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A B S T R A C T

Image restoration and video restoration are classical problems in com-
puter vision. They aim to restore the original visual signal from the
observed corrupted signal. Due to various factors, such as noise, blur-
ring, downsampling and compression, the inevitable loss or corruption
of information occurs during imaging and transmission. This leads
to the ill-posed nature of restoration problems. Despite the notable
advancements in addressing the problem through deep neural net-
works, there remains room for further improvement in synthetic and
real-world scenarios. In this thesis, we present a practical degradation
model, an image restoration model and two video restoration models
to improve the restoration performance from different aspects.

Firstly, we propose a practical degradation model for image super-
resolution. We first analyze the disadvantages of existing methods
and design a complex but practical degradation model that consists
of randomly shuffled blur, downsampling and noise degradations. In
detail, the blurring effect is modeled through two convolutions utilizing
isotropic and anisotropic Gaussian kernels. The downsampling is ran-
domly selected from a set of interpolation techniques. To simulate noise,
Gaussian noise is added at varying levels, JPEG compression is em-
ployed at different quality factors, and processed camera sensor noise is
generated using a reverse-forward camera image signal processing (ISP)
pipeline model and a RAW image noise model. For higher complexity,
we use above degradations for multiple times in a randomly shuffled
way. Experiments on synthetic and real-world images demonstrate
that the proposed degradation model can significantly improve the
practicability of existing methods.

Secondly, we propose a transformer-based model for image restora-
tion. By regarding image pixels as language tokens, we use the attention
mechanism to refine pixel features as a weighted sum of its neighbour-
ing features based on their cosine similarity. To improve the efficiency,
the image is partitioned into non-overlapped windows, in which atten-
tion is conducted within each window independently. We stack multiple
attention layers with residual connections to extract deep image fea-
tures and shift the image for every other layer to enable cross-window

iii



iv

connection. We demonstrate the superiority of the proposed method on
three representative restoration tasks: image super-resolution, image
denoising and JPEG compression artifact reduction.

Thirdly, we extend the image transformer model to the video domain.
Different from single image restoration, video restoration generally
requires to utilize temporal information from multiple adjacent but
usually misaligned video frames. Therefore, we propose a transformer-
based model with parallel frame prediction and long-range temporal
dependency modelling abilities for video restoration. The model is
composed of multiple scales, each of which consists of two kinds of
modules: temporal reciprocal self attention and parallel warping. The
former module divides the video into small clips, on which reciprocal
attention is applied for joint motion estimation, feature alignment and
feature fusion, while self attention is used for feature extraction. To
enable cross-clip interactions, the video sequence is shifted for every
other layer. In the second module, parallel warping is used to further
fuse information from neighboring frames by parallel feature warping.
Experimental results on five tasks, including video super-resolution,
video deblurring, video denoising, video frame interpolation and space-
time video super-resolution, demonstrate that the proposed method
outperforms the previous methods by large margins.

Lastly, we improve the video transformer model by integrating the
advantages of recurrent design. It processes local neighboring frames in
parallel within a globally recurrent framework. Specifically, it divides
the video into multiple clips and uses the previously inferred clip fea-
ture to estimate the subsequent clip feature. Within each clip, different
frame features are jointly updated with implicit feature aggregation.
Across different clips, the guided deformable attention is designed
for clip-to-clip alignment, which predicts multiple relevant locations
from the whole inferred clip and aggregates their features by the at-
tention mechanism. Extensive experiments on video super-resolution,
deblurring, and denoising show that the proposed model achieves state-
of-the-art performance on benchmark datasets with balanced model
size, testing memory and runtime.

All in all, this thesis contributes to various image and video restora-
tion tasks, achieving state-of-the-art performance on benchmark datasets
and real-world data.



Z U S A M M E N FA S S U N G

Bildrestaurierung und Videorestaurierung sind klassische Probleme im
Bereich der Computer Vision. Ihr Ziel ist es, das ursprüngliche visuel-
le Signal aus dem beobachteten korrupten Signal wiederherzustellen.
Aufgrund verschiedener Faktoren wie Rauschen, Unschärfe, Down-
sampling und Kompression kommt es während der Bildaufnahme und
-übertragung zwangsläufig zu Informationsverlust oder -beschädigung.
Dies führt zur schlecht gestellten Natur von Restaurationsproblemen.
Trotz der beachtlichen Fortschritte bei der Lösung des Problems durch
tiefe neuronale Netzwerke besteht weiterhin Raum für Verbesserun-
gen in synthetischen und realen Szenarien. In dieser Arbeit stellen wir
ein praktisches Degradationsmodell, ein Bildrestaurierungsmodell und
zwei Videorestaurierungsmodelle vor, um die Restaurierungsleistung
aus verschiedenen Gesichtspunkten zu verbessern.

Erstens schlagen wir ein praktisches Degradationsmodell für die Bild-
Superauflösung vor. Zunächst analysieren wir die Nachteile bestehen-
der Methoden und entwerfen ein komplexes, aber praktisches Degrada-
tionsmodell, das aus zufällig verteilten Unschärfe-, Downsampling- und
Rausch-Degradierungen besteht. Im Detail wird der Unschärfeeffekt
durch zwei Faltungen mit isotropen und anisotropen Gaußschen Ker-
nen modelliert. Das Downsampling wird zufällig aus einer Reihe von
Interpolationstechniken ausgewählt. Zur Simulation von Rauschen
wird Gaußsches Rauschen auf unterschiedlichen Pegeln hinzugefügt,
JPEG-Kompression wird bei verschiedenen Qualitätsfaktoren verwen-
det, und verarbeitetes Kamerarauschen wird mithilfe eines rückwärts-
vorwärts-Kamerabild-Signalverarbeitungs-ISP-Modells und eines RAW-
Bildrauschmodells erzeugt. Für höhere Komplexität verwenden wir
die oben genannten Degradierungen mehrmals auf zufällige Weise.
Experimente an synthetischen und realen Bildern zeigen, dass das
vorgeschlagene Degradationsmodell die Praktikabilität bestehender
Methoden signifikant verbessern kann.

Zweitens schlagen wir ein transformerbasiertes Modell für die Bildre-
staurierung vor. Indem wir Bildpixel als Sprachtokens betrachten, ver-
wenden wir den Aufmerksamkeitsmechanismus, um die Pixelmerkmale
als gewichtete Summe ihrer benachbarten Merkmale aufgrund ihrer Ko-
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sinusähnlichkeit zu verfeinern. Zur Verbesserung der Effizienz wird das
Bild in nicht überlappende Fenster unterteilt, in denen die Aufmerksam-
keit innerhalb jedes Fensters unabhängig durchgeführt wird. Wir sta-
peln mehrere Aufmerksamkeitsschichten mit Restverbindungen, um tie-
fe Bildmerkmale zu extrahieren, und verschieben das Bild für jede ande-
re Schicht, um eine Verbindung zwischen den Fenstern zu ermöglichen.
Wir zeigen die Überlegenheit der vorgeschlagenen Methode bei drei
repräsentativen Restaurierungsaufgaben: Bild-Superauflösung, Bilden-
trauschen und Reduzierung von JPEG-Kompressionsartefakten.

Drittens erweitern wir das Bildtransformatormodell auf den Video-
bereich. Anders als bei der Restaurierung einzelner Bilder erfordert
die Videorestaurierung im Allgemeinen die Nutzung zeitlicher Infor-
mationen aus mehreren benachbarten, aber in der Regel nicht ausge-
richteten Videoframes. Daher schlagen wir ein transformerbasiertes
Modell mit paralleler Rahmenvorhersage und Fähigkeiten zur Modellie-
rung langreichweitiger zeitlicher Abhängigkeiten für die Videorestau-
rierung vor. Das Modell besteht aus mehreren Skalen, von denen jede
zwei Arten von Modulen enthält: zeitliche reziproke Selbstaufmerk-
samkeit und paralleles Warping. Das erste Modul teilt das Video in
kleine Clips auf, auf denen reziproke Aufmerksamkeit für gemeinsa-
me Bewegungsschätzung, Merkmalsausrichtung und Merkmalsfusion
angewendet wird, während Selbstaufmerksamkeit für Merkmalsex-
traktion verwendet wird. Um Wechselwirkungen zwischen den Clips
zu ermöglichen, wird die Videosequenz für jede andere Schicht ver-
schoben. Im zweiten Modul wird paralleles Warping verwendet, um
Informationen von benachbarten Frames durch paralleles Merkmalswar-
ping weiter zu fusionieren. Experimentelle Ergebnisse in fünf Aufgaben,
einschließlich Video-Superauflösung, Video-Entwirbelung, Videoentrau-
schen, Video-Bildinterpolation und Raum-Zeit-Video-Superauflösung,
zeigen, dass die vorgeschlagene Methode die früheren Methoden deut-
lich übertrifft.

Zuletzt verbessern wir das Videotransformator-Modell, indem wir
die Vorteile des rekurrenten Designs integrieren. Es verarbeitet lokale
benachbarte Frames innerhalb eines global rekurrenten Rahmens par-
allel. Speziell teilt es das Video in mehrere Clips auf und verwendet
das zuvor inferierte Clip-Feature, um das nachfolgende Clip-Feature zu
schätzen. Innerhalb jedes Clips werden verschiedene Rahmenmerkmale
gemeinsam mit impliziter Merkmalsaggregation aktualisiert. Zwischen
den verschiedenen Clips ist die geführte deformierbare Aufmerksam-
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keit für die Clip-zu-Clip-Ausrichtung konzipiert, die mehrere relevante
Positionen aus dem gesamten inferierten Clip vorhersagt und ihre
Merkmale durch den Aufmerksamkeitsmechanismus aggregiert. Um-
fangreiche Experimente zur Video-Superauflösung, -Entwirbelung und
-Entzerrung zeigen, dass das vorgeschlagene Modell auf Benchmark-
Datensätzen mit ausgewogenen Modellgrößen, Testspeicher und Lauf-
zeit eine Spitzenleistung erzielt.

Insgesamt trägt diese Arbeit zu verschiedenen Bild- und Videore-
staurierungsaufgaben bei und erzielt Spitzenleistungen auf Benchmark-
Datensätzen und realen Daten.
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1
I N T R O D U C T I O N

In this digital age, a massive amount of images are created and shared
every day by smartphones and social media platforms. The process
of image creation and sharing encompasses various factors that can
potentially impair the quality of the generated images. For example,
noises are unavoidable during camera sensing and quantization pro-
cesses, while motion blurs are common due to object movement or
camera shake. In order to enhance visual effects for human or facilitate
accurate analysis in visual understanding, the removal of noise and
blurring artifacts becomes imperative in certain scenarios. In the field
of computer vision, this kind of process is called image restoration.
More formally, image restoration refers to the process of restoring clear,
high-quality images from degraded, low-quality images. According to
the difference of degradations, it can be further divided into several
sub-tasks: image super-resolution [1], [17], [18], image denoising [19],
[20], image deblurring [21], [22], compression artifact reduction [23],
etc. For example, image super-resolution aims at reconstructing the
high-resolution image from the downsampled low-resolution image,
while image denoising aims to remove the noises on images and gen-
erate clean sharp images. When the input and output are sequences
of video frames, we can define it as the video restoration problem,
including video super-resolution [2], [24], video denoising [25], [26],
video deblurring [27], [28], video frame interpolation [29], [30], etc. In
this thesis, image and video restoration are collectively referred to as
visual restoration.

In this chapter, we will first introduce the general imaging process
and analyze where the degradations come from. Then, we discuss the
traditional degradation model and the traditional methods. After that,
we discuss the challenges and practical applications of image and video
restorations.

1
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1.1 the general imaging process

In modern digital cameras, the imaging process involves several key
steps that work together to capture and produce images. Due to
imperfect hardware or inevitable approximation, each step might suffer
from different kinds of degradations that reduce image quality. These
steps are detailed as follows.

1. Light capture. The lens system is used to capture the reflected or
emitted light from the surface. It takes the incoming light rays
and focuses them onto the image sensor. In the popular pinhole
model, the lens are often assumed to have spherical surfaces and
very thin thickness, but the manufactured real lens might not be
ideal, leading to geometrical and chromatic aberrations [31]. The
former one includes spherical aberration, astigmatism, coma, etc,
which are visible as image distortions or degradation like blurring.
The later one means rays of different wavelengths are focused
on different planes due to different refractive indexes. This may
cause repeated and shifted structures of different colors.

2. Image sensing. To convert the light to an electrical signal, digi-
tal cameras use a regular array of light-sensitive cells to collect
incoming photons and turn them into an electric charge by the
photoelectric effect. In popular CMOS (complementary metal-
oxide semiconductor) cameras, each photo sensor cell has its own
transistors that help perform the charge-to-voltage conversion,
signal amplification and readout. Due to inherent imperfections
in sensors, sensor noises are inevitable. For example, the number
of photons captured by the sensor might fluctuate randomly, es-
pecially in low-light conditions or under changing temperature
conditions. Moreover, the noises might be specific to individual
sensor cells, as a result of non-uniform sensor sensitivity, man-
ufacturing defects, signal amplification inconsistencies, etc. In
addition, owing to the limited intensity of censor cells, the resolu-
tion of the camera is also limited. This means that the resulting
image is a sampled (downsampled) signal of the real scene.

3. Analog-to-digital conversion. The initial electrical signal captured
by the sensor exists in an analog form. To facilitate subsequent
processing stages, the signal undergoes analog-to-digital con-
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version, wherein it is transformed into a digital format. This
conversion entails discretizing the continuous analog signal into
discrete values, inevitably leading to a loss of precision.

4. Image signal processing. After light-to-electrical signal conversion,
the image signal processing (ISP) algorithm is applied for the
enhancement and optimization of the captured raw image. It
includes demosaicing, noise reduction, white balance, exposure
control, sharpness enhancement, color correction, tone mapping,
dynamic range adjustment, etc. However, in certain scenarios,
the ISP might lead to various degradations or artifacts, such as
noise amplification, color distortion, oversharpening and detail
loss. This can significantly impact the overall image quality and
user experience.

5. Image compression. To save storage and transmission cost, the
image data is often compressed to reduce file size. For higher
compression rate, the compression process is often lossy, such as
JPEG compression. Although it preserves most of the information,
some details are inevitably lost and the images may suffer from
compression artifacts.

1.2 traditional degradation model

Although the imaging process is complicated, it is often simplified
and abstracted as various sub-problems in visual restoration research.
Based on their distinct degradation assumptions, they can be divided
as image/video super-resolution, deblurring, denoising, compression
artifact reduction, frame interpolation, etc. These sub-problems could
be defined by the traditional degradation model.

We begin our definition with video restoration, considering that im-
age restoration can be viewed as a specific instance of video restoration
in which both the number of input and output images are one. In
general, as shown in Fig. 1.1, a sequence of video frames is captured
by a camera with a periodically on-and-off shutter [32], [33]. When the
shutter is open, the camera sensors collect reflected photons and convert
them into electrical signals. This can be formulated as an integration of
luminous intensity over the exposure time, during which the motion
blur may occur if the object moves or the camera shakes. Besides, due
to limited shutter on-and-off frequency (framerate), motion aliasing
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Figure 1.1: The illustration of the traditional degradation model. Note
that we show temporal and spatial degradation separately
for clarity, although they occur simultaneously. Camera
sensors capture discrete frames at the time step ti(i≥0) by
integrating the continuous latent images within an exposure
time interval τ, leading to temporal degradation. Then, non-
ideal imaging factors such as out-of-focus and limited sensor
array intensity result in spatial degradation as well. These
two degradations can be implemented by using a temporal
kernel Kt and a spatial kernel Ks with the downsampling
↓st and ↓sh×sw .

may also occur when the temporal dynamic event frequency is beyond
the Nyquist limit of framerate. In addition to above temporal degrada-
tion, video capturing also suffers from similar spatial degradation to
single image capturing as a result of non-ideal imaging factors such
as out-of-focus and limited sensor array intensity [6]. Formally, given
a high spatio-temporal resolution video X ∈ RTh×Hh×Wh×3, a 3D blur
kernel K, a low spatio-temporal resolution video Y ∈ RTl×Hl×Wl×3 can
be formulated as

Y = (X ⊗K) ↓st×sh×sw + N , (1.1)

where ⊗ represents the 3D convolution, and ↓st×sh×sw (abbreviated
as ↓s for clarity) denotes the standard s-fold downsampling in three
directions: temporal, vertical and horizontal directions. N is often
assumed to be the additive white Gaussian noise with a noise level of
σ. In addition, the sizes of X and Y satisfy Th = stTl , Hh = shHl and
Wh = swWl .

Equation (1.1) presents a unified model that encompasses both image
and video restoration. Various widely recognized image and video
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restoration tasks can be regarded as specific instances or special cases
within this unified framework. For instance, in video super-resolution,
K is often assumed to be a fixed 2D Gaussian blur kernel and N is
omitted. In deblurring, one popular assumption to synthesize blurry
frames is averaging neighbouring frames, which equals to using an all-
one 1D temporal kernel. Image restoration tasks, such as image super-
resolution, image deblurring, and image denoising, can be effectively
modeled by reducing the dimensionality of the variables from a 3D
space to a 2D space.

maximum a posteriori (map) framework In visual restora-
tion, the target is to estimate the high-quality image or video X given
the low-quality observation Y defined in Equation (1.1). According to
the Maximum A Posteriori (MAP) framework, we solve the problem by
minimizing the energy function E(X),

X̂ = argmin
X

E(X) :=
1

2σ2 ∥Y − (X ⊗K) ↓s ∥2︸ ︷︷ ︸
data fidelity term

+λΦ(X)︸ ︷︷ ︸
prior term

, (1.2)

where λ is a trade-off parameter, the data fidelity term is associated
with the model likelihood for reconstruction, and the prior term is a
regularization which is related to the prior information of the high
spatio-temporal resolution video. However, the prior term is often
unknown in practice, and thus it is intractable to directly compute an
analytical solution to Problem (1.2).

Traditional methods often try to solve this problem by adding hand-
crafted priors [34], [35]. Then, it can use optimization-based methods
such as Half-Quadratic Splitting (HQS) algorithm [36], [37] to find
an approximate optimal solution. In the era of deep learning, most
methods try to learn a deep neural network from large amount of data.
They have achieved significantly better performance than traditional
methods.

1.3 challenges in image and video restoration

Despite significant advancements in recent years, the restoration prob-
lem remains far from being fully resolved. Several challenges continue
to impede its development and hinder the achievement of satisfactory
solutions.
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1. Complex real-world degradations. In Eq. (1.1), the imaging pro-
cess is simplified as a combination of blurring, downsampling and
noising, which might be over-simplistic and does not perform well
on real-world images due to training and testing distribution gaps.
To avoid this, some methods try to capture paired images with
two different cameras by beam-splitting system or post-alignment
techniques. Nevertheless, such a way is expensive for large-scale
data collection and might not be able to generalize to other types
of cameras. To train restoration models, the more practical way is
still synthesizing the low-quality counterpart from high-quality
data if we have well-designed degradation models. In Chapter 2,
we will propose a practical degradation model that takes various
complex degradations into consideration for better generalization
to real-world cases.

2. Neural network design for learning image/video priors. Due
to various factors, information is inevitably lost or corrupted in
degradation, making visual restoration an underdetermined prob-
lem. This means that many possible solutions can minimize the
data fidelity term in Eq. (1.2) and the task of finding a unique
solution is highly intractable. To alleviate the ill-posed nature of
visual restoration, one possible way is adding extra prior terms.
For example, most deep learning-based methods try to learn
the prior implicitly with novel architectural design and learned
network weights from low-quality and high-quality data pairs.
Although recent years have seen great improvements in this field,
there remains room for designing better neural networks that can
effectively learn the image/video priors for obtaining plausible
and visually pleasing results. In Chapter 3, we will propose an
image restoration model that allows for content-based interaction
and long-range dependency modelling. In Chapters 4, we will
extend the similar idea to the video domain and propose a new
multi-scale video restoration model with parallel frame predic-
tion and long-range modelling ability. In Chapters 5, we will
continue to improve the video restoration model by processing
local neighbouring frames in parallel within a globally recur-
rent framework, which combines the advantages of both parallel
models and recurrent models.
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3. Frame alignment and information fusion. Compared with image
restoration, other two main challenges in video restoration are
frame alignment and information fusion. Current alignment meth-
ods are based on either optical flow-based warping or deformable
convolution. They heavily rely on accurate optical flow estimation
or lack direct interaction among relevant locations. In Chapters 4,
we will propose a reciprocal attention module with joint motion
estimation, feature alignment and feature fusion in local align-
ment. In Chapters 5, we will propose the guided deformable
attention for adaptive feature fusion of relevant locations from
one or multiple frames.

4. Model efficiency. Although improving the restoration quality is
critical, the model efficiency is also an important aspect, especially
for real-world applications. In Chapters 3, we will propose a small
version of the image restoration model that achieves state-of-the-
art super-resolution performance with limited model size and
computation complexity. In Chapters 5, we will improve the
model efficiency by introducing the recurrent architecture, while
preserving top performance on video restoration.

1.4 application of image and video restoration

Since images and videos are often corrupted in many scenarios, visual
restoration can be used to reconstruct the high-quality counterparts for
better viewing or for later post-processing. It has a wide range of prac-
tical applications across various domains. Some example applications
are as below.

1. Photography and videography. To enhance the quality and aes-
thetics of captured images and videos, restoration techniques are
often employed to reduce noise, remove blur, correct color and ex-
posure issues, and improve overall visual quality. This is already
available on most modern consumer cameras and cellphones.

2. Medical imaging. To assist the diagnostic procedures, it is im-
portant to reduce noise, improve contrast and enhance details for
medical images, so as to provide healthcare professionals with
clearer and more informative visual representations.
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3. Remote sensing. In remote sensing, the obtained images are
often affected by atmospheric conditions, such as scattering and
light absorption. Using restoration techniques can help remove
atmospheric effects, and enhance spatial as well as sepctral details.

4. Entertainment and media. In the entertainment industry, restora-
tion techniques are widely used for various purposes. For in-
stance, it could be used to colorize and enhance old photos and
films. It is also useful for perception-aware compression, trans-
mission and visualization.

5. Preprocessing for other vision tasks. Most high-level vision tasks
such as recognition reply on good-quality image or video inputs.
When there are noise or other artifacts, the performance may drop
drastically. Therefore, restoration is sometimes used as a prepro-
cessing step for real-world data. By reducing noise, improving
clarity, and restoring details, it can assist in better object recog-
nition, facial identification, tracking and scene understanding in
security applications or autonomous systems. For example, before
recognition and decision making in autonomous driving systems,
it is important to remove the fog in foggy weathers or enhance
the details in low-light conditions.
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P R A C T I C A L D E G R A D AT I O N M O D E L

It is widely acknowledged that single image restoration methods would
not perform well if the assumed degradation model deviates from
those in real images. Although several degradation models have taken
additional factors into consideration, such as blur, they are still not
effective enough to cover the diverse degradations of real images.

To address this issue, this chapter proposes to design a more complex
but practical degradation model that consists of randomly shuffled
blur, downsampling and noise degradations. Specifically, the blur
is approximated by two convolutions with isotropic and anisotropic
Gaussian kernels; the downsampling is randomly chosen from nearest,
bilinear and bicubic interpolations; the noise is synthesized by adding
Gaussian noise with different noise levels, adopting JPEG compression
with different quality factors, and generating processed camera sensor
noise via reverse-forward camera image signal processing (ISP) pipeline
model and RAW image noise model. To verify the effectiveness of the
new degradation model, we have trained a deep super-resolver and then
applied it to super-resolve both synthetic and real images with diverse
degradations. The experimental results demonstrate that the new
degradation model can help to significantly improve the practicability
of deep super-resolvers, thus providing a powerful alternative solution
for real super-resolution applications.

2.1 introduction

As a representative task in image restoration, image super-resolution
(SR) aims to reconstruct the natural and sharp detailed high-resolution
(HR) counterpart x from a low-resolution (LR) image y [17], [38]. It
has recently drawn significant attention due to its high practical value.
With the advance of deep neural networks (DNNs), there is a dramatic
upsurge of using feed-forward DNNs for fast and effective SR [7], [18],
[39]–[42].

Whereas SR methods map a LR image onto a HR counterpart, degra-
dation models define how to map a HR image to a LR one. Two

9
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representative degradation models are bicubic degradation [43] and
traditional degradation [44], [45]. The former generates a LR image via
bicubic interpolation. The latter can be mathematically modeled by

y=(x ⊗ k)↓s + n. (2.1)

It assumes the LR image is obtained by first convolving the HR image
with a Gaussian kernel (or point spread function) k [46] to get a blurry
image x⊗ k, followed by a downsampling operation ↓s with scale factor
s and an addition of white Gaussian noise n with standard deviation
σ. Specifically, the bicubic degradation can be viewed as a special
case of traditional degradation as it can be approximated by setting
a proper kernel with zero noise [37], [47]. The degradation model is
generally characterized by several factors such as blur kernel and noise
level. Depending on whether these factors are known beforehand or
not, DNNs-based SR methods can be broadly divided into non-blind
methods and blind ones.

Early non-blind SR methods were mainly designed for bicubic degra-
dations [17]. Although significant improvements on the PSNR [39], [48]
and perceptual quality [40], [49] have been achieved, such methods usu-
ally do not perform well on real images. It is worth noting that this also
holds for deep models trained with a generative adversarial loss. The
reason is that blur kernels play a vital role for the success of SR meth-
ods [46] and a bicubic kernel is too simple. To remedy this, some works
use a more complex degradation model which involves a blur kernel
and additive white Gaussian noise (AWGN) and a non-blind network
that takes the blur kernel and noise level as conditional inputs [47], [50].
Compared to methods based on bicubic degradation, these tend to be
more applicable. Yet, they need an accurate estimation of the kernel and
the noise level. Otherwise the performance deteriorates seriously [46].
Meanwhile, only a few methods are specially designed for the kernel
estimation of SR [47]. As a further step, some blind methods propose
to fuse the kernel estimation into the network design [51], [52]. But
such methods still fail to produce visually pleasant results for most real
images such as JPEG compressed ones. Along another line of blind
SR work with unpaired LR/HR training data, the kernel and the noise
are first extracted from the LR images and then used to synthesize LR
images from the HR images for paired training [53]. Notably, without
kernel estimation, the blind model still has a promising performance.
On the other hand, it is difficult to collect accurate blur kernels and
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noise models from real images. From the above discussion, we draw
two conclusions. Firstly, the degradation model is of vital importance
to DNNs-based SR methods and a more practical degradation model
is worth studying. Secondly, no existing blind SR models are readily
applicable to super-resolve real images suffering from different degra-
dation types. Hence, we see two main challenges: the first is to design
a more practical SR degradation model for real images, and the second
is to learn an effective deep blind model that can work well for most
real images. In this chapter, we attempt to solve these two challenges.

For the first challenge, we argue that blur, downsampling and noise
are the three key factors that contribute to the degradation of real
images. Rather than utilizing Gaussian kernel induced blur, bicu-
bic downsampling, and simple noise models, we propose to expand
each of these factors to more practical ones. Specifically, the blur is
achieved by two convolutions with an isotropic Gaussian kernel and
an anisotropic Gaussian kernel; the downsampling is more general
but includes commonly-used downscaling operators such as bilinear
and bicubic interpolations; the noise is modeled by AWGN with dif-
ferent noise levels, JPEG compression noise with different quality fac-
tors, and processed camera sensor noise by applying reverse-forward
camera image signal processing (ISP) pipeline model and RAW im-
age noise model. Furthermore, instead of using the commonly-used
blur/downsampling/noise-addition pipeline, we perform randomly
shuffled degradations to synthesize LR images. As a result, our new
degradation model involves several more adjustable parameters and
aims to cover the degradation space of real images.

For the second challenge, we train a deep model based on the new
degradation model in an end-to-end supervised manner. Given a
HR image, we can synthesize different realistic LR images by setting
different parameters for the degradation model. As such, an unlimited
number of paired LR/HR training data can be generated for training.
Especially noteworthy is that such training data do not suffer from
the misalignment issue. By further taking advantage of the powerful
expressiveness and advanced training of DNNs, the deep blind model
is expected to produce visually pleasant results for real LR images.

The contributions of this chapter are:

1) A practical SR degradation model for real images is designed. It
considers more complex degradations for blur, downsampling
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and noise and, more importantly, involves a degradation shuffle
strategy.

2) With synthetic training data generated using our degradation
model, a blind SR model is trained. It performs well on real
images under diverse degradations.

3) To the best of our knowledge, this is the first work to adopt a
new hand-designed degradation model for general blind image
super-resolution.

4) Our work highlights the importance of accurate degradation mod-
eling for practical applications of DNNs-based SR methods.

2.2 related work

Since this chapter focuses on designing a practical degradation model
to train a deep blind DNN model, we will next give a brief overview
on related degradation models and deep blind SR methods.

2.2.1 Degradation Models

As mentioned in the introduction, existing DNNs-based SR methods
are generally based on bicubic downsampling [41], [54] and traditional
degradations [5], [18], [55]–[57], or some simple variants [50], [58]–[61].
It can be found that existing complex SR degradation models usually
consist of a sequence of blur, downsampling and noise addition. For
mathematical convenience, the noise is usually assumed to be AWGN
which rarely matches the noise distribution of real images. Indeed, the
noise could also stem from camera sensor noise and JPEG compression
noise which are usually signal-dependent and non-uniform [62]. Re-
gardless of whether the blur is accurately modeled or not, the noise
mismatch suffices to cause a performance drop when super-resolvers
are applied to real images. In other words, existing degradation models
are wanting when it comes to the complexity of real image degrada-
tions. Some works do not consider an explicit degradation model [63],
[64]. Instead, they use training data to learn the LR-to-HR mapping
which only works for the degradations defined by the training images.
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2.2.2 Deep Blind Super-Resolution Methods

Significant achievements resulted from the design and training of deep
non-blind SR networks. This said, applying them for blind SR is a
non-trivial issue. It should be noted that blind SR methods are mainly
deployed for real SR applications. To that end, different research
directions have been tried.

The first direction is to initially estimate the degradation parameters
for a given LR image, and then apply a non-blind method to obtain the
HR result. Bell-Kligler et al. [47] propose to estimate the blur kernel via
an internal-GAN method before applying the non-blind ZSSR [65] and
SRMD [50] methods. Yet, non-blind SR methods are usually sensitive to
errors in the blur kernel, producing over-sharp or over-smooth results.

To remedy this, a second direction aims to jointly estimate the blur
kernel and the HR image. Gu et al. [51] propose an iterative cor-
rection scheme to alternately improve the blur kernel and HR result.
Cornillere et al. [66] propose an optimization procedure for joint blur
kernel and HR image estimation by minimizing the error predicted by
a trained kernel discriminator. Luo et al. [52] propose a deep alternating
network that consists of a kernel estimator module and a HR image
restorer module. While promising, these methods do not fully take
noise into consideration and thus tend to suffer from inaccurate kernel
estimation for noisy real images. As a matter of fact, the presence of
noise would aggravate the ill-posedness, especially when the noise type
is unknown and complex, and the noise level is high.

A third direction is to learn a supervised model with captured real
LR/HR pairs. Cai et al. [67] and Wei et al. [68] separately established a
SR dataset with paired LR/HR camera images. Collecting abundant
well-aligned training data is cumbersome however, and the learned
models are constrained to the LR domain defined by the captured LR
images.

Considering the fact that real LR images rarely come with the ground-
truth HR, the fourth direction aims at learning with unpaired training
data [69]. Yuan et al. [63] propose a cycle-in-cycle framework to first map
the noisy and blurry LR input to a clean one and then super-resolve
the intermediate LR image via a pre-trained model. Lugmayr et al. [64]
propose to learn a deep degradation mapping by employing a cycle
consistency loss and then generate LR/HR pairs for supervised training.
Following a similar framework, Ji et al. [53] propose to estimate various
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blur kernels and extract different noise maps from LR images and then
apply the traditional degradation model to synthesize different LR
images. Notably, [53] was the winner of the NTIRE 2020 real-world
super-resolution challenge [70], which demonstrates the importance
of accurate degradation modeling. Although applying this method
to training data corrupted by a more complex degradation seems to
be straightforward, it would also reduce the accuracy of blur kernel
and noise estimation which in turn results in unreliable synthetic LR
images.

2.3 practical degradation model

Existing restoration methods are mostly trained on ideal degradation
settings or specific degradation spaces defined by the low-quality train-
ing data. As a result, there is still a mismatch between the assumed
degradation model and the real image degradation model. Further-
more, to the best of our knowledge, no existing deep image restoration
model can be readily applied for general real image restoration. There-
fore, it is worthwhile to design a practical degradation model to train
deep restoration models for real applications. Note that, although
denoising and deblurring are related to noisy and blurry image super-
resolution, most super-resolution methods tackle the blur, noise and
super-resolution in a unified rather than a cascaded framework (see,
e.g., [37], [44], [46], [50], [53], [58], [59], [63]–[65], [70], [71]). In this
section, we focus on real-world image super-resolution degradation
model.

2.3.1 Analysis of Traditional Degradation Models

Before providing our new practical degradation model, it is useful to
mention the following facts on traditional degradation models:

1. According to the traditional degradation model, there are three
key factors, i.e., blur, downsampling and noise, that affect the
degradations of real images.

2. Since both LR and HR images could be noisy and blurry, it is
not necessary to adopt the blur/ downsampling/ noise-addition
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pipeline as in the traditional degradation model to generate LR
images.

3. The blur kernel space of the traditional degradation model should
vary across scales, making it in practice tricky to determine for
very large scale factors.

4. While the bicubic degradation is rarely suitable for real LR images,
it can be used for data augmentation and is indeed a good choice
for clean and sharp image super-resolution.

Inspired by the first fact, a direct way to improve the practicability
of degradation models is to make the degradation space of the three
key factors as large and realistic as possible. Based on the second fact,
we then further expand the degradation space by adopting a random
shuffle strategy for the three key factors. Like that, a LR image could
also be a noisy, downsampled and blurred version of the HR image. To
tackle the third fact, one may take advantage of the analytical calculation
of the kernel for a large scale factor from a small one. Alternatively,
according to the fourth fact, for a large scale factor, one can apply a
bicubic (or bilinear) downscaling before the degradation with scale
factor 2. Without loss of generality, this section focuses on designing
the degradation model for the widely-used scale factors 2 and 4 in
image super-resolution.

2.3.2 The Proposed Degradation Model

In the following, we will detail the degradation model for the following
aspects: blur, downsampling, noise, and random shuffle strategy.

2.3.2.1 Blur

Blur is a common image degradation. We propose to model the blur
from both the HR space and LR space. On the one hand, in the tradi-
tional SR degradation model [44], [65], the HR image is first blurred by
a convolution with a blur kernel. This HR blur actually aims to prevent
aliasing and preserve more spatial information after the subsequent
downsampling. On the other hand, the real LR image could be blurry
and thus it is a feasible way to model such blur in the LR space. By
further considering that Gaussian kernels suffice for the SR task, we



16

perform two Gaussian blur operations, i.e., Biso with isotropic Gaussian
kernels and Baniso with anisotropic Gaussian kernels [47], [50], [71].
Note that the HR image or LR image could be blurred by two blur op-
erations (see Sec. 2.3.2.4 for more details). By doing so, the degradation
space of blur can be greatly expanded.

For the blur kernel setting, the size is uniformly sampled from {7× 7,
9 × 9, · · · , 21 × 21}, the isotropic Gaussian kernel samples the kernel
width uniformly from [0.1, 2.4] and [0.1, 2.8] for scale factors 2 and 4,
respectively, while the anisotropic Gaussian kernel samples the rotation
angle uniformly from [0, π] and the length of each axis for scale factors
2 and 4 uniformly from [0.5, 6] and [0.5, 8], respectively. Reflection
padding is adopted to ensure the spatial size of the blurred output
stays the same. Since the isotropic Gaussian kernel with width 0.1
corresponds to delta (identity) kernel, we can always apply the two
blur operations.

2.3.2.2 Downsampling

In order to downsample the HR image, perhaps the most direct way is
nearest neighbor interpolation. Yet, the resulting LR image will have a
misalignment of 0.5×(s − 1) pixels towards the upper-left corner [37].
As remedy, we shift a centered 21 × 21 isotropic Gaussian kernel by
0.5×(s − 1) pixels via a 2D linear grid interpolation method [44], and
apply it for convolution before the nearest neighbour downsampling.
The Gaussian kernel width is randomly chosen from [0.1, 0.6 × s]. We
denote such a downsampling as Ds

nearest. In addition, we also adopt
the bicubic and bilinear downsampling methods, denoted by Ds

bilinear
and Ds

bicubic, respectively. Furthermore, a down-up-sampling method
Ds

down-up(= Ds/a
downDa

up) which first downsamples the image with a
scale factor s/a and then upscales with a scale factor a is also adopted.
Here the interpolation methods are randomly chosen from bilinear
and bicubic interpolations, and a is sampled from [1/2, s]. Clearly, the
above four downsampling methods have a blurring step in the HR
space, while Ds

down-up can introduce upscaling-induced blur in the LR
space when a is smaller than 1. We do not include such kinds of blur
in Sec. 2.3.2.1 since they are coupled in the downsampling process.
We uniformly sample these four downsampling to downscale the HR
image.
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2.3.2.3 Noise

Noise is ubiquitous in real images as it can be caused by different
sources. Apart from the widely-used Gaussian noise, our new degrada-
tion model also considers JPEG compression noise and camera sensor
noise. We next detail the three noise types.

gaussian noise NG . The Gaussian noise assumption is the most
conservative choice when there is no information about the noise [72].
To synthesize Gaussian noise, the three-dimensional (3D) zero-mean
Gaussian noise model N (0, Σ) [73] with covariance matrix Σ is adopted.
Such noise model has two special cases: when Σ = σ2I, where I is the
identity matrix, it turns into the widely-used channel-independent
additive white Gaussian noise (AWGN) model; when Σ = σ21, where
1 is a 3 × 3 matrix with all elements equal to one, it turns into the
widely-used gray-scale AWGN model. In our new degradation model,
we always add Gaussian noise for data synthesis. In particular, the
probabilities of applying the general case and two special cases are set
to 0.2, 0.4, 0.4, respectively. As for σ, it is uniformly sampled from
{1/255, 2/255, · · · , 25/255}.

jpeg compression noise NJPEG . JPEG is the most widely-used
image compression standard for bandwidth and storage reduction. Yet,
it introduces annoying 8 × 8 blocking artifacts/noise, especially for the
case of high compression. The degree of compression is determined by
the quality factor which is an integer in the range [0, 100]. The quality
factor 0 means lower quality and higher compression, and vice versa. If
the quality factor is larger than 90, no obvious artifacts are introduced.
In our new degradation model, the JPEG quality factor is uniformly
chosen from [30, 95]. Since JPEG is the most popular digital image
format, we apply two JPEG compression steps with possibilities 0.75

and 1, respectively. In particular, the latter one is used as the final
degradation step.

processed camera sensor noise NS . In modern digital cam-
eras, the output image is obtained by passing the raw sensor data
through the image signal processing (ISP) pipeline. In practice, if the
ISP pipeline does not perform a denoising step, the processed sensor
noise would deteriorate the output image by introducing non-Gaussian
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noise [62]. To synthesize such kind of noise, we first get the raw image
from an RGB image via the reverse ISP pipeline, and then reconstruct
the noisy RGB image via the forward pipeline after adding noise to the
synthetic raw image. The raw image noise model is borrowed from [74].
According to the Adobe Digital Negative (DNG) Specification [75], our
forward ISP pipeline consists of demosaicing, exposure compensation,
white balance, camera to XYZ (D50) color space conversion, XYZ (D50)
to linear RGB color space conversion, tone mapping and gamma correc-
tion. For demosaicing, the method in [76] which is the same as matlab’s
demosaic function, is adopted. For exposure compensation, the global
scaling is chosen from [2−0.1, 20.3]. For the white balance, the red gain
and blur gain are uniformly chosen from [1.2, 2.4]. For camera to XYZ
(D50) color space conversion, the 3 × 3 color correction matrix is a ran-
dom weighted combination of ForwardMatrix1 and ForwardMatrix2

from the metadata of raw image files. For the tone mapping, we manu-
ally select the best fitted tone curve from [77] for each camera based on
paired raw image files and the RGB output. We use five digital cameras,
including the Canon EOS 5D Mark III and IV cameras, Huawei P20, P30

and Honor V8 cameras, to establish our ISP pipeline pool. Note that
the tone curve and forward color correction matrix do not necessarily
come from the same camera. Since tone mapping is not reversible and
would result in color shift issue, one should apply the reverse-forward
tone mapping for the HR image. We apply this noise synthesis step
with a probability of 0.25.

2.3.2.4 Random Shuffle

Though simple and mathematically convenient, the traditional degra-
dation model can hardly cover the degradation space of real LR images.
On the one hand, the real LR image could also be a noisy, blurry,
downsampled, and JPEG compressed version of the HR image. On the
other hand, the degradation model which assumes the LR image is a
bicubicly downsampled, blurry and noisy version of the HR image can
also be used for SR [51], [57]. Hence, a LR image can be degraded by
blur, downsampling, and noise with different orders. We thus propose
a random shuffle strategy for the new degradation model. Specifically,
the degradation sequence {Biso, Baniso, Ds, NG, NJPEG, NS} is randomly
shuffled, here Ds represents the downsampling operation with scale fac-
tor s which is randomly chosen from {Ds

nearest, Ds
bilinear, Ds

bicubic, Ds
down-up}.
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In particular, the sequence of Ds/a
down and Da

up for Ds
down-up can insert

other degradations. Note that a similar idea of random shuffle strategy
was proposed in [78], however, it is designed for image classification
and object detection and could be instead used to augment HR images.

With the random shuffle strategy, the degradation space can be ex-
panded substantially. Firstly, other degradation models, such as bicubic
and traditional degradation models, and the ones proposed in [51],
[57], are special cases of ours. Secondly, the blur degradation space
is enlarged by different arrangements of the two blur operations and
one of the four downsampling methods. Thirdly, the noise characteris-
tics could be changed by the blur and downsampling, thus expanding
the degradation space. For example, the downsampling can reduce
the noise strength and make the noise (e.g., processed camera sensor
noise and JPEG compression noise) less signal-dependent, whereas
Da

up (a < 1) can make the signal-independent Gaussian noise to be
signal-dependent. Such kinds of noise could exist in real images.

Fig. 2.1 illustrates the proposed degradation model. For a HR image,
we can generate different LR images with a wide range of degradations
by shuffling the degradation operations and setting different degrada-
tion parameters.

2.3.3 Discussion

It is necessary to add discussion to further understand the proposed
new degradation model. Firstly, the degradation model is mainly
designed to synthesize degraded LR images. Its most direct application
is to train a deep blind super-resolver with paired LR/HR images. In
particular, the degradation model can be performed on a large dataset
of HR images to produce unlimited perfectly aligned training images,
which typically do not suffer from the limited data issue of laboriously
collected paired data and the misalignment issue of unpaired training
data. Secondly, the degradation model tends to be unsuited to model a
degraded LR image as it involves too many degradation parameters and
also adopts a random shuffle strategy. Thirdly, the degradation model
can produce some degradation cases that rarely happen in real-world
scenarios, while this can still be expected to improve the generalization
ability of the trained deep blind super-resolver. Fourthly, a DNN with
large capacity has the ability to handle different degradations via a
single model (see, e.g., [19]). It is worth noting that even when the super-
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resolver reduces the performance for unrealistic bicubic downsampling,
it is still a preferred choice for real SR. Fifthly, one can conveniently
modify the degradation model by changing the degradation parameter
settings and adding more reasonable degradation types (e.g., speckle
noise and unaligned double JPEG compression [79]) to improve the
practicability for certain applications.

2.4 experiments

2.4.1 Experimental Setup

The novelty of this chapter lies in the new degradation model and the
possibility of existing network structures such as ESRGAN [40] to be
borrowed to train a deep blind model. For the sake of showing the ad-
vantage of the proposed degradation model, we adopt the widely-used
ESRGAN network and train it with the synthetic LR/HR paired images
produced by the new degradation model. Following ESRGAN, we first
train a PSNR-oriented BSRNet model and then train the perceptual
quality-oriented BSRGAN model. Since the PSNR-oriented BSRNet
model tends to produce oversmoothed results due to the pixel-wise av-
erage problem [49], the perceptual quality-oriented model is preferred
for real applications [80]. Thus, unless otherwise specified, we focus
more on the BSRGAN model.

Compared to ESRGAN, BSRGAN is modified in several ways. First,
we use a slightly different HR image dataset which includes DIV2K [81],
Flick2K [39], [43], WED [82] and 2,000 face images from FFHQ [83] to
capture the image prior. The reason is that the goal of BSRGAN is to
solve the problem of general-purpose blind image super-resolution, and
apart from the degradation prior, an image prior could also contribute
to the success of a super-resolver. We also remove the blurry images
based on the variance of the Laplacian of an image. Secondly, BSRGAN
uses a larger LR patch size of 72× 72. The reason is that our degradation
model can produce severely degraded LR images and a larger patch can
enable deep models to capture more information for better restoration.
Thirdly, we train the BSRGAN by minimizing a weighted combination
of L1 loss, VGG perceptual loss and spectral norm-based least square
PatchGAN loss [84] with weights 1, 1 and 0.1, respectively. In particular,
the VGG perceptual loss is operated on the fourth convolution before
the fourth rather than the fifth maxpooling layer of the pre-trained
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19-layer VGG model as it is more stable to prevent color shift issues.
We train BSRGAN with Adam, using a fixed learning rate of 1 × 10−5

and a batch size of 48.

2.4.2 Testing Datasets

Existing blind SR methods are generally evaluated on specifically de-
signed synthetic data and only very few real images. For example,
IKC [51] is evaluated on the blurred, bicubicly downsampled synthetic
LR images and two real images; KernelGAN [47] is evaluated on the
synthetic DIV2KRK dataset and two real images. As a result, to the
best of our knowledge, a real LR image dataset with diverse blur and
noise degradations is still lacking.

In order to pave the way for the evaluation of blind SR methods, we
establish two datasets, including the synthetic DIV2K4D dataset which
contains four subdatasets with a total of 400 images generated from the
100 DIV2K validation images with four different degradation types and
the real RealSRSet which consists of 20 real images either downloaded
from the internet or directly chosen from existing testing datasets [20],
[85]–[87]. Specifically, the four degradation types for DIV2K4D in-
cluding 1) type I: the commonly-used bicubic degradation; 2) type
II: anisotropic Gaussian blur with nearest downsampling by a scale

(a) Examples from DIV2K4D (b) Examples from RealSRSet

Figure 2.2: Some example images from the DIV2K4D and RealSRSet
datasets. From top to bottom of (a), we show example
images generated by the degradation types II, III and IV.
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factor of 4; 3) type III: anisotropic Gaussian blur with nearest down-
sampling by a scale factor of 2 and subsequent bicubic downsampling
by another scale factor of 2 and final JPEG compression with quality
factors uniformly sampled from [41, 90]; and 4) type IV: our proposed
degradation model. Note that the subdataset with degradation type
II and the downsampled images by a scale factor of 2 for subdataset
with degradation type III are directly borrowed from the DIV2KRK
dataset [47]. Some example images from the two datasets are shown in
Fig. 2.2, from which we can see the LR images are corrupted by diverse
blur and noise degradations. We argue that a general-purpose blind
super-resolver should achieve a good overall performance on the two
datasets.

2.4.3 Compared Methods

We compare the proposed BSRNet and BSRGAN with RRDB [40],
IKC [51], ESRGAN [40], FSSR-DPED [88], FSSR-JPEG [88], RealSR-
DPED [53] and RealSR-JPEG [53]. Specifically, RRDB and ESRGAN
are trained on bicubic degradation; IKC is a blind model trained with
different isotropic Gaussian kernels; FSSR-DPED and RealSR-DPED are
trained to maximize the performance on the blurry and noisy DPED
dataset; FSSR-JPEG is trained for JPEG image super-resolution; RealSR-
JPEG is a recently released and unpublished model on github. Note that
since our novelty lies in the degradation model, and RRDB, ESRGAN,
FSSR-DPED, FSSR-JPEG, RealSR-DPED and RealSR-JPEG use the same
network architecture as ours, we thus did not re-train other models for
comparison.

2.4.4 Experiments on the DIV2K4D Dataset

The PSNR and LPIPS (learned perceptual image patch similarity) results
of different methods on the DIV2K4D datasets are shown in Table 2.1.
Note that LPIPS is used to measure the perceptual quality, and a lower
LPIPS value means the super-resolved image is more perceptually
similar to the ground-truth. We draw several conclusions from Table 2.1.
Firstly, as expected, RRDB and ESRGAN perform well for bicubic
degradation but do not perform well on non-bicubic degradation as
they are trained with the simplified bicubic degradation. It is worth
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noting that, even trained with GAN, ESRGAN can slightly improve the
LPIPS values over RRDB on degradation types II-IV. Secondly, FSSR-
DPED, FSSR-JPEG, RealSR-DPED and RealSR-JPEG outperform RRDB
and ESRGAN in terms of LPIPS since they consider a more practical
degradation. Thirdly, for degradation type II, IKC obtains promising
PSNR results while RealSR-DPED achieves the best LPIPS result as they
are trained on a similar degradation. For degradation types III and IV,
they suffer a severe performance drop. Fourthly, our proposed BSRNet
achieves the best overall PSNR results, while BSRGAN yields the best
overall LPIPS results.

Fig. 2.3 shows the results of different methods on super-resolving
a LR image from the DIV2K4D dataset. It can be seen that IKC and
RealSR-JPEG fail to remove the noise and to recover sharp edges. On the
other hand, FSSR-JPEG can produce sharp images but also introduces
some artifacts. In comparison, our BSRNet and BSRGAN produce
better visual results than the other methods.

2.4.5 Experiments on the RealSRSet Dataset

Since the ground-truth for the RealSRSet dataset is not available, we
adopt the non-reference image quality assessment (IQA) metrics in-
cluding NIQE [89], NRQM [90] and PI [91] for quantitative evaluation.
As one can see from Table 2.2, BSRGAN fails to show promising re-
sults. Yet, as shown in Fig. 2.4, BSRNet produces much better visual
results than the other methods. For example, BSRGAN can remove the
unknown processed camera sensor noise for “Building” and unknown
complex noise for “Oldphoto2”, while also producing sharp edges and
fine details. In contrast, FSSR-JPEG, RealSR-DPED and RealSR-JPEG
produce some high-frequency artifacts but have better quantitative re-
sults than BSRNet. Such inconsistencies indicate that these no-reference
IQA metrics do not always match perceptual visual quality [70] and the
IQA metric could be updated with new SR methods [92]. We further
argue that the IQA metric for SR should also be updated with new
image degradation types, which we leave for future work. We note
that our BSRGAN tends to produce ‘bubble’ artifacts in texture region,
which may be solved by new loss function or more training data with
diverse textures.
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Table 2.2: The no-reference NIQE [89], NRQM [90] and PI [91] results of
different methods on the RealSRSet dataset. The best and sec-
ond best results are highlighted in red and blue, respectively.
Note that all the methods use the same network architecture.

Metric ESRGAN
FSSR FSSR RealSR RealSR BSRGAN

-DPED -JPEG -DPED -JPEG (ours)
NIQE↓ 4.95 4.86 4.04 4.58 3.99 5.60

NRQM↑ 6.02 6.28 6.88 6.59 6.23 6.17

PI↓ 4.47 4.29 3.58 3.99 4.29 4.72

2.5 conclusion

In this chapter, we have designed a new degradation model to train a
deep blind super-resolution model. Specifically, by making each of the
degradation factors, i.e.blur, downsampling and noise, more intricate
and practical, and also by introducing a random shuffle strategy, the
new degradation model can cover a wide range of degradations found
in real-world scenarios. Based on the synthetic data generated by
the new degradation model, we have trained a deep blind model
for general image super-resolution. Experiments on synthetic and
real image datasets have shown that the deep blind model performs
favorably on images corrupted by diverse degradations. We believe
that existing deep super-resolution networks can benefit from our new
degradation model to enhance their usefulness in practice. As a result,
this work provides a way towards solving blind super-resolution for
real applications.
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I M A G E R E S T O R AT I O N T R A N S F O R M E R

Image restoration refers to the process of improving the quality of an
image that has been degraded or corrupted during acquisition, trans-
mission or storage, due to various factors such as noise, object motion,
camera motion, quantization and compression. Different sub-tasks,
including image super-resolution, image denoising and compression
artifact removal, are defined according to different assumptions of
degradation models, so as to fit different application scenarios.

This chapter introduces a unified image restoration model for dif-
ferent restoration tasks. It consists of three parts: shallow feature ex-
traction, deep feature extraction and high-quality image reconstruction.
In particular, the deep feature extraction module is composed of sev-
eral residual Swin Transformer blocks, each of which has several Swin
Transformer layers together with a residual connection. We conduct
experiments on three representative benchmark tasks: image super-
resolution (including classical and lightweight image super-resolution),
image denoising (including grayscale and color image denoising) and
JPEG compression artifact reduction. Experimental results demonstrate
that the proposed method outperforms state-of-the-art methods on dif-
ferent tasks by up to 0.14∼0.45dB, while the total number of parameters
can be reduced by up to 67%.

3.1 introduction

Image restoration, such as image super-resolution (SR), image denoising
and JPEG compression artifact reduction, aims to reconstruct the high-
quality clean image from its low-quality degraded counterpart (e.g.,
downscaled, noisy and compressed images). Since several revolutionary
work [17], [19], [58], [93], convolutional neural networks (CNN) have
become the primary workhorse for image restoration [4], [18], [20], [39],
[40], [49], [50], [61], [88], [94].

Most CNN-based methods focus on elaborate architecture designs
such as residual learning [39], [49] and dense connections [40], [48].
Although the performance is significantly improved compared with

29
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traditional model-based methods [38], [95], [96], they generally suffer
from two basic problems that stem from the basic convolution layer.
First, the interactions between images and convolution kernels are
content-independent. Using the same convolution kernel to restore
different image regions may not be the best choice. Second, under the
principle of local processing, convolution is not effective for long-range
dependency modelling. Although this problem could be alleviated by
increasing the network depth and width [97], [98], the number of model
parameters is also significantly improved.

As an alternative to CNN, Transformer [99] designs a self-attention
mechanism to capture global interactions between contexts and has
shown promising performance in several high-level vision problems [100]–
[103]. However, vision Transformers for image restoration [8], [104]
usually divide the input image into patches with fixed size (e.g., 48×48)
and process each patch independently. Such a strategy inevitably gives
rise to two drawbacks. First, it neglects pixel-wise (i.e., intra-patch)
interactions, as it fuses the image content within a patch before at-
tention. This would pose an extra burden on restoring pixels from a
patch. The intra-patch information is important in image restoration
since it contains original spatial structure of patch. In this sense, it may
have poor performance for image restoration which undergo local or
pixel-wise degradation. A more natural choice for image restoration
is to use pixel-wise attention, which operates in a local patch of the
image and computes interactions between pixels. There are some at-
tempts [105], [106] in this direction, but the significant memory and
computation requirements pose an obstacle for high-resolution images.
Second, the introduced global interactions (i.e., patch-wise attention)
might not be suitable for the restoration task, which often has local
contents and local degradations. For example, the reconstruction of
trees and bricks generally have no relation to each other when they
appear in different positions of a single image. Third, the testing image
size is often required to be fixed. In this case, border pixels cannot uti-
lize neighbouring pixels that are out of the patch for image restoration.
The restored image may introduce border artifacts around each patch.
While this problem can be alleviated by patch overlapping, it would
introduce extra computational burden.

Recently, Swin Transformer [103] has shown great promise as it inte-
grates the advantages of both CNN and Transformer. On the one hand,
it has the advantage of CNN to process image with large size due to
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Figure 3.1: PSNR results v.s. the total number of parameters of different
methods for image SR (×4) on Set5.

the local attention mechanism. On the other hand, it has the advantage
of Transformer to model long-range dependency with the shifted win-
dow scheme. In this chapter, we propose an image restoration model,
namely SwinIR, based on Swin Transformer. More specifically, SwinIR
consists of three modules: shallow feature extraction, deep feature
extraction and high-quality image reconstruction modules. Shallow
feature extraction module uses a convolution layer to extract shallow
feature, which is directly transmitted to the reconstruction module so as
to preserve low-frequency information. Deep feature extraction module
is mainly composed of residual Swin Transformer blocks (RSTB), each
of which utilizes several Swin Transformer layers for local attention
and cross-window interaction. In addition, we add a convolution layer
at the end of the block for feature enhancement and use a residual
connection to provide a shortcut for feature aggregation. Finally, both
shallow and deep features are fused in the reconstruction module for
high-quality image reconstruction.

Compared with prevalent CNN-based image restoration models,
Transformer-based SwinIR has several benefits: (1) content-based in-
teractions between image content and attention weights, which can be
interpreted as spatially varying convolution [106]–[108]. (2) long-range
dependency modelling are enabled by the shifted window mechanism.
(3) better performance with less parameters. For example, as shown in
Fig. 3.1, SwinIR achieves better PSNR with less parameters compared
with existing image SR methods.
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3.2 related work

3.2.1 Image Restoration

Existing image restoration methods can be roughly divided into model-
based [35], [38], [55], [96], [109] and learning-based methods [40], [48],
[61], [93], [110], [111]. Due to page limit, we focus on learning-based
methods on three tasks: image SR, image denoising and compression
artifact reduction (JPEG image deblocking). Most of them learn map-
pings between low-quality and high-quality images from large-scale
paired datasets.

image super-resolution. Imgae super-resolution (SR) aims to
reconstruct the high-resolution image from its low-resolution counter-
part [38], [96], [109]. Dong et al. [17] proposed SRCNN that utilizes
CNNs for image SR. Kim et al. [93] proposed a very deep CNN net-
work VDSR based on the VGG [112]. Similarly, based the ResNet [97],
Ledig et al. [49] used residual design in SRResNet, which was further
enhanced by EDSR [39]. Later on, based on above pioneering work,
more effective architectures were proposed to improve performance by
using larger and deeper architectures, such as Laplacian pyramid [41],
densely connected block [113], residual dense block [48], [111], back
projection network [114], residual-in-residual dense block [40], resid-
ual channel attention block [18], second-order attention [115], graph
aggregation module [116], holistic attention [117] and non-local sparse
attention [118].

Specially, some works have exploited the attention mechanism [99]
inside the convolution neural network framework. Zhang et al. [18]
proposed a residual channel attention network that focuses on more
informative channels by channel attention. Based on [18], Dai et al. [115]
proposed a second-order attention network that refines features adap-
tively with second-order statistics, whereas Niu et al. [117] proposed a
holistic attention network that models the interdependencies among po-
sitions, channels and network layers. Liu et al. [119] proposed non-local
attention to explore long-range feature correlations, which was further
improved by [120], [121] and [118]. The non-local attention mechanism
is closely related to the proposed SwinIR, in which the self-attention
mechanism can be interpreted as a specific instantiation of non-local
means [106]. In addition, Zhou et al. [116] proposed an internal graph



3.2 related work 33

network to aggregate HR patch features, which can be seen as a special
case of spatial attention.

image denoising. Image denoising aims to restore images cor-
rupted by noises. Zhang et al. [19] proposed a deep neural network
DnCNN for image denoising. Since this milestone work, a flurry of
CNN-based models have been proposed. Mao et al. [122] proposed an
auto-encoder network with skip connections. Tai et al. [113] proposed
to mine persistent memory by a recursive unit. Zhang et al. [20] pro-
posed a fast and flexible model for multi-level denoising. There are
other attempts on non-local modules [119], [120], [123], dilated residual
block [124], residual dense block [111], optical control [125], etc.

compression artifact reduction. Compression artifact reduc-
tion aims to remove the artifacts generated by lossy compression. For
example, JPEG compression will result in blocking, ringing and blur-
ring artifacts [23]. In this case, the task is often referred to as JPEG
image deblocking. Inspired by SRCNN [17], Dong et al. [23] proposed
the a learnable artifact removal model ARCNN. Zhang et al. [19] pro-
posed a very deep architecture DnCNN with residual learning. Later,
more effective architectures are proposed to solve the problem, such
as memory block [113], hierarchical skip connection [110], residual
dense block [111], [120], multi-level wavelet-CNN [126] and residual
U-Net [61]. Besides, there are some methods that utilize the low-level
JPEG primitives for better performance [127]–[130].

3.2.2 Vision Transformer

Recently, natural language processing model Transformer [99] has
gained much popularity in the computer vision community. When
used in vision problems such as image classification [102], [103], [105],
[106], [131]–[133], object detection [100], [101], [103], [134], segmenta-
tion [103], [131], [135], [136] and crowd counting [137], [138], it learns
to attend to important image regions by exploring the global interac-
tions between different regions. Due to its impressive performance,
Transformer has also been introduced for image restoration [8], [104],
[139]. Chen et al. [104] proposed a backbone model IPT for various
restoration problems based on the standard Transformer. However,
IPT relies on large number of parameters (over 115.5M parameters),
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large-scale datasets (over 1.1M images) and multi-task learning for
good performance. Cao et al. [8] proposed VSR-Transformer that uses
the self-attention mechanism for better feature fusion in video SR, but
image features are still extracted from CNN. Besides, both IPT and
VSR-Transformer are patch-wise attention, which may be improper for
image restoration. In addition, a concurrent work [139] proposed a
U-shaped architecture based on the Swin Transformer [103]. However,
the down-sampling operations make the multi-scale U-shaped design
unreliable in preserving image details, which are crucial for some tasks
such as image SR.

3.3 methodology

In this section, we introduce the proposed SwinIR model. We first show
the overall model architecture and then describe the key residual Swin
Transformer block in detail.

3.3.1 Model Architecture

As shown in Fig. 3.2, SwinIR consists of three modules: shallow feature
extraction, deep feature extraction and high-quality (HQ) image recon-
struction modules. We employ the same feature extraction modules
for all restoration tasks, but use different reconstruction modules for
different tasks.

shallow and deep feature extraction. Given a low-quality
(LQ) input ILQ ∈ RH×W×Cin (H, W and Cin are the image height, width
and input channel number, respectively), we use a 3 × 3 convolutional
layer HSF(·) to extract shallow feature F0 ∈ RH×W×C as

F0 = HSF(ILQ), (3.1)

where C is the feature channel number. The convolution layer is good at
early visual processing, leading to more stable optimization and better
results [140]. It also provides a simple way to map the input image
space to a higher dimensional feature space. Then, we extract deep
feature FDF ∈ RH×W×C from F0 as

FDF = HDF(F0), (3.2)
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where HDF(·) is the deep feature extraction module and it contains K
residual Swin Transformer blocks (RSTB) and a 3 × 3 convolutional
layer. More specifically, intermediate features F1, F2, . . . , FK and the
output deep feature FDF are extracted block by block as

Fi = HRSTBi(Fi−1), i = 1, 2, . . . , K,

FDF = HCONV(FK),
(3.3)

where HRSTBi(·) denotes the i-th RSTB and HCONV is the last convolu-
tional layer. Using a convolutional layer at the end of feature extraction
can bring the inductive bias of the convolution operation into the
Transformer-based network, and lay a better foundation for the later
aggregation of shallow and deep features.

image reconstruction. Taking image SR as an example, we
reconstruct the high-quality image IRHQ by aggregating shallow and
deep features as

IRHQ = HREC(F0 + FDF), (3.4)

where HREC(·) is the function of the reconstruction module. Shallow
feature mainly contain low-frequencies, while deep feature focus on re-
covering lost high-frequencies. With a long skip connection, SwinIR can
transmit the low-frequency information directly to the reconstruction
module, which can help deep feature extraction module focus on high-
frequency information and stabilize training. For the implementation
of reconstruction module, we use the sub-pixel convolution layer [141]
to upsample the feature.

For tasks that do not need upsampling, such as image denoising and
JPEG compression artifact reduction, a single convolution layer is used
for reconstruction. Besides, we use residual learning to reconstruct the
residual between the LQ and the HQ image instead of the HQ image.
This is formulated as

IRHQ = HSwinIR(ILQ) + ILQ, (3.5)

where HSwinIR(·) denotes the function of SwinIR.

loss function. For image SR, we optimize the parameters of
SwinIR by minimizing the L1 pixel loss

L = ∥IRHQ − IHQ∥1, (3.6)
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where IRHQ is obtained by taking ILQ as the input of SwinIR, and
IHQ is the corresponding ground-truth HQ image. For classical and
lightweight image SR, we only use the naive L1 pixel loss as same as
previous work to show the effectiveness of the proposed network. For
real-world image SR, we use a combination of pixel loss, GAN loss and
perceptual loss [4], [40], [142]–[144] to improve visual quality.

For image denoising and JPEG compression artifact reduction, we
use the Charbonnier loss [145]

L =
√
∥IRHQ − IHQ∥2 + ϵ2, (3.7)

where ϵ is a constant that is empirically set to 10−3.

3.3.2 Residual Swin Transformer Block

As shown in Fig. 3.2(a), the residual Swin Transformer block (RSTB) is
a residual block with Swin Transformer layers (STL) and convolutional
layers. Given the input feature Fi,0 of the i-th RSTB, we first extract
intermediate features Fi,1, Fi,2, . . . , Fi,L by L Swin Transformer layers as

Fi,j = HSTLi,j(Fi,j−1), j = 1, 2, . . . , L, (3.8)

where HSTLi,j(·) is the j-th Swin Transformer layer in the i-th RSTB.
Then, we add a convolutional layer before the residual connection. The
output of RSTB is formulated as

Fi,out = HCONVi(Fi,L) + Fi,0, (3.9)

where HCONVi(·) is the convolutional layer in the i-th RSTB. This design
has two benefits. First, although Transformer can be viewed as a specific
instantiation of spatially varying convolution [106], [108], covolutional
layers with spatially invariant filters can enhance the translational
equivariance of SwinIR. Second, the residual connection provides a
identity-based connection from different blocks to the reconstruction
module, allowing the aggregation of different levels of features.

swin transformer layer . Swin Transformer layer (STL) [103] is
based on the standard multi-head self-attention of the original Trans-
former layer [99]. The main differences lie in local attention and the
shifted window mechanism. As shown in Fig. 3.2(b), given an input
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of size H × W × C, Swin Transformer first reshapes the input to a
HW
M2 × M2 × C feature by partitioning the input into non-overlapping
M × M local windows, where HW

M2 is the total number of windows.
Then, it computes the standard self-attention separately for each win-
dow (i.e., local attention). For a local window feature X ∈ RM2×C, the
query, key and value matrices Q, K and V are computed as

Q = XPQ, K = XPK, V = XPV , (3.10)

where PQ, PK and PV are projection matrices that are shared across
different windows. Generally, we have Q, K, V ∈ RM2×d. The attention
matrix is thus computed by the self-attention mechanism in a local
window as

Attention(Q, K, V) = SoftMax(QKT/
√

d + B)V, (3.11)

where B is the learnable relative positional encoding. In practice,
following [99], we perform the attention function for h times in parallel
and concatenate the results for multi-head self-attention (MSA).

Next, a multi-layer perceptron (MLP) that has two fully-connected
layers with GELU non-linearity between them is used for further feature
transformations. The LayerNorm (LN) layer is added before both MSA
and MLP, and the residual connection is employed for both modules.
The whole process is formulated as

X = MSA(LN(X)) + X,

X = MLP(LN(X)) + X.
(3.12)

However, when the partition is fixed for different layers, there is
no connection across local windows. Therefore, regular and shifted
window partitioning are used alternately to enable cross-window con-
nections [103], where shifted window partitioning means shifting the
feature by (⌊M

2 ⌋, ⌊M
2 ⌋) pixels before partitioning.

3.4 experiments

3.4.1 Experimental Setup

We conduct experiments on three representative image restoration
tasks, including image SR, image denoising and compression artifact
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reduction, to evaluate the performance of the proposed model. In
particular, for image SR, we first evaluate it on classical image SR and
lightweight image SR, and then train the model with the proposed
practical degradation model for real-world image SR.

architecture . For classical image SR, real-world image SR, image
denoising and JPEG compression artifact reduction, the RSTB number,
STL number, window size, channel number and attention head number
are generally set to 6, 6, 8, 180 and 6, respectively. One exception is
that the window size is set to 7 for JPEG compression artifact reduction,
as we observe significant performance drop when using 8, possibly
because JPEG encoding uses 8 × 8 image partions. For lightweight
image SR, we decrease RSTB number and channel number to 4 and 60,
respectively. Following [18], [117], when self-ensemble strategy [39] is
used in testing, we mark the model with a symbol “+”, e.g., SwinIR+.

training. For classical and lightweight image SR, following [18],
[117], [118], we train SwinIR on 800 training images of DIV2K [81].
Some compared methods (e.g., [114], [40]) further use 2560 images from
Flickr2K [146] for training, so we also train SwinIR on larger datasets
(DIV2K+Flickr2K) to investigate whether SwinIR can further improve
its performance. For fair comparison, we use 48 × 48 and 64 × 64 LQ
image patches respectively in above two cases following the common
settings. The HQ-LQ image pairs are obtained by the MATLAB bicubic
kernel. The total training iterations and mini-batch size are set to 500K
and 32, respectively. The learning rate is initialized as 2e-4 and reduced
by half at [250K,400K,450K,475K]. For ×3, ×4 and ×8 classical image
SR, we initialize the model with ×2 weights and halve the learning
rate as well as total training iterations. Unlike other Transformer-based
models that often uses AdamW [147] optimizer with cosine learning
rate decay strategy, we find that using Adam [148] optimizer with
β1 = 0.9 and β2 = 0.99 leads to better performance.

For real-world image SR, we use the same image degradation model
as BSRGAN [4] and train it on a combination of DIV2K, Flickr2K and
OST [149]. The model is trained for 1,000K iterations for the PSNR
training stage. The learning rate is halved at [500K,800K,900K,950K]. For
the GAN training stage, we train it for 600K iterations and the learning
rate is halved at [400K,500K,550K,575K]. Weighting parameters between
L1 pixel loss, perceptual loss and GAN loss are 1, 1 and 0.1, respectively.
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Note that we use the same EMA strategy, USM strategy, perceptual loss
and GAN loss as [142].

For denoising and compression artifact reduction, following [61],
[111], we use random crops from the combination of 800 DIV2K im-
ages, 2650 Flickr2K images, 400 BSD500 images [150] and 4744 WED
images [82]. The batch size is 8. The patch sizes are 128 × 128 (window
size is 8 × 8) and 126 × 126 (window size is 7 × 7), respectively. We
obtain noisy images by adding additive white Gaussian noises (AWGN)
with noise level σ, and compressed images by the MATLAB JPEG en-
coder with JPEG level q. The total training iterations and mini-batch
size are set to 1600K and 8, respectively. The learning rate is halved at
[800K,1200K,1400K,1500K]. When σ = 15 or q = 40, we train the model
from scratch. When σ = 25/50 or q = 10/20/30, we fine-tune from
σ = 15 or q = 40. Other details are the same as classical SR.

evaluation. Following the tradition of image SR, we report PSNR
and SSIM [151] on the Y channel of the YCbCr space. For image de-
noising, we report the PSNR on the RGB channel and Y channel for
color and grayscale denoising, respectively. For compression artifact
reduction, in addtion to the Y channel PSNR and SSIM, we also report
PNSR-B [152] that is specially designed for deblocking quality assess-
ment. Particularly, we pad the image in testing so that the image size is
a multiple of window size. We also find that using a sliding window
strategy [104] to crop the image into patches can further improve the
PSNR by 0.02 ∼ 0.03dB at the cost of longer testing time, so we do not
use it for comparison.

3.4.2 Results on Synthetic Image Super-Resolution

We compare SwinIR with classical image SR methods, which mianly
focus on performance. We also compare it with lightweight image SR
methods whose model sizes and computation complexity are restricted.

classical image super-resolution. Table 3.1 shows the quan-
titative comparisons between SwinIR (middle size) and state-of-the-art
methods: DBPN [114], RCAN [18], RRDB [40], IGNN [116], HAN [117],
NLSA [118] and IPT [104]. As one can see, when trained on DIV2K,
SwinIR achieves best performance on almost all five benchmark datasets
for all scale factors. The maximum PSNR gain reaches 0.26dB on
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Urban100 (4×):img 012

HR VDSR [93] EDSR [39] RDN [48] OISR [158]

SAN [115] RNAN [120] IGNN [116] IPT [104] SwinIR (ours)

Figure 3.3: Visual comparison of bicubic image SR (×4) methods. Compared
images are derived from [104]. Best viewed by zooming.

Manga109 for scale factor 4. Note that RCAN and HAN introduce
channel and spatial attention, IGNN proposes adaptive patch feature
aggregation, and NLSA is based on the non-local attention mecha-
nism. However, all these CNN-based attention mechanisms perform
worse than the proposed Transformer-based SwinIR, which indicates
the effectiveness of the proposed model. When we train SwinIR on
a larger dataset (DIV2K+Flickr2K), the performance further increases
by a large margin (up to 0.47dB), achieving better accuracy than the
same Transformer-based model IPT, even though IPT utilizes Ima-
geNet (more than 1.3M images) in training and has huge number of
parameters (115.5M). In contrast, SwinIR has a small number of param-
eters (11.8M) even compared with state-of-the-art CNN-based models
(15.4∼44.3M). As for runtime, representative CNN-based model RCAN,
IPT and SwinIR take about 0.2, 4.5s and 1.1s to test on a 1, 024 × 1, 024
image, respectively.

Visual comparisons are show in Fig. 3.3. SwinIR can restore high-
frequency details and alleviate the blurring artifacts, resulting in sharp
and natural edges. In contrast, most CNN-based methods produces
blurry images or even incorrect textures. IPT generates better images
compared with CNN-based methods, but it suffers from image distor-
tions and border artifact.

To compare the efficiency between convolutional models and SwinIR,
we choose a representative model RCAN and train/test both models on
8 GeForce RTX2080Ti GPUs. As shown in Table 3.2, SwinIR beats RCAN
with less number of parameters and FLOPs. Although it needs more
runtime and larger testing memory, it brings a PSNR improvement of
0.45dB. For the discrepancy between runtime and FLOPs, we argue
that it is because the attention operation in SwinIR consists of multiple
sub-operations, which is less optimized compared with the convolution
operation.
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Table 3.2: Comparison of model size, training time, runtime, testing memory
and FLOPs.

Method #Params
Training

time
Runtime

Testing
memory

#FLOPs PSNR/SSIM

RCAN [18] 15.6M 1.6 days 0.180s 593.1M 850.6G 31.22/0.9173

SwinIR (ours) 11.9M 1.8 days 0.539s 986.8M 788.6G 31.67/0.9226

lightweight image super-resolution. We also provide com-
parison of SwinIR (small size) with state-of-the-art lightweight image
SR methods: CARN [159], FALSR-A [160], IMDN [42], LAPAR-A [161]
and LatticeNet [162]. In addition to PSNR and SSIM, we also report
the total numbers of parameters and multiply-accumulate operations
(evaluated on a 1280 × 720 HQ image) to compare the model size and
computational complexity of different models. As shown in Table 3.3,
SwinIR outperforms competitive methods by a PSNR margin of up to
0.53dB on different benchmark datasets, with similar total numbers of
parameters and multiply-accumulate operations. This indicates that the
SwinIR architecture is highly efficient for image restoration.

3.4.3 Results on Real-World Image Super-Resolution

The ultimate goal of image SR is for real-world applications. In the
last chapter, we proposed a practical degradation model BSRGAN for
real-world image SR and achieved surprising results in real scenarios.
To test the performance of SwinIR for real-world SR, we re-train SwinIR
by using the same degradation model as BSRGAN for low-quality im-
age synthesis. Since there is no ground-truth high-quality images, we
only provide visual comparison with representative bicubic model ESR-
GAN [40] and state-of-the-art real-world image SR models RealSR [53],
BSRGAN [4] and Real-ESRGAN [142]. As shown in Fig. 3.4, SwinIR
produces visually pleasing images with clear and sharp edges, whereas
other compared methods may suffer from unsatisfactory artifacts. In
addition, to exploit the full potential of SwinIR for real applications,
we further propose a large model and train it on much larger datasets.
Experiments show that it can deal with more complex corruptions and
achieves even better performance on real-world images than the current
model.
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LR
(×4)

ESRGAN
[40]

RealSR
[53]

BSRGAN
[4]

Real-ESRGAN
[142]

SwinIR
(ours)

Figure 3.4: Visual comparison of real-world image SR (×4) methods on real-
world images.

3.4.4 Results on Image Denoising

We show grayscale and color image denoising results in Table 3.4
and Table 3.5, respectively. Compared methods include traditional
models BM3D [95] and WNNM [163], CNN-based models DnCNN [19],
IRCNN [58], FFDNet [20], N3Net [123], NLRN [119], FOCNet [125],
RNAN [120], MWCNN [126] and DRUNet [61]. Following [19], [61],
the compared noise levels include 15, 25 and 50. As one can see, our
model achieves better performance than all compared methods. In
particular, it surpasses the state-of-the-art model DRUNet by up to
0.3dB on the large Urban100 dataset that has 100 high-resolution testing
images. It is worth pointing out that SwinIR only has 12.0M parameters,
whereas DRUNet has 32.7M parameters. This indicates that the SwinIR
architecture is highly efficient in learning feature representations for
restoration. The visual comparison for grayscale and color image
denoising of different methods are shown in Figs. 3.5 and 3.6. As we
can see, our method can remove heavy noise corruption and preserve
high-frequency image details, resulting in sharper edges and more
natural textures. By contrast, other methods suffer from either over-
smoothness or over-sharpness, and cannot recover rich textures.
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Table 3.6: Quantitative comparison (average PSNR/SSIM/PSNR-B)
with state-of-the-art methods for JPEG compression artifact
reduction on benchmark datasets.

Dataset q ARCNN [23] DnCNN-3 [19] RNAN [120]

Classic5

[169]

10 29.03/0.7929/28.76 29.40/0.8026/29.13 29.96/0.8178/29.62

20 31.15/0.8517/30.59 31.63/0.8610/31.19 32.11/0.8693/31.57

30 32.51/0.8806/31.98 32.91/0.8861/32.38 33.38/0.8924/32.68

40 33.32/0.8953/32.79 33.77/0.9003/33.20 34.27/0.9061/33.4
Dataset q RDN [111] DRUNet [61] SwinIR (ours)

Classic5

[169]

10 30.00/0.8188/- 30.16/0.8234/29.81 30.27/0.8249/29.95

20 32.15/0.8699/- 32.39/0.8734/31.80 32.52/0.8748/31.99

30 33.43/0.8930/- 33.59/0.8949/32.82 33.73/0.8961/33.03

40 34.27/0.9061/- 34.41/0.9075/33.51 34.52/0.9082/33.66

Dataset q ARCNN [23] DnCNN-3 [19] RNAN [120]

LIVE1

[170]

10 28.96/0.8076/28.77 29.19/0.8123/28.90 29.63/0.8239/29.25

20 31.29/0.8733/30.79 31.59/0.8802/31.07 32.03/0.8877/31.44

30 32.67/0.9043/32.22 32.98/0.9090/32.34 33.45/0.9149/32.71

40 33.63/0.9198/33.14 33.96/0.9247/33.28 34.47/0.9299/33.66

Dataset q RDN [111] DRUNet [61] SwinIR (ours)

LIVE1

[170]

10 29.67/0.8247/- 29.79/0.8278/29.48 29.86/0.8287/29.50

20 32.07/0.8882/- 32.17/0.8899/31.69 32.25/0.8909/31.70

30 33.51/0.9153/- 33.59/0.9166/32.99 33.69/0.9174/33.01

40 34.51/0.9302/- 34.58/0.9312/33.93 34.67/0.9317/33.88

3.4.5 Results on Compression Artifact Reduction

Table 3.6 shows the comparison of SwinIR with state-of-the-art com-
pression artifact reduction methods: ARCNN [23], DnCNN-3 [19],
QGAC [130], RDN [111] and DRUNet [61]. All of compared methods
are CNN-based models. Following [61], [111], we test different meth-
ods on two benchmark datasets (Classic5 [169] and LIVE1 [170]) for
JPEG quality factors 10, 20, 30 and 40. As we can see, the proposed
SwinIR has average PSNR gains of at least 0.11dB and 0.07dB on two
testing datasets for different quality factors. Besides, compared with
the previous best model DRUNet, SwinIR only has 11.5M parameters,
while DRUNet is a large model that has 32.7M parameters.

3.4.6 Ablation Study and Discussion

For ablation study, we train SwinIR on DIV2K [81] for classical image
SR (×2) and test it on Manga109 [157].
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impact of channel number , rstb number and stl number .
We show the effects of channel number, RSTB number and STL number
in a RSTB on model performance in Figs. 3.7a, 3.7b and 3.7c, respec-
tively. It is observed that the PSNR is positively correlated with these
three hyper-parameters. For channel number, although the performance
keeps increasing, the total number of parameters grows quadratically.
To balance the performance and model size, we choose 180 as the chan-
nel number in rest experiments. As for RSTB number and layer number,
the performance gain becomes saturated gradually. We choose 6 for
both of them to obtain a relatively small model.

impact of patch size and training image number . We com-
pare the proposed SwinIR with a representative CNN-based model
RCAN to compare the difference between Transformer-based and CNN-
based models. From Fig. 3.7d, one can see that SwinIR performs better
than RCAN on different patch sizes, and the PSNR gain increases when
the patch size increases. Fig. 3.7e shows the impact of the number of
training images. Extra images from Flickr2K are used in training when
the percentage is larger than 100% (800 images). There are two observa-
tions. First, as expected, the performance of SwinIR increases with the
training image number. Second, different from the observation in IPT
that Transformer-based models are heavily relied on large amount of
training data, SwinIR achieves better results than CNN-based models
using the same training data, even when the dataset is small (i.e., 25%,
200 images).

model convergence comparison. We also plot the PSNR dur-
ing training for both SwinIR and RCAN in Fig. 3.7f. It is clear that
SwinIR converges faster and better than RCAN, which is contradictory
to previous observations that Transformer-based models often suffer
from slow model convergence.

impact of residual connection and convolution layer in

rstb . Table 3.7 shows four residual connection variants in RSTB: no
residual connection, using 1 × 1 convolution layer, using 3 × 3 convolu-
tion layer and using three 3 × 3 convolution layers (channel number of
the intermediate layer is set to one fourth of network channel number).
From the table, we can have following observations. First, the residual
connection in RSTB is important as it improves the PSNR by 0.16dB. Sec-
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Table 3.7: Ablation study on RSTB design.

Design No residual 1 × 1 conv 3 × 3 conv Three 3 × 3 conv
PSNR 39.42 39.45 39.58 39.56

ond, using 1 × 1 convolution brings little improvement maybe because
it cannot extract local neighbouring information as 3 × 3 convolution
does. Third, although using three 3 × 3 convolution layers can reduce
the number of parameters, the performance drops slightly.

3.5 conclusion

In this chapter, we proposed a transformer-based image restoration
model SwinIR. The model is composed of three parts: shallow feature
extraction, deep feature extraction and HR reconstruction modules. In
particular, we use a stack of residual Swin Transformer blocks (RSTB)
for deep feature extraction, and each RSTB is composed of Swin Trans-
former layers, convolution layer and a residual connection. Extensive
experiments show that SwinIR achieves state-of-the-art performance on
three representative image restoration tasks and six different settings:
classic image SR, lightweight image SR, real-world image SR, grayscale
image denoising, color image denoising and JPEG compression artifact
reduction, which demonstrates the effectiveness and generalizability of
the proposed SwinIR. In the future, we will extend the model to other
restoration tasks such as image deblurring, deraining and dehazing.





4
V I D E O R E S T O R AT I O N T R A N S F O R M E R

In the last chapter, we tackled with one of the fundamental problems
in low-level vision: single image restoration. In reality, with the increas-
ing of bandwidth and storage medium, videos are becoming part of
our daily life, leading to a widespread demand of video restoration
algorithms. Different from single image restoration that restores a
single high-quality image from a single low-quality input image, video
restoration aims to restore multiple high-quality frames from multiple
low-quality frames. Therefore, video restoration generally requires
to utilize temporal information from multiple adjacent but usually
misaligned video frames.

Existing deep methods generally tackle with this by exploiting a
sliding window strategy or a recurrent architecture, which either is
restricted by frame-by-frame restoration or lacks long-range modelling
ability. In this chapter, we propose a Video Restoration Transformer
(VRT) with parallel frame prediction and long-range temporal depen-
dency modelling abilities. More specifically, VRT is composed of multi-
ple scales, each of which consists of two kinds of modules: temporal
reciprocal self attention (TRSA) and parallel warping. TRSA divides
the video into small clips, on which reciprocal attention is applied for
joint motion estimation, feature alignment and feature fusion, while self
attention is used for feature extraction. To enable cross-clip interactions,
the video sequence is shifted for every other layer. Besides, parallel
warping is used to further fuse information from neighboring frames by
parallel feature warping. Experimental results on five tasks, including
video super-resolution, video deblurring, video denoising, video frame
interpolation and space-time video super-resolution, demonstrate that
VRT outperforms the state-of-the-art methods by large margins (up to
2.16dB) on fourteen benchmark datasets.

4.1 introduction

Video restoration, which reconstructs high-quality (HQ) frames from
multiple low-quality (LQ) frames, has attracted much attention recently.

53
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t − 1

t

t + 1

LQ HQ LQ HQ LQ HQ

(a) (b) (c)

Figure 4.1: Illustrative comparison of sliding window-based models (4.1a,
e.g., [24], [171], [172]), recurrent models (4.1b, e.g., [173]–[177])
and the proposed parallel VRT model (4.1c). Green and blue
circles denote low-quality (LQ) input frames and high-quality
(HQ) output frames, respectively. t − 1, t and t + 1 are frame
serial numbers. Dashed lines represent information fusion among
different frames.

Compared with image restoration, the key challenge of video restora-
tion lies in how to make full use of neighboring highly-related but
misaligned supporting frames for reconstructing reference frames.

Existing video restoration methods can be mainly divided into two
categories: sliding window-based methods [24], [171], [172], [178]–[183]
and recurrent methods [173]–[177], [184]–[190]. As shown in Fig. 4.1a,
sliding window-based methods generally input multiple frames to
generate a single HQ frame and processes long video sequences in a
sliding window fashion. Each input frame is processed for multiple
times in inference, leading to inefficient feature utilization and increased
computation cost.

Some other methods are based on a recurrent architecture. As shown
in Fig. 4.1b, recurrent models mainly use previously reconstructed
HQ frames for subsequent frame reconstruction. Due to the recurrent
nature, they have three disadvantages. First, recurrent methods are
limited in parallelization for efficient distributed training and inference.
Second, although information is accumulated frame by frame, recurrent
models are not good at long-range temporal dependency modelling.
One frame may strongly affect the next adjacent frame, but its influence
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is quickly lost after few time steps [99], [191]. Third, they suffer from
significant performance drops on few-frame videos [8].

In this chapter, we propose a Video Restoration Transformer (VRT)
that allows for parallel computation and long-range dependency mod-
elling in video restoration. Based on a multi-scale framework, VRT
divides the video sequence into non-overlapping clips and shifts it al-
ternately to enable inter-clip interactions. Specifically, each scale of VRT
has several temporal reciprocal self attention (TRSA) modules followed
by a parallel warping module. In TRSA, reciprocal attention is focused
on mutual alignment between neighboring two-frame clips, while self
attention is used for feature extraction. At the end of each scale, we
further use parallel warping to fuse neighboring frame information
into the current frame. After multi-scale feature extraction, alignment
and fusion, the HQ frames are individually reconstructed from their
corresponding frame features.

Compared with existing video restoration frameworks, VRT has sev-
eral benefits. First, as shown in Fig. 4.1c, VRT is trained and tested
on long video sequences in parallel. In contrast, both sliding window-
based and recurrent methods are often tested frame by frame. Second,
VRT has the ability to model long-range temporal dependencies, utiliz-
ing information from multiple neighbouring frames during the recon-
struction of each frame. By contrast, sliding window-based methods
cannot be easily scaled up to long sequence modelling, while recurrent
methods may forget distant information after several timestamps. Third,
VRT proposes to use reciprocal attention for joint feature alignment
and fusion. It adaptively utilizes features from supporting frames and
fuses them into the reference frame, which can be regarded as implicit
motion estimation and feature warping.

Our contributions can be summarized as follows:

1) We propose a new framework named Video Restoration Trans-
former (VRT) that is characterized by parallel computation and
long-range dependency modelling. It jointly extracts, aligns, and
fuses frame features at multiple scales.

2) We propose the reciprocal attention for mutual alignment between
frames. It is a generalized “soft” version of image warping after
implicit motion estimation.

3) VRT achieves state-of-the-art performance on video restoration,
including video super-resolution, deblurring, denoising, frame in-
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terpolation and space-time video super-resolution. It outperforms
state-of-the-art methods by up to 2.16dB on benchmark datasets.

4.2 related work

4.2.1 Video Restoration

Similar to image restoration [1], [4]–[7], [17]–[19], [48]–[50], [61], [69],
[118]–[121], [192]–[200], learning-based methods, especially CNN-based
methods, have become the primary workhorse for video restoration [24],
[27], [176], [181], [201]–[211].

framework design. From the perspective of architecture design,
existing methods can be roughly divided into two categories: sliding
window-based and recurrent methods. Sliding window-based methods
often takes a short sequence of frames as input and merely predict
the center frame [24]–[26], [171], [172], [178]–[183], [212]. Although
some works [213] predict multiple frames, they still focus on the recon-
struction of the center frame during training and testing. Recurrent
framework is another popular choice [173]–[177], [184]–[190]. Huang et
al. [174] propose a bidirectional recurrent convolutional neural network
for SR. Sajjadi et al. [187] warp the previous frame prediction onto the
current frame and feed it to a restoration network along with the cur-
rent input frame. This idea is used by Chan et al. [176] for bidirectional
recurrent network, and further extended as grid propagation in [177].

temporal alignment and fusion. Since supporting frames are
often highly-related but misaligned, temporal alignment plays an criti-
cal role in video restoration [24], [172], [176], [177], [214]–[216]. Early
methods [178], [214], [217]–[219] use traditional flow estimation meth-
ods to estimate optical flow and warp the supporting frames towards
the reference frame. To compensate occlusion and large motion, Xue et
al. [215] utilize task-oriented flow by fine-tuning the pre-trained opti-
cal flow estimation model SpyNet [220] on different video restoration
tasks. Jo et al. [221] use dynamic upsampling filters for implicit motion
compensation. Kim et al. [222] propose a spatio-temporal transformer
network for multi-frame optical flow estimation and warping. Tian et
al. [172] propose TDAN that utilize deformable convolution [223] for
feature alignment. Based on TDAN, Wang et al. [24] extend it to multi-
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scale alignment, while Chan et al. [177] incorporate optical flow as a
guidance for offsets learning.

attention mechanism . Attention mechanism has been exploited
in video restoration in combination with CNN [8], [24], [28], [218].
Liu et al. [218] learn different weights for different temporal branches.
Wang et al. [24] learn pixel-level attention maps for spatial and temporal
feature fusion. To better incorporate temporal information, Isobe et
al. [182] divide frames into several groups and design a temporal group
attention module. Suin et al. [28] propose a reinforcement learning-
based framework with factorized spatio-temporal attention. Cao et
al. [8] propose to use self attention among local patches within a video.

4.2.2 Vision Transformer

Recently, Transformer-based models [99], [224]–[226] have achieved
promising performance in various vision tasks, such as image recog-
nition [100], [102], [103], [132]–[134], [138], [226], [227] and image
restoration [1], [104], [139]. Some methods have tried to use Trans-
former for video modelling by extending the attention mechanism to
the temporal dimension [225], [228]–[231]. However, most of them are
designed for visual recognition, which are fundamentally different from
restoration tasks. They are more focused on feature fusion than on
alignment. Cao et al. [8] propose a CNN-transformer hybrid network
for video super-resolution (SR) based on spatial-temporal convolutional
self attention. However, it does not make full use of local information
within each patch and suffers from border artifacts during testing.

4.3 methodology

4.3.1 Overall Framework

Let ILQ ∈ RT×H×W×Cin be a sequence of low-quality (LQ) input frames
and IHQ ∈ RT×sH×sW×Cout be a sequence of high-quality (HQ) target
frames. T, H, W, Cin and Cout are the frame number, height, width
and input channel number and output channel number, respectively.
s is the upscaling factor, which is larger than 1 (e.g., for video SR) or
equal to 1 (e.g., for video deblurring). The proposed Video Restoration
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Transformer (VRT) aims to restore T HQ frames from T LQ frames
in parallel for various video restoration tasks, including video SR,
deblurring, denoising, etc. As illustrated in Fig. 4.2, VRT can be divided
into two parts: feature extraction and reconstruction.

feature extraction. At the beginning, we extract shallow fea-
tures ISF ∈ RT×H×W×C by a single spatial 2D convolution from the LQ
sequence ILQ. After that, based on [232], we propose a multi-scale net-
work that aligns frames at different image resolutions. More specifically,
when the total scale number is S, we downsample the feature for S − 1
times by squeezing each 2 × 2 neighborhood to the channel dimension
and reducing the channel number to the original number via a linear
layer. Then, we upsample the feature gradually by unsqueezing the
feature back to its original size. In such a way, we can extract features
and deal with object or camera motions at different scales by two kinds
of modules: temporal reciprocal self attention (TRSA, see 4.3.2) and
parallel warping (see 4.3.3). Skip connections are added for features of
same scales. Finally, after multi-scale feature extraction, alignment and
fusion, we add several TRSA modules for further feature refinement
and obtain the deep feature IDF ∈ RT×H×W×C.

reconstruction. After feature extraction, we reconstruct the HQ
frames from the addition of shallow feature ISF and deep feature IDF.
Different frames are reconstructed independently based on their cor-
responding features. Besides, to ease the burden of feature learning,
we employ global residual learning and only predict the residual be-
tween the bilinearly upsampled LQ sequence and the ground-truth HQ
sequence. In practice, different reconstruction modules are used for
different restoration tasks. For video SR, we use the sub-pixel convolu-
tion layer [141] to upsample the feature by a scale factor of s. For video
deblurring, a single convolution layer is enough for reconstruction.
Apart from this, the architecture designs are kept the same for all tasks.

loss function. For fair comparison with existing methods, we use
the commonly used Charbonnier loss [145] between the reconstructed
HQ sequence IRHQ and the ground-truth HQ sequence IHQ as

L =
√
∥IRHQ − IHQ∥2 + ϵ2, (4.1)

where ϵ is a constant that is empirically set as 10−3.
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4.3.2 Temporal Reciprocal Self Attention

In this section, based on the attention mechanism [99], [225], [226], we
first introduce the reciprocal attention and then propose the temporal
reciprocal self attention (TRSA).

reciprocal attention. Given a reference frame feature XR ∈
RN×C and a supporting frame feature XS ∈ RN×C, where N is the
number of feature elements and C is the channel number, we compute
the query QR, key KS and value VS from XR and XS by linear projections
as

QR = XRPQ, KS = XSPK, VS = XSPV , (4.2)

where PQ, PK, PV ∈ RC×D are projection matrices. D is the channel
number of projected features. Then, we use QR to query KS in order
to generate the attention map A = SoftMax(QR(KS)T/

√
D) ∈ RN×N ,

which is then used for weighted sum of VS. This is formulated as

MA(QR, KS, VS) = SoftMax(QR(KS)T/
√

D)VS, (4.3)

where SoftMax means the row softmax operation.
Since QR and KS come from XR and XS, respectively, A reflects the

correlation between elements in the reference image and the supporting
image. For clarity, we rewrite Eq. (4.3) for the i-th element of the
reference image as

YR
i,: =

N

∑
j=1

Ai,jVS
j,:, (4.4)

where YR
i,: refers to the new feature of the i-th element in the reference

frame. As shown in Fig. 4.3, when KS
k,: (e.g., the yellow square from the

supporting frame) is the most similar element to QR
i,: (e.g., the orange

square from the reference frame), Ai,k > Ai,j holds for all j ̸= k (j ≤ N).
When all KS

j,:(j ̸= k) are very dissimilar to QR
i , we have{

Ai,k → 1,

Ai,j → 0, f or j ̸= k, j ≤ N.
(4.5)

In this extreme case, by combining Eq. (4.4) and (4.5), we have YR
i,: =

VS
k,:, which moves the k-th element in the supporting frame to the

position of the i-th element in the reference frame (see the dashed red
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supporting frame XS reference frame XR

Ai,m

Ai,k

Ai,n

Figure 4.3: Illustration for reciprocal attention. We let the orange square
(the i-th element of the reference frame) query elements in
the supporting frame and use their weighted features as a
new representation for the orange square. The weights are
shown around solid arrows (we only show three examples
for clarity). When Ai,k → 1 and the rest Ai,j → 0(j ̸= k), the
reciprocal attention equals to warping the yellow square to
the position of the orange square (illustrated as a dashed
arrow).

line in Fig. 4.3). This equals to image warping given an optical flow
vector. When Ai,k → 1 does not hold, Eq. (4.4) can be regarded as
a “soft” version of image warping. In practice, the reference frame
and supporting frame can be exchanged, allowing mutual alignment
between two frames. Besides, similar to multi-head self attention, we
can also perform the attention for h times and concatenate the results
as multi-head reciprocal attention (MRA).

Particularly, reciprocal attention has several benefits over the combina-
tion of explicit motion estimation and image warping. First, reciprocal
attention can adaptively preserve information from the supporting
frame than image warping, which only focuses on the target pixel. It
also avoids black hole artifacts when there is no matched positions. Sec-
ond, reciprocal attention does not have the inductive biases of locality,
which is inherent to most CNN-based motion estimation methods [220],
[233]–[235] and may lead to performance drop when two neighboring
objects move towards different directions. Third, reciprocal attention
equals to conducting motion estimation and warping on image features
in a joint way. In contrast, optical flows are often estimated on the input
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RGB image and then used for warping on features [176], [177]. Besides,
flow estimation on RGB images is often not robust to lighting variation,
occlusion and blur [215].

temporal reciprocal self attention (trsa). Reciprocal at-
tention is proposed for joint feature alignment between two frames. To
extract and preserve feature from the current frame, we use reciprocal
attention together with self attention. Let X ∈ R2×N×C represent two
frames, which can be split into X1 ∈ R1×N×C and X2 ∈ R1×N×C. We
use multi-head reciprocal attention (MRA) on X1 and X2 for two times:
warping X1 towards X2 and warping X2 towards X1. The warped fea-
tures are combined and then concatenated with the result of multi-head
self attention (MSA), followed by a multi-layer perceptron (MLP) for
the purpose of dimension reduction. After that, another MLP is added
for further feature transformation. Two LayerNorm (LN) layers and
two residual connections are also used as shown in the green box of
Fig. 4.2. The whole process formulated as follows

X1, X2 = Split0(LN(X))

Y1, Y2 = MRA(X1, X2), MRA(X2, X1)

Y3 = MSA(Concat0(X1, X2))

X = MLP(Concat2(Concat0(Y1, Y2), Y3)) + X

X = MLP(LN(X)) + X

(4.6)

where the subscripts of Split and Concat refer to the specified dimen-
sions. However, due to the design of reciprocal attention, Eq. (4.6) can
only deal with two frames at a time.

One naive way to extend Eq. (4.6) for T frames is to deal with frame-
to-frame pairs exhaustively, resulting in the computational complexity
of O(T2). Inspired by the shifted window mechanism [103], [231], we
propose the temporal reciprocal self attention (TRSA) to remedy the
problem. TRSA first partitions the video sequence into non-overlapping
2-frame clips and then applies Eq. (4.6) to them in parallel. Next, as
shown in Fig. 4.4, it shifts the sequence temporally by 1 frame for every
other layer to enable cross-clip connections, reducing the computational
complexity to O(T). The temporal receptive field size is increased
when multiple TRSA modules are stacked together. Specifically, at layer
i (i ≥ 2), one frame can utilize information from up to 2(i − 1) frames.
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(layer)

i + 3

i + 2

i + 1

i

t − 3 t − 2 t − 1 t t + 1 t + 2 t + 3 t + 4 (frame)

Figure 4.4: Illustration for temporal reciprocal self attention (TRSA). It
shows a stack of temporal reciprocal self attention (TRSA)
layers. The sequence is partitioned into 2-frame clips at
each layer and shifted for every other layer to enable cross-
clip interactions. Dashed lines represent information fusion
among different frames.

discussion. Video restoration tasks often need to process high-
resolution frames. Since the complexity of attention is quadratic to the
number of elements within the attention window, global attention on
the full image is often impractical. Therefore, following [1], [103], we
partition each frame spatially into non-overlapping M × M local win-
dows, resulting in HW

M2 windows. Shifted window mechanism (with the
shift of ⌊M

2 ⌋ × ⌊M
2 ⌋ pixels) is also used spatially to enable cross-window

connections. Besides, although stacking multiple TRSA modules allows
for long-distance temporal modelling, distant frames are not directly
connected. As will show in the ablation study, using only a small
temporal window size cannot fully exploit the potential of the model.
Therefore, we use larger temporal window size for the last quarter of
TRSA modules to enable direct interactions between distant frames.

4.3.3 Parallel Warping

Due to spatial window partitioning, the reciprocal attention mechanism
may not be able to deal with large motions well. Hence, as shown in
the orange box of Fig. 4.2, we use feature warping at the end of each
network stage to handle large motions. As shown in Fig. 4.5, for any
frame feature Xt, we calculate the optical flows of its neighbouring
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MLP

t − 2 t − 1 t t + 1 t + 2frame

X̄t

X̂t−1

Xt

X̂t+1

Figure 4.5: Illustration of parallel warping. For every frame feature Xt(t ≤ T),
frame Xt−1 and Xt+1 are warped towards Xt as X̂t−1 and X̂t+1,
respectively. Then, Xt, X̂t−1 and X̂t+1 are concatenated together
(denoted by blue boxes) for feature fusion and dimension reduction
with a multi-layer perception (MLP). The final output is X̄t. The
dashed arrows and circles denote warping operations and warped
features, respectively.

frame features Xt−1 and Xt+1, and warp them towards the frame Xt

as X̂t−1 and X̂t+1 (i.e., backward and forward warping). Then, we
concatenate Xt, X̂t−1 and X̂t+1 along the channel dimension (denoted by
the blue box). To keep the original channel size for later operations, we
reduce its dimension by a multi-layer perception (MLP) and obtain X̄t.
This mechanism can be generalized for four (i.e., Xt−2, Xt−1, Xt+1 and
Xt+2) and six (i.e., Xt−3, Xt−2, Xt−1, Xt+1, Xt+2 and Xt+3) neighboring
frames. Note that different frames are processed in parallel.

Specifically, following [177], we predict the residual flow by a flow
estimation model and use deformable convolution [223] for deformable
alignment. Given estimated optical flows Ot−1,t and Ot+1,t, we first use
them to warp Xt−1 and Xt+1, respectively as

{
X′

t−1 = W(Xt−1, Ot−1,t),

X′
t+1 = W(Xt+1, Ot+1,t),

(4.7)

where W represents the image warping function. X′
t−1 and X′

t+1 are
the initial warped features. Then, we use several convolution layers
(denoted as C) to predict the offset residuals ot−1,t, ot+1,t and modulation
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masks mt−1,t, mt+1,t from the concatenation of Ot−1,t, Ot+1,t, X′
t−1 and

X′
t+1 as

ot−1,t, ot+1,t, mt−1,t, mt+1,t = C(Concat(Ot−1,t, Ot+1,t, X′
t−1, X′

t+1)). (4.8)

Next, we warp Xt−1 and Xt+1 again as{
X̂t−1 = D(Xt−1, Ot−1,t + ot−1,t, mt−1,t),

X̂t+1 = D(Xt+1, Ot+1,t + ot+1,t, mt+1,t),
(4.9)

where D refers to the deformable convolution. The outputs X̂t−1 and
X̂t+1 and concatenated with Xt as the new feature for the t-th frame.

4.4 experiments

4.4.1 Experimental Setup

architecture. For video SR, we use 4 scales for VRT. On each
scale, we stack 8 TRSA modules, the last two of which use a temporal
window size of 8. The spatial window size M × M, head size h, and
channel size C are set to 8 × 8, 6 and 120, respectively. After 7 multi-
scale feature extraction stages, we add 24 TRSA modules (only with self
attention) for further feature extraction before reconstruction. For flow
estimation, we extract multi-scale flows from different layers of SpyNet
[220], [234] and feed them into different scales of VRT. In video SR, for
the additional TRSA modules in the 8-th stage, the channel number is
set as 180. We use temporal window sizes of 8 and 2 for the first two
thirds of modules and the rest ones, respectively. In video deblurring
and denoising, we use a relatively smaller model. The channel sizes
for the first 7 stages and the 8-th stage are 96 and 120, respectively. For
the 8-th stage, we only use 16 TRSA modules. In addition, the gated
variant GEGLU [224] is used to replace the plain feed-forward network.

training . The training batch size and total number of iteration are
8 and 300K, respectively. We augment the input frames by random
flipping, rotation and cropping. The model is trained by the Adam
optimizer [148] with β1 = 0.9 and β2 = 0.99. The learning rate is
initialized as 4e − 4 and decreased gradually according to the Cosine
Annealing scheme [236]. To stabilize training, we use the pretrained
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model of SpyNet for initialization and fix the flow estimation part for
the first 20K iterations. We also use a smaller initial learning rate (i.e.,
5e − 5) for it. There are several training differences in different tasks.
First, we set the training frame number as 6 for most tasks (7 for Vimeo-
90K in video SR) and additionally provide experiments on 16 frames
for REDS in video SR. For Vimeo-90K, following [177], we initialize the
model with the REDS pretrained model. Second, the training patch
size is 64 × 64 for video SR and 192 × 192 for other tasks. Third, for
video denoising, we follow [25], [26] and train a non-blind denoising
model using varying noise levels (σ ∼ U (0, 50)) by concatenating the
noise level map with the noisy video along the channel dimension. All
experiments are conducted on a server with 8 A100 GPUs. For video
SR, it takes about 5 and 10 days for 6-frame and 16-frame experiments,
respectively. For video deblurring and denoising, the training time is
about 10 days.

dataset. For video super-resolution, we train the model on two
different training datasets for scale factor 4. First, we generate low-
resolution images by the MATLAB imresize function (i.e., bicubic
degradation) and train the model on REDS [237]. REDS4 [24] is used as
the test set. Second, we train the model on Vimeo-90K [215] with two
different degradations: bicubic and blur downsampling (Gaussian blur
with σ = 1.6 followed by subsampling). The testing datasets include
Vimeo-90K-T [215], Vid4 [238] and UDM10 [207]. For video deblurring,
we train the model on three different datasets (DVD [180], GoPro [21]
and REDS [237]). We test it on their corresponding testing sets (for
REDS, we use REDS4 [24]). For video denoising, we train the model
on the DAVIS [239] and test it on the corresponding testing set and
Set8 [25]. The details of datasets are as follows.

1. REDS [237]. REDS is a newly-proposed high-quality (1280 ×
720) video dataset for video restoration. It has 270 clips for
training and validation. Following [24], we use REDS4 (4 selected
representative clips, i.e., 000, 011, 015 and 020) for evaluation and
the rest 266 clips for training. This dataset is used for training
bicubic video SR.

2. Vimeo-90K [215]. Vimeo-90K is a widely-used middle-quality
(448 × 256) dataset for video restoration. For video SR bench-
marking, it uses 64,612 clips for training and 7,824 clips for testing
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(denoted as Vimeo-90K-T). This dataset is used for training bicubic
and blur-downsampling video SR.

3. Vid4 [238]. Vid4 is a classical testing dataset for video restoration.
It contains 4 video clips (i.e., calendar, city, foliage and walk).
Each clip has at least 34 frames (720 × 480).

4. UDM10 [207]. UDM10 is a recent proposed testing dataset for
video super-resolution. It contains 4 video clips of various scenes,
each of which has 32 frames (1272 × 720).

5. DVD [180]. DVD is a widely-used high-quality (1280 × 720)
dataset for video deblurring. Blurred images are generated from
high fps videos. It has 61 videos (5,708 frames in total) for training
and 10 videos (1,000 frames in total) for testing.

6. GoPro [21]. GoPro is a popular high-quality (1280 × 720) for
image and video deblurring. Similar to DVD [180], blurred images
are synthesized based on high fps videos. It is consisted of 22

training clips (2,103 frames in total) and 11 testing clips (1,111

frames in total).

7. DAVIS [239]. DAVIS-2017 is a popular middle-quality (854 × 480)
dataset for video denoising. It consists of 90 videos for training
and 30 videos for testing.

8. Set8 [26]. Set8 consists of 8 middle quality (960 × 540) videos (i.e.,
tractor, touchdown, park joy, sunflower, hypersmooth, motorbike,
rafting and snowboard). It is often used as a testing dataset in
video denoising. Following [25], [26], [204], we only use the first
85 frames of each video.

evaluation. For evaluation, following [24], [25], [28], [176], [183],
we calculate the metrics on RGB channel for REDS4 [24], DVD testing
set [180], GoPro testing set [21], DAVIS testing set [239] as well as
Set8 [25], and on the Y channel for Vimeo-90K-T [215], Vid4 [238] and
UDM10 [207].
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4.4.2 Video Super-Resolution

4.4.2.1 Quantitative Results

As shown in Table 4.1, we compare VRT with the state-of-the-art image
and video SR methods [8], [24], [171], [173], [175]–[177], [182], [187],
[189], [190], [202], [207], [215], [221], [240]. VRT achieves best perfor-
mance for both bicubic (BI) and blur-downsamplng (BD) degradations.
Specifically, when trained on the REDS [237] dataset with short se-
quences, VRT outperforms VSRT by up to 0.57dB in PSNR. Compared
with another representative sliding window-based model EDVR, VRT
has an improvement of 0.50∼1.57dB on different datasets, showing its
good ability to fuse information from multiple frames. Note that VRT
outputs all frames simultaneously rather than predicting them frame by
frame as EDVR does. On the Vimeo-90K [215] dataset, VRT surpasses
BasicVSR++ by up to 0.38dB, although BasicVSR++ and other recurrent
models may mirror the 7-frame video for training and testing. When
VRT is trained on longer sequences, it shows good potential in temporal
modelling and further increases the PSNR by 0.52dB. As indicated in
[8], recurrent models often suffer from significant performance drops
on short sequences. In contrast, VRT performs well on both short and
long sequences. We note that VRT is slightly lower than the 32-frame
model BasicVSR++. This is expected as VRT is trained on 16 frames.

We also provide comparison on parameter number and runtime in
Table 4.1. As a parallel model, VRT needs to restore all frames at
the same time, which leads to relatively larger model size and longer
runtime per frame compared with recurrent models. However, VRT has
the potential for distributed deployment, which is hard for recurrent
models that restore a video clip recursively by design.

4.4.2.2 Qualitative Results

Visual results of different methods are shown in Fig. 4.6. As one
can see, in accordance with its significant quantitative improvements,
VRT can generate visually pleasing images with sharp edges and fine
details, such as horizontal strip patterns of buildings. By contrast, its
competitors suffer from either distorted textures or lost details.
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Frame 021, Clip 011, REDS [237]

LQ (×4) EDVR [24] VSRT [8] BasicVSR [176]

IconVSR [176] BasicVSR++ [177] VRT (ours) GT

Frame 022, Clip city, Vid4 [238]

LQ (×4) EDVR [24] VSRT [8] BasicVSR [176]

IconVSR [176] BasicVSR++ [177] VRT (ours) GT

Figure 4.6: Visual comparison of video super-resolution (×4) methods.

Table 4.2: Video SR (×4, BI degradation) results on Vimeo-Fast/ Medium/
Slow subsets.

Subset EDVR [24] BasicVSR [176] BasicVSR++ [177] VRT (ours)
Fast 40.77 40.34 40.98 41.44

Medium 37.81 37.35 37.99 38.42

Slow 34.52 34.11 34.57 34.98

4.4.2.3 Performance in Different Motion Conditions

Following [209], we compare different methods on Vimeo90K [215]
(×4, BI degradation) with fast/ medium/ slow motions. As shown in
Table 4.2, VRT leads to larger improvement on fast motion videos than
on slow ones when compared with existing methods.

4.4.2.4 Robustness to Noise

In addition, to compare the noise robustness of parallel models and
recurrent models, we hack the LQ input video by manually setting
all pixels of the 50-th frame as zero in testing. As shown in Fig. 4.7,
VRT suffers from less performance drop and has less adverse impact
on neighbouring frames than BasicVSR, indicating that VRT is more
robust to noise.
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(a) Clip 011, REDS [237]
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(b) Clip 015, REDS [237]

Figure 4.7: The robustness to noise injection attack. It compares the per-frame
PSNR drop of different methods, when pixels of the 50-th frame of
the LQ input video is hacked to be all zeros during testing.

4.4.2.5 Attention Visualization

To show exploit what the attention mechanism has learned, we plot
attention maps between a pixel (marked as red points) from the first
frame and the rest pixels in the same attention window. As shown
in Fig. 4.8, the first row is the input image patch, while the rest rows
are the visualization of attention matrices of six different attention
heads. The attention matrices are normalized for visualization, whereas
brighter pixels means larger attention weights. As shown in Fig. 4.8a,
when the red point moves towards the top-right direction from the
first frame to the last frame, it moves most attention to the top-right
direction as well. Similar observations can be concluded from other
examples. This shows that, in the attention mechanism, one pixel is
able to find its most related pixels and attend to it, bringing long-range
dependency modelling ability of our model across different frames.
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(a) (b)

(c) (d)

Figure 4.8: Visualization of attention maps. The first row shows the original
image patches at the same position from different frames, while
the rest rows are the attention weight visualizations of six different
attention heads. The query pixel is marked by a red point in the
first frame.

4.4.3 Video Deblurring

4.4.3.1 Quantitative Results

We conducts experiments on three different datasets for fair comparison
with existing methods [21], [24], [28], [180], [181], [183], [184], [186],
[208], [210], [241], [242]. Table 4.3 shows the results on the DVD [180]
dataset. It is clear that VRT achieves the best performance, outperform-
ing the second best method ARVo by a remarkable improvement of
1.47dB and 0.0299 in terms of PSNR and SSIM. PVDNet proposes mo-
tion estimation learning to better aggregate information from multiple
frames, but it is inferior to the proposed VRT, which uses reciprocal
attention for alignment. Related to the attention mechanism, GSTA
designs a gated spatio-temporal attention mechanism, while ARVo
calculates the correlation between pixel pairs for correspondence learn-
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Table 4.3: Quantitative comparison (average RGB channel PSNR/SSIM)
with state-of-the-art methods for video deblurring on
DVD [180]. Following [183], [210], all restored frames in-
stead of randomly selected 30 frames from each test set [180]
are used in evaluation.

Method
DeepDeblur

[21]
SRN
[241]

DBLRNet
[242]

STFAN
[181]

STTN
[222]

SFE
[208]

PSNR 29.85 30.53 30.08 31.24 31.61 31.71

SSIM 0.8800 0.8940 0.8845 0.9340 0.9160 0.9160

Method
EDVR

[24]
TSP
[210]

PVDNet
[186]

GSTA
[28]

ARVo
[183]

VRT
(ours)

PSNR 31.82 32.13 32.31 32.53 32.80 34.27 (+1.47)
SSIM 0.9160 0.9268 0.9260 0.9468 0.9352 0.9651 (+0.03)

Table 4.4: Quantitative comparison (average RGB channel PSNR/SSIM)
with state-of-the-art methods for video deblurring on Go-
Pro [21].

Method
DeepDeblur

[21]
SRN
[241]

SAPHN
[243]

MPRNet
[244]

SFE
[208]

IFI-RNN
[184]

PSNR 29.23 30.26 31.85 32.66 31.01 31.05

SSIM 0.9162 0.9342 0.9480 0.9590 0.9130 0.9110

Method
ESTRNN

[185]
EDVR

[24]
TSP
[210]

PVDNet
[186]

GSTA
[28]

VRT
(ours)

PSNR 31.07 31.54 31.67 31.98 32.10 34.81 (+2.15)
SSIM 0.9023 0.9260 0.9279 0.9280 0.9600 0.9724 (+0.01)

ing. However, both of them are based on CNN, achieving significantly
worse performance compared with the Transformer-based VRT. We also
compare VRT on the GoPro [21] (Table 4.4) and REDS [237] (Table 4.5)
datasets. VRT shows its superiority over other methods with significant
PSNR gains of 2.15dB and 1.99dB. The total number of parameters
of VRT is 18.3M, which is slightly smaller than EDVR (23.6M) and
PVDNet (23.5M). The runtime is 2.2s per frame on 1280 × 720 blurred
videos. Notably, during evaluation, we do not use any pre-processing
techniques such as sequence truncation and image alignment [186],
[210].

4.4.3.2 Qualitative Results

Fig. 4.9 shows the visual comparison of different methods. VRT is
effective in removing motion blurs and restoring faithful details, such
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Table 4.5: Quantitative comparison (average RGB channel PSNR/SSIM)
with state-of-the-art methods for video deblurring on
REDS [237].

Method
DeepDeblur

[21]
SRN
[241]

DBN
[180]

EDVR
[24]

VRT
(ours)

PSNR 26.16 26.98 26.55 34.80 36.79 (+1.99)
SSIM 0.8249 0.8141 0.8066 0.9487 0.9648 (+0.02)

Frame 00034

Clip IMG 0030, DVD

LQ DBN [180] STFAN [181] TSP [210]

PVDNet [186] ARVo [183] VRT (ours) GT

Frame 000210

Clip GOPRO410 11 00, GoPro

LQ SRN [241] SAPHN [243] MPRNet [244]

TSP [210] PVDNet [186] VRT (ours) GT

Figure 4.9: Visual comparison of video deblurring methods. Part of compared
images are derived from [183], [244].

as the pole in the first example and characters in the second one. In
comparison, other approaches fail to remove blurs completely and do
not produce sharp edges.

In addition, we conduct a user study with 20 users on video de-
blurring. Each user is given multiple pairs of deblurred videos from
DVD [180], where one is our result. As shown in Fig. 4.10, over 90% of
the users vote that VRT has better visual quality than existing methods.

4.4.4 Video Denoising

We also conduct experiments on video denoising to show the effec-
tiveness of VRT. Following [25], [26], we train one non-blind model
for noise level σ ∈ [0, 50] on the DAVIS [239] dataset and test it on
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Figure 4.10: User study of video deblurring on the DVD [180] dataset.

different noise levels. Table 4.6 shows the superiority of VRT on two
benchmark datasets over existing methods [25], [26], [204], [245]. Even
though PaCNet [204] trains different models separately for different
noise levels, VRT still improves the PSNR by 0.82∼2.16dB.

4.4.5 Video Frame Interpolation

To show the generalizability of our framework, we conduct experiments
on video frame interpolation. Following [246], [247], we train the
model on Vimeo-90K [215] for single frame interpolation and test it
on quintuples generated from Vimeo-90K-T [215], UCF101 [248] and
DAVIS [239]. As shown in Table 4.7, VRT achieves best or competitive
performance on all datasets compared with it competitors, including
those using depth maps or optical flows. As for the model size, VRT
only has 9.9M parameters, which is much smaller than the recent best
model FLAVR (42.4M).

4.4.6 Space-Time Video Super-Resolution

With the pretrained models on video SR (VSR) and video frame interpo-
lation (VFI), we directly test VRT on space-time video super-resolution
by cascading VRT models in two ways: VFI followed by VSR, or VSR fol-
lowed by VFI. As shown in Table 4.8, compared with existing methods,
VRT provides a strong baseline for space-time video super-resolution,
even though it serves as a two-stage model and is not specifically



76

Table 4.6: Quantitative comparison (average RGB channel PSNR) with
state-of-the-art methods for video denoising on DAVIS [239]
and Set8 [25]. σ is the additive white Gaussian noise level.

Dataset σ
VLNB
[245]

DVDnet
[25]

FastDVDnet
[26]

PaCNet
[204]

VRT (ours)

DAVIS

10 38.85 38.13 38.71 39.97 40.82 (+0.85)
20 35.68 35.70 35.77 36.82 38.15 (+1.33)
30 33.73 34.08 34.04 34.79 36.52 (+1.73)
40 32.32 32.86 32.82 33.34 35.32 (+1.98)
50 31.13 31.85 31.86 32.20 34.36 (+2.16)

Set8

10 37.26 36.08 36.44 37.06 37.88 (+0.82)
20 33.72 33.49 33.43 33.94 35.02 (+1.08)
30 31.74 31.79 31.68 32.05 33.35 (+1.30)
40 30.39 30.55 30.46 30.70 32.15 (+1.45)
50 29.24 29.56 29.53 29.66 31.22 (+1.56)

Table 4.7: Quantitative comparison (average RGB channel PSNR) with
state-of-the-art methods for video frame interpolation (single
frame interpolation, ×2) on Vimeo-90K-T [215], UCF101 [248]
and DAVIS [239]. R, D and F means that the model uses RGB
images, depth maps or optical flows.

Method Inputs Vimeo-90K-T [215] UCF101 [248] DAVIS [239]
DAIN [249] R+D+F 33.35/0.945 31.64/0.957 26.12/0.870

QVI [246] R+F 35.15/0.971 32.89/0.970 27.17/0.874

DVF [250] R 27.27/0.893 28.72/0.937 22.13/0.800

SepConv [30] R 33.60/0.944 31.97/0.943 26.21/0.857

CAIN [251] R 33.93/0.964 32.28/0.965 26.46/0.856

SuperSloMo [29] R 32.90/0.957 32.33/0.960 25.65/0.857

BMBC [252] R 34.76/0.965 32.61/0.955 26.42/0.868

AdaCoF [253] R 35.40/0.971 32.71/0.969 26.49/0.866

FLAVR [247] R 36.25/0.975 33.31/0.971 27.43/0.874

VRT (ours) R 36.53/0.977 33.30/0.970 27.88/0.889

trained for this task. In particular, it improves the PSNR by 1.03dB on
the Vid4 dataset.

4.4.7 Ablation Study

For ablation study, we set up a small version of VRT as the baseline
model by halving the layer and channel numbers. All models are
trained on Vimeo-90K [215] for bicubic video SR (×4) and tested it on
Vid4 [238].
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Table 4.8: Quantitative comparison (average Y channel PSNR) with
state-of-the-art methods for space-time video super-resolution
(time: ×2, space: ×4) on Vid4 [238] and Vimeo-90K-T [215].
[29], [30] and [249] are frame interpolation methods Super-
SloMo, SepConv and DAIN, respectively. Note that the pro-
posed VRT is not trained on this task. We directly test it
by cascading pre-trained video super-resolution (VSR) and
video frame interpolation (VFI) models.

VFI+VSR Methods
Vid4

[238]
Vimeo-Fast

[215]
Vimeo-Medium

[215]
Vimeo-Slow

[215]
[29]+Bicubic 22.84/0.5772 31.88/0.8793 29.94/0.8477 28.37/0.8102

[29]+RCAN [18] 23.80/0.6397 34.52/0.9076 32.50/0.8884 30.69/0.8624

[29]+RBPN [188] 23.76/0.6362 34.73/0.9108 32.79/0.8930 30.48/0.8584

[29]+EDVR [24] 24.40/0.6706 35.05/0.9136 33.85/0.8967 30.99/0.8673

[30]+Bicubic 23.51/0.6273 32.27/0.8890 30.61/0.8633 29.04/0.8290

[30]+RCAN [18] 24.92/0.7236 34.97/0.9195 33.59/0.9125 32.13/0.8967

[30]+RBPN [188] 26.08/0.7751 35.07/0.9238 34.09/0.9229 32.77/0.9090

[30]+EDVR [24] 25.93/0.7792 35.23/0.9252 34.22/0.9240 32.96/0.9112

[249]+Bicubic 23.55/0.6268 32.41/0.8910 30.67/0.8636 29.06/0.8289

[249]+RCAN [18] 25.03/0.7261 35.27/0.9242 33.82/0.9146 32.26/0.8974

[249]+RBPN [188] 25.96/0.7784 35.55/0.9300 34.45/0.9262 32.92/0.9097

[249]+EDVR [24] 26.12/0.7836 35.81/0.9323 34.66/0.9281 33.11/0.9119

ZSM [209] 26.31/0.7976 36.81/0.9415 35.41/0.9361 33.36/0.9138

STARnet [254] 26.06/0.8046 36.19/0.9368 34.86/0.9356 33.10/0.9164

TMNet [255] 26.43/0.8016 37.04/0.9435 35.60/0.9380 33.51/0.9159

RSTT [256] 26.43/0.7994 36.80/0.9403 35.66/0.9381 33.50/0.9147

VRT (VFI+VSR) 26.59/0.8014 36.56/0.9372 35.28/0.9343 33.75/0.9204

VRT (VSR+VFI) 27.46/0.8392 36.98/0.9439 36.01/0.9434 34.01/0.9236

4.4.7.1 Impact of multi-scale architecture and parallel warping.

Table 4.9 shows the ablation study on the multi-scale architecture and
parallel warping. When the number of model scales is reduced, the
performance drops gradually, even though the computation burden
becomes heavier. This is expected because multi-scale processing can
help the model utilize information from a larger area and deal with
large motions between frames. Besides, parallel warping also helps,
bringing an improvement of 0.17dB.

4.4.7.2 Impact of temporal reciprocal self attention.

To test the effectiveness of reciprocal and self attention in TRSA, we
conduct ablation study in Table 4.10. When we replace reciprocal
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Table 4.9: Ablation study on multi-scale architecture and parallel warping.
Given an input of spatial size 64 × 64, the corresponding feature
sizes of each scale are shown in brackets. When some scales are
removed, we add more layers to the rest scales for similar model
size.

1

(64 × 64)
2

(32 × 32)
3

(16 × 16)
4

(8 × 8)
Parallel
Warping

PSNR

✓ ✓ 27.13

✓ ✓ ✓ 27.20

✓ ✓ ✓ ✓ 27.25

✓ ✓ ✓ ✓ 27.11

✓ ✓ ✓ ✓ ✓ 27.28

Table 4.10: Ablation study on temporal reciprocal self attention.

Attention 1 Self Attn. - Reciprocal Attn. Reciprocal Attn.
Attention 2 Self Attn. Self Attn. - Self Attn.

PSNR 27.17 27.11 26.92 27.28

attention with self attention (i.e., two self attentions) or only use one self
attention, the performance drops by 0.11∼0.17dB. One possible reason
is that the model may be more focused on the reference frame rather
than on the supporting frame during the computation of attention
maps. In contrast, using the reciprocal attention can help the model
to explicitly attend to the supporting frame and benefit from feature
fusion. In addition, we can find that only using reciprocal attention
is not enough. This is because reciprocal attention cannot preserve
information of reference frames.

4.4.7.3 Impact of attention window size.

We conduct ablation study in Table 4.11 to investigate the impact of
attention window size in the last few TRSAs of each scale. When the
temporal window size increases from 1 to 2, the performance only
improves slightly, possibly due to the fact that previous TRSA layers
can already make good use of neighboring two-frame information.
When the size is increased to 8, we can see an obvious improvement
of 0.18dB. As a result, we use the window size of 8 × 8 × 8 for those
layers.
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Table 4.11: Ablation study on attention window size (frame × height × width).

Window Size 1 × 8 × 8 2 × 8 × 8 4 × 8 × 8 8 × 8 × 8
PSNR 27.10 27.13 27.18 27.28

4.5 conclusion

In this chapter, we proposed the Video Restoration Transformer (VRT)
for video restoration. Based on a multi-scale framework, it jointly ex-
tracts, aligns, and fuses information from different frames at multiple
resolutions by two kinds of modules: multiple temporal reciprocal self
attention (TRSA) and parallel warping. More specifically, TRSA is com-
posed of reciprocal and self attention. Reciprocal attention allows joint
implicit flow estimation and feature warping, while self attention is re-
sponsible for feature extraction. Parallel warping is also used to further
enhance feature alignment and fusion. Extensive experiments on vari-
ous benchmark datasets show that VRT brings significant performance
gains (up to 2.16dB) for various video restoration tasks, including video
super-resolution, video deblurring and video denoising.





5
R E C U R R E N T V I D E O R E S T O R AT I O N T R A N S F O R M E R

Existing video restoration methods generally fall into two extreme
cases, i.e., they either restore all frames in parallel (such as the Video
Restoration Transformer proposed in Chapter 4) or restore the video
frame by frame in a recurrent way, which would result in different
merits and drawbacks. Typically, the former has the advantage of
temporal information fusion. However, it suffers from large model size
and intensive memory consumption; the latter has a relatively small
model size as it shares parameters across frames; however, it lacks
long-range dependency modeling ability and parallelizability.

This chapter attempt to integrate the advantages of the two cases
by proposing a recurrent video restoration transformer, namely RVRT.
RVRT processes local neighboring frames in parallel within a globally
recurrent framework which can achieve a good trade-off between model
size, effectiveness, and efficiency. Specifically, RVRT divides the video
into multiple clips and uses the previously inferred clip feature to es-
timate the subsequent clip feature. Within each clip, different frame
features are jointly updated with implicit feature aggregation. Across
different clips, the guided deformable attention is designed for clip-
to-clip alignment, which predicts multiple relevant locations from the
whole inferred clip and aggregates their features by the attention mech-
anism. Extensive experiments on video super-resolution, deblurring,
and denoising show that the proposed RVRT achieves state-of-the-art
performance on benchmark datasets with balanced model size, testing
memory and runtime.

5.1 introduction

Video restoration, such as video super-resolution, deblurring, and
denoising, has become a hot topic in recent years. It aims to restore a
clear and sharp high-quality video from a degraded (e.g., downsampled,
blurred, or noisy) low-quality video [2], [8], [24], [177]. It has wide
applications in live streaming [257], video surveillance [258], old film
restoration [259], and more.
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Parallel methods and recurrent methods have been dominant strate-
gies for solving various video restoration problems. Typically, those
two kinds of methods have their respective merits and demerits. Par-
allel methods [2], [8], [24], [171], [172], [178]–[183] support distributed
deployment and achieve good performance by directly fusing infor-
mation from multiple frames, but they often have a large model size
and consume enormous memory for long-sequence videos. In the
meanwhile, recurrent models [173]–[177], [184]–[187], [189], [190], [240]
reuse the same network block to save parameters and predict the new
frame feature based on the previously refined frame feature, but the
sequential processing strategy inevitably leads to information loss and
noise amplification [260] for long-range dependency modelling and
makes it hard to be parallelized.

Considering the advantages and disadvantages of parallel and recur-
rent methods, in this chapter, we propose a recurrent video restoration
transformer (RVRT) that takes the best of both worlds. On the one hand,
RVRT introduces the recurrent design into transformer-based models to
reduce model parameters and memory usage. On the other hand, it pro-
cesses neighboring frames together as a clip to reduce video sequence
length and alleviate information loss. To be specific, we first divide the
video into fixed-length video clips. Then, starting from the first clip, we
refine the subsequent clip feature based on the previously inferred clip
feature and the old features of the current clip from shallower layers.
Within each clip, different frame features are jointly extracted, implicitly
aligned and effectively fused by the self-attention mechanism [1], [99],
[103]. Across different clips, information is accumulated clip by clip
with a larger hidden state than previous recurrent methods.

To implement the above RVRT model, one big challenge is how to
align different video clips when using the previous clip for feature re-
finement. Most existing alignment techniques [2], [24], [172], [176], [177],
[187], [215], [220], [223], [235] are designed for frame-to-frame align-
ment. One possible way to apply them to clip-to-clip alignment is by
introducing an extra feature fusion stage after aligning all frame pairs.
Instead, we propose an one-stage video-to-video alignment method
named guided deformable attention (GDA). More specifically, for a
reference location in the target clip, we first estimate the coordinates of
multiple relevant locations from different frames in the supporting clip
under the guidance of optical flow, and then aggregate features of all
locations dynamically by the attention mechanism.
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GDA has several advantages over previous alignment methods: 1)
Compared with optical flow-based warping that only samples one
point from one frame [176], [187], [215], GDA benefits from multiple
relevant locations sampled from the video clip. 2) Unlike mutual
attention [2], GDA utilizes features from arbitrary locations without
suffering from the small receptive field in local attention or the huge
computation burden in global attention. Besides, GDA allows direct
attention on non-integer locations with bilinear interpolation. 3) In
contrast to deformable convolution [24], [172], [177], [216], [223], [261]
that uses a fixed weight in feature aggregation, GDA generates dynamic
weights to aggregate features from different locations. It also supports
arbitrary location numbers and allows for both frame-to-frame and
video-to-video alignment without any modification.

Our contributions can be summarized as follows:

• We propose the recurrent video restoration transformer (RVRT)
that extracts features of local neighboring frames from one clip in
a joint and parallel way, and refines clip features by accumulating
information from previous clips and previous layers. By reducing
the video sequence length and transmitting information with a
larger hidden state, RVRT alleviates information loss and noise
amplification in recurrent networks, and also makes it possible to
partially parallelize the model.

• We propose the guided deformable attention (GDA) for one-
stage video clip-to-clip alignment. It dynamically aggregates
information of relevant locations from the supporting clip.

• Extensive experiments on eight benchmark datasets show that the
proposed model achieves state-of-the-art performance in three
challenging video restoration tasks: video super-resolution, video
deblurring, and video denoising, with balanced model size, mem-
ory usage and runtime.

5.2 related work

5.2.1 Video Restoration

parallel vs . recurrent methods . Most existing video restora-
tion methods can be classified as parallel or recurrent methods ac-
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cording to their parallelizability. Parallel methods estimate all frames
simultaneously, as the refinement of one frame feature is not dependent
on the update of other frame features. They can be further divided
as sliding window-based methods [24]–[26], [171], [172], [178]–[183],
[211], [212] and transformer-based methods [2], [8]. The former kind of
methods typically restore merely the center frame from the neighboring
frames and are often tested in a sliding window fashion rather than
in parallel. These methods generally consist of four stages: feature
extraction, feature alignment, feature fusion, and frame reconstruction.
Particularly, in the feature alignment stage, they often align all frames
towards the center frame, which leads to quadratic complexity with
respect to video length and is hard to be extended for long-sequence
videos. Instead, the latter kind of method reconstructs all frames at
a time based on the transformer architectures. They jointly extract,
align, and fuse features for all frames, achieving significant perfor-
mance improvements against previous methods. However, current
transformer-based methods are laid up with a huge model size and
large memory consumption. Different from above parallel methods,
recurrent methods [10], [173]–[177], [184]–[187], [189], [190], [209], [240],
[262] propagate latent features from one frame to the next frame se-
quentially, where information of previous frames is accumulated for the
restoration of later frames. Basically, they are composed of three stages:
feature extraction, feature propagation and frame reconstruction. The
features are propagated from the first to the last frame in a recurrent
way. Due to the recurrent nature of feature propagation, recurrent meth-
ods suffer from information loss and the inapplicability of distributed
deployment. However, they often have a lightweight model design
thanks to the reuse and refinement of differnt frame features.

alignment in video restoration. Unlike image restoration
that mainly focuses on feature extraction [4]–[7], [12], [17]–[19], [50],
[198], how to align multiple highly-related but misaligned frames is
another key problem in video restoration. Traditionally, many meth-
ods [176], [178], [214], [215], [217]–[219], [263] first estimate the optical
flow between neighbouring frames [220], [233], [235] and then conduct
image warping for alignment. Other techniques, such as deformable
convolution [8], [24], [172], [177], [223], [261], dynamic filter [221]
and mutual attention [2], have also been exploited for implicit feature
alignment.
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5.2.2 Vision Transformer

Transformer [99] is the de-facto standard architecture in natural lan-
guage processing. Recently, it has been used in dealing with vision
problems by viewing pixels or image patches as tokens [100], [102],
achieving remarkable performance gains in various computer vision
tasks, including image classification [102], [103], [132], [264], object de-
tection [106], [134], [265], semantic segmentation [131], [138], [266], etc.
It also achieves promising results in restoration tasks [1], [2], [8], [13],
[104], [139], [256], [262], [267]–[271]. In particular, for video restoration,
Cao et al. [8] propose the first transformer model for video SR, while
Liang et al. [2] propose an unified framework for video SR, deblurring
and denoising.

We note that some transformer-based works [265], [272] have tried
to combine the concept of deformation [223], [261] with the attention
mechanism [99]. Zhu et al. [272] directly predicts the attention weight
from the query feature without considering its feature interaction with
supporting locations. Xia et al. [265] place the supporting points uni-
formly on the image to make use of global information. Both above two
methods are proposed for recognition tasks such as object detection,
which is fundamentally different from video alignment in video restora-
tion. Lin et al. [262] use pixel-level or patch-level attention to aggregate
information from neighbouring frames under the guidance of optical
flow, but it only samples one supporting pixel or patch from one frame,
restricting the model from attending to multiple distant locations.

5.3 methodology

5.3.1 Overall Architecture

Given a low-quality video sequence ILQ ∈ RT×H×W×C, where T, H, W
and C are the video length, height, width and channel, respectively,
the goal of video restoration is to reconstruct the high-quality video
IHQ ∈ RT×sH×sW×C, where s is the scale factor. To reach this goal,
we propose a recurrent video restoration transformer, as illustrated
in Fig. 5.1. The model consists of three parts: shallow feature ex-
traction, recurrent feature refinement and HQ frame reconstruction.
More specifically, in shallow feature extraction, we first use a convolu-
tion layer to extract features from the LQ video. For deblurring and
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denoising (i.e., s = 1), we additionally add two strided convolution
layers to downsample the feature and reduce computation burden in
the next layers. After that, several Residual Swin Transformer Blocks
(RSTBs) [1] are used to extract the shallow feature. Then, we use recur-
rent feature refinement modules for temporal correspondence modeling
and guided deformable attention for video alignment, which are de-
tailed in Sec. 5.3.2 and Sec. 5.3.3, respectively. Lastly, we add several
RSTBs to generate the final feature and reconstruct the HQ video IRHQ

by pixel shuffle layer [141]. For training, the Charbonnier loss [145]
L =

√
∥IRHQ − IHQ∥2 + ϵ2 (ϵ = 10−3) is used for all tasks.

5.3.2 Recurrent Feature Refinement

We stack L recurrent feature refinement modules to refine the video
feature by exploiting the temporal correspondence between different
frames. To make a trade-off between recurrent and transformer-based
methods, we process N frames locally in parallel on the basis of a
globally recurrent framework.

Formally, given the video feature Fi ∈ RT×H×W×C from the i-th
layer, we first reshape it as a 5-dimensional tensor Fi ∈ R

T
N ×N×H×W×C

by dividing it into T
N video clip features: Fi

1, Fi
2, ..., Fi

T
N
∈ RN×H×W×C.

Each clip feature Fi
t (1 ≤ t ≤ T

N ) has N neighbouring frame features:
Fi

t,1, Fi
t,2, ..., Fi

t,N ∈ RH×W×C. To utilize information from neighbouring
clips, we align the (t − 1)-th clip feature Fi

t−1 towards the t-th clip based
on the optical flow Oi

t−1→t, clip feature Fi−1
t−1 and clip feature Fi−1

t . This
is formulated as follows:

F̂i
t−1 = GDA(Fi

t−1; Oi
t−1→t, Fi−1

t−1 , Fi−1
t ), (5.1)

where GDA is the guided deformable attention and F̂i
t−1 is the aligned

clip feature. The details of GDA will be described in Sec. 5.3.3.
Similar to recurrent neural networks [176], [177], [187], as shown in

Fig. 5.2, we update the clip feature of each time step as follows:

Fi
t = RFR(F0

t , F1
t , ..., Fi−1

t , F̂i
t−1), (5.2)

where F0
t is the output of the shallow feature extraction module and

F1
t , F2

t , ..., Fi−1
t are from previous recurrent feature refinement modules.

RFR(·) is the recurrent feature refinement module that consists of a
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t−1 Fi
t−1
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t F̂i
t−1

Fi
t

Figure 5.2: The illustrations of recurrent feature refinement (RFR). The (t − 1)-
th clip feature Fi

t−1 from the i-th layer is aligned towards the t-th
clip as F̂i

t−1 by guided deformable attention (GDA, see more details
in Fig. 5.3). F0

t , F1
t , ..., Fi−1

t and F̂i
t−1 are then refined as Fi

t by several
modified residual swin transformer blocks (MRSTBs), in which
different frames are jointly processed in a parallel way.

convolution layer for feature fusion and several modified residual Swin
Transformer blocks (MRSTBs) for feature refinement. In MRSTB, we
upgrade the original 2D h × w attention window to the 3D N × h × w
attention window, so that every frame in the clip can attend to itself
and other frames simultaneously, allowing implicit feature aggregation.
In addition, in order to accumulate information forward and backward
in time, we reverse the video sequence for all even recurrent feature
refinement modules [174], [177].

The above recurrent feature refinement module is the key component
of the proposed RVRT model. Globally, features of different video
clips are propagated in a recurrent way. Locally, features of different
frames are updated jointly in parallel. For an arbitrary single frame, it
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can make full use of global information accumulated in time and local
information extracted together by the self-attention mechanism. As we
can see, RVRT is a generalization of both recurrent and transformer
models. It becomes a recurrent model when N = 1 or a transformer
model when N = T. This is fundamentally different from previous
methods that adopt transformer blocks to replace CNN blocks within
a recurrent architecture [259], [262]. It is also different from existing
attempts in natural language processing [273], [274].

5.3.3 Guided Deformable Attention for Video Alignment

Different from previous frameworks, the proposed RVRT needs to align
neighboring related but misaligned video clips, as indicated in Eq. (5.1).
In this subsection, we propose the guided deformation attention (GDA)
for video clip-to-clip alignment.

Given the (t − 1)-th clip feature Fi
t−1 from the i-th layer, our goal

is to align Fi
t−1 towards the t-th clip as a list of features F̂i,(1:N)

t−1 =

F̂i,(1)
t−1 , F̂i,(2)

t−1 , ..., F̂i,(N)
t−1 , where F̂i,(n)

t−1 (1 ≤ n ≤ N) denotes the aligned
clip feature towards the n-th frame feature Fi

t,n of the t-th clip, and

F̂i,(n)
t−1,n′(1 ≤ n′ ≤ N) is the aligned frame feature from the n′-th frame in

the (t − 1)-th clip to the n-th frame in the t-th clip. Inspired by optical
flow estimation designs [177], [233]–[235], [262], we first pre-align Fi,(n)

t−1,n′

with the optical flow Oi,(n)
t−1→t,n′ as F̄i,(n)

t−1,n′ = W(Fi,(n)
t−1,n′ , Oi,(n)

t−1→t,n′), where
W denotes the warping operation. For convenience, we summarize the
pre-alignments of all “n′-to-n” (1 ≤ n′, n ≤ N) frame pairs between the
(t − 1)-th and t-th video clips as follows:

F̄i,(1:N)
t−1 = W(Fi

t−1, Oi,(1:N)
t−1→t), (5.3)

After that, we predict the optical flow offsets oi,(1:N)
t−1→t from the con-

catenation of Fi−1
t , F̄i(1:N)

t−1 and Oi,(1:N)
t−1→t along the channel dimension. A

small convolutional neural network (CNN) with several convolutional
layers and ReLU layers is used for prediction. This is formulated as

oi,(1:N)
t−1→t = CNN(Concat(Fi−1

t , F̄i,(1:N)
t−1 , Oi,(1:N)

t−1→t)), (5.4)

where the current misalignment between the t-th clip feature and
the warped (t − 1)-th clip features can reflect the offset required for
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Figure 5.3: The illustrations of guided deformable attention (GDA). We esti-
mate offsets of multiple relevant locations from different frames
based on the warped clip, and then aggregate features of different
locations dynamically by the attention mechanism. Fi

t−1 is the
(t − 1)-th clip feature from the i-th layer, while F̄i

t−1 and F̂i
t−1 are

the pre-aligned and aligned features of Fi
t−1. Oi,(1:N)

t−1→t and oi,(1:N)
t−1→t

denote optical flows and offsets, respectively.

further alignment. In practice, we initialize O1,(1:N)
t−1→t as the optical flows

estimated from the LQ input video via SpyNet [220], and predict M
offsets for each frame (NM offsets in total). The optical flows are
updated layer by layer as follows:

Oi+1,(n)
t−1→t,n′ = Oi,(n)

t−1→t,n′ +
1
M

M

∑
m=1

{oi,(n)
t−1→t,n′}m, (5.5)

where {oi,(n)
t−1→t,n′}m denotes the m-th offset in M predictions from the

n′-th frame to the n-th frame.
Then, for the n-th frame of the t-th clip, we sample its relevant

features from the (t − 1)-th clip feature Fi
t−1 according the predicted

locations, which are indicated by the sum of optical flow and offsets,
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i.e., Oi,(n)
t−1→t + oi,(n)

t−1→t, according to the chain relationship Fi
t−1

Oi,(n)
t−1→t−−−→

F̄i,(n)
t−1

oi,(n)
t−1→t−−−→ F̂i,(n)

t−1 [177], [220]. For simplicity, we define the queries Q,
keys K and values V as follows:

Q = Fi−1
t,n PQ, (5.6)

K = Sampling(Fi−1
t−1 PK, Oi,(n)

t−1→t + oi,(n)
t−1→t), (5.7)

V = Sampling(Fi
t−1PV , Oi,(n)

t−1→t + oi,(n)
t−1→t), (5.8)

where Q ∈ R1×C is the projected feature from the n-th frame of t-th
clip. K ∈ RNM×C and V ∈ RNM×C are the projected features that are
bilinearly sampled from NM locations of Fi−1

t−1 and Fi
t−1, respectively.

PQ ∈ RC×C, PK ∈ RC×C and PV ∈ RC×C are the projection matrices.
Note that we first project the feature and then do sampling to reduce
redundant computation.

Next, similar to the attention mechanism [99], we calculate the atten-
tion weights based on the Q and K from the (i − 1)-th layer and then
compute the aligned feature F̂i,(n)

t−1 as a weighted sum of V from the
same i-th layer as follows:

F̂i,(n)
t−1 = SoftMax(QKT/

√
C))V, (5.9)

where SoftMax is the softmax operation along the row direction and√
C is a scaling factor.
Lastly, since Eq. (5.9) only aggregates information spatially, we add

a multi-layer perception (MLP) with two fully-connected layers and a
GELU activation function between them to enable channel interaction
as follows:

F̂i
t−1 = F̂i

t−1 + MLP(F̂i
t−1), (5.10)

where a residual connection is used to stabilize training. The hidden
and output channel numbers of the MLP are RC (R is the ratio) and C,
respectively.

multi-group multi-head guided deformable attention. We
can divide the channel into several deformable groups and perform the
deformable sampling for different groups in parallel. Besides, in the
attention mechanism, we can further divide one deformable group into
several attention heads and perform the attention operation separately
for different heads. All groups and heads are concatenated together
before channel interaction.
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connection to deformable convolution. Deformable con-
volution [223], [261] uses a learned weight for feature aggregation,
which can be seen as a special case of GDA, i.e., using different projec-
tion matrix PV for different locations and then directly averaging the
resulting features. Its parameter number and computation complexity
are MC2 and O(MC2), respectively. In contrast, GDA uses the same
projection matrix for all locations but generates dynamic weights to
aggregate them. Its parameter number and computation complexity are
(3+ 2R)C2 and O((3C + 2RC + M)C), which are similar to deformable
convolution when choosing proper M and R.

5.4 experiments

5.4.1 Experimental Setup

architecture. For shallow feature extraction and HQ frame re-
construction, we use 1 RSTB that has 2 swin transformer layers. For
recurrent feature refinement, we use 4 refinement modules with a clip
size of 2, each of which has 2 MRSTBs with 2 modified swin transformer
layers. For both RSTB and MRSTB, spatial attention window size and
head number are 8 × 8 and 6, respectively. We use 144 channels for
video SR and 192 channels for deblurring and denoising. In GDA, we
use 12 deformable groups and 12 deformable heads with 9 candidate lo-
cations. We empirically project the query to a higher-dimensional space
(e.g., 2C) because we found it can improve the performance slightly and
the parameter number of GDA is not a bottleneck.

training. In training, we randomly crop 256 × 256 HQ patches
and use different video lengths for different datasets: 30 frames for
REDS [237], 14 frames for Vimeo-90K [215], and 16 frames for DVD [180],
GoPro [21] as well as DAVIS [239]. Adam optimizer [148] with default
setting is used to train the model for 600,000 iterations when the batch
size is 8. The learning rate is initialized as 4 × 10−4 and deceased
with the Cosine Annealing scheme [236]. To stabilize training, we ini-
tialize SpyNet [220], [234] with pretrained weights, fix it for the first
30,000 iterations and reduce its learning rate by 75%. For video super-
resolution, we train the model on two different training datasets for
scale factor 4. First, we generate low-resolution images by the MATLAB
imresize function (i.e., bicubic degradation) and train the model on



5.4 experiments 93

REDS [237]. REDS4 [24] (i.e., clip 000, 011, 015, 020) is used as the
test set. Second, we train the model on Vimeo-90K [215] with two
different degradations: bicubic and blur downsampling (Gaussian blur
with σ = 1.6 followed by subsampling). The testing datasets include
Vimeo-90K-T [215], Vid4 [238] and UDM10 [207]. On 8 Nvidia A100

GPUs, it takes about 17 days. For video deblurring, we train the model
on two different datasets DVD [180] and GoPro [21]. The training time
is about 10 days. We test it on their corresponding testing sets. For
video denoising, we train the model on the DAVIS [239] and test it
on the corresponding testing set and Set8 [25]. The training time is
similar to deblurring. We train all models on 8 Nvidia A100 GPUs. It
takes about 16.6 days for video SR and 9.7 days for video deblurring
and denoising. For training memory cost, it consumes about 39GB and
29GB for video SR and other two tasks, respectively.

evaluation. Following [24], [25], [28], [176], [183], we calculate the
metrics on RGB channel for REDS4 [24], DVD testing set [180], GoPro
testing set [21], DAVIS testing set [239] as well as Set8 [25], and on the
Y channel for Vimeo-90K-T [215], Vid4 [238] and UDM10 [207].

5.4.2 Video Super-Resolution

For video SR, we consider two settings: bicubic (BI) and blur-downsampling
(BD) degradation. For BI degradation, we train the model on two differ-
ent datasets: REDS [237] and Vimeo-90K [215], and then test the model
on their corresponding testsets: REDS4 and Vimeo-90K-T. We addition-
ally test Vid4 [238] along with Vimeo-90K. For BD degradation, we train
it on Vimeo-90K and test it on Vimeo-90K-T, Vid4, and UDM10 [207].
The comparisons with existing methods are shown in Table 5.1. As we
can see, RVRT achieves the best performance on REDS4 and Vid4 for
both degradations. Compared with the representative recurrent model
BasicVSR++ [177], RVRT improves the PSNR by significant margins of
0.2∼0.5dB. Compared with the recent transformer-based model VRT [2],
RVRT outperforms VRT on REDS4 and Vid4 by up to 0.36dB. The visual
comparisons of different methods are shown in Fig. 5.4. It is clear that
RVRT generates sharp and clear HQ frames, while other methods fail
to restore fine textures and details.

We compare the model size, testing memory consumption and run-
time of different models in Table 5.2. Compared with representative
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Table 5.1: Quantitative comparison (average PSNR/SSIM) with state-of-the-art
methods for video super-resolution (×4) on REDS4 [237], Vimeo-
90K-T [215], Vid4 [238] and UDM10 [207].

Method
BI degradation BD degradation

REDS4

[237]
(RGB channel)

Vimeo-90K-T
[215]

(Y channel)

Vid4

[238]
(Y channel)

UDM10

[207]
(Y channel)

Vimeo-90K-T
[215]

(Y channel)

Vid4

[238]
(Y channel)

Bicubic 26.14/0.7292 31.32/0.8684 23.78/0.6347 28.47/0.8253 31.30/0.8687 21.80/0.5246

SwinIR [1] 29.05/0.8269 35.67/0.9287 25.68/0.7491 35.42/0.9380 34.12/0.9167 25.25/0.7262

SwinIR-ft [1] 29.24/0.8319 35.89/0.9301 25.69/0.7488 36.76/0.9467 35.70/0.9293 25.62/0.7498

TOFlow [215] 27.98/0.7990 33.08/0.9054 25.89/0.7651 36.26/0.9438 34.62/0.9212 25.85/0.7659

FRVSR [187] - - - 37.09/0.9522 35.64/0.9319 26.69/0.8103

DUF [221] 28.63/0.8251 - 27.33/0.8319 38.48/0.9605 36.87/0.9447 27.38/0.8329

PFNL [207] 29.63/0.8502 36.14/0.9363 26.73/0.8029 38.74/0.9627 - 27.16/0.8355

RBPN [240] 30.09/0.8590 37.07/0.9435 27.12/0.8180 38.66/0.9596 37.20/0.9458 27.17/0.8205

MuCAN [171] 30.88/0.8750 37.32/0.9465 - - - -
RLSP [173] - - - 38.48/0.9606 36.49/0.9403 27.48/0.8388

TGA [182] - - - 38.74/0.9627 37.59/0.9516 27.63/0.8423

RSDN [175] - - - 39.35/0.9653 37.23/0.9471 27.92/0.8505

RRN [189] - - - 38.96/0.9644 - 27.69/0.8488

FDAN [190] - - - 39.91/0.9686 37.75/0.9522 27.88/0.8508

EDVR [24] 31.09/0.8800 37.61/0.9489 27.35/0.8264 39.89/0.9686 37.81/0.9523 27.85/0.8503

GOVSR [202] - - - 40.14/0.9713 37.63/0.9503 28.41/0.8724

VSRT [8] 31.19/0.8815 37.71/0.9494 27.36/0.8258 - - -
BasicVSR [176] 31.42/0.8909 37.18/0.9450 27.24/0.8251 39.96/0.9694 37.53/0.9498 27.96/0.8553

IconVSR [176] 31.67/0.8948 37.47/0.9476 27.39/0.8279 40.03/0.9694 37.84/0.9524 28.04/0.8570

VRT [2] 32.19/0.9006 38.20/0.9530 27.93/0.8425 41.05/0.9737 38.72/0.9584 29.42/0.8795

BasicVSR++ [177] 32.39/0.9069 37.79/0.9500 27.79/0.8400 40.72/0.9722 38.21/0.9550 29.04/0.8753

RVRT (ours) 32.75/0.9113 38.15/0.9527 27.99/0.8462 40.90/0.9729 38.59/0.9576 29.54/0.8810

Table 5.2: Comparison of model size, testing memory and runtime for an LQ
input of 320 × 180.

Method #Param (M) Memory (M) Runtime (ms) PSNR (dB)
BasicVSR++ [177] 7.3 223 77 32.39

BasicVSR++ [177]+RSTB [1] 9.3 1021 201 32.61

EDVR [24] 20.6 3535 378 31.09

VSRT [8] 32.6 27487 328 31.19

VRT [2] 35.6 2149 243 32.19

RVRT (ours) 10.8 1056 183 32.75

parallel methods EDVR [24], VSRT [8] and VST [2], RVRT achieves
significant performance gains with less than at least 50% of model
parameters and testing memory usage. It also reduces the runtime by
at least 25%. Compared the recurrent model BasicVSR++ [177], RVRT
brings a PSNR improvement of 0.26dB. As for the inferiority of testing
memory and runtime, we argue that it is mainly because the CNN
layers are highly optimized on existing deep learning frameworks. To
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Frame 024, Clip 011, REDS [237]

LQ (×4) EDVR [24] VSRT [8] BasicVSR [176]

BasicVSR++ [177] VRT [2] RVRT (ours) GT

Frame 012, Clip city, Vid4 [238]

LQ (×4) EDVR [24] VSRT [8] BasicVSR [176]

BasicVSR++ [177] VRT [2] RVRT (ours) GT

Figure 5.4: Visual comparison of video super-resolution (×4) methods on
REDS [237] and Vid4 [238].

prove it, we use the transformer-based RSTB blocks in RVRT to replace
the CNN blocks in BasicVSR++, in which case it has similar memory
usage and more runtime than our model.

In addition, to better understand how guided deformable attention
works, we visualize the predicted offsets on the LQ frames and show
the attention weight in Fig. 5.5. As we can see, multiple offsets are
predicted to select multiple sampled locations in the neighbourhood of
the corresponding pixel. According to the feature similarity between the
query feature and the sampled features, features of different locations
are aggregated by calculating a dynamic attention weight.

5.4.3 Video Deblurring

For video deblurring, the model is trained and tested on two different
datasets, DVD [180] and GoPro [21], with their official training/testing
splits. As shown in Table 5.3 and 5.4, RVRT shows its superiority over
most methods with huge improvements of 1.40∼2.27dB on two datasets.
Even though the performance gain over VRT is relatively small, RVRT
has a smaller model size and much less runtime. In detail, the model
size and runtime of RVRT are 13.6M and 0.3s, while VRT has 18.3M
parameters and the runtime of 2.2s on a 1280 × 720 LQ input. The
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Table 5.3: Quantitative comparison (average RGB channel PSNR/SSIM) with
state-of-the-art methods for video deblurring on DVD [180].

Method
DBN
[180]

STFAN
[181]

STTN
[222]

SFE
[208]

EDVR
[24]

TSP
[210]

PSNR 30.01 31.24 31.61 31.71 31.82 32.13

SSIM 0.8877 0.9340 0.9160 0.9160 0.9160 0.9268

Method
PVDNet

[186]
GSTA
[28]

ARVo
[183]

FGST
[262]

VRT
[2]

RVRT (ours)

PSNR 32.31 32.53 32.80 33.36 34.24 34.30

SSIM 0.9260 0.9468 0.9352 0.9500 0.9651 0.9655

Table 5.4: Quantitative comparison (average RGB channel PSNR/SSIM) with
state-of-the-art methods for video deblurring on GoPro [21].

Method
SRN
[241]

MPRNet
[244]

MAXIM
[269]

IFI-RNN
[184]

ESTRNN
[185]

EDVR
[24]

PSNR 30.26 32.66 32.86 31.05 31.07 31.54

SSIM 0.9342 0.9590 0.9610 0.9110 0.9023 0.9260

Method
TSP
[210]

PVDNet
[186]

GSTA
[28]

FGST
[262]

VRT
[2]

RVRT
(ours)

PSNR 31.67 31.98 32.10 32.90 34.81 34.92

SSIM 0.9279 0.9280 0.9600 0.9610 0.9724 0.9738

visual comparison is provided in the supplementary material due to
the space limit.

5.4.4 Video Denoising

For video denoising, we train the model on the training set of DAVIS [239]
and test it on its corresponding testset and Set8 [25]. For fairness of
comparison, following [25], [26], we train a non-blind additive white
Gaussian denoising model for noise level σ ∼ U (0, 50). Similar to the
case of video deblurring, there is a huge gap (0.60∼2.37dB) between
RVRT and most methods. Compared with VRT, RVRT has slightly bet-
ter performance on large noise levels, with a smaller model size (12.8M
v.s.18.4M) and less runtime (0.2s v.s.1.5s) on a 1280× 720 LQ input. The
visual comparison is provided in the supplementary material due to
the space limit.
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Table 5.5: Quantitative comparison (average RGB channel PSNR) with state-of-
the-art methods for video denoising on DAVIS [239] and Set8 [25].

Dataset σ
VLNB
[245]

DVDNet
[25]

FastDVDNet
[26]

PaCNet
[204]

VRT
[2]

RVRT
(ours)

DAVIS

10 38.85 38.13 38.71 39.97 40.82 40.57

20 35.68 35.70 35.77 36.82 38.15 38.05

30 33.73 34.08 34.04 34.79 36.52 36.57

40 32.32 32.86 32.82 33.34 35.32 35.47

50 31.13 31.85 31.86 32.20 34.36 34.57

Set8

10 37.26 36.08 36.44 37.06 37.88 37.53

20 33.72 33.49 33.43 33.94 35.02 34.83

30 31.74 31.79 31.68 32.05 33.35 33.30

40 30.39 30.55 30.46 30.70 32.15 32.21

50 29.24 29.56 29.53 29.66 31.22 31.33

5.4.5 Ablation Study

To explore the effectiveness of different components, we conduct abla-
tion studies on REDS [237] for video SR. For efficiency, we reduce the
MRSTB blocks by half and use 12 frames in training.

the impact of clip length. In RVRT, we divide the video into
N-frame clips. As shown in Table 5.6, the performance rises when clip
length is increased from 1 to 2. However, the performance saturates
when N = 3, possibly due to large within-clip motions and inaccurate
optical flow derivation. When we directly estimate all optical flows
(marked by ∗), the PSNR hits 32.21dB. Besides, to compare the temporal
modelling ability, we hack the input LQ video (Clip 000 from REDS,
100 frames in total) by manually setting all pixels of the 50-th frame as
zeros. As indicated in Fig. 5.6, on the one hand, N = 2 has a smaller
performance drop and all its frames still have higher PSNR than N = 1
(equals to a recurrent model) after the attack, showing that RVRT can
mitigate the noise amplification from the hacked frame to the rest
frames. One the other hand, the hacked frame of N = 2 has an impact
on more neighbouring frames than N = 1, which means that RVRT
can alleviate information loss and utilize more frames than N = 1 for
restoration.

the impact of video alignment. The alignment of video clips
plays a key role in our framework. We compare the proposed clip-to-
clip guided deformable attention (GDA) with existing frame-to-frame
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Figure 5.6: The robustness to noise injection attack with different clip lengths.
It shows per-frame PSNR drop when pixels of the 50-th frame is
hacked to be all zeros. N is clip length.

Table 5.6: Ablation study on clip length.

Clip 1 2 3 3
∗

PSNR 31.98 32.10 32.07 32.21

Table 5.7: Ablation study on different video alignment techniques.

Alignment Warping [215] TMSA [2] DCN [172] GDA∗ GDA
PSNR 28.88 30.45 31.93 32.00 32.10

alignment techniques by performing them frame by frame, followed
by concatenation and channel reduction. As we can see from Table 5.7,
GDA outperforms all existing methods when it is used for frame-to-
frame alignment (denoted as GDA∗), and leads a further improvement
when we aggregate features directly from the whole clip.

the impact of different components in gda. We further
conduct an ablation study on GDA in Table 5.8. As we can see, the
optical flow guidance is critical for the model, leading to a PSNR gain
of 1.11dB. The update of optical flow in different layers can further
improve the result. The channel interaction in MLP also plays an impor-
tant role, since the attention mechanism only aggregates information
spatially.
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Table 5.8: Ablation study on different GDA components.

Optical Flow Guidance ✓ ✓ ✓
Optical Flow Update ✓ ✓

MLP ✓ ✓ ✓
PSNR 30.99 32.03 31.83 32.10

Table 5.9: Ablation study on deformable groups and attention heads.

Deformable Group 1 6 12 12 12 24

Attention Head 1 6 12 24 36 24

PSNR 31.63 32.03 32.10 32.13 32.03 32.11

the impact of deformable group and attention head. We
also conduct experiments on different group and head numbers in GDA.
As shown in Table 5.9, when the deformable group rises, the PSNR
first rises and then keeps almost unchanged. Besides, double attention
heads lead to slightly better results at the expense of higher compu-
tation, but using too many heads has an adverse impact as the head
dimension may be too small.

5.5 conclusion

In this chapter, we proposed a recurrent video restoration transformer
with guided deformable attention. It is a globally recurrent model
with locally parallel designs, which benefits from the advantages of
both parallel methods and recurrent methods. We also propose the
guided deformable attention module for our special case of video clip-
to-clip alignment. Under the guidance of optical flow, it aggregates
information from multiple neighboring locations adaptively with the
attention mechanism. Extensive experiments on video super-resolution,
video deblurring, and video denoising demonstrated the effectiveness
of the proposed method.
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C O N C L U S I O N A N D D I S C U S S I O N

In this chapter, we will first summarize the contributions of this thesis
and discuss the limitations of proposed methods. Then, social impacts
and future work will be discussed.

6.1 summary

This thesis addressed the image and video restoration problems, in-
cluding image/video super-resolution, deblurring, denoising, video
frame interpolation and JPEG compression artifact reduction, etc. In
total, we proposed a practical degradation model for real-world image
super-resolution, a unified model for image restoration and two unified
models for video restoration.

In Chapter 2, we proposed a practical degradation model that can
simulate complicated real-world degradations. It is consisted of random
shuffling of simple gradations, including Gaussian blur with different
kernel sizes and deviations, downsampling with random scales and
interpolation modes, and complex noise choices (Gaussian noise, JPEG
compression noise and Processed camera sensor noise). Based on this
degradation model, we trained a deep blind model for general image
super-resolution and achieved good performance on both synthetic
and real image datasets under diverse degradations. To the best of
our knowledge, this is the first work to adopt a new hand-designed
degradation model for general blind image super-resolution problem.
It provides a new and practical way towards real-world image super-
resolution applications.

In Chapter 3, considering that existing image restoration backbones
still have limited performance as a result of convolution-based archi-
tectures, we proposed a new transformer-based framework SwinIR
for different restoration tasks. It refines pixel features by the atten-
tion mechanism within a small partitioned window, achieving a good
tradeoff between performance and efficiency. Since SwinIR allows for
content-based interaction and long-range dependency modelling abil-
ity, the proposed method achieved significant improvements on image

101



102

super-resolution, denoising and compression artifact reduction, show-
ing great potential and generalizability as a unified backbone model
for different image restoration tasks.

Inspired by the good performance improvements in Chapter 3, we
extended SwinIR to video restoration in Chapter 4 by taking an extra
temporal dimension into consideration and name it as VRT. We extend
the 2D attention to 3D attention and extract features at multiple scales.
At each scale, we jointly extracts, aligns and fuses frame features by
reciprocal attention and parallel warping, allowing for parallel frame
prediction and long-range temporal dependency modelling abilities.
Experimental results on benchmark datasets saw large PSNR improve-
ments up to 2.16dB.

Although VRT achieved significant better performance in different
video restoration tasks, it suffers from large model size and heavy com-
putation. In Chapter 5, we continue to improve the video restoration
model VRT by introducing a more lightweight model, namely, RVRT.
It divides the video into small clips and uses a globally recurrent but
locally parallel design for feature alignment and refinement. Informa-
tion is accumulated and transmitted with a larger hidden state, which
alleviates information loss and noise amplification in the recurrent
architecture. Besides, the guided deformable attention is proposed
accordingly for clip-to-clip alignment. Extensive results show that
RVRT achieves state-of-the-art performance with balanced model size,
memory usage and runtime.

6.2 limitations

Although the proposed methods have boosted the performance in image
and video restoration, they still have their own limitations. First, in the
practical degradation model, while we have included several common
degradation types, there are certain degradations that have not been
explicitly considered. As mentioned in Chapter 1, other factors such
as non-ideal lens and sensor-specific noises might also have significant
impacts during the imaging process. Besides, a random shuffling of
different degradations might not be enough to simulate the real cases.
Second, in the image restoration model SwinIR, one problem is the
computation efficiency. Although it improves the performance by large
margins, it is about four times slower than the state-of-the-art CNN
models and costs double testing memory. In particular, for image
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denoising and compression artifact reduction, this framework refines
image features at the same scale as the input image, which might be
more computationally expensive than other multi-scale architectures.
Third, for the video restoration model VRT, the biggest drawback
is the heavy computation burden. As a parallel model, VRT deals
with multiple frames at the same time, leading to extensive memory
usage. Moreover, the used 3D attention consumes great amount of
memory, although we have divided the video into small 3D windows.
To remedy this problem, RVRT is proposed to reduce the memory usage
by incorporating a recurrent framework. It significantly reduces the
memory usage, but still has some other limitations. For example, the
complexity of pre-alignment by optical flow increases quadratically
with respect to the clip length.

6.3 societal impacts

While image and video restoration technologies offer significant ben-
efits, it is crucial to be aware of the potential negative consequences
and ethical challenges they pose. On the one hand, visual restoration
may generate results with artifacts or even hallucinate the details in
some cases. When the restored images or videos are used for later
processing, it may lead to inaccurate results. For example, to allevi-
ate the corruption of information, restoration techniques are used in
forensic investigations, medical diagnosis or video surveillance. The
reconstructed results might be misleading if the objects change their
identities (especially for human faces) or the textures are synthesized in
a low-fidelity way during restoration. In particular, from simple visual
recognition methods to autonomous driving systems, most of them are
trained on natural datasets that have rarely seen artifacts generated
by restoration algorithms. The usage of restoration might significantly
deteriorate their performance and cause serious decision errors. On
the other hand, when the restored images or videos are of high fidelity,
it brings other problems of information leaking and privacy concerns.
For instance, the restoration of low-quality (e.g., deliberately blurred
images) may inadvertently reveal sensitive or private information that
was originally obscured. In addition, restoration also suffers from
other common problems of machine learning, such as model bias and
discrimination.
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6.4 future work

Considering the inherent challenges in visual restoration and the exist-
ing limitations of the proposed methods, there are several promising
research directions that warrant further exploration in the future.

1. Real-world degradation model. Chapter 2 proposed a promis-
ing degradation model towards solving real-world image super-
resolution, but it still cannot cover all degradation types. To
be closer to the real scenarios, it is important to consider more
elementary degradation operators and design a more compli-
cated composition method, starting from the understanding of
the imaging process.

2. Efficient image and video restoration. For real-world applications,
especially for edge devices, the computation burden and inference
latency are critical factors aside from reconstruction performance.
At present, most methods suffer from high memory consumption
and long latency, especially for the transformer-based methods.
Although Chapter 5 has taken a step towards more efficient video
restoration, the need for further research remains evident.

3. Better perceptual metrics for images and videos. A good percep-
tual metric provides a way for convenient and fair performance
evaluation, and sometimes could be directly used as the opti-
mization target. Finding better perceptual metrics that align well
with humans is a fundamental problem, which might be more
urgent than model design in the era of deep learning, although
it is often regarded as a separate research field of image/video
quality assessment.

4. Restoration with auxiliary input. Merely using the low-quality
image/video input might have its upper bound of performance.
Finding an auxiliary input can provide more information and
might facilitate the restoration process. There are some work on
this direction, such as reference-based image super-resolution [9],
event-assisted deblurring [11] and video frame interpolation [14].
How to encode auxiliary input and fuse it with existing frame-
works effectively still needs more research.
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5. Interpretability. The deep neural networks are like black boxes
at the moment. We do not understand how it works, making
it difficult to improve the design and increase the robustness
to extreme cases or possible attacks. Aside from [275]–[277],
more attempts for understanding the neural network could be
beneficial. Besides, we can try to design explainable restoration
methods such as incorporating neural networks with traditional
optimization-based methods [37], [61], [278].

6. Exploration of large model and large data. Recently, in the field
of image generation, diffusion models have shown great break-
throughs in generating photo-realistic images [279], [280]. This
could inspire our research in visual restoration in two aspects.
The first is how to utilize the learned general image prior for
restoration, and the second is how to train a powerful restoration
model based on large model size and large data.
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practical degradation model

symbol meaning

y low-resolution image
x high-resolution image
k Gaussian blur kernel
↓s downsampling operation with scale factor s
n white Gaussian noise with standard deviation σ

Biso Gaussian blur operation with isotropic Gaussian kernel
Baniso Gaussian blur operation with anisotropic Gaussian
Ds

nearest nearest downsampling
Ds

bilinear bilinear downsampling
Ds

bicubic bicubic downsampling
Ds

down-up equals to Ds/a
downDa

up), first downsamples the image with
a scale factor s/a and then upscales with a scale factor a

NG Gaussian noise
N (0, Σ) three-dimensional zero-mean Gaussian noise with covari-

ance matrix Σ

NJPEG JPEG image compression artifacts/noise
NS processed camera sensor noise
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image restoration

symbol meaning

ILQ low-quality image
IHQ high-quality image
HSF(·) the shallow feature extraction module
HRSTBi(·) the i-th RSTB block
Fi intermediate feature of the i-th layer
HDF(·) the deep feature extraction module
FDF deep feature
IRHQ reconstructed high-quality image
ϵ a constant in the Charbonnier loss
HSTLi,j(·) the j-th Swin Transformer layer in the i-th RSTB block
PQ the projection matrix for query
PK the projection matrix for key
PV the projection matrix for value
Q the query matrix
K the key matrix
V the value matrix
B the learnable relative positional encoding
d the channel number of query
M attention window size
SoftMax the softmax operation along the column direction
MSA the multi-head self-attention
MLP the multi-layer perceptron
LN the layerNorm layer
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video restoration

symbol meaning

ILQ a sequence of low-quality frames
IHQ a sequence of high-quality frames
ISF a sequence of shallow frame features
IDF a sequence of deep frame features
IRHQ a sequence of reconstructed high-quality frames
XR reference frame feature
XS supporting frame feature
PQ the projection matrix for query
PK the projection matrix for key
PV the projection matrix for value
QR the query matrix from the reference frame
KS the key matrix from the supporting frame
VS the value matrix from the supporting frame
D the channel number of projected feature
M attention window size
MA(·) the mutual attention
A correlation matrix
YR

i,: the refined feature of the i-th element in the reference
frame

MMA the multi-head mutual attention
Xt the t-th frame feature
X̂t−1 the warped (t − 1)-th frame towards the t frame
Ot−1,t the optical flow from the (t − 1)-th frame to the t-th frame
W the image warping function
X′

t−1 the initial warped feature of the (t − 1)-th frame
ot−1,t the offset residual from the (t − 1)-th frame to the t-th

frame
mt−1,t the modulation mask for the optical flow from the (t − 1)-

th frame to the t-th frame
D the deformable convolution
X̂t−1 the final aligned feature of the (t − 1)-th frame
Fi

t the t-th clip feature at the i-th layer
F̂i

t−1 the (t − 1)-th aligned clip feature towards the t-th clip at
the i-th layer
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