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Abstract

In scientific writing, retrieving, summarizing, and citing relevant papers

is necessary but usually time-consuming. Recent research in natural lan-

guage processing (NLP) has explored the use of neural networks to recom-

mend, summarize and cite papers automatically. However, the following

challenges remain before applying these NLP techniques to help authors

write scientific articles. First, the rapidly growing volume of available

scientific literature has raised the demand for accuracy and efficiency in

recommending citations. Second, the length of scientific articles requires

high memory efficiency in the summarization model, so long articles do

not need to be truncated when summarizing them. Third, the genera-

tion of citation sentences needs to be well-controllable to allow authors

to direct the generation as they wish. In addition, there is a lack of an

integrated system that allows users to search for papers, obtain paper

summaries, and get suggested citation sentences to cite them, all in a one-

stop shop.

In this thesis, we aim to develop an integrated system for joint paper

retrieval, summarization, and citation generation, which consists of the

following four parts.

In the first part, to balance speed and accuracy, we propose a two-stage ci-

tation recommendation system that first prefetches K candidate papers by

embedding-based K-nearest neighbor search and then reranks the prefetched

papers with a fine-tuned SciBERT.

In the second part, we develop a reinforcement learning-based sentence

extraction model that summarizes a document by iteratively scoring sen-

tences based on the extraction history (e.g., which sentences were se-

lected) and selecting the highest-scoring sentence. Moreover, the lightweight

structure allows our model to summarize long scientific articles efficiently

and surpass previous state-of-the-art BERT-based extractive summarizers.

In the third part, we propose a controllable citation generation model

that users can control by specifying citation attributes. We define the

citation attributes as the intent of the citation (e.g., to introduce context or

to compare results), the keywords that the user expects to appear in the
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citation or the specific sentences in the body of the cited paper that are

most relevant to the expected citation sentences.

In the final part, we integrate the subsystems for paper retrieval, sum-

marization, and citation generation into a convenient user interface that

displays recommended papers, extracted summaries of recommended pa-

pers, and abstractively generated citation sentences that are consistent

with the context and selected keywords.

Our work is a step toward applying NLP techniques to help authors write

academic papers in real-life scenarios and one of the early attempts at

artificial intelligence (AI)-driven scientific inference.
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Zusammenfassung

Beim wissenschaftlichen Schreiben ist das Auffinden, Zusammenfassen

und Zitieren relevanter Artikel notwendig, aber in der Regel zeitaufwändig.

Jüngste Forschungen im Bereich der natürlichen Sprachverarbeitung (NLP)

haben den Einsatz neuronaler Netze zur automatischen Empfehlung, Zusam-

menfassung und Zitierung von Artikeln untersucht. Die Anwendung

dieser NLP-Techniken zur Unterstützung von Autoren beim Verfassen

wissenschaftlicher Artikel birgt jedoch noch die folgenden Herausforderun-

gen. Erstens hat das schnell wachsende Volumen der verfügbaren wis-

senschaftlichen Literatur die Nachfrage nach Genauigkeit und Effizienz

bei der Empfehlung von Zitaten erhöht. Zweitens erfordert die Länge

wissenschaftlicher Artikel eine hohe Speichereffizienz des Zusammenfas-

sungsmodells, so dass lange Artikel bei der Zusammenfassung nicht gekürzt

werden müssen. Drittens muss die Generierung von Zitationssätzen gut

steuerbar sein, damit die Autoren die Generierung nach ihren Wünschen

steuern können. Darüber hinaus fehlt ein integriertes System, das es

den Nutzern ermöglicht, in einer einzigen Anlaufstelle nach Artikeln zu

suchen, Zusammenfassungen zu erhalten und Zitiervorschläge für diese

Artikel zu bekommen.

In dieser Arbeit soll ein integriertes System für die gemeinsame Suche

nach Artikeln, die Zusammenfassung und die Erstellung von Zitaten en-

twickelt werden, das aus den folgenden vier Teilen besteht.

Um ein Gleichgewicht zwischen Geschwindigkeit und Genauigkeit zu

erreichen, schlagen wir im ersten Teil ein zweistufiges System für Zi-

tierempfehlungen vor, das zunächst K Kandidatenbeiträge durch eine

einbettungsbasierte K-Nächste-Nachbarn-Suche vorfindet und dann die

vorgefragten Beiträge mit einem fein abgestimmten SciBERT neu ordnet.

Im zweiten Teil entwickeln wir ein auf Verstärkungslernen basierendes

Satz-Extraktionsmodell, das ein Dokument zusammenfasst, indem es it-

erativ Sätze auf der Grundlage des Extraktionsverlaufs bewertet (z. B.

welche Sätze ausgewählt wurden) und den Satz mit der höchsten Bew-

ertung auswählt. Die leichtgewichtige Struktur ermöglicht es unserem

Modell, lange wissenschaftliche Artikel effizient zusammenzufassen und
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die bisherigen BERT-basierten extraktiven Zusammenfassungen zu übertr-

effen.

Im dritten Teil schlagen wir ein kontrollierbares Modell für die Gener-

ierung von Zitaten vor, das der Benutzer durch die Angabe von Zitier-

attributen steuern kann. Wir definieren die Zitierattribute als die Ab-

sicht des Zitats (z. B. zur Einführung von Kontext oder zum Vergleich

von Ergebnissen), die Schlüsselwörter, die der Benutzer im Zitat erwartet,

oder die spezifischen Sätze im Textkörper der zitierten Arbeit, die für die

erwarteten Zitatsätze am relevantesten sind.

Im letzten Teil integrieren wir die Teilsysteme für das Auffinden von Ar-

tikeln, die Zusammenfassung und die Generierung von Zitaten in eine

komfortable Benutzeroberfläche, die empfohlene Artikel, extrahierte Zusam-

menfassungen der empfohlenen Artikel und abstrakt generierte Zitatsätze

anzeigt, die mit dem Kontext und den ausgewählten Schlüsselwörtern

übereinstimmen.

Unsere Arbeit ist ein Schritt in Richtung der Anwendung von NLP-Techniken

zur Unterstützung von Autoren beim Verfassen akademischer Arbeiten in

realen Szenarien und einer der ersten Versuche einer von künstlicher In-

telligenz (AI) gesteuerten wissenschaftlichen Inferenz.
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Chapter 1

Introduction

The process of scientific inference is to make logical conclusions based on ob-
servations and prior knowledge (Okasha, 2016). In the case of the discovery
of Neptune, scientists observed irregularities in the orbit of Uranus compared
to the ideal orbit calculated using Newton’s laws of motion and gravity (Val-
tonen et al., 2016). Based on these observations and knowledge of physics,
scientists concluded that an undiscovered object was disturbing the orbit of
Uranus, and they successfully predicted the location of this new object, which
led directly to the discovery of Neptune. In this scientific inference process,
the irregularity of Uranus’ orbit is the result of observation, Newton’s laws
and mathematics are the a priori knowledge, and the hypothesis of the exis-
tence of a new planet is the correct inference. The discovery of Neptune was a
remarkable success of Newton’s law of gravity, showing the power of scientific
inference. Since then, an increasing number of scientific breakthroughs have
been made using the process of scientific inference. For example, scientists
founded quantum physics and relativity from the two “cloud” that obscured
physics (Kelvin, 1901).

Despite its power, the scientific inference process is challenging because scien-
tists need to spend much time acquiring the necessary a priori knowledge by
reading relevant papers. Moreover, despite the time spent to acquire a priori
knowledge, the capacity limitation of the human brain may still result in in-
sufficient a priori knowledge to make reasonable and unbiased inferences. To
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1. Introduction

address this challenge, in this thesis, we explore whether we can use artificial
intelligence (AI) to automate the process of scientific inference.

Having machines automatically perform scientific reasoning is attractive be-
cause of the following benefits. First, automated scientific reasoning can help
researchers quickly analyze observations and abstract knowledge, thus speed-
ing up scientific research. Second, machines can have an almost infinite amount
of ”memory” compared to the human brain. If we can find a way to enable
a machine to ”digest” human knowledge, this machine will have enough a
priori knowledge to make unbiased and reasonable scientific inferences. Thus,
having machines automatically perform scientific inference is a promising di-
rection. However, it remains an open question how to define interpretable
representations of human knowledge that machines can understand and how
to model the inference process so that we can train and evaluate inference
systems.

A concrete case of scientific inference in scientific writing is writing the discus-
sion section of a manuscript. First, it is typical that authors write a ”Results”
section and then a ”Discussion” section. For example, in the PubMed Central
Open Access (PMCOA) (of Medicine, 2003) subset that contains papers mainly
from the biomedical domain, more than 63% of all papers have a ”Results” sec-
tion that is followed by a ”Discussion” section, so it is logically natural to write
the discussion on the given results text. Second, when writing the discussion
section, authors usually need to compare the experimental results presented in
the results section with related literature and make reasonable inferences. In
this process, the results section in the written manuscript can be treated as the
observation, the related literature can be regarded as the prior knowledge, and
finally, the statements in the discussion section are treated as the conclusions,
deduction or inference. All three essential components of scientific inference are
involved in writing the discussion section. In addition, the results section, the
related literature, and the conclusion text can all be represented as natural lan-
guage, which makes it feasible in theory to automate the discussion writing
using natural language processing (NLP) techniques.

However, developing an NLP model to generate the discussion section auto-
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1.1. Background

matically remains challenging. A significant obstacle comes from the endoge-
nous complexity of the results and discussion sections. For example, the re-
sults section in a paper may contain the results of different experiments, each
with a different purpose (e.g., testing a different hypothesis). Correspondingly,
the discussion section may include a discussion of different results and many
related papers. Thus, if we consider the generation of the discussion section as
a sequence-to-sequence task, both the length of the input (results section and
related papers) and the length of the output (discussion section) are already
beyond the capabilities of state-of-the-art (SOTA) seq2seq models. For exam-
ple, current SOTA text generation models are usually based on a Transformer
(Vaswani et al., 2017), which usually cannot input text with more than 512 or
1024 tokens. Therefore, it is necessary to decompose the discussed generation
task into finer granularity.

The discussion section consists of a series of sentences, of which we are most
interested in the citation sentences that cite and discuss other relevant papers.
The reasons for this are as follows. First, citing and discussing relevant works
and analyzing experimental results are one of the main tasks of the discus-
sion section. More importantly, writing citation sentences can be seen as a
process of scientific inference on a microscopic scale because it also inputs the
context in the manuscript and relevant papers as the observation and prior
knowledge and makes conclusions (or statements). Therefore, in this thesis,
instead of attempting to generate the entire discussion section, we investigate
a preliminary task as a first step towards NLP-driven discussion generation:
given the context of a manuscript, use NLP techniques to find a relevant paper,
summarize the found paper, and generate a citation sentence that cites and
discusses this paper in the context of the manuscript.

1.1 Background

Recent research has focused on using natural language processing (NLP) tech-
niques to help researchers retrieve, summarize, and cite scientific papers. First,
to help users find relevant papers, Bhagavatula et al. (2018); Ali et al. (2021b,a)
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1. Introduction

proposed using the global contextual information (title and abstract) of a pa-
per as the query to retrieve relevant papers that users can cite in the body of
the query paper. In contrast, He et al. (2010); Ebesu and Fang (2017); Färber
et al. (2020); Yang et al. (2019); Jeong et al. (2020); Medić and Snajder (2020)
investigated a finer granularity, using local contexts (e.g., short passages with
missing citation information) as queries and training the neural network to
recommend papers that can be cited in the local contexts.

Second, to help readers effectively capture the main content, neural summa-
rization models have made significant progress in producing compact docu-
ment summaries. These models have been successfully applied to summarize
news/social media texts (Hermann et al., 2015; Zhong et al., 2020; Jia et al.,
2020; Lewis et al., 2020), Wikipedia articles (Liu* et al., 2018), and legal docu-
ments (Eidelman, 2019). Recent studies have also investigated summarizing a
scientific paper into a summary, which can either be extractive or abstractive.
Here, the extractive summarization of scientific papers aims to extract a list of
sentences from the body text of the paper, such as Zhou et al. (2018); Xiao and
Carenini (2019). In contrast, the abstractive summarization aims to generate
a short passage by a sequence-to-sequence model, taking body text as input,
such as Gidiotis and Tsoumakas (2020); Huang et al. (2021).

Furthermore, to help researchers write citation sentences that cite and discuss
relevant papers in the context of the manuscript they are writing, Xing et al.
(2020) proposed an automatic citation generation model. This model gener-
ates a citation sentence taking two input sources: 1) the local contextual text
in the manuscript, i.e., the three sentences before and after the target citation
sentence that we want to generate, and 2) the abstract of the target paper that
researchers want to cite. Ge et al. (2021); Wang et al. (2022) extended this frame-
work by encoding textual information (e.g., titles, abstracts) and structural in-
formation (e.g., citation graph information) to enhance the representation of
the cited papers when generating citation sentences. Recent studies also ex-
plored the task of generating a related work section given the information of
the papers in the reference list (Chen and Zhuge, 2019; Wang et al., 2019; Shah
and Barzilay, 2021; Li and Ouyang, 2022).
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1.2. Problems and Motivation

1.2 Problems and Motivation

While researchers have made great strides in these areas, bringing light to
automated literature retrieval, summarization, and citation generation, the fol-
lowing challenges remain when we apply these NLP techniques to help re-
searchers and authors write scientific articles in real-world settings.

1.2.1 Paper Retrieval

The rapidly growing volume of existing scientific literature places greater de-
mands on the retrieval accuracy and efficiency of the paper recommendation
system. For example, there are more than 136 million papers in the scientific
corpus S2ORC (Lo et al., 2020), 1.7 million articles on the arXiv preprint server
(Kaggle, 2022), and 2.7 million papers in PubMed Central Open Access (PM-
COA, the commercial use section (of Medicine, 2003)), and these numbers are
increasing daily. Although the fast-growing literature databases increase the
chance of including papers of interest to researchers, it also raises the diffi-
culty of finding relevant papers in today’s era of information overflow. The
rapid growth of literature databases has increased the opportunity to include
papers of interest to researchers. However, it has also increased the difficulty
of retrieving relevant papers because the retrieval system has to find the most
relevant papers from an extensive database of hundreds of millions of docu-
ments. In addition, this process must be efficient so that users can avoid many
delays.

Recommendation models that use graph convolutional networks (GCNs) (Kipf
and Welling, 2017; Jeong et al., 2020) or large pre-trained language models
such as BERT (Devlin et al., 2019) can achieve high recall of the target cita-
tion. However, due to the high computation complexity, they cannot be easily
up-scaled to rank millions of candidates. In contrast, embedding-based meth-
ods (Kobayashi et al., 2018; Bhagavatula et al., 2018; Gökçe et al., 2020) rank
documents based on cosine similarity (or Euclidean distance) between the em-
bedding (a vector representation of text, encoded by text embedding models
(Pagliardini et al., 2018; Conneau et al., 2017; Pennington et al., 2014)) of the
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1. Introduction

query and those of the documents to obtain K nearest neighbors (KNN). Such
embedding-based methods are efficient because the document embeddings
can be pre-computed, and the KNN search can be sped up with approximate
KNN algorithms (Malek Esmaeili et al., 2012; Fu et al., 2019; Indyk and Mot-
wani, 1998) or GPU acceleration (Johnson et al., 2019). However, they are less
accurate than BERT-based retrieval methods, as discussed in Guo et al. (2020).
Therefore, the trade-off between accuracy and speed must be considered when
designing a practical paper recommendation system.

1.2.2 Scientific Paper Summarization

The main challenge in summarizing the scientific literature is the length of the
scientific documents. As our study (Gu et al., 2022a) shows, the body of scien-
tific papers from the arXiv dataset (Cohan et al., 2018) consists of an average of
5,206 words and 206 sentences. In contrast, in the commonly-used document
summarization benchmark CNN/DM, each document to be summarized con-
tains only 692 words and 35 sentences on average. The extended sequence
length of scientific papers requires a summarization model with high memory
efficiency so that long documents with hundreds of sentences and thousands
of tokens can be summarized.

Transformer-based summarization models have been successfully applied in
extractive and abstract summarization tasks. However, such models inherit
the sequence length limit of the Transformer (Vaswani et al., 2017) or BERT
(encoder part of the Transformer model, Devlin et al. (2019)), typically 512
or 1024 tokens, so this limits the application of Transformer-based models for
summarizing long documents such as scientific literature.

For example, to extractively summarize documents in the CNN/DM dataset,
MatchSum (Zhong et al., 2020) first used a modified BERT (Liu, 2019) to score
all sentences in the document. They then included all possible combinations
of two (or three) of the five highest-scoring sentences as candidate summaries.
Then, they encoded the documents and candidate summaries as embeddings
using another fine-tuned BERT and ranked the candidate summaries based
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on the cosine similarity between the document embeddings and the candidate
summary embeddings. Under such a setup, when the length of the document
exceeds the length limit of BERT (typically 512 tokens), MatchSum needs to
truncate it when scoring sentences and computing the document embedding.
As a result, sentences located in the truncated part of the document will not be
selected for the summary, which may affect the summarization performance.
We showed that MatchSum performs worse in summarizing PubMed papers
due to truncating the original document (Gu et al., 2022a).

The length limit of the Transformer and the BERT model results from the high
memory complexity of the computation of attentions:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (1.1)

Q,K,V ∈ Rn×dk represent the query, key, and value matrices in each atten-
tion layer for all n tokens in the sequence, and dk represents the hidden di-
mension. Thus, the memory complexity is O(n2) (Huang et al., 2021), which
means that the memory footprint will increase quadratically as the sequence
length increases. Huang et al. (2021) proposed an efficient Transformer with
a modified attention computation operation that reduces memory complexity
by a linear factor. They used this model to abstractively summarize long doc-
uments, including scientific articles and government reports. However, this
modified Transformer still has many trainable parameters, making it difficult
to train from scratch and relatively slow in the inference process.

In this work, we study extractive summarizers because they typically produce
more reliable summaries in terms of syntax and content than abstractive sum-
marizers (Liu and Lapata, 2019a; Luo et al., 2019; Liao et al., 2020). Our goal is
to propose an extractive summarization model with the following properties:
1) It extractively summarizes scientific documents by selecting sentences from
the entire body text without truncating the body into 512 or 1024 tokens. 2) It
has a lightweight architecture that is memory efficient and fast in summarizing
documents in real-time.
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1.2.3 Citation Generation

The goal of citation generation is to generate a citation sentence to cite and
discuss the paper in the context of the manuscript. This task has been modeled
as an abstractive summarization problem. For example, Xing et al. (2020)
proposed a sequence-to-sequence model that inputs the contextual sentences
in the manuscript and the abstract of the cited paper and outputs a citation
sentence. However, this setup oversimplifies the actual situation of citing a
paper, ignoring the fact that the way a paper is cited can vary depending on
various conditional attributes (Dathathri et al., 2020), such as 1) the citation
intent (Cohan et al., 2019), e.g., introducing the background, describing the
method, or comparing the results, 2) the keywords that motivate the citation of
a particular paper, and 3) relevant sentences in the body of the cited paper that
may contain the details that the author wants to cite. We argue that the citation
generation model trained in this simplified setting cannot adjust the generated
citations according to the conditions specified by the user, which may limit its
application to aid authors in citing papers in real-world scenarios.

Instead of only highlighting a high degree of automation, as in previous stud-
ies (Xing et al., 2020; Ge et al., 2021; Wang et al., 2022), our aim is to develop
a more controllable citation generation system. This system can produce di-
verse citation sentences when users provide different attributes to the citation
sentence they expect the model to generate. The better controllability of our
citation generation system allows users to flexibly fine-tune the generated cita-
tion sentences, thus making it more likely that appropriate citation sentences
will be generated to meet the author’s citation requirements.

1.2.4 Integrated Platform for Joint Retrieval, Summarization

and Citation Generation

It is challenging to benefit researchers’ scientific writing processes when NLP-
driven functions are hosted separately. For example, when writing a scientific
paper, researchers must refer to a literature search engine when they need
to find relevant papers. When finding papers of interest and want to obtain
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highlights, they need to call a document summarization algorithm on another
platform. Finally, when generating citation sentences, they may need to up-
load their manuscript texts and cited papers to another platform to obtain the
cited citation sentences. Such a cumbersome process can prevent users from
using these newly proposed tools.

Therefore, this work aims to build an integrated platform that helps authors
search, read and write scientific literature in an immersive environment. We
will integrate our developed literature search module, extractive summariza-
tion module, and citation text generation module into the platform to help
users search for relevant papers, extract highlights and generate reference text
in a one-stop shop. It can also be easily extended with other NLP-driven fea-
tures.

1.3 Overview of Contributions

The following thesis is cumulative and consists of four open-access publica-
tions corresponding to four sub-topics of our work:

1. Paper Retrieval:

Gu, Nianlong, Yingqiang Gao, and Richard HR Hahnloser. ”Local Citation
Recommendation with Hierarchical-Attention Text Encoder and SciBERT-Based
Reranking.” European Conference on Information Retrieval. Springer, Cham,
2022.

2. Scientific Paper Summarization:

Gu, Nianlong, Elliott Ash, and Richard Hahnloser. ”MemSum: Extractive
Summarization of Long Documents Using Multi-Step Episodic Markov Deci-
sion Processes.” Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2022.

3. Citation Generation:

Gu, Nianlong and Richard Hahnloser. ”Controllable Citation Text Generation.”
arXiv preprint arXiv:2211.07066 (2022).
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4. Integrated Platform for Joint Retrieval, Summarization and Citation
Generation:

Gu, Nianlong and Richard Hahnloser. ”SciLit: A Platform for Joint Scientific
Literature Discovery, Summarization and Citation Generation.” (to be submit-
ted)

We summarize our contribution in these work (and my personal contribution)
as follows.

1.3.1 Paper Retrieval

In this work, we proposed a competitive paper retrieval system built on a
two-stage pipeline for prefetching and reranking, respectively. In the prefetch-
ing phase, we designed a hierarchical attentional text encoder (HAtten) that
can efficiently encode scientific literature into a vector that can be used for
embedding-based K-nearest neighbor search. Using HAtten, we can efficiently
prefetch a small number (e.g., 100) of candidate papers. We then fine-tuned
a SciBERT model that takes as input the concatenation of query text and can-
didate paper text and outputs a score representing the correlation between
the query and the paper. We then used this score to rerank the prefetched
candidate papers. In the evaluation of the entire pipeline, we demonstrated a
balance between speed and accuracy. We also released our code and a large
dataset of scientific papers for further study.

Personal contributions: In this work, I created a new dataset by parsing the
S2ORC corpus, independently designed and implemented the hierarchical at-
tentional text encoder, and fine-tuned the SciBERT model for reranking. I
explored the impact of different training losses on recommendation perfor-
mance. I proposed the use of a combination of positive and negative mining
strategies to extract effective triplet pairs, which helped speed up the training
convergence of the hierarchical attention text encoder. I led the writing of the
paper and wrote the first draft.

Collaborations: At the beginning of the work, I discussed with Dr. Nikola
Nikolov the design of a two-stage pipeline for prefetching and reranking. Af-
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ter I completed the first version of the paper, Yingqiang Gao and Prof. Richard
Hahnloser were involved in revising the paper. In the second version of the
paper, which was the final version accepted in ECIR 2022, Prof. Richard Hahn-
loser was involved in revising the paper.

1.3.2 Scientific Paper Summarization

In this work, we proposed MemSum, a model that considers extractive summa-
rization as a multi-step episodic Markov decision process. Given a document
with a list of sentences, we modeled extractive summarization as a multi-step
process. We iteratively score the sentences in the document and select the
sentence with the highest score into the summary. Our model recalculates
the scores of all remaining unselected sentences at each sentence selection
step based on three state information sources: 1) the text of the sentence, 2)
the global context of the sentence in the document, and 3) the information
about the extraction history, including which sentences have been extracted
and which sentences are remaining.

Our results showed that extraction-history awareness allowed our model to
extract more compact summaries than models without history awareness and
behave more robustly to redundancies in documents. In addition, we encoded
the state information using a lightweight model based on Bi-directional LSTMs
and a shallow attention network, which enabled us to summarize long scien-
tific documents in a memory-efficient way. Our human evaluation results show
that the extractive summaries produced by MemSum are of higher quality than
those of a competitive approach, especially with fewer redundancies.

Personal contributions: In this work, I conducted the design and implementa-
tion of MemSum and trained and tested the model on various datasets, includ-
ing PubMed, arXiv, and GovReport. I also implemented a web interface for
the human evaluation experiments conducted in this paper. I wrote the first
draft and led the revision process until it was accepted.

Collaborations: Prof. Richard Hahnloser and Prof. Elliott Ash participated in
the review and rebuttal phase of the paper during the ACL 2021, AAAI 2022,
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and ACL 2022 (accepted) reviews. We exchanged ideas about improving the
model and what experiments to add when revising the paper.

1.3.3 Citation Generation

In this work, we proposed a controllable citation generation pipeline consisting
of two modules: 1) the Conditional Citation Generation (CCG) module and 2)
the citation attribute suggestion module.

We designed the CCG module to take 1) the contextual texts in the manuscript
and the title and abstract of the cited paper as contextual inputs and 2) the
citation attributes of target citation sentences, including citation intent, rele-
vant keywords, and relevant sentences, as conditional inputs. In addition,
we proposed a SciBERT-based attribute suggestion module that can suggest
candidate keywords, sentences, and the most likely citation intent. With the at-
tribute suggestion module, users can effectively select the suggested attributes
(instead of composing them from scratch) to control the generation process of
the CCG module.

The experimental results showed that our CCG module has good controllabil-
ity over the various citation attributes provided, and our attribute suggestion
module effectively suggests relevant citation attributes.

Personal contributions: I created a new dataset for controllable citation gen-
eration by parsing the S2ORC corpus. In this newly proposed dataset, each
instance contains a thoroughly cleaned citation sentence and complete infor-
mation about the citing paper (where the citation sentence comes from) and
the cited paper (the paper cited by the citation sentence). This dataset can be
used for future studies on controlled citation generation.

Inspired by research on controlled text generation (Keskar et al., 2019; Dathathri
et al., 2020), I designed and implemented the controlled citation generation
module based on BART-large (Lewis et al., 2020). Furthermore, by modify-
ing and fine-tuning the SciBERT model, I designed the citation attribute sug-
gestion module consisting of a keyword extractor, a sentence extractor, and
a citation intent predictor. For comparison with the baseline, PTGEN-Cross
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(Xing et al., 2020), since the authors did not release the original code, I reim-
plemented the citation generation model proposed in Xing et al. (2020). In ad-
dition, I designed and implemented a web platform using React JS to conduct
human evaluation experiments to test the controllability and user satisfaction
of our controllable citation generation pipeline. I led the writing of the paper
and wrote the first draft.

Collaborations: The idea of designing a controlled citation generation system
originated from the discussion with Prof. Richard Hahnloser about how users
could flexibly guide the generated citation text by providing some hints, such
as keywords. Prof. Richard Hahnloser also contributed to the draft’s revi-
sion and provided critical feedback on the design of the human evaluation
platform.

1.3.4 Integrated Platform for Joint Retrieval, Summarization

and Citation Generation

In this system demonstration work, we demonstrated SciLit, a platform for
one-stop searching, summarizing and citing scientific papers. This platform
consists of an NLP backend and a frontend. We implemented in the back-
end the algorithms for paper retrieval, summarization, and citation generation,
based on our work in this thesis. We set up a user-friendly web page in the
frontend using React JS.

We evaluated SciLit in the tasks of scientific literature retrieval, paper sum-
marization, and citation sentence generation, and showcased the generation of
a related-work paragraph. We also open-sourced our database and the algo-
rithms used to build our system.

Personal contributions:

In this work, I designed the overall architecture of the system and then imple-
mented each module independently. I parsed more than 136 million scientific
papers from S2ORC and built a database of scientific papers using SQLite
(Hipp, 2000). To efficiently retrieve papers from this extensive database, I
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developed a two-stage prefetching-ranking search engine following our work
(Gu et al., 2022b). In the prefetching phase, I used an unsupervised sentence
embedding model, Sent2Vec (Pagliardini et al., 2018), to compute document
embeddings and query embeddings, which were then used for embedding-
based K-nearest neighbor search. In the meantime, I built an inverted index
on the database to allow the filtering of papers for a given keyword (key-
word Boolean filtering). During the reordering phase, I fine-tuned the SciBERT
model based on our work (Gu et al., 2022b). Moreover, based on our work on
long document extractive summarization and controllable citation text gener-
ation that are introdcued in this thesis, I implemented paper summarization
and citation generation functions and set up the corresponding services in our
NLP backend.

In addition, I independently implemented the front-end web page and wrote
the first draft of the system demonstration paper.

Collaborations: I worked with Dr. Onur Gökçe to design a prototype inverted
index for the paper search module. At that time, the inverted index was de-
signed to be placed in RAM and could not be used to create indexes for a
large number of scientific papers. This part of the work has been published
in our previous work (Gökçe et al., 2020). Instead, in this work, I improved
the inverted index by building an on-disk hash map using sqlitedict, which
allowed us to index more than 136 million papers without much memory.

In collaboration with Dr. Andrei Plamada and Jonathan Prada, we built a
JSON schema that defines the data structure of how scientific papers should
be stored in our paper database. Prof. Richard Hahnloser supervised the entire
design and implementation phase and participated in revising the paper.
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Chapter 2

Local Citation Recommendation

with Hierarchical-Attention Text

Encoder and SciBERT-Based

Reranking

Originally published as: Gu, Nianlong, Yingqiang Gao, and Richard HR
Hahnloser. ”Local Citation Recommendation with Hierarchical-Attention Text
Encoder and SciBERT-Based Reranking.” European Conference on Informa-
tion Retrieval. Springer, Cham, 2022.

Abstract

The goal of local citation recommendation is to recommend a missing reference
from the local citation context and optionally also from the global context. To
balance the tradeoff between speed and accuracy of citation recommendation
in the context of a large-scale paper database, a viable approach is to first
prefetch a limited number of relevant documents using efficient ranking meth-
ods and then to perform a fine-grained reranking using more sophisticated
models. In that vein, BM25 has been found to be a tough-to-beat approach to
prefetching, which is why recent work has focused mainly on the reranking
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step. Even so, we explore prefetching with nearest neighbor search among text
embeddings constructed by a hierarchical attention network. When coupled
with a SciBERT reranker fine-tuned on local citation recommendation tasks,
our hierarchical Attention encoder (HAtten) achieves high prefetch recall for
a given number of candidates to be reranked. Consequently, our reranker re-
quires fewer prefetch candidates to rerank, yet still achieves state-of-the-art
performance on various local citation recommendation datasets such as ACL-
200, FullTextPeerRead, RefSeer, and arXiv.

keywords: Local citation recommendation; Hierarchical attention; Document
reranking

2.1 Introduction

Literature discovery, such as finding relevant scientific articles, remains chal-
lenging in today’s age of information overflow, largely arising from the expo-
nential growth in both the publication record (Hunter and Cohen, 2006) and
the underlying vocabulary (Herdan, 1960). Assistance to literature discovery
can be provided with automatic citation recommendation, whereby a query
text without citation serves as the input to a recommendation system and a
paper worth citing as its output (Färber and Jatowt, 2020).

Rerank
model

(SciBERT)

Paper score 
(e.g., 0.9)

Nearest
Neighbor
Search

Embedding index
(pre-computed)

Query 
embedding

Query text
Text

Encoder
(HAtten)

Candidate
paper 1

k
2

For each
candidate

Prefetching stage Reranking stage

Figure 2.1: Overview of our two-stage local citation recommendation pipeline.

Citation recommendation can be dealt with either as a global retrieval problem
(Strohman et al., 2007; Nallapati et al., 2008; Bhagavatula et al., 2018) or as a
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local one (He et al., 2010; Huang et al., 2012; Jeong et al., 2020). In global cita-
tion recommendation, the query text is composed of the title and the abstract
of a source paper (Bhagavatula et al., 2018). In contrast, in local citation recom-
mendation, the query consist of two sources of contexts (He et al., 2010; Medić
and Snajder, 2020): 1) the text surrounding the citation placeholder with the
information of the cited paper removed (the local context); and 2) the title and
abstract of the citing paper as the global context. The aim of local citation
recommendation is to find the missing paper cited at the placeholder of the
local context. In this paper we focus on local citation recommendation.

It is important for a local citation recommendation system to maintain a bal-
ance between accuracy (e.g., recall of the target paper among the top K recom-
mended papers) and speed in order to operate efficiently on a large database
containing millions of scientific papers. The speed-accuracy tradeoff can be
flexibly dealt with using a two-step prefetching-reranking strategy: 1) A fast
prefetching model first retrieves a set of candidate papers from the database;
2) a more sophisticated model then performs a fine-grained analysis of scor-
ing candidate papers and reordering them to result in a ranked list of recom-
mendations. In many recent studies (Medić and Snajder, 2020; Dai et al., 2020;
Ebesu and Fang, 2017; Livne et al., 2014), either (TF-IDF) (Ramos et al., 2003) or
BM25 (Robertson and Zaragoza, 2009) were used as the prefetching algorithm,
which were neither fine-tuned nor taken into consideration when evaluating
the recommendation performance.

In this paper, we propose a novel two-stage local citation recommendation sys-
tem (Figure 2.1). In the prefetching stage, we make use of an embedding-based
paper retrieval system, in which a siamese text encoder first pre-computes a
vector-based embedding for each paper in the database. The query text is
then mapped into the same embedding space to retrieve the K nearest neigh-
bors of the query vector. To encode queries and papers of various lengths in
a memory-efficient way, we design a two-layer Hierarchical Attention-based
text encoder (HAtten) that first computes paragraph embeddings and then
computes from the paragraph embeddings the query and document embed-
dings using a self-attention mechanism (Vaswani et al., 2017). In the reranking
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step, we fine-tune the SciBERT (Beltagy et al., 2019) to rerank the candidates
retrieved by the HAtten prefetching model.

In addition, to cope with the scarceness of large-scale training datasets in many
domains, we construct a novel dataset that we distilled from 1.7 million arXiv
papers. The dataset consist of 3.2 million local citation sentences along with
the title and the abstract of both the citing and the cited papers. Extensive
experiments on the arXiv dataset as well as on previous datasets including
ACL-200 (Medić and Snajder, 2020), RefSeer (Medić and Snajder, 2020; Ebesu
and Fang, 2017), and FullTextPeerRead (Jeong et al., 2020) show that our lo-
cal citation recommendation system performs better on both prefetching and
reranking than the baseline and requires fewer prefetched candidates in the
reranking step thanks to higher recall of our prefetching system, which indi-
cates that our system strikes a better speed-accuracy balance.

In total, our main contributions are summarized as follows:

• We propose a competitive retrieval system consisting of a hierarchical-
attention text encoder and a fine-tuned SciBERT reranker.

• In evaluations of the whole pipeline, we demonstrate a well-balanced
tradeoff between speed and accuracy.

• We release our code and a large-scale scientific paper dataset1 for train-
ing and evaluation of production-level local citation recommendation sys-
tems.

2.2 Related Work

Local citation recommendation was previously addressed in He et al. (He
et al., 2010) in which a non-parametric probabilistic model was proposed to
model the relevance between the query and each candidate citation. In recent
years, embedding-based approaches (Kobayashi et al., 2018; Gökçe et al., 2020)
have been proposed to more flexibly capture the resemblance between the

1Our code and data are available at https://github.com/nianlonggu/

Local-Citation-Recommendation.
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query and the target according to the cosine distance or the Euclidean distance
between their embeddings. Jeong et al. (Jeong et al., 2020) proposed a BERT-
GCN model in which they used Graph Convolutional Networks (Kipf and
Welling, 2017) (GCN) and BERT (Devlin et al., 2019) to compute for each paper
embeddings of the citation graph and the query context, which they fed into
a feed-forward network to estimate relevance. The BERT-GCN model was
evaluated on small datasets of only thousands of papers, partly due to the high
cost of computing the GCN, which limited its scalability for recommending
citations from large paper databases. Although recent studies (Medić and
Snajder, 2020; Dai et al., 2020; Ebesu and Fang, 2017; Livne et al., 2014) adopted
the prefetching-reranking strategy to improve the scalability, the prefetch part
(BM25 or TF-IDF) only served for creating datasets for training and evaluating
the reranking model, since the target cited paper was added manually if it
was not retrieved by the prefetch model, i.e. the recall of the target among
the candidate papers was set to 1. Therefore, these recommendation systems
were evaluated in an artificial situation with an ideal prefetching model that
in reality does not exist.

Supervised methods for citation recommendation rely on the availability of
numerous labeled data for training. It is challenging to assemble a dataset for
local citation recommendation due to the need of parsing the full text of pa-
pers to extract the local contexts and finding citations that are also available in
the dataset, which eliminates a large bulk of data. Therefore, existing datasets
on local citation recommendation are usually limited in size. For example,
the ACL-200 (Medić and Snajder, 2020) and the FullTextPeerRead (Jeong et al.,
2020) contain only thousands of papers. One of the largest datasets is RefSeer
used in Medić and Šnajder (Medić and Snajder, 2020), which contains 0.6 mil-
lion papers in total, but this dataset is not up-to-date as it only contains papers
prior to 2015. Although unarXive (Saier and Färber, 2020), a large dataset for
citation recommendation, exists, this dataset does not meet the needs of our
task because: 1) papers in unarXive are not parsed in a structured manner. For
example, the abstract is not separated from the full text, which makes it dif-
ficult to construct a global context in our experiments; 2) the citation context
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is usually a single sentence containing a citation marker, even if the sentence
does not contain sufficient contextual information, e.g., “For details, see [#]”.
These caveats motivate the creation of a novel dataset of high quality.

2.3 Proposed Dataset

We create a new dataset for local citation recommendation using arXiv papers
contained in S2ORC (Lo et al., 2020), a large-scale scientific paper corpus. Each
paper in S2ORC has an identifier of the paper source, such as arXiv or PubMed.
Using this identifier, we first obtain all arXiv papers with available titles and
abstracts. The title and abstract of each paper are required because they are
used as the global context of a query from that paper or as a representation
of the paper’s content when the latter is a candidate to be ranked. From the
papers we then extract the local contexts by parsing those papers for which
the full text is available: For each reference in the full text, if the cited paper
is also available in the arXiv paper database, we replace the reference marker
such as “[#]” or “XXX et al.” with a special token such as “CIT”, and collect 200
characters surrounding the replaced citation marker as the local context. Note
that we “cut off” a word if it lied on the 200-character boundary, following
the setting of the ACL-200 and the RefSeer datasets proposed in Medić and
Šnajder (Medić and Snajder, 2020).

Dataset Number of local contexts Number of
papers publication years

Train Val Test

ACL-200 30, 390 9, 381 9, 585 19, 776 2009 – 2015
FullTextPeerRead 9, 363 492 6, 814 4, 837 2007 – 2017
RefSeer 3, 521, 582 124, 911 126, 593 624, 957 – 2014
arXiv (Ours) 2, 988, 030 112, 779 104, 401 1, 661, 201 1991 – 2020

Table 2.1: Statistics of the datasets for local citation recommendation.

Table 2.1 shows the statistics of the created arXiv dataset and the comparison
with existing datasets used in this paper. As the most recent contexts available
in the arXiv dataset is from April 2020, we use the contexts from 1991 to 2019
as the training set, the contexts from January 2020 to February 2020 as the

20



2.4. Approach

Transformer Encoder Layer 

Multi-Head Pooling

Paragraph tokens

Positional Encoding

Word Embedding

paragraph 
embedding 

(a) Paragraph Encoder.

Multi-Head Pooling

document 
embedding

Type  
of      

Type 
of     

Paragraph  
Encoder

Tokens  
of         

Transformer Encoder Layer 

Paragraph  
Encoder

Tokens  
of         

Type Embedd-
ing Matrix

(b) Document Encoder.

Figure 2.2: The Hierarchical-Attention text encoder (HAtten) used in the prefetching step is com-
posed of a paragraph encoder (a) and a document encoder (b).

validating set, and the contexts from March 2020 to April 2020 as the test set.
The sizes of the arXiv training, validating, and testing sets are comparable to
RefSeer, one of the largest existing datasets, whereas our arXiv dataset contains
a much larger number of papers, and there are more recently published papers
available in the arXiv dataset. These features make the arXiv dataset a more
challenging and up-to-date test bench.

2.4 Approach

Our two-stage telescope citation recommendation system is similar to that of
Bhagavatula et al. (Bhagavatula et al., 2018), composed of a fast prefetching
model and a slower reranking model.

2.4.1 Prefetching Model

The prefetching model scores and ranks all papers in the database to fetch a
rough initial subset of candidates. We designed a representation-focused rank-
ing model (Guo et al., 2020) that computes a query embedding for each input
query and ranks each candidate document according to the cosine similarity
between the query embedding and the pre-computed document embedding.
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The core of the prefetching model is a light-weight text encoder that efficiently
computes the embeddings of queries and candidate documents. As shown in
Figure 2.2, the encoder processes each document or query in a two-level hier-
archy, consisting of two components: a paragraph encoder and a document
encoder.

Paragraph Encoder

For each paragraph pi in the document, the paragraph encoder (Figure 2.2a)
takes as input the token sequence pi = [w1, . . . , wni ] composed of ni tokens
(words) to output the paragraph embedding epi as a single vector. In order
to incorporate positional information of the tokens, the paragraph encoder
makes use of positional encoding. Contextual information is encoded with a
single transformer encoder layer following the configuration in Vaswani et al.
(Vaswani et al., 2017), Figure 2.2a. To obtain a single fixed-size embedding ep

from a variably sized paragraph, the paragraph encoder processes the output
of the transformer encoder layer with a multi-head pooling layer (Liu and Lap-
ata, 2019a) with trainable weights. Let xk ∈ Rd be the output of the transformer
encoder layer for token wk in a paragraph pi. For each head j ∈ {1, . . . , nhead}
in the multi-head pooling layer, we first compute a value vector vj

k ∈ Rd/nhead

as well as an attention score âj
k ∈ R associated with that value vector:

vj
k = Linearj

v(xk), aj
k = Linearj

a(xk), âj
k =

exp aj
k

∑ntoken
m=1 exp aj

m
, (2.1)

where Linear() denotes a trainable linear transformation. The weighted value
vector v̂j then results from the sum across all value vectors weighed by their
corresponding attention scores: v̂j = ∑

npar
m=1 âj

mvj
m. The final paragraph embed-

ding ep is constructed from the weighted value vectors v̂j of all heads by a
ReLU activation (Nair and Hinton, 2010) followed by a linear transformation:

ep = Linearp(ReLU(Concat(v̂1, . . . , v̂nhead))). (2.2)
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Document Encoder

In order to encode documents with two fields given by the title and the ab-
stract, or to encode queries given by three fields: the local context, the title,
and the abstract of the citing paper, we treat each field (local context, title, and
abstract) as a paragraph. For a document of npar paragraphs d = [p1, . . . , pnpar ],
we first compute the embeddings of all paragraphs pi.

Not all fields and paragraphs are treated equally in our document encoder.
To allow the document encoder to distinguish between fields, we introduce
a paragraph type variable, which refers to the field type from which the para-
graph originates. We distinguish between three paragraph types: the title,
the abstract, and the local context. Each type is associated with a learnable
type embedding that has the same dimension as the paragraph embedding.
Inspired by the BERT model (Devlin et al., 2019), we produce a type-aware
paragraph embedding by adding the type embedding of the given paragraph
to the corresponding paragraph embedding (Figure 2.2b). All type-aware para-
graph embeddings are then fed into a transformer encoder layer followed by a
multi-head pooling layer (of identical structures as the ones in the paragraph
encoder), which then results in the final document embedding ed.

Prefetched document candidates

The prefetched document candidates are found by identifying the K nearest
document embeddings to the query embedding in terms of cosine similarity.
The ranking is performed using a brute-force nearest neighbor search among
all document embeddings as shown in Figure 2.1.

2.4.2 Reranking Model

The reranking model performs a fine-grained comparison between a query q
(consisting of a local and a global context) and each prefetched document can-
didate (its title and the abstract). The relevance scores of the candidates con-
stitute the final output of our model. We design a reranker based on SciBERT
(Beltagy et al., 2019), which is a BERT model (Devlin et al., 2019) trained on a
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[CLS] 
encoded output

Figure 2.3: Structure of our SciBERT Reranker.

large-scale corpus of scientific articles. The input of the SciBERT reranker has
the following format: “[CLS] Sentence A [SEP] Sentence B”, where sentence
A is the concatenation of the global context (title and abstract of the citing pa-
per) and the local context of the query, and sentence B is the concatenation of
the title and the abstract of the candidate paper to be scored, Figure 2.3. The
SciBERT-encoded vector for the “[CLS]” token is then fed into a feed-forward
network that outputs the relevance score s ∈ [0, 1] provided via a sigmoid
function.

2.4.3 Loss Function

We use a triplet loss both to train our HAtten text encoder for prefetching
and to finetune the SciBERT reranker. The triplet loss is based on the similar-
ity s(q, d) between the query q and a document d. For the prefetching step,
s(q, d) is given by the cosine similarity between the query embedding vq and
the document embedding vd, both computed with the HAtten encoder. For
the reranking step, s(q, d) is given by the relevance score computed by the
SciBERT reranker. In order to maximize the relevance score between the query
q and the cited document d+ (the positive pair (q, d+)) and to minimize the
score between q and any non-cited document d (a negative pair (q, d )), we
minimize the triplet loss:

L = max[s(q, d )− s(q, d+) + m, 0] (2.3)

where the margin m > 0 sets the span over which the loss is sensitive to the
similarity of negative pairs.

For fast convergence during training, it is important to select effective triplets
for which L in Equation (2.3) is non-zero (Schroff et al., 2015), which is par-
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ticularly relevant for the prefetching model, since for each query there is only
a single positive document but millions of negative documents (e.g., on the
arXiv dataset). Therefore, we employ negative and positive mining strategies
to train our HAtten encoder, described as follows.

Negative mining Given a query q, we use HAtten’s current checkpoint to
prefetch the top Kn candidates excluding the cited paper. The HAtten embed-
ding of these prefetched non-cited candidates have high cosine similarity to the
HAtten embedding of the query. To increase the similarity between the query
and the cited paper while suppressing the similarity between the query and
these non-cited candidates, we use the cited paper as the positive document
and select the negative document from these Kn overly similar candidates.

Positive mining Among the prefetched non-cited candidates, the documents
with objectively high textual similarity (e.g. measured by word overlapping,
such as the Jaccard index (Bhagavatula et al., 2018)) to the query were consid-
ered relevant to the query, even if they were not cited. These textually relevant
candidate documents should have a higher cosine similarity to the query than
randomly selected documents. Therefore, in parallel with the negative mining
strategy, we also select positive documents from the set of textually relevant
candidates and select negative documents by random sampling from the entire
dataset.

The checkpoint of the HAtten model is updated every Niter training iterations,
at which point the prefetched non-cited and the textually relevant candidates
for negative and positive mining are updated as well.

In contrast, when fine-tuning SciBERT for reranking, the reranker only needs
to rerank the top Kr prefetched candidates. This allows for a simpler triplet
mining strategy, which is to select the cited paper as the positive document and
randomly selecting a prefetched non-cited papers as the negative document.
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2.5 Experiments

Implementation Details In the prefetching step, we used as word embeddings
of the HAtten text encoder the pre-trained 200-dimensional GloVe embeddings
(Pennington et al., 2014), which were kept fixed during training. There are 64
queries in a mini-batch, each of which was accompanied by 1 cited paper, 4
non-cited papers randomly sampled from the top Kn = 100 prefetched candi-
dates, and 1 randomly sampled paper from the whole database, which allow
us to do negative and positive mining with the mini-batch as described in Sec-
tion 2.4.3. The HAtten’s checkpoint was updated every Niter = 5000 training
iterations.

In the reranking step, we initialized the SciBERT reranker with the pretrained
model provided in Beltagy et al. (Beltagy et al., 2019). The feed-forward net-
work in Figure 2.3 consisting of a single linear layer was randomly initialized.
Within a mini-batch there was 1 query, 1 cited paper (positive sample), and
62 documents (negative samples) randomly sampled from the top Kr = 2000
prefetched non-cited documents. In the triplet loss function the margin m was
set to 0.1.

We used the Adam optimizer (Kingma and Ba, 2015) with β1 = 0.9 and β2 =

0.999. In the prefetching step, the learning rate was set to α = 1e−4 and the
weight decay to 1e−5, while in the reranking step these were set to 1e−5 and to
1e−2 for fine-tuning SciBERT, respectively. The models were trained on eight
NVIDIA GeForce RTX 2080 Ti 11GB GPUs and tested on two Quadro RTX
8000 GPUs.

Evaluation Metrics We evaluated the recommendation performance using the
Mean Reciprocal Rank (MRR) (Voorhees, 1999) and the Recall@K (R@K for
short), consistent with previous work (Medić and Snajder, 2020; Färber and
Sampath, 2020; Jeong et al., 2020). The MRR measures the reciprocal rank of
the actually cited paper among the recommended candidates, averaged over
multiple queries. The R@K evaluates the percentage of the cited paper appear-
ing in the top K recommendations.

Baselines In the prefetching step, we compare our HAtten with the following
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baselines: BM25, Sent2vec (Pagliardini et al., 2018), and NNSelect (Bhagavat-
ula et al., 2018). BM25 was used as the prefetching method in previous works
(Medić and Snajder, 2020; Ebesu and Fang, 2017; Livne et al., 2014). Sent2vec
is an unsupervised text encoder which computes a text embedding by aver-
aging the embeddings of all words in the text. We use the 600-dim Sent2vec
pretrained on Wikipedia. NNSelect (Bhagavatula et al., 2018) computes text
embeddings also by averaging, and the trainable parameters are the magni-
tudes of word embeddings that we trained on each dataset using the same
training configuration as our HAtten model.

In the reranking step, we compare our fine-tuned SciBERT reranker with the
following baselines: 1) a Neural Citation Network (NCN) with an encoder-
decoder architecture (Ebesu and Fang, 2017; Färber et al., 2020); 2) DualEnh
and DualCon (Medić and Snajder, 2020) that score each candidate using both
semantic information and bibliographic information and 3) BERT-GCN (Jeong
et al., 2020). Furthermore, to analyze the influence on ranking performance
of diverse pretraining corpuses for BERT, we compared our SciBERT reranker
with a BERT reranker that was pretrained on a non-science specific corpus
(Devlin et al., 2019) and then fine-tuned on the reranking task.

For a fair performance comparison of our reranker with those of other works,
we adopted the prefetching strategies from each of these works. On ACL-
200 and RefSeer, we tested our SciBERT reranker on the test sets provided in
Medić and Šnajder (Medić and Snajder, 2020). For each query in the test set,
we prefetched n (n = 2000 for ACL-200 and n = 2048 for RefSeer) candidates
using BM25, and manually added the cited paper as candidate if it was not
found by BM25. In other words, we constructed our test set using an “oracle-
BM25” with R@n = 1. On the FullTextPeerRead dataset, we used our SciBERT
reranker to rank all papers in the database without prefetching, in line with
the setting in BERT-GCN (Jeong et al., 2020). On our newly proposed arXiv
dataset, we fetched the top 2000 candidates for each query in the test set using
the “oracle-BM25” as introduced above.
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Dataset Model
avg.

prefetch
time (ms)

MRR R@10 R@100 R@200 R@500 R@1000 R@2000

ACL-200

BM25 9.9± 20.1 0.138 0.263 0.520 0.604 0.712 0.791 0.859
Sent2vec 1.8± 19.5 0.066 0.127 0.323 0.407 0.533 0.640 0.742
NNSelect 1.8± 3.8 0.076 0.150 0.402 0.498 0.631 0.722 0.797
HAtten 2.7± 3.8 0.148* 0.281* 0.603* 0.700* 0.803* 0.870* 0.924*

FullText-
PeerRead

BM25 5.1± 18.6 0.185* 0.328* 0.609 0.694 0.802 0.877 0.950
Sent2vec 1.7± 19.6 0.121 0.215 0.462 0.561 0.694 0.794 0.898
NNSelect 1.7± 4.8 0.130 0.255 0.572 0.672 0.790 0.869 0.941
HAtten 2.6± 4.9 0.167 0.306 0.649* 0.750* 0.870* 0.931* 0.976*

RefSeer

BM25 216.2± 84.9 0.099 0.189 0.398 0.468 0.561 0.631 0.697
Sent2vec 6.0± 20.9 0.061 0.111 0.249 0.306 0.389 0.458 0.529
NNSelect 4.3± 5.5 0.044 0.080 0.197 0.250 0.331 0.403 0.483
HAtten 6.2± 7.3 0.115* 0.214* 0.492* 0.589* 0.714* 0.795* 0.864*

arXiv

BM25 702.2± 104.7 0.118 0.222 0.451 0.529 0.629 0.700 0.763
Sent2vec 11.3± 13.6 0.072 0.131 0.287 0.347 0.435 0.501 0.571
NNSelect 6.9± 4.6 0.042 0.079 0.207 0.266 0.359 0.437 0.520
HAtten 8.0± 4.5 0.124* 0.241* 0.527* 0.619* 0.734* 0.809* 0.871*

Table 2.2: Prefetching performance. For Tables 2.2-2.4, the asterisks “*” indicate statistical
significance (p < 0.05) in comparison with the closest baseline in a t-test. The red color indicates
a large (> 0.8) Cohen’s d effect size (Cohen, 2013).

2.6 Results and Discussion

In this section, we first present the evaluation results of our prefetching and
reranking models separately and compare them with baselines. Then, we eval-
uate the performance of the entire prefetching-reranking pipeline, and analyze
the influence of the number of prefetched candidates to be reranked on the
overall recommendation performance.

2.6.1 Prefetching Results

Our HAtten model significantly outperformed all baselines (including the
strong baseline BM25, Table 2.2) on the ACL-200, RefSeer and the arXiv datasets,
evaluated in terms of MRR and R@K. We observed that, first, for larger K,
such as K = 200, 500, 1000, 2000, the improvement of R@K with respect to
the baselines is more pronounced on all four datasets, where the increase
is usually larger than 0.1, which means that the theoretical upper bound of
the final reranking recall will be higher when using our HAtten prefetching
system. Second, the improvements of R@K on large datasets such as Ref-
Seer and arXiv are more prominent than on small datasets such as ACL-200
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Model ACL-200 FullTextPeerRead RefSeer arXiv
MRR R@10 MRR R@10 MRR R@10 MRR R@10

NCN - - - - 0.267 0.291 - -
DualCon 0.335 0.647 - - 0.206 0.406 - -
DualEnh 0.366 0.703 - - 0.280 0.534 - -
BERT-GCN - - 0.418 0.529 - - - -

BERT-
Reranker 0.482 0.736 0.458 0.706 0.309 0.535 0.226 0.399

SciBERT-
Reranker 0.531* 0.779* 0.536* 0.773* 0.380* 0.623* 0.278* 0.475*

Table 2.3: Comparison of reranking performance on four datasets.

and FullTextPeerRead, which fits well with the stronger need of a prefetching-
reranking pipeline on large datasets due to the speed-accuracy tradeoff.

The advantage of our HAtten model is also reflected in the average prefetching
time. As shown in Table 2.2, the HAtten model shows faster prefetching than
BM25 on large datasets such as RefSeer and arXiv. This is because for HAt-
ten, both text encoding and embedding-based nearest neighbor search can be
accelerated by GPU computing, while BM252 benefits little from GPU acceler-
ation because it is not vector-based. Although other embedding-based base-
lines such as Sent2vec and NNSelect also exhibit fast prefetching, our HAtten
prefetcher has advantages in terms of both speed and accuracy.

2.6.2 Reranking Results

As shown in Table 2.3, the SciBERT reranker significantly outperformed previ-
ous state-of-the-art models on the ACL-200, the RefSeer, and the FullTextPeer-
Read datasets. We ascribe this improvement to BERT’s ability of capturing
the semantic relevance between the query text and the candidate text, which
is inherited from the “next sentence prediction” pretraining task that aims to
predict if two sentences are consecutive. The SciBERT reranker also performed
significantly better than its BERT counterpart, suggesting that large language
models pretrained on scientific papers’ corpus are advantageous for citation
reranking.

2We implemented the Okapi BM25 (Manning et al., 2008), with k = 1.2, b = 0.75.
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Dataset Recommendation Pipeline Number of reranked candidates
Prefetch Rerank 100 200 500 1000 2000

ACL-200 BM25 SciBERTBM25 0.457 0.501 0.549 0.577 0.595
HAtten SciBERTHAtten 0.513* 0.560* 0.599* 0.619* 0.633*

FullText-
PeerRead

BM25 SciBERTBM25 0.527 0.578 0.639 0.680 0.720
HAtten SciBERTHAtten 0.586* 0.651* 0.713* 0.739* 0.757*

RefSeer BM25 SciBERTBM25 0.305 0.332 0.365 0.380 0.383
HAtten SciBERTHAtten 0.362* 0.397* 0.428* 0.443* 0.454*

arXiv BM25 SciBERTBM25 0.333 0.357 0.377 0.389 0.391
HAtten SciBERTHAtten 0.374* 0.397* 0.425* 0.435* 0.439*

Table 2.4: The performance of the entire prefetching-reranking pipeline, measured in terms of R@10
of the final reranked document list. We varied the number of prefetched candidates for reranking.
For the RefSeer and arXiv datasets, we evaluated performance on a subset of 10K examples from
the test set due to computational resource limitations.

2.6.3 Performance of entire Recommendation Pipeline

The evaluation in Section 2.6.2 only reflects the reranking performance because
the prefetched candidates are obtained by an oracle-BM25 that guarantees in-
clusion of the cited paper among the prefetched candidates, even though such
an oracle prefetching model does not exist in reality. Evaluating recommenda-
tion systems in this context risks overestimating the performance of the rerank-
ing part and underestimating the importance of the prefetching step. To better
understand the recommendation performance in real-world scenarios, we com-
pared two pipelines: 1) BM25 prefetching + SciBERT reranker fine-tuned on
BM25-prefetched candidates, denoted as SciBERTBM25; 2) HAtten prefetching
+ SciBERTHAtten reranker fine-tuned on HAtten-prefetched candidates. We
evaluated recommendation performance by R@10 of the final reranked docu-
ment list and monitored the dependence of R@10 on the number of prefetched
candidates for reranking.

As shown in Table 2.4, the HAtten-based pipeline achieves competitive per-
formance, even when compared with the oracle prefetching model in Section
2.6.2. In particular, on the FullTextPeerRead dataset, using our HAtten-based
pipeline, we only need to rerank 100 prefetched candidates to outperform the
BERT-GCN model (Table 2.3) that reranked all 4.8k papers in the database.

Compared to the BM25-based pipeline, our HAtten-based pipeline achieves

30



2.7. Conclusion

100200 500 1000 1500 2000
Number of reranked candidates Kr

0
2
4
6
8

10
12

av
g.

 re
ra

nk
in

g
 ti

m
e 

(s
)

0.7±0.3
1.4±0.2

3.4±0.3
6.7±0.4

13.4±0.5

Figure 2.4: The reranking time of the SciBERT reranker linearly increases with the number of
reranked candidates Kr, tested on arXiv. In comparison, the prefetching time is invariant of Kr, as
the prefetcher always scores and ranks all documents in the database to fetch the candidates to be
reranked.

significantly higher R@10 for any given number of prefetched candidates. Our
reranker needs to rerank only 200 to 500 candidates to match the recall score of
the BM25-based pipeline needing to rerank 2000 candidates. For large datasets
like RefSeer and arXiv, such improvements are even more pronounced.

Our pipeline achieves a much higher throughput. For example, on the arXiv
dataset, in order to achieve an overall R@10=0.39, the BM25-based pipeline
takes 0.7 s (Table 2.2) to prefetch 2000 candidates and it takes another 13.4 s
(Figure 2.4) to rerank them, which in total amounts to 14.1 s. In contrast, the
HAtten-based pipeline only takes 8 ms to prefetch 200 candidates and 1.4 s to
rerank them, which amounts to 1.4 s. This results in a 90% reduction of overall
recommendation time achieved by our pipeline.

These findings provide clear evidence that a better-performing prefetching
model is critical to a large-scale citation recommendation pipeline, as it allows
the reranking model to rerank fewer candidates while maintaining recommen-
dation performance, resulting in a better speed-accuracy tradeoff.

2.7 Conclusion

The speed-accuracy tradeoff is crucial for evaluating recommendation systems
in real-world settings. While reranking models have attracted increasing atten-
tion for their ability to improve recall and MRR scores, in this paper we show
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that it is equally important to design an efficient and accurate prefetching sys-
tem. In this regard, we propose the HAtten-SciBERT recommendation pipeline,
in which our HAtten model effectively prefetches a list of candidates with sig-
nificantly higher recall than the baseline, which allows our fine-tuned SciBERT-
based reranker to operate on fewer candidates with better speed-accuracy
tradeoff. Furthermore, by releasing our large-scale arXiv-based dataset, we
provide a new testbed for research on local citation recommendation in real-
world scenarios.
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Chapter 3

MemSum: Extractive

Summarization of Long Documents

Using Multi-Step Episodic Markov

Decision Processes

Originally published as: Gu, Nianlong, Elliott Ash, and Richard Hahnloser.
”MemSum: Extractive Summarization of Long Documents Using Multi-Step
Episodic Markov Decision Processes.” Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers).
2022.

Abstract

We introduce MemSum (Multi-step Episodic Markov decision process extrac-
tive SUMmarizer), a reinforcement-learning-based extractive summarizer en-
riched at each step with information on the current extraction history. When
MemSum iteratively selects sentences into the summary, it considers a broad
information set that would intuitively also be used by humans in this task: 1)
the text content of the sentence, 2) the global text context of the rest of the
document, and 3) the extraction history consisting of the set of sentences that
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Figure 3.1: We modeled extractive summarization as a multi-step iterative process of scoring and
selecting sentences. si represents the ith sentence in the document D.

have already been extracted. With a lightweight architecture, MemSum ob-
tains state-of-the-art test-set performance (ROUGE) in summarizing long doc-
uments taken from PubMed, arXiv, and GovReport. Ablation studies demon-
strate the importance of local, global, and history information. A human
evaluation confirms the high quality and low redundancy of the generated
summaries, stemming from MemSum’s awareness of extraction history.

keywords: Long Document Extractive Summarization; Reinforcement Learn-
ing

3.1 Introduction

Automatic text summarization is the task of automatically summarizing a long
document into a relatively short text while preserving most of the information
(Tas and Kiyani, 2007). Text summarization methods can be categorized into
abstractive and extractive summarization (Gambhir and Gupta, 2017; Nenkova
and McKeown, 2012). Given a document d consisting of an ordered list of N
sentences, extractive summarization aims to pick up M (M≪N) sentences as the
summary of the document. The extracted summaries tend to be both grammat-
ically and semantically more reliable than abstractive summaries (Liu* et al.,
2018; Liu and Lapata, 2019a; Luo et al., 2019; Liao et al., 2020), as they are
directly selected from the source text.

Extractive summarization is usually modeled as two sequential phases (Zhou
et al., 2018): 1) sentence scoring and 2) sentence selection. In the sentence scoring
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phase, an affinity score is computed for each sentence by neural networks such
as bidirectional RNNs (Dong et al., 2018; Narayan et al., 2018; Luo et al., 2019;
Xiao and Carenini, 2019) or BERT (Zhang et al., 2019; Liu and Lapata, 2019b).
In the sentence selection phase, sentences are selected by either i) predicting a
label (1 or 0) for each sentence based on its score, and selecting sentences with
label 1 (Zhang et al., 2019; Liu and Lapata, 2019b; Xiao and Carenini, 2019), or
ii) ranking sentences based on their scores and selecting the top K sentences
as the summary (Narayan et al., 2018), or iii) sequentially sampling sentences
without replacement, where the normalized scores of the remaining sentences
are used as sampling likelihoods (Dong et al., 2018; Luo et al., 2019).

In these approaches, sentence scores are generally not updated based on the
current partial summary of previously selected sentences, indicating a lack of
knowledge of extraction history. We deem extractive summarizers that are not
aware of the extraction history to be susceptible to redundancy in a document,
because they will repeatedly add sentences with high scores to a summary,
regardless of whether similar sentences have been selected before. And, re-
dundancy leads to performance decreases evaluated by ROUGE F1.

In this paper, we propose to model extractive summarization as a multi-step
episodic Markov Decision Process (MDP). As shown in Figure 3.1, at each time
step in an episode, we define a sentence state composed of three sub-states: 1)
the local content of the sentence, 2) the global context of the sentence within
the document, and 3) information on the extraction history, including the pre-
viously selected set of unordered sentences and the remaining sentences. At
each time step, the policy network (agent) takes the current sentence state as
input and produces scores used to select an action of either stopping the ex-
traction process or selecting one of the remaining sentences into the candidate
summary. Unlike one-step episodic MDP-based models (Narayan et al., 2018;
Dong et al., 2018; Luo et al., 2019) that encode the state information only once
at the beginning of the episode, in our multi-step policy, the agent updates at
each time step the extraction history before selecting an action. Such a step-
wise state-updating strategy enables the agent to consider the content of the
partial summary when selecting a sentence.

35



3. MemSum: Extractive Summarization of Long Documents Using Multi-Step

Episodic Markov Decision Processes

To efficiently encode local and global sentence states, we design an extraction
agent based on LSTM networks (Hochreiter and Schmidhuber, 1997). To en-
code the extraction history and to select actions, we use a reduced number of
attention layers (Vaswani et al., 2017) of relatively low dimensionality. These
choices enable our model to be easily trainable and to summarize long doc-
uments such as scientific papers (Cohan et al., 2018; Huang et al., 2021) or
reports (Huang et al., 2021).

The contributions of our work are as follows:

• We propose to treat extractive summarization as a multi-step episodic
MDP that is aware of the extraction history.

• We show that extraction-history awareness allows our model to extract
more compact summaries than models without history awareness and
behave more robustly to redundancies in documents.

• Our model outperforms both extractive and abstractive summarization
models on PubMed, arXiv (Cohan et al., 2018), and GovReport (Huang
et al., 2021) datasets.

• Finally, human evaluators rate the MemSum summaries to be of higher
quality than those from a competitive approach, especially by virtue of
lower redundancy1.

3.2 Related Work

Extraction history awareness was previously considered in NeuSum (Zhou
et al., 2018), where a GRU encoded previously selected sentences into a hid-
den vector that then was used to update the scores of the remaining sentences
to bias the next selection. NeuSum contains no stopping mechanism and there-
fore it can only extract a fixed number of sentences, which likely is sub-optimal.
Also, the potential benefits of extraction history have not been quantified and
so the idea remains unexplored to a large extent.

1Our code and data are available at https://github.com/nianlonggu/MemSum
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Recently, BERT-based extractors such as MatchSum (Zhong et al., 2020) achieved
SOTA performance in extractive summarization of relatively short documents
from the CNN/DM (Hermann et al., 2015) dataset. However, the quadratic
computational and memory complexities (Huang et al., 2021) of such mod-
els limit their scalability for summarizing long documents with thousands of
tokens, which is common for scientific papers and government reports. Al-
though large pre-trained transformers with efficient attention (Huang et al.,
2021) have been adapted for abstractive summarization of long documents,
we believe that extractive summarization is more faithful in general, which is
why we chose an extractive approach.

3.3 Model

This section outlines the multi-step episodic MDP policy for extractive sum-
marization.

3.3.1 Policy Gradient Methods

In an episodic task with a terminal state (i.e. end of summary), policy gradient
methods aim to maximize the objective function J(θ) = Eπθ

[R0], where the
return Rt = ∑T

k=t+1 rk is the cumulative reward from time t+ 1 until the end of
the episode when the summary is complete. In applications of RL to extractive
summarization, the instantaneous reward rt is zero except at the end of the
episode when the final reward r is computed according to Equation (3.1), so
Rt ≡ R0 = r. The reward r is usually expressed as (Dong et al., 2018):

r =
1
3
(ROUGE-1 f + ROUGE-2 f + ROUGE-L f ) (3.1)

According to the REINFORCE algorithm (Williams, 1992), the policy gradient
is defined as:

∇J(θ) = Eπ[Rt∇ log π(At|St, θ)], (3.2)

where π(At|St, θ) denotes the likelihood that at time step t the policy πθ selects
action At given the state St. With α as the learning rate, the parameter update
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rule is (Sutton and Barto, 2018):

θt+1 ← θt + αRt∇ log π(At|St, θt), (3.3)

3.3.2 Multi-step Episodic MDP Policy

Different from one-step episodic MDP policies (Narayan et al., 2018; Dong
et al., 2018; Luo et al., 2019) that extract the entire summary via a single action,
we define an episode, i.e., the generation of a summary, consisting of multiple
time steps. At each time step t, corresponding to extracting sentence number
t, the action At is either to stop extraction or to select a sentence sat from the
remaining sentences. The agent’s policy is:

π(At|St, θt) = p(stop|St, θt)p(at|stop, St, θt)

p(at|stop, St, θt) =


uat (St,θt)

∑j∈It uj(St,θt)
if stop = false

1
|It| if stop = true,

(3.4)

where It denotes the index set of remaining sentences at time step t. If the
agent does not stop, it first computes a score uj for each remaining sentence
and samples a sentence sat according to the probability distribution of normal-
ized scores. When the agent stops the extraction, no sentence is selected and
the conditional likelihood p(at|stop=false, St, θt) is set to 1

|It| (where |It| rep-
resents the number of remaining sentences at time t), which is independent
of the policy parameters to prohibit the gradient from being passed to the
policy parameters via the conditional likelihood. After calculating the reward
according to Equation (3.1), the policy parameters are updated according to
Equation (3.3) (for all time steps).

3.3.3 Policy Network

The state St in Equation (3.4) is designed to be informative on: 1) the local
content of the sentence, 2) the global context of the sentence within the docu-
ment, and 3) the current extraction history. To encode these three properties
in the state, we use a local sentence encoder, a global context encoder, and
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an extraction history encoder, respectively. Subsequently, the state is mapped
by an extractor to an output score for each of the remaining sentences and
the extraction stop signal. The overall framework of our model is depicted in
Figure 3.2.

In the Local Sentence Encoder (LSE), ordered words (w1, w2, . . . wM) in a sen-
tence si are first mapped onto word embeddings using a word embedding
matrix. Subsequently, a Nl-layer bi-directional LSTM (Hochreiter and Schmid-
huber, 1997) transforms the word embeddings and maps them onto sentence
embeddings lsi via a multi-head pooling layer (MHP) (Liu and Lapata, 2019a).

The Global Context Encoder (GCE) consists of a Ng-layer bi-LSTM that takes
the L local sentence embeddings (ls1 , ls2 , . . . lsL) as inputs and produces for each
sentence si an embedding gsi that encodes global contextual information such
as the sentence’s position in the document and information on neighboring
sentences.

The Extraction History Encoder (EHE) encodes the extraction history infor-
mation and produces the extraction history embedding hsr

i
for each remaining

sentence sr
i . The EHE is composed of a stack of Nh identical layers. Within

one layer, there are two multi-head attention sublayers, as contained in the
transformer decoder in Vaswani et al. (2017). One sublayer is used to perform
multi-head self-attention (MHA) among the local embeddings of the remain-
ing sentences, so that each remaining sentence can capture the context pro-
vided by other remaining sentences. The other attention sublayer is used to
perform multi-head attention over the embeddings of extracted sentences to
enable each remaining sentence to attend to all the extracted sentences. The
output of the two attention sublayers, one for each remaining sentence, cap-
tures the contextual information of both extracted and remaining sentences.
The final output of the Nth

h layer of the EHE constitutes the extraction history
embedding, one for each remaining sentence.

There is no positional encoding and the EHE produces the extraction history
embeddings non-autoregressively by attending to both precedent and subse-
quent positions. Consequently, the extraction history embeddings hsr

i
for the
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remaining sentences are invariant to the order of the previously selected sen-
tences. We believe that the sequential information of previously selected sen-
tences is not crucial for reducing redundancy and for deciding whether to stop
extraction or not.

The Extractor computes the score of each remaining sentence and outputs
an extraction stop signal. As input to the extractor, we form for each of the
remaining sentences sr

i an aggregated embedding by concatenating the local
sentence embedding lsr

i
, the global context embedding gsr

i
, and the extraction

history embedding hsr
i
. As shown in Figure 3.2, to produce the score usr

i
, the

concatenated embedding of remaining sentence sr
i is passed to fully connected

layers with ReLU activation and then projected to a scalar by a Linear-1 layer
followed by a sigmoid function. Note that the same fully connected layers are
applied identically to all remaining sentences. We deem that the extractor can
learn to stop extraction based on the remaining sentences’ states. Therefore,
we apply an MHP to the last hidden vectors of all remaining sentences to
output a single vector. This vector is then passed to a linear layer with a
sigmoid function, producing a stopping probability pstop.

3.3.4 Training

We train the parameterized policy network according to the update rule in
Equation (3.3). At each training iteration, an episode is sampled to compute
the final return r and the action probabilities π(At|St, θt) for all time steps t.
An example episode with T extracted sentences looks like: (S0, sa0 , . . . , ST−1, saT−1 , ST, Astop, r),
where St represents the concatenated state information introduced in Section
3.3.3, sat represents the selection of sentence at, Astop represents the extraction
stops at the final time step T, and r is the reward as defined in Equation (3.1).
To encourage the agent to select compact summaries, we multiply the final
reward r by a length penalty term 1/(T + 1) (Luo et al., 2019). Consequently,
the return Rt ≡ r

T+1 .

Algorithm 1 summarizes the training procedure of MemSum. We initialize the
extraction history embeddings to 0, because at t = 0 no sentences have been
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Algorithm 1 The training algorithm.
Parameters: learning rate α

1: for each document-summary pair (Di, Gi) do
2: LSE outputs local sent. embed ls1 ,. . . ,lsL

3: GCE outputs global context embed gs1 ,. . . ,gsL

4: Sample an episode S0,sa0 ,. . . ,ST−1,saT−1 , ST,Astop,r from the high-
ROUGE episodes set Ep of document Di

5: for each time step: t = 0,1,...,T: do
6: if t > 0 then
7: EHE outputs extraction history embed hsr

1
,. . . ,hsr

L−Et
for remain-

ing sentences
8: else
9: Initialize hsr

1
,...,hsr

L−E0
to 0

10: Extractor outputs scores usr
1
,...,usr

L−Et
for remaining sentences and

outputs pstop
11: Compute the action probability π(At|St, θ) according to Equation

(3.4)
12: θ← θ+ α r

T+1∇ log π(At|St, θ)

extracted. Et represents the number of sentences that have been extracted into
the summary up to time step t. Following the strategy in Narayan et al. (2018)
and Mohsen et al. (2020), instead of sampling an episode following the current
policy π(·|·, θt), we sample an episode from a set Ep of episodes with high
ROUGE scores, which enables the agent to quickly learn from optimal policies
and to rapidly converge. Details on creating a set of high-ROUGE episodes for
training are described in Appendix E.

3.4 Experiments

In this section, we report implementation details of our model and describe
the datasets used for training and for evaluation.

Datasets. The documents to be summarized in the PubMed and arXiv datasets
(Cohan et al., 2018) are the full bodies of scientific papers and the gold sum-
maries are the corresponding abstracts. Zhong et al. (2020) proposed a trun-
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Datasets

avg. doc.
length

avg. summ.
length

# of doc.-summ.
pairs

# of
words

# of
sent.

# of
words

# of
sent. Train Valid Test

PubMed 2,730 88 181 7 116,937 6,633 6,658
arXiv 5,206 206 238 10 202,880 6,436 6,440

PubMedtrunc 408 13 185 7 83,233 4,676 5,025
GovReport 7,932 307 501 18 17,517 974 973
CNN/DM 692 35 49 4 - - -

Table 3.1: An overview of datasets used in this paper. We count only strings composed of letters
and numbers for # of words.

cated version of the PubMed dataset (PubMedtrunc for simplicity) by defining
a doument as the introduction section of a paper. The GovReport dataset
(Huang et al., 2021) contains U.S. government reports with gold summaries
written by experts. Except PubMedtrunc, all the other datasets contain signifi-
cantly longer documents than the popular dataset CNN/DM (Table 3.1).

Baselines. Extractive baselines include Lead (directly using the first several
sentences as the summary) (Gidiotis and Tsoumakas, 2020), SummaRuNNer
(Nallapati et al., 2017), Atten-Cont (Xiao and Carenini, 2019), Sent-CLF and
Sent-PTR (Pilault et al., 2020), MatchSum (Zhong et al., 2020), and the NeuSum
model (Zhou et al., 2018) that we trained on our datasets.

Abstractive summarization models include PEGASUS (Zhang et al., 2020), Big-
Bird (Zaheer et al., 2020), Dancer (Gidiotis and Tsoumakas, 2020), and Hepos
(Huang et al., 2021) that achieved the state-of-the-art in long document sum-
marization using a large-scale pretrained BART model (Lewis et al., 2020)
with memory-efficient attention encoding schemes including Locality Sensi-
tive Hashing (Kitaev et al., 2020) (Hepos-LSH) and Sinkhorn attention (Hepos-
Sinkhorn). We also present the performance of the oracle extraction model
based on the greedy approach (Nallapati et al., 2017) which sequentially se-
lects from the document the sentence that maximally improves the average of
R-1 and R-2 of selected sentences.

Implementation Details. We computed local sentence embeddings using
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pretrained Glove word embeddings (Pennington et al., 2014) of dimension
d = 200, keeping the word embeddings fixed during training. For the LSE, we
used Nl = 2 bi-LSTM layers and for the GCE Ng = 2. For the EHE, we used
Nh = 3 attention layers, and we set the number of attention heads to 8 and the
dimension of the feed-forward hidden layer to 1024; during training we set the
dropout rate to 0.1. The extractor consisted of 2 fully-connected hidden layers
with output dimensions 2d and d, respectively.

We trained our model using the Adam optimizer with β1 = 0.9, β2 = 0.999
(Kingma and Ba, 2015), fixed learning rate α = 1e−4, and weight decay 1e−6.
The training was stopped when the validation performance started to degrade.
During validating and testing, the agent extracted sentences in a deterministic
way: after computing the scores usr

i
for the remaining sentences and the stop

likelihood pstop, the agent stopped the extraction if pstop ≥ pthres or if the max-
imum admissible number Nmax of extracted sentences was reached; otherwise,
the agent selected the sentence with the largest score. The model was trained
on eight RTX 2080 Ti GPUs.

On the validating datasets we selected the best checkpoint of each model and
determined the optimal Nmax and stopping criterion p∗thres. For Pubmed, arXiv,
Pubmedtrunc, and GovReport, Nmax was set to 7, 5, 7, and 22, and p∗thres was set
to 0.6, 0.5, 0.8, and 0.6, respectively. For the detailed selection procedure of the
optimal stopping threshold, see Appendix D. Information on reproducibility
is available in Appendix I.

Evaluation. We evaluated the performance of our model using F1 ROUGE
(Lin, 2004), including ROUGE-1,2, and L for measuring unigram, bigram, and
longest common subsequence. We also conducted human evaluation in Sec-
tion 3.5.4.

3.5 Results and Discussion

Here we present the results on various extractive summarization tasks and
analyze the contribution of different modules via ablation studies.
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Model PubMed arXiv

R-1 R-2 R-L R-1 R-2 R-L
ORACLE 61.99 34.95 56.76 60.00 30.60 53.03
Extractive summarization baselines
Lead-10 37.45 14.19 34.07 35.52 10.33 31.44
SummaRuNNer 43.89 18.78 30.36 42.81 16.52 28.23
Atten-Cont 44.85 19.70 31.43 43.62 17.36 29.14
Sent-CLF 45.01 19.91 41.16 34.01 8.71 30.41
Sent-PTR 43.30 17.92 39.47 42.32 15.63 38.06
NeuSum 47.46 21.92 42.87 47.49 21.56 41.58
Abstractive summarization baselines
PEGASUS 45.97 20.15 41.34 44.21 16.95 38.83
BigBird 46.32 20.65 42.33 46.63 19.02 41.77
Dancer 46.34 19.97 42.42 45.01 17.60 40.56
Hepos-Sinkhorn 47.93 20.74 42.58 47.87 20.00 41.50
Hepos-LSH 48.12 21.06 42.72 48.24 20.26 41.78
MemSum (ours) 49.25* 22.94* 44.42* 48.42 20.30 42.54*

Table 3.2: Results on the PubMed and arXiv test sets. “*” indicates that they are statistically
significant in comparison to the closest baseline with a 95% bootstrap confidence interval estimated
by the ROUGE script2.

3.5.1 Results Comparison

By comparing with extractive baselines on the PubMed and arXiv datasets, we
observed that models utilizing extraction history, such as NeuSum and our
MemSum, perform significantly better than other models, revealing the effec-
tiveness of the extraction history. MemSum also significantly outperformed
NeuSum, suggesting a better utilization of extraction history, which we ascribed
to the following factors: 1) In MemSum, we treat stopping extraction also as
an action and train the policy network to output a stopping probability. There-
fore, MemSum is able to automatically stop extracting at an optimal time step
based on extraction history, while NeuSum can only extract a predefined num-
ber of sentences; 2) With the policy gradient method REINFORCE we can train
MemSum to maximize the ROUGE score directly, while in NeuSum the loss
was set to the KL-divergence between the model-computed sentence scores
and the ROUGE score gains at each step, which is less intuitive. We further
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Model PubMedtrunc GovReport

R-1 R-2 R-L R-1 R-2 R-L
ORACLE 45.12 20.33 40.19 75.56 45.91 72.51
Extractive summarization baselines
Lead 37.58 12.22 33.44 50.94 19.53 48.45
MatchSum 41.21 14.91 36.75 - - -
NeuSum - - - 58.94 25.38 55.80
Abstractive summarization baselines
Hepos-LSH - - - 55.00 21.13 51.67
Hepos-Sinkhorn - - - 56.86 22.62 53.82
MemSum (ours) 43.08* 16.71* 38.30* 59.43* 28.60* 56.69*

Table 3.3: Results on PubMedtrunc and GovReport.

0 5 10 15 20 25 30
Extracted Sentence Position

0

10

%
 o

f s
en

te
nc

e
 p

os
iti

on ORACLE
MEMSUM (ours)
MatchSum

Figure 3.3: The position distribution of extracted sentences in the PubMedtrunc dataset.

compare MemSum with NeuSum via human evaluation in Section 3.5.4.

We observed that the ROUGE performance on the PubMedtrunc dataset is sig-
nificantly lower than that on the PubMed dataset, with a 16.87 drop in R-1 for
the extractive oracle and a 6.23 drop in R-1 for MemSum, indicating that the
introduction section is not sufficient to generate summaries close to the ground truth
(abstracts). Even so, our model still significantly outperformed MatchSum on
PubMedtrunc, and we attribute this improvement to the fact that MatchSum
truncates the introduction section further to 512 tokens because it needs to
compute document embeddings using Bert. Consequently, MatchSum extracts
sentences mainly from the first 15 sentences of the document, while our Mem-
Sum produces a similar distribution of extracted sentence positions as the ex-
tractive oracle, Figure 3.3. Thus, summarizing long documents is a non-trivial task,
and models that work well on summarizing short documents (e.g., CNN/DM)

2https://pypi.org/project/rouge-score/
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Human-written Summary:
(...) While CMS is generally required to disallow, or recoup, federal funds from states for
eligibility-related improper payments if the state’s eligibility error rate exceeds 3 percent,
it has not done so for decades, (...) CMS issued revised procedures through which it can
recoup funds for eligibility errors, beginning in fiscal year 2022. (...)
Hepos-Sinkhorn (abstractive):
(...) The selected states also reported that they did not have adequate processes to address
these issues. CMS has taken steps to improve its oversight of the Medicaid program, includ-
ing issuing guidance to states on the use of MAGI-exempt bases for determining eligibility,
but these efforts have not been fully implemented. (...)
MemSum (ours, extractive):
(...) In 1983, CMS implemented its statutory requirement to recoup funds associated with
Medicaid eligibility-related improper payments for states with an eligibility error rate
above 3 percent through its MEQC program. (...) However, the agency has introduced
new procedures through which it can, under certain circumstances, begin to recoup funds
based on eligibility errors in fiscal year 2022. (...)

Table 3.4: Comparison of the summary extracted by MemSum and the summary abstractively
generated by Hepos-Sinkhorn (Huang et al., 2021). Compared with the abstractive summary, the
MemSum-extracted summary has higher overlap with the human-written summary.

may fail to generalize to long documents.

MemSum also significantly outperformed the state-of-the-art abstractive sum-
marization model Hepos as measured by ROUGE scores, especially on the
GovReport dataset. A comparison of an exemplary MemSum-extracted sum-
mary and the corresponding Hepos-Sinkhorn-generated summary from the
GovReport dataset (Table 3.4) is consistent with the ROUGE comparison, show-
ing that the MemSum-extracted summary is more accurate than the Hepos-
Sinkhorn-generated summary and has higher overlap with the gold summary.
We deem that this particularly good extraction performance on the GovRe-
port dataset results from the higher “extractiveness” of the gold summaries
in the GovReport dataset compared to other datasets, which may be due in
part to technical language being difficult to abstractively summarize without
a change in meaning. This is evidenced by the fact that the ROUGE scores of
the extractive oracle on the GovReport dataset (Table 3.3) are higher than those
of the PubMed and arXiv datasets (Table 3.2). Therefore, extractive summariza-
tion may be more proper than abstractive summarization due to the requirement of
stringent faithfulness of government report summaries.
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Model R-1 R-2 R-L

MemSum 49.25 22.94 44.42
MemSum w/o LSE 48.12 22.04 43.36
MemSum w/o GCE 46.85 20.31 41.95
MemSum w/o EHE 48.08 22.77 43.55
MemSum with GRU-EHE 49.11 22.86 44.28
MemSum w/o auto-stop 48.25 22.63 43.70
MemSum with “STOP” 47.18 21.81 42.20

Table 3.5: Ablation study on the PubMed dataset.

3.5.2 Ablation Test

We conduct ablation studies by comparing the full MemSum model with the
following variations in structures: 1) MemSum w/o LSE, where we obtain local
sentence embeddings by replacing the bi-LSTM based LSE by simple averages
of word embeddings; 2) MemSum w/o GCE where we remove the GCE; 3)
MemSum w/o EHE where we remove EHE, compute the scores for all sen-
tences in one step, and samples sentences following the BanditSum policy
(Dong et al., 2018); 4) MemSum with GRU-EHE where we use a GRU to en-
code previously extracted sentences at each time step, and uses the last hidden
state as the extraction history embedding for all remaining sentences, follow-
ing Zhou et al. (2018).

Meanwhile, we also tested two variations that adopted different stopping mecha-
nisms: 1) MemSum w/o auto-stop that does not stop extraction automatically
based on pstop, but that extracts a fixed number of sentences; 2) MemSum with

“STOP” that inserts a special stop sentence (e.g. “STOP”) into the document,
and stops extraction once the agent selects this sentence.

Contribution of Modules. Removing GCE has a greater impact on perfor-
mance than removing LSE (Table 3.5), suggesting that modeling global contex-
tual information is more critical than modeling local sentence information in
our MemSum framework, which contrasts with the result that modeling local
sentence information is more important in the Atten-Cont (Xiao and Carenini,
2019) framework. Furthermore, we observed a significant performance degra-
dation when removing EHE, but no significant difference between MemSum
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Model R-1 R-2 R-L
duplicate

percentage

MemSum 49.16 22.78 44.39 0%
MemSum w/o auto-stop 48.21 22.59 43.76 0%
MemSum w/o EHE 42.82 18.18 36.68 41%
MemSum w/o EHE

+3gram blocking 46.85 19.93 42.40 0%

Table 3.6: Performance on the redundant PubMed dataset.

and MemSum with GRU-EHE, indicating that EHE is necessary, but our Mem-
Sum policy is not strongly dependent on the specific structure of this module (e.g.,
attention-based or RNN-based).

Influence of Stopping Mechanisms. MemSum w/o auto-stop achieves lower
ROUGE scores than MemSum, revealing the necessity of auto stopping in
our MemSum architecture. Meanwhile, MemSum with “STOP” produced
summaries with fewer extracted sentences (3.9 vs. 6.0 sentences on average)
and significantly lower ROUGE scores. We attribute this reduction to the pre-
dictable positive reward obtained from selecting the special stop sentence that
ends an episode, which leads to a preference for this final action and increases
the likelihood of taking this action prematurely.

3.5.3 History Awareness Avoids Redundancy

We hypothesized that the extraction history allows MemSum to avoid sen-
tences that are similar to existing sentences in the current partial summary,
intuitively mimicking what humans do when extractively summarizing doc-
uments. To verify this, we created a redundant PubMed dataset in which
we repeated each sentence in the document, with the replicated sentences
immediately following the originals. On this dataset, we trained and tested
MemSum and MemSum w/o EHE (no history awareness), and we compared
different models in terms of ROUGE scores and average duplicate percentage
that is defined as the average percentage of the duplicated sentences among
all extracted sentences in a summary.
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As reported in Table 3.6, for MemSum w/o EHE, on average 41% of sentences
in the extracted summaries were duplicated. Along with the high duplicate ra-
tio came a significant decrease in ROUGE score. By contrast, the performance
of the full MemSum model with history awareness was only slighted affected
when comparing the results of the MemSum on the PubMed dataset (Table
3.2) and on the redundant PubMed dataset (Table 3.6).

Meanwhile, using the Trigram Blocking method that skips a sentence if it has
a trigram that overlaps with the current summary (Liu and Lapata, 2019b) is
also successful in avoiding repetitive sentences. However, the ROUGE scores
associated with Trigram Blocking were significantly lower than those of the
MemSum with awareness of extraction history. In summary, the history-aware
MemSum model spontaneously learns an optimized strategy to avoid redun-
dant sentences without explicit human guidance or crude rules, and thus
shows better performance.

Case Study: How does MemSum Avoid Redundancy?

We let MemSum summarize a document sampled from the test set of the re-
dundant PubMed dataset and monitored the sentence scores produced by the
Extractor during each extraction step. The results are shown in Figure 3.4.
At time step 0, the 10th sentence obtained the maximum score and was thus
selected into the summary. At time step 1, we noticed that the 11th sentence,
which is a replica of the 10th sentence, had a score close to zero. The same
was also true for the other selected sentences and their following sentences,
revealing competent repetition avoidance of the Extractor. Because the EHE is
insensitive to the extraction order and to sentence position information, as de-
scribed in Section 3.3.3, we can conclude that the full MemSum avoids redun-
dancy by evaluating the similarity between selected and remaining sentences,
rather than by “remembering” selected sentences’ positions.

3.5.4 Human Evaluation

We conducted human evaluation following Wu and Hu (2018); Dong et al.
(2018); Luo et al. (2019). For each document sampled from the test set of the
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Figure 3.4: The sentence scores of 50 sentences computed by MemSum at extraction steps 0 to 3.
In the document, there is artificial redundancy in that the (2n)th and the (2n + 1)th sentences are
identical (n = 0, 1, ..., 24).

PubMed dataset, we provide a reference summary, and volunteers are asked
to rank a pair of randomly ordered summaries produced by two models ac-
cording to three criteria: non-redundancy, coverage, and overall quality. The
better model will be ranked #1 while the other is ranked #2, and if both models
extract the same summary, then they will both get the #1 rank. In experiment
1, we compared NeuSum, which always extracts 7 sentences, and MemSum,
which extracts a flexible number of sentences thanks to automatic stopping.
In experiment 2, we discounted for differences in the number of extracted
sentences by making MemSum w/o auto-stop to also extract 7 sentences. A
user-friendly interactive web interface was implemented to assist the evalua-
tion process, with details in Appendix G.

Table 3.7 reports the human evaluation results for both experiments. Both
MemSum and MemSum w/o auto-stop ranked significantly higher (p¡0.005)
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Criteria
Experiment I Experiment II

NeuSum MemSum NeuSum MemSum w/o
auto-stop

overall 1.58 1.37 1.57 1.38
coverage 1.46 1.49 1.44 1.51
non-redundancy 1.67 1.28* 1.65 1.30*
avg. summ. length

# of sentences 7.0 5.6* 7.0 7.0
# of words 248.8 189.3* 263.6 239.5*

Table 3.7: The average ranking of NeuSum and MemSum is reported. The smaller the ranking, the
better the model. Four volunteers participated in these experiments, and evaluated 67 and 63 pairs
of summaries in Experiment 1 and 2, respectively. “*” indicates statistical significance (p¡0.005) in
a Wilcoxon signed-rank test (Woolson, 2008).

than NeuSum in terms of non-redundancy and achieved a better average over-
all quality. In terms of word count, MemSum produces shorter summaries
than NeuSum in both experiments, even though both models extract the same
number of sentences in experiment 2. These results show that redundancy
avoidance of MemSum is particularly good, even without the auto-stop mech-
anism. The slightly better performance of NeuSum in terms of coverage needs
to be weighed against it extracting significantly longer summaries. Note that
neither NeuSum nor our model is trained to optimize the order of the extracted
sentences. Therefore, we did not use fluency, which depends on sentence or-
der, as a metric for human evaluation. Improving the fluency of the extracted
summaries will be the subject of our future research.

3.6 Conclusion

Extractive summarization can be achieved effectively with a multi-step episodic
Markov decision process with history awareness. Using encoders of local sen-
tence, global context, and extraction history, MemSum is given information
that is intuitively also used by humans when they summarize a document.
Awareness of the extraction history helps MemSum to produce compact sum-
maries and to be robust against redundancy in the document. As a lightweight
model (Appendix C), MemSum outperforms both extractive and abstractive
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baselines on diverse long document summarization tasks. Because MemSum
achieves SOTA performance on these tasks, MDP approaches will be promis-
ing design choices for further research.

3.7 Appendices

A Computing Hardware

We trained our MemSum model and its variations on 8 NVIDIA GeForce RTX
2080 Ti 11GB GPUs. During testing, we used a single NVIDIA TITAN X Pascal
12GB GPU.

B Comparison of Validating and Testing Performance

We compare the validating and testing performance of the MemSum model on
the following datasets: PubMed (Cohan et al., 2018), arXiv (Cohan et al., 2018),
and GovReport (Huang et al., 2021). The results are reported in Table 3.8.

C Summarization Time

We analyzed the average time taken by MemSum to extractively summarize
a source document from the test set. The average summarizaion time is pos-
itively correlated with the document length and the number of extracted sen-
tences, Table 3.9. On the one hand, on longer documents, it takes longer to
compute the scores of remaining sentences, which delays the action of either
stopping extraction or selecting a sentence. On the other hand, the more sen-
tences must be extracted, the more actions are needed of selecting sentences
within an episode.

D Selection of optimal stopping threshold

The stopping threshold pthres is an important hyperparameter that sets the
stopping probability in an episode, as described in the Implementation De-
tails. We determined the optimal stopping threshold p∗thres as follows: For
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Datasets Validating Test
R-1 R-2 R-L R-1 R-2 R-L

PubMed 49.14 22.92 44.33 49.25 22.94 44.42
arXiv 48.23 20.17 42.31 48.42 20.30 42.54
PubMedtrunc 43.46 16.77 38.65 43.08 16.71 38.30
GovReport 59.29 28.57 56.46 59.43 28.60 56.69

Table 3.8: Validating and testing scores of the MemSum model tested on the PubMed, the arXiv
and the GovReport datasets.

Datasets
avg. doc.

length
(words)

Avg. extractive
summ. length
(# sentences)

Avg. extractive
summ. time

(ms)

PubMed 2,730 6.0 ± 1.2 91.7 ± 8.6
arXiv 5,206 4.8± 0.5 114.0 ± 5.0
PubMedtrunc 408 5.3± 1.4 27.7 ± 4.6
GovReport 7,932 21.7 ± 1.8 197.0 ± 14.8

Table 3.9: Average extractive summarization time of MemSum on different datasets.
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Figure 3.5: The ROUGE scores for different stopping thresholds pthres on the PubMed validating
set.
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Figure 3.6: The ROUGE scores for different stopping thresholds pthres on the arXiv validating set.
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Figure 3.7: The ROUGE scores for different stopping thresholds pthres on the PubMedtrunc validating
set.
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Figure 3.8: The ROUGE scores for different stopping thresholds pthres on the GovReport validating
set.

each data set and each stopping threshold pthres ∈ {0.1, 0.2, . . . , 1.0}, we chose
as optimal stopping threshold p∗thres the one with maximal ROUGE score on
the corresponding validating set.

The ROUGE scores as a function of stopping threshold are shown in Figure 3.5,
3.6 and 3.8 on the validating set of the PubMed, the arXiv, and the GovReport
data set, respectively. The functions exhibit a local maximum between 0.1 and
1.0, which implies that when pthres is too low, summaries tend to be too short,
while when pthres is too high, summaries will be unduly lengthy. We chose
p∗thres = 0.6, 0.5, 0.8 and 0.6 for the PubMed, the arXiv, the PubMedtrunc, and
the GovReport dataset, respectively.

E Creating High-ROUGE Episodes for Training

As introduced in Section 3.4 and Algorithm 1 in the main paper, at each train-
ing iteration, we sampled a high-ROUGE episode from the set Ep. An episode
can be viewed as a sequence of state-action pairs as well as the final reward,
such as (S0,sa0 ,. . . ,ST−1,saT−1 , ST,Astop,r). Here, {sa0 . . . saT−1} is the extracted
summary consisting of a set of T sentences, and r is the average of the associ-
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ated ROUGE-1, ROUGE-2, and ROUGE-L F1 scores.

In (Nallapati et al., 2017), a greedy approach was proposed to select candi-
date summaries by sequentially selecting from the source document the opti-
mal sentence that maximally improves the average ROUGE-1/2/L score once
added to the current subset of selected sentences.

In this paper, we define a high-ROUGE episodes set Ep as the set of multi-
ple episodes where each episode has a high average ROUGE-1/2/L F1 score.
To obtain not a single episode in Ep but multiple episodes with high average
ROUGE-1/2 scores, we modified the greedy approach by considering not only
the optimal sentence at each sentence selection step but also B− 1 sub-optimal
sentences. This sentence-sampling step is repeated for each of these B new sub-
sets to result in a potentially exponentially growing number of high ROUGE-
score episodes. This process stops until no sentence can further improve the av-
erage ROUGE-1/2/L score or a maximum number Nmax of selected sentences
per episode is reached. B can be considered the branching size, analogous
to beam search strategies in neural machine translation (Sutskever et al., 2014;
Freitag and Al-Onaizan, 2017). We set B = 2 by default.

In practice, we notice that ROUGE-L F1 score is computationally intensive.
Because when creating Ep we need to iteratively re-compute ROUGE scores
once a new sentence is added to the current summary, including the ROUGE-
L F1 score into computation would heavily slow down the process of creating
the high-ROUGE episodes set for training. As a compromise, we do not in-
corporate the ROUGE-L F1 score into the intermediate steps of our modified
greedy approach. Instead, we calculate the ROUGE-L F1 score only once after
a complete high-ROUGE episode is selected, and use this ROUGE-L F1 score
together with ROUGE-1/2 F1 scores to compute the reward r for each episode.
A similar strategy was adopted in Zhou et al. (2018) to create the training
dataset by maximizing ROUGE-2 F1 scores only.

We refer to an episode (S0,sA,S1,sB,S2,sC,S3,Astop,r) as “(sA, sB, sC)” for simplic-
ity. Because permuted episodes (sA, sB, sC), (sA, sC, sB), and (sC, sB, sA) have
nearly the same average ROUGE-1/2 scores (although ROUGE-L score may

57



3. MemSum: Extractive Summarization of Long Documents Using Multi-Step

Episodic Markov Decision Processes

differ), we decided to equally sample them with the hope to avoid overfitting.
This decision does not interfere with our usage of extraction history, because
under (sA, sB, sC), the agent learns to extract sC from {sA, sB}, while under
(sC, sB, sA) it learns to extract sA from {sB, sC}. Thus, history plays a role in
both cases.

F Padding and Truncation of Sentences and Documents

In the training process, we used mini-batch gradient descent. To enable effi-
cient batch-wise parallel GPU computation, each document in a mini batch
needs to have the same number of sentences, and each sentence needs to have
the same number of tokens. Therefore, in order to unify the sentence length
to a common value Lsen, we appended “PAD” tokens at the end of sentences
shorter than Lsen, and we truncated sentences longer than Lsen. To unify the
document length in terms of number of sentences to a common value Ldoc, we
appended empty-string sentences at the end of documents shorter than Ldoc,
and truncated documents longer than Ldoc. To ensure consistency between
training and testing we also performed the same padding and truncation set-
ting during testing. We set Ldoc to 500 for the PubMed, the arXiv, and the
GovReport datasets and 50 for the PubMedtrunc dataset based on the docu-
ment length statistics shown in Table 3.1 in the main paper. We set Lsen to 100
for the PubMed, the PubMedtrunc, and the GovReport datasets and 150 for the
arXiv dataset, because we noticed a larger variance in the length of sentences
in the arXiv dataset.

G Interactive Web Interface for Human Evaluation

To provide for a convenient evaluation procedure for volunteers, we designed
an interactive web interface based on Jupyter Widgets3. As shown in Figure
3.9, for each document, we display the reference summary, summary A, and
summary B from left to right. The reference summary contains the ground-
truth abstract. Summaries A and B are the summaries extracted by the two

3https://ipywidgets.readthedocs.io/
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models assigned in a random order, so that the volunteers do not know which
model either summary came from. Meanwhile, the volunteers were allowed
to read the source document by clicking the button “Show Source Document
>>>”. We also provided a sentence highlighting function to help the vol-
unteers rapidly retrieve relevant content. We allowed evaluators to copy a
sentence from the reference summary and paste it to the text box above. Af-
ter clicking the button “Highlight relevant sentences given a query”, relevant
sentences in both summaries were highlighted, to help the volunteers rapidly
find information of interest. The relevance score of a pair of sentences was
given by the cosine similarity of the two sentences’ embeddings computed
with Sent2vec (Pagliardini et al., 2018). In the evaluation panel the volunteers
selected the better summary (A or B) by comparing the model-produced sum-
mary with the reference summary on three criteria: overall quality, coverage
(in terms of information content), and non-redundancy. After making a choice
they clicked the button “Submit & Eval Next” to submit the current evaluation
result and evaluate the next summaries, or click “Skip” if they were not sure
which summary was indeed better.

H Examples of Extracted Summaries

We provide summarization examples in Table 3.10 and 3.11. In Table 3.10, we
compared MemSum trained on the arXiv dataset with Dancer Pegasus (Gid-
iotis and Tsoumakas, 2020) on a typical paper on which MemSum achieved
higher ROUGE-1 F score than Dancer Pegasus. In Table 3.11 we provide
the extractive summary of this paper itself using our MemSum model. Sen-
tences with similar meanings in different summaries are highlighted in the
same color.

I Reproducibility

The MemSum code and variants of MemSum that we used in our ablation
study, as well as the MemSum parameters trained on the PubMed dataset, can
be found in the submitted code.zip file. Also, we provide a sample of the
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Title BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Original
abstract We introduce a new language representation model called BERT, which stands for

Bidirectional Encoder Representations from Transformers. Unlike recent langua-

ge representation models (Peters et al., 2018a; Radford et al., 2018), BERT is

designed to pretrain deep bidirectional representations from unlabeled text by
jointly conditioning on both left and right context in all layers. As a result, the
pre-trained BERT model can be finetuned with just one additional output layer to
create state-of-the-art models for a wide range of tasks, such as question answering and
language inference, without substantial taskspecific architecture modifications. BERT
is conceptually simple and empirically powerful. It obtains new state-of-the-art
results on eleven natural language processing tasks, including pushing the GLUE

score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7%
(4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5
point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute
improvement)

DANCER
PEGASUS Language model pre-training has been shown to be effective for improving many

natural language processing tasks such as sentence-level paraphrasing and entity recog-
nition tasks. However, current approaches to pre-trained language models are restricted
to unidirectional language models. In this paper, we propose a new approach to pre-

trained language models based on bidirectional encoder transformers (BERT).
BERT is inspired by the pre-training objective of cloze task (Taylor et al., 1953),
where the goal is to predict some masked language representations from the input. We
introduce BERT and its detailed implementation in this paper. The BERT model is
first initialized with the pre-trained parameters, and all of the parameters are fine-tuned
using labeled data from the downstream tasks. Rich unsupervised pre-training is an
integral part of many language understanding systems. In particular, these results
enable even low-resource tasks to benefit from deep unidirectional architectures.
Our major contribution is further generalizing these findings to deep bidirectional

architectures, allowing the same pre-trained model to successfully tackle a broad set

of NLP tasks.

ROUGE1-F1 36.52

MemSum Language model pre-training has been shown to be effective for improving many
natural language processing tasks. In this paper, we improve the fine-tuning based

approaches by proposing BERT: Bidirectional Encoder Representations from Trans-

formers. The masked language model randomly masks some of the tokens from the
input, and the objective is to predict the original vocabulary id of the masked word
based only on its context. Unlike Radford et al. (2018), which uses unidirectional
language models for pre-training, BERT uses masked language models to enable

pretrained deep bidirectional representations. BERT is the first finetuning based

representation model that achieves state-of-the-art performance on a large suite of

sentence-level and token-level tasks, outperforming many task-specific architec-
tures.

ROUGE1-F1 44.29

Table 10: Example summaries for Dancer Pegasus (Gidiotis and Tsoumakas, 2020) and MemSum.Figure 3.10: Example summaries for Dancer Pegasus (Gidiotis and Tsoumakas, 2020) and Mem-
Sum.
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Title (This paper) MemSum: Extractive Summarization of Long Documents using
Multi-step Episodic Markov Decision Processes

Original abstract We introduce MemSum (Multi-step Episodic Markov decision process ex-

tractive SUMmarizer), a reinforcement-learning-based extractive summarizer
enriched at each step with information on the current extraction history. When
MemSum iteratively selects sentences into the summary, it considers a broad
information set that would intuitively also be used by humans in this task:
1) the text content of the sentence, 2) the global text context of the rest of

the document, and 3) the extraction history consisting of the set of sentences

that have already been extracted. With a lightweight architecture, MemSum

obtains state-of-the-art test-set performance (ROUGE) in summarizing long

documents taken from PubMed, arXiv, and GovReport. Ablation studies
demonstrate the importance of local, global, and history information. A human
evaluation confirms the high quality and low redundancy of the generated
summaries, stemming from MemSum’s awareness of extraction history.

MemSum summary In this paper, we propose to model extractive summarization as a multi-step

episodic Markov Decision Process (MDP). As shown in Figure 1, at each
time step in an episode, we define a sentence state composed of three
sub-states: 1) the local content of the sentence, 2) the global context of

the sentence within the document, and 3) information on the extraction
history, including the previously selected set of unordered sentences and

the remaining sentences. To efficiently encode local and global sentence
states, we design an extraction agent based on LSTM networks. We show
that extraction-history awareness allows our model to extract more compact
summaries than models without history awareness and behave more robustly to
redundancies in documents. 3) Our model outperforms both extractive and

abstractive summarization models on PubMed, arXiv, and GovReport datasets.

ROUGE1-F1 48.57

Table 11: MemSum summary of this paper.Figure 3.11: MemSum summary of this paper.
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datasets used in this paper in the data.zip file, as well as the raw data for
the human evaluation. This will ensure that the results in this work are well
reproducible.
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Chapter 4

Controllable Citation Text

Generation

Originally published as: Gu, Nianlong and Richard Hahnloser. ”Controllable
Citation Text Generation.” arXiv preprint arXiv:2211.07066 (2022).

Abstract

The aim of citation generation is usually to automatically generate a citation
sentence that refers to a chosen paper in the context of a manuscript. How-
ever, a rigid citation generation process is at odds with an author’s desire to
control the generated text based on certain attributes, such as 1) the citation
intent of e.g. either introducing background information or comparing results;
2) keywords that should appear in the citation text; or 3) specific sentences
in the cited paper that characterize the citation content. To provide these de-
grees of freedom, we present a controllable citation generation system. In data
from a large corpus, we first parse the attributes of each citation sentence and
use these as additional input sources during training of the BART-based ab-
stractive summarizer. We further develop an attribute suggestion module that
infers the citation intent and suggests relevant keywords and sentences that
users can select to tune the generation. Our framework gives users more con-
trol over generated citations, outperforming citation generation models with-
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Cited Paper "[53]": Perspective transformer nets: Learning 
single-view 3d object reconstruction without 3d supervision

  intent:         background
  keywords:  encoder-decoder  network;  
                      3D shape

intent:         method
keywords:  mesh representation  

Figure 4.1: Example citation sentences of the same paper, taken from a paragraph in (Liu et al.,
2019). The citations differ in intents and keywords.

out attribute awareness in both ROUGE and human evaluations.

4.1 Introduction

A common practice in scientific writing is to cite and discuss relevant papers
in support of an argument, in provision of background information, or in com-
parison of results (Penders, 2018). Recent studies aim to automate this process
by using neural networks to generate a citation sentence based on informa-
tion from the manuscript being written and/or the paper to be cited. For
example, Nikiforovskaya et al. (2020) proposed a BERT-based extractive sum-
marizer (Liu, 2019) that produces a paper review by extracting one sentence
from each of the related papers. Chen and Zhuge (2019) proposed to automati-
cally generate a related work section by extracting information on how papers
in the reference list have been cited in previous articles. Xing et al. (2020) devel-
oped a RNN-based pointer generator network that can copy words from the
manuscript and the abstract of the cited paper based on cross-attention, which
was further extended in (Ge et al., 2021) using information from the citation
graph to enhance citation generation.
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These efforts focused primarily on developing fully automated pipelines and
they left little room for users to control the generation process. However, we
believe control is desirable for the following considerations. Authors often
have a clear motivation before writing a citation sentence. For example, they
may have a specific intent to cite, such as comparing results or presenting
background information; they may have keywords in mind to appear in the
citation sentence; or they may want to refer to a particularly relevant sentence
in the body text of the cited paper, e.g., a specific experimental finding. Even
in a given context, the motivation to cite a paper can be diverse (Figure 4.1).
When the generated citations do not match an author’s motivation, the author
may wish to change the generation by specifying certain attributes, such as
citation intent, keywords, or relevant sentences. However, recent works do
not allow for this possibility (Wang et al., 2022; Xing et al., 2020) because their
generation process is not conditional on these properties.

In order to allow users to freely adjust the generation, we propose a control-
lable citation generation system consisting of two modules: a conditional cita-
tion generator and an attribute suggester.

The conditional citation generator is based on BART-large (Lewis et al., 2020),
a transformer-based (Vaswani et al., 2017) text denoising autoencoder. Dur-
ing the training period, we let BART-large receive two sets of input sources.
The first group is contextual text, including 1) the sentences preceding the
target citation sentence as local context in the manuscript and 2) the title and
abstract of the cited paper as global context. The second group is formed by the
attributes associated with the target citation sentence, including the citation
intent, the keywords, and the most relevant sentences in the body text of the cited
paper. We add citation attributes as input to make the decoding process of
BART-large conditional on these attributes.

The citation attribute suggestion module modifies and fine-tunes SciBERT
(Beltagy et al., 2019) to infer possible intents and suggest keywords and re-
lated sentences based on the contextual text and the body text of the cited pa-
per. The purpose of this module is to propose to a user attributes to guide the
generation of citation sentences. We believe that such a suggestion-selection-
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generation pipeline can maintain a fair degree of automation while retaining
good controllability.

Our contributions are summarized as follows:

• We propose a controllable citation generation pipeline with an attribute
suggestion module and a conditional citation generation module;

• We evaluate the controllability of our system in response to different
attributes using automated metrics and human evaluation;

• We parse the contextual text and citation attributes of each citation sen-
tence to build a large dataset that can be used for future studies on con-
trollable citation generation.

4.2 Related Work

Our idea of a controllable citation generation system originated from the study
of conditional generative models that were proposed in Sohn et al. (2015) and
applied to controlled text generation tasks (Ficler and Goldberg, 2017; Keskar
et al., 2019; Dathathri et al., 2020). For example, Keskar et al. (2019) used
attributes (or control codes) such as genre or topic as conditions when pre-
training an autoregressive language decoder based on self-attention (Vaswani
et al., 2017) to encourage the next-token prediction (during decoding) condi-
tional on a specific attribute. In this paper, we apply this conditional approach
to the citation generation task, where we introduce a set of citation-related at-
tributes as conditional input text when training an encoder-decoder model to
generate citation sentences.

Recently, Jung et al. (2022); Wu et al. (2021) proposed intent-controlled citation
generation models that focus on controlling the intention of generated cita-
tions, while in this paper, we deal with more conditions beyond the intent of
the citation. In addition, we propose solutions to automatically suggest poten-
tial attributes to better balance the automation and controllability of citation
generation.
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Paper To Be Cited

 (Local) Context: ...Comparing to 
 supervised learning, unsupervised 3D 
 reconstruction is becoming increasingly
 important as collecting ground-truth 3D 
 models is much more difficult than 
 labeling 2D images.

Manuscript

Citation Intent 
Predictor

Keyword 
Extractor

Relevant
Sentence
Extractor

 Body Text: Understanding the 3D 
 world is at the heart of successful 
 computer vision ...

Attribute Suggestion  
Module

User 
(Author) 
Selection

Conditional Citation
Generation (CCG)

Module

intent:         
    background
keywords:  
    3D objects; unsupervised 3D reconstruction;
Sentences: 
     **User-selected  sentences**

 background 
 (0.8)
 method (0.1)
 result (0.1)

 unsupervised 
 3D reconstr- 
 uction;
 2D image;

**Top relevant
 sentences   
 from the  
 body text**

 3D objects;

 ...

Generated Citation Sentence

 "Perspective transformer nets [53] propose an      
  encoder-decoder network which learns 3D shape 
  from silhouette images in an unsupervised  
  fashion."body text 

sentences

 Global Context: 

 Title: Perspective transformer nets: 
 Learning single-view 3d object 
 reconstruction without 3d supervision

 Abstract: Understanding the 3D 
 world is a fundamental problem in 
 computer  vision. However, ...

C
ontextual Text

Figure 4.2: The pipeline for our controllable citation text generation system. The attribute sugges-
tion module suggests candidate attributes, including citation intent, relevant keywords, and sentences.
Users can select the desired attributes from the suggestions and use them as conditions to guide the
citation generation module.

4.3 Model

We introduce our controllable citation generation system (outlined in Figure
4.2) in this section.

4.3.1 Conditional Citation Generation Module

The Conditional Citation Generation (CCG) module outputs a citation sen-
tence Y given the contextual text X and the citation-related attributes C. C
include 1) citation intent, 2) keywords, and 3) sentences in the body text that
are related to the citation sentence. The training objective is to maximize the
conditional generation probability:

p(Y|X, C) =
n

∏
i=1

p(yi|y1y2 . . . yi−1, X, C), (4.1)

where yi is the ith token in the citation sentence Y. This task can be mod-
eled as a sequence-to-sequence problem where we consider X and C as input
text, Y as output sequence, and train BART-large to minimize the negative
log-likelihood − log p(Y|X, C). During testing, we let BART-large take the con-
textual information X and the attribute C as inputs to the encoder and generate
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the citation sentence on the decoder side by next-token prediction to maximize
the probability in Equation (4.1).

For X, we define the local context in X as up to Ns (Ns = 5) sentences (from
the same section) that precede the target citation sentence to be generated. The
global context in X is formed by the title and abstract of the cited paper. For
C, when training the citation generator, we parse the ground truth citation
sentence to obtain the oracle citation attributes (Section 4.4.3 ). During testing,
the attributes C are either recommended by our attribute suggestion module
or specified by the users.

To allow the BART-large encoder to distinguish between different input sources,
we add a special field name (or control code) before each input source, follow-
ing Raffel et al. (2020); Keskar et al. (2019). The final input text is structuted
as: “intent: [Citation intent] keywords: [Keywords relevant to the citation, sep-
arated by ‘;’] sentences: [Body text sentences relevant to the citation] context:
[local context in the manuscript] title: [Title of the cited paper] abstract: [Ab-
stract of the cited paper]”.

4.3.2 Attribute Suggestion Module

The attribute suggestion module consists of three submodules: a citation intent
predictor, a keyword extractor, and a relevant sentence extractor.

The Citation Intent Predictor predicts the intent of a citation sentence based
on the local context in the manuscript and the global context (title and abstract)
of the cited paper. Following Cohan et al. (2019), we consider three possible
intents i: 1) background, summarizing related work or concepts as background;
2) method, using a certain method or dataset (e.g., the second citation sentence
in Figure 4.1); and 3) result, comparing results.

We connect the local and global context texts with a special token “[SEP]” and
prepend a token “[CLS]” at the beginning. We use SciBERT to compute from
the concatenated text the last hidden states of all tokens. We then input the
last hidden state of “[CLS]” into the intent prediction header, a fully connected
two-layer network to obtain the output xintent(i). Finally, we apply the softmax
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to xintent(i) to produce the likelihood pintent(i) for three possible intents. After
obtaining the ground truth intent itrue by parsing the target citation sentence
(Section 4.4.3 ), we train SciBERT and the intent prediction header to minimize
the cross-entropy loss:

L = − exp (xintent(itrue))

∑i∈all intents exp (xintent(i))
(4.2)

The Keyword Extractor extracts keywords relevant to the target citation sen-
tence from the contextual text. We obtain a set of candidate keywords by
chunking all noun phrases1 in the contextual text. We embed the contextual
text q into a query embedding vq and each candidate keyword ki into a key-
word embedding vki using the same SciBERT. The text encoding is done by
averaging the last hidden states of all tokens in the text. Then we rank the
keywords based on the cosine similarity between vki and vq. Inspired by
Zhong et al. (2020), we fine-tune the SciBERT encoder so that relevant key-
words are ranked at the top positions. Here, we measure relevance using the
average of the ROUGE-1&2 F1 scores between the keyword and the target ci-
tation sentence, and we assign a rank to each keyword based on its relevance
score. Higher relevance scores correspond to smaller rank values (minimum
of 1), and keywords with the same relevance score are assigned the same rank.
Within the candidate keyword list, given a pair of keywords ki and k j whose
ranks ri and rj satisfy ri < rj, we fine-tune SciBERT with the triplet loss:

L = max(0, f (vq, vkj)− f (vq, vki)

+(rj − ri)× γ)), ri < rj,
(4.3)

where f (va, vb) = vT
a vb

∥va∥∥vb∥
denotes the cosine similarity between the vectors

(va, vb) and γ is the margin used in the triplet loss (Schroff et al., 2015).

In order to extract relevant and diverse keywords, the keyword extractor se-
lects keywords based on maximal marginal relevance (MMR) (Carbonell and

1We use the noun phrase chunker from Spacy: https://spacy.io/ and remove the articles
of the noun phrases.
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Goldstein, 1998): at each step, it picks an unselected keyword ki that maxi-
mizes:

(1− α) f (vq, vki)− α max
kj∈Sk

f (vki , vkj), (4.4)

where α is the diversity factor and Sk represents the set of selected keywords.
We set α = 0.2 to reduce redundancy among extracted keywords.

The Sentence extractor extracts the sentences most relevant to the target cita-
tion sentence from the body text of the cited paper. Similarly to the keyword
extractor, we use a SciBERT text encoder to encode contextual text and body
sentences as embeddings. We then use the contextual text as a query and
rank the body sentences based on the cosine similarity between the query
embedding and the sentence embedding. We fine-tune the SciBERT encoder
to encourage sentences that are more relevant to target citation sentences (as
measured by the average ROUGE-1 and ROUGE-2 F1 scores) to rank in the
top positions, the same strategy used to fine-tune the keyword extractor. Fur-
thermore, when calculating the triplet loss similar to Equation (4.3), we clamp
the rank value of the sentences to 10: ri = min (ri, 10), because we focus only
on the ranking order of the most relevant sentences.

4.4 Dataset Preparation

4.4.1 Cited Paper Filtering

For the training set, we filter a subset of S2ORC (Lo et al., 2020) papers that
were published between 2000 and 2020 in the domains of biology, medicine, or
computer science. Furthermore, we select only papers that are cited in at least
50 sentences contained in S2ORC. With this criterion, we obtain for each paper
many citation sentences, hopefully with diverse citation attributes (intents and
keywords). Training our conditional citation generator on such a dataset likely
allows the generator to learn to cite papers under diverse conditions.

For the validation and the test sets, we obtain citation sentences by parsing
papers from arXiv (Kaggle, 2022) and PMCOA (of Medicine, 2003) that were
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published in 2022. We do not filter cited papers based on the number of
citations, because we want to test our system in a real-world scenario where
cited papers vary in terms of domain and number of citations.

4.4.2 Citation Sentence Filtering and Train/Test Decoupling

In the citation generation dataset proposed in Xing et al. (2020), some citation
sentences citing more than one paper appeared in both the training and the
test sets. For example, the following sentence “co-occurrence of words [Paper A]
and discourse relations [Paper B] also predict coherence.” appeared as the target
citation sentence in two samples, one in the training set and the other in the
test set. It follows that the local context in the manuscript is identical for these
two data samples. The only difference is that in the training sample paper A
is considered as the cited paper, while in the testing test paper B is treated as
the cited paper.

First, we argue that it is an ill-defined problem to train a model to generate a
citation sentence that should cite two papers when only one paper is provided
as the global context. Second, the fact that some samples from the training
and test sets are coupled increases the chance of overfitting: A coupled pair
of training and testing samples share the same local context as the input and
the same citation sentence as the target output. Thus, the citation generation
model can “remember” and thus “recite” the corresponding citation sentence
during testing given a local context that has been used during training.

To this end, when creating our scientific controllable citation generation (Sci-
CCG) dataset, we eliminated citation sentences that were too short (<5 words)
or too long (>200 words), or those that cited more than one paper. In addition,
we split the training, validation, and test sets with the following decoupling
rule: Given a citation sentence s from one set (e.g. training set), we refer to
the paper from which s comes as the citing paper ps,citing and the paper cited
by s as the cited paper ps,cited. When splitting the training, validation, and test
sets, we ensure that the citation sentences from the other two sets neither come
from ps,citing nor do they cite ps,cited.

73
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Intent Category
(# samples)

Background Method Result Average
(1,014) (613) (260) (Macro)

Jurgens et al. (2018) 84.7 74.7 78.2 79.2
Cohan et al. (2019) 87.8 84.9 79.5 84.0
SciBERT+scaffolds

(Ours) 89.1 87.1 84.0 86.7

Table 4.1: The F1 scores on three citation intent categories and the avarage (macro) F1, tested
on the SciCite dataset created by Cohan et al. (2019).

Information Training Validation Test

# cited papers 59,645 1,373 1,404
# citing papers 1,404,690 1,360 1,382
# citation sentences 2,678,983 1,385 1,411
Statistics of parsed citation attributes of the citation sentences
# background intent 2,188,066 1,075 1,093
# method intent 388,437 213 219
# result intent 102,480 97 99

Table 4.2: The statistics of our SciCCG dataset.

4.4.3 Parsing Citation Attributes

Training the conditional citation generator (Section 4.3.1 ) and the citation in-
tent predictor (Section 4.3.2 ) requires citation attributes as labels. However,
the true attributes of the citation sentences are usually not explicitly provided
by the authors. For training we therefore use pseudolabels by inferring citation
attributes from the target citation sentences.

Citation Intent. We infer the intent of citation sentences using a SciBERT-
based intent classifier that has the same structure as our citation intent pre-
dictor, except that it differs in terms of input text and purpose. The intent
predictor takes contextual text as input and aims to predict the citation intent
before the citation sentence is written. In contrast, the intent classifier works as
a tutor. It takes the actual citation sentence as input and infers the true intent,
which can be used to “teach” the citation intent predictor to predict the most
likely intent.

We use a multitask training strategy (Cohan et al., 2019) to train the intent
classifier. In addition to the main task of classifying citation intent, we add
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4. Controllable Citation Text Generation

two auxiliary classification tasks (scaffolds) (Cohan et al., 2019) to improve the
performance on the main task: 1) predicting the title of the section to which
the cited sentence belongs; and 2) detecting whether the sentence needs a
reference (citation worthiness). For each auxiliary task, we use a separate func-
tional head, a two-layer fully connected network, with the SciBERT-encoded
”CLS” hidden states as input, to classify section titles and citation worthiness,
respectively. The training loss is a weighted sum of the cross-entropy losses
(Equation (4.2)) of the three tasks, with a weight of 1.0 for the main task, and
weights of 0.05 and 0.01 for the auxiliary tasks 1) and 2), respectively.

We use our SciBERT-based intent classifier (performance shown in Table 4.1)
to parse the intent of each citation sentence in the training/validation/test set
and use it as the ground truth citation intent of the target citation sentence
when training the intent predictor and and the conditional citation generator.

Relevant Keywords. After chunking all noun phrases in the contextual text as
candidate keywords, our goal is to select a set of keywords that as a whole have
the highest ROUGE-1 & 2 F1 scores compared to the target citation sentence.
Following the greedy selection strategy (Gu et al., 2022a), we select a keyword
whose addition to the already selected set of keywords maximally increases
the ROUGE F1 scores, and this selection process stops when the ROUGE F1
scores no longer increase or at least 3 keywords have been selected. Greedily
selected keywords are used as the ground truth relevant keywords of the target
citation sentence when training the CCG module.

Relevant Sentences. We extract up to 2 sentences from the body text of the
cited paper using the same greedy strategy as for extracting relevant key-
words.

The statistics of our dataset are shown in Table 4.2.

4.5 Experiment

We choose a learning rate of 1e-5 to fine-tune the modules. When training the
CCG module, we truncated the input sequence to a maximum length of 512
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4.6. Results and Discussion

tokens and truncated the output to 75 tokens. To make the CCG module ro-
bust to the unavailability of conditional citation attributes, we randomly drop
certain citation attributes during training as follows: 1) We set the citation
intent to the empty string with probability 0.5; 2) Given n relevant keyword-
s/sentences of the target citation sentence, we randomly select m (0 ≤ m ≤ n)
keywords/sentences and use them as the conditional input.

For the citation intent predictor, the size of the hidden layer of the intent pre-
diction head is 32. We observed that the categories of citation intent were
unbalanced and most of the citation sentences were ”background” intents (Ta-
ble 4.2). Therefore, when training the citation intent predictor, we downsam-
pled the ”background” citation sentences to 1/5 of the original number to
balance the number of samples for all intent categories. For training the key-
word extractor and the sentence extractor, we used the margin γ = 0.01 in
the triplet loss (Equation (4.3)). We evaluated the generated citation sentences
using ROUGE-1,2 and L (Lin, 2004) F1 scores.

4.6 Results and Discussion

We evaluated the performance of the citation generation in both the fully auto-
matic mode and the user-controlled mode.

In the fully automatic mode, we assume that the ground truth citation at-
tributes are unknown. We adopted a suggestion-generation strategy to auto-
matically generate citation sentences. We first use the attribute suggestion
module to suggest citation attributes (citation intent, 3 relevant keywords, and
2 relevant sentences) and then let BART-large-CCG take contextual text and
suggested attributes as input and generate citation sentences. We compared
our method with 1) PTGEN-Cross (Xing et al., 2020) and 2) BART-large that
were both trained without using citation attributes as conditions. In addition,
we compared our attribute suggestion module with the following baselines: 1)
randomly selecting one intent from all three intents; 2) extracting keywords
using KeyBERT2 (Grootendorst, 2020) and 3) ranking and extracting body

2We used the BERT emebedding model “all-mpnet-base-v2” and set the diversity to 0.2
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text sentences based on embeddings encoded by Sentence-BERT (Reimers and
Gurevych, 2019).

In the user-controlled mode, we assume that ground truth citation attributes
are available. This happens when users want to control the generation by
specifying the desired citation attributes.

4.6.1 Results Comparison

In automatic mode, BART-large-CCG taking citation attributes suggested by
our attribute suggestion module as conditional input outperformed uncondi-
tional generation models, including BART-large and PTGEN-Cross (Table 4.3).
For example, when we let BART-large-CCG take as input 1) contextual text
and 2) keywords extracted also from the contextual text using our keyword
extractor, BART-large-CCG achieved a higher ROUGE score than BART-large,
even though both methods take the contextual text as the only source of infor-
mation. We observed that BART-large-CCG performed best when it used all
the citation attributes (intent, keywords, and sentences) suggested by our at-
tribute suggestion module. These results show that our pipeline for generating
citation sentences using automatically suggested citation attributes is effective
without human guidance.

In addition, our SciBERT-based keyword extractor outperformed KeyBERT
when used as a relevant keyword suggestion module, and the SciBERT-based
sentence extractor outperformed Sentence-BERT when suggesting relevant body
sentences. We attribute this improvement to the fine-tuning process using
triplet loss, which allows the SciBERT text encoder to better estimate the simi-
larity between contextual text and keywords/sentences.

In the user-controlled mode, the performance of BART-large-CCG improved
when we added ground truth citation attributes as conditional input, espe-
cially when the generation was conditioned on relevant keywords or relevant
body text sentences from the cited paper. And the best performance was ob-
served when all three attributes were used as conditional inputs. The large

when using MRR.
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performance gain over the fully automatic mode indicates that the citation
attributes are crucial for generating good citation sentences and should be con-
sidered as conditional input whenever available, for example, when authors
want to cite a paper with specific keywords or relevant sentences they want to
discuss.

The results in Table 4.3 show that our BART-large CCG model has stable per-
formance regardless of whether attributes are suggested by our attribute sug-
gestion module or specified by users, and is flexible and robust under different
availability of citation attributes, indicating good controllability, which we will
investigate further next.

4.6.2 Controllability of CCG Module

We tested whether the generated citation sentences reflect the provided con-
ditional attributes as follows. For each test sample, we manually assigned a
conditional intent (”background”, ”method”, or ”result”) and let BART-large-
CCG use the assigned intent attribute, leaving the other conditional attributes
(e.g., relevant keywords and sentences) and the contextual text unchanged
during generation of a citation sentence. We then determined the intent of
the generated citation using our SciBERT-based intent classifier (Section 4.4.3 ).
We calculated the intents category frequencies of the generated citations and
plotted the confusion matrix (Figure 4.3a). The large values of the diagonal ele-
ments in the confusion matrix imply that the intents of the generated citations
tend to be consistent with the desired intent provided as input, indicating that
our model effectively adapts the generated text to the desired intent.

Unlike for citation intent, for relevant keywords and sentences there is no fixed
number of pre-defined categories. For each test sample, we randomly selected
two keywords A and B from the first 5 keywords extracted by our SciBERT-
based keyword extractor. We first used each keyword separately as a condition
to guide the generation of BART-large-CCG. We then determined the keyword
(A or B) that was semantically closer to the generated citations by calculat-
ing the cosine similarity between the embeddings (encoded by Sentence-BERT
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(b) Relevant keywords and sentences as controlled attributes.

Figure 4.3: We evaluated the controllability by the matching frequency between the controlled input
attributes and the attributes of the generated citation sentences.

(Reimers and Gurevych, 2019)) of the two keywords and those of the gener-
ated citation sentences. We calculated the frequency of the generated citation
sentences being semantically closer to the associated keywords, e.g., the cita-
tion sentence generated with keyword A as a condition was closer to keyword
A than to B. Similarly, to test the controllability by sentence attribute, we
randomly selected two sentences from the first 5 relevant sentences extracted
by the SciBERT-based sentence extractor and conducted the same experiment.
The results in Figure 4.3b show a good semantic match between the conditional
keywords (or conditional sentences) and the generated citation sentences, indi-
cating that the model effectively makes use of keywords and related sentences
to guide the CCG generation process.
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cited title: Low COVID-19 Vaccine Acceptance Is Correlated with Conspiracy Be-
liefs among University Students in Jordan
cited abstract: Vaccination to prevent coronavirus disease 2019 (COVID-19)
emerged as a promising measure to overcome the negative ... The intention to
get COVID-19 vaccines was low: 34.9% (yes) compared to 39.6% (no) and 25.5% ...
context in manuscript: A third of the entire sample notes that they do not plan to
vaccinate, another third doubts the decision and focuses on the more distant results
of the vaccination program conducted in the country, 11.6% are already vaccinated,
and 13.3% plan to vaccinate shortly. ¿¿generate a citation sentence HERE¡¡
[background][acceptability] The acceptability of the COVID-19 vaccine in Jordan
is low, with only 34.9% of respondents stating that they intend to vaccinate [].
[method][questionnaire] The intention to vaccinate was assessed using the COVID-
19 vaccine hesitancy questionnaire [].
[result][COVID-19 vaccines] This finding is in line with the results of a pre-
vious study conducted in Jordan, which showed that the intention to get
COVID-19 vaccines was low: 34.9% (yes) compared to 39.6% (no) and 25.5%
(maybe) [].

Table 4.4: Generated citation sentences are guided by the citation intent and the keywords provided.

These results show that our CCG module has good controllability, making it
suitable for controlling the generated citations with conditional attributes (see
an example in Table 4.4).

4.6.3 Human Evaluation

We performed a human evaluation to test whether our BART-large-CCG-based
controllable citation generation pipeline produces more satisfactory citation
sentences compared to BART-large, which cannot be controlled by citation
attributes. In the Web interface3 we created for human evaluation of a test
sample (see Appendix B), we first provide the context text in the manuscript
and the content of the cited paper (title, abstract, and body). In addition,
we use our attribute suggestion module to suggest the citation intent, top 5
relevant keywords, and the top 5 relevant body sentences. Participants were
given the freedom to select suggested attributes and contribute their own to
guide the generation of citations if they deemed it necessary.

3Our human evaluation website is at: https://ccg-human-eval.vercel.app/
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Metric BART-large-CCG Neutral BART-large

Informative 44.44* 28.89 26.67
Coherent 51.11* 17.78 31.11
Intent-Matched 51.11* 26.67 22.22

Table 4.5: Results of human preference ratings for sentences produced by the three methods (in %).
“Neutral” means no preference for sentences generated by either model. “*” represents statistical
significance, p < 0.05.

We then show two sentences: 1) the sentence generated by BART-large using
only contextual text as input; and 2) the sentence generated by our BART-
large-CCG using contextual text and user-specified attributes as input. These
sentences were presented in random order to prevent participants from iden-
tifying the method behind the sentences based on the order of appearance.
Inspired by Zhang et al. (2021), we asked participants to report their prefer-
ences among the two sentences based on the creiteria 1) informative, whether
the sentence is informative and faithful; 2) coherent, whether the sentence
is logical and consistent with previous sentences in the manuscript; and 3)
intent-matched, whether the sentence matches the tester’s citation intent (or
purpose).

Human evaluation results (Table 4.5) showed that our BART-large-CCG con-
ditional on citation attributes was preferred compared to the unconditional
BART-large model. Compared with BART-large, BART-large-CCG generated
sentences with higher coherence and more informative contents. The higher
value of the ”Intent-Matched” metric reflects the good controllability of the
BART-large-CCG given the user-specified attributes. Additionally, we observed
that participants selected on average 1.8 suggested keywords and 1.6 sug-
gested sentences as attributes for citation generation, indicating that our at-
tribute suggestion module holds promise for use in controllable citation gen-
eration systems.
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4.7 Conclusion

We proposed a controllable citation generation framework that consists of a ci-
tation attribute suggestion module and a conditional citation generation mod-
ule. Our framework not only outperforms previous uncontrolled approaches
in fully automated generation mode, but also manifests good control of gen-
erated citations by reflecting user-specified attributes. Our approach allows
users to efficiently select the suggested citation attributes to guide the genera-
tion process, thus giving the generated sentences a better chance of reflecting
a user’s intentions during scientific writing. Moreover, we filter out ambigu-
ous citation sentences and decouple the training and test sets, which makes
our SciCCG dataset a good testbed for future controllable citation generation
studies.

4.8 Appendices

A Computing Hardware

We train the models using 8x NVIDIA GeForce RTX 3090 GPUs. During test
and evaluation, we used an NVIDIA RTX A6000 48GB GPU.

B Web Interface for Human Evaluation

We designed a user-friendly web interface to allow participants to evaluate
our controlled citation generation pipeline and to compare citation sentences
generated by our controlled BART-large-CCG model with those generated by
the uncontrolled BART-large model. As shown in Figure 4.4, the content in the
web page is divided into two columns. The left column contains the contextual
text, including the context in the manuscript as well as the title and abstract
of the cited paper. Users can also view the body of the text by clicking on the
button at the bottom right.

In the right column of the page, we first provide the citation attributes sug-
gested by our attribute suggestion module, which include 1) the top 5 relevant
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Tips:Tips:

• First read the context in the manuscript and the paper to be cited;• First read the context in the manuscript and the paper to be cited;

• Then select the suggested citation attributes below that match the content of• Then select the suggested citation attributes below that match the content of
the sentence you would like generate (you can click none or all if needed):the sentence you would like generate (you can click none or all if needed):

○ Select suggested keywords  suggested keywords (by clicking on them) if you think they help to narrow
down the topic of the sentence to be generated.;
○ Select suggested sentencessuggested sentences (by clicking the checkbox button ) if you expect the
generated citation sentence to be relevant to them.
○ Specify your expected intentintent for the citation sentence, e.g., providing background
information (background), describing methods (method), comparing results (result), or
having no specific intent (None).

Suggested Keywords

Suggested Sentences
Such a negative attitude might be related to complacency or lack of confidence in the
safety and effectiveness of the novel COVID-19 vaccines [64].
Thus, the evaluation of the students’ baseline level of knowledge and attitude towards
vaccination is necessary to identify potential defects that may negatively impact their
helpful role.
Third, a major result of this study was the independent correlation between the belief in
conspiracy and COVID-19 vaccine hesitancy among university students.
It can be triggered by a lack of confidence in the safety and effectiveness of vaccination
[30,31].
Variables that were associated with a higher acceptance of influenza vaccination are
summarized in Table 3 and included: Younger age, non-Jordanian nationality, affiliation to
a Health School, and a previous history of chronic disease.

Citation Intent

Tips:Tips:   Once you have clicked the "Generate Citations" button, you cannot adjust the
properties you have selected and regenerate citation sentences, as this may reveal information
about the identity of the method behind the generated sentences. Therefore, please make your
final decision on the selection of attributes and then click the "Generate Citations" button.

Evaluation
Candidate Citation Sentences Informative Coherent Intent-

Matched

This finding is in line with the results of a previous
study conducted in Jordan, which found that low
acceptance of COVID-19 vaccine acceptance
was correlated with vaccine conspiracy beliefs
#REFR.

This is in line with the findings of a previous study
conducted in Jordan, which showed that the
intention to get COVID-19 vaccines was low:
34.9% (yes) and 39.6% (no) #REFR.

Neutral (no preference for either sentence)

Not familiar with the topic?

Tips:Tips:
• Informative:• Informative: Does the sentence contain informative and faithful contents?
• Coherent:• Coherent: Is the sentence logical and consistent with previous sentences in the
manuscript?
• Intent-Matched:• Intent-Matched: Does the generated sentence meet your intent (or purpose) to cite the
given paper?

COVID-19 vaccine acceptance Vaccination vaccine conspiracy beliefs

COVID-19 vaccines vaccination program

read in context

read in context

read in context

read in context

read in context

result 

GENERATE CITATION

SUBMIT & EVAL NEXT

SKIP CHANGE SUBJECT KEYWORDS

Context in Manuscript
During the start-up phase of prevention
programs against the novel coronavirus
infection, participants were surveyed about
their views on vaccination. A third of
respondents consider vaccination useful, while
the same portion doubts its
effectiveness. About a quarter of respondents
perceive it as unnecessary, dangerous, or
indifferent. These perceptions influence
behavior and decision-making regarding one’s
own vaccination. A third of the entire sample
notes that they do not plan to vaccinate,
another third doubts the decision and focuses
on the more distant results of the vaccination
program conducted in the country, 11.6% are
already vaccinated, and 13.3% plan to
vaccinate shortly.  >>Generate HERE<<

Cited Paper
Low COVID-19 Vaccine Acceptance Is
Correlated with Conspiracy Beliefs among
University Students in Jordan
M Sallam, M Sallam, M Sallam, et al.
International Journal of Environmental

Research and Public Health, 2021

Abstract
Vaccination to prevent coronavirus disease 2019
(COVID-19) emerged as a promising measure to
overcome the negative consequences of the
pandemic. Since university students could be
considered a knowledgeable group, this study
aimed to evaluate COVID-19 vaccine
acceptance among this group in
Jordan. Additionally, we aimed to examine the
association between vaccine conspiracy beliefs
and vaccine hesitancy. We used an online
survey conducted in January 2021 with a chain-
referral sampling approach. Conspiracy beliefs
were evaluated using the validated Vaccine
Conspiracy Belief Scale (VCBS), with higher
scores implying embrace of conspiracies. A total
of 1106 respondents completed the survey with
female predominance ( n = 802, 72.5%). The
intention to get COVID-19 vaccines was low:
34.9% (yes) compared to 39.6% (no) and 25.5%
(maybe). Higher rates of COVID-19 vaccine
acceptance were seen among males (42.1%)
and students at Health Schools (43.5%). A Low
rate of influenza vaccine acceptance was seen
as well (28.8%), in addition to 18.6% of
respondents being anti-vaccination altogether. A
significantly higher VCBS score was correlated
with reluctance to get the vaccine ( p <
0.001). Dependence on social media platforms
was significantly associated with lower intention
to get COVID-19 vaccines (19.8%) compared to
dependence on medical doctors, scientists, and
scientific journals (47.2%, p < 0.001). The
results of this study showed the high prevalence
of COVID-19 vaccine hesitancy and its
association with conspiracy beliefs among
university students in Jordan. The
implementation of targeted actions to increase
the awareness of such a group is highly
recommended. This includes educational
programs to dismantle vaccine conspiracy
beliefs and awareness campaigns to build
recognition of the safety and efficacy of COVID-
19 vaccines. 

Controlled Citation Generation - Human Evaluation

Figure 4.4: We designed an interactive web interface that allowed participants to evaluate and com-
pare citation sentences generated by our controllable BART-large CCG model with those generated
by the non-controllable BART-large model.
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keywords, 2) the top 5 relevant sentences, and 3) the most likely citation intent.
From these suggested attributes, users can select keywords and sentences or
modify the citation intent, all in an intuitive way with a simple click of a but-
ton.

In addition, to help users select citation attributes, we highlight user-selected
keywords in the contextual text, and make it easy for users to locate the sug-
gested sentence in the body text of the cited paper so that they can better
understand the sentence through a richer context.

Note that the user can choose not to actively specify any citation attributes. In
this case, our BART-large-CCG model will simply use the machine-suggested
attributes (top 3 suggested keywords, top 2 suggested sentences and the sug-
gested intent) as the conditions for generation, just like the fully automatic
model described in this section 4.6.

Once users click the “Generate Citation” button, we will present two sentences
in a random order. One of the sentences is generated by our BART-large-CCG
model, which takes as input the contextual text and the attributes chosen by
the user, while the other sentence is generated by BART-large, which takes as
input only the contextual text. In addition, we provide a third option, ”neu-
tral”, in case the user has no preference for any of the above sentences. After
users have selected their preferences in the three areas (informative, coherent,
and intent-matched), they can click the ”Submit & Eval Next” button to submit
their evaluation results and evaluate the next test example.

In addition, we allow participants to narrow down the research area of the
examples to be evaluated by specifying some subject keywords, e.g. ”machine
learning; translation”. We will use the subject keywords as queries to retrieve
relevant test examples (using BM25) and present them to the participants. In
this way, participants can evaluate examples with which they are familiar,
which we believe will increase the credibility of the evaluation results.
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Chapter 5

SciLit: A Platform for Joint

Scientific Literature Discovery,

Summarization and Citation

Generation

Abstract

Scientific writing involves retrieving, summarizing, and citing relevant pa-
pers, which can be time-consuming processes. Furthermore, in many work-
flows, these processes are serially linked, which offers opportunities for nat-
ural language processing (NLP) to provide end-to-end assistive tools. We
propose SciLit, a pipeline that automatically recommends relevant papers,
extracts highlights of a paper and suggests a reference sentence to cite the
paper based on the user-provided context and keywords. Based on the lat-
ter, SciLit efficiently recommends papers from large databases of hundreds
of millions of papers using a two-stage pre-fetching and re-ranking literature
search system that allows simple plugging and unplugging of paper databases.
We provide a convenient user interface that displays the recommended pa-
pers as extractive summaries and that offers abstractively-generated citing
sentences that align with the context and mention the chosen keyword(s).
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Context Text

we observe that
the pooling strategy 
has a large impact. 
There, the MAX 
strategy perform 
significantly worse 
than MEAN or 
CLS-token strategy.

Keywords

MAX pooling; 
Pooling strategy

Literature
Retrieval

Citation 
Generation

candidate 
papers

Citation Sentence 

This is in contrast to [CIT], 
who found it beneficial for 
the BiLSTM-layer of 
InferSent to use MAX 
instead of MEAN pooling.

Highlights

• In this paper, we show  
  how universal sentence ...
• Our experiments show ... 
  LSTM architecture with  
  max pooling, trained on 
  the SNLI dataset, yields   
  state-of-the-art ... 

Extractive 
Summarization

Figure 5.1: The main workflow of our platform.

Our assistive tool for literature discovery and scientific writing is available
at https://scilit.vercel.app.

5.1 Introduction

When we compose sentences like “Our experiments show that XXX performs
significantly worse than YYY” in a manuscript, we may want to find papers
that contain similar performance evaluations (Cohan et al., 2019) and discuss
these in our manuscript. This process is a non-trivial task requiring in-depth
human involvement in finding, summarizing, and citing papers, which raises
the question of whether it is possible to partly automate this process and make
it more efficient.

Recent advances in natural language processing (NLP) help answer this ques-
tion. First, releases of large scientific corpora, such as S2ORC (Lo et al.,
2020) and General Index (Else, 2021), provide opportunities for building large
databases of scientific papers. Second, such databases can be linked to citation
recommendation (Färber and Jatowt, 2020; Gu et al., 2022b; Medić and Snajder,
2020) and to text retrieval systems (Guo et al., 2020) such as extractive summa-
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rization algorithms (Zhong et al., 2020; Gidiotis and Tsoumakas, 2020; Gu et al.,
2022a) and citation generation models (Xing et al., 2020; Ge et al., 2021; Wang
et al., 2022) that extract sentences from scientific papers as highlights or that
generate citation sentences.

These studies have focused on single tasks of either finding, reading, or sum-
marizing. However, to build a comprehensive system that helps authors read
and write scientific literature remains difficult due to the following challenges:
The system needs to index a large number of papers (e.g., S2ORC has over
136 million papers (Lo et al., 2020)) to achieve good coverage, respond quickly
to queries for efficient use, and be flexible to handle database additions and
deletions. At the same time, the summarization algorithm needs to be efficient,
and the citation generation algorithm needs to be flexible, as we want users
to be able to fine-tune the generated text by modifying the keywords entered.
In addition, the overall architecture needs to be modularized so one can easily
upgrade each module when better algorithms become available.

To this end, we developed SciLit, a platform for joint literature discovery,
summarization, and citation generation. We propose a hierarchical architec-
ture for paper retrieval to efficiently retrieve papers from multiple large cor-
pora. We build an efficient prefetching system based on a keyword inverted
index and a document embedding index on each corpus (e.g., S2ORC and PM-
COA (of Medicine, 2003)) to pre-filter candidates. The prefetched documents
are then re-ordered by a fine-tuned SciBERT (Beltagy et al., 2019). Such an
architecture allows us to dynamically add or remove databases and update
one database and its index without affecting the others. We extract highlights
using a light-weighted extractive summarization model proposed in Gu et al.
(2022a) that efficiently extracts the highlights of a scientific paper by repeatedly
selecting sentences in a Markov decision process. Furthermore, we fine-tune
a T5 model (Raffel et al., 2020) to generate a citing sentence based on the ab-
stract of the target paper, the context (the text surrounding the original citation
sentence), and keywords provided by users. We also develop a microservice-
based architecture that allows easy updates of algorithms.

In summary, our main contributions are:
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• We demonstrate SciLit, a platform for one-stop searching, summarizing
and citing scientific papers.

• We evaluated SciLit on scientific literature retrieval, paper summariza-
tion, and context-aware citation sentence generation, and showcased the
generation of a related-work paragraph.

• A live demo website of our system is at https://scilit.vercel.app and
our implementation and data are at https://github.com/nianlonggu/

SciLit-React and a video demonstrating the system can be viewed at
https://youtu.be/PKvNaY5Og1Y

5.2 SciLit

Figure 5.1 shows the workflow of our system. A literature discovery module
receives context and keywords and recommends a list of relevant papers. For
each recommended paper, an extractive summarizer selects a short list of sen-
tences from the full text as highlights. A citation generation module takes the
context, keywords, and abstract of the target paper and generates a citation
sentence that references the target paper and fits the context.

We define the context as the text before a citation sentence because we focus on
the workflow of first finding papers and then writing citation sentences, rather
than finding the missing citation in a given sentence, like Gu et al. (2022b);
Medić and Snajder (2020). In addition, the keywords are user-provided in
practice. In training and evaluating our system, when no keywords are explic-
itly given, we use the keywords occurring in both the context, the cited paper,
and the citation sentence as a substitute for use-provided keywords.

5.2.1 Literature Discovery

The literature discovery module inputs the context and keywords and recom-
mends papers that can be cited in the current context. To strike a balance
between query accuracy and speed on large scientific corpora, our document
discovery module employs a two-stage prefetching-ranking strategy (Gu et al.,
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keyword 
Boolean filter 

Prefetch

Prefetch

Neares Neighbor 
Search Remove

duplicates 

Database

Database

Rerank

Figure 5.2: Schematic of literature retrieval. Documents of each database are prefetched by a
cascade of keyword boolean filter and embedding-based nearest neighbor search and then reranked
by a fine-tuned SciBERT.

Corpus
Databases

# of
papers

# papers with
fullbody

until
date

S2ORC 136.60 M 12.44 M 2020-04-14
PMCOA 2.89 M 2.73 M 2022-06-17
arXiv 1.69 M 1.69 M 2022-07-28

Corpus
Inverted Index

keywords
length

# of
keywords

data
format

storage
size

S2ORC
unigram, bigram

1.20 B
sqlitedict

769 GB
PMCOA 0.30 B 145 GB
arXiv 0.15 B 77 GB

Corpus
Embedding Index

embedding dimension storage size

S2ORC
256

169 GB
PMCOA 2.9 GB
arXiv 1.7 GB

Table 5.1: Statistics of our literature discovery system. We indexed S2ORC (Lo et al., 2020),
PMCOA (of Medicine, 2003) and arXiv (Kaggle, 2022), which contain a large number of recent
scientific papers in different fields.
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2022b) (Figure 5.2). After importing each scientific corpus into a database, we
first build an efficient prefetching model on each database to pre-filter K candi-
date documents based on the provided keywords and context. After removing
duplicates, each database’s prefetched documents are reranked to produce the
final order.

Databases. We dump each corpus into a separate SQLite (Hipp, 2000) database
to allow flexibility in deploying and updating prefetching servers separately.
We further process documents from different corpora into a unified JSON
schema so that we can use the same codebase to index, query, summarize,
and display documents from different corpora. The JSON schema includes

“Title”, “Author”, etc., for metadata, and “Content.Abstract Parsed”, “Con-
tent.Fullbody Parsed” for parsed full text, The details are in Appendix B.

Prefetching. The prefetching model consists of an inverted index and an em-
bedding index. The inverted index stores the paper IDs of all publications for a
given keyword, such as a unigram like “computer” or a bigram like “machine
learning”, where the paper ID is a unique identifier with which we can obtain
the paper’s content from the SQLite database. The embedding index contains
the embedding of each scientific paper in the database, i.e., a 256-dimensional
vector representation, computed by Sent2Vec (Pagliardini et al., 2018), which
computes text embeddings by simply averaging the embeddings of all words
in the text. We use sentences obtained from the full text of the paper from
S2ORC to train Sent2Vec.

We first perform Boolean filtering (Gökçe et al., 2020) using the inverted in-
dex based on keywords with a specific syntax. For example, given “POS
tag;2010..2022”, we will filter papers published between 2010 and 2022 that
mention “POS tag”. The filtered papers are then ranked based on the co-
sine similarity between the paper embedding and the context embedding com-
puted by Sent2Vec. We believe that such a hybrid of lexical filtering and se-
mantic ranking allows users to find papers that are semantically similar to the
context and to adjust the search scope with keywords flexibly. Statistics for
the database and indexing system are in Table 5.1. Details of the indexing
implementation are in Appendix C.
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Duplicates Removal. The prefetched candidates from multiple corpora can
contain duplicated items as there exists an overlap between different corpora.
To remove duplicated candidates, we check the title and authors and keep only
one record of the same paper for reranking.

Reranking. We use SciBERT (Beltagy et al., 2019) to rerank prefetched candi-
dates such that papers that the author can cite in the given context have high
scores relative to the query (context and keywords). We follow Gu et al. (2022b)
to compute the affinity score: An input text “[CLS]query[PAD]paper[PAD]” is
passed to SciBERT, where query q is a concatenation of the context and key-
words, and paper d is a concatenation of the title and abstract of the candidate
paper. The encoded output of the “[CLS]” token is passed to a linear layer,
which outputs a scalar s(q, d) that we interpret as the affinity score between
the query q and the paper d. To train the reranker we use the cross entropy
loss:

L = − log
exp s(q, d+)

exp s(q, d+) + ∑N
i=1 exp s(q, d−i )

(5.1)

where d+ is the paper actually cited the query, and d−i is one of the N(N = 10)
uncited papers that are randomly sampled from prefetched candidate at each
training iteration.

5.2.2 Extractive Summarization

The extractive summarization module aims to extract a short list of sentences
from the full text of the paper for readers quickly get the main points. We
choose the summary to be extractive rather than abstractive to prevent readers
from being misled by the potential hallucinations introduced in abstractive
summarization models (Nan et al., 2021; Xu et al., 2020; Wang et al., 2020). We
also expect the extractive summarization model to select sentences from the
entire document without truncation and summarize the document efficiently
in real-time so that users do not experience obvious delays.

In this paper, we employ MemSum, an RNN-based extractive summarizer that
models the extraction process as a Markov decision process in a reinforcement
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learning framework. MemSum can summarize long papers without exhaust-
ing GPU memory due to its lightweight model structure, and it is computa-
tionally efficient, taking only 0.1 sec to summarize a paper. These features
make it a suitable model for our extractive summarization module. We use
the MemSum model trained on the PubMed dataset in Gu et al. (2022a).

5.2.3 Citation Generation Module

The citation generation module acts as an abstract summarizer that takes as
input the context, keywords, and the target paper to be cited and generates a
sentence that cites the target paper and narrates it in context.

Our input differs from previous work on automatic citation generation (Ge
et al., 2021; Xing et al., 2020), which uses only the context as input to a
sequence-to-sequence model without using keywords. We consider keywords
to be an important source of input because we believe that authors usually
have a clear intention when citing a paper, such as a certain keyword, rather
than writing a text that summarizes the paper aimlessly. In the case shown
in Figure 5.1, for example, after writing the context “MAX pooling perform
worse than MEAN pooling”, the author naturally intends to discuss papers
about “MAX pooling”. Therefore, the keyword “MAX pooling” should be
used as a thematic cue for the citation sentence generation. Moreover, making
the citation generation model conditional on keywords also allows users to
fine-tune the generated citation text by simply adjusting the keywords, thus
making our system more interactive and tunable.

To make the generation conditional on context, keywords, and cited papers,
we fine-tuned a T5 (Raffel et al., 2020) so that its input is a concatenation of
three input sources: keywords, context, and the abstract of a cited paper, each
preceded by a special field name to make each input source distinguishable to
the model: keywords: XXX. context: XXX. target abstract: XXX. The
corresponding tag text is the actual citation sentence that cites the target paper.
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5.2.4 Microservice-based Architecture

We build our platform as a network of microservices (Figure 5.3). An API
gateway routes requests from the frontend to the target microservice on the
backend. The microservices run separate modules on their respective Flask
servers (Aggarwal, 2014) and communicate with each other by sending HTTP
requests and waiting for responses. When a query request arrives, the API
gateway forwards the query to the literature discovery service, which calls
the prefetching and reranking service to get the reranked IDs. The API gate-
way then sends the paper IDs to the extractive summarization service for the
highlights of each recommended paper and sends the context, keywords, and
recommended paper IDs to the citation generation service to suggest citation
sentences. The database interface service manages the databases of multiple
scientific corpora and provides a unified interface to access the paper content
for a given ID. Each microservice runs in a relatively independent environment
that can be viewed externally as a black box, which makes it easy to upgrade
backend systems online, such as adding or removing a database or updating
a module’s algorithm.

5.3 Evaluation

In this section we first show how SciLit works and then evaluate the perfor-
mance of the system.

5.3.1 Demonstration

Our user interface is set up on a web page (Figure 5.4), implemented in Re-
actJS1. The left sidebar is an input panel where users can enter context and
keywords and start a query by clicking the search button. Retrieved papers’
information is displayed in the search results panel on the right. Users can
scroll up and down or paginate to browse through the recommended papers.
Each paper is accompanied by highlights and a suggested citation sentence

1https://reactjs.org/
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Np
speed

(s/query)
Recall@K (R@K)

R@1 R@5 R@10 R@20 R@50 R@100

50 2.02 0.107 0.208 0.263 0.305 0.327 0.331
100 2.55 0.096 0.215 0.278 0.328 0.384 0.401
200 3.26 0.095 0.220 0.275 0.339 0.420 0.452
300 3.93 0.095 0.204 0.273 0.330 0.422 0.482

Table 5.2: Literature retrieval performance measured by the recall of top K recommendations. Np
denotes the number of prefetched candidates per corpus.

generated by our extractive summarization service and citation generation ser-
vice, respectively. Users can cite a paper by clicking on the cite button and
the suggested citation sentence will jump to the editing area on the left where
users can tweak the sentence by changing keywords and clicking on the fine-
tune generation button, or they can edit the sentences manually. Exporting
citation information is also supported.

5.3.2 Performance

Evaluation Dataset. We evaluated SciLit on a test set containing 1530 sam-
ples, mainly from papers published in 2022 in the fields of computer science
and biomedical science. Each sample contains the following information: 1)
context, up to 6 sentences that precede the citation sentence and are within the
same section as the citation sentence; 2) keywords, up to 2 uni- or bi-grams
that occur in both the context, the citation sentence and cited paper; 3) ID of
the cited paper; 4) the citation sentence following the context, which is the
ground truth when evaluating generated citations. We only include citation
sentences that cite one paper in the test set for better quality control.

Literature Retrieval. For each sample in the evaluation dataset, we use con-
text and keywords as queries and invoke the literature search service to first
prefetch Np candidates from three corpora (S2ORC, PMCOA, and arXiv) re-
spectively, remove duplicates, and then rank the prefetched candidates to ob-
tain the recommended papers. We evaluated the retrieval performance based
on the recall of the real cited papers in the top K recommendations (Table
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Model Rouge-1 Rouge-2 Rouge-L

BertSum (Liu, 2019) 42.53 16.89 39.18
MemSum (Gu et al., 2022a) 46.40* 19.61* 42.66*

Table 5.3: The extractive summarization performance. “*” indicates statistical significance in
comparison to baselines with a 95% bootstrap confidence interval.

generation pipeline Rouge-1 Rouge-2 Rouge-L

generation-only 32.96 9.19 24.52
Best of top 1 paper 28.62 6.00 21.05
Best of top 5 papers 34.92 9.59 26.23
Best of top 10 papers 36.83* 10.98* 28.10*

Table 5.4: The performance of citation generation.

5.2). We observed that for large K(K = 50, 100), the recall increases as Np

increases, while for small K(K = 5, 10, 20), the recall first increases and then
starts to decrease, indicating that the reranking performance is impacted by
more prefetched candidates. We choose 100 as the default value for Np, which
achieved the best performance on R@10 and has a relatively fast query speed.

Extractive Summarization. Following Zhong et al. (2020); Xiao and Carenini
(2019), we computed the ROUGE f1 scores between the highlights extracted
from the full body and the corresponding abstract. MemSum significantly out-
performed BertSum (Liu, 2019), a Bert-based summarizer that requires trunca-
tion before summarizing long documents, indicating the effectiveness of Mem-
Sum in extractively summarizing scientific documents.

Citation Generation. To evaluate our joint retrieval and citation generation
pipeline, we have our system first recommend papers based on context and
keywords and then generate K citation sentences for each of the top K recom-
mended papers, respectively. Then, we calculate the ROUGE scores between
the real citation and the K generated sentences and record the highest of them.
We compared the “Best-of-top-K” pipeline to the “generation-only” pipeline,
where we directly provide the truly cited papers for generation citations.
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retrieval
(Np = 100) R@1 R@5 R@10 R@20 R@50 R@100

w keywords 0.096 0.215 0.278 0.328 0.384 0.401
w/o keywords 0.013 0.050 0.085 0.125 0.199 0.250

citation generation Rouge-1 Rouge-2 Rouge-L

w keywords 32.96 9.19 24.52
w/o keywords 26.57 5.56 20.39

Table 5.5: Ablation study on retrieval and citation generation performance.

We observed that for K = 5 and 10, the “Best-of-top-K” pipeline achieved
significantly higher ROUGE scores than the ”generation only” pipeline (Table
5.4), indicating that the paper retrieval module contributes positively to the
citation generation process, with a greater chance of suggesting more appro-
priate citation sentences. We believe that this result further supports our idea
of developing an integrated system for joint retrieval and generation.

5.3.3 Ablation Study

To analyze the impact of keywords, we evaluated retrieval and generation sys-
tems without keywords. For document retrieval, we first prefetch Np = 100
candidates from each corpus and then rank them based on context only. For
citation generation, we trained a T5 model to learn to generate citation sen-
tences with only the context and the title and abstract of the cited paper and
evaluated it on the evaluation dataset. We observe a significant degradation
in the performance of literature retrieval and citation generation (Table 5.5),
which demonstrates the necessity of keywords for recommending relevant pa-
pers and generating accurate citations when using our platform.

5.4 Related Work

Recently, AI-driven platforms focused on literature recommendation and sci-
entific paper summarization have been proposed, respectively. (keywords:
platform, paper: #2) One such platform is AI Research Navigator (Fadaee et al.,
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2020), which combines classical keyword search with neural retrieval to discover and
organize relevant literature. (keywords: scientific; summarization; platform,
paper #3) Another platform is Anne O’Tate, which supports user-driven summa-
rization, drill-down and mining of search results from PubMed, the leading search
engine for biomedical literature (Smalheiser et al., 2021). (keywords: related work

generation, paper #9) Chen and Zhuge (2019) automatically generates related work
by comparing the main text of the paper being written with the citations of other papers
that cite the same references.

In the previous paragraph, the italicized citation sentences are generated from
SciLit. In generating each sentence, we use all the preceding sentences in
the paragraph as contexts and use the keywords in parentheses to obtain the
recommended papers and the corresponding citation sentences. The paper
index in parentheses indicates the order of the final selected cited papers in
the recommended results.

5.5 Conclusion and Future Work

This paper demonstrates SciLit, a platform for joint scientific literature re-
trieval, paper summarization, and citation generation. SciLit can efficiently
recommend papers from hundreds of millions of papers and proactively pro-
vide highlights and suggested citations to assist authors in reading and dis-
cussing relevant papers. In addition, we have our prefetching, reranking, and
citation generation system conditioned on user-provided keywords, which
makes our platform more flexible and adjustable in response to user input
when recommending papers and suggesting citation sentences. In the future,
we will further improve the performance of each module, especially the cita-
tion generation part, and collect feedback from users to improve the overall
workflow and the frontend user experience.
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5.6 Appendices

A Hardware Information

We run the backend of SciLit on a server with 2×64 Core AMD EPYC 7742
2.25GHz Processor, 2TB DDR4 3200MHz ECC Server Memory, and 4×7.68TB
NVME GEN4 PM9A3 for storage. The server is also equipped with 2 × nVidia
RTX A6000 48GB GPU. The frontend is hosted on Vercel2.

B JSON Schema for Database

The details of our unified JSON schema is shown in Listing 5.1. We keep the
fields: “Author”, “Title”, “Abstract”, “Venue”, “DOI”, “URL” and “Publica-
tionDate” for the metadata, and ”Content.Abstract Parsed” and “Content.Fullbody Parsed”
for the parsed full text. The parsed abstract or full body contains a list of
parsed sections. Each section contains a list of parsed paragraphs, each in-
cluding a list of parsed sentences. If a sentence cites a paper, we create a “cite
span” that records the citation marker such as “[1]”, the position of the citation
marker in the sentence, and the cited paper’s index in the “Reference” list.

We implemented an S2ORC parser to convert documents in the S2ORC corpus
to our JSON format. For PDFs in the arXiv corpus, we first used the s2orc-
doc2json (Lo et al., 2020) to convert them into S2ORC format and then applied
our S2ORC parser. For XML files in the PMCOA corpus, we implemented
an XML parser based on Achakulvisut et al. (2020) to convert XML to S2ORC
format and then applied the S2ORC parser to convert it into our JSON format
finally.

C Prefetching Indexing Implementation

Inverted Index

The inverted index is a mapping table from keywords (unigrams or bigrams)
to paper IDs. We extract keywords from the full text of each document and

2https://vercel.com/
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1 {’Author ’: [{’GivenName ’: ’Daisuke ’, ’FamilyName ’: ’Ida’}, ...],

2 ’Title ’: ’Topology Change of Black Holes’,

3 ’Abstract ’: ’The topological structure of the event horizon has

been investigated ...’,

4 ’Venue ’: ’’,

5 ’DOI’: ’’,

6 ’URL’: ’’,

7 ’PublicationDate ’: {’Year’: ’2007’, ’Month’: ’3’},

8 ’Content ’: {

9 ’Abstract ’: ’’,

10 ’Abstract_Parsed ’: [{

11 ’section_id ’: ’0’,

12 ’section_title ’: ’Abstract ’,

13 ’section_text ’: [{

14 ’paragraph_id ’: ’0’,

15 ’paragraph_text ’: [{

16 ’sentence_id ’: ’0’,

17 ’sentence_text ’: ’The topological structure of

the event horizon has been investigated in terms of the Morse

theory.’,

18 ’cite_spans ’: []},

19 # ...

20 ]},

21 # ...

22 ]

23 }],

24 ’Fullbody ’: ’’,

25 ’Fullbody_Parsed ’: [{

26 ’section_id ’: ’0’,

27 ’section_title ’: ’Introduction ’,

28 ’section_text ’: [{

29 ’paragraph_id ’: ’0’,

30 ’paragraph_text ’: [

31 # ...,

32 {

33 ’sentence_id ’: ’2’,

34 ’sentence_text ’: ’[1, 2] This follows from the

fact that the total curvature , which is the integral of the

intrinsic scalar curvature over the horizon , is positive under

the dominant energy condition and from the Gauss -Bonnet

theorem.’,

35 ’cite_spans ’: [{’start’: ’4’, ’end’: ’6’, ’text’:

’2]’,’ref_id ’: ’0’}]

36 },

37 # ...

38 ]

39 }]

40 }]},

41 ’Reference ’: [{

42 ’Title’: ’The large scale structure of space -times’,

43 ’Author ’: [{’GivenName ’: ’S’, ’FamilyName ’: ’Hawking ’},

44 {’GivenName ’: ’G’, ’FamilyName ’: ’Ellis ’}],

45 ’Venue’: ’’,

46 ’PublicationDate ’: {’Year’: ’1973’},

47 ’ReferenceText ’: ’2. Hawking , S, and G Ellis. "The large

scale structure of space -times ." (1973).’},

48 # ...

49 ]

50 }

Listing 5.1: An example of the JSON schema that we used for parsing and storing scientific papers.
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1 {

2 ’operation ’: ’AND’,

3 ’elements ’: [

4 {’operation ’: ’AND’,

5 ’elements ’: [{’operation ’: None , ’elements ’: [’nlp’]}]},

6 {’operation ’: ’OR’,

7 ’elements ’: [

8 {’operation ’: ’AND’,

9 ’elements ’: [{’operation ’: None ,

10 ’elements ’: [’machine translation ’]}]},

11 {’operation ’: ’AND’,

12 ’elements ’: [{’operation ’: None , ’elements ’: [’nmt’

]}]}]} ,

13 {’operation ’: ’OR’,

14 ’elements ’: [

15 {’operation ’: None , ’elements ’: [’publicationdate.year

:2020’]},

16 {’operation ’: None , ’elements ’: [’publicationdate.year

:2021’]},

17 {’operation ’: None , ’elements ’: [’publicationdate.year

:2022’]}

18 ]

19 }]

20 }

Listing 5.2: The dictionary representation of the tree structure shown in Figure 5.5.

keep a bigram only if all two words in the bigram are not English stopwords.
We use sqlitedict3 to store the inverted index for each corpus, which is an on-
disk hashmap based on an SQLite database that allows us to efficiently obtain
the paper ID for a given keyword without loading the entire inverted index
into RAM.

Syntax Parsing. Our platform allows users to filter documents using syntax-
rich keyword strings. For example, to filter papers that contain the keywords
’NLP’ and ’machine translation’ or ’NMT’ published between 2020 and 2022,
one can compose a keyword string NLP; machine learning|NMT; 2020..2022’’.
We transform this keyword string into a tree of logical operations (Figure 5.5),
wherein each node we denote the logical operations applied to the sub-nodes,
and each leaf node contains a keyword. We implemented the tree using a

3https://github.com/RaRe-Technologies/sqlitedict
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AND

NLP

OR

machine translation

NMT

OR

Pub. Year: 2020

Pub. Year: 2021

Pub. Year: 2022

Figure 5.5: The parsed tree structure of the given keywords string: NLP; machine learning|NMT;

2020..2022’’.

Python dictionary (Listing 5.2). Then, we recursively traverse all nodes in the
tree in a depth-first search, obtain the paper IDs with the keyword in each leaf
node, and apply the logical operations indicated in each node to obtain the
final paper ID at the root node.

Embedding Index

Structure of the Embedding Index. The embedding index consists of three
main components:

The first component is a matrix M ∈ RN×D, where N is the number of doc-
uments and D is the dimensionality of document embeddings. Each docu-
ment’s embedding is L2-normalized so that given an L2-normalized query
embedding eq ∈ RD×1, the matrix multiplicationMeq ∈ RN×1 represents the
cosine similarity between the query embedding and all document embeddings.
We can useMeq to rank documents to obtain the indices of most similar paper
embeddings.

The second component is a mapping table from the index of a paper embed-
ding in the matrix M to the corresponding paper ID in our databases. With
this mapping table we can get the papers’ content given the top ranked indices
during K nearest neighbor search (KNN).
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The last component is a reversed mapping table from the paper ID to the
corresponding index in the embedding matrix. In our prefetching system,
we first use the inverted index to pre-filter a subset of paper IDs based on
given keywords. Then we can use this reversed mapping table to obtain the
corresponding paper embeddings and perform KNN among them.

Multi-Processing Speedup for Brute-Force Nearest Neighbor Search. For a
large corpus like S2ORC, the embedding matrix contains up to 136.6 million
vectors, and performing matrix multiplication in a single thread is very time-
consuming. To take full advantage of the multiple CPU cores on our server, we
divide the embedding matrix into 137 shards, each containing about 1 million
embeddings. We first run a brute-force nearest neighbor search in parallel to
obtain Np candidates on each shard, and then we rank the 137×Np candidates
again to obtain the final Np candidates. Given that our server has 128 cores, we
can achieve a nearly linear speedup using multiprocessing KNN with slicing,
and mathematically it is equivalent to performing a single KNN over the entire
embedding matrix to obtain the closest Np candidates.

D Joint Retrieval and Citation Generation Examples

We show some specific results of joint paper retrieval and automatic generation
of citation sentences. The contexts and keywords we used were obtained from
papers in arXiv (Figure 5.6) and PMCOA (Figure 5.7), respectively. In each
example, the actual cited paper occurs in the top 5 paper recommendations,
which we have highlighted with an underline.
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Chapter 6

Conclusion and Future Work

This thesis investigated using NLP techniques to assist authors in finding, sum-
marizing, and citing papers while writing scientific articles. We explored three
separate research topics: citation recommendation, long document extractive
summarization, and controlled citation generation, and finally, we integrated
our algorithms into a holistic system and built a web platform that allows
users to use our workflow efficiently.

6.1 Paper Retrieval

In Chapter 2, we proposed the HAtten-SciBERT recommendation pipeline,
which consists of a prefetching phase and a reranking phase. We first rank
the papers in the database based on the cosine similarity between the query
embedding and the paper embedding encoded by HAtten, a hierarchical at-
tentional text encoder. We then rerank the prefetched candidate papers using
fine-tuned SciBERT. Our HAtten model efficiently prefetches a list of candi-
dates with significantly higher recall than baselines, which allows SciBERT to
rerank a smaller number of prefetched candidates in less time while main-
taining recall performance, thus achieving a better tradeoff between efficiency
and accuracy. Our results show that not only reranking performance but also
prefetching performance is critical to the effectiveness of the whole pipeline
and must be considered when designing practical citation recommendation
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pipelines.

One limit in our approach is that the training of the HAtten text encoder con-
verges slowly. We train HAtten based on triplet loss. For each query text, there
is usually only one positive document, i.e., the actual cited paper, and millions
of negative documents (uncited papers). The severe imbalance between pos-
itive and negative documents makes it crucial to mine effective triplet pairs.
We investigated triplet mining strategies to speedup convergence, but there
is still much room for improvement. Future work could explore more effec-
tive triplet mining strategies or replace triplet loss with other metric learning
losses (KAYA and BİLGE, 2019) to enable fast training convergence, especially
in large databases with millions of papers. Furthermore, we observe that the
reranking time is roughly linearly proportional to the number of papers to
be reordered, suggesting that the reranking part will become a time bottleneck
when we want to rerank more prefetched candidates in pursuit of higher recall.
Future work could investigate more efficient reranking systems than SciBERT,
such as using lightweight variants of BERT like ALBERT (Lan et al., 2019) or
DistilBERT (Sanh et al., 2019).

6.2 Document Summarization

In Chapter 3. we modeled extractive summarization as a multi-step episodic
Markov decision process with extractive history awareness. In each step, we
score the remaining unextracted sentences based not only on the content of
the sentences but also on extraction history information, i.e., which sentences
have already been extracted and which are remaining. The awareness of ex-
traction history allows MemSum to produce compact summaries and to avoid
bringing redundancy in the extracted summary spontaneously. In addition,
the lightweight structure gives MemSum an advantage in summarizing long
documents, which makes it suitable for summarizing scientific papers.

One limit of recent extractive summary models (including this work) is the lack
of consideration of coherence (i.e., the logical connection between sentences in
an extractive summary), which is evidenced by the fact that the popular auto-
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matic assessment metrics, ROUGE-1/2/Lsum F1 scores, are insensitive to the
order of extracted sentences. We believe that coherence is an essential factor,
as extracted sentences ordered in a logically consistent way certainly help the
reader better grasp the original document’s logical flow. Future work could
investigate the development of evaluation metrics for coherence. With such
metrics, we can design new reward functions and train MemSum through the
policy gradient approach to extract sentences coherently. Moreover, develop-
ing an extractive-and-abstractive pipeline remains an interesting topic where
we first extract a subset of sentences from a document and then rephrase them
with a fine-tuned language model.

6.3 Controllable Citation Generation

In Chapter 4, we presented a controlled citation generation system that allows
users to use suggested citation attributes (intent, keywords, or related sen-
tences) to guide generation. The key module of the system is a BART-large
model trained using not only contextual inputs but also conditional inputs.
The contextual inputs consist of the local context in the manuscript and the
cited paper’s global context (title and abstract). The conditional inputs include
the citation attributes associated with the target citation sentence. The experi-
mental results showed that training BART-large with conditional inputs could
facilitate generation conditional on the given citation attributes, thus allowing
the user to control the generation process effectively.

Future work could investigate ways to improve the controllability of citation
generators. For example, researchers could refine the definition of citation
attributes, such as defining more types of citation intent instead of only three
(context, method, result). On the other hand, the controllability of citation
generation models can also be achieved by tuning the decoding process via
updating the probability of the next token with a given control property, as
proposed in Dathathri et al. (2020).

111



6. Conclusion and Future Work

6.4 SciLit

In Chapter 5, we presented a workflow for automatically recommending pa-
pers, providing an extracted summary as highlights for each paper, and sug-
gesting citation sentences that can be used to cite the recommended papers.
Users only need to provide the manuscript they are working on and some key-
words they would like to discuss next. The backbone of this platform is based
on our work on paper retrieval (Chapter 2), summarization (Chapter 3), and
citation generation (Chapter 4).

Future work can focus on the following aspects. First, we can further improve
the efficiency of our paper retrieval system in recommending papers. Our
current platform takes around 2.6 s to recommend papers from a database of
around 140 million (by prefetching 100 candidates and then reranking them),
and we aim to reduce the time to less than 1 s. Second, we will conduct a user
study on the platform and collect user feedback to improve human-machine
interaction and the overall workflow.

6.5 Overall Conclusion

In this thesis, we investigated the NLP-driven task of finding, summarizing,
and citing relevant papers in scientific writing. Citation generation is a pro-
cess of making a statement based on two input sources: 1) the contextual infor-
mation in the manuscript, which may contain observations (e.g., experimental
results), and 2) information about the cited paper, which is a priori knowl-
edge. Thus, the citation generation task can be considered as a specific case of
scientific inference on a microscopic scale. On a broader scale, given that writ-
ing the discussion section usually involves citing and discussing the relevant
papers, solving the problem of citation generation will facilitate the process
of writing the discussion section. Thus, our work is a step towards fully auto-
mated discussion generation, which helps us to implement AI-driven scientific
inference at the section (or chapter) scale.
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Seifert, Krisztian Balog, Kjetil Nørvåg, and Vinay Setty, editors, Advances
in Information Retrieval, pages 274–288, Cham, 2022b. Springer International
Publishing. ISBN 978-3-030-99736-6.

Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani,
Chen Wu, W Bruce Croft, and Xueqi Cheng. A deep look into neural ranking
models for information retrieval. Information Processing & Management, 57(6):
102067, 2020.

Qi He, Jian Pei, Daniel Kifer, Prasenjit Mitra, and Lee Giles. Context-aware

118

https://aclanthology.org/2020.acl-main.247
https://aclanthology.org/2020.acl-demos.36
https://aclanthology.org/2020.acl-demos.36
https://doi.org/10.5281/zenodo.4461265
https://aclanthology.org/2022.acl-long.450
https://aclanthology.org/2022.acl-long.450


Bibliography

citation recommendation. In Proceedings of the 19th international conference on
World wide web, pages 421–430, 2010.

Gustav Herdan. Type-token mathematics, volume 4. Mouton, 1960.
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