style notifications fail
to keep up with load at any scale, while watermarks and timestamp to-
kens display similar behaviour. This demonstrates that timestamp tokens
do not negatively affect scaling.

4.5.3 Complex dataflow fragments

As discussed in subsection 4.4.2, timestamp tokens do not require contin-
ual interaction between the operator and the system to retire timestamps,
in particular when an operator is idle for a period of time. To measure
the performance benefit of not having to invoke each operator for each
successive timestamp, even if no work needs to be performed, we con-
struct a dataflow with a variable sequence of no-op operators (from 8 to
256 no-op operators connected as a sequential pipeline).

Timestamp tokens and Naiad-style notifications always calculate oper-
ator input frontiers (low watermarks) as if each channel between two con-
secutive operators may exchange data between workers. For Flink-style
watermarks we need to distinguish between a scenario where a cross-
worker exchange happens at each step (and watermarks are broadcast)
and an additional (unrealistic) scenario at the other end of the spectrum
where no cross-worker data exchange takes place. A real-world dataflow
is likely to have a mix of worker-local and cross-worker channels, and
would likely sit somewhere between these two extremes.

Figure 4.8 and Figure 4.9 show the performance impact of handling
timestamps for a sequence of idle operators of varying length. Times-
tamp tokens, and Naiad-style notifications, and the Flink-style watermark
configuration without cross-worker exchange (watermarks-P) have almost
identical performance that is only marginally affected by the length of the
operator chain (Figure 4.8) and by the workload scale (Figure 4.9). In
this scenario watermarks-P has an unrealistic advantage because no coor-
dination information is ever exchanged between workers: each processor
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when varying the number of operators. For Flink-style wa-
termarks we consider two dataflows: one with all-worker ex-
changes at every stage (watermarks-X) and one where opera-
tors form pipelines that are connected locally on each worker
(watermarks-P). Note the different scales on the y axes of the
plots. Sequence of no-op operators. We vary the number of
operators in the sequence and the offered load in terms of
timestamps/sec. We run the workloads on 8 physical cores.
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Figure 4.9: Impact of a long sequence of operators in the dataflow graph
when varying the number of workers. For Flink-style wa-
termarks we consider two dataflows: one with all-worker ex-
changes at every stage (watermarks-X) and one where opera-
tors form pipelines that are connected locally on each worker
(watermarks-P). Note the different scales on the y axes of the
plots. Weak scaling for an operator sequence of 256 no-op
operators. We vary the number of workers while keeping the
offered load fixed at 15K and 250K timestamps per second,
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operates as a separate unit, and thus does not incur any coordination
cost.

When configured to perform exchanges for every inter-operator channel
(watermarks-X ) the latency for Flink-style watermarks degrades linearly
with the number of operators in the sequence (Figure 4.8) because each
operator has to be invoked to forward the watermark which then needs
to be broadcast to all other operators. This also fundamentally limits
scalability: watermarks-X has to process watermarks proportional to the
length of the sequence times the number of workers, resulting in high
latency even at moderate scale.

By not requiring interaction with each operator for each timestamp,
timestamp tokens matches or outperforms other techniques when han-
dling complex inactive dataflow fragments.

4.5.4 NEXMark

To evaluate timestamp tokens’ performance impact on a realistic, albeit
simple, data processing use case, we extended the timely dataflow imple-
mentation of the NEXMark queries we open sourced as part of a related
project [Hof+20]. The original implementation leverages timestamp to-
kens as described in Chapter 5. We augmented it by writing the same
queries with Naiad-style notifications and Flink-style watermarks.

The NEXMark suite models an auction site in which a high-volume
stream of users, auctions, and bids arrive, and standing queries are main-
tained reflecting a variety of relational queries. For the purporse of this
experiment, we focus on queries that result in multi-operator dataflows
(Q4 and Q7). Megaphone [Hof+19] describes the query semantics; for
our purposes we only need to highlight that Q4 has a two-stage dataflow
where one of the operators handles tokens to calculate a data-dependent
windowed maximum, and Q7 has two stateful operators with two consec-
utive data exchanges.

Timestamp tokens avoid the collapse that notifications exhibit for Q4
due to overwhelming numbers of distinct timestamps, and are competitive
with watermarks (improving on them slightly for Q7). These queries are
relatively simple, only a few dataflow stages, and timestamp tokens do
not have much room to distinguish themselves from watermarks.
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NEXmark Q4 latency (milliseconds)
tokens { notifications { watermarks
tuples/sec | workers | p50 p999 max p50  p999 max | p50 P999 max
AM 4 0.62 1.25 1.9 DNF 0.25 0.59 1.25
4M 8 0.52 0.98 1.51 DNF 0.29 0.56 1.44
4M 12 0.59 1.02 5.77 DNF 0.38 0.56 2.49
6M 4 DNF DNF DNF
6M 8 1.31 2.62 4.19 DNF 0.72 2.36 4.19
6M 12 1.25 2.36 2.88 DNF 0.51  1.02 3.54
8M 4 DNF DNF DNF
8M 8 DNF DNF DNF
8M 12 2.03 3.93 11.53 DNF ‘ 0.95 2.62 3.67
NEXmark Q7 latency (milliseconds)
tokens notifications { watermarks
tuples/sec | workers | p50  p999 max | p50 p999 max | p50  p999 max
4M 4 0.06 0.09 0.31 | 0.06 0.09 0.22 | 0.07 0.11 0.36
AM 8 0.06 0.1 0.46 0.06  0.09 0.41 0.08 0.13 0.66
4M 12 0.06 0.11 0.82 | 0.06 0.1 0.72 | 0.1 0.17 0.79
6M 4 0.06 0.1 0.23 | 0.06 0.1 0.38 | 0.07 0.11 0.26
6M 8 0.06 0.1 0.46 0.06 0.1 0.44 0.09 0.13 0.66
6M 12 0.07 0.11 0.92 0.06 0.11 0.95 0.11  0.18 0.82
8M 4 0.07 0.1 0.39 | 0.07 0.11 0.24 | 0.07 0.11 0.62
8M 8 0.07 0.11 0.56 0.06 0.1 0.44 0.09 0.15 0.69
8M 12 0.07 0.11 1.02 0.07 0.11 0.92 0.11  0.19 1.31

Table 4.1: End-to-end processing latency for NEXmark query 4 and query

6. We scale the number of workers while keeping the total
load fixed at 4, 6, and 8 million tuples/sec. We report median,
p999, and maximum latency in milliseconds. For Q4 note that
Naiad-style notifications cannot sustain the load for any of the
configurations and timestamp tokens and Flink-style water-
marks cannot sustain higher loads with 4-8 workers.
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4.6 Conclusions

We introduced timestamp tokens, a coordination primitive for dataflow
systems. Timestamp tokens decouple the sophistication of operator schedul-
ing logic from the task of system-wide coordination. Operators can add
sophistication to their own implementations, including flow control, fine-
grained timestamps, and optimized data structures. At the same time,
timestamp tokens simplify the surrounding system, whose role in schedul-
ing no longer needs to be the bottleneck it once was.

Looking forward, we think timestamp tokens have potential to drive
other new dataflow programming idioms, without increasing system com-
plexity. We are especially interested in timestamp tokens as dataflow
breakpoints, and how holding timestamp tokens provides external agents
the opportunity to suspend execution without fundamentally restructur-
ing dataflow programs.

Finally, we’ve been delighted by the force multiplier of investing in gen-
eral dataflow primitives. Many projects quickly and safely implemented
new system behavior writing only application-level code. We should have
more well-considered primitives and fewer systems.
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This chapter is based on Timestamp tokens: a better coordination primitive for
data-processing systems [LM22]; some of the work presented in this chapter was
initially reported as part of my Master Thesis “Programmable scheduling in a
stream processing system” [Lat16].

Timestamp tokens have been in use for several years. In this chapter,
we relate examples where we found timestamp tokens to be especially
helpful in building frameworks that implement new dataflow program-
ming patterns. In each case, timestamp tokens and specialized operator
logic allowed projects to avoid re-implementing parts of the timely data-
flow system itself.

5.1 Co-operative control flow

Dataflow operators may run for a long time or produce large amounts
of output data, and should yield control so that other operators can ex-
ecute and potentially retire some of the output data. However, Naiad’s
execution model asks an operator to run to completion for each notifi-
cation, and the return of control is an indication that the operator has
completed its task. Timestamp tokens allow operators to yield control
without yielding the right to resume execution and produce output in the
future.
My early prototype for a dataflow flow control mechanism, Faucet [LMC16;

Lat16], uses timestamp tokens to implement user-level flow control. This
mechanism supports dataflow operators that may produce unboundedly
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large numbers of output messages for each input. Faucet operators pro-
duce outputs up to a certain limit and then yield control until these mes-
sages are retired. Whenever an operator yields due to a reached limit, it
retains the timestamp token to indicate it has further output to produce.
This design allowed me to implement flow control in user code, without
requiring modifications to the underlying system.

5.2 Fine-grained timestamps

Systems that track real time may process events with timestamps de-
nominated in nanoseconds. Naiad assumes responsibility for ordering all
events with distinct timestamps, and for high-resolution timestamps this
can overwhelm the system. Timestamp tokens provide a mechanism for
the operator to determine the granularity at which it reports outstanding
timestamps to the system, without involving the system in each times-
tamp that is processed.

In DD [McS+20], which we presented in detail in Chapter 6, each event
has a potentially unique timestamp, and operators receive and must react
to a stream of such events. Rather than present each timestamp to the
timely dataflow system, DD’s operator implementations batch messages
into “intervals”. An operator retains the least timestamp tokens for the
times of un-batched messages it holds, and as the operator’s frontier
advances the operator creates new batches containing all events whose
timestamps are not in advance of the new frontier. The operator uses
its current timestamp tokens to produce any output corresponding to the
batch, and then downgrades its timestamp tokens once, to the new lower
envelope of its un-batched messages. This design allows the operators
to interact with the host timely dataflow system at a coarse granularity,
independent of the timestamp granularity.

5.3 Optimized scheduling

This section refers to joint work with the authors of “Megaphone: Latency-
conscious state migration for distributed streaming dataflows” [Hof-+19] which
was included in Moritz Hoffmann’s PhD thesis [Hof19]. In this section we
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focus on the impact of timestamp tokens on the design and implementation of
Megaphone.

Timely dataflow computations may act on general partially ordered
timestamps, and with large numbers of outstanding events it may be
unclear which events should be processed next. A system like Naiad stores
all events in an unsorted list and performs a sequential pass through this
list in each scheduling round, limiting the minimum latency. Alternately,
stream processors that only act on totally ordered timestamps can use
priority queues to quickly extract only the relevant events. Timestamp
tokens provide operators the ability to organize their schedulable work
themselves, without pushing their implementation into the system itself.

In Megaphone [Hof+19], a migration mechanism for timely dataflow,
we implemented the NEXMark benchmark which contains a variety of
streaming computations, and in particular a variety of windowed compu-
tations. These computations have timestamps that are denominated in
nanoseconds, and in one case a windowed computation with a 12 hour con-
tinuous slide (and so, an effectively unbounded number of distinct times-
tamps in play at any time). Our implementation uses priority queues of
timestamp tokens to schedule the work in these specific operators, pro-
viding millisecond latencies without compromising the ability of the rest
of the system to handle partially-ordered timestamps.
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This chapter is based on “Shared Arrangements: practical inter-query sharing
for streaming dataflows” [McS+20] and the associated Technical Report [McS+18].

Current systems for data-parallel, incremental processing and view
maintenance over high-rate streams isolate the execution of independent
queries. This creates unwanted redundancy and overhead in the presence
of concurrent incrementally maintained queries: each query must inde-
pendently maintain the same indexed state over the same input streams,
and new queries must build this state from scratch before they can begin
to emit their first results.

This chapter introduces shared arrangements: indexed views of main-
tained state that allow concurrent queries to reuse the same in-memory
state without compromising data-parallel performance and scaling. We
implement shared arrangements in a modern time-aware dataflow proces-
sor and show order-of-magnitude improvements in query response time
and resource consumption for interactive queries against high-throughput
streams, while also significantly improving performance in other domains
including business analytics, graph processing, and program analysis.

6.1 Introduction

In this chapter, we present shared arrangements, a new technique for
efficiently sharing indexed, consistent state and computation between the
operators of multiple concurrent, data-parallel streaming dataflows. We
have implemented shared arrangements in DD [Mur-+13; McS+13; MD],
but they are broadly applicable to other time-aware dataflow systems.
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Shared arrangements are particularly effective in interactive data an-
alytics against continually-updating data. Consider a setting in which
multiple analysts, as well as software like business intelligence dashboards
and monitoring systems, interactively submit standing queries to a stream
processing system. The queries remain active until they are removed.
Ideally, queries would install quickly, provide initial results promptly,
and continue to deliver updates with low latency as the underlying data
change.

Data-parallel stream processors like Flink [Car-+15], Spark Stream-
ing [Zah+13], and Naiad [Mur+13] excel at incrementally maintaining
the results of such queries, but each maintain queries in independent
dataflows with independent computation and operator state. Although
these systems support the sharing of common sub-queries, as streams of
data, none share the indexed representations of relations among unrelated
subqueries.

However, there are tremendous opportunties for sharing of state, even
when the dataflow operators are not the same. For example, we might
expect joins of a relation R to use its primary key; even if several distict
queries join R against as many other distinct relations, a shared index
on R would benefit each query. Existing systems create independent
dataflows for distinct queries, or are restricted to redundant, per-query
indexed representations of R, wasting memory and computation.

By contrast, classic relational databases have long shared indexes over
their tables across unrelated queries. The use of shared indexes reduces
query times tremendously, especially for point look-ups, and generally
improves the efficiency of queries that access relations by the index keys.
While they have many capabilities, relational databases lack streaming
dataflow system’s support for low-latency, high-throuhput incremental
maintenance of materialized query results [Gje+18; Ahm+12]. Exist-
ing shared index implementations share all reads and writes among mul-
tiple workers, and are not immediately appropriate for dataflow work-
loads where the operator state is sharded across independent workers. In
this work, we seek to transport the shared index idiom from relational
databases to streaming dataflows, applying it across changing maintained
queries.

Our main observations are that (i) many dataflow operators write the
same internal state, representing the accumulated changes of each of their
input streams, (i) these dataflow operators often access this state with
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Figure 6.1: Shared arrangements reduce ((a)) query installation latency
distribution, ((b)) update processing latency distribution, and
((¢)) the memory footprint of concurrent TPC-H queries that
randomly arrive and retire. The setup uses 32 workers, runs at
TPC-H scale factor 10, and loads rows from relations round-
robin. Note the log;,-scale z-axes in ((a)) and ((b)), and the

log,,-scale y-axis in ((c)).
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independent and fundamentally different patterns, and (#ii) this state can
be efficiently shared with single-writer, multiple-reader data structure.
Shared arrangements are our design for single-writer, multiple-reader,
shared state in dataflow systems.

To illustrate a natural setting for shared arrangements, we run a mix of
interactively issued and incrementally maintained TPC-H [TPC] queries
executed as dataflows against a stream of order fulfillment events (i.e.
changes to the lineitem relation). This is similar to a modern business
analytics setting with advertisers, impressions, and advertising channels,
and our dynamic query setup mimicks the behavior of human analysts
and business analytics dashboards.! We measure the query installation
latency—i.e. the time until a new query returns results—as well as up-
date processing latency and standing memory footprint. Figure 6.1 re-
ports the performance of DD with shared arrangements (“shared”) and
without (“not shared”; representative of other data-parallel stream pro-
cessors). The measurements show orders of magnitude improvements in
query installation latency (a weakness of existing dataflow systems), and
improved update processing latency and memory use.

Shared arrangements achieve these improvements because they remove
the need to maintain dataflow-local indexes for each query. As a concrete
example throughout this chapter, we consider TPC-H queries 3 and 5.
Both queries join lineitem with the order and customer relations by
their primary keys. While the queries lack overlapping subqueries that
classic multi-query optimization (MQO) would detect, they both perform
lookups into order and customer by their respective primary keys when
processing an updated lineitem record. Existing stream processors will
create and maintain a per-query index for each relation, as these systems
are designed to decouple the execution of dataflow operators. Shared
arrangements, by contrast, allow Q3 and Q5 to share indexes for these
two relations. This can dramatically reduce the time to install the sec-
ond query and provide initial results, and also increases overall system
capacity, as multiple queries share in-memory indexes over the same rela-
tions. Finally, these benefits come without restricting update throughput
or latency, as they do not change the data-parallel execution model of the
stream processor.

ITPC-H is originally a static “data-warehousing” benchmark; our streaming setup
follows that used by Nikolic et al. [NDK16].
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The key challenge for shared arrangements is to balance the opportu-
nities of sharing against the need for coordination in the execution of the
dataflow. In the scenarios we target, logical operator state is sharded
across multiple physical operators; sharing this state between the oper-
ators of multiple queries could require global synchronization. Arrange-
ments solve this challenge by carefully structuring how they share data:
they (¢) hard-partition shared state between worker threads and move
computation (operators) to it, and (i) multiversion shared state within
workers to allow operators to interact with it at different times and rates.

Our full results in section 6.7 confirm that shared arrangements trans-
late into two benefits: (i) queries deploy and produce correct results
immediately without rescanning historical data, and (4) the same capac-
ity (stream volume and concurrent queries) can be achieved with fewer
cores and less RAM. For a streaming variant of TPC-H and a changing
graph, shared arrangements also reduce update latency by 1.3-3x and
reduce the memory footprint of the computation by 2—4x, compared to
systems that do not share indexed state. These benefits hold without
degrading performance on other tasks—batch and interactive graph pro-
cessing, and Datalog-based program analysis—on which DD outperforms
other systems.

Shared arrangements can be applied to many modern time-aware data-
flow systems, but we implemented them as part of DD. DD has been the
publicly available reference implementation of Differential Dataflow for
several years [MD], and is deployed in variety of industrial settings. For
example, VMware Research uses DD to back their reactive DDlog Dat-
alog engine [RB19], applied to problems in network reconfiguration and
program analysis. Shared arrangements have proved key to the system’s
success.

Some benefits of shared arrangements are attainable in purely win-
dowed streaming settings, which ensure that only bounded historical state
must be reviewed for new queries. However, shared arrangements pro-
vide similar benefits without these restrictions, and support windowing of
data as one of several join idioms. The main limitation of shared arrange-
ments is that their benefits apply only in the cases where actual sharing
occurs; while sharing appears common in settings with relational data
and queries, bespoke stream processing computations (e.g. with complex
and disjoint windowing on relations) may benefit to varying and lesser
degrees.
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In many ways, shared arrangements are the natural interpretation of
an RDBMS index for data-parallel dataflow, and bring its benefits to a
domain that has until now lacked them.

6.2 Background and Related Work

Shared arrangements allow queries to share indexed state. Inter-query
state sharing can be framed in terms of (i) what can be shared between
queries, (#2) if this shared state can be updated, and (iii) the coordination
required to maintain it. Figure 6.1 compares sharing in different classes
of systems.

Relational databases like PostgreSQL [Pos] excel at answering queries
over schema-defined tables. Indexes help them speed up access to records
in these tables, turning sequential scans into point lookups. When the
underlying records change, the database updates the index. This model
is flexible and shares indexes between different queries, but it requires co-
ordination (e.g. locking [Darl9]). Scaling this coordination out to many
parallel processors or servers holding shards of a large database has proven
difficult, and scalable systems consequently restrict coordination.

Parallel-processing “big data” systems like MapReduce [DG04], Dryad
[I[sa+07], and Spark [Zah-+12] rely only on coarse-grained coordination.
They avoid indexes and turn query processing into parallel scans of dis-
tributed collections. But these collections are immutable: any change
to a distributed collection (e.g. a Spark RDD) requires reconstituting
that collection as a new one. This captures a collection’s lineage and
makes all parallelism deterministic, which eases recovery from failures.
Immutability allows different queries to share the (static) collection for
reading [Gun-+10]. This design aids scale-out, but makes these systems a
poor fit for streaming computations, with frequent fine-grained changes
to the collections.

Stream-processing systems reintroduce fine-grained mutability, but
they lack sharing. Systems like Flink [Car+15], Naiad [Mur+13], and
Noria [Gje+18] keep long-lived, indexed intermediate results in memory
for efficient incremental processing, partitioning the computation across
workers for scale-out, data-parallel processing. However, stream proces-
sors associate each piece of state exclusively with a single operator, since
concurrent accesses to this state from multiple operators would race with
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state mutations. Consequently, these systems duplicate the state that
operators could, in principle, share.

By contrast, shared arrangements allow for fine-grained updates
to shared indexes and preserve the scalability of data-parallel computa-
tion. In particular, shared arrangements rely on multiversioned indices
and data-parallel sharding to allow updates to shared state without the
costly coordination mechanisms of classic databases. In exchange for
scalability and parallelism, shared arrangements give up some abilities.
Unlike indexes in relational databases, shared arrangements do not sup-
port multiple writers, and are not suitable tools to implement a general
transaction processor. Because sharing entangles queries that would oth-
erwise execute in isolation, it can reduce performance and fault isolation
between queries compared to redundant, duplicated state.

It is important to contrast shared arrangements to Multi-Query Opti-
mization (MQO) mechanisms that identify overlapping subqueries. MQO
shares state and processing between queries with common subexpres-
sions, but shared arrangements also benefit distinct queries that access
the same indexes. Both relational and big data systems can identify
common sub-expressions via MQO and either cache their results or fuse
their computation. For example, CJoin [CPV09] and SharedDB [GAK12]
share table scans between concurrent ad-hoc queries over large, unindexed
tables in data warehousing contexts, and Nectar [Gun+10] does so for
DryadLINQ [Yu+08] computations. More recently AStream [KRM19] ap-
plied the architecture of SharedDB to windowed streaming computation,
and can share among queries the resources applied to future windows.
TelegraphCQ [Cha03] and DBToaster [Ahm+12] share state among con-
tinuous queries, but sequentially process each query without parallelism
or shared indexes. Noria [Gje+18| shares computation between queries
over streams, but again lacks shared indexes. In all these systems, po-
tential sharing must be identified at query deployment time; none pro-
vide new queries with access to indexed historical state. In constrast,
shared arrangements (like database indices) allow for post-hoc sharing:
new queries can immediately attach to the in-memory arrangements of
existing queries, and quickly start producing correct outputs that reflect
all prior events.

Philosophically closest to shared arrangements is STREAM [BWO01], a
relational stream processor which maintains “synopses” (often indexes) for
operators and shares them between operators. In contrast to shared ar-
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rangements, STREAM synopses lack features necessary for coarse-grained
data-parallel incremental view maintenance: STREAM synopses are not
multiversioned and do not support sharding for data-parallelism. STREAM
processes records one-at-a-time; shared arrangements expose a stream of
shared, indexed batches to optimized implementations of the operators.

Shared arrangements allow for operators fundamentally designed around
shared indexes. Their ideas are, in principle, compatible with many ex-
isting stream processors that provide versioned updates (as e.g. Naiad
and Flink do) and support physical co-location of operator shards (as e.g.
Naiad and Noria do).

6.3 Shared Arrangements Overview

The high-level objective of shared arrangements is to share indexed oper-
ator state, both within a single dataflow and across multiple concurrent
dataflows, serving concurrent continuous queries. Shared arrangements
substitute for per-instance operator state in the dataflow, and should ap-
pear to an individual operator as if it was a private copy of its state.
Across operators, the shared arrangement’s semantics are identical to
maintaining individual copies of the indexed state in each operator. At
the same time, the shared arrangement permits index reuse between op-
erators that proceed at a different pace due to asynchrony in the system.

Operators that provide incremental view maintenance, so that their
output continually reflects their accumulated input updates, offer partic-
ularly good opportunities for sharing state. This is because each stream
of updates has one logical interpretation: as an accumulation of all up-
dates. When multiple such operators want to build the same state, but
vary what subset to read based on the time ¢ they are currently processing,
they can share arrangements instead. We assume that developers specify
their dataflows using existing interfaces, but that they (or an optimizing
compiler) explicitly indicate which dataflow state to share among which
operators.

A shared arrangement exposes different versions of the underlying state
to different operators, depending on their current time t. The arrange-
ment therefore emulates, atop physically shared state, the separate in-
dexes that operators would otherwise keep. Specifically, shared arrange-
ments maintain state for operators whose state consists of the input col-
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Collection trace

(data=(id=342, "Company LLC", "USA"), time=4350, diff=+1)
(data=(1d=563, "Firma GmbH", "Deutschland"), time=4355, diff=+1)
(data=(id=225, "Azienda SRL", "Italia"), time=4360, diff=+1)
(data=(id=225, "Azienda SRL", "Italia"), time=6200, diff=-1)
(data=(id=225, "Company Ltd", "UK"), time=6220, diff=+1)
Collection at time ¢ = 4360

(data=(id=342, "Company LLC", "USA"), diff=+1)
(data=(id=563, "Firma GmbH", "Deutschland"), diff=+1)
(data=(id=225, "Azienda SRL", "Italia"), diff=+1)
Collection at time t = 6230

(data=(id=342, "Company LLC", "USA"), diff=+1)

(data=(id=563, "Firma", "Deutschland"), diff=+1)

(data=(id=225, "Company Ltd", "UK"), diff=+1)

Figure 6.2: Update triples incoming to an operator, a “collection trace”,
and the resulting collection view at different times.

lection (i.e. the cumulative streaming input). Following Differential Data-
flow [MD] terminology, a collection trace is the set of update triples (data,
time, diff) that define a collection at time ¢ by the accumulation of those
inputs (data, diff) for which time < ¢ (Figure 6.2). Each downstream
operator selects a different view based on a different time ¢ of accumula-
tion. Formal semantics of differential dataflow operators are presented in
[AMP15].

An explicit, new arrange operator maintains the multiversioned state
and views, while downstream operators read from their respective views.
The contents of these views vary according to current logical timestamp
frontier at the different operators: for example, a downstream operator’s
view may not yet contain updates that the upstream arrange operator
has already added into the index for a future logical time if the operator
has yet to process them.

Downstream operators in the same dataflow, and operators in other
dataflows operating in the same logical time domain, can share the ar-
rangement as long as they use the same key as the arrangement index.
In particular, sharing can extend as far as the next change of key (an
exchange operator in Differential Dataflow, or a ‘shuffle’ in Flink), an
arrangement-unaware operator (e.g. map, which may change the key), or
an operator that explicitly materializes a new collection.
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6.3.1 Shared Arrangements Example

We illustrate a concrete use of shared arrangements with the example of
TPC-H Q3 and Q5. Recall that in our target setting, analysts author
and execute SQL queries against heavily normalized datasets. Relations
in analytics queries are commonly normalized into “fact” and “dimension”
tables, the former containing foreign keys into the latter. While new
facts (e.g. ad impressions, or line items in TPC-H) are continually added,
the dimension tables are also updated (for example, when a customer or
supplier updates their information). The dimension tables are excellent
candidates for arrangement by primary keys: we expect many uses of
these tables to be joins by primary keys, and each time this happens an
arrangement can be shared rather than reconstructed.

TPC-H Q3 retrieves the ten unshipped orders with the highest value.
This is a natural query to maintain, as analysts work to unblock a poten-
tial backlog of valuable orders. The query derives from three relations—
lineitem, orders, and customer—joined using the primary keys on orders
and customer. A dataflow would start from lineitem and join against
orders and customer in sequence. TPC-H Q5 lists the revenue vol-
ume done through local suppliers, and derives from three more relations
(supplier, nation, and region). Each relation other than lineitem is
joined using its primary key. A dataflow might start from lineitem and
join against dimension tables in a sequence that makes a foreign key avail-
able for each table before joining it. In both queries, each dimension table
is sharded across workers by their primary key.

The two queries do not have overlapping subqueries—each has differ-
ent filters on order dates, for example—but both join against orders and
customer by their primary keys. Deployed on the same workers, we first
apply arrange operators to the orders and customer relations by their
primary keys, shuffling updates to these relations by their key and result-
ing in shareable arrangements. In separate dataflows, Q3 and Q5 both
have join operators that take as input the corresponding arrangement,
rather than the streams of updates that formed them. As each arrange-
ment is pre-sharded by its key, each worker has only to connect its part
of each arrangement to its dataflow operators. Each worker must still
stream in the lineitem data but the time for the query to return results
becomes independent of the sizes of orders and customer.

83



Chapter 6 - Shared arrangements

6.3.2 System Features Supporting Efficiency

Shared arrangements apply in the general dataflow setting described in
Chapter 3, and can benefit any system with those properties. But addi-
tional system properties can make an implementation more performant.
We base our implementation on frameworks (Timely and Differential
Dataflow) with these properties.

Timestamp batches Timestamps in Timely Dataflow only need to be
partially ordered. The partial order of these timestamps allows Timely
Dataflow graphs to avoid unintentional concurrency blockers, like seri-
alizing the execution of rounds of input (Spark) or rounds of iteration
(Flink). By removing these logical concurrency blockers, the system can
retire larger groups of logical times at once, and produce larger batches
of updates. This benefits DD because the atoms of shared state can
increase in granularity, and the coordination between the sharing sites
can decrease substantially. Systems that must retire smaller batches of
timestamps must coordinate more frequently, which can limit their up-
date rates.

Multiversioned state Differential Dataflow has native support for
multiversioned state. This allows it to work concurrently on any updates
that are not yet beyond the Timely Dataflow frontier, without impos-
ing a serial execution order on updates. Multiversioned state benefits
shared arrangements because it decouples the execution of the operators
that share the state. Without multiversioned state, operators that share
state must have their executions interleaved for each logical time, which
increases coordination.

Co-scheduling Timely Dataflow allows each worker to host an un-
bounded number of dataflow operators, which the worker then schedules.
This increases the complexity of each worker compared to a system with
one thread per dataflow operator, but it increases the efficiency in com-
plex dataflows with more operators than system threads. Co-scheduling
benefits shared arrangements because the state shared between operators
can be partitioned between worker threads, who do not need mutexes or
locks to manage concurrency. Systems that cannot co-schedule operators
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that share state must use inter-thread or inter-process mechanisms to
access shared state, increasing complexity and the cost.

Incremental Updates Differential dataflow operators are designed to
provide incremental view maintenance: their output updates continually
reflects their accumulated input updates. This restriction from general-
purpose stream processing makes it easier to compose dataflows based
on operators with clear sharing semantics. Systems that provide more
general interfaces, including Timely Dataflow, push a substantial burden
on to the user to identify operators that can share semantically equivalent
state.

6.4 Implementation

Our implementation of a shared arrangement consists of three inter-
related components:

1. the trace, a list of immutable, indexed batches of updates that
together make up the multiversioned index;

2. an arrange operator, which mints new batches of updates, and
writes them to and maintains the trace; and

3. read handles, through which arrangement-aware operators access
the trace.

Each shared arrangement has its updates partitioned by the key of its
index, across the participating dataflow workers. This same partitioning
applies to the trace, the arrange operator, and the read handles, each
of whose interactions are purely intra-worker; each worker maintains and
shares its shard of the whole arrangement. The only inter-worker inter-
action is the pre-shuffling of inbound updates which effects the partition.

Figure 6.3 depicts a dataflow which uses an arrangement for the count
operator, which must take a stream of (data, time, diff) updates and
report the changes to accumulated counts for each data. This operation
can be implemented by first partitioning the stream among workers by
data, after which each worker maintains an index from data to its history,
a list of (time, diff ). This same indexed representation is what is needed
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Figure 6.3: A worker-local overview of arrangement. Here the arrange-
ment is constructed for the count operator, but is shared with
a distinct operator in another dataflow. Each other worker
performs the same collective data exchange, followed by local
batch creation, trace maintenance, and sharing.

by the distinct operator, in a second dataflow, which can re-use the
same partitioned and indexed arrangement rather than re-construct the
arrangement itself.

6.4.1 Collection traces

As in Differential Dataflow, a collection trace is the set of update triples
(data, time, diff) that define a collection at any time ¢ by the accumula-
tion of those (data, diff) for which time < t. A collection trace is initially
empty and is only revealed as a computation proceeds, determined either
as an input to the dataflow or from the output of another dataflow op-
erator. Although update triples may arrive continually, it is only when
the Timely Dataflow input frontier advances that the arrange operator
learns that the updates for a subset of times are now complete.

In our design a collection trace is logically equivalent to an append-only
list of immutable batches of update triples. Each batch is described by
two frontiers of times, lower and upper, and the batch contains exactly
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those updates whose times are beyond the lower frontier and not beyond
of the upper frontier. The upper frontier of each batch matches the lower
frontier of the next batch, and the growing list of batches reports the
developing history of confirmed updates triples. A batch may be empty,
which indicates that no updates exist in the indicated range of times.

To support efficient navigation of the collection trace, each batch is in-
dexed by its data to provide random access to the history of each data (the
set of its (time, diff) pairs). Background merge computation (performed
by the arrange operator) ensures that at any time, a trace consists of log-
arithmically many batches, which ensures that operators can efficiently
navigate the union of all batches.

Each reader of a trace holds a trace handle, which acts as a cursor that
can navigate the multiversioned index. Each handle has an associated
frontier, and ensures that it provides correct views of the index for any
times beyond this frontier. Trace readers advance the frontier of their
trace handle when they no longer require certain historical distinctions,
which allows the arrange operator to compact batches by coalescing up-
dates at older times, and to maintain a bounded memory footprint as a
collection evolves.

6.4.2 The arrange operator

The arrange operator receives update triples, and must both create new
immutable indexed batches of updates as its input frontier advances and
compactly maintain the collection trace without violating its obligations
to readers of the trace.

At a high level, the arrange operator buffers incoming update triples
until the input frontier advances, at which point it extracts and indexes
all buffered updates not beyond the newly advanced input frontier. A
shared reference to this new immutable batch is both added to the trace
and emitted as output from the arrange operator. When adding the
batch to the trace, the operator may need to perform some maintenance
to keep the trace representation compact and easy to navigate.

Batch implementation Each batch is immutable, but indexed to pro-
vide efficient random access. Our default implementation sorts update
triples (data, time, diff) first by data and then by time, and stores the
fields each in its own column. This balances the performance of read
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latency, read throughput, and merge throughput. We have other batch
implementations for specific domains (e.g. graphs), and new user imple-
mentations can be added without changing the surrounding superstruc-
ture. Most OLTP index structures are more general than needed for our
immutable batches, but many of their data layout ideas could still be
imported.

Amortized trace maintenance The maintenance work of merging
batches in a trace is amortized over the introduced batches, so that no
batch causes a spike in computation (and a resulting spike in latency).
Informally, the operator performs the same set of merges as would a
merge sort applied to the full sequence of batches, but only as the batches
become available. Additionally, each merge is processed in steps: for
each new batch, we perform work proportional to the batch size on each
incomplete merge. A higher constant of proportionality leads to more
eager merging, improving the throughput of the computation, whereas a
lower constant improves the maximum latency of the computation.

Consolidation As readers of the trace advance through time, historical
times become indistinguishable and updates at such times to the same
data can be coalesced. The logic to determine which times are indistin-
guishable is present in Naiad’s prototype implementation [Mur-+13], but
the mathematics of compaction have not been reported previously. In
section 6.6, we present proofs of optimality and correctness.

Shared references Both immutable batches and traces themselves are
reference counted. Importantly, the arrange operator holds only a “weak”
reference to its trace, and if all readers of the trace drop their handles the
operator will continue to produce batches but cease updating the trace.
This optimization is crucial for competitive performance in computations
that use both dynamic and static collections.

6.4.3 Trace handles

Read access to a collection trace is provided through a trace handle. A
trace handle provides the ability to import a collection into a new data-
flow, and to manually navigate a collection, but both only “as of” a re-
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stricted set of times. Each trace handle maintains a frontier, and guaran-
tees only that accumulated collections will be correct when accumulated
to a time beyond this frontier. The trace itself tracks outstanding trace
handle frontiers, which indirectly inform it about times that are indistin-
guishable to all readers (and which can therefore be coalesced).

Many operators (including join and group) only need access to their
accumulated input collections for times beyond their input frontiers. As
these frontiers advance, the operators are able to advance the frontier on
their trace handles and still function correctly. The join operator is even
able to drop the trace handle for an input when its other input ceases
changing. These actions, advancing the frontier and dropping trace han-
dles, provide the arrange operator with the opportunity to consolidate
the representation of its trace, and in extreme cases discard it entirely.

A trace handle has an import method that, in a new dataflow, creates
an arrangement exactly mirroring that of the trace. The imported collec-
tion immediately produces any existing consolidated historical batches,
and begins to produce newly minted batches. The historical batches
reflect all updates applied to the collection, either with full historical de-
tail or coalesced to a more recent timestamp, depending on whether the
handle’s frontier has been advanced before importing the trace. Com-
putations require no special logic or modes to accommodate attaching
to in-progress streams; imported traces appear indistinguishable to their
original streams, other than their unusually large batch sizes and recent
timestamps.

6.5 Arrangement-aware operators

Operators act on collections, which can be represented either as a stream
of update triples or as an arrangement. These two representations lead to
different operator implementations, where the arrangement-based imple-
mentations can be substantially more efficient than traditional record-at-
a-time operator implementations. In this section we explain arrangement-
aware operator designs, starting with the simplest examples and proceed-
ing to the more complex join, group, and iterate operators.
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6.5.1 Key-preserving stateless operators

Several stateless operators are “key-preserving” they do not transform
their input data to the point that it needs to be re-arranged. Example
operators are filter, concat, negate, and the iteration helper meth-
ods enter and leave. These operators are implemented as streaming
operators for streams of update triples, and as wrappers around arrange-
ments that produce new arrangements. For example, the filter opera-
tor results in an arrangement that applies a supplied predicate as part of
navigating through a wrapped inner arrangement. This design implies a
trade-off, as an aggressive filter may reduce the data volume to the point
that it is cheap to maintain a separate index, and relatively ineffective to
search in a large index only to discard the majority of results. The user
controls which implementation to use: they can filter an arrangement, or
reduce the arrangement to a stream of updates and then filter it.

6.5.2 Key-altering stateless operators

Some stateless operators are “key-altering”, in that the indexed repre-
sentation of their output has little in common with that of their input.
One obvious example is the map operator, which may perform arbitrary
record-to-record transformations. These operators always produce out-
puts represented as streams of update triples.

6.5.3 Stateful operators

Differential Dataflow’s stateful operators are data-parallel: their input
data have a (key, val) structure, and the computation acts independently
on each group of key data. This independence is what allows Naiad and
similar systems to distribute operator work across otherwise independent
workers, which can then process their work without further coordination.
At a finer scale, this independence means that each worker can deter-
mine the effects of a sequence of updates on a key-by-key basis, resolving
all updates to one key before moving to the next, even if this violates
timestamp order.
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6.5.3.1 The join operator

Our join operator takes as inputs batches of updates from each of its
arranged inputs. It produces any changes in outputs that result from its
advancing inputs, but our implementation has several variations from a
traditional streaming hash-join.

Trace capabilities The join operator is bi-linear, and needs only each
input trace in order to respond to updates from the other input. As
such, the operator can advance the frontiers of each trace handle by the
frontier of the other input, and it can drop each trace handle when the
other input closes out. This is helpful if one input is static, as in iterative
processing of static graphs.

Alternating seeks Join can receive input batches of substantial size,
especially when importing an existing shared arrangement. Naively im-
plemented, we might require time linear in the input batch sizes. Instead,
we perform alternating seeks between the cursors for input batches and
traces of the other input: when the cursor keys match we perform work,
and if the keys do not match we seek forward for the larger key in the
cursor with the smaller key. This pattern ensures that we perform work
at most linear in the smaller of the two sizes, seeking rather than scan-
ning through the cursor of the larger trace, even when it is supplied as
an input batch.

Amortized work The join operator may produce a significant amount
of output data that can be reduced only once it crosses an exchange
edge for a downstream operator. If each input batch is immediately pro-
cessed to completion, workers may be overwhelmed by the output, either
buffered for transmission or (as in our prototype) sent to destination work-
ers but buffered at each awaiting reduction. Instead, operators respond
to input batches by producing “futures”, limited batches of computation
that can each be executed until sufficiently many outputs are produced,
and then suspend. Futures make copies of the shared batch and trace
references they use, which avoids blocking state maintenance for other
operators.
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6.5.3.2 The group operator

The group operator takes as input an arranged collection with data of the
form (key, val) and a reduction function from a key and list of values to
a list of output values. At each time the output might change, we reform
the input and apply the reduction function, and compare the results to
the reformed output to determine if output changes are required.

Perhaps surprisingly, the output may change at times that do not ap-
pear in the input (as the least upper bound of two times does not need to
be one of the times). Hence, the group operator tracks a list of pairs (key,
time) of future work that are required even if we see no input updates for
the key at that time. For each such (key, time) pair, the group operator
accumulates the input and output for key at time, applies the reduction
function to the input, and subtracts the accumulated output to produce
any corrective output updates.

Output arrangements The group operator uses a shared arrangement
for its output, to efficiently reconstruct what it has previously produced
as output without extensive re-invocation of the supplied user logic (and
to avoid potential non-determinism therein). This provides the group
operator the opportunity to share its output trace, just as the arrange
operator does. It is common, especially in graph processing, for the results
of a group to be immediately joined on the same key, and join can re-use
the same indexed representation that group uses internally for its output.

6.5.4 Iteration

The iteration operator is essentially unchanged from Naiad’s Differential
Dataflow implementation. We have ensured that arrangements can be
brought in to iterative scopes from outer scopes using only an arrange-
ment wrapper, which allows access to shared arrangements in iterative
computations.

6.6 Compaction Theorems

This section presents proof of optimality and correctness of trace com-
paction, introduced in subsection 6.4.2 in the paragraph “Consolidation”.
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Let F be an antichain of partially ordered times (a “frontier”). Writing
f = F tomean f is greater than some element of F', we will say that two
times t; and to are “indistinguishable as of F”, written ¢; =p to, when

t1 =f to when V{f;F(tl < fiff to < f)

As performed in the Naiad prototype, we can determine a representa-
tive for a time ¢ relative to a set F' using the least upper bound (A) and
greatest lower bound (v) operations of the lattice of times, taking the
greatest lower bound of the set of least upper bounds of ¢; and elements
of F:

repr(t) := Vyier(t A f)

The repr function finds a representative that is both correct (¢ and
repp(t) compare identically to times greater than F') and optimal (two
times comparing identically to all times greater than F' map to the same
representative).

The formal properties of repp rely on properties of the A and v op-
erators, that they are respectively upper and lower bounds of their argu-
ments, and their optimality:

¢)<a (lud)
Ve (glb)

In particular, we will repeatedly use that if ¢t; < (t2 v f) for all f € F,
then t1 < repp(ta).

Theorem 1 (Correctness) For any lattice element t and set F of lat-
tice elements, t =p repp(t).

Proof 1 We prove both directions of the implication in =g separately,
for all f = F. First assume t < f. By assumption, f is greater than
some element ' of F, and so t A f' < f by the (lub) property. As a lower
bound, repp(t) <t A f' for each f' € F, and by transitivity repp(t) < f.
Second assume repp(t) < f. Because t < (t A f') for all f' € F, then
t < repp(t) by the (glb) property and by transitivity t < f.

At the same time, repp is optimal in that two equivalent elements will
be mapped to the same representative.
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Theorem 2 (Optimality) For any lattice elements t1 and ty and set F
of lattice elements, if t1 =p to then repp(t1) = repp(ta).

Proof 2 For all f € F we have both thatty <t A f and f <t1 A f, the
latter implying that t1 A f = F. By our assumption, to agrees with t, on
times greater than F', making to < t1 A f for all f € F. By correctness,
repr(ta) agrees with to on times greater than F, which includes t1 A f
for f € F and so repp(ta) < t1 A f for all f € F. Because repp(ta)
s less or equal to each term in the greatest lower bound definition of
repp(t1), it is less or equal to repp(ty) itself. The symmetric argument
proves that repp(t1) < repr(te), which implies that the two are equal (by
antisymmetry).

6.7 Evaluation

We evaluate DD on end-to-end workloads to measure the impact of shared
arrangements with regards to query installation latency, throughput, and
memory use (subsection 6.7.1). We then use microbenchmarks with DD
to characterize our design’s performance and the arrangement-aware op-
erator implementations (subsection 6.7.2). Finally, we evaluate DD on
pre-existing benchmarks across multiple domains to check if DD main-
tains high performance compared to other peer systems with and without
using shared arrangements (subsection 6.7.3).

Implementation We implemented shared arrangements as part of DD,
our stream processor. DD is our reference Rust implementation of Differ-
ential Dataflow [MD] with shared arrangements. It consists of a total of
about 11,700 lines of code, and builds on an open-source implementation
of Timely Dataflow [MT].

The arrange operator is defined in terms of a generic trace type, and
our amortized merging trace is defined in terms of a generic batch type.
Rust’s static typing ensure that developers cannot incorrectly mix ordi-
nary update triples and streams of arranged batches.

Setup We evaluate DD on a four-socket NUMA system with four In-
tel Xeon E5-4650 v2 CPUs, each with 10 physical cores and 512 GB of
aggregate system memory. We compiled DD with rustc 1.33.0 and the
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jemalloc [Jem]| allocator. DD does distribute across multiple machines
and supports sharding shared arrangements across them, but our eval-
uation here is restricted to multiprocessors. When we compare against
other systems, we rely on the best, tuned measurements reported by their
authors, but compare DD only if we are executing it on comparable or
less powerful hardware than the other systems had access to.

6.7.1 End-to-end impact of shared arrangements

We start with an evaluation of shared arrangements in DD, in two do-
mains with interactively issued queries against incrementally updated
data sources. We evaluate the previously described streaming TPC-H
setup, which windows the 1ineitem relation, as well as a recent inter-
active graph analytics benchmark. For the relational queries, we would
hope to see shared arrangements reduce the installation latency and mem-
ory footprint of new queries when compared to an instance of DD that
processes queries independently. For the graph tasks, we would hope that
shared arrangements reduce the update and query latencies at each of-
fered update rate, increase the peak update rate, and reduce the memory
footprint when compared to an instance of DD that processes queries
indepedently. In both cases, if shared arrangements work as designed,
they should increase the capacity of DD on fixed resources, reducing the
incremental costs of new queries.

6.7.1.1 TPC-H

The TPC-H [TPC| benchmark schema has eight relations, which describe
order fulfillment events, as well as the orders, parts, customers, and sup-
pliers they involve, and the nations and regions in which these entities
exist. Of the eight relations, seven have meaningful primary keys, and are
immediately suitable for arrangement (by their primary key). The eighth
relation is 1ineitem, which contains fulfillment events, and we treat this
collection as a stream of instantaneous events and do not arrange it.
TPC-H contains 22 “data warehousing” queries, meant to be run against
large, static datasets. We consider a modified setup where the eight
relations are progressively loaded [NDKI16]|, one record at a time, in a
round-robin fashion among the relations (at scale factor 10).
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We focus on shared arrangements here, but DD matches or outperforms
DBToaster [NDK16] even when queries run in isolation We show these
results in subsubsection 6.7.3.4. To benchmark the impact of shared
arrangements, we interactively deploy and retire queries while we load
the eight relations. Each query has access to the full current contents of
the seven keyed relations that we maintain shared arrangements for. By
contrast, fulfillment events are windowed and each query only observes
the fulfillment events from when it is deployed until when it is retired,
implementing a “streaming” rather than a “historic” query. This evaluates
the scenario presented in section 6.1, where analysts interactively submit
queries. We report performance for ten active queries.

The 22 TPC-H queries differ, but broadly either derive from the win-
dowed lineitem relation and reflect only current fulfillments, or they
do not derive from lineitem and reflect the full accumulated volume of
other relations. Without shared arrangements, either type of query re-
quires building new indexed state for the seven non-lineitem relations.
With shared indexes, we expect queries of the first type to be quick to
deploy, as their outputs are initially empty. Queries of the second type
should take longer to deploy in either case, as their initial output depends
on many records.

Query latency To evaluate query latency, we measure the time from
the start of query deployment until the initial result is ready to be re-
turned. Query latency is significant because it determines whether the
system delivers an interactive experience to human users, but also to
dashboards that programmatically issue queries.

Figure 6.1a (shown in section 6.1) reports the distribution of query in-
stallation latencies, with and without shared arrangements. With shared
arrangements, most queries (those that derive from lineitem) deploy
and begin updating in milliseconds; the five queries that do not derive
from lineitem are not windowed and perform non-trivial computation
to produce their initial correct answer: they take between 100ms and 1s,
depending on the sizes of the relations they use. Without shared arrange-
ments, almost all queries take 1-2 seconds to install as they must create
a reindexed copy of their inputs. Q1 and Q6 are exceptions, since they
use no relations other than lineitem, and thus avoid reindexing any
inputs; shared arrangements cannot improve the installation latency of
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these queries. We conclude that shared arrangements substantially re-
duce the majority of query installation latencies, often by several orders
of magnitude. The improvement to millisecond latency brings responses
within interactive timescales, which helps improve productivity of human
analysts and intervential latency for dependent software.

Update latency Once a query is installed, DD continually updates its
results as new lineitem records arrive. To evaluate the update latency
achieved, we record the amount of time required to process each round
of input data updates after query installation.

Figure 6.1b presents the distribution of these times, with and without
shared arrangements, as a complementary cumulative distribution func-
tion (CCDF). The CCDF visualization—which we will use repeatedly—
shows the “fraction of times with latency greater than” and highlights
the tail latencies towards the bottom-right side of the plot. We see a
modest but consistent reduction in processing time (about 2x) when us-
ing shared arrangements, which eliminate redundant index maintenance
work. There is a noticeable tail in both cases, owed to two expensive
queries that involve inequality joins (Q11 and Q22) and which respond
slowly to changes in their inputs independently of shared arrangements.
Shared arrangements yield lower latencies and increase update through-
put.

Memory footprint Since shared arrangements eliminate duplicate copies
of index structures, we would expect them to reduce the dataflow’s mem-
ory footprint. To evaluate the memory footprint, we record the resident
set size (RSS) as the experiment proceeds.

Figure 6.1c presents the timelines of the RSS with and without shared
arrangements, and shows a substantial reduction (2-3x) in memory foot-
print when shared arrangements are present. Without shared arrange-
ments, the memory footprint also varies substantially (between 60 and
120 GB) as the system creates and destroys indexes for queries that ar-
rive and depart, while shared arrangements remain below 40 GB. Con-
sequently, with shared arrangements, a given amount of system memory
should allow for more active queries. In this experiment, ten concurrent
queries are installed; workloads with more concurrent queries may have
more sharing opportunities and achieve further memory economies.
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Figure 6.4: Shared arrangements reduce query latency, increase the load
handled, and reduce the memory footprint of interactive
graph queries. The setup uses 32 workers, and issues 100k
updates/sec and 100k queries/sec against a 10M node/64M
edge graph in (a) and (c), while (b) varies the load. Note the
log,,—logy scales in (a) and (b), and the log;,-scale y-axis in

(c).
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6.7.1.2 Interactive graph queries

We further evaluate DD with an open-loop experiment issuing queries
against an evolving graph. This experiment issues the four queries used
by Pacaci et al. [Pac+17] to compare relational and graph databases:
point look-ups, 1-hop look-ups, 2-hop look-ups, and 4-hop shortest path
queries (shortest paths of length at most four). In the first three cases,
the query argument is a graph node identifier, and in the fourth case it
is a pair of identifiers.

We implement each of these queries as Differential Dataflows where the
query arguments are independent collections that may be modified to in-
troduce or remove specific query arguments. This query transformation
was introduced in NiagaraCQ [Che+00] and is common in stream proces-
sors, allowing them to treat queries as a streaming input. The transfor-
mation can be applied to any queries presented as prepared statements.
The dataflows depend on two arrangements of the graph edges, by source
and by target; they are the only shared state among the queries.

We use a graph with 10M nodes and 64M edges, and update the graph
and query arguments of interest at experiment-specific rates. Each graph
update is the addition or removal of a random graph edge, and each
query update is the addition or removal of a random query argument
(queries are maintained while installed, rather than issued only once).
All experiments evenly divide the query updates between the four query

types.

Query latency We run an experiment with a fixed rate of 100,000
query updates per second, independently of how quickly DD responds
to them. We would hope that DD responds quickly, and that shared
arrangements of the graph structure should help reduce the latency of
query updates, as DD must apply changes to one shared index rather
than several independent ones.

Figure 6.4a reports the latency distributions with and without a shared
arrangement of the graph structure, as a complementary CDF. Sharing
the graph structure results in a 2-3x reduction in overall latency in the
95t and 99*® percentile tail latency (from about 150ms to about 50ms).
In both cases, there is a consistent baseline latency, proportional to the
number of query classes maintained. Shared arrangements yield latency
reductions across all query classes, rather than, e.g. imposing the latency
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System # | look-up | one-hop | two-hop 4-path
Neodj 32 9.08ms | 12.82ms 368ms 21ms
Postgres | 32 0.25ms 1.4ms 29ms 2242ms
Virtuoso | 32 0.35ms 1.23ms | 11.55ms 4.81ms
DD, 10° 32 0.64ms 0.92ms 1.28ms 1.89ms
DD, 10! 32 0.81ms 1.19ms 1.65ms 2.79ms
DD, 102 32 1.26ms 1.79ms 2.92ms 8.01ms
DD, 103 32 5.71ms 6.88ms | 10.14ms | 72.20ms

Table 6.2: On comparable 10M node/64M edge graphs, DD is broadly
competitive with the average graph query latencies of three sys-
tems evaluated by Pacaci et al. [Pac+17], and scales to higher
throughput using batching. The DD batch size is the number
of concurrent queries per measurement.

of the slowest query on all sharing dataflows. This validates that queries
can proceed at different rates, an important property of our shared ar-
rangement design.

Update throughput To test how DD’s shared arrangements scale with
load, we next scale the rates of graph updates and query changes up to two
million changes per second each. An ideal result would show that shar-
ing the arranged graph structure consistently reduces the computation
required, thus allowing us to scale to a higher load using fixed resources.

Figure 6.4b reports the 99" percentile latency with and without a
shared graph arrangement, as a function of offered load and on a log-log
scale. The shared configuration results in reduced latencies at each offered
load, and tolerates an increased maximum load at any target latency. At
the point of saturating the server resources, shared arrangements tolerate
33% more load than the unshared setup, although this number is much
larger for specific latencies (e.g. 5% at a 20ms target). We note that
the absolute throughputs achieved in this experiment exceed the best
throughput observed by Pacaci et al. (Postgres, at 2,000 updates per
second) by several orders of magnitude, further illustrating the benefits
of parallel dataflow computation with shared arrangements.

Memory footprint Finally, we consider the memory footprint of the
computation. There are five uses of the graph across the four queries, but
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also per-query state that is unshared, so we would expect a reduction in
memory footprint of somewhat below 4x.

Figure 6.4c reports the memory footprint for the query mix with and
without sharing, for an hour-long execution. The memory footprint os-
cillates around 10 GB with shared arrangements, and around 40 GB (4 x
larger) without shared arrangements. This illustrates that sharing state
affords memory savings proportional to the number of reuses of a collec-
tion.

6.7.1.3 Comparison with other systems

Pacaci et al. [Pac+17] evaluated relational and graph databases on the
same graph queries. DD is a stream processor rather than a database
and supports somewhat different features, but its performance ought to
be comparable to the databases’ for these queries. We stress, however,
that our implementation of the queries as Differential Dataflows requires
that queries be expressed as prepared statements, a restriction the other
systems do not impose.

We ran DD experiments with a random graph comparable to the one
used in Pacaci et al.’s comparison. Table 6.2 reports the average latency
to perform and then await a single query in different systems, as well as
the time to perform and await batches of increasing numbers of concur-
rent queries for DD. While DD does not provide the lowest latency for
point look-ups, it does provides excellent latencies for other queries and
increases query throughput with batch size.

6.7.2 Design evaluation

We now perform microbenchmarks of the arrange operator, to evaluate
its response to changes in load and resources. In all benchmarks, we ap-
ply an arrange operator to a continually changing collection of 64-bit
identifiers (with 64-bit timestamp and signed difference). The inputs are
generated randomly at the worker, and exchanged (shuffled) by key prior
to entering the arrangement. We are primarily interested in the distribu-
tion of response latencies, as slow edge-case behavior of an arrangement
would affect this statistic most. We report all latencies as complementary
CDFs to get high resolution in the tail of the distribution.
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Figure 6.5: Microbenchmarks of our shared arrangement design suggest
that our design scales well with growing parallelism (b)—(d)
and load (a), (¢)—(d), and that the key ideas of amortized
merging (e) and proportional work across inputs (f) are crucial
to achieving low update latencies. (b) and (e) generate a fixed
load of 1M input records per second.
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Varying load As update load varies, our shared arrangement design
should trade latency for throughput until equilibrium is reached. Fig-
ure 6.5a reports the latency distributions for a single worker as we vary
the number of keys and offered load in an open-loop harness, from 10M
keys and 1M updates per second, downward by factors of two. Latencies
drop as load decreases, down to the test harness’s limit of one millisecond.
This demonstrates that arrangements are suitable for both low-latency
and high-throughput.

Strong scaling More parallel workers should allow faster maintenance
of a shared arrangement, as the work to update it parallelizes, unless
coordination frequency interferes. Figure 6.5b reports the latency distri-
butions for an increasing numbers of workers under a fixed load of 10M
keys and 1M updates per second. As the number of workers increases,
latencies decrease, especially in the tail of the distribution: for example,
the 99*" percentile latency of 500ms with one worker drops to 6ms with
eight workers.

Weak scaling Varying the number of workers while proportionately
increasing the number of keys and offered load would ideally result in
constant latency. Figure 6.5¢c shows that the latency distributions do
exhibit increased tail latency, as the act of data exchange at the arrange-
ment input becomes more complex. However, the latencies do stabilize at
100-200ms as the number of workers and data increase proportionately.

Throughput scaling An arrangement consists of several subcompo-
nents: batch formation, trace maintenance, and e.g. a maintained count
operator. To evaluate throughput scaling, we issue batches of 10,000 up-
dates at each worker, repeated as soon as each batch is accepted, rather
than from a rate-limited open-loop harness. Figure 6.5d reports the peak
throughputs as the number of cores (and thus, workers and arrangement
shards) grows. All components scale linearly to 32 workers.

Amortized merging The amortized merging strategy is crucial for
shared arrangements to achieve low update latency, but its efficacy de-
pends on setting the right amortization coefficients. Eager merging per-
forms the least work overall but can increase tail latency. Lazy merging

103



Chapter 6 - Shared arrangements

performs more work overall, but should reduce the tail latency. Ideally,
DD’s default would pick a good tradeoff between common-case and tail
latencies at different scales.

Figure 6.5e reports the latency distributions for one and 32 workers,
each with three different merge amortization coefficients: the most eager,
DD’s default, and the most lazy possible. For a single worker, lazier set-
tings have smaller tail latencies, but are more often in that tail. For 32
workers, the lazier settings are significantly better, because eager strate-
gies often cause workers to stall waiting for a long merge at one worker.
The lazier settings are critical for effective strong scaling, where eager
work causes multiple workers to seize up, which matches similar obser-
vations about garbage collection at scale [Gog-+15]. DD’s default setting
achieves good performance at both scales.

Join proportionality Our arrangement-aware join operator is designed
to perform work proportional to the size of the smaller of the incoming
pre-arranged batch and the state joined against (subsubsection 6.5.3.1).
We validate this by measuring the latency distributions to install, ex-
ecute, and complete new dataflows that join collections of varying size
against a pre-existing arrangement of 10M keys.

The varying lines in Figure 6.5f demonstrate that the join work is
indeed proportional to the small collection’s size, rather than to the (con-
stant) 10M arranged keys. This behavior is not possible in a record-at-
a~time stream processor, which must at least examine each input record.
This behavior is possible in DD only because the join operator receives
as input pre-arranged batches of updates. Query deployment in the TPC-
H workload would not be fast without this property.

6.7.3 Baseline performance on reference tasks

We also evaluate DD against established prior work to demonstrate that
DD is competitive with and occasionally better than peer systems. Im-
portantly, these established benchmarks are traditionally evaluated in
isolation, and are rarely able to demonstrate the benefits of shared ar-
rangements. Instead, this evaluation is primarily to demonstrate that DD
does not lose baseline performance as compared to other state-of-the-art
systems. Most but not all of the peer systems in this section do maintain
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private indexed data in operators; this decision alone accounts for some
of the gaps.

6.7.3.1 Datalog workloads

Datalog is a relational language in which queries are sets of recursively
defined productions, which are iterated from a base set of records un-
til no new records are produced. Unlike graph computation, Datalog
queries tend to produce and work with substantially more records than
they are provided as input. Several shared-memory systems for Data-
log exist, including LogicBlox, DLV [DLV], DeALS [YSZ17], and several
distributed systems have recently emerged, including Myria [Wan+17a],
Socialite [SGL15], and BigDatalog [Shk+16]. At the time of writing,
only LogicBlox supports decremental updates to Datalog queries, using
a technique called “transaction repair” [Vell4]. DD supports incremental
and decremental updates to Datalog computations and interactive top-
down queries.

Top-down (interactive) evaluation Datalog users commonly specify
values in a query, such as reach(“david”,?), to request nodes reachable
from a source node. The ‘magic set’ transformation [Ban+86] rewrites
such queries as bottom-up computations with a new base relation that
seeds the bottom-up derivation with query arguments; the rewritten rules
derive facts only with the participation of some seed record. DD, like some
interactive Datalog environments, performs this work against maintained
arrangements of the non-seed relations. We would expect this approach to
be much faster than full evaluation, which batch processors that re-index
the non-seed relations (or DD without shared arrangements) require.

Table 6.3 reports DD’s median and maximum latencies for 100 random
arguments for three interactive queries on three widely-used benchmark
graphs, and the times for full evaluation of the related query, using 32
workers. DD’s arrangements mostly reduce runtimes from seconds to
milliseconds. The slower performance for sg(x,?) on grid-150 reveals that
the transformation is not always beneficial, a known problem with the
magic set transform.
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Query statistic tree-11 grid-150 gnpl
te(x,7) increm., median | 2.56ms | 346.28ms | 18.29ms
incremental, max 9.05ms 552.79ms | 25.40ms
full eval. (no SA) 0.08s 6.18s 9.45s

te(?,x) increm., median | 15.63ms 320.83ms | 15.58ms
incremental, max | 18.01ms 541.76ms | 23.84ms

full evaluation 0.08s 6.18s 9.45s
sg(x,?) increm., median | 68.34ms | 1075.11ms | 20.08ms
incremental, max | 95.66ms | 2285.11ms | 26.56ms
full eval. (no SA) 56.45s 0.60s 19.85s

Table 6.3: DD enables interactive computation of three Datalog queries
(32 workers, medians and maximums over 100 queries). Full
evaluation is required without shared arrangements.

System cores te(t) te(g) te(r) sg(t) sg(g) sg(r)
BigDatalog 120 49s 25s 7s 53s 34s 72s
Spark 120 244s OOM 63s OOM 1955s 430s
Myria 120 91s 22s 50s 822s 5s 436s
SociaLite 120 DNF 465s 654s OOM 17s OOM
LogicBlox 64 NR 24420s 913s 58732s 326s 3363s
DLV 1 NR 13127s 9272s OOM 105s 48039s
DeALS 1 NR 148s 321s 1309s 7.6s 2926s
DeALS 64 NR 5s 12s 48s 0.35s 79s
DD 1 98.26s 132.23s 210.25s 1210.78s 4.43s 482.91s
DD 2 53.42s 68.13s 111.98s 652.74s 2.76s 253.80s
DD 4 27.85s 34.42s 57.69s 325.24s 1.63s 125.00s
DD 8 15.37s 17.97s 30.90s 173.96s 1.06s 66.10s
DD 16 9.63s 9.74s 16.66s 93.47s 0.69s 35.44s
DD 32 7.18s 6.18s 9.45s 56.45s 0.60s 19.85s

Table 6.4: System performance on various Datalog problems and graphs.
Times for the first four systems are reproduced from [Shk+16].
NR indicates the measurements were not reported, DNF' indi-
cates a run that lasted more than 24 hours, and OOM indicates
the system terminated due to lack of memory.
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Bottom-up (batch) evaluation Table 6.4 reports elapsed seconds
first for distributed systems, then for single-machine systems, and then
for DD at varying numbers of workers. The workloads are “transitive clo-
sure” (tc) and “same generation” (sg) on supplied graphs that are trees
(t), grids (g), and random graphs (7).

DD is generally competitive with the best of the specialized Datalog
systems (here: DeALS), and generally out-performs the distributed data
processors. BigDatalog competes well on transitive closure due to an
optimization for linear queries where it broadcasts its input dataset to all
workers; this works well with small inputs, as here, but is not generally
a robust strategy.

6.7.3.2 Program Analysis

Graspan [Wan+17b] is a system built for static analysis of large code
bases, created in part because existing systems were unable to handle non-
trivial analyses at the sizes required. Wang et al. benchmarked Graspan
for two program analyses, dataflow and points-to [Wan-+17b]. The data-
flow query propagates null assignments along program assignment edges,
while the more complicated points-to analysis develops a mutually recur-
sive graph of value flows, and memory and value aliasing. We developed
a full implementation of Graspan—query parsing, dataflow construction,
input parsing and loading, dataflow execution—in 179 lines of code on
top of DD.

Graspan is designed to operate out-of-core, and explicitly manages its
data on disk. We therefore report DD measurements from a laptop with
only 16 GB of RAM, a limit exceeded by the points-to analysis (which
peaks around 30 GB). The sequential access in this analysis makes stan-
dard OS swapping mechanisms sufficient for out-of-core execution, how-
ever. To verify this, we modify the computation to use 32-bit integers,
reducing the memory footprint below the RAM size, and find that this
optimized version runs only about 20% faster than the out-of-core execu-
tion.

Table 6.5a and Table 6.6a show the running times reported by Wang et
al. compared to those DD achieves. For both queries, we see a substantial
improvement (from 24x to 650x). The points-to analysis is dominated
by the determination of a large relation (value aliasing) that is used only
once. This relation can be optimized out, as value aliasing is eventually
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System cores linux psql hitpd
SociaLite 4 OOM OOM 4 hrs
Graspan 4 | 713.8 min | 143.8 min | 11.3 min
RecStep 20 430s 359s 74s
DD 1 65.8s 32.0s 8.9s

(a) dataflow query, DD on laptop hardware.

System | cores | linux psql | httpd
RecStep 20 430s 359s 74s

DD 2 | 53.9s | 25.58 7.5s
DD 4 | 34.8s | 16.3s 4.7s
DD 8 | 24.4s | 11.2s 3.2s
DD 16 | 20.7s 8.7s 2.5s

(b) dataflow query, DD on server hardware.

System ‘ cores ‘ linuz (kernel only) ‘ psql ‘ hitpd
DD (med) 1 1.05ms | 143ms | 18.1ms
DD (max) 1 7.34ms 1.21s | 201lms

(c) Times to remove each of the first 1,000 null assignments from the interactive
top-down dataflow query.

Table 6.5: DD performs well for Graspan [Wan+17b| dataflow query on
three graphs. SociaLite and Graspan results from Wang et
al. [Wan+17b]; RecStep results from Fan et al. [Fan+19];
OOM: out of memory.
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System cores linuz psql httpd
SocialLite 4 OOM OOM > 24 hrs
Graspan 4 1 99.7 min | 353.1 min | 479.9 min
RecStep 20 61s 162s 162s
DD 1 241.0s 151.2s 185.6s
DD (Opt) 1 121.1s 52.3s 51.8s

(a) points-to analysis, DD on laptop. DD (Opt) is an optimized query.

System cores linux psql httpd
RecStep 20 61s 162s 162s
DD 2 | 230.0s | 134.4s | 145.3s
DD 4| 142.6s | 73.3s | 80.2s
DD 8 86.0s 40.9s 44.9s
DD 16 59.8s 24.0s 27.5s
DD (Opt) 2 | 125.2s | 53.1ss | 46.0s
DD (Opt) 4| 89.8s | 30.8s | 26.7s
DD (Opt) 8 | 574s | 18.0s | 15.1s
DD (Opt) 16 | 43.1s 11.2s 9.1s

(b) points-to analysis, DD on server. DD (Opt) is an optimized query.

Table 6.6: DD performs well for Graspan [Wan-+17b] program analyses
on three graphs. SociaLite and Graspan results from Wang
et al. [Wan-+17b]; RecStep results from Fan et al. [Fan+19];
OOM: out of memory.
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restricted by dereferences, and this restriction can be performed before
forming all value aliases. This optimization results in a more efficient
computation, but one that reuses some relations several (five) times; the
benefits of the improved plan may not be realized by systems without
shared arrangements. Table 6.6a reports the optimized running times as
(Opt).

In Table 6.5b and Table 6.6b we also report the runtimes of DD on these
program analysis tasks on server hardware (with the same hardware con-
figuration as previous sections) and compare them to RecStep [Fan+19],
a state-of-the-art parallel datalog engine. For all queries, DD matches or
outperforms RecStep running times even when it is configured to utilize
a smaller number of CPU cores.

Top-down evaluation Both dataflow and points-to can be transformed
to support interactive queries instead of batch computation. Table 6.5¢
reports the median and maximum latencies to remove the first 1,000 null
assignments from the completed dataflow analysis and correct the set of
reached program locations. While there is some variability, the timescales
are largely interactive and suggest the potential for an improved developer
experience.

6.7.3.3 Batch graph computation

We evaluate DD on standard batch iterative graph computations on three
standard social networks: LiveJournal, Orkut, and Twitter.

Following prior work [Shk+16] we use the tasks of single-source reach-
ability (reach), single-source shortest paths (sssp), and undirected con-
nectivity (wcc). For the first two problems we start from the first graph
vertex with any outgoing edges (each reaches a majority of the graph).

We separately report the times required to form the forward and re-
verse edge arrangements, with the former generally faster than the latter
as the input graphs are sorted by the source as in the forward index. The
first two problems require a forward index and undirected connectivity
requires indices in both directions, and we split the results accordingly.
We report times for three graphs: livejournal in Table 6.8, orkut
in Table 6.9, and twitter in Table 6.7. We include measurements by
Shkapsky et al. [Shk+16] for several other systems. We also reproduce
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System cores index-f reach SSSp index-r wce
Single thread 1 - 14.89s 14.89s - 33.99s

w/hash map 1 - 192.01s 192.01s - 404.19s
BigDatalog 120 - 125s 260s - 307s
Myria 120 - 102s 1593s - 1051s
SociaLite 120 - 7558 OOM - OOM
GraphX 120 - 3677s 6712s - 12041s
RaSQL 120 - 45s 81s - 108s
RecStep 20 - 174s 243s - 501s
DD 1 162.41s | 256.77s | 310.63s | 312.31s | 800.05s
DD 2 99.74s 131.50s 159.93s 164.12s | 417.20s
DD 4 49.46s 64.31s 77.27s 81.67s | 200.28s
DD 8 27.99s 33.68s 40.24s 43.20s 101.42s
DD 16 18.04s 17.40s 20.99s 24.73s 51.83s
DD 32 12.69s 11.36s 10.97s 14.44s 27.48s

Table 6.7: System performance on various tasks on the 42M node, 1.4B
edge twitter graph. DD does not share any arrangements
here, but the sharing infrastructure does not harm perfor-
mance.

measurements reported in [Shk+16] for several other systems. We in-
clude running times for simple single-threaded implementations that are
not required to follow the same algorithms. For example, for undirected
connectivity we use the union-find algorithm rather than label propa-
gation, which outperforms all systems except DD at 32 cores. We also
include the same times when the single-threaded implementations replace
the arrays storing per-node state with hash maps, as they might when
the graph identifiers have not be pre-processed to be in a compact range;
the graphs remain densely packed and array indexed.

DD is consistently faster than the other systems—Myria [Wan+17a],
BigDatalog [Shk-+16], SociaLite [SGL15], GraphX [Gon+14], RecStep
[Fan+19], and RaSQL [Gu+19]—but is substantially less efficient than
purpose-written single-threaded code applied to pre-processed graph data.
Such pre-processing is common, as it allows use of efficient static ar-
rays, but it prohibits more general vertex identifiers or graph updates.
When we amend our purpose-built code to use a hash table instead of
an array, DD becomes competitive between two and four cores. These
results are independent of shared arrangements, but indicate that DD’s
arrangement-aware implementation does not impose any undue cost on
computations without sharing.
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System cores index-f | reach sssp index-r wce
Single thread 1 - 0.40s 0.40s - 0.29s

w/hash map 1 - 4.38s 4.38s - 8.90s
BigDatalog 120 - 17s 53s - 27s
Myria 120 - 5s 70s - 39s
SociaLite 120 - 52s 172s - 54s
GraphX 120 - 36s 311s - 59s
RecStep 20 - 14s 19s - 39s
DD 1 4.39s 8.50s 13.14s 7.56s 23.97s
DD 2 2.49s 4.33s 6.71s 4.01s 12.95s
DD 4 1.39s 2.31s 3.58s 2.06s 6.29s
DD 8 0.74s 1.20s 1.79s 1.03s 3.41s
DD 16 0.54s 0.62s 0.90s 0.58s 1.71s
DD 32 0.55s 0.51s 0.59s 0.41s 0.90s

Table 6.8: System performance on various tasks on the 4.8M node, 68M
edge livejournal graph.

System cores index-f reach sssp index-r wce
Single thread 1 - 0.46s 0.46s - 0.52s

w/hash map 1 - 11.56s 11.56s - 19.00s
BigDatalog 120 - 20s 39s - 33s
Myria 120 - 6s 44s - 57s
SociaLite 120 - 67s 106s - 78s
GraphX 120 - 48s 67s - 53s
RaSQL 120 - 11s 16s - 19s
RecStep 20 - 19s 25s - 43s
DD 1 14.02s | 20.33s | 24.65s 21.27s | 47.79s
DD 2 7.92s 10.29s 13.06s 11.49s 25.02s
DD 4 4.25s 5.34s 6.21s 5.73s 12.38s
DD 8 2.37s 2.68s 3.34s 3.03s 6.29s
DD 16 1.43s 1.47s 1.60s 1.69s 3.30s
DD 32 1.22s 1.11s 0.87s 1.05s 1.75s

Table 6.9: System performance on various tasks on the 3M node, 117TM
edge orkut graph.
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query DBToaster | DD (w=1) DD (w=32)
TPC-H 01 1,372,480 | 9,341,713 | 31,283,993
TPC-H 02 691,260 4,388,761 29,651,632
TPC-H 03 4,580,003 | 11,049,606 | 37,263,673
TPC-H 04 9,752,380 | 9,046,854 | 30,886,269
TPC-H 05 509,490 5,802,513 27,952,246
TPC-H 06 101,327,791 33,090,863 65,335,474
TPC-H 07 646,018 7,551,628 30,962,626
TPC-H 08 221,020 | 4,949,412 | 28,230,062
TPC-H 09 76,296 | 2,932,421 18,119,469
TPC-H 10 5,964,290 9,708,371 25,037,510
TPC-H 11 591,716 1,720,655 1,749,464
TPC-H 12 7,469,474 | 11,258,702 | 33,975,983
TPC-H 13 474,765 1,446,223 16,792,703
TPC-H 14 | 53,436,252 | 21,908,762 | 38,843,085
TPC-H 15 964 5,057,397 23,122,916
TPC-H 16 58,721 4,435,818 | 23,495,608
TPC-H 17 131,964 5,218,907 25,888,103
TPC-H 18 971,313 | 5,854,293 | 29,574,347
TPC-H 19 8,776,165 | 22,696,357 36,393,109
TPC-H 20 1,871,407 16,089,949 46,456,453
TPC-H 21 407,540 1,968,771 10,928,516
TPC-H 22 815,903 1,843,397 | 15,233,935

Table 6.10: Streaming update rates (in tuples per second) for the 22 TPC-
H queries at scale factor 10, with logical batching of 100,000
elements at the same time. Elapsed times for DBToaster are
for one thread, and are reproduced from [NDK16]. For DD
we report both one worker and 32 worker rates.

6.7.3.4 Relational computations

Table 6.10 reports throughput in tuples per second for [NDK16| and DD
on the scale factor 10 TPC-H workload with logical batches of 100,000
elements. DD has a generally higher and more consistent rate, though is
less efficient on lighter queries (q04, q06, and q14); DD performs no pre-
aggregation, which could improve its rates for logically batched queries.
For 32 workers, almost all rates are above 10 million updates per second,
which correspond to latencies below 10ms between reports.

Table 6.11 reports elapsed times for DD applied to the scale-factor
10 TPC-H workload. We also reproduce several measurements from
[Ess+18] for other systems. All are executed with a single thread. DD
used as a batch processor is not as fast as the best systems (HyPer and
Flare), but is faster than other popular frameworks.
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query | Postgres SparkSQL HyPer Flare DD
TPC-H 01 241,404 18,219 603 530 7,789
TPC-H 02 6,649 23,741 59 139 2,426
TPC-H 03 33,721 47,816 1,126 532 5,948
TPC-H 04 7,936 22,630 842 521 8,550
TPC-H 05 30,043 51,731 941 748 | 14,001
TPC-H 06 23,358 3,383 232 198 1,185
TPC-H 07 32,501 31,770 943 830 12,029
TPC-H 08 29,759 63,823 616 | 1,525 | 19,667
TPC-H 09 64,224 88,861 1,984 | 3,124 | 27,873
TPC-H 10 33,145 42,216 967 | 1,436 4,559
TPC-H 11 7,093 3,857 131 56 1,534
TPC-H 12 37,880 17,233 501 656 4,458
TPC-H 13 31,242 28,489 3,625 | 3,727 3,893
TPC-H 14 22,058 7,403 330 278 1,695
TPC-H 15 23,133 14,542 253 302 1,591
TPC-H 16 13,232 23,371 1,399 620 2,238
TPC-H 17 155,449 70,944 563 | 2,343 | 17,750
TPC-H 18 90,949 53,932 3,703 823 9,426
TPC-H 19 29,452 13,085 1,980 909 2,444
TPC-H 20 65,541 31,226 434 870 4,658
TPC-H 21 299,178 128,910 1,626 | 1,962 | 29,363
TPC-H 22 11,703 10,030 180 177 2,819

Table 6.11: Elapsed milliseconds for the 22 TPC-H queries at scale factor
10, each using a single core. Elapsed times for the four other
systems are reproduced from [Ess+18]. DD used as a batch
processor is not as fast as the best systems (HyPer and Flare),
but is faster than other popular frameworks.
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6.8 Conclusions

We described shared arrangements, detailed their design and implemen-
tation in DD, and showed how they yield improved performance for in-
teractive analytics against evolving data. Shared arrangements enable
interactive, incrementally maintained queries against streams by sharing
sharded indexed state between operators within or across dataflows. Mul-
tiversioning the shared arrangement is crucial to provide high throughput,
and sharding the arrangement achieves parallel speedup. Our implemen-
tation in DD installs new queries against a stream in milliseconds, re-
duces the processing and space cost of multiple dataflows, and achieves
high performance on a range of workloads. In particular, we showed that
shared arrangements improve performance for workloads with concurrent
queries, such as a streaming TPC-H workload with interactive analytic
queries and concurrent graph queries.

Shared arrangements rely on features shared by time-aware dataflow
systems, and the idiom of a single-writer, multiple-reader index should
apply to several other popular dataflow systems. We left undiscussed
topics like persistence and availability. As a deterministic data processor,
DD is well-suited to active-active replication for availability in the case of
failures. In addition, the immutable LSM layers backing arrangements are
appropriate for persistence, and because of their inherent multiversioning
can be persisted asynchronously, off of the critical path. We present
a techinque for persistence and fault tolerance of time-aware dataflow
systems that utilizes the trace data structure in Chapter 7.
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Parts of this chapter describe joint work with Lorenzo Selvatici in the con-
text of his Master Thesis “A Streaming System with Coordination-Free Fault-
Tolerance” [Sel04]; an early prototype of the mechanism described in this chap-
ter was primarily designed and implemented by me with some contribution by
Frank McSherry and Moritz Hoffmann.

A long-running dataflow program accumulates in-memory state in the
operators. This state acts as a summary of the data processed at each
operator so far, it is critical for producing future results, and — depending
on the computation — may require the entire input history for an operator
to be faithfully reconstructed. For example, an operator computing a
running total summarizes its entire input history as its internal state
(the total).

When a failure occurs, either due to hardware or a software bug, the
in-memory state of the operator instances residing on the failing nodes is
lost. A fault-tolerance mechanism enables persisting and recovering such
state so that the time-aware dataflow program can quickly resume pro-
ducing outputs. If such a mechanism isn’t present, resuming the program
may require re-processing the entire input history, which can easily be
prohibitively expensive.

Even if it’s feasible to re-process the entire input history or only the
input relevant to reconstruct the current state, a time-aware dataflow
program may have variably strict latency requirements due to service-
level-agreements in producing output in response to new inputs which
cannot be met if the system needs to recompute the state from the inputs.

This chapter describes a new mechanism for preserving and recovering
the internal, intermediate state of time-aware dataflow operator instances
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which has no latency spikes in steady-state execution, and can recover
quickly after failure to meet strict latency SLAs.

7.1 Introduction

Stream processing systems that process data continuously from an exter-
nal data sources accumulate intermediate results as internal in-memory
state. When part of these systems fail, either due to crash-bugs or hard-
ware failures, this ephemeral in-memory state is lost. A durable copy of
the source data stream can be prohibitively large, and even if there is
one, re-processing the entire input to reconstruct the state is often too
expensive or incompatible with the application latency requirements.

Dataflow streaming systems generally run as a distributed system over
many cores or computers communicating via reliable channels, and the
data is sharded across the available workers to enable parallelism. For
correct recovery we need to acquire and recover from checkpoints that
faithfully represent a global state of the system [CL85|. In a distributed
system the workers do not share a clock, or memory, and thus they cannot
record their local state at the same instant.

Prior work for durability in distributed dataflow systems devised pro-
tocols to coordinate when to take a snapshot on all workers in order to
obtain a consistent representation of the global state. Taking complete
global snapshots takes time, is expensive, and generally requires partially
pausing the system to guarantee consistency. We explore these limitations
in more detail in section 7.2.

We observe that modern time-aware [McS+20] stream processing sys-
tems all employ message timestamps that represent logical and causal
relationships between data messages across the system. These times-
tamps are used for coordination, and allow operators to identify when
they have received all input for a certain timestamp “epoch” so that they
can correctly compute complete results.

We propose to leverage these existing logical consistency boundaries
for durability and recovery in time-aware systems, instead of building
an additional out-of-band coordination mechanism like in previous work.
Our durability and recovery protocol for pipelined dataflow systems, CL,
precisely records the history of each of the worker’s state independently,
relieving the need for coordination on the critical path; the protocol only
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constructs a global consistent state after failure, by relying on causality
cues given by message timestamps.

Figure 7.1 shows preliminary evaluation results for CL. It compares
latency over time for a simple but representative workload (the widely
used NexMark Q5) between our CL prototype and the baseline non-
fault-tolerant timely dataflow. We offered a costant load at roughly 60%
of the system’s maximum throughtput when using CL and, for the CL
experiment, injected failures at 200 and 400 seconds. We see that CL
delivers predictable steady-state latency, albeit higher than the baseline
non-fault-tolerant system. It achieves this by doing away with the coor-
dination necessary to record snapshots that faithfully represent a global
state. Additionally, thanks to the high granularity of the state recording,
it recovers fairly quickly.

This predictable latency comes at some throughput cost due to the
additional work involved in persisting the state history. Our preliminary
results indicate that CL should be able to achieve at least roughly half
the throughput of a non-fault-tolerant timely dataflow implementation.
This means that using CL for fault-tolerance requires roughly the same
resources as running active-active replication (where the resource require-
ments are doubled by running a second copy of the system). However
active-active replication can only survive a single worker failiure, while
CL can survive an arbitrary number, depending on the exact durability
configuration.

We built CL as a library on top of the timely dataflowMT] stream
processing system using timestamp tokens to encode the coordination
protocol used by CL to (i) asynchronously compact and garbage collect
older recorded state and to (ii) construct globally consistent state on re-
covery depending on which state updates had been successfully persisted

before failure. We will see the details of these protocols in section 7.7 and
79

7.2 Related work

Streaming engines based on batch processors, such as Spark Stream-
ing [Zah+13], use the natural boundaries of fixed sized micro-batches to
store and replicate state. The fixed-sized batches, however, impose higher
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Figure 7.1: NexMark Q5 comparing latency of a non-fault-tolerant base-
line with CL. The offered load was 5000 tuples/sec using a
configuration with three timely dataflow workers.
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minimum latency and afford reduced flexibility compared to pipelined
streaming systems.

Systems like MillWheel rely on an external consistent store for its
state, and handle the processing of incoming messages as transactions
that are atomically committed when complete. The additional round-
trip to the datastore adds latency, and its serialization constraints reduce
the opportunity for pipelining.

Pipelined systems like Flink [Car+17] rely on in-band markers that
travel along with the data and trigger local state snapshots at the oper-
ators they encounter. Aligning markers from multiple workers requires
pausing processing, making it unfeasible to capture snapshot with high
frequency.

7.3 Assumptions

Because our recovery process requires recomputing intermediate state
that was loss on failure, we need to impose some restrictions on the op-
erators in the dataflow program: in particular, they must

e deterministically update the state after they have received all in-
puts for a certain timestamp, regardless of the order in which those
inputs have been received;

e produce semantically equivalent outputs for a certain timestamp
regardless of the order in which the inputs have been received; and

e use a specific programming interface to perform state updates so
that they can be made durable by the fault-tolerance mechanism.

Most time-aware dataflow operators already satisfy the first two restric-
tions, or can be straightforwardly modified to fit while retaining their
semantics and with minimal performance impact. For example The
last restriction requires a more significant refactor of existing time-aware
dataflow operators.

7.4 Failure model

The durability and recovery protocol described in this chapter is partially
agnostic to the specific deployment and configuration choice, which will

121



Chapter 7 - Fault tolerance

depend on the types and frequency of failures that the operator wants to
safeguard against. The only requirement is that (i) when a worker fails,
some mechanism can identify a replacement worker (potentially just a
new process on the same machine, if the failure was just a crash); and
(ii) the replacement worker has access to the state log of its predecessor
for all items that had been acknowledged as successfully persisted.

The operator can choose the persistent storage and configuration de-
pending on the durability and availability requirements of the application.
CL’s interface with the persistent storage is simple get and set operations
that asynchronously persist and retrieve blobs of data associated with a
key; this interface is typical of object storage systems in the cloud [Amal].

7.5 Consistency goal

Modern time-aware dataflow systems provide serializability guarantees
for their outputs at timestamp boundaries: all the input data pertaining
to a certain timestamp ¢, and no other data, must be reflected in the
output as of timestamp t.

Given the constraints described in section 7.3, the goal is for the system
that experiences a failure to produce outputs identical to what would
have been produced if a failure did not happen, and thus to preserve the
serializability guarantee in case of failure. This is sometimes referred to
as “exactly-once” semantics : the output of the system should match that
of an execution where each record is processed exactly one time, even
when records may have to be re-processed during the recovery process.

We assume that the inputs of the computation are stored in a durable
queue and recent inputs can be replayed on request of the system in case
of failure. CL can provide a periodic signal to the durable input queue
informing it of which prefix of the input can be safely garbage collected
without compromising the ability of the computation to recover from a
failure.

7.6 CL operators

Our model of a CL operator refines the time-aware dataflow operator
model in order to satisfy the restrictions described in section 7.3. Fig-
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Figure 7.2: A CL operator.

ure 7.2 shows a diagram of a CL operator. An operator’s behavior is
defined by the programmer via two code fragments: a state update func-
tion s and an output generation function o.

The state update function s receives the inputs for a range of com-
plete timestamps [tq, %), is informed of the frontier information for the
input ports ¢, and has access to an immutable view of the operator state.
Using this information s is tasked with computing the state update re-
sulting from inputs with timestamps [¢4,tp): instead of directly mutating
the operator state, s must produce a delta from the previous state for
each intermediate timestamp between t, and ;.

The output generation function o receives the state update com-
puted by s and is tasked with producing the corresponding output mes-
sages by also relying on an immutable view of the operator state.

The two functions s and o are sufficient to define the data transfor-
mation associated with the operator. Because the state update function
s produces state deltas at each timestamp, the system is able to track
and persist these as incremental updates, and rollback the state to any
previous t on recovery, as we will see.
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7.7 Achieving CL

7.7.1 Operator-local properties

The CL protocol is designed around the following local properties at each
operator.

e an operator ¢ can rely on its upstream operators to replay any
input that resulted in state updates at ¢ that were lost on failure,
either because g could not finish computing the state update, or
because the state update was lost before it could be persisted;

e an operator p must ensure it can replay any output to downstream
operators that may have been lost on failure; to do so, p can rely
on the first property, i.e. it can rely on its upstream operator to
transitively provide lost information.

This properies must apply to all operators in the computation but in-
puts and outputs need special handling as they interact with components
outside the system. As stated in our assumptions, inputs must be able
to replay any subset of the input records requested by their immediately
downstream operators. Consumers of the outputs are also able to re-
quest for output records to be replayed in case a failure at the consumer
caused data loss; as we will see consumers are required to ackwnoledge
timestamps for records that won’t need to be replayed to allow garbage
collection on state logs by CL.

7.7.2 Trivial fault-tolerance

Given the assumptions and properties discussed so far a trivial fault-
tolerance mechanism can simply rely on the ability of the computation
inputs to replay all input records from the start and achieve the consis-
tency goal. While this approach would produce correct results, it would
also cause all data processed before the failure to be performed again and
can be prohibitively expensive and result in prolonged unavailability as
the lost state is reconstructed from scratch.
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channels

---------------- recovery

signal

Figure 7.3: A fragment of a dataflow graph with recovery signals for CL.

7.7.3 Recording state updates

With the programming interface described in section 7.6 the system is
able to asynchronously track and persist incremental state updates for
each timestamp that is retired at an operator. When recovering from
a failure, all operators can independently have access to a prefix of the
state updates they recorded before the failure: some suffix of the state
updates may have been lost because they are persisted asynchronously.

Each operator can determine which is the first timestamp ¢ for which
it has recovered incomplete state updates and it can request all upstream
operators to replay their outputs (its inputs) starting from ¢. In CL this
recovery signal flows on control edges as depicted in Figure 7.3: for each
regular dataflow channel there is a recovery signal edge in the opposite
direction.

This is an important improvement over the trivial fault-tolerance mech-
anism that replays the entire computation: except for the state updates
that were generated in the moments before failure and were lost, most of
the work performed before failure can be recovered without the need to
re-process the entire inputs. Intuitively the recorded state updates act as
a summary of the records that have been processed to produce them.

Because only a suffix of the state updates at each operator needs to
be recomputed, it is possible for the computation to recover with little
overhead and in a short amount of time (which depends on the amount
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of work that was lost). The obvious downside of this approach is that CL
would have to record the entire history of the state updates produced by
each operator instance in the system: in a long-running dataflow compu-
tation over a large dataset this is likely a prohibitively large amount of
data to maintain.

7.7.4 Reclaiming state updates

CL can successfully recover after a failure if all operators can replay all
records that its immediate downstream operators require to maintain the
properties described in subsection 7.7.1. Downstream operators can signal
upstream a “recovery frontier”: the earliest timestamp for which they still
require upstream operators to be able to replay records in case of a failure.
This frontier corresponds to the earliest timestamp associated with a state
update that has not been acknowledged as successfully persisted by the
state store (remember that the durable store performs state put requrests
asynchronously).

In CL, this frontier information is communicated on the recovery sig-
nal channels of Figure 7.3. An operator can determine that it will not
need detailed state update information for timestamps up to the lower
bound of the recovery frontiers communicated by operators connected to
its outputs. This recovery frontier lower bound advances as the compu-
tation progresses and downstream operators compute and persist more
state updates.

State update history below the recovery frontier lower bound can be
successfully compacted to reclaim memory and storage space. The com-
paction mechanism for traces described in Chapter 6 can be similarly
applied here. If the state store persists new state updates soon after they
are produced by their respective operators, the recovery frontier lower
bound at every operator advances as the computation progresses; only
detailed state update history for the most recent timestamps must be
maintained, and all old state updates can be compacted and the cor-
responding data garbage collected. This ensures that the memory and
state storage space used is proportional to the “working set size” of the
operators and does not grow without bound.

126



7.8 Implementation

7.7.5 CL

In CL, both recovery frontier updates and the recovery signal flow on
the control edges introduced in Figure 7.3, operators compute and per-
sist state updates, inform upstream operators of changes in the recovery
frontier as they receive ackwonledgement from the state store, and com-
pact and garbage collect their state updates based on the recovery frontier
information they receive from downstream operators. Each operator in-
stance can perform each of these tasks independently and concurrently
with all other operator instances.

7.8 Implementation

We built CL as a library on top of the timely dataflow[MT] stream pro-
cessing system using timestamp tokens to encode the recovery signals.
Our library provides an interface to implement operators that comply
with the operator model of Figure 7.2: the programmer provides the im-
plementation of the state update (s) and output generation (o) functions.

A separate “persistence” thread for each timely dataflow worker re-
ceives state update put operations from local operator instances and
asynchronously persists the state to the chosen state storage; operator
instances perform state compaction based on the recovery frontier, as
described in subsection 7.7.4, put compacted summaries of old state up-
dates and inform the persistence thread of which state update history can
be deleted.

7.9 Preliminary evaluation

As a preliminary evaluation of CL’s performance impact on a realistic,
albeit simple, data processing use case, we adapted the timely dataflow
implementation of NEXMark query 5, that we open sourced as part
of a related project [Hof+20]. A similar implementation (but not the
same query) was used for the evaluation of timestamp tokens in subsec-
tion 4.5.4.

Our comparison baseline is an unmodified computation for NEXMark
query 5 on timely dataflow, without any fault-tolerance features. This
baseline is unable to recover after a failure without reprocessing the entire
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input as no durability mechanism is present in timely dataflow. We imple-
mented equivalent operator logic using the CL’s operator programming
interface (described in section 7.8).

For this experiment we simulated an input source able to replay inputs
by restarting the NEXMark synthetic input generator from the timestamp
corresponding to the recovery frontier of the first operator in the dataflow
(the immediate downstream of the input). The output of the computa-
tion immediately acknowledges timestamps as they are completed: in a
deployed system these acknowledgements may be delayed until the con-
sumer of the outputs has been able to persist or otherwise process the
output records. We ran preliminary experiment on an Intel Xeon E5-4650
v2 @2.40 GHz machine with 512 GiB of RAM.

Figure 7.1 shows p75 and maximum latency over time at a fixed 5000
records/sec offered load. Note that new records arrive continually at
the inputs, even during the time CL is recovering a failure. There is no
failure for the baseline, as timely dataflow does not have a fault-tolerance
mechanism. For CL, we simulate worker failures at 200 and 400 seconds
by terminating the processes. We then restart the computation and allow
CL to recover and resume execution. The latency spikes at 200 and 400
seconds are CL performing recovery and catching up on new input that
continued to arrive.

CL by design trades off some throughput (compared to the baseline)
to maintain consistent steady state latency and to handle failures. To
determine the throughput impact of CL we run a steady state experiment
for NEXMark Q5 for both the baseline and CL implementation: we do
not simulate any failure. We vary the offered load, and measure latency.
Figure 7.4 shows p75, p99, and maximum latency for the baseline and CL
over the entire duration of the experiments. In this experiment CL can
sustain about half of the throughput of the baseline while maintaining
interactive latencies (a latency over a few hunderd milliseconds indicates
that the system is overloaded).

Preliminary strong scaling experiments display currently unexplained
unexpected phoenomena possibly due to a communication bottleneck in
the current implementation. More investigation is required to determine
the throughput and latency trade-offs of CL in different configurations
and for different data processing tasks.
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Figure 7.4: NexMark Q5 comparing latency of a non-fault-tolerant base-
line with CL when the offered load varies in a configuration
with three timely dataflow workers.
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7.10 Re-scaling with CL

In Megaphone [Hof+18|*, our mechanism for live state-migration for dis-
tributed dataflow systems, we discuss how previous approaches to state
migration based on state snapshots suffer from unavailability (or a latency
spike) while the state snapshot is captured and redistributed across the
workers in the systems.

This shortcoming of leveraging a fault tolerance mechanism for re-
scaling and re-partitioning is alleviated by CL, which captures state con-
tinually as the computation progresses, leaving a small amount of state
that needs to be captured synchronously when the re-scaling decision is
made.

To enable re-scaling and re-partitioning we extended CL to capture
the state for each operator instance in a number of separate bins, which
act as state shards that can be moved across workers. When re-scaling
without explicit re-partitioning (e.g. to handle a hot key), well-known
consistent hasing-like strategies to assign bins to workers can be employed
to minimize the number of bins that need to be moved between workers.

7.10.1 Coordinating compaction for rescaling

When CL is set up for rescaling, there is an additional constraint on how
compaction is performed in addition to the considerations described in
subsection 7.7.4. Across a re-partitioning operation, workers will become
responsible for new state shards that were reassigned from other workers,
which may have been performing compaction based on their local com-
paction frontier (based on the recovery frontier signals they received).
On the other hand, a worker needs to be able to recover all shards at
a unique frontier that it can communicate to its upstream operators to
request replay of the inputs it lost.

In the absence of additional coordination no recovery frontier may be
compatible with the state compaction that has been performed on lo-
cal shards and shards re-assigned from other workers. This is because
each worker processes the recovery signals independently, and will pro-
ceed independently with compaction. To ensure that any subset of state

1Megaphone is briefly discussed in section 5.3.
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operator instances

loopback
recovery
signal

Figure 7.5: A dataflow operator with the additionoal recovery signal for
rescaling with CL.

shards across the system can recover from a common recovery frontier,
CL introduces an additional coordination signal to support rescaling.

Figure 7.5 depicts the additional coordination recovery signal for each
operator; the figure shows two of possibly many instances of a single
operator, the construction is repeated for each operator in the detaflow.
The recovery signal from each logical operator is looped back to itself,
ensuring that all operator instances can determine the lowest recovery
signal across all other instances. This global recovery frontier is used
to constrain the compaction of the update histories for the state shards,
ensuring that they all can be subset to a common frontier when they are
re-partitioned.

7.10.2 Rescaling while recovering

In certain deployment scenarios, it may make sense to recover in a dif-
ferent configuration than before the failure occurred. For example, if a
node was permanently lost, it may be faster to resume execution using
just the surviving nodes, potentially with degraded performance but with
only a short downtime; likely shorter than waiting for a new node to be
provisioned for the computation. To this end, CL supports redistributing
state shards on recovery; the only requirement is that nodes have access
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to storage for the state shards they inherited.

This allows advanced fault-tolerance configurations where the state
backend for durability places one or more copies of the durable history on
or near other nodes that participate in the computation, ensuring that n
workers have quick access to the state history for the state shards of each
other worker. This way recovering from n failures does not require any
state transfer, as each worker in the new configuration can immediately
inherit state shards for which it has local history copies.

7.11 Conclusions

This chapter presented a design for a fault-tolerance and dynamic re-
scaling mechanism for distributed dataflow systems aimed at minimizing
critical path synchronization. Timestamp tokens enabled the construc-
tion of the mechanism as a library on top of the timely dataflow|[MT]
stream processor, without changes to the underlying system.

By leveraging the data dependency information encoded in the per-
tuple timestamps of time-aware systems, the durability process can be
fully asynchronous, with each operator instance recording state updates
independently. This results in a mechanism that does not require pausing
the computation to collect consistent snapshots, thus avoiding latency
spikes in steady state, as shown in section 7.9.

The mechanism also enables re-scaling, both as a planned operation or
in response to a failure, where both are handled by the same durability
and recovery protocol.
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This chapter is based on “Verified Progress Tracking for Timely Dataflow” [Bru+21]
and references work done by Sara Decova in the context of her Master Thesis
“Modelling and Verification of the Timely Dataflow Progress Tracking Proto-
col”.

Formally specified and verified foundational software, such as operat-
ing systems and distributed runtimes, provide a solid a safe interface
for building applications. The application developer can trust the pro-
gramming interface and rely on it to build correct software, either just
by having access to accurate and complete formal documentation or by
building on the formal spec to verify the higher level software.

Streaming dataflow systems act as foundational components for many
applications from data science to datacenter monitoring and manage-
ment. Operators often rely on the low latency results to automate tasks:
incorrect results can rapidly trigger incoherent automation that can cause
outages, data loss, or worse.

In this chapter we present the formal specification and verification
of the core coordination component of timely dataflow [MT], an high-
throughput, low-latency, data-parallel time-aware dataflow system. As
we have seen in Chapter 3, the coordination component ensures data is
processed at the right time so that the outputs are correct. To achieve
high expressiveness and performance, timely dataflow uses an intricate
distributed protocol for tracking the computation’s progress. We mod-
eled this progress tracking protocol as a combination of two independent
transition systems in the Isabelle/HOL proof assistant. We specified and
verified the safety of the two components and of the combined protocol.
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To this end, we identified abstract assumptions on dataflow programs
that are sufficient for safety and were not previously formalized.
Timestamp tokens, described in Chapter 4, express a clean interface
between operators and the system. This effort to formalize and verify the
safety of the progress tracking protocol uses timestamp tokens as a basis
for the formalization: using timestamp tokens we can precisely model
what actions each instance of an operator can perform, in contrast with
previous formalisation work [Aba-+13] that pre-dates timestamp tokens.

8.1 Introduction

A progress tracking mechanism is a core component of the dataflow sys-
tem. It receives information on outstanding timestamps from operator
instances, exchanges this information with other system workers (cores,
nodes) and disseminates up-to-date approximations of the frontiers to all
operator instances.

The progress tracking mechanism must be correct. Incorrect approx-
imations of the frontiers can result in subtle concurrency errors, which
may only appear under certain load and deployment circumstances. In
this work, we formally model in Isabelle/HOL and prove the safety of
the progress tracking protocol of Timely Dataflow [Mur+13; Mur+ 16;
MT], a time-aware dataflow programming model and a state-of-the-art
streaming, data-parallel, distributed data processor.

In Timely Dataflow’s progress tracking, worker-local and distributed
coordination are intertwined, and the formal model must account for this
asymmetry. Individual agents (operator instances) on a worker generate
coordination updates that have to be asynchronously exchanged with all
other workers, and then propagated locally on the dataflow structure to
provide local coordination information to all other operator instances.

This is an additional (worker-local) dimension in the specification when
compared to well-known distributed coordination protocols, such as Paxos
[Lam02] and Raft [O014], which focus on the interaction between sym-
metric communicating parties on different nodes. In contrast our envi-
ronment model can be simpler, as progress tracking is designed to handle
but not recover from fail-stop failures or unbounded pauses: upon crashes,
unbounded stalls, or reset of a channel, the system stops without violating
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safety. !

Abadi et al. [Aba-+13] formalize and prove safety of the distributed
exchange component of progress tracking in the TLAT Proof System.
We present their clocks protocol through the lens of our Isabelle re-
formalization (Section 8.5) and show that it subtly fails to capture be-
haviors supported by Timely Dataflow [Mur+13; Mur-+16]. We then sig-
nificantly extend the formalized protocol (Section 8.6) to faithfully model
Timely Dataflow’s modern reference implementation [MT].

The above distributed protocol does not model the dataflow graph,
operators, and timestamps within a worker. Thus, on its own it is in-
sufficient to ensure that up-to-date frontiers are delivered to all operator
instances. To this end, we formalize and prove the safety of the local
propagation component (Section 8.7) of progress tracking, which com-
putes and updates frontiers for all operator instances. Local propagation
happens on a single worker, but operator instances act as independent
asynchronous actors. For this reason, we also employ a state machine
model for this component. Along the way, we identify sufficient criteria
on dataflow graphs, that were previously not explicitly (or only partially)
formulated for Timely Dataflow.

Finally, we combine the distributed component with local propagation
(Section 8.8) and formalize the global safety property that connects initial
timestamps to their effect on the operator frontier. Specifically, we prove
that our combined protocol ensures that frontiers always constitute safe
lower bounds on what timestamps may still appear on the operator inputs.

8.2 Related Work

Data management systems verification Timely Dataflow is a sys-
tem that supports low-latency, high-throughput data-processing applica-
tions. Higher level libraries (such as [McS-+13] and the one described in
Chapter 6) and SQL abstractions [Mat] built on Timely Dataflow support
high performance incremental view maintenance for complex queries over
large datasets. Verification and formal methods efforts in the data man-
agement and processing space have focused on SQL and query-language

ISystems based on Timely Dataflow and progress tracking can recover by re-starting
the protocol.
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semantics [BC19; DOT20; Chu+17] and on query runtimes in database
management systems [Mal+10; Ben+18].

Distributed systems verification Timely Dataflow is a distributed,
concurrent system: our modeling and proof techniques are based on the
widely accepted state machine model and refinement approach as used,
e.g., in the TLA ™ Proof System [Cha+10] and Tronfleet [Haw 15]. Re-
cent work focuses on proving consistency and safety properties of dis-
tributed storage systems [LBC16; Gom+17; Han+20] and providing tools
for the implementation and verification of general distributed protocols
[Jun+18; Spr+20] leveraging domain-specific languages [Wil+15; SWT18]
and advanced type systems [HBK20].

Model of Timely Dataflow Abadi and Isard [AT15a] define abstractly
the semantics of a Timely Dataflow programming model [Mur+13]. Our
work is complementary; we concretely compute their could-result-in rela-
tion (Section 8.8) and formally model the implementation’s core compo-
nent.

8.3 Timely Dataflow and Progress Tracking

Our formal model follows the progress tracking protocol of the modern
Rust implementation of Timely Dataflow [MT] using timestamp tokens,
as described in Chapter 4. The protocol has evolved from the one reported
as part of the classic implementation Naiad [Mur+13|. Here, we provide
an informal overview of the basic notions, for the purpose of supporting
the presentation of our formal model and proofs.

Dataflow graph Timely Dataflow is a time-aware dataflow system,
as described in Chapter 3. In Timely Dataflow each worker in the system
runs an instance of the entire dataflow graph, so all operators have the
same number of instances. Workers run independently and only commu-
nicate through reliable message queues—they act as communicating se-
quential processes [Hoa78]. Each worker alternately executes the progress
tracking protocol and the operator’s processing logic. Figure 8.1 shows
a Timely Dataflow operator and the related concepts described in this
section.
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Figure 8.1: A Timely Dataflow operator.

Pointstamps A pointstamp represents a datum at rest at an oper-
ator, or in motion on one of the channels. A pointstamp (I, ) refers to a
location [ in the dataflow and a timestamp ¢. As we have seen in Chap-
ter 2 and Chapter 3, timestamps encode a semantic (causal) grouping of
the data. Timestamps are usually tuples of positive integers, but can be
of any type for which a partial order < is defined.

Locations and summaries FEach operator has an arbitrary num-
ber of input and output ports, which are locations. An operator instance
receives new data through its input ports, or target locations, performs
processing, and produces data through its output ports, or source loca-
tions. A dataflow channel is an edge from a source to a target. Internal
operator connections are edges from a target to a source, which are addi-
tionally described by one or more summaries: the minimal increment to
timestamps applied to data processed by the operator.?

Frontiers Frontiers are a lower bound on the timestamps that may
appear at the operator instance inputs, as we have seen in subsection 3.1.6.
The progress tracking protocol tracks the system’s pointstamps and sum-
marizes them to one frontier per operator port. In Timely Dataflow a
frontier is represented by an antichain F' indicating that the operator
may still receive any timestamp ¢ for which 3t € F. ¢/ < t.

Progress tracking Progress tracking computes frontiers in two steps.
A distributed component exchanges pointstamp changes (Sections 8.5
and 8.6) to construct an approximate, conservative view of all the pointstamps
present in the system. Workers use this global view to locally propagate

?Internal summaries are the internal dependencies of the time-aware dataflow model
described in subsection 3.1.5.
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Figure 8.2: A timely dataflow that computes weakly connected compo-
nents.

changes on the dataflow graph (Section 8.7) and update the frontiers
at the operator input ports. The combined protocol (Section 8.8) asyn-
chronously executes these two components.

8.4 Running Example: Weakly Connected
Components by Propagating Labels

Figure 8.2 shows a dataflow that computes weakly connected components
(WCC) by assigning integer labels to vertices in a graph, and propagating
the lowest label seen so far by each vertex to all its neighbors. The input
graph is initially sent by operator a as a stream of edges (s,d) with
timestamp (0, 0). Each input port has an associated sharding function
to determine which data should be sent to which operator instance: port
b.2 shards the incoming edges (s, d) by s.

The input operator a will continue sending additional edges in the
graph as they appear, using increasing timestamps by incrementing one
coordinate: (1,0), (2,0), etc. The computation is tasked with reacting
to these changes and performing incremental re-computation to produce
correct output for each of these input graph versions. The first timestamp
coordinate represents logical consistency boundaries for the input and
output of the program. We will use the second timestamp coordinate to
track the progress of the unbounded iterative algorithm.

The operator a starts with a pointstamp (a.1, (0,0)) on port a.I,
representing its intent to send data with that timestamp through the
connected channel. When it sends messages on channel A, these are rep-
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resented by pointstamps on the port b.2; e.g., (b.2, (0, 0)) for the initial
timestamp (0, 0). When it ceases sending data for a certain timestamp,
e.g., (0,0), operator a drops the corresponding pointstamp on port a.1.
The frontier at b.2 reflects whether pointstamps with a certain timestamp
are present at either a.1 or 5.2: when they both become absent (when
all messages are delivered) each instance of b notices that its frontier has
advanced and determines it has received its entire share of the input (the
graph) for a timestamp.

Each instance of b starts with a pointstamp on 5.3 at timestamp
(0, 0); when it has received its entire share of the input, for each vertex
with label x and each of its neighbors n, it sends (n, x) at timestamp
(0, 0). This stream then traverses operator c, that increases the times-
tamp associated to each message by (0, 1), and reaches port b.1, which
shards the incoming tuples (n, x) by n. Operator b inspects the frontier
on b.1 to determine when it has received all messages with timestamp
(0,1). These messages left 0.8 with timestamp (0, 0). The progress
tracking mechanism will correctly report the frontier at b.1 by taking into
consideration the summary between c.1 and c.2.

Operator b collects all label updates from b.1 and, for those vertices
that received a value that is smaller than the current label, it updates
internal state and sends a new update via 5.3 with timestamp (0, 1).
This process then repeats with increasing timestamps, (0,2), (0, 3),
etc., for each trip around the loop, until ultimately no new update message
is generated on port 0.8 by any of the operator instances, for a certain
family of timestamps (¢1,t2) with a fixed ¢; corresponding to the input
version being considered. Operator b determines it has correctly labeled
all connected components for a given t; when the frontier at 5.1 does
not contain a (t1,t2) such that to < the graph’s diameter. In practice,
once operator b determines it has computed the output for a given t;, the
operator would also send the output on an additional outgoing channel
to deliver it to the user. Later, operator b continues processing for fur-
ther input versions, indicated by increasing t1, with timestamps (¢1,0),
(t1,1), ete.

139



Chapter 8 - Verified progress tracking

8.5 The Clocks Protocol

In this section, we present Abadi et al.’s approach to modeling the dis-
tributed component of progress tracking [Aba-+13], termed the clocks
protocol. Instead of showing their TLA" Proof System formalization,
we present our re-formalization of the protocol in Isabelle. Thereby, this
section serves as an introduction to both the protocol and the relevant
Isabelle constructs.

The clocks protocol is a distributed algorithm to track existing pointstamps
in a dataflow. It models a finite set of workers. Each worker stores a (fi-
nite) multiset of pointstamps as seen from its perspective and shares up-
dates to this information with all other workers. The protocol considers
workers as black boxes, i.e., it does not model their dataflow graph, loca-
tions, and timestamps. We extend the protocol to take these components
into account in Section 8.7.

In Isabelle, we use the type variable 'w :: finite to represent workers.
We assume that ‘w belongs to the finite type class, which assures that
'"w’s universe is finite. Similarly, we model pointstamps abstractly by
'p :: order. The order type class assumes the existence of a partial order
< 'p = 'p = bool (and the corresponding strict order <).

We model the protocol as a transition system that acts on configura-
tions given as follows:

record ('w :: finite, 'p :: order) conf =
rec :: 'p zmset
msg :: 'w = 'w = 'p zmset list
temp :: 'w = 'p zmset
glob :: 'w = 'p zmset

Here, rec ¢ denotes the global multiset of pointstamps (or records) that
are present in a system’s configuration c¢. We use the type 'p zmset of
signed multisets [BET17]. An element M :: 'p zmset can be thought of
as a function of type 'p = int, which is non-zero only for finitely many
values. (In contrast, an unsigned multiset M :: 'p mset corresponds to a
function of type 'p = nat.) Signed multisets enjoy nice algebraic prop-
erties; in particular, they form a group. This significantly simplifies the
reasoning about subtraction. However, rec ¢ will always store only non-
negative pointstamp counts. The other components of a configuration ¢
are
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e the progress message queues msg ¢ w w', which denote the progress
update messages sent from worker w to worker w’ (not to be con-
fused with data messages, which are accounted for in rec ¢ but do
not participate in the protocol otherwise);

e the temporary changes temp ¢ w in which worker w stores changes
to pointstamps that it might need to communicate to other workers;
and

e the local approximation glob ¢ w of rec ¢ from the perspective of
worker w (we use Abadi et al. [Aba+13]’s slightly misleading term
glob for the worker’s local view on the global state).

In contrast to rec, these components may contain a negative count —i for a
pointstamp p, which denotes that ¢ occurrences of p have been discarded.

The following predicate characterizes the protocol’s initial configura-
tions. We write {#}. for the empty signed multiset and M #, p for the
count of pointstamp p in a signed multiset M.

definition Init :: ('w, 'p) conf = bool where
Initc= (Vp.recc#.p=0) A (Vww'. msgcww =[]) A
(Vw. temp c w = {#}.) A (Yw. glob ¢ w = rec ¢)

In words: all global pointstamp counts in rec must be non-negative and
equal to each worker’s local view glob; all message queues and temporary
changes must be empty.

Referencing our WCC example described in section 8.4, the clocks pro-
tocol is the component in charge of distributing pointstamp changes to
other workers. When one instance of the input operator a ceases sending
data for a certain family of timestamps (¢1, 0) it drops the corresponding
pointstamp: the clocks protocol is in charge of exchanging this informa-
tion with other workers, so that they can determine when all instances
of a have ceased producing messages for a certain timestamp. This hap-
pens for all pointstamp changes in the system, including pointstamps that
represent messages in-flight on channels.

The configurations evolve via one of three actions:

perf _op: A worker may perform an operation that causes a change in
pointstamps. Changes may remove certain pointstamps and add
others. They are recorded in rec and temp.
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send upd: A worker may broadcast some of its changes stored in temp
to all other workers.

recv__upd: A worker may receive an earlier broadcast and update its local
view glob.

Overall, the clocks protocol aims to establish that glob is a safe approx-
imation for rec. Safe means here that no pointstamp in rec is less than
any of glob’s minimal pointstamps. To achieve this property, the proto-
col imposes a restriction on which new pointstamps may be introduced in
rec and which progress updates may be broadcast. This restriction is the
uprightness property that ensures that a pointstamp can only be intro-
duced if simultaneously a smaller (supporting) pointstamp is removed.
Formally, a signed multiset of pointstamps is upright if every positive
entry is accompanied by a smaller negative entry:

definition supp :: p zmset = 'p = bool where supp M p = (I’ <
p- M #.p' <0)

definition upright :: 'p zmset = bool where upright M = (Vp. M #,
p >0 —> supp M p)

Abadi et al. [Aba+13] additionally require that the pointstamp p’ in
supp’s definition satisfies Vp” < p’. M #, p” < 0. The two variants of
upright are equivalent in our formalization because signed multisets are
finite and thus minimal elements exist even without < being well-founded.
The extra assumption on p’ is occasionally useful in proofs.

In practice, uprightness means that operators are only allowed to transi-
tion to pointstamps forward in time, and cannot re-introduce pointstamps
that they relinquished. This is necessary to ensure that the frontiers al-
ways move to later timestamps and remain a conservative approximation
of the pointstamps still present in the system. An advancing frontier
triggers computation in some of the dataflow operators, for example to
output the result of a time-based aggregation: this should only happen
once all the relevant incoming data has been processed. This is the intu-
ition behind the safety property of the protocol, Safe, discussed later in
this section.

Figure 8.3 defines the three protocol actions formally as transition rela-
tions between an old configuration ¢ and a new configuration ¢’ along with
the definition of the overall transition relation Next, which in addition to
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definition perf op::'w = 'p mset = 'p mset = ('w, 'p) conf =
("w, 'p) conf = bool where
Perf,OP w Aneg Apos cd = let A = Apos - Aneg in (VP Aneg #p<
rec ¢ #. p) A upright A A
¢ = crec = rec c + A, temp = (temp ¢)(w := temp c w + A))
definition send upd :: 'w = 'p set = ('w, 'p) conf = ('w, 'p) conf =
bool where
send updw Pcc =lety = {#p€e#,tempcw.p€e P#}in
v # {#}. A upright (temp cw — ) A
¢ = c(msg = (msg ¢)(w := Aw'. msg cw w' - [7]), temp =
(temp ¢)(w := temp c w — 7))
definition recv_upd :: 'w = 'w = ('w, 'p) conf = ('w, 'p) conf =
bool where
recv._updww' cd =msgcww #[] A
d = c(msg = (msg ¢)(w := (msg c w)(w’ :=tl (msg c w w'))),
glob = (glob ¢)(w' := glob ¢ w’ + hd (msg c w w’)))
definition Next :: ("w, p) conf = ('w, 'p) conf = bool where
Next c ¢’ = (c=1¢") v (Gw Apeg Dpos. perf_op w Ayeg Apps ') v
(Jw P.send _upd w P cc') v (Fw w'. recv_upd w w' ¢ )

Figure 8.3: Transition relation of Abadi et al.’s clocks protocol

performing one of the actions may stutter, i.e., leave ¢’ = ¢ unchanged.
The three actions take further parameters as arguments, which we explain
next.

The action perf op is parameterized by a worker w and two (un-
signed) multisets A, and Ay, corresponding to negative and positive
pointstamp changes. The action’s overall effect on the pointstamps is
thus A = Apps — Ay Here and elsewhere, subtraction expects signed
multisets as arguments and we omit the type conversions from unsigned to
signed multisets (which are included in our Isabelle formalization). The
action is only enabled if its parameters satisfy two requirements. First,
only pointstamps present in rec may be dropped, and thus the counts
from A, must be bounded by the ones from rec. (Arguably, accessing
rec is problematic for distributed workers. We rectify this modeling de-
ficiency in Section 8.6.) Second, A must be upright, which ensures that
we will never introduce a pointstamp that is lower than any pointstamp
in rec. If these requirements are met, the action can be performed and
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will update both rec and temp with A (expressed using Isabelle’s record
and function update syntax).

The action send upd is parameterized by a worker (sender w) and a
set of pointstamps P, the outstanding changes to which, called ~, we
want to broadcast. The key requirement is that the still unsent changes
remain upright. Note that it is always possible to send all changes or all
positive changes in temp, because any multiset without a positive change
is upright. The operation enqueues « in all message queues that have w
as the sender. We model first-in-first-out queues as lists, where enqueuing
means appending at the end (_ -[_]).

Finally, the action recv_upd is parameterized by two workers (sender
w and receiver w’). Given a non-empty queue msg ¢ w w’, the action
dequeues the first message (head hd gives the message, tail tl the queue’s
remainder) and adds it to the receiver’s glob.

An execution of the clocks protocol is an infinite sequence of configura-
tions. Infinite sequences of elements of type 'a are expressed in Isabelle
using the coinductive datatype (short codatatype) of streams defined as
codatatype 'a stream = Stream 'a ('a stream). We can inspect a
stream’s head and tail using the functions shd :: 'a stream = 'a and
stl :: 'a stream = 'a stream. Valid protocol executions satisfy the pred-
icate Spec, i.e., they start in an initial configuration and all neighboring
configurations are related by Next:

definition Spec :: ('w, 'p) conf stream = bool where
Spec s = now Init s A alw (relates Next) s

The operators now and relates lift unary and binary predicates over con-
figurations to executions by evaluating them on the first one or two
configurations respectively: now P s = P (shd s) and relates R s =
R (shd s) (shd (stl s)). The coinductive operator alw resembles a tempo-
ral logic operator: alw P s holds if P holds for all suffixes of s.

coinductive alw :: ('a stream = bool) = 'a stream = bool where
Ps—alw P (stls) — alw P s

We use the operators now, relates, and alw not only to specify valid
execution, but also to state the main safety property. Moreover, we
use the predicate vacant to express that a pointstamp (and all smaller
pointstamps) are not present in a signed multiset:
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definition vacant :: 'p zmset = 'p = bool where vacant M p =

(Vp' <p. M #.p' =0)

Safety states that if any worker’s glob becomes vacant up to some
pointstamp, then that pointstamp and any lesser ones do not exist in
the system, i.e., are not present in rec (and will remain so). Thus,
safety allows workers to learn locally, via glob, something about the
system’s global state rec, namely that they will never encounter certain
pointstamps again. Formally:

definition Safe :: ('w, 'p) conf stream = bool where
Safe s = (Vw p. now (Ac. vacant (glob c w) p) s —
alw (now (Ac. vacant (rec ¢) p) s))

lemma safe: Spec s —> alw Safe s

Proof 3 (Proof Sketch) We prove safety following Abadi et al. [Aba+13].
First, we establish three invariants by showing that Next preserves them:

1. rec only contains positive entries

2. rec is the sum of any worker w’s glob and its incoming information
infocw =3, (temp ¢ W’ + Xy rccer (msg ¢ w w) M), that is the sum
of all workers’ temp and all msg directed towards w

3. any worker w’s incoming information is upright

We then show that whenever rec becomes vacant up to some pointstamp
p, then it forever stays vacant up to p. Thus, we can eliminate the “in-
ner” occurrence of alw from the definition of Safe. The remaining prop-
erty follows by contradiction, i.e., by assuming a non-zero count for some
pointstamp p in rec, up to which some worker w’s glob is vacant. Invari-
ants 1 and 2 imply that w’s incoming information has a positive count
for p. Because it is upright by invariant 3, w’s incoming information
must also contain a smaller pointstamp q < p with a negative count. But
w’s glob count for ¢ must be zero (recall that w’s glob is vacant up to p),
which together with invariant 2 implies that rec has a negative count at
q. This contradicts invariant 1.

Having established safety, we also prove a second important property
of glob formalized by Abadi et al.: monotonicity. This property states
that once glob becomes vacant upto some pointstamp p, it will forever
stay so:
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definition Mono :: ('w, 'p) conf = ('w, 'p) conf = bool where
Mono ¢ ¢’ = (Yw p. vacant (glob ¢ w) p — vacant (glob ¢’ w) p)

lemma mono: Spec s — alw (relates Mono) s

Establishing glob’s monotonicity is significantly more difficult than
proving the same property for rec, which we have used in the proof of
safety. New positive entries in rec can only be introduced in the perf op
transition, where they are guarded by smaller negative changes due to
the uprightness requirement. In contrast, glob is altered in the recv_upd
transition, where it is far less clear a priori why this step cannot intro-
duce pointstamps up to which glob is vacant. The key idea, again due to
Abadi et al., to establish glob’s monotonicity is to generalize the notion
of uprightness and show that all individual messages from msg satisfy the
generalized notion. Abadi et al. call the generalized notion beta upright-
ness. It allows positive pointstamp entries from a message M :: 'p zmset
to be supported not only by smaller negative pointstamp entries in M
itself, but also by negative entries in another multiset N :: 'p zmset.

definition beta upright :: 'p zmset = 'p zmset = bool where
beta upright M N = (Vp. M #,p>0— (I’ <p. M #,p' <0 v
N #.p' <0))

We do not describe in detail how beta uprightness helps with monotonic-
ity, but the main step is to establish the invariant that all messages M
from msg are beta upright with respect to N being the sum of messages
following M in msg and the sender’s temp.

Overall, we have replicated the formalization of Abadi et al.’s clocks
protocol and proofs of its safety and the monotonicity of glob, each
worker’s approximated view of the system’s pointstamps. Their protocol
accurately models the implementation of the progress tracking protocol’s
distributed component in Timely Dataflow’s original implementation Na-
iad with one subtle exception. The Naiad API (OnNotify, SendBy)
allows an operator to repeatedly send data messages through its out-
put port, which generates pointstamps at the receiver, without requiring
that a pointstamp on the output port is decremented. This can result
in a perf op transition that is not upright.®> Additionally, the modern
reference implementation of Timely Dataflow in Rust is more expressive

3We refer here to locations as presented in Section 8.3. The model in Naiad is slightly
different: there is no notion of ports, and pointstamp locations are either operators
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than Naiad, and permits multiple operations that result in non-upright
changes. We address and correct this limitation of the clocks protocol in
Section 8.6.

One example of an operator that expresses behavior that results in
non-upright changes is the input operator a in the WCC example. This
operator may be reading data from an external source, and as soon as
it receives new edges, it can forward them with the current pointstamp
(a.1, (t1,0)). This operator may be invoked multiple times, and per-
form this action repeatedly, until it determines from the external source
that it should mark a certain timestamp as complete by dropping the
pointstamp. All of these intermediate actions that send data at (¢1, 0)
are not upright, as sending messages creates new pointstamps on the mes-
sage targets, without dropping a smaller pointstamp that can support the
postive change.

8.6 Exchanging Progress

As outlined in the previous section, the clocks protocol is not flexible
enough to capture executions with non-upright changes, which are de-
sired and supported by concrete implementations of Timely Dataflow.
At the same time, the protocol captures behaviors that are not reason-
able in practice. Specifically, the clocks protocol does not separate the
worker-local state from the system’s global state. The perf _op transition,
which is meant to be executed by a single worker, uses the global state to
check whether the transition is enabled and simultaneously updates the
global state rec as part of the transition. In particular, a single perf op
transition allows a worker to drop a pointstamp that in the real system
“belongs” to a different worker w and simultaneously consistently updates
w’s state. In concrete implementations of Timely Dataflow, workers exe-
cute perf _op’s asynchronously, and thus can only base the transition on
information that is locally available to them.

Our modified model of the protocol, called exchange, resolves both is-
sues. As the first step, we split the rec field into worker-local signed mul-
tisets caps of pointstamps, which we call capabilities as they indicate the

or edges. A straightforward translation of the Naiad model interprets pointstamps
on operators as pointstamps on their source port, and pointstamps on edges become
pointstamps on the associated target ports.
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possibility for the respective worker to emit these pointstamps. Workers
may transfer capabilities to other workers. To do so, they asynchronously
send capabilities as data messages to a central multiset data of pairs of
workers (receivers) and pointstamps. We arrive at the following updated
type of configurations:

record ('w :: finite, 'p :: order) conf =
caps:: 'w = 'p zmset
data :: ('w x 'p) mset
msg :: 'w = 'w = 'p zmset list
temp :: 'w = 'p zmset
glob :: 'w = 'p zmset

Including this fine-grained view on pointstamps will allow workers to
make transitions based on worker-local information. The entirety of the
system’s pointstamps, rec, which was previously part of the configuration
and which the protocol aims to track, can be computed as the sum of all
the workers’ capabilities and data’s in-flight pointstamps.

definition rec :: ('w, 'p) conf = 'p zmset where rec ¢ =
(Zw caps ¢ w) + snd ‘# data ¢

Here, the infix operator ‘# denotes the image of a function over a multiset
with resulting counts given'b.y.(f ‘HM)H#Ha = Zye{ye#le =z} M #.

The exchange protocol’s initial state allows workers to start with some
positive capabilities. Each worker’s glob must correctly reflect all initially
present capabilities.

definition Init :: ('w, 'p) conf = bool where
Init ¢ = (Vw p. caps cw #. p = 0) Adatac = {#} A
(Vw w'. msg cw w’ =[]) A (Vw. temp c w = {#}.) A
(Yw. glob ¢ w = rec ¢)

The transition relation of the exchange protocol, shown in Figure 8.4,
is similar to that of the clocks protocol. We focus on the differences
between the two protocols. First, the exchange protocol has an additional
transition recv__cap to receive a previously sent capability. The transition
removes a pointstamp from data and adds it to the receiving worker’s
capabilities.

The perf op transition resembles its homonymous counterpart from
the clocks protocol. Yet, the information flow is more fine grained. In
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definition recv_cap :: 'w = 'p = ('w, 'p) conf = ('w, 'p) conf =
bool where
recv._capw p c ¢ = (w,p) €# datac A
¢ = c(caps = (caps ¢)(w := caps c w + {#p#}.), data = data ¢ —
{#(w, p)#})
definition perf _op :: 'w = 'p mset = ('w x 'p) mset = 'p mset =
("w, 'p) conf = ('w, 'p) conf = bool where
perf_op w Aneg Adata Aself cd =
(Adata 7 {#} Vv Aself - Aneg 7 {#}z) A (Vp Aneg #p <
capscw #, p) A
(V(w', p) €# Agata- I’ < p.capscw #,p > 0) A
(Vpe# Agep. 3" < p.capscw #. p' > 0) A
¢ = c(caps = (caps ¢)(w := caps ¢ w + Ageyp — Ayeq), data =
data ¢ + Agata,
temp = (temp ¢)(w :=temp c w + (snd ‘# Agata + ADsetf — Aneg)))
definition send upd :: 'w = 'p set = ('w, 'p) conf = ('w, 'p) conf =
bool where
send updw Pcc =lety = {#pe#,tempcw.pe P#}in
v # {#}. A justified (caps c w) (temp cw — ) A
¢ = c(msg = (msg ¢)(w := M. msg cw w' - [7]), temp =
(temp ¢)(w :=temp c w — 7))
definition recv_upd :: 'w = 'w = ('w, 'p) conf = ('w, 'p) conf =
bool where
recv._updww' ccd =msgcww #[] A
¢ = c(msg = (msg ¢)(w := (msg c w)(w' :=tl (msg c w w'))),
glob = (glob ¢)(w’ := glob ¢ w’ + hd (msg c w w')))
definition Next :: ('w, 'p) conf = ('w, 'p) conf = bool where
Nextccd =(c=c)v (Fwp.recv_capwped) v
(H’LU Aneg Adata Aself~ perf _op w Aneg Adata Aself c CI) Vv
(Jw P.send _updw P cc') v (Fw w'. recv_upd w w' ¢ )

Figure 8.4: Transition relation of the exchange protocol
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particular, the transition is parameterized by a worker w and three mul-
tisets of pointstamps. As in the clocks protocol, the multiset A, rep-
resents negative changes to pointstamps. Only pointstamps for which w
owns a capability in caps may be dropped in this way. The other two
multisets A gqtq and Ageyr represent positive changes. The multiset A gqt0
represents positive changes to other workers’ capabilities—the receiving
worker is stored in Agq,. These changes are not immediately applied
to the other worker’s caps, but are sent via the data field. The multiset
Ageyr represents positive changes to w’s capabilities, which are applied
immediately applied to w’s caps. The separation between A j.:, and
Ageyp is motivated by different requirements on these positive changes to
pointstamps that we prove to be sufficient for safety. To send a positive
capability to another worker, w is required to hold a positive capability
for a strictly smaller pointstamp. In contrast, w can create a new ca-
pability for itself, if it is already holding a capability for the very same
(or a smaller) pointstamp. In other words, w can arbitrarily increase the
multiset counts of its own capabilities. Note that, unlike in the clocks
protocol, there is no requirement of uprightness and, in fact, workers are
not required to perform negative changes at all. Of course, it is useful
for workers to perform negative changes every now and then so that the
overall system can make progress.

The first condition in perf_op, namely Aggiq # {#} V Dsetf — Aneg #
{#}., ensures that the transition changes the configuration. In the ex-
change protocol, we also include explicit stutter steps in the Next relation
(¢ = ¢) but avoid them in the individual transitions.

Sending (send _upd) and receiving (recv__upd) progress updates works
precisely as in the clocks protocol except for the condition on what re-
mains in the sender’s temp highlighted in gray in Figure 8.4. Because we
allowed perf _op to perform non-upright changes, we can no longer expect
the contents of temp to be upright. Instead, we use the predicate justified,
which offers three possible justifications for positive entries in the signed
multiset M (in contrast to upright’s sole justification of being supported
in M):

definition justified :: 'p zmset = 'p zmset = bool where
justified C M = (Vp. M #.p>0—supp M pv (Ip' < p. C#.
p'>0)v M4t p<C#.p)

Thus, a positive count for pointstamp p in M may be either
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e supported in M, i.e., in particular every upright change is justified,
or

e justified by a smaller pointstamp in C, which we think of as the
sender’s capabilities, or

e justified by p in C, with the requirement that p’s count in M is
smaller than p’s count in C.

The definitions of valid executions Spec and the safety predicate Safe
are unchanged compared to the clocks protocol. Also, we prove precisely
the same safety property safe following a similar proof structure. The
main difference is that uprightness invariant 3 is replaced by the state-
ment that every worker’s incoming information is justified with respect
to pointstamps present in rec, i.e. Vw. justified (rec ¢) (info ¢ w). It
is more tedious to reason about pointstamps being justified compared
with being upright due to the three-way case distinction that is usually
necessary. These case distinctions occur when establishing the above
invariant, but also in the contradiction proof establishing safety. The
contradiction proof proceeds as before by assuming a non-zero count for
some pointstamp p in rec, up to which some worker w’s glob is vacant.
Crucially, p is now additionally and without loss of generality assumed to
be a minimal pointstamp with this property. By invariants 1 and 2, we
deduce that w’s incoming information has a positive count for p. Because
it is justified by the new invariant 3, we perform the case distinction on
the justification. If p is supported in w’s incoming information, we pro-
ceed as in the clocks protocol. If p is justified by a positive count for a
strictly smaller pointstamp in rec, we obtain a contradiction to p’s mini-
mality. Finally, if p’s multiplicity in w’s incoming information is strictly
smaller than p’s multiplicity in rec, invariant 2 tells us that p must have
a positive count in glob, which contradicts the assumption of glob being
vacant up to p.

We prove glob’s monotonicity for the exchange protocol, too. The proof
resembles the one for the clocks protocol; it requires a generalization
of justified, called justified with, to account for positive entries in every
in-flight progress message M. The generalization has the same three
disjuncts as justified, but relaxes the first and third disjunct to take into
account an additional multiset N of justifying pointstamps. Usages of
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locale graph =

fixes weights :: ('vtz :: finite) = vtz = ('Ibl ::
{order, monoid _add}) antichain

assumes (I :: Ibl) >0 and (I3 :: "Ibl) <3 — la <ly — 11 + 1o <
I3 + 14

and weights [ [ = {}
locale dataflow = graph summary

for summary :: ('l :: finite) = 'l = ('sum :
{order, monoid _add}) antichain +

fixes @ :: ('t :: order) = 'sum = 't

assumes t@Q0=¢t and (tDs)Ds' =tD(s+s) andt <t —
s<s' —>tOs<t' DS

and path Il zs — zs # [] —>t<t€D(st)

Figure 8.5: Locales for graphs and dataflows

justified with instantiate N with the sum of messages following M in
msg and the sender’s temp.

definition justified with :: 'p zmset = 'p zmset = 'p zmset =
bool where
justified withC M N = (Vp. M #,p >0 —
B <p M#.p <OVvNH#.p <0)v @ <p. CH#.p >0)v
(M +N)#.p <C#-.p)

We also derive the following additional property of glob, which shows
that any in-flight progress updates to a pointstamp p, positive or neg-
ative, have a corresponding positive count for some pointstamp less or
equal than p in the receiver’s glob. We will use this property when com-
bining in Section 8.8 the exchange protocol with the worker-local progress
propagation, which we cover next in Section 8.7.

lemma glob: Spec s — alw (now (Ac. Yw w’ p.
(M e set (msgcw w'). peft, M) — (3p’ < p. globcw' #.p' >

0)) s
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8.7 Locally Propagating Progress

The previous sections focused on the progress-relevant communication be-
tween workers and abstracted over the actual dataflow that is evaluated
by each worker. Next, we refine this abstraction: we model the actual
dataflow graph as a weighted directed graph with vertices representing
operator input and output ports, termed locations. We do not distinguish
between source and target locations and thus also not between internal
and dataflow edges. Each weight denotes a minimum increment that is
performed to a timestamp when it conceptually travels along the corre-
sponding edge from one location to another. On a single worker, progress
updates can be communicated locally, so that every operator learns which
timestamps it may still receive in the future. We formalize Timely Data-
flow’s approach for this local communication: the algorithm gradually
propagates learned pointstamp changes along dataflow edges to update
downstream frontiers.

Figure 8.5 details our modeling of graphs and dataflows, which uses
locales [Ball4]| to capture our abstract assumptions on dataflows and
timestamps. A locale lets us fix parameters (types and constants) and
assume properties about them. In our setting, a weighted directed graph
is given by a finite (class finite) type "vtx of vertices and a weights function
that assigns each pair of vertices a weight. To express weights, we fix a
type of labels 'Ibl, which we assume to be partially ordered (class order)
and to form a monoid (class monoid _add) with the monoid operation
+ and the neutral element 0. We assume that labels are non-negative
and that + on labels is monotone with respect to the partial order <. A
weight is then an antichain of labels, that is a set of incomparable (with
respect to <) labels, which we model as follows:

typedef ('t :: order) antichain = {A :: 't set. finite AA (Vae A.Vbe
Aa<babka)}

We use standard set notation for antichains and omit type conversions
from antichains to (signed) multisets. The empty antichain {} is a valid
weight, too, in which case we think of the involved vertices as not be-
ing connected to each other. Thus, the graph locale’s final assumption
expresses the non-existence of self-edges in a graph.

Within the graph locale, we can define the predicate path :: vtz =
"tz = "Ibl list = bool. Intuitively, path v w zs expresses that the list of
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labels xs is a valid path from v to w (the empty list being a valid path
only if v = w and any weight [ € weights « v can extend a valid path from
v to w to a path from u to w). We omit path’s formal straightforward
inductive definition. Note that even though self-edges are disallowed,
cycles in graphs are possible (and desired). In other words, path v v zs
can be true for a non-empty list zs.

The second locale, dataflow, has two purposes. First, it refines the
generic graph terminology from vertices and labels to locations (1) and
summaries ('sum), which is the corresponding terminology used in Timely
Dataflow. Second, it introduces the type for timestamps 't, which is
partially ordered (class order) and an operation @ (read as “results in”)
that applies a summary to a timestamp to obtain a new timestamp. We
chose the asymmetric symbol for the operation to remind the reader that
its two arguments have different types, timestamps and summaries. The
locale requires the operation @ to be well-behaved with respect to the
available vocabulary on summaries (0, +, and <). Moreover, it requires
that proper cycles zs have a path summary Y, zs (defined by iterating
+) that strictly increments any timestamp ¢.

Now, consider a function P :: 'l = 't zmset that assigns each location a
set of timestamps that it currently holds. We are interested in computing
a lower bound of timestamps (with respect to the order <) that may
arrive at any location for a given P. Timely Dataflow calls antichains
that constitute such a lower bound frontiers. Formally, a frontier is the
set of minimal incomparable elements that have a positive count in a
signed multiset of timestamps.

definition antichain _of :: 't set = 't set where antichain_of A =
{xe A —-Jye A y<uz}

lift definition frontier :: 't zmset =

't antichain is AM. antichain_of {¢t. M #, ¢ > 0}

Our frontier of interest, called the implied frontier, at location [ can be
computed directly for a given function P by adding, for every location
', every (minimal) possible path summary between !’ and [, denoted by
the antichain path summary [’ I, to every timestamp present at I’ and
computing the frontier of the result. Formally, we first lift @ to signed
multisets and antichains. Then, we use the lifted operator §) to define
the implied frontier.
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definition @ 2 't zmset = 'sum antichain = 't zmset where

MPA=)  (t@s) '#. M
definition |mp||ed_front|er ('l = "t zmset) = 'l =
't antichain where

implied _frontier P | =
frontier (le(posz (PU')d) path_summary I' 1))

Above and elsewhere, given a signed multiset M, we write f ‘#, M for
the image (as a signed multiset) of f over M and pos, M for the signed
multiset of M’s positive entries.

Computing the implied frontier for each location in this way (quadratic
in the number of locations) would be too ineflicient, especially because
we want to frequently supply operators with up-to-date progress informa-
tion. Instead, we follow the optimized approach implemented in Timely
Dataflow: after performing some work and making some progress, opera-
tors start pushing relevant updates only to their immediate successors in
the dataflow graph. The information gradually propagates and eventu-
ally converges to the implied frontier. Despite this local propagation not
being a distributed protocol as such, we formalize it for a fixed dataflow
in a similar state-machine style as the earlier exchange protocol.

Local propagation uses a configuration consisting of three signed mul-
tiset components.

record ('l :: finite, 't :: {monoid _add, order}) conf =
pts:: 'l = 't zmset
imp :: 'l = 't zmset
work :: Il = 't zmset

Following Timely Dataflow terminology, pointstamps pts are the present
timestamps grouped by location (the P function from above). The im-
plications imp are the output of the local propagation and contain an
over-approximation of the implied frontier (as we will show). Finally, the
worklist work is an auxiliary data structure to store not-yet propagated
timestamps.

Initially, all implications are empty and worklists consist of the frontiers
of the pointstamps.

definition Init :: (', 't) conf = bool where
Init ¢ = (V1. imp ¢ I = {#}. A work ¢ | = frontier (pts ¢ 1))
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definition change multiplicity :: I = 't = int = ('l, 't) conf =
(", 't) conf = bool where
change multiplicity [tncd =n#0A (3t €
frontier (implications ¢ 1). t' < t) A
¢ = ¢(pts = (pts ¢)(l := pts ¢ | + replicate n t),
work = (work ¢)( := work ¢ [ + frontier (pts ¢ ) —
frontier (pts ¢ 1))
definition propagate :: I = "t = (I, 't) conf = ('l, 't) conf =
bool where
propagate [ t ¢ ¢’ =t e, work ¢ I A (VI'. Vt' e, work ¢ I'. —t' < t) A
¢ = c(imp = (imp ¢)(I := imp ¢ | + replicate (work ¢ [ #, t) t,
work = Al'. if [ = I’ then {#t' €#, work ¢ [. t’ # t#}
else work ¢ I' + ((frontier (imp ¢’ [) —
frontier (imp ¢ 1)) @) summary 1 I'))

definition Next :: (I, 't) conf = ('l, 't) conf = bool where
Next ¢ ¢ = (¢ =) v (3l t n. change_multiplicity [ t nc ) v
(31 t. propagate [ t c )

Figure 8.6: Transition relation of the local progress propagation

The propagation proceeds by executing one of two actions shown in
Figure 8.6. The action change multiplicity constitutes the algorithm’s
information input: The system may have changed the multiplicity of some
timestamp ¢ at location [ and can use this action to notify the propagation
algorithm of the change. The change value n is required to be non-zero
and the affected timestamp ¢ must be witnessed by some timestamp in the
implications. Note that the latter requirement prohibits executing this
action in the initial state. The action updates the pointstamps according
to the declared change. It also updates the worklist, but only if the
update of the pointstamps affects the frontier of the pointstamps at [ and
moreover the worklists are updated merely by the change to the frontier.

The second action, propagate, applies the information for the times-
tamp ¢ stored in the worklist at a given location [, to the location’s im-
plications (thus potentially enabling the first action). It also updates the
worklists at the location’s immediate successors in the dataflow graph.
Again the worklist updates are filtered by whether they affect the fron-
tier (of the implications) and are adjusted by the summary between I
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and each successor. Importantly, only minimal timestamps (with respect
to timestamps in worklists at all locations) may be propagated, which
ensures that any timestamp will eventually disappear from all worklists.

The overall transition relation Next allows us to choose between these
two actions and a stutter step. Together with Init, it gives rise to the
predicate describing valid executions in the standard way: Spec s =
now Init s A alw (relates Next) s.

We show that valid executions satisfy a safety invariant. Ideally, we
would like to show that for any ¢ with a positive count in pts at location
l and for any path summary s between [ and some location I’, there is
a timestamp in the (frontier of the) implications at I’ that is less than
or equal to t @ s. In other words, the location I’ is aware that it may
still encounter timestamp ¢t @ s. Stated as above, the invariant does not
hold, due to the not-yet-propagated progress information stored in the
worklists. If some timestamp, however, does not occur in any worklist
(formalized by the below work vacant predicate), we obtain our desired
invariant Safe.

definition work vacant :: (I, 't) conf = 't = bool where
work vacantct= (VI I' st'. t' eft, workcl — s €
path summary [ ' — ' @ s £ t)
definition Safe :: ('l, 't) conf stream = bool where
Safec= (Vil' ts.ptscl#.t>0 A s€path _summary [’ A
work vacant ¢ (t@s) —
(3t' € frontier (imp cl'). t' < t@s))
lemma safe: Spec s —> alw (now Safe) s

In our running WCC example, Safe is for example necessary to de-
termine once operator b has received all incoming updates for a certain
round of label propagation, which is encoded as a timestamp (t1,ts).
If a pointstamp at port .8 was not correctly reflected in the frontier at
b.1 the operator may incorrectly determine that it has seen all incoming
labels for a certain graph node and proceed to the next round of prop-
agation. Safe states, that this cannot happen and all pointstamps are
correctly reflected in relevant downstream frontiers.

The safety proof relies on two auxiliary invariants. First, implications
have only positive entries. Second, the sum of the implication and the
worklist at a given location [ is equal to the sum of the frontier of the
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pointstamps at [ and the sum of all frontiers of the implications of all im-
mediate predecessor locations I’ (adjusted by the corresponding summary
summary I’ ).

While the above safety property is sufficient to prove safety of the com-
bination of the local propagation and the exchange protocol in the next
section, we also establish that the computed frontier of the implications
converges to the implied frontier. Specifically, the two frontiers coincide
for timestamps which are not contained in any of the worklists.

lemma implied _frontier: Spec s —
alw (now (Ac. work vacant ct —
(Vi. t € frontier (imp ¢ 1) «— t € implied _frontier (pts ¢) 1))) s

8.8 Progress Tracking

We are now ready to combine the two parts presented so far: the between-
worker exchange of progress updates (Section 8.6) and the worker-local
progress propagation (Section 8.7). The combined protocol takes pointstamp
changes and determines per-location frontiers at each operator on each
worker. It operates on configurations consisting of a single exchange pro-
tocol configuration (referred to with the prefix E) and for each worker a
local propagation configuration (prefix P) and a Boolean flag indicating
whether the worker has been properly initialized.

record ('w :: finite, 'l :: finite, 't :: {monoid _add, order}) conf =
exch :: ('w, 'l x 't) E.conf
prop :: 'w = ('l, 't) P.conf
init :: 'w = bool
As pointstamps in the exchange protocol, we use pairs of locations and

timestamps. To order pointstamps, we use the following could-result-in
relation, inspired by Abadi and Isard [AT15b].

definition <..; where (I,t) <. (I',t') = (3s €
path summary [ I'. t@s < t)

As required by the exchange protocol, this definition yields a partial or-
der. In particular, antisymmetry follows from the assumption that proper
cycles have a non-zero summary and transitivity relies on the operation @
being monotone. Intuitively, <..; captures a notion of reachability in the
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dataflow graph: as timestamp ¢ traverses the graph starting at location
I, it could arrive at location I, being incremented to timestamp ¢'. (In
Timely Dataflow, an edge’s summary represents the minimal increment
to a timestamp when it traverses that edge.)

In an initial combined configuration, all workers are not initialized and
all involved configurations are initial. Moreover, the local propagation’s
pointstamps coincide with exchange protocol’s glob, which is kept invari-
ant in the combined protocol.

definition Init :: ('w, I, 't) conf = bool where
Init ¢ = (VYw. init c w = False) A E.Init (exch ¢) A
(Vw. P.Init (prop c w)) A
(Vw I t. P.pts (prop c w) I #, t = E.glob (exch ¢) w # (I,t))

Figure 8.7 shows the combined protocol’s transition relation Next. Most
actions have identical names as the exchange protocol’s actions and they
mostly perform the corresponding actions on the exchange part of the
configuration. In addition, the recv_upd action also performs several
change multiplicity local propagation actions: the receiver updates the
state of its local propagation configuration for all received timestamp up-
dates. The action propagate does not have a counterpart in the exchange
protocol. It iterates, using the while option combinator from Isabelle’s
library, propagation on a single worker until all worklists are empty. The
term while _option b ¢ s repeatedly applies ¢ starting from the initial
state s, until the predicate b is satisfied. Overall, it evaluates to Some s’
satisfying —b s’ and s" = ¢ (--- (¢ s)) with the least possible number of
repetitions of ¢ and to None if no such state exists. Thus, it is only possible
to take the propagate action, if the repeated propagation terminates for
the considered configuration. We believe that repeated propagation ter-
minates for any configuration, but we do not prove this non-obvious®* fact
formally. Timely Dataflow also iterates propagation until all worklists of
a worker become empty. This gives us additional empirical evidence that
the iteration terminates on practical dataflows. Moreover, even if the it-

4Because propagation must operate on a globally minimal timestamp and because
loops in the dataflow graph have a non-zero summary, repeated propagation will
eventually forever remove any timestamp from any worklist. However, it is not
as obvious why it eventually will stop introducing larger and larger timestamps in
worklists. The termination argument must rely on the fact that only timestamps
that modify the frontier of the implications are ever added to worklists.
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definition recv_cap :: 'w = I x 't = ('w, 'l, 't) conf =
("w, "I, 't) conf = bool where
recv_capw p ¢ ¢’ = E.recv_cap w p (exch c) (exch ¢’) A prop ¢’ =
prop ¢ A init ¢ = init ¢
definition perf _op :: 'w = ('l x 't) mset = ('w x ('l x 't)) mset = ('l x
't) mset =
("w, "1, 't) conf = ("w, 'l, 't) conf = bool where
Perf_op w Aneg Adata Aself cd =
E.perf_op w Apneg Adata Aserr (exch ¢) (exch ¢) A
prop ¢ = prop ¢ A init ¢ = init ¢
definition send upd :: 'w = ('l x 't) set = ('w, I, 't) conf =
("w, "I, 't) conf = bool where
send _upd w P ¢ ¢ = E.send _upd (exch ¢) (exch ¢) w P A prop ¢ =
prop ¢ A init ¢ = init ¢
definition cm_all :: (', 't) P.conf = ('l x 't) zmset =
(1, 't) P.conf where
cm_allc A =
Set.fold (A(I,t) c. SOME ¢. P.change multiplicity ¢ ¢’ 1t (A #. (I,1))) ¢
{(1,1). (I,1) et A}
definition recv_upd :: 'w = 'w = ('w, 'l, 't) conf = ('w, ', 't) conf =
bool where
recv_upd ww’ ¢ ¢ =init cw’ A E.recv_upd w t (exch ¢) (exch ) A
prop ¢ = (prop ¢)(w’ :=cm_all (prop ¢ w’) (hd (E.msg (exch ¢)))) A
init ¢ = init ¢
definition propagate :: 'w = ('w, ', t) conf = ('w, 'l, 't) conf =
bool where
propagate w ¢ ¢’ = exch ¢/ = exch ¢ A init ¢ = (init ¢)(w := True) A
(Some o prop ¢’) = (Some o prop ¢)(w := while_option
(Ae. 3. P.work ¢ 1 #
{#1}.) (Ae. SOME ¢'. 3l t. P.propagate [ t ¢ ¢') (prop ¢ w))
definition Next :: ('w, 'l, 't) conf = ('w, 'l, 't) conf = bool where
Next c = (c=c) v (Jwp.recv_capwpecd) v
(Elw A’rLeg Adatu Aself~ Perf_OP w Aneg Adata Aself c CI) %
(3w P.send _updw Pcc) v Qww'. recv_upd ww' ¢ ) v
(3w. propagate w ¢ ¢')

Figure 8.7: Transition relation of the combined progress tracker
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eration were to not terminate for some worker on some dataflow (both in
Timely Dataflow and in our model), our combined protocol can faithfully
capture this behavior by not executing the propagate action, but also not
any other action involving the looping worker, thus retaining safety for
the rest of the workers. Finally, any worker that has completed at least
one propagation action is considered to be initialized (by setting its init
flag to True).

The Init predicate and the Next relation give rise to the familiar spec-
ification of valid executions Spec s = now Init s A alw (relates Next) s.
Safety of the combined protocol can be described informally as follows:
Every initialized worker w has some evidence for the existence of a times-
tamp t at location ! at any worker w’ in the frontier of its (i.e., w’s)
implications at all locations I’ reachable from [. Formally, E.rec contains
the timestamps that exist in the system:

definition Safe :: ('w, I, 't) conf stream => bool where
Safec= (Vw1 ts.init cw A E.rec (exch ¢) #, (I,t) >
0 A s€path_summary [ ' —
(3t’ € frontier (P.imp (prop cw) I'). t/ <t @ s)

Our main formalized result is the statement that the above predicate
is an invariant.

lemma safe: Spec s — alw (now Safe) s

The proof proceeds by lifting (and then combining) the safety statements
and some auxiliary invariants of the exchange protocol and the local prop-
agation to the combined execution. The lifting step is feasible, because
we included stutter steps in the modeling of these components. In par-
ticular, the projection of a valid execution to the exchange configurations
results in a valid execution of the exchange protocol: the propagate step
constitutes a stutter step for the exchange configuration. In contrast,
the projection to the local propagation configuration does not result in a
valid execution of the local propagation, but in an execution that takes
steps according to the reflexive transitive closure of the local propaga-
tion’s transition relation P.Next: the steps propagate and recv__upd can
take an arbitrary number of local propagation steps (whereas other tran-
sitions stutter from the point of view of local propagation). Fortunately,
safety properties are easy to lift to such “big-step” executions.
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In the combined progress tracking protocol, safety guarantees that if
a pointstamp is present at an operator’s port, it is correctly reflected at
every downstream port. In the WCC example, when deployed on two
workers, each operator is instantiated twice, once on each worker. If a
pointstamp (.3, (3, 0)) is present on port b.8 of one of the instances of
operator b, the frontier at c.1 on all workers must contain a ¢ such that
t < (3,0). Due to the summary between ¢.1 and c.2, frontiers at ¢.2 and
b.1 must contain a t such that ¢ < (3,1). As an example, this ensures
that operator b waits for each of its instances to complete the first round
propagation of all labels before it chooses the lowest label for the next
round.

8.9 Conclusions

We have presented an Isabelle/HOL formalization of Timely Dataflow’s
progress tracking protocol, including the verification of its safety. Com-
pared to an earlier formalization by Abadi et al. [Aba+13], our protocol
is both more general, which allows it to capture behaviors present in the
implementations of Timely Dataflow and absent in Abadi et al.’s model,
and more detailed in that it explicitly models the local propagation of
progress information.

Our formalization spans about 7000 lines of Isabelle definitions and
proofs. These are roughly distributed as follows over the components
we presented: basic properties of graphs and signed multisets (1000),
exchange protocol (3100), local propagation (1700), combined protocol
(1200). This is comparable in size to the TLAT Proof System formal-
ization by Abadi et al., even though we formalized a significantly more
detailed, complex, and realistic variant of the progress tracking proto-
col. Ground to this claim is the fact that we had actually started our
formalization by porting significant parts of the TLA™T Proof System for-
malization to Isabelle. We completed the proofs of their two main safety
statement within one person-week in about 1000 lines of Isabelle (not
included above). Our use of Isabelle’s library for linear temporal logic on
streams (in particular, the coinductive predicate alw) allowed us to copy
directly a vast majority of the TLAT definitions. Additionally, Isabelle’s
mature proof automation allowed us to apply a fairly mechanical porting
process to many of the proofs. Most ported lemmas could be proved either
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directly by Sledgehammer [PB10] or by sketching an Isar [Wen07] proof
skeleton of the main proof steps and discharging most of the resulting
subgoals with Sledgehammer.

In the subsequent development of the combined protocol, Isabelle’s
locales [Ball4] were an important asset. By confining the exchange pro-
tocol and the local propagation each to their own local assumptions, we
were able to develop them in parallel and in their full generality. Thus,
we obtain formal models not only of the combined protocol itself but
also of these two subsystems in a generality that goes beyond what is
needed for the concrete combined instance. For example, although the
combined protocol uses the could-result-in order, the exchange protocol
works for any partial order on pointstamps. Moreover, the combined
protocol always propagates until all worklists are empty, even though the
local propagation’s safety supports small-step propagation, resulting in a
more fine-grained safety property via work vacant.

In our formalization, we make extensive use of signed multisets [BFT17].
The alternative (used in the TLAT Proof System formalization), would
be to use integer-valued functions instead. The signed multiset type
additionally captures a finite domain assumption, which it was conve-
nient not to carry around explicitly and in particular simplified reasoning
about summations. The expected downside of having separate types for
function-like (mset) and set-like (antichain) objects was the need to insert
explicit type conversions and to transfer properties across these conver-
sions. Both complications were to some extent alleviated by Lifting and
Transfer [HK13].
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Conclusion

This thesis argues that a well-considered abstraction of the underlying co-
ordination mechanism of a distributed dataflow streaming system enables
the construction of higher-level protocols for dynamic scaling, index shar-
ing, fault tolerance, and flow control without modifications to the core
system.

In Chapter 4 I introduced timestamp tokens, a coordination primi-
tive for dataflow systems. Timestamp tokens decouple the sophistication
of the operators’ own scheduling logic from the system’s coordination
mechanism. Libraries built with timestamp tokens can write operator
abstractions with more sophisticated coordination logic by encoding it
through timestamp tokens. The following chapters demonstrate this ap-
proach with libraries that address various dataflow system challenges such
as index sharing, flow control, dynamic scaling, and fault tolerance.

9.1 Composing a system from libraries

Using timestamp tokens, each new mechanism is built as a library, with-
out changes to the underlying system. An unresolved question in this
thesis is how to ensure these libraries compose when multiple mechanisms
are needed in a specific deployment.

Other systems like Flink and Spark Streaming expose a very abstract
operator interface to allow the system to implement mechanisms such as
rescaling and fault-tolerance transparently to the dataflow program. A
similar approach may aid composability in systems built on timestamp
tokens: for example, the fault-tolerance and rescaling libraries can expose
a common, very simple tuple-at-a-time programming interface; however
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this choice requires selecting an API that enables each of the library fea-
tures, even when they are unneeded. This often comes at a performance
cost.

A more efficient, but probably more engineering-intensive approach is
for libraries to provide APIs that enable the client program to extract
maximum performance; in this case libraries higher in the stack need to
be compatible with both the lowest level timestamp token programming
interface and one of the higher-level interfaces provided by the other li-
braries lower in the stack. Stacking these libraries is necessary to achieve
multiple system goals, e.g. for a system that supports both index sharing
and fault tolerance. Choosing the order the libraries would appear in the
stack is also an important consideration in terms of API design and its
performance cost.

9.2 You may not need synchronization

Chapters 5, 6, and 7 presented mechanisms for efficiently managing data-
flow systems concerns. These are all built on timestamp tokens, but they
also independently address system issues where existing techniques were
absent or inadequate for modern, high-efficiency dataflow systems.

They all rely on carefully selecting and minimizing the synchronization
points necessary for the correct functioning of the system and for gen-
erating correct results. Asynchornous coordination and synchronization
rely on the underlying Timely Dataflow progress tracking protocol, and
intract with it via the timestamp tokens-based API.

Instead of a global synchronization signal, Megaphone (Chapter 5) uses
precise per-operator coordination signals based on timestamps that pre-
cisely sequence re-partitioning operations and data-processing to ensure
that data is routed to and processed by operators where the relevant state
resides.

Similarly, Shared Arrangements (Chapter 6) do not require locks on
shared indicies because they can rely on timestamps and coordination
signals from timestamp tokens to perform independent reads and writes
to the single-threaded, multi-versioned Arrangement data structure: con-
sumers of the index can subset their view of the indexed data by time
independently from each other, without locks or explicit ordering of writes
and reads.
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The fault tolerance mechanism discussed in Chapter 7, CL, removes
synchronization from the critical path of data processing by relying on
timestamp information to record state changes. timestamp tokens en-
abled the construction an asynchronous garbage collection protocol for
recorded state using the existing coordination signalling mechanism in
timely dataflow. Explicit synchronization only happens on recovery, when
operators need to negotiate a safe recovery point.

Minimizing critical-path synchronization is critical in building efficient
concurrent systems as it allows each processor to make progress inde-
pendently and avoids idling while waiting for synchronization signals to
arrive. By minimizing critical-path synchronization the systems mecha-
nisms discussed in this dissertation can be adapted to cope with the more
complex execution model, while introducing minimal overhead, to avoid
squandering the increased efficiency of modern data-parallel dataflow sys-
tems.
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