
DISS. ETH No 20310

COMBINATORIAL PROBLEMS
WITH SUBMODULAR COUPLING

IN MACHINE LEARNING AND COMPUTER VISION

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

STEFANIE SABRINA JEGELKA

Dipl.-Inf. (Eberhard Karls Universität Tübingen)

born 27th November 1981

citizen of Germany

accepted on the recommendation of

Prof. Dr. R. Andreas Krause, examiner
Prof. Dr. Jeffrey A. Bilmes, co-examiner

Prof. Dr. Bernhard Schölkopf, co-examiner

2012

To my parents.

Abstract

Numerous problems in machine learning and computer vision are discrete. As a
complicating factor, they often involve large data sets and higher-order interactions
between elements in the data. For example, segmenting an image into foreground
and background requires assigning a label to each pixel in the image. As object and
background commonly have significant wide-range coherency, the most probable
label of a given pixel is not independent of the labels of other pixels. In general,
if such interactions are important to a problem, it may be inappropriate to reduce
it to efficiently solvable combinatorial problems like cuts in a neighborhood graph,
because tractability frequently results from ignoring global interactions.
This thesis addresses a class of combinatorial problems that admit high-order in-
teractions between elements. The interactions take the form of a submodular set
function over edges in a graph. In particular, the thesis introduces cooperative cuts
whose cost function is not a sum of edge weights, but a submodular function on
edges. We show that cooperative cuts generalize and enhance graph-based models
and applications in machine learning and computer vision.
The first part of the thesis studies theoretical and algorithmic questions, including
upper and lower bounds on the approximation factor of the minimum cooperative
cut problem. In addition to theoretical bounds, we empirically test the approxima-
tion algorithms on average and worst-case instances.
The second part investigates the impact of coupling edges in graph cuts. Graph cuts
are frequently used for representing functions and thereby offer a tool for minimiz-
ing those functions efficiently. Cooperative cuts widen the range of representable
functions, and we employ them to define energy functions. An energy function
characterizes a probabilistic model and determines the complexity of inference in
this model. Although cooperative cut energies possess none of the commonly used
properties that imply tractability, the algorithms from Part I solve the inference
problem within a bounded approximation factor.
Next, we explore an application. Cooperative cut energies encompass several recent
models in the computer vision literature, and they establish the foundation for new
models. In particular, the thesis introduces a new criterion for image segmentation
that considers the homogeneity or congruity of the object boundary. This criterion
remedies shortcomings of the popular graph cut method, notably, it preserves fine
structures of the object even when the contrast is low.
The next result is motivated by a corpus subset selection problem. Even though
this problem corresponds to minimizing a submodular function and is solvable in
polynomial time, the complexity of state-of-the-art exact algorithms is too high for
large data sets. The observation that cooperative cuts can represent any submod-
ular function is the key to a faster algorithm for minimizing submodular functions
approximately.
The third part of the thesis widens the scope and studies combinatorial problems
with submodular cost functions in an online framework. Sequential decision prob-

lems ask to solve a problem repeatedly while an unknown cost function changes
over time. The thesis proposes two generic Hannan-consistent algorithms building
on the approximation methods discussed in Part I, and an algorithm for the sub-
class of “label cost” functions. The results generalize commonly studied linear loss
functions and apply to a variety of problems.

Zusammenfassung

Zahlreiche Optimierungsprobleme im Bereich des Maschinellen Lernens und Sehens
sind diskret. Die Probleme werden dadurch erschwert, dass sie häufig Interaktio-
nen von Datenelementen beinhalten und trotzdem auf großen Datensätzen gelöst
werden müssen. Als Beispiel kann die Segmentierung eines Bildes in ein Vorder-
grundobjekt und Hintergrund herangezogen werden, wobei jedem Pixel ein ent-
sprechendes Label zugewiesen wird. Da sowohl Objekt als auch Hintergrund meist
großflächige Kohärenzen aufweisen, ist das Label eines gegebenen Pixels nicht von
den Labeln anderer Pixel unabhängig. Mehrere Pixel müssen gemeinsam betrachtet
werden. Wenn solche Interaktionen wichtig sind, dann kann es unangemessen sein,
das Problem auf einfach lösbare kombinatorische Probleme zu reduzieren, deren
Lösbarkeit auf dem Fehlen globaler Kopplungen von Variablen beruht.
Die vorliegende Arbeit beschäftigt sich mit kombinatorischen Problemen die weit-
rangige Kopplungen zulassen. Diese Kopplungen werden durch eine submodu-
lare Mengenfunktion über Kanten in einem Graphen ausgedrückt. Insbesondere
definiert die Arbeit kooperative Schnitte, deren Zielfunktion nicht die Summe der
Kantengewichte, sondern eine submodulare Funktion über Kanten ist. In der Ar-
beit wird gezeigt, wie kooperative Schnitte auf Graphen basierende Modelle und
Anwendungen im Maschinellen Lernen und Sehen erweitern.
Der erste Teil der Arbeit befasst sich mit theoretischen und algorithmischen Fragen
wie unteren und oberen Schranken für Approximationsfaktoren. Neben der Her-
leitung theoretischer Schranken wird das Verhalten der beschriebenen Algorithmen
empirisch untersucht.
Das Thema des zweiten Teils der Arbeit sind mathematische Modelle und An-
wendungen, die von kooperativen Schnitte profitieren. Schnitte in Graphen wer-
den unter anderem benutzt um Funktionen zu repräsentieren und auf diese Weise
effizient zu minimieren. Kooperative Schnitte erweitern die Klasse der darstell-
baren Funktionen. In der Arbeit werden sie angewandt um Energiefunktionen zu
definieren. Eine solche Energiefunktion charakterisiert ein probabilistisches Modell
und bestimmt, wie schwer das Inferenzproblem in diesem Modell ist. Die Klasse
der durch kooperative Schnitte definierten Funktionen erfüllt keine der gängigen
Kriterien, die Inferenz in Polynomzeit ermöglichen. Dennoch lösen die Algorithmen
aus dem ersten Teil das Inferenzproblem approximativ.
Darüber hinaus werden Anwendungen beschrieben. Energiefunktionen aus koopera-
tiven Schnitten beinhalten einige im Bereich des Maschinellen Sehens bekannte
Modelle und bilden gleichzeitig die Grundlage für neue Modelle. Als konkretes Bei-
spiel wird in der Arbeit ein neues Kriterium zur Segmentierung von Bildern einge-
führt, welches die Einheitlichkeit des Objektrandes einbezieht. Dieses Kriterium
verringert die Probleme der häufig verwendeten Graph Cut-Methode. Insbesondere
feine Strukturen lassen sich nun viel besser segmentieren.
Ein weiteres Ergebnis ist durch ein Problem motiviert, eine Untermenge von Ele-
menten eines Korpus auszuwählen. Dieses Problem ist ein submodulares Minimie-

rungsproblem und in Polynomzeit lösbar, allerdings sind bekannte Algorithmen
in der Praxis nicht auf großen Datensätzen anwendbar. Ein neuer, praktikablerer
Approximationsalgorithmus entsteht aus der Beobachtung heraus, dass kooperative
Schnitte jede submodulare Funktion darstellen können.
Der dritte Teil der Arbeit erweitert den Rahmen der behandelten Probleme und
untersucht allgemeinere kombinatorische Probleme mit submodularen Kostenfunk-
tionen, die als sequentielle Entscheidungsprobleme betrachtet werden. Bei sequen-
tiellen Aufgaben muss ein gegebenes Problem wiederholt gelöst werden, wobei sich
die unbekannte Kostenfunktion ändert. Die Arbeit beschreibt zwei generische, Han-
nan-konsistente Algorithmen, die auf den in Teil I eingeführten Techniken aufbauen.
Desweiteren wird ein Algorithmus für die Unterklasse der Label cost-Funktionen
entwickelt. Die Ergebnisse dieses Teils erweitern den Bereich bekannter Ergebnisse
von linearen auf nicht-lineare (submodulare) Kostenfunktionen und umfassen eine
Spanne von Problemstellungen.

Acknowledgments

This dissertation would have been very different without several people to whom I
am deeply indebted. First, it was Jeff Bilmes who introduced me to submodularity.
Jeff, thank you very much for your amazingly infinite patience, for your extraor-
dinary support and for an awesome cooperation on cooperative cuts. Thanks for
nights of discussions on Skype, for listening to all my ideas and counter-examples,
for having me visit Seattle and for submodularity in every semi-free minute. And
thanks, Katrin, Alexander and Sebastian for bearing this.
Then, all this work would not have been possible without the generosity of Bernhard
Schölkopf, who let me work on wherever my interests led me. Thank you, Bernhard,
for your support and the time at a great place for research. My gratitute also
belongs to Andreas Krause, for great discussions on submodular problems and
ideas, for his support to make this dissertation happen, and for very valuable
advice.
Furthermore, I am very grateful to my first mentors at MPI, Arthur Gretton and
Ulrike von Luxburg, for their support and for everything I could learn from them.
Moreover, I would like to thank Hui Lin for his great efforts on our joint project.
Even though early projects during my Ph.D. time are not included in this thesis, I
want to thank my collaborators on these projects, Ule, Arthur, Bernhard, Bharath
Sriperumbudur, Sebastian Nowozin, Karsten Borgwardt, Arindam Banerjee and
Suvrit Sra. In particular, thanks to Sebastian for answering many questions about
computer vision and more, and to Lumin Zhang and Zhikun Wang for help with
OpenCV. Many thanks to Jeff, Andreas and Pradeep Ravikumar for the work-
shop co-organizations, and to Yoshinobu Kawahara for our reading group and
discussions. The critical reading of Christoph Lampert, Lawrence Cayton, Andrew
Guillory, Ajit Singh and Manuel Gomez Rodriguez improved papers and parts of
this thesis, and, unknowingly, Yevgeny Seldin inspired a proof. Thanks also to all
fellow students and researchers at MPI who made this time sociable. My thanks
also go to Raymond Hemmecke and Ramin Zabih for their invitations, and to Erik
Horvitz and Ashish Kapoor for hosting me as an intern. Finally, I would like to
thank Richard Karp for the name “cooperative cut”.
“Danke” to Joachim Buhmann, Rita Klute and Denise Spicher for guiding a novice
through administrative jungles, and “danke” also to Sabrina Rehbaum.
Finally, I am very grateful to my family for supporting this long journey wherever
they could. The deepest thanks go to my husband Suvrit, who answered so many
questions and who was always there to support and encourage me. !"# $ %&'()* ,
+! ,# - ,. /0'. !

Contents

1. Introduction 1
1.1. Summary . 6

1.1.1. Part I: Algorithms and complexity of MinCoopCut 6
1.1.2. Part II: Applications of CoopCut 7
1.1.3. Part III: Sequential decision problems beyond linear costs . . 10

1.2. Publications contained in this thesis 12

2. Background 13
2.1. Notation . 13
2.2. Polynomiality and approximations 13
2.3. Submodular functions . 14

2.3.1. Polyhedra and extensions 15
2.3.2. Matroids, polymatroids and submodular functions 18
2.3.3. Examples of submodular functions 20
2.3.4. Operations and construction of additional submodular func-

tions . 23
2.3.5. Minimizing submodular functions 25

2.4. Graph cuts . 27
2.5. Submodular-cost combinatorial problems 30

3. Hardness of MinCoopCut 34
3.1. Related hardness results . 34
3.2. Minimum Cooperative (s, t)-Cut is NP-hard 35
3.3. Lower bound on the approximation factor 38
3.4. Discussion . 40

4. Approximation Algorithms 42
4.1. Techniques for approximations: an overview 42

4.1.1. Approximations of the cost function 43
4.1.2. Convex relaxation or re-formulation of constraints 45
4.1.3. Greedy approximations . 46

4.2. Approximating the cost function . 47
4.2.1. Generic approximation . 48
4.2.2. A structural, locally exact approximation 48
4.2.3. Iterative approximation . 52

4.3. Simplifying the constraints . 56

xi

4.3.1. Greedy covering . 57
4.3.2. Relaxation . 59

4.4. An empirical comparison and worst cases 61
4.4.1. Benchmark data for average cases 63
4.4.2. Worst-case examples . 68

4.5. Summary and discussion . 72

5. Cooperative Cuts and Energy Minimization 74
5.1. Graph cuts, probabilistic models and inference 74

5.1.1. Multi-label energies and move-making algorithms 79
5.2. Energy functions induced by cooperative cuts 80

5.2.1. Properties of cooperative cut energies 81
5.3. Expressive power . 84

5.3.1. Nonnegative nondecreasing submodular functions 84
5.3.2. P n functions . 85
5.3.3. P n Potts model . 86
5.3.4. Robust P n potentials . 87
5.3.5. Co-occurrences of object labels 88

5.4. Multi-label cooperative cut energies 89
5.4.1. Models of multi-label cooperative cut energies 89
5.4.2. A pairwise approximation 91
5.4.3. Expansion moves for the approximation ÊΓ′ 92
5.4.4. Cooperative expansion moves 100

5.5. Summary and discussion . 103

6. Applications in Computer Vision 104
6.1. Coupling edges for image segmentation 104

6.1.1. Problems of cut-based algorithms 104
6.1.2. Structured cooperation for congruous boundaries 106
6.1.3. Optimization . 109
6.1.4. Experiments . 109
6.1.5. Results: shrinking bias and the effect of the coefficient λ . . 112
6.1.6. Results: fixed parameter for each data set 113
6.1.7. Results: influence of the edge groups 119
6.1.8. Results: best parameters per image 120
6.1.9. Results: Grabcut benchmark 121
6.1.10. Summary and outlook . 125

6.2. Relaxation and regularization . 126
6.2.1. Stating MinCoopCut as regularized minimization 126
6.2.2. Edge-norms . 129
6.2.3. A proximal splitting algorithm 130
6.2.4. Special cases of edge-norms in the literature 133

6.3. Summary and discussion . 137

xii

7. Representation and Approximate Minimization 138
7.1. Submodular function minimization 138

7.1.1. The minimum norm point algorithm 139
7.2. Representations for efficient minimization 141

7.2.1. Graph cuts . 142
7.2.2. Concave functions . 144

7.3. Submodular functions as cooperative cuts 148
7.3.1. Basic construction . 148
7.3.2. Submodular edge weights 151

7.4. Approximate optimization . 152
7.4.1. Improvement via summarizations 155
7.4.2. Parametric constructions for special cases 156

7.5. Experiments . 157
7.6. Summary and discussion . 160

8. Submodular Online Problems 162
8.1. Introduction . 162

8.1.1. Related work . 164
8.1.2. Three types of algorithms 165

8.2. Relaxations . 167
8.3. Approximations of the cost function 170

8.3.1. Approximations fitting Algorithm 8 173
8.4. Label costs and related functions 175

8.4.1. Label costs and approximations: a cover viewpoint 176
8.4.2. Online algorithm . 177
8.4.3. Multiple labels and truncated costs 178

8.5. Summary and discussion . 179

9. Conclusion and Outlook 180

A. Notation 183

B. Further Details 184
B.1. Derivation of D′(n) (Chapter 3) . 184
B.2. Expansion moves for general potentials 185

Bibliography 188

xiii

List of Figures

1.1. Illustration how an approximate solution to a complex high-order
model may be preferable to the exact solution to a simple model. . 2

1.2. Total and twig error with respect to λ for graph cut and cooperative
cut. 9

1.3. Running times for the minimum norm point algorithm and the al-
gorithms described in Chapter 7 . 10

2.1. Bipartite graph and the neighborhood N (A) ⊆ V2 of set A ⊆ V1. . . 25
2.2. Minimum hitting set of bundles . 31
2.3. Dynamic graphical model. 32

3.1. Graph for the reduction and examples for the definition of fbal via
ranks. 36

3.2. Graph for the proof of Theorem 3.2. 39

4.1. Approximation of the cut cost via a partition. 49
4.2. Illustration of the adjusting upper bound. 53
4.3. Examples of benchmark graphs. 64
4.4. Results for the experiments of Section 4.4.1. 67
4.5. Graph I and empirical approximation factors. 70
4.6. Graph II and empirical approximation factors. 71
4.7. Results for the worst-case input for the greedy deterministic algorithm. 72

5.1. Illustration of the limits of local probabilistic models and of state-
of-the-art algorithms involving graphs. 75

5.2. Commonly used graph cut representation of a local pair-wise Markov
random field. 78

5.3. Structure graph and corresponding factor graph. 81
5.4. Cooperative cut energies are not in general submodular. 82
5.5. Graph construction for expansion and swap moves for class co-

occurrence costs. 89
5.6. Illustration of the multi-label boundaries used in M2 91
5.7. Graph construction for expansion moves for the approximate energy

ÊΓ′ . 94
5.8. Expressing an edge in the auxiliary graph. 102

6.1. Segmentation results for an image with shading. 105

xiv

6.2. Commonly used graph cut representation of a local pairwise Markov
random field. 106

6.3. Effect of different concave functions g to introduce discounts in the
cost function. 108

6.4. Examples for synthetically shaded images. 111
6.5. Examples for ground-truth labelings. 112
6.6. Total and twig error with respect to λ for Graph Cut and CoopCut. 113
6.7. Effect of fixed parameters for Graph Cut and cooperative cut on the

“twigs and legs” data. 114
6.8. Example results with fixed parameters for shading in grayscale images.116
6.9. Example results with fixed parameters for shading in color images. . 117
6.10. Example segmentations of a synthetically shaded image. 119
6.11. Example segmentations when choosing the optimal parameters (by

total error) for each image separately. 121
6.12. Example results for segmentation with the parameters that lead to

the lowest error. 122
6.13. Example segmentations when choosing the optimal parameters (by

total error) for each image separately. 123
6.14. Example segmentations for parameters that lead to the lowest total

error, for each image separately. 124
6.15. Two examples from the Grabcut data that are known to be difficult. 124
6.16. Segmentation of Arabidopsis . 126

7.1. Running time of MN, MC and SLG with varying λ. 145
7.2. Example graph constructions. 150
7.3. Comparison of MN implementations. 157
7.4. Running time, relative and absolute error and solution sizes with

varying λ for a data set as described in Section 7.1.1. 158
7.5. Running times with respect to |V| for corpus subset selection and

running times for Iwata’s test function 159

8.1. Construction of g for multiple labels. 179

B.1. Graph construction for expansion moves for the approximate energy
Ê. 185

xv

List of Tables

1.1. Approximation algorithms for MinCoopCut 6
1.2. Examples of cooperative cuts explained in Sections 5.3 and 6.2 . . . 8
1.3. Regret bounds derived in Chapter 8, applied to a variety of problems. 11

3.1. Hardness results for combinatorial problems with submodular costs 35
3.2. Lower bounds for label cost problems in graphs with n nodes and

m edges. 35

4.1. Overview of approximation factors for MinCoopCut. 47
4.2. Acronyms for the algorithms used in the experiments. 63
4.3. Cost functions for the experiments in Section 4.4.1 (part I) 65
4.4. Cost functions for the experiments in Section 4.4.1 (part II). 66

5.1. Examples of cooperative cuts explained in Sections 5.3 and 6.2 . . . 90
5.2. Mappings of edges in the auxiliary graph G̃. 103

6.1. Errors and parameters for the “twigs and legs” data set. Cooperative
cut better preserves fine structures at low total error. 115

6.2. Errors in percent for the natural shading setting. 118
6.3. Errors and parameters for synthetic high-frequency shading. While

Graph Cut includes elongated structures at the cost of a higher total
error, cooperative cut preserves them with low total error. 119

6.4. Influence of clusters Si in the cost function. For the naturally shaded
images, much better segmentations result from restricting coopera-
tion to similar edges. 120

6.5. Results on the Grabcut data with edge features φl and φr. 125

8.1. Overview of the regret bounds derived in this chapter, when applied
to a range of problems. 166

B.1. Enumeration of all possible (s, t)-cuts in Figure B.1(b). 187

xvi

Chapter 1.

Introduction

Discrete and combinatorial problems pervade not only classical fields, they are also
at the heart of many questions in computer vision and machine learning. To com-
plicate matters, problems in machine learning often arise from applications that
involve uncertainty and complex interactions between elements. Even though inter-
actions can make these problems very complex, large data sets demand algorithms
whose running time scales moderately in the size of the input.

This thesis addresses combinatorial problems that incorporate interactions be-
tween elements. The interactions are expressed by non-additive, submodular cost
functions. Motivated by the demands of applications, it studies four questions: (1)
How can interactions be expressed in discrete problems so that they still admit to
compute “good” solutions? ; (2) What are appropriate algorithms, and how can they
exploit properties of the problem? ; (3) How does the proposed framework realize
models in machine learning and computer vision? ; (4) How does the framework
affect results in applications?

These questions are very wide, and we will make them concrete by specifying a
class of problems that we name cooperative cut. Before formally defining coopera-
tive cuts, we review some context and key questions.

Discrete problems in Machine Learning

In a broad sense, the goal of machine learning is to infer rules and make predictions
based on observed data. The problem is formalized as a mathematical model, and
fitting the model or making predictions (inference) are phrased as optimization
problems. If the data are discrete, then so are model and associated optimization
problems. Moreover, the mathematical model determines the complexity of the
optimization problem.

Discrete problems materialize, for instance, in the form of clustering problems,
graph partitioning, structured prediction, feature selection, active learning, or as
learning and inference problems in discrete probabilistic models. Such problems
are relevant to applications in biology, natural language processing, speech recog-
nition or computer vision. Besides learning and inference, combinatorial prob-
lems can arise as sub-problems of designing optimization procedures. For example,
distributed processing requires the partitioning of large models into appropriate
chunks.

1

Chapter 1. Introduction

(a) input image (b) user labels (c) first order (d) second order (e) very high order
(graph cut) (cooperative cut)

Figure 1.1. Often, an approximate solution to a complex high-order model (e) is prefer-
able to the exact solution to a simple, low-order model (c),(d). This example from
interactive image segmentation asks to infer “object” and “background” pixel labels based
on the user input, the blue and red brush strokes. Solution (e) is an approximation,
solutions (c),(d), are exact.

As a concrete example of a discrete problem, imagine we would like to design
an algorithm for segmenting the plant in Figure 1.1(a) from its background. We
phrase this problem mathematically and assign a variable to each pixel, which will
take the label “object” or “background”. To infer the assignments from given labels,
we define a model that determines the probability p(x|z̄) of an assignment x given
the statistics of pixels labeled by a user and the observed image z̄. By this model,
the assignment of choice is the one maximizing p(x|z̄). Finding this maximizer is
the inference problem.

Efficiency, complexity and structure

When solving the inference problem, there is an exponential number of assignments
to choose from. In general, such discrete problems can be notoriously hard, and
solving them requires time exponential in the size of the input. Even worse, it
may even take exponential time to provide a “provably good” solution. Often
however, problems in machine learning involve large data sets and thereby rule out
computationally expensive methods.

To avoid having to search through exponentially many assignments, the function
p must have certain properties. For example, if all pixels are judged independently
and p is a product of single-pixel terms p(xi|z̄), then we can optimize each term
separately. Commonly, one additionally considers pairs of pixels, so that it is less
likely that the labels of neighboring pixels disagree. It turns out that then the
inference problem is equivalent to finding a minimum cut in a grid graph. In the
graph, each pixel is a node, and the cut is the object boundary. The Minimum
Cut problem is a combinatorial problem.

Formally, a combinatorial problem consists of a ground set E of elements, a family
S of feasible solutions S ⊆ E which are subsets of E , and a cost function f defined on
sets S ⊆ E . We aim to find a feasible solution S ∈ S with minimum cost f(S). The
elements could be edges in a graph and the family S might consist, for example, of

2

all cuts in the graph. Both S and the cost f can induce relations between elements.
Combinatorial problems can also be phrased in terms of variables, and instead of
picking subsets one assigns discrete labels.

Relating the inference problem to graphs reveals structure that helps solve
the problem combinatorially. Several combinatorial problems admit efficient al-
gorithms, and Minimum Cut is one of them. In general, it may be an option to
phrase the problem at hand in terms of a model that fits a “simple” combinatorial
problem.

The image segmentation model corresponding to cuts profits computationally
because it has much separability : the logarithm of the posterior probability p(x|z̄),
which is usually considered, is a polynomial of degree two and only involves pairs of
neighboring pixels [Picard and Ratliff, 1975, Greig et al., 1989, Boykov and Jolly,
2001]. While this model has been successfully applied, Figure 1.1 illustrates its
limits: models of order one or two fail to identify the true boundary of the plant.
They cannot capture important higher-order coherency or, in other words, take
into account dependencies between many pixels jointly.

Separability can be limiting not only to image segmentation. Section 2.5 lists
a selection of combinatorial problems that consider elements not separately but
jointly. The cost functions that express such coupling are not separable like a sum
of element-wise weights, they are nonlinear.

While complex interactions between variables may suit the data better, they
usually lead to nonlinear cost functions and almost always to NP-hard optimization
problems. For such hard problems, we must revert to approximations. Figure 1.1,
drawn from Chapter 6, illustrates that an approximate solution to a more complex
model may still be more appropriate than an exact solution to an oversimplified
model that disregards essential structural properties of the application. In fact,
the problem need not even be NP-hard. For large data, an algorithm that runs
in high-order polynomial time can be practically infeasible. Chapter 7 explores
approximation algorithms for such a problem.

An approximation algorithm returns a solution S whose cost is within a bounded
factor α of the cost of the optimal solution S∗: for a minimization problem with
cost function f , this means that f(S∗) ≤ f(S) ≤ αf(S∗) with α ≥ 1. The factor
α may be a function of the size of the input data. A key question is then:

I. What are efficient algorithms for which the approximation factor is
as small as possible?

If one allows arbitrary constraints and cost functions, nothing can be said about
bounds on the approximation factor. Approximations, like efficient algorithms,
rely on the problem having structure that can be exploited. Combinatorial objects
may therefore be relevant to approximations too. Certainly, the graph cuts used
for image segmentation provide good structure for optimization, but they are too
restrictive. Important questions are then:

3

Chapter 1. Introduction

II. Which models have suitable structure that optimally trades offeffi-
ciency and sufficient expressive richness?
III. How can one make use of such structure?

Implicitly, Question II also asks whether there are frameworks beyond frequently
used combinatorial problems that express more complex yet approximately man-
ageable mathematical models with richer interactions. In particular, this thesis
focuses on a model that combines two known structures in a new way: submodu-
larity and graphs.

After investigating the above questions theoretically and in applications, the
thesis explores how the discussed approximations can be used in online problems
where there is uncertainty about the cost function.

Cooperative Cuts

We address the above questions by introducing interactions between elements in
combinatorial problems, namely, by allowing interactions between edges in a graph
G = (V , E) or, equivalently, between pairs of variables. To express these inter-
actions, we define a submodular set function over sets of edges. A set function
f : 2E → R defined on subsets A ⊆ E of a ground set E is submodular if it satisfies
diminishing marginal costs1: for any sets A ⊆ B ⊂ E and e ∈ E \B, it holds that

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B). (1.1)

A set function f is nondecreasing if A ⊆ B ⊆ E implies that f(A) ≤ f(B). Submod-
ular functions have long been an important concept in combinatorial optimization
[Frank, 1989, 1993, Vondrák, 2007, Fujishige, 2003], operations research and en-
gineering [Iri and Fujishige, 1981, Narayanan, 1997], and game theory [Shapley,
1971], and they have recently gained attention in machine learning as well [Kempe
et al., 2003, Narasimhan et al., 2006, Narasimhan and Bilmes, 2005, Krause et al.,
2008, Bach, 2010, Das and Kempe, 2011, Golovin and Krause, 2011].

The largest part of this thesis focuses on a minimum cut problem with sub-
modular instead of additive cost functions. We refer to the resulting problem as
minimum cooperative cut

Definition 1.1 (Minimum cooperative cut (MinCoopCut)). Given a graph G =
(V , E) with terminal nodes s, t ∈ V and a nondecreasing submodular function
f : 2E → R+, find an (s, t)-cut C ⊆ E with minimum cost f(C). An (s, t)-cut
C ⊆ E is a set of edges whose removal disconnects s and t.

The “cooperation” in cooperative cuts emerges from the diminishing cost prop-
erty of the cost function. Certain edges occurring together in a cut can have a
much lower cost than the sum of their individual costs.

1The common term is diminishing marginal returns, but “costs” suits the context here better.

4

With respect to this cooperation property, submodular functions can be viewed
as being at the boundary of tractability2. Diminishing marginal costs imply that
for any sets A,B ⊆ E it holds that f(A)+f(B) ≥ f(A∪B)+f(A∩B). Whereas a
submodular function can be minimized over the power set of E in polynomial time,
a function that only satisfies f(A)+ f(B) ≥ f(A∪B) may in polynomial time not
even admit a solution with a bounded approximation factor.

The combination of submodular functions and graphs extends the realm of either
concept. As opposed to standard additive cost functions, a submodular function
allows the coupling of edges in a graph and thereby the modeling of complex inter-
actions. Graph cuts have been used for modeling and optimization in a wide range
of areas. As cooperative cuts employ the same graph structures as standard graph
cuts, they easily integrate into and extend many of the ubiquitous applications of
graph cuts. Chapters 6 and 7 explore two such examples. Graph cuts also provide
the link to probabilistic models, because, as indicated above, they represent a class
of probabilistic models. Cooperative cuts extend this class to include models with
variable interactions of arbitrarily high order.

Even though two chapters of this thesis are devoted to modeling with energy
functions, cooperative cuts have more applications. For example, the algorithms
in this thesis also approximately solve the problem of finding minimum-entropy sep-
arators, a problem arising when performing inference in dynamic graphical models.
This problem is outlined in Section 2.5.

More generally, combinatorial problems where the sum-of-(edge-)weights has
been replaced by a submodular cost function have recently gained attention in
theoretical computer science [Iwata and Nagano, 2009, Goel et al., 2009]. We will
refer to these problems as submodular-cost combinatorial problems.

Some results in the sequel affect submodular-cost combinatorial problems beyond
cooperative cuts. The algorithm in Section 4.2.3 applies to any combinatorial prob-
lem whose standard, sum-of-weights version is polynomial-time solvable. Chapter 8
extends the scope to several submodular-cost combinatorial problems in an online
setting. Indeed, submodular-cost problems arise in a variety of applications, as
illsutrated by the selection listed in Section 2.5.

Organization of the thesis

This thesis is structured into three parts and a chapter on background informa-
tion. Chapter 2 summarizes basic results and concepts and states examples of
submodular-cost combinatorial problems. More specific related work is discussed
in the respective chapters.

The first two technical parts address cooperative cuts, and Part III (Chapter 8)
is dedicated to online algorithms for general submodular-cost combinatorial prob-
lems. Part I (Chapter 3–4) discusses theoretical questions such as complexity and

2Strictly speaking, the class of XOS or fractionally subadditive functions lies in between sub-
modular and subadditive functions [Lehmann et al., 2006], but they are not our focus here.

5

Chapter 1. Introduction

approximating f simplifying the constraints

additive approx. |C∗|
1+(|C∗|−1)ν(C∗) = O(m) convex relaxation n− 1

ellipsoid O(
√
m logm)

partition & flow n/2 randomized greedy n− 1

iterative |C∗|
1+(|C∗|−1)ν(C∗) = O(m)

Table 1.1. Approximation algorithms for MinCoopCut from Chapter 4 and upper
bounds on their worst-case approximation factors for n = |V| and m = |E|.

approximation methods. Part II explores the usefulness of edge interactions, i.e.,
applications that use the algorithms from Part I. This entails the modeling perspec-
tive, i.e., a new family of high-order energy functions (Chapter 5), and practical
applications, i.e., a specific model for image segmentation (Chapter 6) as well as
an algorithm for efficient approximate submodular minimization (Chapter 7).

1.1. Summary of the thesis

For better orientation, we outline the problems discussed in each chapter and the
respective results.

1.1.1. Part I: Algorithms and complexity of MinCoopCut
In short, Chapters 3 and 4 address the following topics:

• approximation algorithms for MinCoopCut,
• hardness results for MinCoopCut.

Chapter 3 shows that MinCoopCut is NP-hard. This hardness can be at-
tributed to two modifications compared to polynomial-time solvable problems: the
cost function or the constraints. First, the standard Minimum (s, t)-cut prob-
lem whose cost function is a sum of weights is not NP-hard. Second, submodular
function minimization without any constraints is not NP-hard either. The approx-
imation methods in Chapter 4 take one of these two viewpoints, and we categorize
them by which of the two modifications they relax. Table 1.1 summarizes the
algorithms and the bounds on their worst-case approximation factors. We also
empirically evaluate the algorithms on average-case and worst-case data.

The first group of algorithms replaces the “difficult” submodular cost function f
by an approximation f̂ and solves a minimum cut with respect to the cost f̂ . We
examine four variants. The simplest is a straightforward additive approximation.
The second builds on a generic approximation f̂ by Goemans et al. [2009]. The
third exploits the graph structure for a locally exact approximation. It is mini-
mized via its dual problem, a generalized maximum flow. The fourth algorithm

6

1.1. Summary

iteratively defines and minimizes upper bounds on f . Even though its worst-case
approximation factor is the same as that of the first variant, on most other data its
approximations are much better and competitive to those of the other algorithms.
This algorithm scales to large data sets and is thus efficient enough to be the basis
for the applications in Chapters 6 and 7.

The second group of algorithms simplifies the constraints, and both derived algo-
rithms in this group build on a relation between cuts and covers. This relation leads
to a rounding technique for solutions to the convex relaxation of MinCoopCut,
and to an efficient randomized greedy algorithm.

The hardness results in Chapter 3 help place the approximation bounds in
context. We prove an information-theoretic lower bound of Ω(

√
|V|/ log |V|)

(Ω(
√
|E|/ log |E|) for sparse graphs). Before showing this bound, we prove that

MinCoopCut is NP-hard. The reduction in the proof is entirely new, and, as it
uses submodularity in a non-standard way, might be of interest on its own.

1.1.2. Part II: Applications of CoopCut
Chapters 5, 6 and 7 address applications of MinCoopCut. The applications
are motivated by typical applications of graph cuts for representing set functions,
regularization and for image segmentation:

• a new class of high-order energy functions defined by cooperative cuts;
• a new model for image segmentation that significantly improves the results;
• a non-uniform smoothing criterion for continuous problems;
• an efficient algorithm for approximate submodular function minimization by

representing submodular functions as cooperative cuts.

A new class of non-submodular global energy functions

Chapter 5 draws connections between cooperative cuts and energy functions of
probabilistic models. An energy function E(x) defines a distribution p(x) ∝
exp(−E(x)) for variables x in a discrete domain Dn. The energy determines
the complexity of the most probable explanation problem (MPE) of finding the
assignment argmaxx p(x) that maximizes the probability p(x).

In certain cases, the energy can be equated with cuts in an appropriate graph.
We extend this equivalence to cooperative cuts. In the simplest case, the graph
G = (V , E) corresponding to energy E : {0, 1}n → R+ has one node vi for each
random variable xi, and two additional terminal nodes s, t. Let X(x) = {vi |
xi = 1} ∪{ s} be the set of nodes whose variables are assigned label one, and let
δ(X) = {(vi, vj) ∈ E | vi ∈ X ∪ {s}, vj /∈ X} denote the cut around the set X.
Then the equivalence between energy and cuts can be phrased as

E(x) = w(δ(X(x))) =
∑

e∈δ(X(x))

w(e). (1.2)

7

Chapter 1. Introduction

model original reference f(C)

Graph Cut Boykov and Jolly [2001] w(C)

(binary) Pn fct. Kohli et al. [2007] g(|C|)

Pn Potts Kohli et al. [2007] maxe∈C w(e)

robust Pn Kohli et al. [2009b]
∑

j min{|C ∩ Sj |, q}γ/q
class labels Delong et al. [2011] gL(

⋃
e∈C "(e))

random walker (discretized) Grady [2006]
√
w2(C)

"∞ Sinop and Grady [2007] maxe∈C∩En w(e)

watershed cuts Cousty et al. [2009], Al-
lène et al. [2009] maxe∈C w(e)

total variations (discretized) Rudin et al. [1992],
Chambolle and Darbon
[2009], Couprie et al.
[2011]

∑
j gj(C ∩ Sj)

congruent boundaries Chapter 6
∑

j gθ(w(C ∩ Sj))

general submodular Chapter 7 polymatroid part of function

Table 1.2. Examples of cooperative cuts explained in Sections 5.3 and 6.2.

Based on this equivalence, we define the family of cooperative cut energies as those
energy functions Ef for which there exists a graph G = (V , E) and a nondecreasing
submodular function f : 2E → R+ such that

Ef (x) = f(δ(X(x))) = f({e | e ∈ δ(X(x))}). (1.3)

Cooperative cut energies satisfy none of the simplifying properties that are com-
monly used for tractable inference. Nevertheless, the MPE problem becomes a
minimum cooperative cut problem, and therefore the algorithms from Chapter 4
apply for inference with bounded approximation factors.

The graph cut analogy holds for binary random variables. We additionally show
algorithms that minimize cooperative cut energies for multi-label models within an
approximation bound.

To put this new family of functions in context, we demonstrate that a number
of recently defined higher-order energies from computer vision are special cases of
cooperative cut energies (Table 1.2).

Applications in image segmentation and smoothing

Chapter 6 develops the idea of smoothness criteria via cooperative cuts. It shows
a practical application of cooperative cut energies and a new criterion for image

8

1.1. Summary

Figure 1.2 Regularization curve for stan-
dard Graph Cut (GC) and cooperative cut.
As the regularization coefficient λ increases,
the average total error shrinks for both meth-
ods. For GC, the average twig error in-
creases, indicating that fine object parts are
cut off. Cooperative cut leaves the segmen-
tation of fine structures largely unaffected
and minimizes both total and twig errors
simultaneously. ! !"# $ $"# % %"#

%

&

'

(

$!

$%

$&

!

)*
)+
,-.
//*
/-0
1
2

-

-

!

$!

%!

3!

&!

#!

)4
56
-.
//*
/-0
1
2

-

-

78-)456

8**98-)456

78-)*)+,
8**98-)*)+,
78-)456
8**98-)456

78-)*)+,

segmentation. Figure 1.1 illustrates that second-order models with energies of the
form (1.2) can result in segmentations that fail to identify delicate parts of the
object, in particular if the contrast is low. The segmentation in Figure 1.1(e) uses
the congruity of the object boundary to transfer information from high-contrast
areas to low-contrast areas of the image. This congruity criterion is a cooperative
cut energy.

The iterative algorithm from Chapter 4 efficiently provides approximate mini-
mizing solutions. The efficiency relies on two properties: the cooperative energies
use the same grid graph structure as standard graph cut models, and, despite
interactions of arbitrarily high order, no auxiliary variables are needed.

A detailed empirical evaluation demonstrates that the global uniformity crite-
rion qualitatively and quantitatively improves segmentation results. On difficult
grayscale images with low contrast regions, the segmentation error is reduced by
up to 70%. The regularization curve in Figure 1.2 shows that the congruity cri-
terion reduces the global segmentation error while preserving fine structures, and
suggests that here, the cooperative cut is a more appropriate smoothness criterion
than Graph Cut. These benefits rely on diminishing costs and in particular on the
group structure of edge interactions.

The pairwise terms in standard graph cuts can be viewed as a regularizing bias.
We extend this regularization viewpoint and, building on cooperative cut energies,
define a generic edge-norm criterion for structured regularization of differences of
discrete or continuous variables. Convex losses with an edge-norm can be min-
imized via a proximal splitting method. In addition, we show that edge-norms
unify a variety of formulations in the literature.

Approximate submodular minimization

Minimizing a submodular function is not an NP-hard problem [Grötschel et al.,
1981]. However, if “efficiency” is more pragmatically defined as having low-order
polynomial running time, then to date general submodular minimization is not an
efficiently solvable problem either.

9

Chapter 1. Introduction

!"# !"$

!"!"

!""

!"#

!"%

&'(
)*
+,
-

*

*

#$%&'!&(
./
01
012
01,
03

45

4$

n

Figure 1.3 Average running times for the min-
imum norm point algorithm (MN) and the al-
gorithms described in Chapter 7 on a speech
corpus subset selection problem (log-log plot).
The slopes of the black dotted lines indicate
complexities n, n2, n3, n4 and n5.

Certain submodular functions can be represented as graph cuts, and as such
be minimized much more efficiently. But graph cut representations using formu-
lation (1.2) do not comprise all submodular functions [Z̆ivný et al., 2009]. Never-
theless, any submodular function can be represented by a cooperative cut. Based
on this representation, we treat submodular function minimization as an NP-hard
problem and solve it approximately with an extension of the iterative algorithm
from Chapter 4. The resulting method approximates a submodular function by a
sequence of graph-representable submodular functions. Its empirical running time
is by up to two orders of magnitude faster than that of the commonly used min-
imum norm point algorithm (see Figure 1.3), while it retains a small empirical
approximation factor. On the theoretical side, we prove that any element selected
by the algorithm is a member of the maximal optimal solution.

1.1.3. Part III: Sequential decision problems beyond linear costs

Chapter 8 derives algorithms for general submodular-cost combinatorial problems
when encountered as sequential decision problems. It shows

• two generic algorithms for online submodular-cost combinatorial problems;
• a special algorithm for the class of label cost functions.

Sequential decision problems ask to solve the same problem repeatedly in each of T
time steps (e.g., playing moves in a game or daily selecting the route to work). In
each step t, we choose a solution St ∈ S from a decision space S. Only afterwards
do we observe the loss function ft : S → R+ and incur the loss ft(S). The overall
goal is to be competitive with the best fixed solution in hindsight, that is, to
minimize the (external) regret

RT =
1

T

(T∑

t=1

ft(St)−min
S∈S

T∑

t=1

ft(S)
)
. (1.4)

10

1.1. Summary

I.a subgradient I.b Follow-the-pert.- II. label costs
descent (Sec. 8.2) leader (Sec. 8.3) (Sec. 8.4)

Set Cover O(k
√

m/T) – O(ln |U|
√
|L|/T)

Vertex Cover O(2
√

m/T) – O(ln |E|
√
|L|/T)

(s, t)-cut O(n
√
m/T) O(nm/

√
T) O(

√
m|L|/T)

Spanning Tree – O(nm/
√
T) O(lnn

√
|L|/T)

Perfect Matching – O(nm/
√
T) O(|L|

√
|L|/T)∗

monotone MSCA O(logm
√
m/T) – –

submodular MP O(2
√

m/T) – –

Table 1.3. Regret bounds of two generic algorithms (I) and an algorithm for label
costs (II) derived in Chapter 8, when applied to a range of problems. The approximation
factor α is underlined. A graph has n nodes and m edges; for set cover, m is the number
of sets. MSCA is the minimum submodular-cost allocation problem, which subsumes
e.g. submodular-cost facility location. MP stands for “multiway partition”. ∗Result for
complete bipartite graphs.

For approximations, a variant called α-regret compares to the best solution that
is achievable in polynomial time (with approximation factor α). The regret of a
Hannan-consistent algorithm vanishes as T increases.

Chapter 8 addresses problems where the decision space has exponential size
and consists of combinatorial structures. Almost all former work on combinatorial
sequential problems restricts ft to be additive (linear). Previous work on non-linear
loss functions ft only applies to very simple constraints.

Building on approximation techniques for submodular-cost combinatorial prob-
lems, Chapter 8 shows the first Hannan-consistent algorithms for a variety of
combinatorial sequential problems with submodular costs. Table 1.3 shows exam-
ple regret bounds implied by those algorithms. We describe three generic online
algorithms for submodular-cost combinatorial problems. The first two build on
two main approximation strategies and lead to regret bounds of O(αm/

√
T) and

O(α
√

m/T), respectively. As a side effect, Corollary 8.1 of Theorem 8.1 tight-
ens a bound for unconstrained online minimization by Hazan and Kale [2009] to
O(

√
m/T). Finally, the sub-class of “label cost” functions often admits better ap-

proximations. Therefore, the final algorithm is dedicated to this special setting.
The algorithm can use any corresponding batch algorithm as a black box and
achieves a regret bound of O(α

√
L/T) for L labels.

11

Chapter 1. Introduction

1.2. Publications contained in this thesis

This thesis covers material from the following publications:

S. Jegelka and J. Bilmes. Approximation Bounds for Inference using Cooperative
Cuts. International Conference on Machine Learning (ICML), 2011.
(Chapters 3, 4)

S. Jegelka and J. Bilmes. Submodularity Beyond Submodular Energies: Cou-
pling Edges in Graph Cuts. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011.
(Chapters 3, 4, 5, 6)

S. Jegelka and J. Bilmes. Multi-Label Cooperative Cuts. CVPR Workshop on
Inference with Structured Potentials, 2011.
(Chapter 5)

S. Jegelka, H. Lin and J. Bilmes. On Fast Approximate Submodular Minimiza-
tion. Advances in Neural Information Processing Systems (NIPS), 2011.
(Chapter 7)

S. Jegelka and J. Bilmes. Online Submodular Minimization for Combinatorial
Structures. International Conference on Machine Learning (ICML), 2011.
(Chapter 8)

12

Chapter 2.

Background

This chapter reviews basic definitions and properties of submodular functions and
graph cuts. For reference, a table of notation is also contained in Appendix A.

2.1. Notation

We consider a graph G = (V , E) with n = |V| nodes and m = |E| edges. The set
of edges is commonly the ground set of elements we use, and the cost function
f : 2E → R is defined over the power set 2E of E . By RE we denote the set of all
vectors of length |E| whose entries are indexed by elements in E , that is, the set
of all modular (linear) functions over 2E that are zero for the empty set. A vector
w ∈ RE corresponds to a function w(S) =

∑
e∈S w(e) for all S ⊆ E . The letter w

always denotes a vector of weights and the equivalent additive function.
Capital letters A,B,C, S, T refer to sets, and lowercase letters a, b, u, v, x, y, z

to elements or variables. For ease of notation, we will also drop the curly braces
around single elements and write e for {e}. We will also write A+ e for A ∪ {e}.

2.2. Polynomiality and approximations

We will address minimization problems of a set function f : 2E → R+ over a family
S ⊆ 2E of feasible sets. Let S∗ ∈ argminS∈S f(S) be an optimal solution. An
approximation algorithm with approximation factor α is an algorithm that returns
a solution Ŝ ∈ S such that f(S∗) ≤ f(Ŝ) ≤ αf(S∗).

An algorithm runs in polynomial time if its running time is upper bounded by
a function that is a polynomial in the size of the input, here, in the size |E| of
the ground set. Algorithms that minimize general submodular functions usually
assume the function to be given in the form of an oracle, and include the time to
evaluate the function as a parameter τ . The running time of a pseudo-polynomial
algorithm can in addition depend polynomially on the length of the numerical
input, that is, for example, the logarithm of the largest function value or edge
weight.

Running times are usually given in the big O notation. We write t(n) = O(g(n))
if there exists an integer n0 and a constant γ such that for all n ≥ n0, it holds that
t(n) ≤ γg(n). Lower bounds are written using big Omega: t(n) =Ω(g(n)) means

13

Chapter 2. Background

that there exists a positive constant γ and an integer n0 such that for all n ≥ n0,
it holds that t(n) ≥ γg(n).

2.3. Submodular functions

Submodular functions have been important in several fields, such as combinatorics,
computer vision and economics. Early work includes work on matroids [Whitney,
1935] (more information on matroids can be found in [Welsh, 1976, Oxley, 1992]),
on generalizations of matroids [Edmonds, 1970], and the work by Choquet [1955],
who calls submodularity “strong subadditivity”. Submodular functions have also
been referred to as “semi-modular” functions and “sub-valuations” [Choquet, 1955].
The subsequent paragraphs summarize some basic properties and results about
submodular functions. For proofs and further details, the reader is referred to
texts such as [Fujishige, 2005, Lovász, 1983, Narayanan, 1997, Schrijver, 2004].

A set function f : 2E → R is submodular if for all A, B ⊆ E , it holds that

f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B). (2.1)

A function that satisfies Condition (2.1) with equality is called modular. A modular
function fm is additive, meaning that fm(A) = fm(∅) +

∑
e∈A(fm(e) − fm(∅)). If

inequality (2.1) holds in the other direction, the function is supermodular. An
alternative definition of submodularity uses marginal costs. Define the marginal
value of f for all A ⊆ E with respect to a set B ⊆ E as

ρf (A|B) ! f(A ∪ B)− f(B) (2.2)

We occasionally drop the subscript if the involved function f is clear from context.
Submodularity is equivalent to diminishing marginal costs: for all A ⊆ B ⊆ E \{e}
and all e ∈ E , it holds that

ρf (e|B) ≤ ρf (e|A). (2.3)

In the literature, this inequality is often termed diminishing marginal returns. Since
in this work, the submodular function is viewed as a cost function, we refer to it
as diminishing marginal costs.

A set function is monotone or nondecreasing if for all A ⊆ B ⊆ E , it holds that
f(A) ≤ f(B). It is normalized if f(∅) = 0. A nonnegative, normalized submodular
function is also subadditive:

f(A ∪ B) ≤ f(A) + f(B). (2.4)

Set functions and pseudo-boolean functions

There is a straightforward correspondence between set functions and pseudo-
boolean functions. A pseudo-boolean function maps from {0, 1}n to R (a boolean

14

2.3. Submodular functions

function would map to {0, 1}). Those functions have mostly been considered by
their representation as multilinear polynomials. The pseudo-boolean equivalent of
a set function f : 2E → R is the pseudo-boolean function fp : {0, 1}n → R that acts
on indicator vectors, that is, fp(χS) ! f(S) for all S ⊆ E . Conversely, the set func-
tion corresponding to a pseudo-boolean function is f(S) ! fp(χS) for all S ⊆ E .
The pseudo-boolean polynomial of a submodular function is computable via the
Möbius inversion formula (described in Section 7.2.1). The order of a function is
the degree of its corresponding polynomial.

Regularity

In the field of computer vision, submodularity is also known as regularity [Kol-
mogorov and Zabih, 2004]. Regularity there refers to energy functions E :
{0, 1}n → R of binary Markov random fields, and such functions are pseudo-
boolean functions. The property is usually defined via restrictions or projections.
The projection Ei,j,y for y ∈ {0, 1}n−2 is the restriction of E to variables xi and
xj, where all other variables xk with k -= i, j are fixed as xk = yk. An energy E is
regular if for all i, j and all y ∈ {0, 1}n−2 it holds that

Ei,j,y(0, 0) + Ei,j,y(1, 1) ≤ Ei,j,y(1, 0) + Ei,j,y(0, 1), (2.5)
equivalently, Ei,j,y(1, 1)− Ei,j,y(1, 0) ≤ Ei,j,y(0, 1)− Ei,j,y(0, 0). (2.6)

Let fE be the set function equivalent to E, and let A be such that y = χA. Then
Condition (2.6) is equivalent to

f(A ∪ ei ∪ ej)− f(A ∪ ei) ≤ f(A ∪ ej)− f(A).

This can be shown to be equivalent to diminishing marginal costs, Inequality (2.3).

2.3.1. Polyhedra and extensions

An important concept for submodular functions is the submodular polyhedron. The
polyhedron Pf of f is the set of all normalized modular functions (vectors) x ∈ RE

that lower-bound f . Recall that the entries of such a vector are indexed by the
elements e ∈ E . Formally,

Pf = {x ∈ RE | x(A) ≤ f(A) ∀A ⊆ E}. (2.7)

The base polytope Bf ⊂ Pf is the set of x ∈ Pf whose entries sum up to f(E):

Bf = {x ∈ Pf | x(E) = f(E)}. (2.8)

The base polytope has in general an exponential number of vertices, each of which
corresponds to a certain permutation of the ground set. The “greedy algorithm”
shows how a vertex relates to a permutation.

15

Chapter 2. Background

The “greedy algorithm” for linear optimization over Pf

In this section, we assume that the submodular function f is normalized. Edmonds
[1970] showed that a linear function can be optimized over the polyhedron Pf in
O(m logm) time1. Let c ∈ RE

+ be a nonnegative2 vector. To solve the problem

max c · y s.t. y ∈ Pf , (2.9)

we sort the entries of c in nonincreasing order such that cπ(1) ≥ cπ(2) ≥ . . . ≥ cπ(m).
The order defines a chain of sets A1 ⊂ A2 ⊂ . . . Am, with A1 = {eπ(1)} and
Ai = Ai−1 ∪ {eπ(i)} for i > 0. The entries of a maximizing vector y∗ ∈ Pf are
y∗π(1) = f(A1) and y∗π(i) = f(Ai) − f(Ai−1) = ρf (eπ(i)|Ai−1) for i > 1. Edmonds
[1970] derives this result via the dual of the linear programming problem (2.9). If
c is positive, then the vector y∗ is always in Bf , because by construction it satisfies
y∗(E) = f(E). By construction and diminishing marginal costs, it also satisfies
y∗(e) ≤ f(e) for all e ∈ E .

If the maximizer y∗ for a cost vector c is unique, then it is a vertex of the base
polytope, because linear functions over polytopes have an optimum that is a vertex.
As the vertex y∗ only depends on the permutation of the ground set, the above
construction also shows a one-to-one correspondence between permutations of E
and vertices of Pf [Fujishige, 2005, Edmonds, 1970, Shapley, 1971, Lovász, 1983].
If f is nondecreasing, then y∗ is nonnegative. This implies that for nondecreasing
submodular functions, all vectors in Bf are nonnegative.

Extensions

Two different constructions are commonly used that extend submodular functions
from a discrete domain of characteristic vectors to a continuous domain: the Lovász
extension and a multilinear extension. The characteristic vector χA ∈ {0, 1}E of a
set A ⊆ E is a vector whose eth entry is one if and only if e ∈ A. Given a vector
x ∈ RE , let {β1, . . . ,β k} be its distinct entries. The level sets of x are the index sets
Bj = {i | x(i) ≤ βj}. Any vector x ∈ R|E| can be written as a unique combination
of the characteristic vectors of its level sets:

x =
∑

j
λjχBj . (2.10)

1Strictly speaking, the 1970 paper assumes a polymatroid rank function, but the same procedure
works for general normalized submodular functions; Lovász [1983] only assumes a normalized
function for the greedy algorithm.

2If c has a negative entry, then the optimal solution is unbounded. Edmonds [1970] initially
proved the results here for polymatroid rank functions and the polymatroid, which is restricted
to nonnegative vectors. In that case, c can be negative, and the greedy algorithm still works
as presented here, with the modification that for each ci < 0, we set y∗i = 0. If we aim for a
solution in the base polytope, we proceed as above.

16

2.3. Submodular functions

Lovász extension. The Lovász extension f̃ of a set function f uses the decom-
position (2.10) for an equivalent sum of function values [Lovász, 1983]:

f̃(x) =
∑

j
λjf(Bj). (2.11)

The extension f̃ is convex if and only if f is submodular. It is positively homoge-
neous, and the extension of f + g is f̃ + g̃. Moreover, the definition (2.11) implies
that f̃(χA) = f(A) for all sets A ⊆ E . The Lovász extension is equivalent to the
Choquet integral

f̃(x) = (C)

∫
xdf !

∫ 0

−∞
(f({ei | xi ≥ θ})− f(E))dθ +

∫ ∞

0

f({ei | xi ≥ θ})dθ.

(2.12)
For submodular functions, the Lovász extension is closely tied to the optimization

problem (2.9). If f is submodular, then the coefficients λj in the sum within (2.11)
are an optimal solution of the dual of Problem (2.9) [Edmonds, 1970]. This means
that for submodular functions, the Lovász extension can equivalently be written
as

f̃(x) = max
y∈Pf

y · x. (2.13)

The maximizing y is computed by the greedy algorithm, and the level sets of x
are parts of the chain of Ai described above, with λj = (xπ(j) − xπ(j+1)) and the
ordering π determined by sorting y.

Subgradient. Let gx = argmaxy∈Pf
y ·x be a maximizer in Equation (2.13). By

the definition of the Lovász extension, it holds that gx · x′ ≤ f̃(x′) for all x′ ∈ RE
+.

In consequence, gx is a subgradient of f̃ at x: it satisfies the condition

f̃(x′)− f̃(x) ≥ gx · (x′ − x). (2.14)

Via the greedy algorithm, a subgradient of f̃ can thus be computed in O(m logm)
time.

Lovász extension and sampling. The definition (2.11) via level sets and the
Choquet integral point at another interpretation of the Lovász extension: It can
be viewed as the expected function value when randomly drawing level sets with
probabilities proportional to the coefficients λj. Let x ∈ [0, 1]E . Assume we pick
a threshold θ ∈ [0, 1] uniformly at random, and let Aθ = {e | x(e) ≥ θ}. Then
x = Eθ[χAθ

] and
f̃(x) = Eθ[f(Aθ)]. (2.15)

Multilinear extension. An alternative extension results from a different way
of sampling sets. Consider entry x(e) in a vector x ∈ [0, 1]E as the probability of
element e being chosen. The probabilities of different elements are independent.
The resulting extension is [Calinescu et al., 2011, Vondrák, 2008a]

f̌(x) = E[f(x)] =
∑

S⊆E

f(S)
∏

e∈S

x(e)
∏

e/∈S

(1− x(e)). (2.16)

17

Chapter 2. Background

This extension is concave in any nonnegative direction and has been used for max-
imization problems. In the sequel, we use the Lovász extension.

2.3.2. Matroids, polymatroids and submodular functions

Submodular functions can be seen as a generalization of matroid rank functions.
A matroid itself is a generalization of the linear dependence structure of columns
of a matrix.

Matroids

Definition 2.1 (Matroid). Given a ground set E of elements, the tuple M = (E , I)
is a matroid if the following holds for its family I ⊆ 2E :

1. ∅ ∈I .

2. If I1 ⊆ I2 ∈ I, then I1 ∈ I.

3. If I1, I2 ∈ I and |I1| < |I2|, then there exists an element e ∈ I2 \ I1 such that
I1 ∪ {e} ∈I .

Each I ∈ I is called an independent set, and the family I is the family of indepen-
dent sets of the matroid. A set J /∈ I is said to be dependent.

If the elements in the ground set E are the columns of a matrix, then each set
of linearly independent columns is an independent set. Analogous to the rank of a
matrix, we can define the rank function of a matroid.

Definition 2.2 (Matroid rank function). The rank function r : 2E → R+ of a
matroid M = (E , I) is defined as

r(S) = max{|I| | I ⊆ S, I ∈ I}.

A matroid rank function is a nondecreasing, normalized, nonnegative and integral
submodular function. For all e ∈ E , the element-wise marginal costs ρf (e|S) of
a matroid rank function are always zero or one. This property is called the unit-
increase property.

Definition 2.2 shows that the independent sets I ∈ I are those for which it holds
that r(I) = |I|. The bases of a matroid are the maximal independent sets, that
means, if we add any element e /∈ B to a base B ∈ I, then the resulting set B∪{e}
is dependent. This also means that r(E) = r(B) for any base B. All bases have
the same cardinality. The bases of a matroid satisfy an exchange property : For all
bases B1, B2 and for any e1 ∈ B1 \ B2, there exists an element e2 ∈ B2 \ B1 such
that replacing e1 by e2 results in another base B1 − e1 + e2.

The matroid polytope P is the convex hull of the characteristic vectors of all inde-
pendent sets. Equivalently, it consists of all nonnegative vectors in the submodular
polyhedron Pr of the rank function.

18

2.3. Submodular functions

Polymatroids

Polymatroids generalize matroids [Edmonds, 1970].
Definition 2.3 (Polymatroid rank function). A function f : 2E → R over subsets
of a ground set E is a polymatroid (rank) function if

1. f(∅) = 0.

2. f is nondecreasing: S ⊆ T ⊆ E implies that f(S) ≤ f(T).

3. f is submodular.
Edmonds [1970] calls these functions β-functions. Matroid rank functions are

special cases of polymatroid functions for which the unit increase property holds.
The pair (E , f) is called a polymatroid.

To see the relation between polymatroids and matroids, recall that in a matroid,
(1) every subset of an independent set is independent, and (2) all bases have the
same cardinality. From the viewpoint of characteristic vectors, (1) means that if
S is independent and χS ∈ Pr, then χT ∈ Pr for all T ⊆ S or χT ≤ χS (“x ≤ y”
means that the inequality holds entry-wise). Now consider the following definition
by Edmonds [1970]: A polymatroid (polytope) P ⊂ RE

+ is a compact non-empty
set such that

1. P is down-monotone, i.e., if 0 ≤ x ≤ y and y ∈ P , then also x ∈ P .

2. For any vector y ∈ RE
+, every maximal x ≤ y with x ∈ P has the same

component sum
∑

e∈E x(e).
Edmonds calls the sum in (2.) the rank r(y) of y. The connection to set functions
follows from the polymatroid associated with a function f . The polymatroid P f

of a function f satisfying Definition 2.3 is

P f =
{
x ∈ RE

+ |
∑

e∈S

x(e) ≤ f(S) for all S ⊆ E
}
. (2.17)

Let χS be the characteristic vector of a set S ⊆ E , and define a vector zS such
that ze = f(e) if e ∈ S, and ze = 0 otherwise. If f(e) > 0 for all elements e, then
this vector has the same pattern of nonzeros as χS. If f is the rank function of
a matroid without self-loops (elements with f(e) = 0), then zS = χS. Moreover,
x ≤ zS for all x ∈ P f with x(e) = 0 for all e /∈ S. The rank of zS is

r(zS) = max
y∈P f ,y≤zS

y(E) = max
y∈P f

y(S) = max
y∈Pf

y · χS = f(S).

The greedy algorithm [Edmonds, 1970] implies the last equality. The vector y
maximizing the dot product over the submodular polyhedron (also called extended
polymatroid) of f must be nonnegative; this again follows from the greedy algo-
rithm and the fact that f is nondecreasing. Thus, maximizing over Pf or P f is
equivalent here. The equations show how the vector rank r yields the value of the
polymatroid function.

19

Chapter 2. Background

General submodular functions

A submodular set function generalizes polymatroid rank functions further as it nei-
ther needs to be nondecreasing nor normalized. It only still satisfies Inequality (2.1)
and of course also diminishing marginal costs.

Submodularity is sometimes defined as a property of functions over a distributive
lattice. For sets, the “meet” ∧ and “join” ∨ operations are set intersection and
inclusion, respectively. As this thesis only considers submodular set functions,
general lattices are only mentioned here. For a lattice P = (E ,1) with partial
order 1, the equivalent of Inequality (2.1) is

f(a ∨ b) + f(a ∧ b) ≤ f(a) + f(b) (2.18)

for all a, b ∈ P .

2.3.3. Examples of submodular functions

For illustration, this section lists some examples of submodular functions that are
well-known or that will be relevant in subsequent chapters.

Matroid rank functions

Column matroid/linear matroid. Consider a matrix M whose columns are
indexed by elements in a ground set E . A set S ⊆ E is independent if the corre-
sponding columns are linearly independent, otherwise it is dependent.
Uniform matroid. The perhaps simplest matroid is the uniform matroid. In a
uniform matroid of rank k, all sets with cardinality less than or equal to k, |S| ≤ k,
are independent. Its rank function is r(S) = min{|S|, k}. A free matroid is a
uniform matroid with k = |E| in which all sets are independent.
Partition matroid. Consider a partition of the ground set E into m disjoint sets
Ei. Each Ei is assigned a rank ki. A partition matroid defines its independent sets
as

I = {I ⊆ E | (I ∩ Ei) ≤ ki for all 1 ≤ i ≤ m}. (2.19)

We can view this matroid as a direct sum of uniform matroids. The direct sum of
these uniform rank functions is the rank function of the partition matroid:

r(S) =
m∑

i=1

min{|S ∩ Ei|, ki}. (2.20)

A simple example of a partition matroid is the following: assume each element in
the ground set has a color, and the rank of a set is the number of colors occurring
in that set. In this matroid, we have one Ei for each color, and ki = 1 for all i.
Bipartite matching or bipartite connected components. The following ma-
troid will become important in Chapter 3. The elements in the ground set are

20

2.3. Submodular functions

vertices in a graph, and each vertex has degree one. This graph implements a
bipartite matching. A set is independent if it does not contain any two connected
nodes. Indeed, these are the independent sets of the graph. For this particular
graph, the rank function can be seen to define a matroid by relating the graph
to a partition matroid. The edges are the sets Ei of the partition, each has two
elements. With ki = 1 for each edge, the resulting partition matroid is equivalent
to the bipartite matching matroid. (Remark: this matroid is different from what
is commonly referred to as a “matching matroid”.)
Graphic matroid. A frequently occurring matroid is the graphic matroid. Its
ground set is the set of edges E in a graph G = (V , E). A set of edges is independent
if it defines a cycle-free subgraph of G. In other words, all independent sets are
forests, and, if G is connected, then the bases are the spanning trees of G. We will
encounter this matroid in Chapter 8.

Polymatroid rank functions

Covers. Assume each element e in the ground set E has an associated area ar(e)
that it covers, for example, sensors operating in a particular area. The function
ar : 2E → R+ measures the area that is jointly covered by the elements in a set.
This function obviously satisfies the condition of diminishing marginal function
values.
Neighborhoods in bipartite graphs. The discrete analogue of cover functions
are neighborhoods in a bipartite graph G = (V1,V2,F). The ground set is V1. We
define the neighborhood function N : 2V1 → 2V2 , illustrated in Figure 2.1, as

N (S) = {v ∈ V2 | v is connected to a node u ∈ S by an edge (u, v) ∈ F}. (2.21)

The function f : 2V1 → R+ defined as f(S) = |N (S)| is normalized and nonde-
creasing submodular.
Maximum. A simple example of a polymatroid rank function is the maximum.
Assume each element e ∈ E has a nonnegative weight w(e). Then the maximum
function charges the weight of the heaviest element in the set: f(S) = maxe∈S w(e).
For consistency, we set f(∅) = 0.
Discounted price functions. Let w : 2E → R+ be a normalized modular func-
tion. Goel et al. [2010] define a discounted price function as a nondecreasing
concave scalar function g composed with w, i.e., f(S) = g(w(S)) = g(

∑
e∈S w(e)).

It must also hold that g(0) = 0. It has long been known that h(w(S)) for a scalar
function h is submodular if h is concave [Shapley, 1971]; for a polymatroid rank
function, the scalar function must also be nondecreasing.
Entropy. A well-known example of a polymatroid rank function is the joint Shan-
non entropy. Here, each element in the ground set E is a random variable, and
the function f(S) is the joint entropy of the variables in S. Since f(∅) = 0, this
function is a polymatroid rank function.

21

Chapter 2. Background

Submodular functions

Cut function. Given an undirected weighted graph G = (V , E , w), the ground set
is the set V of nodes. The cut δ(S) around a set of nodes S ⊆ V is the weight of
the edges that have only one end-point in S, that is,

δ(S) = {e ∈ E | |e ∩ S| = 1}. (2.22)

The cut function cut : 2V → R+ measures the weight of a cut around a set, i.e.,
cut(S) = w(δ(S)) =

∑
e∈δ(S) w(e). This function is submodular. A similar defini-

tion holds for a directed cut in a directed graph.
Concave function of a sum. A scalar, not necessarily monotone concave func-
tion g : R+ → R composed with a sum, i.e., nonnegative modular function
w : 2E → R+, is submodular [Shapley, 1971]. Such a function is defined as
f(S) = g(w(S)). Shapley [1971] calls the supermodular equivalent of such a func-
tion, derived as a convex function of a sum, a convex measure game.

A short discussion

The above examples already offer a glimpse of the myriad of different types of
submodular functions. For these functions, there are additional distinctions other
than being monotone or not. First of all, symmetric submodular functions that
satisfy f(S) = f(E \ S) seem to be easier to handle: they can be minimized in
cubic time [Queyranne, 1998], whereas the best known worst-case running time
for general submodular minimization is at least O(n6) [Orlin, 2009]. Even for sub-
modular maximization, symmetric submodular functions admit better or simpler
approximation results than general submodular functions [Feige et al., 2011].

Furthermore, the identifiability of “interactions” varies. As an example, for covers
or for discounted price functions with a strictly concave g, the “interaction structure”
of the elements is rather simple. By considering a pair of elements alone one can
see whether they interact or not, i.e., whether their joint presence in a set S will
make the cost of S less than the sum of the costs of single elements in S. Formally,
the cost is reduced as f(S) <

∑
e∈S f(e) if and only if there exist ei, ej ∈ S with

f({ei, ej}) < f(ei)+f(ej). In contrast, for the rank of a graphic matroid on a graph
without multi-edges or self loops, it holds that f({ei, ej}) = f(ei) + f(ej) = 2 for
any pair of edges in a cycle C, even though f(C) = |C|− 1 < |C|. In some sense,
the functions are harder to optimize if interactions cannot be identified from small
groups, at least if the underlying structure is unknown. This “hiding” property can
be exploited for proving lower bounds as demonstrated in Chapter 3.

Moreover, the uniform matroid appears to be simpler than, say, the graphic
matroid. The rank of the uniform matroid only depends on the cardinality of the
argument and therefore the function is invariant to permutations of the ground
set. This is another type of symmetry. Other functions with more underlying
structure do not treat all elements equally. The notion of symmetry with respect

22

2.3. Submodular functions

to permutations has been studied with respect to the hardness of submodular
maximization, where the “symmetry gap” plays a role [Vondrák, 2011].

2.3.4. Operations and construction of additional submodular
functions

Given the basic submodular functions above, several operations allow to define
additional submodular functions. Some examples are outlined next.

Complement

If f is submodular, then the function f̄ defined by taking complements, f̄(S) =
f(E \ S) is also submodular.

Sum

It is simple to check that any linear combination
∑m

i=1 αifi of submodular functions
fi with positive coefficients αi is submodular.

Contraction

The contraction of a function f by a set A ⊆ E is defined for any S ⊆ E \A as the
marginal cost

fA(S) = ρf (S|A) = f(A ∪ S)− f(A). (2.23)

The contraction of a submodular function is submodular.

Direct sum

Given two submodular functions f1 : 2E1 → R+ and f2 : 2E2 → R+ on disjoint
ground sets E1 ∩ E2 = ∅, we can define their direct sum f1 ⊕ f2 : 2E1∪E2 → R+:

(f1 ⊕ f2)(S) = f1(S ∩ E1) + f2(S ∩ E2). (2.24)

The direct sum is again a submodular function. Conversely, a set function f is
decomposable with respect to a partition {E1, . . . , Ek} of the ground set E if

f(S) =
k∑

i=1

f(S ∩ Ei) (2.25)

for all S ⊆ E . The sets Ei are called separators of f . The direct sum construction
makes E1 and E2 the separators of f1 ⊕ f2. In the sequel, a separable function will
be a function that is decomposable this way with respect to any partition, that
means a modular function f(S) =

∑
e∈E f(S ∩ e).

23

Chapter 2. Background

As mentioned above, the rank of a partition matroid can be viewed as a direct
sum of uniform matroid rank functions. Similarly, the label costs defined in Sec-
tion 2.5 can be constructed as a direct sum of polymatroid rank functions of the
form

fi(S) =

{
0 if S = ∅
γi min(|S|, 1) > 0 otherwise.

(2.26)

Direct sum constructions derived from a partition of a large ground set will be used
in particular for the applications to image segmentation in Chapter 6.

Truncation

The truncation of a nondecreasing normalized submodular function f at threshold
γ > 0 is defined as g(S) = min{f(S), γ} and again submodular. As an example, a
uniform matroid is the truncation of the cardinality function at k.

Convolution

The (lower) convolution of two submodular functions f, g is

(f ∗ g)(S) = min
T⊆S

f(T) + g(S \ T). (2.27)

The convolution is submodular if f or g is modular, but otherwise not necessarily.
If f and g are matroid rank functions, then f ∗ g is the rank function of the
intersection of the matroids. Matroid intersections are not always matroids.

Truncations will occur in Chapter 4. Moreover, a truncation is a convolution
with a function of the form (2.26).

Functions induced by a graph

Given a bipartite graph G = (V1,V2,F), the neighborhood N (S) of a set of nodes
S ⊆ V1 was defined in Equation (2.21) as the set of nodes in V2 reachable from
nodes X ⊆ V1 via edges F . Figure 2.1 illustrates such a neighborhood.

Proposition 2.1. Let f2 : 2V2 → R+ be a nondecreasing submodular function on
subsets of V2. Then the induced function f1 : 2V1 → R+,

f1(S) = f2(N (S)) (2.28)

is nondecreasing submodular.

24

2.3. Submodular functions

Figure 2.1 Bipartite graph and the neighborhood
N (A) ⊆ V2 of set A ⊆ V1.

A N(A)

V1 V2

Proof. The proof relies on diminishing marginal costs (see also [Schrijver, 2004,
§44.6g]). Let S ⊆ T ⊆ V1 \ {v}. By the submodularity of f2, it holds that

f1(T ∪ {v})− f1(T) (2.29)
= f2

(
N (S) ∪N (T \ S) ∪ (N (v) \ N (T))

)
− f2(N (S) ∪N (T \ S)) (2.30)

≤ f2
(
N (S) ∪ (N (v) \ N (T))

)
− f2(N (S)) (2.31)

≤ f2
(
N (S) ∪N (v)

)
− f2(N (S)) (2.32)

= f1(S ∪ {v})− f1(S). (2.33)

For the second inequality, we used that f2 is nondecreasing.

2.3.5. Minimizing submodular functions

Optimization of submodular functions is an ongoing topic of research. Whereas
maximizing submodular functions is NP-hard, minimizing submodular functions
is not. As this thesis focuses on minimization problems, we give an overview of
results for minimization. Further details of unconstrained submodular minimiza-
tion are discussed in Chapter 7, and submodular minimization with combinatorial
constraints is addressed in Chapters 3 and 4.

Unconstrained submodular function minimization

The first polynomial-time algorithm for minimizing general submodular functions
uses the ellipsoid method and was devised by Grötschel et al. [1981]. The ini-
tial pseudo-polynomial algorithm was later turned into a strongly polynomial one
[Grötschel et al., 1988, p. 311]. The question about a polynomial-time combina-
torial algorithm remained open for longer. Cunningham [1984] resolved it for the
special case of a difference between a matroid rank function and a rational modular
function3. In a different article [Cunningham, 1985a], he showed a flow-like frame-
work that led to a pseudo-polynomial time algorithm and that inspired further
developments. The first strongly polynomial-time combinatorial algorithms were

3Strictly speaking, Edmonds [1965] already solves the minimization of a matroid rank minus a
scaled cardinality function.

25

Chapter 2. Background

then presented by Iwata et al. [2001] and Schrijver [2000]. Several papers followed
with further algorithms and improvements, summarized in [Fleischer, 2000, Mc-
Cormick, 2006]. The currently (as of February 2012) fastest strongly polynomial
combinatorial algorithm has a worst-case running time of O(n5τ +n6) for a ground
set of size n and time τ of querying the function oracle [Orlin, 2009].

An alternative with to date unknown complexity is the minimum norm point
algorithm, also called the Fujishige-Wolfe algorithm [Fujishige et al., 2006, Fujishige
and Isotani, 2011]. However, an example in Chapter 7 indicates that the worst-case
running time of the minimum norm point algorithm may not always be practical
either.

Lower bounds on the number of function oracle queries needed for submodular
minimization are still an open problem, apart from the obvious bound of Ω(m)
[McCormick, 2006, Harvey, 2008].

Not all submodular functions pose the same algorithmic complications as the
general case. Symmetric submodular functions, for which f(S) = f(E \ S) for all
S ⊆ E can be minimized in cubic time [Queyranne, 1998]. The same technique,
a generalization of a minimum cut algorithm, applies to posimodular functions,
which satisfy f(S \ T) + f(T \ S) ≤ f(S) + f(T) [Nagamochi and Ibaraki, 1998].
Minimum cut in a graph is another well-studied special case of symmetric submod-
ular function minimization.

Constrained submodular function minimization

Whereas unconstrained submodular minimization is solvable in polynomial time,
even simple constraints very quickly render the problem NP-hard. When consider-
ing that cut functions are a special case of submodular functions, this observation,
however, is not so surprising. Minimum cuts can be computed in low-order polyno-
mial time, but most additional size constraints lead to very hard problems [Wagner
and Wagner, 1993, Khot, 2004].

Minimizing submodular functions over a ring4 or crossing family can be reduced
to submodular minimization over a power set [Grötschel et al., 1988, Chapter 10].
Similarly, the constraint that the solution should have odd cardinality does not
make the problem NP-hard [Grötschel et al., 1981, 1984], [Grötschel et al., 1988,
Section 10.4]. When looking at the more general notion of lattices (instead of
power sets), submodular minimization is feasible over finite distributive lattices (if
the smallest and largest element in the lattice and the preorder are computable in
polynomial time) [Schrijver, 2004, Section 49.3]. Krokhin and Larose [2008] show
a number of non-distributive and product lattices for which submodular minimiza-
tion is polynomial-time solvable.

Size constraints, in contrast, result in difficult problems. Svitkina and Fleischer
[2008] assume a modular weight function w on the ground set and define submod-

4A ring family is a collection of subsets that is closed under union and intersection.

26

2.4. Graph cuts

ular balanced cut as minimizing a submodular function f(S) subject to the
constraint that w(S) ≥ γw(E) and w(E \ S) ≥ γw(E) for a fraction γ ∈ [0, 1].
The approximation factor for this problem has a lower bound of Ω(

√
n/ log n) in

the oracle model. A similar lower bound holds for bicriteria approximations and a
constraint w(S) ≥ W , proved in the same paper. The equality constraint |S| = k
has long been known to render minimum cut (a special case of submodular mini-
mization) NP-hard [Garey et al., 1976], and this does not only hold for k = n/2
[Feige et al., 2003, Bui and Jones, 1992]. Nagano et al. [2011] show that the vector
in Bf with minimum norm gives the optimal solution for a subset of possible k,
however, this subset cannot be controlled.

An upper bound on the cardinality of the solution too makes the problem hard,
but only an NP-hardness result is known [Svitkina and Fleischer, 2008]. In this
setting, symmetric submodular functions are again “easier” and can be minimized
with cardinality upper bounds in polynomial time. Goemans and Soto [2010] prove
that this holds for all constraints that define downward-monotone families of sets.
Being downward-monotone means that if the family contains a set S, then it also
contains all subsets of S.

Combinatorial constraints, such as that the solution should be a spanning tree
or a cut in a given graph, are even harder. Chapter 3 summarizes results for such
constraints and shows new results for cut constraints.

2.4. Graph cuts

A wide range of problems in operations research, machine learning, computer vision
and network analysis can be phrased as graph cuts. A cut in a graph G = (V , E)
with nodes V and edges E is a set of edges C ⊆ E whose removal partitions the
graph, so that the resulting graph has at least one more connected component
than without the edge removal. This definition holds for directed and undirected
graphs. An (s, t)-cut for distinguished terminal nodes s, t ∈ V is a set of edges
whose removal disconnects all paths from s to t.

In general, we are seeking a minimal cut, that means a cut C ⊆ E such that no
proper subset B ⊂ C is a cut. A minimal cut in a connected graph is always the
boundary δ(S) of a set of nodes S ⊆ V , that is, C = δ(S) = {(u, v) ∈ E | u ∈ S, v ∈
V \ S}. The standard minimum (s, t)-cut problem reads as follows:

Problem 2.1 (Minimum (s, t)-cut (MinCut)). Given a graph G = (V , E) with
edge weights w : E → R+ and two distinguished terminal nodes s, t ∈ V, find the
(s, t)-cut C ⊆ E with minimum weight w(C) =

∑
e∈C w(e).

The MinCut problem can be stated in a general form as

min f(C) s.t. C is an (s, t)-cut. (2.34)

27

Chapter 2. Background

The standard MinCut problem uses an additive, nondecreasing cost f(C) =
w(C) =

∑
e∈C w(e).

If the weights w are nonnegative, then MinCut with such an additive cost
function can be solved in polynomial time in e.g. O(n3) or O(n2

√
m) [Ahuja

et al., 1993], usually via its dual problem, MaxFlow. Empirically, the running
times for special graphs (for adapted algorithms) can be much better. Boykov and
Kolmogorov [2004], for example, report near-linear running times for grid graphs
used in computer vision. If edge weights are allowed to be negative, then the
minimum cut problem is NP-hard, as it includes MaxCut, and as Correlation
Clustering for 2 clusters can be reduced to it. For correlation clustering, the
graph edges are relations “similar” or “dissimilar” between adjacent nodes. The
task is to group the nodes to minimize the similarity relations across clusters and
the dissimilarity relations within clusters. This problem was proven to be NP-hard
by Shamir et al. [2002], Giotis and Guruswami [2006].

Furthermore, the minimum cut problem becomes hard when (polynomial) size
constraints on the partition are added [Wagner and Wagner, 1993]. Chapter 3
shows that more general non-additive cost functions can also make the problem
hard, in fact, they lead to lower bounds that are larger than for many of the
size-constrained cut problems.

Minimum cut and Maximum flow

The dual problem to MinCut is the MaxFlow problem [Ford and Fulkerson,
1954, 1956, Dantzig and Fulkerson, 1955, 1956]. This duality result has had great
impact, and a generalization of it will become important in Chapter 4. Therefore
we review it duality here.

The MaxFlow problem asks to maximize the flow from node s (the source)
to node t (the sink), while regarding the constraints that the flow on each edge e
should not exceed the capacity w(e).

We begin with the linear program (LP) for MinCut which has variables π ∈
[0, 1]V for nodes and x ∈ [0, 1]E for edges. An edge is in the cut if x(e) = 1.

min
x,π

∑

e∈E

w(e)x(e)

s.t. π(v)− π(u) + x(e) ≥ 0 ∀e = (u, v) ∈ E
π(s)− π(t) ≥ 1

0 ≤ x,π ≤ 1

This LP always has an integral optimal solution (because the constraint matrix is
totally unimodular), and so nothing changes if we relax the constraints x ∈ {0, 1}E
and π ∈ {0, 1}V to those variables being between zero and one. In the optimal
solution, π is the indicator vector of the nodes reachable from s, that is, the s-
side of the cut, and x(e) = 1 if and only if edge e crosses the cut from the s-side
(π(v) = 1) to the t-side (π(v) = 0).

28

2.4. Graph cuts

The dual problem reads as follows, using constants d(v) = 0 if v ∈ V \ {s, t},
d(u) = 1 if u = s, and d(u) = −1 if u = t:

max
ν,ϕ

ν

s.t. ϕ(e) ≤ w(e) ∀e ∈ E
∑

e∈δ+v

ϕ(e)−
∑

e′∈δ−v

ϕ(e′) = d(v)ν for all v ∈ V

ϕ ≥ 0.

The variable ν ∈ R captures the total flow out of the source and into the sink. For
v -= s, t, the second inequality says that the flow into and out of a node should
be the same. The flow on an edge e is denoted by ϕ(e). In a directed graph, we
denote the boundary of outgoing edges by δ+S = {(u, v) ∈ E | u ∈ S, v /∈ S} and
that of incoming edges by δ−S = {(v, u) ∈ E | u ∈ S, v /∈ S}. We see that the
weight w(e) of an edge reappears in the flow program as the capacity of an edge.

Cooperative Cut

The common cost in the MinCut problem is the sum f(C) = w(C) of weights of
the cut edges. This is a separable, modular function, meaning that it is a sum of
terms that involve only one edge each. The results in Chapter 3 suggest that, given
f is nonnegative and nondecreasing, this separability is an essential ingredient for
MinCut being tractable. While enabling efficient algorithms on the one hand, such
an additive cost function can, on the other hand, be very limiting. An example are
the simple models in Figure 1.1 that rely on additive unary or pairwise energies
(the latter are closely related to minimum cuts).

In the following chapters we allow f to be non-separable. In particular, f can
be any nondecreasing, nonnegative submodular function. We re-state a central
problem in this thesis:

Problem 2.2 (Minimum Cooperative Cut (MinCoopCut)). Given a graph G =
(V , E), two distinguished terminal nodes s, t ∈ V and a nonnegative, nondecreasing
submodular function f : 2E → R+, find an (s, t)-cut C ⊆ E minimizing the cost
f(C).

We will say that edge e cooperates with the edges in B ⊆ E if its marginal cost
with respect to B is smaller than its individual cost: ρf (e|B) < f(e). Then it holds
that the joint cost f(B∪e) <

∑
e′∈B∪e f(e

′) is smaller than the sum of element-wise
costs.

29

Chapter 2. Background

2.5. Examples of combinatorial problems with
submodular cost functions

Apart from the new applications of CoopCut that will be encountered in subse-
quent chapters, there is a range of combinatorial problems whose cost function is
not a sum of weights. The following list points to some examples. All of these
examples are combinatorial problems with submodular cost functions.

Label Costs

With label costs, each element e in the ground set E has a set of labels (features)
π(e) ⊂ L, and the cost f(S) of a set S ⊆ E is the cost of the labels of its elements:
f(S) = c(

⋃
e∈S π(e)). Labels are shared among several elements, and the cost of a

set of labels L is additive: c(L) =
∑

&∈L c(.). This function is an instance of the
neighborhood functions defined above: in Figure 2.1, V1 are the elements and V2

the labels, and an element is connected to its labels. Label costs will enjoy special
attention in Chapter 8.

In a network, the labels can correspond to transportation media or edges main-
tained by the same company, and choosing paths or trees that span few labels low-
ers the cost. That is, labels or classes implement fixed costs. Another application
is reliable connectivity structures in networks: links do not break independently,
but share physical resources or other common sources of failure. They belong to
“Shared Risk Link Groups” [Yuan et al., 2005], modeled by common labels. Related
ideas have surfaced in computer security. Attack graphs are state graphs modeling
the steps of an intrusion, where transition edges are labeled by atomic actions. In
such a graph, the minimum label cut indicates the lowest-cost prevention of an
intrusion [Jha et al., 2002].

Finally, the Minimum Hitting Set of Bundles problem [Angel et al., 2009]
is a label cost problem with multiple labels. For this problem, we are given a
ground set I of items i, each with a cost c(i), and bundles of items. In addition,
there is a collection of sets S, and each S is a set of bundles b, as illustrated
in Figure 2.2. The aim is to find the cheapest selection of items such that this
selection covers at least one bundle in each S. In other words, we are trying
to find a selection of bundles B, one bundle for each S, that has minimum cost
f(B) =

∑
i∈b for a b∈B c(i). The latter is a label cost problem: assign to each bundle b

a set of labels (items) π(b) = {i | i ∈ b}. Now we can write f(B) =
∑

i∈
⋃

b∈B π(b) c(i).
Minimum Hitting Set of Bundles subsumes problems such as the multiple
query optimization problem, where a set S is a query, its bundles are different
plans of action that lead to answering the query, and the items in a bundle, i.e.,
plan, are the tasks necessary to execute that plan [Angel et al., 2009]. A low-cost
set of bundles will answer all queries with the minimum number or cost of tasks,

30

2.5. Submodular-cost combinatorial problems

Figure 2.2 Minimum hitting set of bundles. The
bundles are the hexagons, and one item is denoted
by one small colored disk.

S1
S2

S3

exploiting that some tasks are shared. A further special case is the Min-k-SAT
problem.

Categorized bottleneck problems

Related to label cost problems are categorized bottleneck path problems
[Averbakh and Berman, 1994], where the edges in a graph G = (V , E) are par-
titioned into categories Ei. Each edge e ∈ E has a weight w(e), and the cost
of a path P ⊆ E is the sum of the maximal weights used from each category:
c(P) =

∑
i maxe∈P∩Ei w(e). This problem models “right of passage” or “usage”

settings [Averbakh and Berman, 1994]. For example, the categories indicate dif-
ferent companies or means of transportation that operate the respective edges in
that category. The companies charge customers via “day pass” tickets, and those
tickets cost according to the longest edge used from the category. Similarly, the
categorized bottleneck assignment problem [Aggarwal et al., 1986, Pun-
nen, 2004, Seshan, 1981] derived from the sum assignment problem, the catego-
rized bottleneck spanning tree problem [Richey and Punnen, 1992] and the
categorized bottleneck traveling salesman problem [Punnen, 1992] are
combinatorial problems with submodular costs.

Bottleneck problems for only one category have received attention in the litera-
ture, too, for example in the context of routing and communication network design
[Hochbaum and Shmoys, 1986, Hochbaum and Pathria, 1996]. They also occur in
computer vision, as we will see in Chapter 6.

Minimum power assignment or minimum-energy broadcasting

In wireless ad-hoc networks G = (V , E), we seek a connectivity structure (e.g.,
a spanning tree) S ⊆ E that has minimum power requirement. The power con-
sumption of a node depends on the most expensive edge it is using, p(v|S) =
maxe=(v,u)∈S c(e), and the total cost is the sum of the node costs, f(S) =∑

v∈V p(v|S) [Calinescu et al., 2003, Wan et al., 2002, Wieselthier et al., 2000].

Stochastic optimization

In discrete mean-risk minimization, one aims to minimize a stochastic cost function
over a collection of structures S ⊆ 2E while avoiding risks. The resulting optimiza-

31

Chapter 2. Background

Gc Gc GcGp
Gc Ge

Figure 2.3. Illustration of a dynamic graphical model.

tion problems have cost functions of the form f(S) =
∑

e∈S µe +Ω
√∑

e∈S σ
2
e — a

submodular function. Instead of the square root, other concave functions can arise
that yield submodular set functions [Atamtürk and Narayanan, 2008].

Separators in dynamic graphical models

One motivating application for the study of MinCoopCut was that of finding
separators in dynamic graphical models. A graphical model G = (V,E) is a graph
that defines a family of probability distributions. It has a node vi for each random
variable xi, and any represented distribution p(x) must factor with respect to the
edges of the graph as p(x) ∝

∏
(vi,vj)∈E ψij(xi, xj). A dynamic graphical model

consists of three template parts: a prologue Gp = (Vp,Ep), a chunk Gc = (Vc,Ec)
and an epilogue Ge = (Ve,Ee). Given a length τ , an unrolling of the template is a
model that begins with Gp on the left, followed by τ + 1 repetitions of the “chunk”
part Gc and ending in the epilogue Ge. The prologue Gp may be connected to nodes
from Gc, but not to Ge.

Obviously, the unrolled models are quite repetitive, as the same chunk is period-
ically repeated. When performing inference, such models are commonly cut into
repeating segments, and then the segments are processed separately before merging
the results, which means, for example, stitching together separately triangulated
segments [Bilmes, 2010]. The separating interface are the nodes at the boundary
that are connected to two segments and are included in one or both adjacent seg-
ments. The segments or “slices” form a junction tree, and they need not correspond
to the chunks. In fact, the properties of the interfaces determine the complexity of
inference (as those variables must become a clique).

The cost of inference grows with the size of the joint state space of the interface
variables. A “small” separator corresponds to a minimum vertex cut in the graphical
model, where the cost function measures the size of the joint state space. Vertex
cuts can be rephrased as standard edge cuts. Often, a modular cost function suffices
for good results. Sometimes, however, a more general cost function is needed, e.g.,
Bilmes and Bartels [2003] demonstrate that it can be beneficial to use a state space
function that considers determinism between variables.

An example of a function that respects determinisms is the following. In a
Bayesian network that has determinism, let D be the subset of fully deterministic

32

2.5. Submodular-cost combinatorial problems

nodes. That means any xi ∈ D is a deterministic function of the variables cor-
responding to its parent nodes par(vi): p(x|xpar(vi)) = 1[xi = g(xpar(vi))] for some
function g. Let Di be the state space of variable xi. Furthermore, given a set A of
variables, let AD = {xi ∈ A ∩ D | par(vi) ⊆ A} be its subset of fully determined
variables. If the state space of a deterministic variable is not restricted by fixing a
subset of its parents, then the function measuring the state space of a set of vari-
ables A is f(A) =

∏
xi∈A\AD

|Di|. The logarithm of this function is a submodular
function. This means we aim to find a vertex separator with minimum submodular
cost, or, rephrased in terms of edges, a minimum cooperative cut.

More generally, as the same slicing can be used for parallel processing, we may
seek a separator that requires little information to be transferred from one segment
to another, i.e., from one processor to another. A good proxy for such “compressibil-
ity” might be entropy. The resulting optimization problem is again a cooperative
cut. The algorithms in Chapter 4 apply to both entropy and the state space func-
tion for finding suitable efficient separators.

33

Chapter 3.

Hardness of MinCoopCut

Before exploring algorithms for solving the Minimum Cooperative Cut problem,
we establish results on the hardness of the problem. We prove that MinCoopCut
is NP-hard, and then show a lower bound on the approximation factor that puts
the upper bounds in Chapter 4 in context. While the non-constant lower bound
is the mathematically stronger result, the reduction for proving NP-hardness may
be of interest for its construction.

3.1. Related hardness results

The introductory Chapter 2 already lists some hardness results for constrained
submodular minimization. Here we review results for submodular minimization
with combinatorial constraints.

Many constrained submodular problems are known to be NP-hard, and Theo-
rem 3.1 adds MinCoopCut to the list of these problems. Moreover, several lower
bounds have been shown recently: Iwata and Nagano [2009] consider covering con-
straints, and Goemans et al. [2009] study submodular-cost Minimum Spanning
Tree, Perfect Matching, Shortest Path and Edge Cover. These lower
bounds, summarized in Table 3.1, are mostly polynomial. In that respect, The-
orem 3.2 fits well within the set of existing results. These results are worst-case
results and hold for the entire class of nondecreasing submodular functions.

Special cases in the wide family of these non-modular combinatorial problems
have been studied separately. The Minimum Hitting Set of Bundles problem
can be formulated as a submodular-cost hitting set problem, as described in Sec-
tion 2.5. This problem does not admit an approximation factor better than N−1−ε
(N ≥ 3), where N is the maximum number of bundles per set [Angel et al., 2009].
A further well-studied special case are label cost problems, many of which are also
NP-hard. They are mostly neither constant-factor approximable, but, for certain
constraint classes, admit logarithmic instead of polynomial approximation factors.
Table 3.2 summarizes a selection of hardness results. In particular, Minimum La-
bel Cut, a special case of MinCoopCut, has been shown to be NP-hard [Jha
et al., 2002] via a reduction from Hitting Set. This result is an alternative proof
to Theorem 3.1 below, however, the proof below illustrates the expressive richness
of CoopCut via a different, new construction. Zhang et al. [2011] prove a lower

34

3.2. Minimum Cooperative (s, t)-Cut is NP-hard

Problem Lower Bound Reference
Set Cover Ω(ln |U|) Iwata and Nagano [2009]
Minimum Spanning Tree Ω(n) Goel et al. [2009]
Shortest Path Ω(n2/3) Goel et al. [2009]
Perfect Matching Ω(n) Goel et al. [2009]
Minimum Cut Ω(

√
n) Theorem 3.2

Table 3.1. Hardness results for combinatorial problems with submodular costs, where
n is the number of nodes, and U the universe to cover.

Problem Lower bound Reference
Min. Spanning Tree Ω(logn) Krumke and Wirth

[1998]
Shortest Path 2(logm)1−(log logm)−c

, c < 0.5 Zhang et al. [2011]
Perfect Matching (Kn,n) (0.5− ε) logn, any ε > 0 Monnot [2005]
Minimum cut 2(logm)1−(log logm)−c

, c < 0.5 Zhang et al. [2011]

Table 3.2. Lower bounds for label cost problems in graphs with n nodes and m edges.

bound on the approximation factor for Minimum Label Cut. Their proof, a
reduction from Label Cover, makes different assumptions and is in general dif-
ferent from the information-theoretic technique used to prove Theorem 3.2. We
proved Theorems 3.1 and 3.2 before knowing of the results for label cuts.

Finally, Goel et al. [2010] study hardness results in a multi-agent setting, where
the cost of each agent is one discounted price function. Problems that are closer to
covers, such as edge cover or spanning tree (a submodular cover), admit logarithmic
approximation factors, whereas Perfect Matching and Shortest Path remain harder,
with polylogarithmic lower bounds. This pattern resembles that of label costs, and
the proof techniques too are similar to those used for label costs [Hassin et al., 2007].
Other restricted classes of (submodular) functions admit an FPTAS [Nikolova, 2010,
Goyal and Ravi, 2008, Mittal and Schulz, 2012], even though the running times for
these algorithms are in general not very practical either.

3.2. Minimum Cooperative (s, t)-Cut is NP-hard

Theorem 3.1. Minimum Cooperative (s, t)-Cut is NP-hard.

The proof of this Theorem is a reduction from Graph Bisection, which is
known to be NP-hard [Garey et al., 1976].

Definition 3.1 (Graph Bisection). Given a graph GB = (VB, EB) with edge
weights wB : EB → R+, find a partition V1∪̇V2 = VB with |V1| = |V2| = |VB|/2 with
minimum cut weight w(δ(V1)).

35

Chapter 3. Hardness of MinCoopCut

s t

(a) graph G with Es (blue), Et (red) and
GB (black)

(s, v1)

(v1, t)

(s, v2) (s, v3) (s, v4) (s, v5) (s, v6)

(v2, t) (v3, t) (v4, t) (v5, t) (v6, t)

(b) graph Hσ

(s, v1)

(v1, t)

(s, v2) (s, v3) (s, v4) (s, v5) (s, v6)

(v2, t) (v3, t) (v4, t) (v5, t) (v6, t)

φ(Cs)

φ(Ct)

(c) hσ(φ(C)) = 5 connected components

(s, v1)

(v1, t)

(s, v2) (s, v3) (s, v4) (s, v5) (s, v6)

(v2, t) (v3, t) (v4, t) (v5, t) (v6, t)

φ(Cs)

φ(Ct)

(d) balanced cut C: hσ(φ(C)) = 3 con-
nected components

Figure 3.1. Graph for the reduction and examples for the definition of fbal via ranks hσ,
with nB = 6. In (c), Cs = {(s, v1), (s, v2)} and Ct = {(v3, t), (v4, t), (v5, t), (v6, t)}; in (d),
Cs = {(s, v1), (s, v4), (s, v5)} and Ct = {(v2, t), (v3, t), (v6, t)}. Connected components are
indicated by dashed lines.

Proof. To reduce graph Bisection to MinCoopCut, we construct an auxil-
iary graph with two additional terminal nodes. The submodular edge weights
on the edges adjacent to the terminal nodes will express the balance constraint
|V1| = |V2| = |VB|/2. The edge weights on the instance for graph bisection remain
unchanged. The proof involves three graphs: a given instance GB of Graph Bi-
section, a graph G that has a cooperative cut cost function and represents the
graph bisection instance GB = (VB, EB), and a graph Hσ that defines the cost
function on G.

To form G, we retain GB with the modular costs on EB, add nodes s, t and
connect those to every vertex in GB with corresponding new edge sets Es and Et.
That means, G = (VB ∪ {s, t}, EB ∪ Es ∪ Et), as Figure 3.1(a) shows. The cost of a
cut in the auxiliary graph G is measured by the submodular function

f(C) =
∑

e∈C∩EB

w(e) + βfbal(C ∩ (Es ∪ Et)), (3.1)

where β is an appropriately large constant, and fbal will be defined later. The
cost fbal on Es ∪ Et implements the equipartition constraint on VB. Obviously, any
(s, t)-cut C must include at least nB = |VB| edges from Es ∪ Et. A minimal cut
assigns v ∈ VB to t by cutting (s, v), and to s by cutting (v, t), and thus defines
a partition of VB. As a result, the cardinality of Cs = C ∩ Es is the number of
nodes in VB assigned to t. An analogous equivalence holds for Ct = C ∩ Et. In an
equipartition, |Cs| = |Ct| = nB/2.

36

3.2. Minimum Cooperative (s, t)-Cut is NP-hard

We now implement the equipartition constraint by a submodular, nondecreasing
cost on Es ∪ Et. The function will be a sum of matroid rank functions hσ. Each hσ

is based on a bipartite graph Hσ = (Es, Et,Fσ) that has nodes Es∪Et. Its edges Fσ

form a derangement1 σ between nodes from Es and Et, as illustrated in Fig. 3.1(b).
We denote by φ(Cs ∪ Ct) the image of Cs ∪ Ct in the set of nodes of Hσ. Let the
rank function hσ : 2φ(Es∪Et) → N0 count the number of connected components in
the subgraph induced by the nodes φ(Cs ∪ Ct). Figure 3.1 shows some examples.
Each derangement on nB items induces such a rank2.

Let S be the set of all derangements σ of nB elements, i.e., all possible edge
configurations in the graphs Hσ. We define fbal to be the expectation of hσ if
σ ∈ S is drawn uniformly at random:

fbal(C) = Eσ[hσ(φ(C))] = |S|−1
∑

σ∈S
hσ(φ(C)). (3.2)

For a fixed derangement σ′ and a fixed size |Cs ∪ Ct| = nB, the value hσ′(Cs ∪ Ct)
is minimal if the number of matched nodes is maximal. Then σ′(Cs) = Ct and
|Cs| = |Ct|.

To compute the rank hσ(C) for a fixed σ, we sum up all nodes φ(Cs ∪ Ct) =
|Cs| + |Ct|. Then we subtract the number of matches, because those components
were counted twice. To shorten notation, we denote the node (s, vi) in Hσ by xi,
and its counterpart (vi, t) by yi. Formally, the rank is

hσ(φ(Cs) ∪ φ(Ct)) = |Cs|+ |Ct|−
∣∣∣
{
(xi, yσ(i))

}n

i=1
∩ (φ(Cs)× φ(Ct))

∣∣∣. (3.3)

As an average of rank functions, fbal is submodular and monotone. From Equa-
tion (3.3) it follows that the sum (3.2) consists of two terms:

∑

σ∈S

hσ(C) = |S|
(
|Cs|+ |Ct|

)
−

∑

σ∈S

∣∣{(xi, yσ(i))
}n

i=1
∩ (φ(Cs)× φ(Ct))

∣∣ (3.4)

= |S|
(
|Cs|+ |Ct|

)
−

∑

xi∈φ(Cs)

∑

σ∈S

∣∣(xi, yσ(i)) ∩ ({xi}× φ(Ct))
∣∣ (3.5)

That means we count the total number of matches as the sum of the number
of matches for each xi in φ(Cs). To count the matches of a fixed xi ∈ φ(Cs), we
calculate how many derangements map it to an element in φ(Ct) and yield a match.

When counting, we must regard that σ is a derangement, so there will never be
an edge (xi, yi) in Hσ. Let Cs∩t ! {(s, v) | {(s, v), (v, t)} ⊆ C} be the set of s-edges
whose counterpart on the t side is also contained in C. This set is nonempty if C
cuts off a node from both s and t. Each element xi in φ(Cs \Cs∩t) can be mapped
by σ to any element yk ∈ φ(Ct). For each such (fixed) pairing (xi, yk), any of the

1A derangement is a permutation that maps no element to itself.
2In Section 2.3.3 we argue that this function is the rank of a partition matroid. Clearly, the

edges in each derangement partition the set of nodes into sets of size 2.

37

Chapter 3. Hardness of MinCoopCut

remaining nB − 1 elements xj can be mapped to any y& with j -= .. Moreover, the
element xk can be mapped to any remaining target in Et, since its counterpart yk
is already “taken” by xi. Let D′(nB − 1) denote the number of permutations of
nB − 1 elements (pair (xi, yk), i.e., σ(i) = k, is fixed), where one specific element
xk can be mapped to any other of the nB−1 elements, and the remaining elements
must not be mapped to their counterparts (σ(j) -= j). Then there are D′(nB − 1)
derangements σ realizing σ(i) = k, for each yk ∈ φ(Ct). This makes |Ct|D′(nB −1)
matches for each xi in φ(Cs \ Cs∩t), and so we count |Cs \ Cs∩t||Ct|D′(nB − 1)
matches in total for the xi ∈ Cs \ Cs∩t.

Each element xi in the remaining φ(Cs∩t) can be mapped to |Ct| − 1 elements
in φ(Ct), since its counterpart yi is in φ(Ct). With a similar count as above, this
leads to another |Cs∩t|(|Ct| − 1)D′(nB − 1) matches. Let D(n) be the number of
derangements of n elements. In total, we get

D(nB)fbal(C) = (|Cs|+ |Ct|)D(nB) (3.6)

−
∑

xi∈Cs\Cs∩t

∑

yk∈Ct

D′(nB − 1)−
∑

xi∈Cs∩t

∑

yk∈Ct,k *=i

D′(nB − 1)

= (|Cs|+ |Ct|)D(nB) (3.7)

−
(
|Cs|−| Cs∩t|

)
|Ct|D′(nB − 1)− |Cs∩t|(|Ct|− 1)D′(nB − 1)

= (|Cs|+ |Ct|)D(nB)− (|Cs||Ct|−| Cs∩t|)D′(nB − 1), (3.8)

with D(n) = |S| = n!
∑n

k=0(−1)k/k! [Stanley, 1997], and D′(n − 1) =
∑n−1

k=0(n −
2)!(n − 1 − k)!(−1)k (derived in Appendix B.1). The derangements lead to the
penalty |Cs∩t| for overlaps.

Given that |Cs|+ |Ct| must cut at least nB edges and that fbal is increasing, fbal
is minimized if |Cs| = |Ct| = nB/2. In that case, nB/2 nodes are assigned to s and
nB/2 to t. As a result, if β is large enough such that fbal dominates the cost, then
a minimum cooperative cut in G bisects the GB subgraph of G optimally.

3.3. Lower bound on the approximation factor

Beyond NP hardness, we show a lower bound on the approximation factor for Min-
CoopCut. The lower bound is information-theoretic and assumes oracle access
to the cost function. For Theorem 3.1, in contrast, the cost function is completely
known from the construction.

Theorem 3.2. No polynomial-time algorithm can solve MinCoopCut with an
approximation factor better than o(

√
|V|/ log |V|).

Corollary 3.1. For graphs where |E| = Θ(|V|), the lower bound can also be stated
as Ω(

√
|E|/ log |E|).

38

3.3. Lower bound on the approximation factor

s t

k

!

Figure 3.2. Graph for the proof of Theorem 3.2.

The proof relies on constructing two submodular cost functions f , h with different
minima that are almost indistinguishable. In fact, with high probability they
cannot be discriminated with a polynomial number of function queries. If the
optima of h and f differ by a factor larger than α, then any solution for f within
a factor α of the optimum would be enough evidence to discriminate f and h. As
a result, a polynomial-time algorithm that guarantees an approximation factor α
would lead to a contradiction. The proof technique is similar to that in [Goemans
et al., 2009, Svitkina and Fleischer, 2008], and was first used by [Goemans et al.,
2008].

One of the functions, f , depends on a hidden random set R ⊆ E that will be
its optimal cut. We will use the following Lemma that assumes f to depend on a
random set R.

Lemma 3.1 (Svitkina and Fleischer [2008], Lemma 2.1). If for any set Q ⊆ E,
chosen without knowledge of R, the probability of f(Q) -= h(Q) over the random
R is m−ω(1), then any algorithm that makes a polynomial number of oracle queries
has probability at most m−ω(1) of distinguishing f and h.

Proof (Theorem 3.2). We will prove the bound in terms of the number m = |E| of
edges in the graph. The graph we construct has n = m − . nodes, and therefore
the proof also shows the lower bound in terms of nodes.

Construct a graph G = (V , E) with . parallel disjoint paths from s to t, where
each path has k edges. Here, the random set R ⊂ E will always be a cut consisting
of |R| = . edges. The cut contains one edge from each path uniformly at random.
We define β = 8./k <. (for k > 8), and, for any Q ⊆ E ,

h(Q) = min{|Q|, .} (3.9)
f(Q) = min{|Q \R|+min{|Q ∩R|, β}, .}. (3.10)

The functions differ only for the relatively few sets Q with |Q ∩ R| > β and
|Q \ R| < . − β. Define ε such that ε2 = ω(logm), and set k = 8

√
m/ε and

. = ε
√
m.

We compute the probability that f and h differ for a given query set Q. Prob-
abilities are over the unknown R. Since f ≤ h, the probability of difference is
P (f(Q) < h(Q)). If |Q| ≤ ., then f(Q) < h(Q) only if β < |Q ∩ R|, and the

39

Chapter 3. Hardness of MinCoopCut

probability P (f(Q) < h(Q)) = P (|Q ∩ R| > β) increases as Q grows. If, on the
other hand, |Q| ≥ ., then the probability

P (f(Q) < h(Q)) = P (|Q \R|+min{|Q ∩R|, β} < .)

decreases as Q grows. Hence, the probability of difference is largest when |Q| = ..
So let |Q| = .. If Q spreads over b ≤ k edges of a path P , then the probability

that Q includes the edge in P ∩R is b/k. The expected overlap is the sum of hits on
all paths, E[|Q∩R|] = |Q|/k = ./k. Since the edges in R are independent across
different paths, we bound the probability of a large intersection by a Chernoff
bound, and Lemma 3.1 holds:

P
(
f(C) -= h(C)

)
≤ P

(
|C ∩R| ≥ 8./k

)
(3.11)

≤ 2−8&/k = 2−ε2 = 2−ω(logm) = m−ω(1). (3.12)

With this result, Lemma 3.1 applies. No polynomial-time algorithm can guaran-
tee to distinguish f and h with high probability. A polynomial algorithm with
approximation factor better than the ratio of optima h(R)/f(R) would discrimi-
nate the two functions and thus lead to a contradiction. As a result, the lower
bound is determined by the ratio of optima of h and f . The optimum of f is
f(R) = β, and h has uniform cost . for all minimal cuts. Hence, the ratio is
h(R)/f(R) = ./β =

√
m/ε = o(

√
m/ logm).

For contradiction, assume there was an algorithm with approximation factor
α = o(

√
m/ logm). Set ε =

√
m/(2α), so ε2 = ω(logm) is satisfied. Given

f for this ε, the algorithm would return a solution with cost at most αf(R) =
αε2 ≤ ε

√
m/2 < ε

√
m. If given the function h, it can only return a solution with

strictly larger cost . = ε
√
m and could thus distinguish f and h, contradicting

Lemma 3.1.

3.4. Discussion

The two theorems in this section prove that MinCoopCut is NP-hard and that it
does not admit a constant-factor approximation in polynomial time. These results
integrate well into the context of hardness results for related problems.

Strictly speaking, the lower bound in Theorem 3.2 implies that MinCoopCut
cannot be solved exactly in polynomial time. Nevertheless, the reduction proving
Theorem 3.1 employs submodularity in an unusual way, using large positive sums
of partition matroids each defined based on derangements, and might therefore be
of its own interest.

The bounds above are worst-case results, that means, there is an instance of
MinCoopCut for which the approximation is not better than stated in Theo-
rem 3.2. Nevertheless, the average case is better, as the empirical results in Sec-
tion 4.4 will demonstrate. In fact, special cases of MinCoopCut are well-known

40

3.4. Discussion

to be polynomial-time solvable, such as the standard Minimum Cut problem. An-
other “easy” cost function is the bottleneck cost f(C) = maxe∈C w(e). Direct sums
however can render simple problems hard. For instance, MinCoopCut is hard
when using a sum of bottleneck cost functions defined by a partition {Ei}, that is,
f(C) =

∑
i maxe∈C∩Ei w(e), as this includes Minimum Label Cut.

Apart from the simplicity of the cost function, the graph structure can play a role
in the hardness. The simplest such example would be a graph that consists of one
(s, t)-path. If all separators of the cost function are subsets of the neighborhoods δv
of nodes v ∈ V , then the approximation f̂pf that will be introduced in Section 4.2.2
is exact and the cut problem is solvable as a polymatroidal network flow. Finally,
CoopCut is not NP-hard if the corresponding function on nodes, g : 2V\t → R+,
g(X) = f(δ(X ∪ s)), remains a submodular function: any algorithm for general
unconstrained submodular function minimization [Fujishige, 2005] applies. We
explore the reverse side of this relation further in Chapter 7.

41

Chapter 4.

Approximation Algorithms

Given the NP-hardness of MinCoopCut, this chapter addresses algorithms for
approximately solving the problem. After a literature review, we study approxima-
tion techniques and factors for cooperative cuts, and finally compare the derived
algorithms empirically.

4.1. Techniques for approximations: an overview

Before focusing on cuts, we consider the general family of optimization problems

min
S⊆E

f(S) s.t. S ∈ S, (4.1)

where f is a nondecreasing submodular function on subsets of E , and S ⊂ 2E is a
family of structures, such as all (s, t)-cuts, or all spanning trees, or all (s, t)-paths
in a graph G = (V , E). Chapter 3 demonstrated that such problems are usually
very hard. In contrast, if f is a modular function, Problem (4.1) is polynomial-time
solvable or at least admits much better approximation factors. Similarly, uncon-
strained submodular minimization, where S = E , can be solved in polynomial time
[Fujishige, 2005]. Thus, one could argue that the combination of a non-modular
cost function and nontrivial constraints makes Problem (4.1) hard. We structure
the approximation algorithms for this problem into two classes, depending on which
of the two complications, cost function or constraints, they simplify. Constraints
can be simplified by relaxations, or by re-formulating the problem. In addition
to these categories, the structure of covering constraints suits greedy algorithms.
Throughout this chapter, we will assume that f is a nonnegative, nondecreasing
and normalized submodular function.

As a side note, a different approach is the center of [Svitkina and Fleischer, 2008]:
they present sampling-based algorithms that fit in neither of the above categories.
Their techniques apply, for instance, to size constraints of partitions.

Certain sub-classes of submodular functions admit better approximations than
the general case. One example are the label cost functions defined in Section 2.5,
where each item carries a label and the cost of a set of items S is the modular cost
of the labels occurring on S. Algorithms for label costs use the specific structure
and are outlined in Chapter 8 where we design an online algorithm for label cost

42

4.1. Techniques for approximations: an overview

problems. Related to the structure of label costs is that of multi-agent problems,
where each agent has a simple cost function. These problems, like label costs, allow
logarithmic instead of polynomial approximation factors for cover-type constraints
[Goel et al., 2010]. Another special case is stochastic combinatorial optimization
in the mean-risk model, with a cost function of the form f(S) =

∑
e∈S w1(e) +√∑

e∈S w2(e) that in many cases admits an FPTAS [Nikolova, 2010].
In the remainder of this chapter, we address algorithms for general nondecreasing

submodular cost functions.

4.1.1. Approximations of the cost function

The first general option mentioned above is to replace the submodular function f
by a “more tractable” function f̂ , and to solve

min f̂(S) s.t. S ∈ S. (4.2)

This substitution is of course only useful if the resulting problem is easier to solve
than Problem (4.1), i.e., in polynomial time. Let Ŝ be a solution to Problem (4.2).
If f̂ is a “good” approximation, so that it does not deviate too much from f , then
we can prove an approximation factor for Ŝ:

Lemma 4.1. If for all S ⊆ E, it holds that f(S) ≤ f̂(S), and if for the optimal solu-
tion S∗ to Problem (4.1), it holds that f̂(S∗) ≤ αf(S∗), and if Ŝ = argminS∈S f̂(S),
then Ŝ is at most by a factor α worse than S∗ as a solution to Problem (4.1):

f(Ŝ) ≤ αf(S∗).

Proof. Since f̂(Ŝ) ≤ f̂(S∗), it follows that f(Ŝ) ≤ f̂(Ŝ) ≤ f̂(S∗) ≤ αf(S∗).

The following two generic approximations f̂ fill Lemma 4.1 with life. Specific
approximations can use the special structure of the combinatorial problem; in
Section 4.2.2, we derive such an approximation for cuts.

The simplest approximation

The simplest approximation f̂ is the modular function

f̂add(S) =
∑

e∈S

f(e). (4.3)

By the subadditivity of the nondecreasing submodular function f , this approxi-
mation is an upper bound on f , that is, f̂add(A) ≥ f(A) for any A ⊆ E . The
approximation f̂add is separable and therefore completely ignores any possible in-
teraction between the elements. While this makes it an easy function to optimize,

43

Chapter 4. Approximation Algorithms

this simplicity strikes back via the factor α in Lemma 4.1, which can become rather
large. This factor is

α =
f̂(S∗)

f(S∗)
=

∑
e∈S∗ f(e)

f(S∗)
≤ |S∗|, (4.4)

and depends on how much the marginal cost ρ(e|A) of any element e ∈ S∗ decreases
as the reference set A grows. The upper bound |S∗| refers to the worst case, where
f(e) = f(S∗) for all e ∈ S∗, that is, ρ(S∗ \ e|e) = 0. In the best case, α = 1. We
will show a more detailed bound in Lemma 4.6.

Nevertheless, the approximation f̂add leads to the best possible results for span-
ning trees and perfect matchings [Goel et al., 2009], and has also been used for
submodular cover problems with submodular cost [Wan et al., 2010].

A generic approximation

The wide variance of α in the previous section raises the question whether f̂add is
the tightest possible approximation. This question has been studied by Goemans
et al. [2009]. They show that if we require that f̂(A) ≤ f(A) ≤ αf̂(A) for all
A ⊆ E , then α is in general lower bounded as1 Ω(

√
m/ logm). The paper also

shows a generic approximation f̂ea of a polymatroid rank function that is based
on approximating a version of the submodular polyhedron by an ellipsoid. A
nonnegative, nondecreasing submodular function is equivalent to a maximization
over its polyhedron, i.e.,

f(S) = max
y∈Pf

y · χS. (4.5)

Goemans et al. [2009] approximate a modified, symmetrized version of Pf by an
ellipsoid Ef , and define the approximation

f̂ea(S) = max
y∈Ef

y · χS (4.6)

=

√∑
e∈S

wf (e). (4.7)

This approximation is a square root of a sum, which makes its square a simple
function to optimize. Computing the weights wf takes O(m3τ logm) time, where
τ is the time for finding a violated constraint, which is O(m logm) for a matroid
rank function. The factor α is O(

√
m logm) in general, and O(

√
m) for matroid

rank functions. We add that for an integer polymatroid rank function bounded by
M = maxe∈E f(e), the logarithmic factor can be replaced by a constant to yield

1Assuming f is given by an oracle.

44

4.1. Techniques for approximations: an overview

O(
√
mM), if we approximate the matroid expansion2 of the polymatroid instead

of f directly.

4.1.2. Convex relaxation or re-formulation of constraints

Instead of simplifying the cost function, one can simplify the constraints. Perhaps
the most straightforward option is to relax the discrete Problem (4.1) to a contin-
uous problem with linear constraints. The crucial step for approximations is then
the rounding of the optimal continuous solution to a discrete solution, i.e., a set.
Alternatively, the problem can remain discrete, but the constraints are transformed
to be more suitable for algorithms.

Relaxation using the Lovász extension

Instead of sets S ⊆ E , we can equally use characteristic vectors χS ∈ {0, 1}E .
With a slight abuse of notation, we define an equivalent cost function on {0, 1}E
as f(χS) = f(S). For the relaxation, it must be possible that S can be described
as a subspace of {0, 1}E by linear constraints Ax ≤ b. (This is possible e.g. for
(s, t)-cuts, simple paths or matchings.) In such case Problem 4.1 becomes

min f(x) s.t. Ax ≤ b, x ∈ {0, 1}E . (4.8)

The Lovász extension helps relax this formulation to a continuous problem:

min f̃(x) s.t. Ax ≤ b, x ∈ [0, 1]E . (4.9)

Such a relaxation has been used, for example, in [Iwata and Nagano, 2009, Chekuri
and Ene, 2011a,b].

Problem (4.9) is a non-smooth convex minimization problem with linear con-
straints and can be solved by any suitable method. If merely polynomial time is
the question, then we can use the ellipsoid method.

Given the optimal solution x∗ ∈ [0, 1]E of Problem (4.9), the final task is to
round x∗ to a discrete x̂ ∈ {0, 1}E that is the characteristic vector of a set S ∈ S.
Iwata and Nagano [2009] exploit that their covering constraints are up-monotone,
and find a threshold θ to select a feasible set Ŝ = {e | x∗(e) ≥ θ} of all elements
whose entries in x∗ are at least θ.

Re-formulations

The following example illustrates an alternative to relaxing the integer constraints
in Problem (4.8): reducing the problem to a different problem for which it is easier

2The expansion is described in Section 10.3 in [Narayanan, 1997]. In short, we replace each
element e by a set ê of f(e) parallel elements. Thereby we extend f to a submodular function
f̂ on subsets of

⋃
i êi. The desired rank function is now the convolution r(·) = f̂(·) ∗ | · | and

it satisfies f(S) = r(
⋃

e∈S ê).

45

Chapter 4. Approximation Algorithms

to find an algorithm. The relaxation of a submodular-cost vertex cover is
special because it has a half-integral optimal solution [Iwata and Nagano, 2009,
Goel et al., 2009, Hochbaum, 2010] which leads to a factor-2 approximation. After
a transformation, this solution can be reached by a combinatorial algorithm too,
in fact, a submodular minimization over a ring family.

Recall that vertex cover seeks a minimum set of vertices such that each edge
is incident with at least one vertex in this set. Iwata and Nagano [2009] first
rephrase this as a vertex cover in a bipartite graph G = (V+,V−,F) that has two
copies V+,V− of the original set of nodes. For each original edge (vi, vj), there are
two edges (v+i , v

−
j) and (v+j , v

−
i) in F . If (X+, Y −) ⊆ V+×V− is a vertex cover in G,

then X∪Y is a vertex cover in the original graph. The cost function on the bipartite
graph is separable over the two copies of V : g(X+, Y −) = f(X) + f(Y). One can
show that the minimum cost cover (X+, Y −)∗ in G corresponds to a solution of the
relaxation, and therefore the union of these two parts is a factor-2 approximation
for the original problem.

This observation is useful because a minimum cover in G can be found by mini-
mizing the submodular function g over a ring family of closures3, and this can be
done with algorithms for unconstrained submodular minimization [Grötschel et al.,
1988, Chapter 10].

Building on techniques for linear programs, Hochbaum [2010] extends the bipar-
tite technique to general submodular minimization problems with constraints that
use at most two variables, including complement of max clique, Minimum satisfi-
ability, MIN-2SAT and the “submodular closure” problem. If the variables have
the same sign, as for vertex cover, the result will be a 2-approximation; if they have
differing signs, it will be exact. To generalize the constraints, she uses techniques
for monotonizing (get opposite signs for variables in a constraint) and binarizing
(get binary coefficients) the problem. Finally, she proves persistency of the formu-
lation, that is, if a variable is integral in the optimal solution of the relaxation,
then it will retain its value in an optimal solution to the original problem.

Another example for a re-formulation or reduction are the algorithms for label
cost problems that additionally use the structure of the cost function.

4.1.3. Greedy approximations

Covering constraints in general have the simplifying property that they are mono-
tone, i.e., their constraint polyhedron is up-monotone: if S is feasible, then any
superset T ⊇ S is also feasible. That means choosing more elements than necessary
is not harmful for feasibility. This property not only enables the threshold round-
ing in [Iwata and Nagano, 2009], it also forms the basis for a greedy strategy. Let γ
be the maximum number of variables occurring in any constraint. Koufogiannakis
and Young [2009] present a greedy algorithm that yields a γ-approximation for any

3A ring family is a family of sets that is closed under union and intersection

46

4.2. Approximating the cost function

algorithm upper bound
on approximation factor

simple approximation f̂add
|C∗|

1+(|C∗|−1)ν(C∗) ≤ |C∗| = O(m)

approximation by [Goemans et al., 2009] O(
√
m logm)

partition f̂pf min{∆s,∆t} ≤ n/2

iterative approximation |C∗|
1+(|C∗|−1)ν(C∗) ≤ |C∗| = O(m)

randomized greedy |Pmax| ≤ n− 1

relaxation & thresholding |Pmax| ≤ n− 1

Table 4.1. Overview of approximation factors for MinCoopCut in a graph G = (V, E)
with n = |V| nodes and m = |E| edges. The factor for the iterative approximation is
function-dependent and varies between 1 and |C∗|.

submodular minimization problem with linear monotone constraints. For vertex
cover, this leads to the same approximation factor 2 as above.

Their basic algorithm works with continuous variables; for strictly discrete prob-
lems, there is a randomized discrete equivalent. The algorithm considers the vio-
lated constraints one by one, and increases the value of the variables in the selected
constraint by a fixed amount such that the constraint is less violated while the cost
is not increased too much. Since the constraints are monotone, increasing a variable
more than the minimum necessary will never lead to an infeasible solution.

4.2. Approximations for cuts: cost function

Backed by the summary of general approximation techniques, let us turn to ap-
proximations for MinCoopCut, which have not been addressed in the literature
before. Both general strategies, simplifying the cost function as well as simplify-
ing the constraints, apply to cuts, and the approximation algorithms in the sequel
will be structured into these categories too. Table 4.1 summarizes the algorithms.
Unless specifically stated, the algorithms apply to both directed and undirected
graphs.

We provide three approximations of the cost function: (1) the generic ellipsoid-
based function f̂ea of Section 4.1.1; (2) an approximation that uses the structure
of the problem and that could in this respect be seen closer conceptually to the
bipartite graph reductions and f̂bip in Section 4.1.2 than the generic approxima-
tions in Section 4.1.1; (3) an efficient iterative approximation that approximates a
cooperative cut by a series of graph cut problems.

To apply the second strategy and simplify the constraint of S being a cut, we
relate cuts to covers and thereby relax the cut polytope to be up-monotone. This

47

Chapter 4. Approximation Algorithms

relation leads to a rounding technique that is used with a convex relaxation, and
to a reduction to cover problems and a greedy algorithm.

We begin with relaxing the cost function, and afterwards describe how to relax
constraints. When talking about cuts specifically, we will refer to the feasible set
as the family C of all minimal (s, t)-cuts C ⊆ E , and to the optimal cut as C∗.

The simplest approximation to use with cuts is f̂add; however, the approximation
factor can then become as large as α = |C∗| = O(m), which is O(n2) in very dense
graphs. Section 4.4.2 will show an example graph where the approximation factor
is indeed of order n2.

4.2.1. Generic approximation

A more accurate approximation than f̂add is the function f̂ea defined in Equa-
tion (4.7) [Goemans et al., 2009]. When using f̂ea, we compute a minimum cut for
the cost f̂ 2

ea – a standard, efficiently computable minimum (s, t)-cut. In practice,
the bottleneck therefore does not lie in computing the cut, but in computing the
weights wf for the approximation f̂ea.

Lemma 4.2. Let Ĉ = argminC∈C f̂ea(C) be the minimum cut for cost f̂ea, and
C∗ = argminC∈C f(C). Then f(Ĉ) = O(

√
m logm)f(C∗). If f is integer-valued

and we approximate its matroid expansion, then f(Ĉ) = O(
√
mM)f(C∗), where

M ≤ maxe f(e).

Lemma 4.2 follows from Lemma 4.1 and the discussion above. Given the lower
bound in Theorem 3.2, for sparse graphs the bound in Lemma 4.2 is tight up to
logarithmic factors.

4.2.2. A structural, locally exact approximation

Alternative to general approximations that might be expensive to compute, we can
use the graph structure to define an approximation. We first address MinCoop-
Cut in directed graphs. Note that Problem (4.1) is hard because f is globally non-
separable: the cost of two edges e1, e2 can interact, f({e1, e2}) 6 f(e1) + f(e2),
even if they are arbitrarily remotely located in the graph. In contrast, the cost
function of the standard, efficiently solvable minimum cut is a separable sum of
weights.

Therefore, we design f̂ to be globally separable, but locally a tight approximation.
To measure the cost of an edge set C ⊆ E , we partition C into groups Π(C) =
{CΠ

v }v∈V , where the edges in CΠ
v must be incident to v (CΠ

v may be empty). That
is, we assign each edge either to its head or to its tail node, as illustrated in
Figure 4.1. Let PC be the family of all such partitions (which vary in the head or
tail assignment of each edge). We define an approximation

f̂pf (C) = min
Π(C)∈PC

∑
v∈V

f(CΠ
v) (4.10)

48

4.2. Approximating the cost function

s

v1

v2

v3

v4
v5
v6

t f̂pf (C) =f({(v1, v4), (v2, v4)})
+ f({(v3, v4), (v3, v5)})
+ f({(v3, v6)})

Figure 4.1. Approximation of a cut cost. Red edges are in CΠ
v4 (head), blue dashed

edges in CΠ
v3 (tail), and the green dash-dotted edge in CΠ

v6 (head).

that decomposes across node neighborhoods, but is accurate within a group CΠ
v .

Thanks to the subadditivity of f , the function f̂pf is an upper bound on f . It
always is the tightest approximation that is a direct sum over any partition in
P(C). Instead of Problem (4.1), we now solve the optimization problem

min f̂pf (C) s.t. C ⊆ E is a minimal (s, t)-cut. (4.11)

To solve Problem (4.11) exactly, we use its analogy to a generalized maximum
flow problem. This analogy only holds for cuts, but that suffices here. We first
introduce the flow problem.

Polymatroidal network flows

Polymatroidal network flows [Lawler and Martel, 1982, Hassin, 1982] generalize the
capacity constraint of traditional flow problems. In the standard flow formulations,
a function ϕ : E → R+ is a flow if the inflow at each node v ∈ V \ {s, t} equals the
outflow, and if the flow on an edge does not exceed its capacity: ϕ(e) ≤ cap(e) for
all e ∈ E , given a capacity function cap : E → R+. Polymatroidal flows replace the
usual additive capacities by submodular ones at each node v: capin

v for incoming
edges, and capout

v for outgoing edges. Let δ−v be the incoming edges of v, and δ+v
its outgoing edges. Then the capacity constraints at each v ∈ V are

ϕ(A) ≤ capin
v (A) for all A ⊆ δ−v,

ϕ(A) ≤ capout
v (A) for all A ⊆ δ+v.

Note that each edge (u, v) belongs to two neighborhoods, δ+u and δ−v. The
maximum flow with such constraints is solved exactly in polynomial time by a
layered augmenting paths algorithm [Tardos et al., 1986]. This algorithm involves
submodular function minimization (SFM) only on the sets δ+v, δ−v that are in
general much smaller than E . It takes time O(m4T), where T is the time for SFM
on any δ+v, δ−v.

Analogy

The next lemma relates Problem (4.11) to polymatroidal flows. We will use the
restriction f A of the function f to a subset A. For ease of notation, we explicitly

49

Chapter 4. Approximation Algorithms

write restrictions here, but drop them later. We assume throughout that the desired
cut is minimal, as adding edges can only increase its cost.

Lemma 4.3. Minimum (s, t)-cut with cost function f̂pf is dual to a polymatroidal
network flow with capacities capin

v = f δ−v and capout
v = f δ+v at each node v ∈ V.

Proof. First, we state the dual of a polymatroidal flow. Let capin : 2E → R+ be
the joint incoming capacity, capin(C) =

∑
v∈V capin

v (C ∩ δ−v), and let equivalently
capout be the joint outgoing capacity. The dual of the polymatroidal maximum flow
is a minimum cut problem whose cost is a convolution of edge capacities [Lovász,
1983]:

cap(C) = (capin ∗ capout)(C) ! min
A⊆C

capin(A) + capout(C \ A). (4.12)

We will relate this dual to the approximation f̂pf . Given a minimal (s, t)-cut C,
let Π(C) be a partition of C, and C in

v = CΠ
v ∩ δ−v and Cout

v = CΠ
v ∩ δ+v . The cut C

partitions the nodes into two sets Vs containing s and Vt containing t. Since C is
a minimal directed cut, it contains only edges from the s side Vs to the t side Vt

of the graph. In consequence, C in
v = ∅ if v is on the s side, and Cout

v = ∅ otherwise.
Hence, C in

v ∪ Cout
v is equal to either C in

v or Cout
v , and since f(∅) = 0, it holds that

f(C in
v ∪ Cout

v) = f(C in
v) + f(Cout

v). Then, starting with the definition of f̂pf ,

f̂pf (C) = min
Π(C)∈PC

∑
v∈V

f(CΠ
v) (4.13)

= min
Π(C)∈PC

∑
v∈V

f(C in
v ∪ Cout

v) (4.14)

= min
Π(C)∈PC

∑
v∈V

(f(C in
v) + f(Cout

v)) (4.15)

= min
Π(C)∈PC

∑
v∈V

(capin
v (C

in
v) + capout

v (Cout
v)) (4.16)

= min
Cin,Cout

(capin(C in) + capout(Cout)) (4.17)

= min
Cin⊆C

(capin(C in) + capout(C \ C in)) (4.18)

= (capin ∗ capout)(C). (4.19)

The minimum in Equation (4.15) is taken over all feasible partitions Π(C) and
their resulting intersections with the sets δ+v,δ −v. Then we use the notation
C in =

⋃
v∈V C

in
v for all edges assigned to their head nodes, and Cout =

⋃
v∈V C

out
v .

The minima in Equations (4.17) and (4.18) are again taken over all partitions in PC .
The final equality follows from the above definition of a convolution of submodular
functions.

Approximation factor

The previous subsection shows that Problem (4.11) can be solved exactly. With
Lemma 4.1, we bound the approximation factor by a quantity that depends on the

50

4.2. Approximating the cost function

graph structure. Let C∗ be the optimal cut for cost f . We define ∆s to be the tail
nodes of the edges in C∗: ∆s = {v ∈ Vs | ∃(v, u) ∈ C∗}. These are still reachable
from s if the edges is C∗ are cut. Similarly, ∆t = {v ∈ Vt | ∃(u, v) ∈ C∗} contains
all nodes on the t side that are the head of an edge in C∗.

Theorem 4.1. Let Ĉ be the minimum cut for cost f̂pf , and C∗ the optimal cut for
cost f . Then

f(Ĉ) ≤ min{|∆s|, |∆t|} f(C∗) ≤ |V|
2
f(C∗).

Proof. To apply Lemma 4.1, we need to show that f(C) ≤ f̂pf (C) for all C ⊆ E , and
find an α such that f̂pf (C∗) ≤ αf(C∗). We already argued for the first condition
using subadditivity. It remains to bound α. We do so by referring to the flow
analogy with capacities set to f :

f̂pf (C
∗) = (capin ∗ capout)(C∗) (4.20)

≤ min{capin(C∗), capout(C∗)} (4.21)

≤ min
{∑

v∈∆s

f(C∗ ∩ δ+v),
∑

v∈∆t

f(C∗ ∩ δ−v)
}

(4.22)

≤ min
{
|∆s|max

v∈∆s

f(C∗ ∩ δ+v), |∆t|max
v∈∆t

f(C∗ ∩ δ−v)
}

(4.23)

≤ min
{
|∆s|, |∆t|

}
f(C∗). (4.24)

Thus, Lemma 4.1 implies an approximation bound α ≤ min
{
|∆s|, |∆t|

}
≤ |V|/2.

Undirected graphs

Above, we solved a directed cooperative cut as a maximum polymatroidal network
flow. Here, we argue that this construction is still correct for undirected graphs. An
undirected graph G = (V , E) is first transformed into a directed graph G± = (V , E±)
by replacing each undirected edge e by two opposing directed edges e+, e− that
are parallel with respect to the cost (the signs here are assigned arbitrarily). Let
f± denote the cost equivalent of f on the directed edges. Edges e+, e− are parallel
with respect to f± if

f±(A ∪ {e+}) = f±(A ∪ {e−}) = f±(A ∪ {e+, e−}) (4.25)

for all A ⊆ E . The cost on the directed edges is equivalent to that on the undirected
edges: parallelism yields that a set of directed edges has the same cost as the union
of the undirected counterparts, regardless of whether both e+ and e− or only one
of them is in the directed set. Such an f± can be defined as

f±(A) = f({e | e+ ∈ A or e− ∈ A}). (4.26)

51

Chapter 4. Approximation Algorithms

This function is a polymatroid rank function if f is, as can be shown e.g. via
Proposition 2.1. If C is an undirected cut partitioning V into Vs and Vt, then the
cost of its directed counterpart is the same as f(C): Let C+ = δ+(Vs) and C− =
δ−(Vs) in the directed graph, then f(C) = f±(C+) = f±(C−) = f±(C+ ∪ C−).

The remaining construction is as above. All capacity functions capin
v , capout

v are
set to f± restricted to the particular domain δ−v, δ+v, respectively. The corre-
sponding capin, capout decompose across neighborhood sets, and the convolution
automatically assigns edges to their head or tail node to minimize the resulting
cost, that is, to get the tightest approximation in the directed graph.

Doubts might arise because not every partition of directed edges retains the
parallelism with respect to f±. If e+ and e− are assigned to different neighborhood
sets, then they are counted separately and thus doubly. Nevertheless, we claim the
following.

Claim 4.1. Minimizing f̂±
pf via a maximum polymatroidal network flow

is equivalent to finding an undirected minimum cut with respect to f̂pf .

Proof. First, as argued above, the polymatroidal flow leads to a directed minimum
cut with respect to f̂±

pf . The claim is true because f̂pf and f̂±
pf are equivalent on

all cuts. The directed equivalent of a minimal undirected cut C is C+ = δ+Vs for
some Vs ⊆ V \ t. By definition, δ+V cannot contain both e+ and e−. Therefore,
f̂±
pf (C

+) = f̂pf (C) for all minimal cuts, and there is a one-to-one correspondence
between directed and undirected cuts. This proves the claim.

For the optimal, maximal polymatroidal network flow, a similar observation to
that in the proof holds. The flow on C+ across the cut is maximal, and the back
edges C− are void [Lawler and Martel, 1982], analogously to a standard maximum
flow. All edges in the corresponding minimum cut are full or blocking edges in the
flow solution, and not void.

4.2.3. Iterative approximation

The simplest upper bound f̂add on a submodular function ignores all coupling inher-
ent in f . Here, we instead develop an adjusting bound that retains cooperation to
some extent. As an advantage, both computing the bound and the corresponding
minimum cut are very efficient. The bound requires a linear number of queries to
the cost function, and the minimum cut is then a standard MinCut computation.

The bound uses the marginal cost of an edge e with respect to a set B ⊆ E ,
ρ(e|B) = f(B ∪ e)− f(B).

Lemma 4.4. For a submodular function f : 2E → R+, and an arbitrary B ⊆ E,
define hB,f : 2E → R+ as

hB,f (C) ! f(B) +
∑

e∈C\B

ρ(e|B)−
∑

e∈B\C

ρ(e|E \ e). (4.27)

52

4.2. Approximating the cost function

f(C) ≤ f(B) +
∑

e∈C\B

ρ(e|B) −
∑

e∈B\C

ρ(e|E \ e) =:f̂B(C)

Figure 4.2. Illustration of the adjusting upper bound. To estimate the cost of the red
cut C from the given current green and blue cut B, we it subtract an estimate of the cost
of the elements in B \ C (blue) and add an estimate of the cost of C \B (red).

The function hB,f is a modular upper bound on f . The bound is tight at B, that
means, hB,f (B) = f(B).

Proof. For any sets C,B ⊆ E , it holds that [Nemhauser et al., 1978]

f(C) ≤ f(B) +
∑

e∈C\B

ρ(e|B)−
∑

e∈B\C

ρ(e|(C ∪ B) \ e). (4.28)

From this inequality, Bound (4.27) follows because f has diminishing marginal
costs: ρ(e|E\e) ≤ ρ(e|(B∪C)\e). Modularity and the tightness are immediate.

This bound adds an upper bound on the cost of C \ B and subtracts a lower
bound on the cost of B \ C, as illustrated in Figure 4.2. Importantly, the cut cost
hB,f is efficient to minimize using standard minimum cut, thanks to its modularity.
For G = (V , E , f), define the graph GB = (V , E , wB) with the same structure but
with additive edge weights

wB(e) =

{
ρ(e|E \ e) if e ∈ B

ρ(e|B) otherwise.
(4.29)

If f is nondecreasing, then the weights wB are nonnegative.

Lemma 4.5. If Ĉ ∈ argminC∈C wB(C) is a minimum (s, t)-cut in GB, then it is a
minimizing cut, Ĉ ∈ argminC∈C hB,f (C), for the bound hB,f .

Proof. With weights wB, the cost of a cut C ⊆ E in GB is
∑

e∈C

wB(e) =
∑

e∈B∩C

ρ(e|E \ e) +
∑

e∈C\B

ρ(e|B) (4.30)

= hB,f (C)− f(B) +
∑

e∈B

ρ(e|E \ e). (4.31)

53

Chapter 4. Approximation Algorithms

Algorithm 1 Iterative bound minimization (ITB)
Input: G = (V , E); submodular cost f : 2E → R+

0 ; reference initialization set
I = {I1, . . . , Ik}, Ij ⊆ E ; source and sink s, t ∈ V
Output: cut B ⊆ E
for j = 1 to k do

find (s, t)-mincut C ∈ argminC∈C wIj(C) for edge weights wIj

repeat
Bj = C
find (s, t)-mincut C ∈ argminC∈C wBj(C) for edge weights wBj

until f(C) ≥ f(Bj)
end for
return B = argminB1,...,Bk

f(Bj)

Since f(B) and the sum over B are constant for a fixed B, it holds that wB(C) =
hB,f (C) + const for any edge set C ⊆ E .

Algorithm

As hB,f is adaptive, it can be used in an iterative minimization procedure (Algo-
rithm 1). Given an initial reference set B, we find the minimum cut C with respect
to hB,f . Then we adjust the bound to be tight at C and repeat. Thus, hB,f is
always tight at the currently best solution. The algorithm starts with an initial ref-
erence set Ij ∈ I from a set of initializations, the simplest case of which is I = {∅}.
For further improvements, I could be set to the elements of a cut basis, e.g., the
cuts induced by cutting edges of a spanning tree. The minimum cut basis in an
undirected graph is the Gomory-Hu tree [Bunke et al., 2010]. For the experiments
in Chapter 5, I = {∅} was sufficient, and the algorithm converged in less than 10
iterations.

As a result of Lemma 4.5, the algorithm alternates between adjusting weights
and computing a minimum cut. Implementation efficiency can be improved by
noting that the marginal cost of an edge e depends only on edges that cooperate
with e. The weights wB show how hB,f captures the cost-reducing effect of f :
ρ(e|B) < f(e) if e cooperates with B. For a modular function f = fm, the marginal
cost ρ(e|B) = fm(e) never decreases and Algorithm 1 becomes a standard minimum
cut4 for edge weights w(e) = fm(e).

4Strictly speaking, the algorithm as displayed will run two iterations to ensure that the cost
does not change. One iteration could be saved by checking whether the edge weights change
at all.

54

4.2. Approximating the cost function

Approximation bound

Lemma 4.6 gives an approximation bound for the case that ∅ ∈I . It holds for
the initial solution C∅ for h∅,f , which improves in subsequent iterations. The to-
tal curvature of a nondecreasing submodular function is defined as [Conforti and
Cornuéjols, 1984]

κf = max
e∈E

f(e)− ρf (e|E \ e)
f(e)

.

It indicates how close to modular a function is, with 0 ≤ κ ≤ 1, and κ = 0 if and
only if f is modular. We define the total curvature with respect to a set A ⊆ E as

κf (A) = max
e∈A

f(e)− ρf (e|A \ e)
f(e)

≤ κf .

Lemma 4.6. Let C∅ ∈ argmin{h∅,f (C) | C ⊆ E an (s, t)-cut } be a minimum cut
for h∅,f , and C∗ ∈ argmin{f(C) | C ⊆ E an (s, t)-cut } an optimal solution. Let
ν(C∗) = mine∈C∗ ρ(e|C∗ \ e)/maxe∈C∗ f(e). Then

f(C∅) ≤
|C∗|

1 + (|C∗|− 1)ν(C∗)
f(C∗) ≤ |C∗|f(C∗). (4.32)

Alternatively, the bound can be stated in terms of the curvature and h∅,f (C∗) as

f(C∅) ≤
f(e) + h∅,f (C∗ \ e)

f(e) + (1− κf (C∗))h∅,f (C∗ \ e)f(C
∗) ≤ |C∗|f(C∗). (4.33)

for any e ∈ C∗, in particular for e′ ∈ argmaxe∈C∗ f(e). If κf (C∗) = 0, then the
approximation factor is 1, and if κf (C∗) = 1, then it is bounded by |C∗|.

Both approximation bounds in the lemma vary between 1 and |C∗|. The param-
eter ν is closely related to the “submodularity ratio” in [Das and Kempe, 2011] and
also to curvature, which has been used to analyze the algorithms for maximizing a
polymatroid rank function over a matroid [Conforti and Cornuéjols, 1984, Vondrák,
2008b].

Proof. We begin with the first statement and first bound f(C∅) from above. Let
e′ ∈ argmaxe∈C∗ f(e). The cost function f is subadditive, thanks to its submodu-
larity and nonnegativity, and thus

f(C∅) ≤
∑

e∈C∅

f(e) = h∅,f (C∅) ≤ h∅,f (C
∗). (4.34)

The second inequality holds by the optimality of C∅ for h∅,f . Now, again using
subadditivity, we bound

h∅,f (C
∗) ≤

∑

e∈C∗

f(e) ≤ |C∗|f(e′). (4.35)

55

Chapter 4. Approximation Algorithms

Having the resulting upper bound f(C∅) ≤ |C∗|f(e′), we derive a lower bound on
f(C∗). Diminishing marginal costs imply that

f(C∗) ≥ f(e′) +
∑

e∈C∗\{e′}

ρ(e|C∗ \ e)

≥ f(e′) + (|C∗|− 1) min
e∈C∗

ρ(e|C∗ \ e). (4.36)

Using the upper bound on f(C∅) and the lower bound on f(C∗), we get

f(C∅)

f(C∗)
≤ |C∗|f(e′)

f(e′) + (|C∗|− 1)mine∈C∗ ρ(e|C∗ \ e) . (4.37)

Dividing by f(e′) yields the lemma:

f(C∅) ≤
|C∗|

1 + (|C∗|− 1)mine∈C∗ ρ(e|C∗ \ e)/f(e′) . (4.38)

For the second statement of the approximation bound, we apply Lemma 4.1.
First, observe that κf (C∗) ≥ 1− ρf (e|C∗)/f(e) for all e ∈ C∗, and therefore

ρf (e|B) ≥ (1− κf (C
∗))f(e) (4.39)

for all B ⊆ C∗ \ e and e ∈ C∗. This inequality implies that

f(C∗) = f(e) + ρf (C
∗ \ e|e) ≥ f(e) + (1− κf (C

∗))h∅,f (C
∗ \ e), (4.40)

which, using h∅,f (C∗) = f(e)+h∅,f (C∗\e), implies the bound (4.33). If κf (C∗) = 1,
then the factor is, using e′,

h∅,f (C
∗)/f(e′) =

∑

e∈C∗

f(e)/f(e′) ≤ |C∗|.

For the functions we use in Chapter 5, the term ν(C∗) is always nonzero and
the second inequality is strict. Lemma 4.6 is a worst case bound and holds for any
nondecreasing submodular f . We will see in Section 4.4 and Chapter 6 that in
practice, the algorithm usually performs much better.

4.3. Approximations for cuts: Simplifying the
constraints

Instead of relaxing the cost function, we can retain the cost and relax the con-
straints. We either relate the constraints to a simpler problem, here, a cover, or
solve a continuous problem in place of a discrete one.

56

4.3. Simplifying the constraints

Algorithm 2 Greedy randomized path cover
Input: graph G = (V , E), terminal nodes s, t ∈ V , cost function f : 2E → R+.
C = ∅, x = 0
while

∑
e∈Pmin

x(e) < 1 for the shortest path Pmin do
let β ∈ (0,mine∈Pmin ρ(e|C)]
for e in Pmin do

with probability β/ρ(e|C), set C = C ∪ {e}, x(e) = 1.
end for

end while
prune C to C ′ and return C ′

4.3.1. Greedy covering

First, we reduce a minimum (s, t)-cut to a cover problem, and then adapt an
algorithm by Koufogiannakis and Young [2009]. An (s, t)-cut can equivalently be
defined as a hitting set: a set of edges is a cut if and only if it “hits”, i.e., intersects,
each (s, t)-path in the graph. Equivalently, we can define that an edge set “covers”
a path if it intersects it. Therefore, we write the MinCoopCut problem as

min f(x) (4.41)

s.t.
∑

e∈P
x(e) ≥ 1 for all (s, t)-paths P ⊆ E

x ∈ {0, 1}E .

Here, with a little abuse of notation, we use the same notation f for the set function
and the equivalent pseudo-boolean function on binary indicator vectors, f(χA) =
f(A). Note that the constraints in (4.41) do not require the cut to be minimal : a
set is feasible if it has a subset that is a minimal cut. (Adding the cardinality ε|S|
for very small ε to the cost function will however ensure that any optimal solution
is minimal.) Relaxing this minimality constraint makes the feasible set monotone,
and this property will be key to the algorithm. In fact, the constraints imply that
Problem (4.41) is a minimum-cost cover problem.

Since a graph can have exponentially many (s, t)-paths, there can be exponen-
tially many constraints. Luckily, all that will be required is finding a violated
constraint, and this is possible in polynomial time. We compute the shortest path
Pmin, using x as the (additive) edge lengths. If Pmin is longer than one, then x is
feasible. Otherwise, Pmin defines a violated constraint.

Owing to the form of the constraints, we can adapt a randomized greedy cover
algorithm [Koufogiannakis and Young, 2009] to Problem (4.41) and obtain Algo-
rithm 2. In each step, we compute the shortest path with weights x to find a
possibly uncovered path. Ties are resolved arbitrarily. To cover the path, we
randomly pick edges from Pmin. The probability of picking edge e is inversely
proportional to the marginal cost ρf (e|C) of adding e to the current selection of

57

Chapter 4. Approximation Algorithms

edges5. We must also specify an appropriate β. With the maximum possible β
we select the cheapest edge deterministically, and others randomly. Since C grows
by at least one edge in each iteration, the algorithm terminates after at most m
iterations.

Finally, the algorithm may return a set Ĉ that is feasible but not a minimal cut.
Then we prune Ĉ to a minimal cut Ĉ ′ ⊆ Ĉ. Since f is nondecreasing, f(Ĉ ′) ≤ f(Ĉ).
Pruning can for example be done via breadth-first search. Let Vs be the set of nodes
reachable from s after the edges in Ĉ have been removed. Then we set Ĉ ′ = δ(Vs).
The set Ĉ ′ must be a subset of Ĉ because if there was an edge (u, v) ∈ Ĉ ′ \ Ĉ, then
v would also be in Vs, and then (u, v) cannot be in Ĉ ′, a contradiction.

The last important question is the approximation bound. Lemma 4.7 implies
that in expectation, Algorithm 2 returns at least an O(n)-approximation, because
the longest path spans at most |V|− 1 edges.

Lemma 4.7. In expectation (over the probability of sampling edges), Algorithm 2
returns a solution Ĉ ′ with E[f(Ĉ ′)] ≤ |Pmax|f(C∗), where Pmax is the longest simple
(s, t)-path in G.

Proof. First, as f is nondecreasing, the pruned Ĉ ′ ⊆ Ĉ can only be better than
its superset Ĉ, that means, f(Ĉ ′) ≤ f(Ĉ). By Theorem 7 in [Koufogiannakis and
Young, 2009], a greedy randomized procedure like Algorithm 2 gives in expectation
a γ-approximation for a cover, where γ is the maximum number of variables in any
constraint. In Problem (4.41), γ is the maximum number of edges in any simple
path, i.e., the length of the longest path. This implies that E[f(Ĉ ′)] ≤ E[f(Ĉ)] ≤
|Pmax|f(C∗).

The perils of being too greedy

Instead of sampling edges from each path, one could deterministically greedily pick
one edge of minimum marginal cost from the uncovered path. A comparison to such
an algorithm reveals the benefits of sampling: averaging over sampling identifies
structure in the graph. If there is, for instance, a bottleneck edge that occurs in
many paths, then this edge is more likely to be sampled for at least one of the
paths, and it covers all of them together. The example in Section 4.4.2 illustrates
that in such a case, focusing on the minimum-weight edges results in a cut that is
by a factor (n−1)2

4 (1 − ε′) more costly than the optimal cut, for any ε′ > 0. This
factor is the cardinality of the returned cut, and asymptotically by a factor n worse
than the length n − 1 of the longest path. The example shows that the following
Lemma is tight.

Lemma 4.8. For the solution Ĉ returned by the greedy deterministic heuristic, it
holds that f(Ĉ) ≤ |Ĉ|f(C∗).

5If mine∈Pmin ρ(e|C) = 0, then we greedily pick all edges with zero marginal cost, because they
do not increase the cost. Otherwise we sample as indicated in the algorithm.

58

4.3. Simplifying the constraints

Proof. To each edge e ∈ Ĉ assign the path P (e) which it was chosen to cover.
By the nature of the algorithm, it must hold that f(e) ≤ f(C∗ ∩ P (e)), because
otherwise an edge in C∗ ∩ P (e) would have been chosen. As C∗ is a cut, the set
C∗ ∩ P (e) must be non-empty. These observations imply that

f(Ĉ) ≤
∑

e∈Ĉ

f(e) ≤
∑

e∈Ĉ

f(C∗ ∩ P (e)) ≤ |Ĉ|max
e∈Ĉ

f(C∗ ∩ P (e)) ≤ |Ĉ|f(C∗).

(4.42)

4.3.2. Relaxation

An alternative to the greedy randomized algorithm is to solve a relaxation of Prob-
lem (4.41). For the relaxation, we need to extend f from a set function to a function
on a continuous domain. To do so, we view f as a function on binary indicator
vectors, {0, 1}E , and extend it to [0, 1]E via its Lovász extension f̃ : [0, 1]E → R+,

f̃(x) = maxy∈Pf
y · x. (4.43)

The maximization over the submodular polyhedron Pf takes O(m logm) time [Ed-
monds, 1970]. The Lovász extension is convex and piecewise linear. We substitute
f̃ for f in Program (4.41), and allow x ∈ [0, 1]E . The result is a non-smooth convex
program with exponentially many constraints. These constraints can be summa-
rized by the m + 1 constraints of a standard linear program for minimum cut6
[Papadimitriou and Steiglitz, 1998]:

min f̃(x) (4.44)
s.t. x(e) ≥ π(v)− π(u) ∀(u, v) ∈ E
π(t)− π(s) ≥ 1

π ∈ [0, 1]V , x ∈ [0, 1]E

The additional node variables π indicate membership of a node in the s side Vs

(π(v) = 0) or t side Vt (π(v) = 1) of the cut. The constraints demand that an
edge e from a label-zero node to a label-one node should be selected via x(e) = 1.
These edges will eventually make up the cut. On closer inspection, the label π(v)
indicates the length of the shortest path from s to v, measured by additive distances
x. Program (4.44) can be solved using any solver for non-smooth convex problems,
or by adapting the approach in [Chudak and Nagano, 2007].

6Compared to the program in Section 2.4, the constraints here are inverted to have s carry label
zero and t label one, as it fits the context better. The constraint sets are equivalent.

59

Chapter 4. Approximation Algorithms

Algorithm 3 Rounding procedure given x∗

order E such that x∗(e1) ≥ x∗(e2) ≥ . . . ≥ x∗(em)
for i = 1, . . . ,m do

let Ci = {ej | x∗(ej) ≥ x∗(ei)}
if Ci is a cut then

prune Ci to Ĉ and return Ĉ
end if

end for

Rounding

The optimal solution to the nonlinear Program (4.44) is usually not integral, and
must therefore be rounded to a discrete cut. The rounding procedure, shown in
Algorithm 3, will determine the approximation guarantee. Let x∗ be the optimal
solution of Program (4.44). We use the values of x∗(e) as a set of test thresholds
θi in decreasing order (or we use binary search). If the set Ci of edges e with
x∗(e) ≥ θi contains a cut, we stop and prune Ci to a minimal cut. The pruning is
exactly the same as for the greedy method in Section 4.3.1.

A faster, cruder rounding uses a threshold that is at most as large as the inverse
of the length of the longest path in the graph (threshold (n− 1)−1 always works).
The reason for this quantity becomes clear in the proof of the following bound.

Lemma 4.9. Let Ĉ be the rounded solution returned by Algorithm 3, θ = θi the
threshold at the last iteration i, and C∗ the optimal cut. Then

f(Ĉ) ≤ 1

θ
f(C∗) ≤ |Pmax|f(C∗) ≤ (n− 1)f(C∗),

where Pmax is the longest simple path in the graph.

Proof. Program (4.41) is a submodular program with covering constraints, which
are up-monotone. Thus, thresholded rounding is possible, analogously to the case
of cover problems [Iwata and Nagano, 2009], with an analogous approximation
bound. Let θ be the rounding threshold that implied the final Ci. In the worst
case, x∗ is uniformly distributed along the longest path, i.e., x∗(e) = |Pmax|−1 for
all e ∈ Pmax as x∗ must sum to at least one along each path. Then θ must be
|Pmax|−1 to include at least one of the edges in Pmax. Since f̃ is nondecreasing like
f and also positively homogeneous, it holds that

f(Ĉ) ≤ f(Ci) = f̃(χCi) ≤ f̃(θ−1x∗) = θ−1f̃(x∗) ≤ θ−1f̃(χC∗) = θ−1f(C∗). (4.45)

The first inequality follows from monotonicity of f and the fact that Ĉ ⊆ Ci. Sim-
ilarly, the relation between f̃(χCi) and f̃(θ−1x∗) holds because f̃ is nondecreasing:
by construction, x∗(e) ≥ θχCi(e) for all e ∈ E, and hence χCi(e) ≤ θ−1x∗(e). Fi-
nally, we use the optimality of x∗ to relate the cost to f(C∗); the vector χC∗ is also
feasible, but x∗ optimal. The lemma follows since θ−1 ≤ |Pmax|.

60

4.4. An empirical comparison and worst cases

A note on the dual problem

Program (4.44) can equivalently be written by replacing the Lovász extension by
the dual problem to the maximization in its definition (4.43). This dual is described
e.g. in [Edmonds, 1970, Lovász, 1983], and contains a variable yT for each subset
T ⊆ E for the constraint

∑
e∈T x(e) ≤ f(T).

min
x,π

min
y

∑

T⊆E

f(T)yT (4.46)

s.t.
∑

T :e∈T

yT = x(e) ∀e ∈ E (4.47)

π(u)− π(v) + x(e) ≥ 0 ∀e = (u, v) ∈ E
−π(s) + π(t) ≥ 1

0 ≤ y ≤ 1

x ≥ 0

The dual (flow program) to this program is:
max
ν,ϕ

ν (4.48)

s.t. ϕ(T) ≤ f(T) for all T ⊆ E (4.49)
∑

e∈δ+u

ϕ(e)−
∑

e′∈δ−u

ϕ(e′) = d(u)ν for all u ∈ V

ϕ ≥ 0.

The variables are x ∈ RE and y ∈ R2E , ν ∈ R, ϕ ∈ RE and the constant d(u) = 1
if u = s, d(u) = −1 if u = t, and d(u) = 0 otherwise. The constraints involving
x and π define x to be a cut. Constraint (4.47) transfers this to the chosen sets
T . When comparing this pair of programs to the standard MaxFlow - Min-
Cut pair in Section 2.4, one notes that the submodular cut cost transfers into
the capacity constraints for the flow program. The flow problem closest to the
non-relaxed MinCoopCut problem would be a maximum flow with capacity con-
straints ϕ(δ+(T ∪ s)) ≤ f(δ+(T ∪ s)) for all T ⊆ V \ {s, t}. While polymatroidal
flows restrict the capacity constraints to local neighborhoods, the relaxation ex-
tends them to all sets, in particular also along paths.

4.4. An empirical comparison and worst cases

Having introduced a range of algorithms, we complement their theoretical anal-
ysis by an empirical comparison. The first data set is a benchmark of possible
average-case cost functions. To our knowledge, no standard benchmark exists yet
for submodular minimization and therefore the benchmark might be of interest
on its own. The second set of experiments illustrates worst-case examples. These

61

Chapter 4. Approximation Algorithms

examples are specifically designed to test the limits of algorithms that approximate
the cost by a modular function. In particular, they demonstrate the tightness of
Lemma 4.6.

The task in the sequel is to find a minimum cooperative cut in an undirected
graph. This problem can be solved directly or via n − 1 minimum (s, t)-cuts. In
most cases, the algorithms solve the (s, t) version. Note that the approximation
bounds still apply, as the minimum cut is the minimum (s, t)-cut for at least one
pair of source and sink. In general, the algorithms perform well, and much better
than their theoretical worst-case bounds. Which algorithm is best depends on the
cost function and graph at hand.

Algorithms and baseline methods

The experiments compare variants of the algorithms proposed in this chapter, and
additional heuristics. All tested methods are listed in Table 4.2.

As a baseline, we show results for a minimum cut with the simplest approxi-
mation f̂add (MC) defined in Equation (4.3), and for computing the minimum cut
basis C = {C1, . . . , Cn−1} and selecting Ĉ = argminCi∈C f(Ci) (MB). The minimum
cut basis can be computed via a Gomory-Hu tree [Bunke et al., 2010]. None of
these takes any coupling of edges into account when computing the cut. Compar-
ing the iterative method to these baselines illustrates the effect of the adjusting
upper bound, which does consider parts of the coupling. To test the effect of ini-
tializations, we initialize the iterative method with a random cut basis (RI) and
the minimum-weight cut basis (MI). Given an initial cut, we compute the upper
bound and a minimum cut with respect to this bound, and iterate. Together, these
methods illustrate the effect of the iterative bounds, and the effect of initialization.
Since the random basis of RI does not necessarily contain the minimum cut with
respect to f̂add, Lemma 4.6 does not hold for this method.

Besides the iterative method, we test other approximations to the cost function,
including the generic approximation by Goemans et al. [2009] (EA) followed by a
minimum cut, and the local approximation solved via a polymatroidal maximum
flow problem (PF).

The other presented algorithms address the constraints. We implemented the
convex relaxation (CR) using Matlab’s fmincon function. For the greedy covering
algorithm, we include three variants. First, we test two different factors β (GM,
GA). A larger β is more likely to sample more edges; the largest β used in GM
always leads to including all minimum-weight edges of a path. We also test the
deterministic variant that picks one minimum-cost edge from a non-covered path
in each iteration and nothing else (GH). Non-minimal solutions are always pruned
by computing a minimum cut.

Apart from the specific algorithms, we run another method that solves minimum
cut for modular costs f . Queyranne’s algorithm (QU) [Queyranne, 1998] minimizes
symmetric submodular functions without constraints in O(n3) time. We apply

62

4.4. An empirical comparison and worst cases

approximating f

MC Simple approximation f̂add with standard minimum cut
RI Iterative approximation, initialized by a random cut basis (§4.2.3)
MI Iterative approximation, initialized by the minimum cut basis with

respect to f̂add (§4.2.3)
EA Ellipsoid-based approximation f̂ea of f (§4.2.1)
PF Approximation f̂pf of f via polymatroidal network f lows (§4.2.2)

simplifying the constraints

CR Convex relaxation and rounding (§4.3.2)
GM Greedy cover with maximum β (§4.3.1)
GA Greedy cover with almost maximum β = 0.9βmax (§4.3.1)
GH Greedy heuristic: always pick a minimum marginal-weight edge

comparison methods

QU Queyranne’s algorithm for minimizing symmetric submodular
functions

MB Minimum cut basis for a modular approximation, no iterations

Table 4.2. Acronyms for the algorithms used in the experiments.

this algorithm to the induced function g : 2V → R+ on nodes, g(X) = f(δX).
The function g is symmetric, but, as will be shown in Chapter 5, it is not in
general submodular. Thus, Queyranne’s algorithm can here at most be viewed as
a heuristic that is not guaranteed to find the optimal solution. In fact, Section 4.4.2
reveals that it is impossible to provide any bounds on the solution returned by this
heuristic. Nevertheless, the algorithm often does find low-cost solutions, possibly
because the function g may often be close to submodular.

All algorithms were implemented in Matlab, with the help of a graph cut tool-
box [Bagon, 2006, Boykov and Kolmogorov, 2004], and a toolbox for submodular
function optimization [Krause, 2009].

4.4.1. Benchmark data for average cases

The benchmark data for cooperative cuts consists of two ingredients: (i) random
graphs and (ii) a range of nondecreasing submodular cost functions. These func-
tions by themselves can also serve as a benchmark for general submodular mini-
mization. They can be turned into nondecreasing submodular functions by adding
an appropriately scaled negative modular function.

63

Chapter 4. Approximation Algorithms

(a) Grids I and II (b) Clustered graph

Figure 4.3. Examples of our test graphs. The grid (a) was used with and without the
dashed diagonal edges, and also with a variation of the connections in the first and last
row. The clustered graphs were similar to the example shown in (b).

Graphs

We use two types of graph structures, regular graphs and clustered graphs.
Grid graphs. Three variants of regular grid graphs of degree four or six are

used. Type I is a plane grid with horizontal and vertical edges displayed as solid
edges in Figure 4.3(a). Type II is similar, but has additional diagonal edges (dashed
in Figure 4.3(a)). Type III is a cube with plane square grids on four faces (sparing
the top and bottom faces). Different from Type I, the nodes in the top row are
connected to their counterparts on the opposite side of the cube. The connections
of the bottom nodes are analogous.

Clustered graphs. The clustered graphs consist of a number of cliques that
are connected to each other by few edges, as depicted in Figure 4.3(b).

We use the three grid types with 25 or 32 nodes and four random clustered graphs
with 30 nodes and 90 edges. For each graph, we generate five random instances of
each cost function.

Cost functions

The cost functions are listed in Table 4.3 and 4.4. The benchmark includes four
families of functions. The first group are matroid rank functions or sums of three
such functions. The functions used here are either based on matrix rank or ranks
of partition matroids. We refer to those functions as rank-like costs.

Second, we use two variants of discounted price functions, one with a logarithm
and one with a square root. These functions too are designed to favor a certain
random optimal cut. This construction ensures that the minimum cut will not be
one that separates out a single node, but one that cuts several edges.

The third family is constructed particularly to make a cut optimal that has many
edges and that is therefore different from the cut that uses fewest edges. For such
a cut, we expect f̂add to yield relatively poor solutions.

64

4.4. An empirical comparison and worst cases

name description

matrix rank I Each element e ∈ E indexes a column in matrix X. The cost
of A ⊆ E is the rank of the sub-matrix XA of the columns
indexed by the e ∈ A: fmrI(A) = rank(XA). The matrix X
is of the form [I′ R], where R ∈ {0, 1}d×(m−d) is a random
binary matrix with d = 0.9

√
m, and I′ is a column-wise

permutation of the identity matrix.

(poly-)matrix
rank II

fmrII(A) = 0.33
∑3

i=1 f
(i)
mrI(A) sums up three functions f (i)

mrI
of type matrix rank I with different random matrices X.

labels I f&I(A) = |
⋃

e∈A .(e)|. Each element e is assigned a random
label .(e) from a set of 0.8

√
m possible labels. The cost

counts the number of labels in A.

labels II f&II(A) = 0.33
∑3

i=1 f
(i)
&I (A) is the sum of three functions of

type labels I with different random labels.

discounted price
function I

fdpI(A) = log
∑

e∈A w(e), where weights w(e) are chosen
randomly as follows. Sample an X ⊂ V with |X| = 0.4n,
and set w(e) = 1.001 for all e ∈ δX. Then randomly assign
some “heavy” weights in [n/2, n2/4] to some edges not in
δX, so that each node is incident to one or two heavy edges.
The remaining edges get random (mostly integer) weights
between 1.001 and n2/4− n+ 1.

discounted price
function II

fdpII(A) =
√∑

e∈A w(e) with weights assigned as for “dis-
counted price function I”.

bestcut I We randomly pick a connected subset X∗ ⊆ V of size
0.4n and define the cost fbcI(A) = 1[|A ∩ δX∗| ≥ 1] +∑

e∈A\δX∗ w(e). The edges in E \ δX∗ are assigned random
weights w(e) ∈ [1.5, 2]. If there is still a cut C -= δX∗ with
cost one or lower, we correct w by increasing the weight of
one e ∈ C to w(e) = 2. The optimal cut is then δX∗, but
it is usually not the one with fewest edges.

bestcut II Similar to bestcut I (δX∗ is again optimal), but with sub-
modularity on all edges: E is partitioned into three sets,
E = (δX∗) ∪ B ∪ C. Then fbcII(A) = 1[|A ∩ δX∗| ≥
1] +

∑
e∈A∩(B∪C) w(e) + maxe∈A∩B w(e) + maxe∈A∩C w(e).

The weights of two edges in B and two edges in C are set
to w(e) ∈ (2.1, 2.2).

Table 4.3. Cost functions for the experiments in Section 4.4.1 (part I), n = |V|, m = |E|.
“Matrix rank I, II” and “labels I, II” are summarized as “rank-like” costs in the results.

65

Chapter 4. Approximation Algorithms

name description

truncated rank This function is similar to the truncated rank in the proof
of the lower bound (Theorem 3.2). Sample a connected
X ⊆ V with |X| = 0.3|V| and set R = δX. The cost is
ftr(A) = min{|A∩R|+min{|A∩R|,λ1}, λ2} for λ1 =

√
|R|

and λ2 = 2|R|. Here, R is not necessarily the optimal cut.

Table 4.4. Cost functions for the experiments in Section 4.4.1 (part II), n = |V|, m = |E|.
The indicator function is denoted by 1[·].

The fourth set of function is inspired by the difficult truncated functions that can
be used to establish lower bounds on approximation factors. These functions “hide”
an optimal set, and interactions are only visible when guessing a large enough part
of this hidden set.

To estimate the approximation factor on one problem instance (one graph and
one cost function), we divide by the cost of the best solution found by any of the
algorithms, unless the optimal solution is known (this is the case for bestcut I and
II).

Results

Figure 4.4 shows average empirical approximation factors and also the worst ob-
served factors. The first observation is that all algorithms remain well below their
theoretical approximation bounds7. That means, these bounds are really worst-
case results. For several instances we obtain optimal solutions.

The performance of single algorithms varies across graphs and cost functions.
Overall, the greedy algorithm GA performs well, as does the convex relaxation.
Despite its varying bound, the iterative algorithm is competitive too. In particular,
the adjusting bound improves on average over merely using f̂add (MB, MC). The
basis used for initialization, however, does not have a big effect.

As expected, a modular-cost estimate of the minimum cut via f̂add performs
relatively poorly for the bestcut functions. In addition, the truncated rank family
appears to be the most challenging in that no algorithm always finds the optimal
solution.

The generic ellipsoid-based approximation performs best for the square root
discounted price function, because this function exactly fits the form of f̂ea. The
generic ellipsoidal approximation couples elements uniformly via a square root of a
sum, and therefore appears to be less suitable to capture the interaction of specific
elements that occurs in the other cost functions.

7Most of the bounds proved above are absolute, and not asymptotic. The only exception is f̂ea.
For simplicity, it is here treated as an absolute bound.

66

4.4. An empirical comparison and worst cases

grid graphs clustered graphs
rank-like cost functions

QU MC MB RI MI EA PF CR GM GA GH
0

2

4

a
p
p
ro

x.
 f
a
ct

o
r

QU MC MB RI MI EA PF CR GM GA GH
0

1

2

3

a
p
p
ro

x.
 f
a
ct

o
r

discounted price functions

QU MC MB RI MI EA PF CR GM GA GH
0

0.5

1

1.5

a
p
p
ro

x.
 f
a
ct

o
r

QU MC MB RI MI EA PF CR GM GA GH
0

0.5

1

a
p
p
ro

x.
 f
a
ct

o
r

QU MC MB RI MI EA PF CR GM GA GH
0

1

2

a
p
p
ro

x.
 f
a
ct

o
r

QU MC MB RI MI EA PF CR GM GA GH
0

0.5

1

1.5

a
p
p
ro

x.
 f
a
ct

o
r

bestcut functions

QU MC MB RI MI EA PF CR GM GA GH
0

2

4

a
p
p
ro

x.
 f
a
ct

o
r

QU MC MB RI MI EA PF CR GM GA GH
0

2

4

a
p
p
ro

x.
 f
a
ct

o
r

QU MC MB RI MI EA PF CR GM GA GH
0

2

4

a
p
p
ro

x.
 f
a
ct

o
r

QU MC MB RI MI EA PF CR GM GA GH
0

2

4

a
p
p
ro

x.
 f
a
ct

o
r

truncated rank

QU MC MB RI MI EA PF CR GM GA GH
0

1

2

a
p
p
ro

x.
 f
a
ct

o
r

QU MC MB RI MI EA PF CR GM GA GH
0

1

2

a
p
p
ro

x.
 f
a
ct

o
r

Figure 4.4. Results for the experiments of Section 4.4.1. The bars show the mean
empirical approximation factors, and red crosses mark the maximum observed empirical
approximation factor. The left column refers to grid graphs, the right column to clustered
graphs.

67

Chapter 4. Approximation Algorithms

Not surprisingly, selecting the maximal β for the randomized greedy algorithm
is very similar to deterministically choosing the minimum-cost edge from each
uncovered path. The difference is that the randomized algorithm can pick more
edges, and, if there are multiple edges with minimum marginal cost, it will pick all.
This makes a difference for the difficult truncated rank function, where interactions
can only be discovered if a sufficient part of the random set is selected. In general,
there is no big difference between the maximum β and a slightly smaller one. An
exception are the ranklike functions, where many edges have the same marginal
cost.

Even though it is only a heuristic here, Queyranne’s algorithm performs quite
well on average. This observation might indicate that several of the induced sym-
metric functions g still closely resemble submodular functions. The worst-case
instances in the next section, however, will demonstrate the limits of this heuristic.

4.4.2. Worst-case examples

The previous section explored results for average-case instances. In this section,
we study two sets of problem instances that are specifically crafted to mislead
particular algorithms. The graphs in the sequel are again undirected.

Type I: difficult instances for purely modular approximations

The first example exploits the weakness of the modular approximation f̂add(A) =∑
e∈A f(e) to ignore the interaction of edges, that is, the subadditivity of f resulting

from diminishing marginal costs, f(A) 6 f̂add(A), for certain sets A ⊆ E . We study
two variants, (a) and (b).

In version (a), the modular cost of the true optimum C∗ is n2/4 times higher
than its submodular cost, that is, f̂add(C∗) = n2

4 f(C
∗). Furthermore, we construct

the cost f such that for the minimum cut Ĉ for cost f̂add, in contrast, the true cost
f is not much smaller than the estimate f̂add: f(Ĉ) = f̂add(Ĉ)− n

2 − 1. As a result,
f̂add is not a good estimate for the relative costs f(C∗) and f(Ĉ).

The graph structure, shown in Figure 4.5, completes the instance. The graph is
a clique with three types of edges, marked by different colors. Let Ek, Eb, and Er
be the set of black, blue and red edges, respectively. The cost fIa is the direct sum
of the cost functions fk, fb, fr on these sets,

fIa(A) = fk(A ∩ Ek) + fb(A ∩ Eb) + fr(A ∩ Er) (4.50)

with fk(A) = 1 for all A ⊆ Ek;

fb(A) =
n

2
|A| for all A ⊆ Eb;

fr(A) = |A|
(
n

2
− ε

n/2− 1

)
for all A ⊆ Er

68

4.4. An empirical comparison and worst cases

for a small ε > 0. The optimal cut is C∗ = Ek and relies on the only but strongly
submodular part of the cost function, fk. The optimal cut for f̂add separates out
node vn/2+1, cutting all red edges and the black edges adjacent to vn/2+1, and has
true cost fIa(δvn/2+1) = n2/4 − n/2 + 1 − ε. Thus, the approximation factor for
this cut grows as n2/4, and follows the order O(m) of the theoretical worst-case
bound.

Figure 4.5 shows the results of the tested algorithms. Both the minimum cut with
weights f̂add (MC) and the minimum cut basis (MB) return the cut δvn/2+1. All
other algorithms that take submodularity into account find the optimal solution.

Version (b) of the problem instance has the same graph structure but a modified
cost function. This cost function is truncated and thereby renders the adjusting
bounds ineffective. The modified cost function is

fIb(A) = min{fIa(A) + ε′|A ∩ Ek|, γ} (4.51)

for a truncation threshold γ = fr(Er) + fb(Eb) − (n/2 − ε(n/2 − 1)−1) + 1 and
a small ε′ > 0. The truncation makes the marginal costs and thus the weight
wB(e) = ρ(e|E \ e) in the iterative bounds zero for all edges in the current cut.
However, the marginal cost ρ(e|B) that is used for all other edges is not zero, so
Algorithm 1 will never move away from a starting point, and will thus only find
the optimal solution if it is given as an initialization. Since C∗ has the maximum
possible number of edges, it is not in the minimum cut basis with respect to f̂add.
The result is obvious in Figure 4.5(b): the advantage of the iterative minimization
is gone, and the iterative algorithm too only returns the quadratically worse second-
best cut. In comparison, in version (a), the weights wB(e) are zero for the black
edges given any cut B, since every cut must contain a black edge.

We remark that Instance I(b) is theoretically useful, because it shows that
Lemma 4.6 is tight as a worst-case bound. However, the instance is not very
realistic.

Type II: difficult instances for modular approximations and Queyranne’s algorithm

The first few instances of the second group, II(a)-(c), again challenge modular
approximations. Finally, instance II(d) demonstrates the benefit of theoretical
approximation guarantees: there is no upper bound on the approximation factor
for Queyranne’s algorithm. On this instance, the heuristic can indeed perform
arbitrarily badly, whereas the other algorithms are saved by upper bounds on their
approximation factors.

The graph for examples II is again a clique, but its edges are partitioned into
n/2 sets, indicated by colors in Figure 4.6. The black set Ek is, as for Graph I,
the cut with the maximum number of edges. The remaining sets are constructed
node-wise as

Ei =
{
(vi, vj) ∈ E | i < j ≤ n/2

}
∪
{
(vn/2+i, vj) ∈ E | n/2 + i < j ≤ n

}
(4.52)

69

Chapter 4. Approximation Algorithms

vn/2+1

(a)

QU MC MB RI MI EA PF CR GM GA GH
0

10

20

30

a
p

p
ro

x.
 f

a
ct

o
r (b)

QU MC MB RI MI EA PF CR GM GA GH
0

10

20

30

a
p

p
ro

x.
 f

a
ct

o
r

Figure 4.5. Graph I and empirical approximation factors with n = 10 nodes, so n2/4−
n/2+1 = 21. Where applicable, gray bars illustrate the theoretical approximation bound.

for each 1 ≤ i < n/2. In Figure 4.6, set E1 is red, set E2 is blue, and so on. The
cost function adds cost b for any set Ei intersecting the cut, and cost 1 if any black
edge is in the cut:

fIIa(A) = 1[|A ∩ Ek| ≥ 1] +
n/2−1∑

i=1

b · 1[|A ∩ Ei| ≥ 1], (4.53)

with b = n/2 for versions II(a) to II(c). As before, 1[·] denotes the indicator
function. The optimal solution is again C∗ = Ek with fIIa(C∗) = 1. The results
for the different algorithms are illustrated in Figure 4.6.

For II(a), the iterations with adaptive bounds still help to find the optimal
solution. With the next two examples II(b) and II(c), this benefit vanishes thanks
to two modifications: a truncation in II(b) and the addition of a tiny modular
cost in II(c) tint the look through the glasses of marginal costs with respect to
initializing cuts. The cost functions II(b) and II(c) are

fIIb(A) = min{fIIa(A), n} (4.54)
fIIc(A) = fIIa(A) + ε|A ∩ Ek|. (4.55)

Finally, a small modification of function fIIa demonstrates the benefit of bounded
factor approximations. We increase the constant b in function fIIa. For any b > n/2,
any solution other than C∗ is more than n2/4 = |C∗| > n times worse than the
optimal solution. Thanks to the upper bounds on their approximation factors, all
algorithms except for QU find the optimal solution. The result of the latter depends
on how it selects a minimizer of f(B ∪ e) − f(e) in the search for a pendent pair;
this quantity often has several minimizers here. Some of those minimizers will lead
to a good solution and some to a bad one. Versions II(a) to II(c) show lucky cases.
Version II(d) is like II(a), but uses a different sequence, that is, permuted node

70

4.4. An empirical comparison and worst cases

v1

vn/2 vn

vn/2+1

(a)

QU MC MB RI MI EA PF CR GM GA GH
0

10

20

30

a
p

p
ro

x.
 f

a
ct

o
r (b)

QUMCMB RI MI EA PFCRGMGAGH
0

10

20

30

a
p

p
ro

x.
 f

a
ct

o
r

(c)

QU MC MB RI MI EA PF CR GM GA GH
0

10

20

30

a
p

p
ro

x.
 f

a
ct

o
r (d)

QU MC MB RI MI EA PF CR GM GA GH
0

50

100

a
p

p
ro

x.
 f

a
ct

o
r

Figure 4.6. Graph II and empirical approximation factors with n = 10 nodes. Gray
bars illustrate theoretical approximation bounds where applicable. In (a) and (b), cutting
off v1 costs f(δv1) = n/2 + 1 = 6 and is the second-best cut. Cutting off vn costs
f(δvn) = n/2(n/2 − 1) + 1 = 21, the worst cut that cuts off a single node. For (b), the
maximum cost of a cut is n = 10. In (d), the second-best cut δv1 has cost f(δv1) =
b+ 1 = 101 8 max{|C∗|, n,

√
m logm}.

labels, and b = n2 = 100. For the permutation in (d), QU will always return the
same solution δv1 with cost b+1, no matter how large b is. Therefore, its solution
can become arbitrarily poor.

Type III: a difficult instance for the greedy heuristic

The worst input for the algorithm GH is in fact an instance of standard Minimum
Cut with a modular cost function. The iterative algorithm, the approximation
via polymatroidal flows and the approximation by f̂add find the exact minimum for
such instances.

Here, we again consider an (s, t)-cut (the worst-case examples above also work
as (s, t)-cuts, with the exception that Queyranne’s algorithm cannot be applied
any more). Construct a clique of (n− 1) nodes, where s is one of these nodes, and
connect t with a single edge to some v′ -= s. The edge (v′, t) has weight γ for a
very small ε. Pick a subset X of (n − 1)/2 − 1 nodes excluding v′. All edges in
δ(X ∪ s) are assigned weight γ − ε for any small ε > 0, and all other edges in the
clique have weight γ − ε/2. The minimum (s, t)-cut C∗ = {v′, t} in this graph has
therefore cost f(C∗) = γ. But the greedy heuristic will never select the optimal

71

Chapter 4. Approximation Algorithms

MC IT EA PF CR GM GA GH
0

10

20

30

a
p

p
ro

x.
 f

a
ct

o
r

Figure 4.7. Results for Graph III with n = 11 nodes, n2/4 = 25 and γ = 50, ε = 10−4.
This instance was solved as an (s, t)-cut by applicable methods. Algorithm IT is the
iterative algorithm with I = {∅}. By Lemma 4.6, both IT and MC are guaranteed to
find an optimal solution here.

edge, and instead return the cut Ĉ = δ(X ∪ s), with f(Ĉ) = (n−1)2

4 (γ − ε). This
is by a quadratic factor (n−1)2

4 (1− ε′) worse than the optimum. A similar example
gives a linear factor in n for a minimum cut without terminals. The randomized
algorithms will behave differently: as the optimal edge is a bottleneck and occurs
in all paths, and as its (marginal) weight only differs slightly from that of the
other edges, it will be selected by the randomized algorithms with high probability.
Figure 4.7 shows the empirical approximation factors for all methods. In fact, MC,
the iterative approximation, the partition f̂pf and the convex relaxation are always
exact if the cost function is modular.

4.5. Summary and discussion

This chapter introduced approximation algorithms for CoopCut that either re-
lax the cost function or simplify the constraints. When approximating the cost
function, it is important that the approximation retains as much as possible of
the relevant coupling, while at the same time it must be simple enough to admit
polynomial-time algorithms. We compare two generic approximations from the
literature, f̂add and f̂ea, to two new functions, f̂pf and an adjusting upper bound
(ITB). The function f̂pf takes the minimum over a family of graph-specific parti-
tions and we show that its dual corresponds to a problem for which polynomial-time
algorithms exist. On dense graphs, its approximation bound is better than that
of the generic functions. The adjusting bounds yield good empirical results. Even
though we leave it as an open problem whether the iterative Algorithm 1 always
terminates in a polynomial number of iterations, in the experiments it finished
after few iterations, and its average results in Section 4.4.1 are better than those
for f̂add and f̂ea.

When taking the second route of simplifying the constraints, one must ensure
that the new problem is easier to optimize and that its solution can be transformed
into a similarly good solution that is a cut. Our algorithms rely on the insight that
graph cut problems are related to cover problems, if we allow a cut to include

72

4.5. Summary and discussion

additional edges. We then transfer existing methods for covers to cuts and derive a
rounding method for relaxations as well as greedy algorithms. The covers resulting
from cuts have an exponential number of constraints, but we show that these
constraints can still be handled. In particular the randomized greedy algorithm
is easy to implement and performs very well in the experiments. Its theoretical
bound refers to the unpruned solution that can include many additional edges.
The pruning step may not always find the best solution within the set of selected
edges. Designing a worst-case example for GM and GA is a question for future
exploration.

We prove upper bounds on the approximation factors of all algorithms. Chap-
ter 3 shows that MinCoopCut does not admit constant-factor approximations,
only polynomial ones. In that respect, the bounds shown in Lemmas 4.2, 4.6, 4.7
and 4.9 and Theorem 4.1 are optimal. While we can state these bounds very gen-
erally as O(n), O(

√
m logm) or O(m), almost all of them depend on the graph

structure, such as the longest path or the vertex boundary of the minimum cut.
The exact statement of the factors can make a significant difference: Consider a
graph that is a chain of

√
n cliques between s and t. Each clique has

√
n nodes, and

two adjacent cliques share one node. The longest path has length n − 1, whereas
|∆s| ≤

√
n, and

√
m ≈ n3/4. Furthermore, for standard MinCut with additive

edge weights, the approximations f̂add, f̂pf , the adjusting bounds and the convex
relaxation always find the optimal solution. This is not necessarily the case for the
greedy algorithms.

The empirical results complement the theoretical analysis and show that the
solutions returned by the approximation algorithms are in general better than the
worst-case approximation bounds. Finally, Section 4.4.2 demonstrates that even
non-constant approximation bounds can be beneficial, as they prevent arbitrarily
poor solutions. The worst-case examples moreover show some of the proven bounds
to be tight.

73

Chapter 5.

Cooperative Cuts and Energy Minimization

In this chapter, we explore the relations between cooperative cuts and probabilistic
inference. The relations draw from a crucial observation: wherever standard graph
cuts are applied but they do not express sufficient coupling, cooperative cuts can be
used instead. In particular, many applications arise from representing functions via
graph cuts. Our motivation and applications here come from computer vision, but
the introduced model can be applied in any field where similar graphical models
are used.

To discriminate between binary vectors x and their entries xi, we will denote
binary vectors by bold letters in this chapter.

5.1. Graph cuts, probabilistic models and inference

Probabilistic models are used in a wide range of settings. In several cases, infer-
ence reduces to a Minimum Cut problem in an appropriate graph. While this
observation, which we describe in detail in the sequel, has found many successful
applications, the graph cut framework implies certain independence assumptions
that set limits to the associated class of models. In particular, graph cuts can im-
plement only pairwise, submodular potentials. Figure 5.1 shows two examples from
a common application, image segmentation, where standard graph-based methods
fail. In this chapter, we address the question of how cooperative cuts can help
overcome some of the limitations of commonly used tractable probabilistic models.

Probabilistic models and inference

To understand how cooperative cuts integrate in an inference framework, we begin
with the basics of tractable inference in graphical models. Our general interest is
in the most probable explanation (MPE) problem [Pearl, 1988]: given a probability
distribution p(x|z̄) = 1

Z exp(−E(x)) for variables x = (x1, x2, . . . , xn) ∈ Ln in
some discrete domain L (the set z̄ of observed variables may be empty), find an
assignment that maximizes the probability of the unobserved variables,

x∗ ∈ argmax
x

p(x).

74

5.1. Graph cuts, probabilistic models and inference

Image Random Walker Curvature reg. Graph Cut
[Grady, 2006] [El-Zehiry and Grady, 2010]

Image & labels Graph cut segmentation

Figure 5.1. Examples from interactive image segmentation illustrating the limits of local
probabilistic models and of state-of-the-art algorithms involving graphs. Here, a user
provides initial partial labels of object and background, and the algorithm completes the
figure-ground segmentation. For low-contrast regions or objects with long, fine segments,
the shown local methods fail to identify the correct object boundaries. They tend to
“shortcut” long or weak boundaries, an effect known as shrinking bias. Chapter 6 will
demonstrate non-local methods that can handle these difficulties better.

The term Z is a normalizing factor. The probability is determined by an energy
function1 E(x), so that a maximizing assignment x∗ equivalently minimizes the
energy:

x∗ ∈ argmin
x

E(x).

First, for simplicity, we assume all variables to be binary, i.e., L = {0, 1}. Then
E : {0, 1}n → R+ is a (pseudo-boolean) function on binary vectors. The distinction
between MPE and Maximum a posteriori (MAP) inference is not always made
clearly in the literature. We use the definition that MAP is a case of MPE where
z̄ is non-empty. In any case, important is the form of the energy function.

Without any restrictions placed on E, it is easy to see that there is not much hope
for efficient inference in general, even if we consider bounded approximations. For
example, assume that E is given by an oracle, and let y ∈ {0, 1}n be an unknown
vector. Consider the energy E(x) = 1 if x = y, and E(x) = γ(n) otherwise,
where γ(n) > 1 could be any (polynomial-time) computable function of n. With
only polynomially many queries to E, it is exponentially unlikely to identify y,

1We implicitly include the common case that the energy is also a function of z̄.

75

Chapter 5. Cooperative Cuts and Energy Minimization

and since γ(n) is almost arbitrary, no approximation guarantee of any form is
possible in polynomial time. The exponential difficulty of approximate inference in
such unrestricted models, therefore, is worse than that implied by the well known
fact that MPE is NP-hard and not constant-factor approximable [Abdelbar and
Hedetniemi, 1998].

Thus, model restrictions are often applied to allow for exact or good approximate
inference in polynomial time. These are either structural, such as treewidth or
factor size, or functional, such as submodularity. There can be problems with
such restrictions, however, such as the well known drawbacks of local pairwise
random fields in computer vision, illustrated in Figure 5.1. Thus, the question
arises whether there are other combinatorial structures that go beyond the previous
restrictions but still, as opposed to the introductory example, enable inference with
a bounded approximation factor.

Structural restrictions

The common structural restrictions for tractability correspond to factorizations of
p. Let p factor with respect to a graphical model G = (V,E) comprising n = |V|
nodes and edge set E. That means there is a node vi ∈ V for each variable xi, and

p(x) ∝
∏

(vi,vj)∈E

exp(ψij(xi, xj))
∏

i

exp(ψi(xi)). (5.1)

This is equivalent to

E(x) =
∑

(vi,vj)∈E

ψi,j(xi, xj) +
∑

i

ψi(xi). (5.2)

In particular, the graph G indicates conditional independence relations that the
distribution p must satisfy.
The decisive parameter indicating the complexity of MPE in G is the treewidth of
G [Chandrasekaran et al., 2008]. The treewidth [Kloks, 1994] is one less than the
size of the maximum clique in a minimum triangulation. Generally, finding the
MPE takes time exponential in the treewidth when it is known.

In general, we write E(x) =
∑

φ∈Φ ψφ(xφ) where Φ corresponds to the set of fac-
tors comprising the distribution. Viewed as a bipartite (factor) graph, each φ ∈ Φ
is the subset of nodes φ ⊆ V involved in a factor. Many approximate inference
algorithms rely on maxφ∈Φ |φ| being small. For example, the cost of sending mes-
sages even in loopy belief propagation is exponential in |φ|. Therefore, maxφ∈Φ |φ|
(which we call the factorwidth) may also be seen as a complexity parameter for
certain approximate inference algorithms.

Functional restrictions

Nevertheless, treewidth and factorwidth are not the only characterizations of
tractability. In fact, exact polynomial-time MPE is possible even with maximum

76

5.1. Graph cuts, probabilistic models and inference

treewidth and factorwidth if E is restricted in other ways. A recent class of en-
ergy functions having received attention in the vision community is that of sub-
modular functions. To map between pseudo-boolean energy functions and set
functions, we introduce some notation. From energy functions to set functions,
the correspondence is via characteristic vectors. Conversely, given a set function
g : 2V → R+ defined on a ground set V of n elements, an equivalent energy func-
tion E : {0, 1}n over variables xi, one for each vi ∈ V , is defined as follows. Let
X(x) ⊆ V be the set of elements vi ∈ V whose corresponding variable xi is one,
i.e., X(x) = {vi ∈ V : xi = 1}. As a result, x = χX(x) is the characteristic vector
of X(x), and the energy equivalent to g is E(x) ! g(X(x)).

Finding an assignment that minimizes the energy is equivalent to finding the
subset X ⊆ V that minimizes g. When g is submodular, this can be done in
polynomial time [Fujishige, 2005]. As an example of a submodular g that places
restrictions neither on treewidth nor factorwidth, consider the submodular function
g(S) = −

∑
i

∏
v∈S wi,v, where 0 < wi,v ≤ 1 is a set of coefficients for all i and v ∈ V .

However, submodular function minimization is not currently a low-order polyno-
mial time algorithm. In consequence, areas such as computer vision and constraint
satisfaction have seen a lot of interest in special subclasses of submodular functions
that admit faster optimization, in particular, functions representable as graph cuts.

Graph cut representations

If an energy function has order two and each term is a submodular function of two
variables, then MPE reduces to a minimum (s, t)-cut [Greig et al., 1989, Boykov
and Jolly, 2001, Kolmogorov and Zabih, 2004] on a graph G = (V , E). We call G
the structure graph to clearly distinguish it from the graphical model. The graph
G has terminal nodes s, t, and a node vi for each variable xi. A labeling x induces
a partition of V and thereby an (s, t)-cut Γ(x) = δ(X(x)). We call Γ(x) also the
boundary of x. The graph G has weights w : E → R+ and is designed such that its
cut equals the energy:

E(x) =
∑

e∈δ(X(x))

w(e) ! w(δ(X(x))). (5.3)

Let C∗ ⊆ E be the minimum cut, and X∗ the nodes reachable from s after removal
of C∗. Then C∗ = δ(X∗) and the optimal assignment x∗ is determined as x∗

i = 1
if and only if vi ∈ X∗. To achieve efficiency by using graph cuts, the construction
must be limited to pairwise energies, that is, a factorwidth of 2. Higher order
models may be obtained by adding auxiliary variables. Section 7.2.1 will define
graph representability of set functions (and therefore also energy functions) in
greater detail.

Common models in computer vision are pairwise, grid-structured Markov ran-
dom fields, whose energy function (given an observed image z̄) contains unary and

77

Chapter 5. Cooperative Cuts and Energy Minimization

1

s

1 1

10

0

0 0 0

0

0

t

1

1

Figure 5.2 Commonly used graph cut representation
of a local pair-wise Markov random field. The energy
of the labeling x indicated in the nodes of the graph is
equivalent (up to constants) to the sum of weights of the
edges in Γ(x), i.e., the edges from label-one to label-zero
nodes.

pairwise terms. The pairwise terms refer to edges in the random field, which are
often denoted by a neighborhood relation N :

E(x; z̄) =
∑

i

ψi(xi) +
∑

(i,j)∈N

ψij(xi, xj). (5.4)

The corresponding structure graph is depicted in Figure 5.2. Its terminal edges
(s, v) and (v, t) for all v ∈ V model the unary potentials, and the remaining grid
edges represent the pairwise terms.

Inspired by the efficiency and wide applicability of graph cut representations,
a principal goal has become identifying the most general classes of energies that
can be exactly optimized either directly or indirectly via graph cuts. For example,
while some binary pairwise potential functions can be solved exactly using graph
cuts, in many cases higher order (e.g., k-ary) potential functions [Zalesky, 2003,
Kolmogorov and Zabih, 2004, Freedman and Drineas, 2005, Ramalingam et al.,
2008, Z̆ivný and Jeavons, 2010, Ramalingam et al., 2011] and potentials functions
over non-binary variables [Boykov et al., 2001] can also be solved efficiently.

Unfortunately, there are critical deficiencies when graph cuts are used in practice,
partly stemming from their inability to represent more than only a limited class
of energies efficiently (see also Section 7.2.1). The core issue is that graph cuts
model an energy that decomposes into pairwise terms with nonnegative weights.
The direct use of such energies can cause insurmountable over-smoothing in image
segmentation. Some higher-order energies are graph-representable, but this rep-
resentation might regrettably require additional variables which can impair com-
putational efficiency [Z̆ivný and Jeavons, 2010, Ramalingam et al., 2011]. Recent
research, therefore, has aimed to identify practically manageable higher order en-
ergies [Ishikawa, 2009, Kohli and Kumar, 2010, Kohli et al., 2007, Komodakis and
Paragios, 2009], and to develop efficient optimization methods for non-submodular
potentials [Kolmogorov and Rother, 2007].

78

5.1. Graph cuts, probabilistic models and inference

5.1.1. Multi-label energies and move-making algorithms

The above sections address binary probabilistic models. To complement this, we
briefly review a family of common methods for inference in probabilistic models
where variables can take multiple values. These methods have been used primarily
in computer vision. Extending Markov Random Fields to the multi-label case
allows each variable xi to take labels from a set L of discrete labels. The unary
potentials ψi are then defined over L, and the pairwise potentials ψij for values
in L ×L . Whereas binary segmentation for regular potentials is polynomial-time
solvable, the multi-label version with |L| > 2 becomes NP-complete [Boykov et al.,
2001]. Multi-label segmentation relates to multi-way cuts, but the approximation
factor for multi-way cut does not transfer to the inference problem [Boykov et al.,
2001]. One approach to reduce the multi-label case to a sequence of binary cases
are move-making algorithms. Other algorithms apply too, but we limit ourselves
here to move-making algorithms as those become relevant later in this chapter.

Move-making algorithms [Boykov et al., 2001, Milis, 1996] can be viewed as
local search algorithms. Given a current labeling xt ∈ Ln, we seek the optimal
re-labeling

xt+1 ∈ argminE(x) s.t. x ∈ X (xt, at) (5.5)
from a limited set X (xt, at). This search space consists of all labelings that are
reachable within one “move” and is parameterized by one or more labels a, b, c ∈ L.

Having found the optimal xt+1, the typical algorithm defines a new search space
X (xt+1, at+1) around this new labeling and finds the best labeling in the new space.
It iterates until no more candidate search space around the current labeling holds a
point that lowers the energy further. The algorithms differ in the type of move they
allow, that means, in the definition of the local search neighborhood. Commonly
used are expansion moves and swap moves introduced by Boykov et al. [2001], Milis
[1996]. A more recent variant are fusion moves that allow to merge two labelings
using a graph cut with negative edge weights [Lempitsky et al., 2010]. In the sequel,
we focus on the former two that use graph cuts with nonnegative weights.

Expansion moves

Expansion moves allow to re-label each xi to a pre-determined label a, or to keep
its current label:

X (x′, a) = {x | xi = x′
i or xi = a ∀i}. (5.6)

Boykov et al. [2001] show how to find the energy-minimizing labeling in X (xt, a)
by a graph cut if the potentials are at most pairwise, symmetric and metric. That
is, for any labels a, b, c ∈ L, it must hold that

ψij(a, b) = 0 if and only if a = b (5.7)
ψij(a, b) = ψij(b, a) ≥ 0 (5.8)
ψij(a, b) ≤ ψij(a, c) + ψij(c, b). (5.9)

79

Chapter 5. Cooperative Cuts and Energy Minimization

Semi-metrics, for which the triangle inequality does not hold, can be approximated
(at some loss of accuracy) by Potts potentials2.

The algorithm proceeds by alternating the label a for each move, until the label-
ing does not change for any possible label a in the move. Let x̂ be the solution
at convergence of the algorithm, that means, x̂ ∈ argminx∈X (x̂,a) E(x) for all pos-
sible a ∈ L. Boykov et al. [2001] prove that then x̂ is at most by a bounded
approximation factor worse that the optimal solution x∗: E(x̂) ≤ 2νE(x∗), where
ν = maxi,j maxa,b∈L ψij(a, b)/mina′,b′∈L ψij(a′, b′).

The metric labeling problem defined by metric pairwise potentials has also stip-
ulated further theoretical work, e.g., [Kleinberg and Tardos, 1999, Chuzhoy and
Naor, 2004].

Swap moves

Swap moves apply to pairwise potentials if those are semi-metrics [Boykov et al.,
2001], but no guarantees have been proven about their solution at convergence. For
those moves, we pick two labels a and b, and only allow to re-label any variable
that currently carries any of those two labels. For those variables, we are allowed
to swap labels a and b. All other labels remain untouched:

X (x′, a, b) = {x | xi = x′
i or both x′

i ∈ {a, b} and xi ∈ {a, b} ∀i}. (5.10)

Both expansion and swap moves admit to optimize over their search space via a
graph cut.

5.2. Energy functions induced by cooperative cuts

We saw that graph cut representations for binary energies are efficient and prac-
tical, but also that efficient representations are limited to a subset of functions.
Importantly, we can view a representable function either as a pseudo-boolean po-
tential function or as a graph cut function. In the sequel, we build on the graph
cut viewpoint and investigate the energy functions induced not only by standard
graph cuts, but by cooperative cuts. Analogously to Equation (5.3), we define a co-
operative cut energy that is based on a structure graph G = (V , E) which contains
a node vi ∈ V for each variable xi.

Definition 5.1 (Cooperative cut energy function). An energy function E :
{0, 1}n → R+ is a cooperative cut energy function if there exists a structure graph
G = (V , E) with nodes V = {vi}ni=1 ∪ {s, t} and a nondecreasing submodular func-
tion f : 2E → R+ such that for all x ∈ {0, 1}n, it holds that

E(x) = Ef (x) ! f(δ(X(x))) = f(Γx). (5.11)
2Potts potentials consist of pairwise terms ψij(xi, xj) = γ1[xi -= xj] that ignore the actual labels

and merely detect disagreements of labels.

80

5.2. Energy functions induced by cooperative cuts

s t

01

1

11

11

0

(a) structure graph

s t

(b) factor graph

Figure 5.3. Structure graph and corresponding factor graph. Let the edge cost be
f(S) = min{|S|, 1} on the solid edges. Then any cut through the solid edges costs one,
and the corresponding potential is one whenever there is any (1,0) pair among the variable
pairs induced by those edges. Thus, there must be a factor that includes all of the nodes
incident to any solid edge.

We denote the family of all cooperative cut energy functions by Fcoop.

That means we replace the sum of edge weights by a nonnegative submodular
function f : 2E → R+ on edges of the structure graph. Resulting from the equiv-
alence between cuts and energy functions, MAP inference with cooperative cut
energies corresponds to solving an instance of MinCoopCut. Any of the algo-
rithms from Chapter 4 applies for approximate inference and thereby shows that
the energies in Fcoop do not fall in the class of completely inapproximable energies.

Next, we outline some properties of the new family Fcoop. Chapter 3 already
implies results on the hardness of inference for Ef in general. Recall, however, that
inference with arbitrary energy functions does not even admit any approximations
at all.

5.2.1. Properties of cooperative cut energies

The first question arising is whether the energies in Fcoop satisfy any of the simpli-
fying properties summarized above, such as limited tree- or factorwidth, locality,
or submodularity (regularity).

Treewidth and factorwidth

In general, the submodular function f does not decompose as a sum of weights
over single elements. Instead, it is sensitive to the entirety, or composition, of
elements in its set argument. Thus, it may couple edges from anywhere in the
structure graph. Since edges map to pairwise potentials in graph cuts, cooperative
cuts formally couple pairwise potentials:

Ef (x) = f({(vi, vj) ∈ N | xi -= xj}). (5.12)

The energy only decomposes further into smaller terms if f does. As a result,
when re-writing a cooperative cut energy as a pseudo-boolean polynomial in x, all

81

Chapter 5. Cooperative Cuts and Energy Minimization

0.1

0.1

0.1

9.9

9.9

s

t

x1 x2

f(S) =

√∑

e∈S

w(e)

Ef (0, 0) + Ef (1, 1) =
√
10 +

√
10 ≈ 6.32

Ef (0, 1) + Ef (1, 0) =
√
0.3 +

√
19.9 ≈ 5.01

Figure 5.4. A cooperative cut energy function Ef that is not submodular. Its cost
function is a square root of the sum of weights in the cut. The same example works for
a directed graph too.

nodes v ∈ e adjacent to any edge e in a group of coupled edges must occur in the
same term and are coupled, too. Figure 5.3 demonstrates that the factor graph
corresponding to a cooperative cut energy can have arbitrarily large factors. Thus,
the graphical model corresponding to Ef ∈ Fcoop may have unrestricted treewidth
or factorwidth, without any locality restrictions. In other words, the energy Ef is
a higher-order energy of order up to n.

Regularity, submodularity and subadditivity

Having ruled out any algorithm that relies on treewidth for tractable inference, we
remain with submodularity as a candidate common simplifying property. Recall
that an energy of two variables is regular if

E(0, 0) + E(1, 1) ≤ E(0, 1) + E(1, 0). (5.13)

This definition extends to more than two variables via projections, and is then
equivalent to submodularity (Section 2.3).

Lemma 5.1. A cooperative cut energy function can be non-submodular.

The example in Figure 5.4 proves that some functions in Fcoop violate Condi-
tion (5.13), and therefore the members of Fcoop are not in general submodular. In
fact, submodular energy functions are only a strict subset of Fcoop. They are the
instances where the cut cost f is a sum of weights, or those where the graph struc-
ture and f have very regular properties – some examples are shown in Section 5.3,
and also in Chapter 7.

Nevertheless, any function Ef ∈ Fcoop, or the equivalent set function g(X) =
f(δ(X)) on sets of nodes, is subadditive:

Lemma 5.2. The function g : 2V → R+ induced by a cooperative cut as g(X) =
f(δX) is subadditive if f is nondecreasing submodular. Thus, any cooperative cut
energy is subadditive.

82

5.2. Energy functions induced by cooperative cuts

Proof. Let E(X, Y) = {(u, v) ∈ E | u ∈ X, v ∈ Y } denote the set of all edges
between X ⊆ V and Y ⊆ V . For any X, Y ⊆ V , it holds that δ(X ∪Y) ⊆ δX ∪ δY :

δ(X ∪ Y) = (δX \ E(X, Y)) ∪ (δY \ E(Y,X)) ⊆ (δX ∪ δY). (5.14)

Using (5.14) and the submodularity, monotonicity and nonnegativity of f , we con-
clude that for any X, Y ⊆ V , the function g satisfies the conditions of subadditivity:

g(X) + g(Y) = f(δX) + f(δY) (5.15)
≥ f(δX ∪ δY) + f(δX ∩ δY) (5.16)
≥ f(δX ∪ δY) (5.17)
≥ f(δ(X ∪ Y)) (5.18)
= g(X ∪ Y)

Subadditivity, however, is not a strong property for simplifying optimization. As
an illustrating example, consider the subadditive function3 g : 2V → R+,

g(X) =

0 if X = ∅ or X = V
1 if X = R

γ(n) otherwise,
(5.19)

for a large, arbitrary function γ(n). Without knowledge of R, it is impossible to
find the optimum Y ∗ = argminY⊂V,Y *=∅ g(Y) in polynomial time. That means if
g is given as an oracle and if we exclude the full or empty set as solutions, then
no polynomial-time algorithm can minimize g to any approximation factor smaller
than γ(n). This difficult function is equivalent to a cooperative cut energy: define
a connected graph on V , with edge weights

w(e) =

{
1 if e ∈ δ(R ∪ s)

γ(n) otherwise.

Then g(X) = f(δX) for a submodular function f(S) = maxe∈S w(e). If the graph
structure, the functional form of f and the edge weights are known, then optimizing
g becomes much simpler, and polynomial-time solvable (Section 6.2.4).

Implications

Summarizing the above thoughts, cooperative cut energies do not satisfy any of the
common properties that lead to tractable (approximate) inference. They neither
have restrictions on their order or treewidth, nor are they submodular. Given
just an oracle of the energy, energy minimization may not even be approximable
in polynomial time, as the subadditive example demonstrates. However, the mere

3We thank Jens Vygen for this example of a difficult subadditive function.

83

Chapter 5. Cooperative Cuts and Energy Minimization

assumption of knowing a structure graph G and being able to query a function over
edges changes the picture. Then, the algorithms in Chapter 4 enable approximate
inference with bounded approximation factors. Hence, Fcoop defines a new family
of energy functions that are very general but still admit approximate optimization.

Furthermore, in Chapter 7 we will see that Fcoop is a strict superset of the set of
all normalized submodular functions: that is, any normalized submodular function
can be represented by a cooperative cut.

5.3. Expressive power: Cooperative cuts and models in
computer vision

Section 5.2 states that cooperative cut energies can have arbitrarily high order.
This observation raises the question whether any of the recent higher-order energy
functions that have been suggested in the computer vision literature can be reduced
to cooperative cuts. We begin with general nondecreasing submodular functions
and then proceed with specific recent higher-order potentials. Some of these admit
exact algorithms and specialized methods [Kohli et al., 2009a,b, Delong et al.,
2011, Ladický et al., 2010]. In practice, of course, a specialized exact algorithm
is preferable if it exists and if it is efficient. In any case, the cooperative cut
viewpoint is a conceptual enhancement that can enable natural extensions of the
models discussed below.

This section addresses mostly discrete potentials. Further models, some of them
not submodular, will be described in Section 6.2. Chapter 7 is dedicated to the
representation of general submodular functions. A selection of relations and repre-
sentations is summarized in Table 5.1.

5.3.1. Nonnegative nondecreasing submodular functions

Nondecreasing submodular energy functions are usually considered together with
other functions, such as graph cuts or negative modular functions. Otherwise, the
minimum is trivially the empty set, i.e., the all-zeroes vector.

Lemma 5.3. Cooperative cut energies Fcoop include all nonnegative nondecreasing
submodular functions.

Proof. To represent the submodular function g (which is equivalent to an energy
function E(x) = g(X(x))), we construct a graph G = (V , E) with a node vi for
each variable or element xi, and additional terminal nodes s, t. The set of edges
E consists of all edges (v, t) from a node v -= s to t. Then we define a function
f : 2E → R+ on edges that is equivalent to g: f(S) = g({v | (v, t) ∈ S}). Then
f(δ(X(x) ∪ s)) = g(X(x)) = E(x).

84

5.3. Expressive power

Adding a modular function to g then merely corresponds to adding modular-
cost terminal edges, and adding a standard graph cut function amounts to adding
modular-cost edges between nodes in V .

5.3.2. P n functions

Kohli et al. [2009a] introduce a general family of potential functions to which
move-making algorithms [Boykov et al., 2001] can be applied. For a clique φ ⊆ V
corresponding to variables xφ, these potentials are of the form

ψφ(xφ) = g
(∑

i,j∈φ

ψ̃φ(xi, xj)
)
, (5.20)

where g : R → R is concave non-decreasing and ψ̃φ is a symmetric pairwise potential
satisfying ψ̃φ(a, b) ≥ ψ̃φ(c, c) for all labels a, b, c ∈ L. (This implies also that
ψ̃φ(a, a) = ψ̃φ(b, b) even for a -= b.) We further assume that g is nonnegative.
When taking g to be the identity function, their proofs immediately imply that the
argument of g, the sum of potentials, is amenable to swap moves via graph cuts,
and, if ψ̃ is a metric, also to expansion moves.

Lemma 5.4. If the swap (expansion) move for the potential
∑

i,j∈φ ψ̃φ(xi, xj) can
be solved as a graph cut, then the swap (expansion) move for ψφ can be solved as a
Minimum Cooperative Cut.

Lemma 5.4 allows g to be any nondecreasing concave function and thus provides
an extension to graph cuts: with standard graph cuts, expansion moves are only
possible if g is a linear function.

Proof. We start with the structure graph G = (V , E) whose minimum cut yields
the optimal move if g is the identity. Then, for any elementary cut Γx that can be
reached by a move, it holds that w(Γx) = w(δ(X(xφ))) =

∑
i,j∈φ ψ̃φ(xi, xj) + c for

some constant c (this constant may be zero) [Boykov et al., 2001]. Now we define
a submodular function f : 2E → R on the edges of G as f(S) = g(

∑
e∈S w(e)− c).

This function is submodular on 2E because g is concave and nondecreasing. It
follows that

f(δ(X(xφ))) = g(w(δ(X(xφ)))− c) = ψφ(xφ).

As an illustration, we show the cut cost in the binary label case. Let ν1 = ψ̃φ(1, 1),
ν0 = ψ̃φ(0, 0) and γ = ψ̃φ(1, 0) ≥ ν0, ν1. We define a graph G = (V ∪{ s, t}, E).
For every i ∈ φ, this graph has a node vi ∈ V and terminal edges (s, vi) and
(vi, t) with weights (|φ|− 1)ν0 and (|φ|− 1)ν1, respectively. That means a terminal
weight w(s, v) has one “unit” ν0 for each possible pairing of v. The remaining edges
complete a clique over φ and have weight 2γ − ν0 − ν1. Let Et denote the edges

85

Chapter 5. Cooperative Cuts and Energy Minimization

connected to t, Es the edges connected to s, and let En = E \ (Es ∪ Et). Then,
denoting by Γ = Γ(xφ) the cut corresponding to the labeling xφ,

f(Γ(xφ)) (5.21)
= g

(
(|φ|− 1)(|Γ ∩ Es|ν0 + |Γ ∩ Et|ν1) + |Γ ∩ En|(2γ − ν1 − ν0)

)
(5.22)

= g
(∑

i∈φ,xi=0

ν0(|φ|− 1) +
∑

j∈φ,xj=1

ν1(|φ|− 1) +
∑

i,j∈φ,
xi=1,xj=0

(2γ − ν1 − ν0)
)

(5.23)

= g
(∑

i∈φ,
xi=1

∑

j *=i∈φ,
xj=1

ν1 +
∑

i∈φ,
xi=1

∑

j∈φ,
xj=0

(ν1 + 2γ − ν1 − ν0) (5.24)

+
∑

i∈φ,
xi=0

∑

j *=i∈φ,
xj=0

ν0 +
∑

i∈φ,
xi=0

∑

j *=i∈φ,
xj=1

ν0
)

= g
(∑

i *=j∈φ,
xi=xj=1

ν1 +
∑

i *=j∈φ,
xi=xj=0

ν0 +
∑

i,j∈φ,
xi>xj

(2γ − ν1 − ν0 + ν1 + ν0)
)

(5.25)

= g
(∑

i *=j∈φ,
xi=xj=1

ν1 +
∑

i *=j∈φ,
xi=xj=0

ν0 +
∑

i,j∈φ,
xi *=xj

γ
)

(5.26)

= ψφ(xφ). (5.27)

5.3.3. P n Potts model

The P n Potts potential, defined in [Kohli et al., 2009a], is a generalization of the
pairwise Potts potential

ψ(xi, xj) =

{
γ if xi -= xj

0 otherwise.
(5.28)

The P n potential of a clique φ is, for constants γmax > γk,

ψφ(xφ) =

{
γk if xi = k for all i ∈ φ

γmax otherwise.
(5.29)

The P n Potts model is generally used with more than two labels, so we address
swap and expansion moves here. Swap moves reduce to the binary label case,
because it is impossible to change the cost γmax if any variable in φ has a label
x′
i /∈ {a, b}. To reduce a binary P n potential to a cooperative cut potential, we

construct a complete graph with a node vi for each i in φ. The intra-clique edges all
carry weight γmax. Then we add terminal nodes s and t, and edges (s, vi) and (vi, t)
for each node vi, with weight w(s, vi) = γa, and w(vi, t) = γb. As the submodular
cut cost function, we define the function f : 2E → R+,

f(S) = max
e∈S

w(e). (5.30)

86

5.3. Expressive power

Given a minimum cooperative cut C, we recover a labeling x as follows: all nodes
vi for which (s, vi) ∈ C receive label xi = a, all others xj = b. If there is a pair vi, vj
where C separates vi from s (thus, xi = a) and vj from t (thus, xj = b), then C must
also cut an edge between xi and xj with weight γmax, and then f(Γ(x)) = γmax.

A reduction for expansion moves with respect to a label a can be constructed
analogously. The only change is that the weight of all t-edges is γb if initially, all
nodes in the clique are labeled b -= a, and γmax otherwise.

5.3.4. Robust P n potentials

The P n Potts potential sharply penalizes even a single deviating label in an other-
wise uniformly labeled clique. To partially relax this penalty and take into account
the number of deviating labels, Kohli et al. [2009b] define robust P n potentials.

Let N(xφ) be the number of deviating labels in a clique φ, i.e., the number of
nodes taking the “minority label”, and let q ≤ |φ|/2. The robust P n potential is
defined as

ψφ(x) =

{
N(xφ)γmax/q if N(xφ) ≤ q

γmax otherwise.
(5.31)

To reduce the binary label version of ψφ to a cooperative cut, we introduce
coupling between terminal edges. We construct a graph G = (V ∪{ s, t}, E) with
one v ∈ V for each member of the clique. Each v is connected to the terminal
nodes s, t by edges (s, v), (v, t). Let S1 be the group of all edges (vi, t) for i ∈ φ,
and S2 the group of all edges (s, vi), and define two edge cost functions

fj(C) = min{|C ∩ Sj|, q}γmax/q (5.32)

for j = 1, 2. The thresholded functions fj are submodular, since they can be viewed
as a concave function of a sum of weights, where each edge has weight γmax/q. The
overall cut cost is then

f(C) = f1(C) + f2(C), (5.33)

and thus, it follows that

f(δ(X(xφ))) = f1(δ(X(xφ))) + f2(δ(X(xφ))) (5.34)
= min

{
|{i | xi = 1}|, q

}
γmax/q +min

{
|{i | xi = 0}|, q

}
γmax/q

(5.35)
= γmax +min{N(xφ), q}γmax/q (5.36)
= ψφ(x) + γmax. (5.37)

Since γmax is constant, the potential ψφ is equivalent to a cooperative cut.

87

Chapter 5. Cooperative Cuts and Energy Minimization

5.3.5. Co-occurrences of object labels

In class-based image segmentation, each pixel must be labeled to belong to one of
many object classes. Ladický et al. [2010] propose a global potential gL(L(x)) on
the set of class labels L(x) used in the labeling x. This potential considers how
often certain groups of labels co-occur.

Assume gL : 2L → R+ is a nondecreasing and submodular function defined
on sets of class labels. Then an expansion move for this label potential can be
computed as a cooperative cut, as we show next.

When expanding label a, we create a graph G = (V , E) that contains a node vi
for each x′

i -= a and a source and sink node. Figure 5.5 shows the construction.
In the figure, each label is indicated by a color, and nodes are colored according
to their initial labeling. We connect the source s to each vi by an edge labeled a,
and we connect each vi to t by an edge labeled x′

i. That is, we transfer the labels
from nodes to edges. If the minimum cooperative cut severs edge (s, vi), then we
set xi = a, otherwise edge (vi, t) is cut and xi retains its old label. An (s, t)-cut
must cut one of those terminal edges. Since we will define a nondecreasing function,
there is an optimal cut that cuts only one of the edges.

Let L(C) be the set of labels on the edges in C ⊆ E . If the current labeling does
not use the label a, then we set the submodular cost function on edges to

f(C) = gL(L(C)). (5.38)

This is an induced submodular function on subsets of edges. Submodularity follows
from Proposition 2.1, if we let V1 = E and V2 = L, and if we connect each node in
V1 (corresponding to an edge in E) to its label in V2.

If the current labeling x′ already uses the label a, i.e., there is an i with x′
i = a,

then we set the submodular cost function on edges to

f(C) = gL(L(C) ∪ {a}). (5.39)

Submodularity follows as above. This construction is similar to the node-based
construction in [Ladický et al., 2010]. If the minimum cooperative cut C cuts edge
(s, vi), then a ∈ L(C), and we set xi = a. Otherwise, C cuts edge (vi, t), and then
xi = x′

i ∈ L(C). Thus, the cut cost is equivalent to the resulting labeling of nodes.
The construction for a swap move is very similar and uses only nodes that are

initially labeled a or b; Figure 5.5 illustrates the graph.
The function gL defined by Ladický et al. [2010], however, is not submodular.

We propose an alternative submodular function. Let I1, . . . , IM be a set of training
images, and LI(Ik) the set of labels occurring in the correct labeling of image Ik.
We define gL to count the number of images that do not contain all labels in L
together:

gL(L) =
M∑

k=1

1[L -⊆ LI(Ik)], (5.40)

88

5.4. Multi-label cooperative cut energies

s

t
(a) expansion

s

t
(b) swap

Figure 5.5. Graph construction for expansion and swap moves for class co-occurrence
costs. The nodes vi are aligned in the middle. Here, colors denote labels. Each node vi
is colored according to its initial label x′i. If edge (s, vi) is cut, then we set xi = a (red
label), otherwise we (a) keep the old label x′i or (b) set xi = b (blue label).

This is a submodular function, again by Proposition 2.1: Let V1 be all labels in L,
and let V2 consist of all images. Now, connect all labels to the images in which
they do not occur. Then gL(L) is the size of the neighborhood of L in the bipartite
graph.

As another example, the label cost part of energy (5) in [Delong et al., 2011] is
a submodular function on subsets of labels. Given label sets S ⊆ L, and constant
subset costs hS ≥ 0, their function gL is defined as

gL(L) =
∑

S

hS1[L ∩ S -= ∅]. (5.41)

Submodularity again follows from Proposition 2.1, by setting V1 = L and V2 to the
set of all S for which hS > 0. The edges in the bipartite graph connect each label
. ∈ L to the subsets S : . that include it. Delong et al. [2011] discuss optimization
methods for and applications of this energy, and relations to uncapacitated facility
location. Note that the constructions with cooperative cut neither add additional
nodes nor dense cliques to the graph; this can be an advantage for higher-order
label interactions.

5.4. Multi-label cooperative cut energies

Motivated by the success of graph cuts for multi-label problems, we investigate
multi-label models for cooperative cut energies and design move-making algorithms
for those energies.

5.4.1. Models of multi-label cooperative cut energies

In the sequel, we assume the typical grid graph structure that is used for images.
We limit the presentation to graphs that have modular costs on terminal edges and

89

Chapter 5. Cooperative Cuts and Energy Minimization

potential original ref. edges f(C)

Graph Cut Boykov and Jolly [2001] En w(C)

congruent Chapter 6 groups ∑
S gθ(w(C ∩ S))boundaries of grid

(binary) Pn fct. Kohli et al. [2007] En g(|C|)
Pn Potts Kohli et al. [2007] E maxe∈C w(e)

robust Pn Kohli et al. [2009b] Et
∑

j min{|C ∩ Sj |, q}γ/q
random walker Grady [2006] E

√
w2(C)(discretized)

"∞ Sinop and Grady [2007] En maxe∈C∩En w(e)

class labels Ladický et al. [2010], De-
long et al. [2011] Et gL(

⋃
e∈C "(e))

general Chapter 7 Et
polymatroid part

submodular of energy

Table 5.1. Examples of cooperative cuts explained in Sections 5.3 and 6.2; "(e) is
the label of edge e, and w(C) (w2(C)) the sum of (squared) weights. The third column
indicates the domain of the function in the fourth column. The edges Et are those adjacent
to a terminal node, and En = E \ Et. With the exception of standard graph cuts, these
edges are coupled by a non-modular function.

submodular costs on other edges. This limitation is in conformity with the model
that will be introduced in Chapter 6. The theory here extends to more general
models too.

If binary cooperative cut energies are defined by a cut in a directed graph, then
the energy equals the cost of the set of edges going from a label-1 node in X1 =
{vi | xi = 1} ∪{ s} to a label-zero node in X0 = {vi | xi = 0} ∪{ t}. We mention
two possible generalizations to more than two labels. In each case, we assume to
have a structure graph G = (V , E).

M1 We define a cooperative multi-cut, and allow coupling between all cut edges.
For a labeling x ∈ Ln, let the corresponding (undirected) multiway cut be

Γ(x) = {e = (vi, vj) | xi -= xj}.

For a nondecreasing submodular function f : 2E → R+, this cut induces an
energy

Ef (x) =
∑

i

ψi(xi) + f(Γ(x)). (5.42)

M2 The boundary of one label is independent of the boundary of other labels
(objects). In a directed structure graph G, we define the sets Xa = {vi ∈
V |xi = a} of nodes with label a. Then the boundary of label a is

Γa(x) = δ(Xa) = {(vi, vj) ∈ E | xi = a, xj -= a}.

90

5.4. Multi-label cooperative cut energies

Figure 5.6 Illustration of the boundaries used in M2:
Γblue(x), Γred(x) and Γgreen(x).

For |L| (identical or different) nondecreasing submodular functions, we define
a label-sensitive energy

Ef (x) =
∑

i

ψi(xi) +
∑

a∈L

fa(Γa(x)). (5.43)

For the algorithms in the sequel, we focus on M2, but analogous results hold for
M1. Similarly, we only discuss expansion moves, but swaps are also possible. The
model M2 implicitly favors fewer labels: the joint cost of edges coupled by one
function fa is lower than the sum of their individual costs, and coupling is only
possible for edges that are in the boundary of the same label. At least if all fa are
the same, then using few labels means that the edges in the cut are distributed over
fewer boundaries Γa(x), and more coupling and resulting discounts are possible.

We can take two routes to optimize these energies. One option is to derive an
adaptive approximation as in Section 4.2.3, which results in a sequence of approx-
imate pairwise energy function Eh and leads to an iterative algorithm. We show
this approximation in Section 5.4.2. Any algorithm for multi-label pairwise MRFs
applies to minimize Eh. In particular, we show expansion moves and an approx-
imation bound. Alternatively, we can directly build on the cut formulation and
move-making algorithms [Boykov et al., 2001]. In Section 5.4.4 we show that the
best expansion move can be found as a minimum cooperative cut. Hence, any
approximation algorithm for cooperative cut finds a move with an approximation
guarantee.

5.4.2. A pairwise approximation

Pursuing the first option, we derive an approximation Ê of the energy E by
applying Lemma 4.4 to each fa separately. Let x′ be the current labeling,
and define the shorthand Γ′

a = Γa(x′) = δ(X ′
a). We use the marginal costs

ρa(e|A) = fa(A ∪ {e}) − fa(A) for each function fa and all sets A ⊆ E . Analo-

91

Chapter 5. Cooperative Cuts and Energy Minimization

gously to the binary case, we obtain upper bounds for each possible re-labeling x
and the associated boundaries Γa = Γa(x):

fa(Γa) ≤ ha,Γ′(Γa) (5.44)

= fa(Γ
′
a) +

∑

e∈Γa\Γ′
a

ρa(e|Γ′
a)−

∑

e∈Γ′
a\Γa

ρa(e|E \ e) (5.45)

= fa(Γ
′
a)︸ ︷︷ ︸

const.

+
∑

e∈Γa\Γ′
a

ρa(e|Γ′
a)−

∑

e∈Γ′
a

ρa(e|E \ e)

︸ ︷︷ ︸
const.

+
∑

e∈Γ′
a∩Γa

ρa(e|E \ e) (5.46)

= const+
∑

e∈Γa\Γ′
a

ρa(e|Γ′
a) +

∑

e∈Γ′
a∩Γa

ρa(e|E \ e) (5.47)

= const+
∑

e∈Γa

wa(e). (5.48)

The last sum shows that ha,Γ′ is a sum of weights over the edges in the boundary
Γa(x). Each fa defines its own edge weights wa, analogously to the weights in
Equation (4.29). If fa is nondecreasing, then wa ≥ 0 for all labels a and all edges.
The functions ha,Γ′ define an approximation of the cooperative cut energy Ef :

ÊΓ′(x) =
∑

i

ψi(xi) +
∑

a

ha,Γ′(Γa(x))− const (5.49)

=
∑

i

ψi(xi) +
∑

i,j∈N

ψij,Γ′(xi, xj) (5.50)

with pairwise potentials

ψij,Γ′(xi, xj) =

{
0 if xi = xj,

wa((vi, vj)) + wb((vj, vi)) if xi = a, xj = b.
(5.51)

The approximation ÊΓ′ is an asymmetric, pairwise energy that can be represented
by a directed graph cut with nonnegative edge weights. Therefore, it is a sub-
modular energy. We use these observations to construct expansion moves for the
approximation ÊΓ′ . In the sequel, we drop the subscript Γ′ as the approximation
always refers to the current labeling x′.

5.4.3. Expansion moves for the approximation ÊΓ′

To construct expansion moves for multi-label cooperative cut energies, we build
on the work by Boykov et al. [2001]. Their construction does not suit Ê directly
because Ê is not symmetric. We therefore modify their construction and, for
M2, we propose a simpler construction that uses only n + 2 nodes. The original
construction needs an auxiliary node for each pair of variables xi -= xj for which
there is a pairwise potential.

92

5.4. Multi-label cooperative cut energies

Recall that an expansion move with respect to a label a and a given current
assignment x′ finds the best relabeling

xa ∈ argmin ÊΓ′(x) s.t. x ∈ X (x′, a). (5.52)

Lemma 5.5. Given a current assignment x′ ∈ Ln and any label a, a minimizer
xa ∈ X (x′, a) of ÊΓ′ can be found via a minimum cut in a graph.

We prove Lemma 5.5 for the general case in Appendix B.2. The construction in
the appendix generalizes the widely used construction by Boykov et al. [2001] to
non-symmetric potentials. Here, we focus on M2 and observe that the potentials
(5.51) of Ê for M2 have a particular composite form. They are a sum of two edge
weights, and any such weight wa((vi, vj)) only depends on the edge (vi, vj) and on
the label xi = a of the tail node. To emphasize the independence of wa((vi, vj))
from xj, we denote it by wa(i, j). This form admits a more efficient construction
than the classical one4.

Lemma 5.6. If E : Ln → R+ is an energy function of order two with pairwise
potentials of the form

ψij(xi, xj) =

{
0 if xi = xj,

wa(i, j) + wb(j, i) if xi = a, xj = b (a -= b),
(5.53)

with wa ≥ 0 for all a ∈ L, then the optimal expansion move can be found by solving
a minimum cut in a graph with only n+ 2 nodes.

To prove Lemmas 5.5 and 5.6, we construct an auxiliary graph G and show the
following two claims. The Lemma follows as a corollary.

Claim 5.1. Any minimal cut in G corresponds to a labeling that is within one
expansion (with respect to a) of the current labeling x′.

Claim 5.2. The cost of any such cut is equal to the energy of the associated labeling.

We construct G to satisfy an equivalent to Property 4.2 in [Boykov et al., 2001].

Property 5.1. For a minimal cut C in G, the following holds:

1. if (s, vi), (s, vj) ∈ C, then (vi, vj), (vj, vi) /∈ C;
2. if (vi, t), (vj, t) ∈ C, then (vi, vj), (vj, vi) /∈ C;
3. if (s, vi), (vj, t) ∈ C, then E ∩{ (vj, vi)} ⊆ C, (vi, vj) /∈ C;
4. for each vi, either (s, vi) ∈ C or (vi, t) ∈ C.

4It turns out that a related symmetric version of our result, which corresponds to the special
case that wa is independent of the label a, has been known for long [Milis, 1996], as was
recently brought to our notice by R. Zabih.

93

Chapter 5. Cooperative Cuts and Energy Minimization

ψi(a) ψj(a)

ψi(x′
i) ψj(x′

j)

ψij(x′
i, a)

ψij(a, x′
j)

vi vj

(a) x′
i = x′

j

ψi(a) ψj(a)

wa(j, i)

wa(i, j)

vi vj

ψi(b)
+wb(i, j)

ψj(c)
+wc(j, i)

(b) x′
i = b, x′

j = c

Figure 5.7. Graph construction for expanding label a for the approximate energy ÊΓ′ .
If x′i = a, we set the weight of edge (vi, t) to ∞ rather than to ψi(a), and equally for
x′j = a.

Proof (Lemma 5.6). We can assume that the unary potentials are nonnegative, as
they can be shifted without affecting optima. Given a structure graph G = (V , E),
we construct an auxiliary graph G with terminal nodes s and t, and one node vi for
each variable xi. Let x′ be the current assignment, and a be the label we expand.

For each vi ∈ V , we introduce edges (s, vi) with weight ψi(a) and (vi, t) with
weight ψi(x′

i). If a variable already has label a, x′
i = a, then we set the weight

of edge (vi, t) to infinity, so that node vi is always in the partition belonging to
t. We infer a labeling from an (s, t)-cut as follows: if edge (s, vi) is cut, then we
set xi = a, otherwise edge (vi, t) is cut, and we retain the label xi = x′

i. If the
weight w(vi, t) = ∞, then any minimum (s, t)-cut assigns vi to t and yields xi = a.
This implies a bijection between minimal cuts with finite weight and assignments
in X (x′, a), and therefore Claim 5.1.

Now we set the remaining edges such that they implement the potentials ψij.
If the current labeling is x′

i = x′
j, then we introduce edges (vi, vj) with weight

ψij(x′
i, a) and (vj, vi) with weight ψij(a, x′

j), as shown in Figure 5.7(a). If then
later both vi and vj are assigned to the same partition, i.e., xi = xj, then none of
the two edges is cut, in conformity with ψij(xi, xj) = 0 if xi = xj. If xi = a and
xj = x′

j, i.e., (s, vi) is cut, then edge (vj, vi) must be cut as well, contributing the
cost ψij(a, x′

j). Conversely, if xi = x′
i and xj = a, then the reverse edge contributes

ψij(x′
i, a) to the cut.

If x′
i -= x′

j, then we represent the term ψij by the sub-graph shown in Fig-
ure 5.7(b). Let b = x′

i and c = x′
j be the current labels. We add wb(i, j) to the

weight of edge (vi, t) (whose cutting corresponds to assigning xi = x′
i = b), and

wc(j, i) to the weight of edge (vj, t). Note that these weights must be added to the

94

5.4. Multi-label cooperative cut energies

Algorithm 4 Expansion moves for multi-label cooperative cuts
Input: G = (V , E), fa for all a ∈ L.
Output: labeling x̂ ∈ Ln.
set initial x0 = {b}n, i = 0
repeat

define ÊΓi for Γi = Γ(xi)
xi+1 = Expansions(xi, ÊΓi) (Algorithm 5)
set i = i+ 1

until xi = xi−1 or E(xi) ≥ E(xi−1)
return x̂ = xi

terminal edges for each ψij whose current arguments differ. Furthermore, we add
edges (vi, vj) with weight wa(j, i), and (vj, vi) with weight wa(i, j).

The Lemma now follows from Property 5.1. Enumeration shows Claim 5.2: the
weight of each minimal cut is the same as the energy Ê(x) for the associated
assignment x where xi = a if (s, vi) is cut, and xi = x′

i otherwise. Claims 5.1
and 5.2 imply that the minimum energy labelings in X (x′, a) correspond to the
minimum cuts in G.

Approximation factor

Equipped with Ê and expansion moves, we can now put pieces together to build an
algorithm for approximately minimizing multi-label cooperative cut energies. The
result is Algorithm 4.

We analyze this algorithm in two steps. Lemma 5.7 addresses the expansion
moves (Algorithm 5), and Lemma 5.8 combines this with the impact of Ê, com-
pleting the bound for Algorithm 4. Edges here refer to the structure graph that
defines the cooperative cut energy.

Lemma 5.7. Let x̂ be a local minimum reached via a sequence of expansion moves,
i.e., x̂ ∈ argminx∈X (x̂,a) Ê(x) for all a ∈ L. Let also xi = argminx∈Ln Ê(x). Then

Ê(x̂) ≤ (1 + γ)Ê(xi),

where γ = max
e∈E,c,b∈L

wc(e)

wb(e)
≤ max

e,c,b

ρc(e|Γi)

ρb(e|E \ e) .

For the first iteration of Algorithm 4, it holds that γ ≤ maxe,b,c fb(e)/fc(e). If
fa = fb for all a, b ∈ L, then γ = 1.

The bound is nontrivial for Algorithm 4, because the cut in the first iteration
uses no coupled edges (only terminal edges) Γi ⊆ Et, and then wb(e) = fb(e) > 0
for all edges and labels b. This initial approximation bound transfers to later
iterations of Algorithm 4, where successive iterations only decrease the energy of

95

Chapter 5. Cooperative Cuts and Energy Minimization

Algorithm 5 Expansions
Input: labeling xin ∈ Ln and pairwise energy Ê
Output: labeling x
set initial x0 = xin, i = 0
repeat

set j = 0, xj = xi and i = i+ 1
for a ∈ L do

find xj+1 ∈ argmin{Ê(xj) | x ∈ X (xj, a)}
j = j + 1

end for
set xi = xj

until xi = xi−1 or Ê(xi) ≥ Ê(xi−1)
return x = xi

the initial labeling. The proof of Lemma 5.7 relies on a similar strategy as the
proof of Theorem 6.1 in [Boykov et al., 2001].

Proof. First, we recall that Ê can be written as a sum over label boundaries,

Ê(x) =
∑

a∈L

∑

e∈Γa(x)

wa(e) !
∑

a∈L

wa(Γa(x)). (5.54)

Let for all labels a ∈ L the set X∗
a = {vj | xi

j = a} contain the nodes labeled a in
the minimizer of Ê. Define the edge sets

Ba,b = (X∗
a ×X∗

b) ∩ E (5.55)
Oa = ((V \X∗

a)× (V \X∗
a)) ∩ E (5.56)

Ia = (X∗
a ×X∗

a) ∩ E . (5.57)

Furthermore, we denote restrictions of unary terms to a set Y ⊆ V of modes and
of pairwise terms to a set A ⊆ E of edges by

Êu|Y (x) =
∑

vj∈Y

ψj(xj) (5.58)

Ê|A(x) =
∑

a∈L

∑

e∈Γa(x)∩A

wa(e). (5.59)

Fix an arbitrary label a, and define an assignment xa that agrees with the optimal
assignment for a, and otherwise with x̂:

xa
j =

{
a if xi

j = a,

x̂i otherwise.
(5.60)

96

5.4. Multi-label cooperative cut energies

This assignment lies in X (x̂, a), i.e., it can be reached within one expansion move
with respect to a. Since by definition x̂ is a minimizer of Ê in X (x̂, a), it holds
that Ê(x̂) ≤ Ê(xa). This implies that

Ê(x̂) = Êu|X∗
a
(x̂) + Êu|X̄∗

a
(x̂) + Ê|Oa(x̂) + Ê|Ia(x̂)

+
∑

b*=a

∑

c∈L

wc(Γc(x̂) ∩ Ba,b) +
∑

b*=a

∑

c∈L

wc(Γc(x̂) ∩ Bb,a) (5.61)

≤ Êu|X∗
a
(xa) + Êu|X̄∗

a
(xa) + Ê|Oa(x

a) + Ê|Ia(xa)

+
∑

b*=a

∑

c∈L

wc(Γc(x
a) ∩ Ba,b) +

∑

b*=a

∑

c∈L

wc(Γc(x
a) ∩ Bb,a) (5.62)

= Êu|X∗
a
(xi) + Êu|X̄∗

a
(x̂) + Ê|Oa(x̂) + Ê|Ia(xi)

+
∑

b*=a

wa(Γa(x
a) ∩ Ba,b) +

∑

b*=a

∑

c∈L

wc(Γc(x
a) ∩ Bb,a). (5.63)

Here, we used the notation X̄∗
a = V \ X∗

a . The last equality relies on xa
j = xi

j for
all j ∈ X∗

a , and xa
j = x̂j for all j ∈ X̄∗

a . These equalities imply that Êu|X∗
a
(xa) =

Êu|X∗
a
(xi), Ê|Ia(xa) = Ê|Ia(xi), Êu|X̄∗

a
(xa) = Êu|X̄∗

a
(x̂) and Ê|Oa(x

a) = Ê|Oa(x̂).
They also imply that Γc(xa) ∩ Ba,b = ∅ for c -= a and any b ∈ L. In summary, the
result (5.63) shows that, for any a ∈ L,

Êu|X∗
a
(x̂) + Ê|Ia(x̂) +

∑

b,c∈L

wc(Γc(x̂) ∩ Ba,b) +
∑

b,c∈L

wc(Γc(x̂) ∩ Bb,a)

≤ Êu|X∗
a
(xi) + Ê|Ia(xi) +

∑

b*=a

wa(Γa(x
a) ∩ Ba,b) +

∑

b,c∈L

wc(Γc(x
a) ∩ Bb,a).

(5.64)

Furthermore, we can bound

wa(Γa(x
a) ∩ Ba,b) ≤ wa(Γa(x

i) ∩ Ba,b) (5.65)

for all b -= a, because Γa(xa) ∩ Ba,b ⊆ Ba,b = Γa(xi) ∩ Ba,b. Now we sum Inequal-
ity (5.64) for all labels a ∈ L, and then apply Inequality (5.65):
∑

a

(
Êu|X∗

a
(x̂) + Ê|Ia(x̂) +

∑

b*=a

wa(Γa(x̂) ∩ Ba,b) +
∑

b*=a

∑

c*=a

wc(Γc(x̂) ∩ Ba,b)

︸ ︷︷ ︸
Ê(x̂) (after summing over a)

+
∑

b*=a

∑

c

wc(Γc(x̂) ∩ Bb,a)
)

≤
∑

a

(
Êu|X∗

a
(xi) + Ê|Ia(xi) +

∑

b*=a

wa(Γa(x
a) ∩ Ba,b) +

∑

b*=a;c

wc(Γc(x
a) ∩ Bb,a)

)

97

Chapter 5. Cooperative Cuts and Energy Minimization

≤
∑

a

(
Êu|X∗

a
(xi) + Ê|Ia(xi) +

∑

b*=a

wa(Γa(x
i) ∩ Ba,b) +

∑

b*=a;c

wc(Γc(x
a) ∩ Bb,a)

)

= Ê(xi) +
∑

a

∑

b*=a;c

wc(Γc(x̂) ∩ Bb,a) +
∑

a,b*=a;c

wc(Γc(x
a) ∩ (Bb,a \ Γ(x̂))). (5.66)

Now, note that
⋃

a;b*=a Bb,a ⊆ Γ(xi). Furthermore, Γc(xa)∩Bb,a contains the edges
(vk, vj) with xi

j = xa
j = a and xi

k = b, xa
k = c. Therefore,

⋃

c*=a

Γc(x
a) ∩ Bb,a ⊆ Bb,a = Γb(x

i) ∩ Bb,a, (5.67)

and thus Inequality (5.66) implies that

Ê(x̂) ≤ Ê(xi) +
∑

a,c

∑

b*=a

wc(Γc(x
a) ∩ (Bb,a \ Γ(x̂))) (5.68)

≤ Ê(xi) + γ
∑

a

∑

b*=a

wb(Γb(x
i) ∩ (Bb,a \ Γ(x̂))) (5.69)

≤ (1 + γ)Ê(xi).

By Definition (5.50), Ê differs by an additive constant from the approximation

Êh(x) =
∑

j

ψj(xj) +
∑

a∈L

ha,Γi(Γa(x)),

and this constant is nonnegative:

c = Êh(x)− ÊΓi(x) =
∑

a∈L

fa(Γa(x
i))−

∑

a∈L

∑

e∈Γa(xi)

ρa(e|E \ e) ≥ 0,

because the fa are submodular and satisfy diminishing marginal costs. Due to this
nonnegativity, the approximation bound from Lemma 5.7 also holds for Êh:

Ê(x̂) = ÊΓi(x̂) + c (5.70)

≤ (1 + γ)ÊΓi(x
i) + c (5.71)

≤ (1 + γ)(ÊΓi(x
i) + c) = (1 + γ)Êh(x

i). (5.72)

From these observations, we derive a complete approximation guarantee for Al-
gorithm 4 in terms of the energy.

Lemma 5.8. Let x∗ ∈ argminx∈Ln E(x). If the unary potentials in E are all
nonnegative and if ÊΓ0 = Ê∅ in Algorithm 4, then the solution x̂ returned by
Algorithm 4 satisfies

E(x̂) ≤ α(1 + γ)E(x∗)

for α = maxa∈L
|Γa(x∗)|

1+(|Γa(x∗)|−1)ν(a) and ν(a) =
mine∈Γa(x∗) ρ

a(e|Γa(x∗)\e)
maxe∈Γa(x∗) fa(e)

.

98

5.4. Multi-label cooperative cut energies

Corollary 5.1. If fa = fb for all a, b ∈ L and if the conditions of Lemma 5.8 hold,
then the solution returned by Algorithm 4 satisfies

E(x̂) ≤ 2αE(x∗)

for α as in Lemma 5.8.

The constant ν(a) in Lemma 5.8 corresponds to the ν in Lemma 4.6. Analogously
to Lemma 4.6, Lemma 5.8 can be stated in terms of the curvature. Then the
corollary includes the factor-two approximation by Boykov et al. [2001] as a special
case. To prove the Lemma 5.8, we use a simple proposition:

Proposition 5.1. Let {ai}i, {bi}i be two series of n nonnegative numbers and
bi > 0 for all i. Then ∑n

i=1 ai∑n
i=1 bi

≤ max
1≤j≤n

aj
bj
.

Proof. It holds that
n∑

i=1

bi
(
max
1≤j≤n

aj
bj

)
≥

n∑

i=1

bi
ai
bi

=
n∑

i=1

ai. (5.73)

Dividing both sides by the sum of bi proves the proposition.

Proof (Lemma 5.8). First, recall that any assignment x̂ returned by Algorithm 4
can only be better than the assignment x̂0 after the first iteration, where Êh =
ÊΓ0 = Ê∅. Let x0 ∈ argminx∈Ln Ê∅(x) be a minimizing assignment for Ê∅. From
Lemma 4.4 and by construction of the upper bounds h in the definition (5.45), we
know that Ê∅ is an upper bound to E. Furthermore, applying Lemma 5.7 and then
using the optimality of x0, we conclude that

E(x̂) ≤ E(x̂0) ≤ Ê∅(x̂0) ≤ (1 + γ)Ê∅(x0) ≤ (1 + γ)Ê∅(x
∗). (5.74)

To proceed, we abbreviate Γ∗
a = Γa(x∗) and use Proposition 5.1:

Ê∅(x
∗) =

∑

i

ψ(x∗
i) +

∑

a∈L

ha,∅(Γ
∗
a) (5.75)

=
∑

i

ψ(x∗
i) +

∑
a∈L ha,∅(Γ∗

a)∑
a∈L f(Γ

∗
a)

∑

a∈L

f(Γ∗
a) (5.76)

≤
∑

i

ψ(x∗
i) + max

a∈L

ha,∅(Γ∗
a)

f(Γ∗
a)

∑

a∈L

f(Γ∗
a) (5.77)

Now, we use two observations to bound the fraction further. First, for any a ∈ L
and ea ∈ argmaxe∈Γ∗

a
fa(e), it holds that

ha,∅(Γ
∗
a) =

∑

e∈Γ∗
a

fa(e) ≤ |Γ∗
a|fa(ea). (5.78)

99

Chapter 5. Cooperative Cuts and Energy Minimization

Second, by diminishing marginal costs, it holds that

fa(Γ
∗
a) ≤ f(ea) +

∑

e∈Γ∗
a\e

ρa(e|Γ∗
a \ e). (5.79)

The bounds (5.78) and (5.79) serve to bound the maximum in (5.77) further:

Ê∅(x
∗) ≤

∑

i

ψ(x∗
i) + max

a∈L

ha,∅(Γ∗
a)

f(Γ∗
a)

∑

a∈L

f(Γ∗
a) (5.80)

≤
∑

i

ψ(x∗
i) + max

a∈L

|Γ∗
a|fa(ea)(

fa(ea) +
∑

e∈Γ∗
a\ea ρ

a(e|Γ∗
a \ e)

)
∑

a∈L

fa(Γ
∗
a) (5.81)

=
∑

i

ψ(x∗
i) + α

∑

a∈L

f(Γ∗
a) (5.82)

≤ α
(∑

i

ψ(x∗
i) +

∑

a∈L

f(Γ∗
a)
)
= αE(x∗). (5.83)

The last inequality assumes that the unary potentials are nonnegative. The final
result follows from the bounds (5.74) and (5.83):

E(x̂) ≤ (1 + γ)Ê∅(x
∗) ≤ α(1 + γ)E(x∗).

5.4.4. Cooperative expansion moves

The preceding section showed an approximate minimization of a cooperative cut
multi-label energy via first approximating the energy by a pair-wise one and then
performing expansion moves. For completeness, we here complement this approach
by swapping the order. We show that it is possible to solve expansion moves for
the cooperative cut energy directly as a cooperative cut. As above, for simplicity of
exposition we assume that the terminal edges in the structure graph have modular
edge weights, that is, that there are modular unary potentials.

Lemma 5.9. The best expansion move with respect to an energy Ef (for M2), any
fixed label a ∈ L and any given labeling x′ ∈ Ln can be computed as a minimum
cooperative cut.

To constructively prove Lemma 5.9, we construct a directed graph G̃ = (Ṽ, Ẽ)
and as above show Claims 5.1 and 5.2. The nodes ṽi ∈ Ṽ in G̃ are in one-to-one
correspondence with nodes vi ∈ V in the given G, and G̃ has two terminal nodes
s̃, t̃ that are connected to each ṽi. Furthermore, Property 5.1 holds for G̃. If the
marginal costs remain strictly positive, then every minimum cut is also minimal.
Otherwise, we add tiny additional weights to all edges.

100

5.4. Multi-label cooperative cut energies

Proof. The last point of Property 5.1 justifies the following labeling corresponding
to a given cut C̃:

xi =

{
a if (ṽi, t) ∈ C̃

x′
i if (s, ṽi) ∈ C̃.

(5.84)

First, we construct terminal edges in G̃ that express the unary potentials ψi. For
all i, we assign weight ψi(x′

i) to edge (s̃, ṽi) and weight ψi(xi = a) to edge (ṽi, t).
If x′

i = a, then edge (s̃, ṽi) has weight ∞, so that edge (ṽi, t̃) is cut and xi = a
is ensured. Then Labeling (5.84) is within one a-expansion of x′; this proves
Claim 5.1.

For Claim 5.2, we need to detail the structure of G̃. The construction of the
remaining edges Ẽc in G̃ is somewhat complicated because a directed cut only
includes the edges between the s̃-part (label a) and t̃-part (label b -= a), but we
must keep track of the cost of all boundaries, not only Γa(x). Thus, the cost of
these other edges must be transferred appropriately. For additive edge weights, this
can be achieved by adding the missing weight to some other edge. As the costs are
nonlinear here, we must transfer arguments to a function, and sums become set
unions. We define a mapping π(ẽ) ∈ En from edges in Ẽc to edges in En (the set of
non-terminal edges in G). In addition, the edges Ẽc make G̃ a multi-graph, and are
partitioned into sets Sb ⊆ Ẽc. These sets are indexed by the labels b ∈ L.

The cost of a set of edges C̃ ⊆ Ẽc is defined by a submodular function f̃ that uses
the original cost fb on the mappings π(C̃) of edges in C̃. The sets Sb determine
which fb is used:

f̃(C̃) =
∑

b∈L

fb(π(C̃ ∩ Sb)). (5.85)

For any e = (vi, vj) ∈ En in G, there are the following cases to construct edges
in G̃. The resulting edges form the set Ẽc, and we indicate ẽ ∈ Sb by a superscript
b on the edge π(ẽ).

x′
i = a, x′

j = b : e = (vi, vj) can at most be in Γa(x); introduce an edge ẽ = (ṽi, ṽj) ∈
Sa, with π(ẽ) = ea;

x′
i = b, x′

j = a : this direction is never cut in G̃, so introduce a reverse edge ẽ =
(ṽj, ṽi) ∈ Sb, with π(ẽ) = eb;

x′
i = b, x′

j = c : e is in Γb(x) if xi = x′
i = b, and otherwise possibly in Γa(x);

introduce ẽ = (ṽi, ṽj) ∈ Sa with π(ẽ) = ea, and an edge ẽ′ = (s̃, ṽi) ∈ Sb with
π(ẽ′) = eb;

x′
i = b, x′

j = b : e is currently in no boundary; introduce an edge ẽ = (ṽi, ṽj) ∈ Sa,
with π(ẽ) = ea, and an edge ẽ′ = (ṽj, ṽi) ∈ Sb, with π(ẽ′) = eb;

x′
i = a, x′

j = a : labels are fixed, so we introduce no edges.

101

Chapter 5. Cooperative Cuts and Energy Minimization

s

t

vi vje

(a) G

s̃

t̃

ṽi ṽj

π((ṽi, ṽj)) = ea

π((ṽj , ṽi)) = eb

(b) x′
i = x′

j = b

s̃

t̃

ṽi ṽj
π(ẽ) = ea

π(
ẽ)
=
e
b

(c) x′
i = b, x′

j = c

Figure 5.8. Expressing an edge e in the auxiliary graph by edges ẽ when expanding
label a. (a) Edge e = (vi, vj) in G. (b), (c) Implementations in G̃ depending on the initial
labels x′i, x

′
j . If the new labels xi = xj are equal, then the edge e is not cut. If xi = a

and xj -= a, then e ∈ Γa(x), and e must contribute to that boundary. In that case, the
cut Γ̃(x) in G̃ includes the red edge. If xi = x′i = b -= a and xj -= xi, then e ∈ Γb(x).
There are two cases, (b) and (c). (b) If initially the variables had the same label, then
xj -= xi can only happen if now xj = a. Then the cut Γ̃(x) must sever any edge (ṽj , ṽi),
that is, the blue edge. The mapping of that edge ensures that e is counted in Γb. (c) If
the variables have different labels from the beginning, then xi -= a implies that e ∈ Γb(x).
In this case, the terminal edge ẽ = (s̃, ṽi) in G̃ is cut by Γ̃(x), and π(ẽ) ensures that e is
counted in Γb.

Figure 5.8 shows examples, and Table 5.2 lists all edges between two given nodes
in the resulting G̃. Given this G̃, we now show that Ef (x) = f̃(Γ̃(x)∩Ẽc)+

∑
i ψi(xi).

To do so, we prove that π(Γ̃(x) ∩ Sb) =Γ b(x) for all labels b ∈ L.
Let Γ̃ ⊆ Ẽ be a minimal (s, t)-cut in G̃, and x the corresponding labeling (5.84),

and Γb(x) the boundary of label b in G. Then Table 5.2 implies for b -= a that

π(Γ̃ ∩ Sb) =
(⋃

(ṽi,ṽj)∈Sb
xi=a,xj *=a

π(ṽi, ṽj)
)
∪
(⋃

(̃s,ṽi)∈Γ̃∩Sb

π(s̃, ṽi)
)

(5.86)

=
(⋃

(vj ,vi)∈E:
x′
i=a,

xj=x′
j=b

(vj, vi)
)
∪
(⋃

(vi,vj)∈E:
xi=a,

x′
i=xj=b

(vj, vi)
)

∪
(⋃

xi=b

⋃

j:(vi,vj)∈E:
xj *=b,a

(vi, vj)
)

(5.87)

=
(
Γb ∩ (Xb ×Xa)

)
∪
(
Γb ∩

⋃

c*=b,a

(Xb ×Xc)
)
= Γb(x). (5.88)

102

5.5. Summary and discussion

x′i x′j π(ẽ) of (ṽi, ṽj) in G̃

a b (vi, vj)a for ẽ ∈ Sa

b c (vi, vj)a for ẽ ∈ Sa

b b (vi, vj)a for ẽ ∈ Sa,
(vj , vi)b for ẽ ∈ Sb

terminal edges in G̃

edges x′i π(ẽ)

(s̃, ṽi) a ∅
(s̃, ṽi) b Ti

(ṽi, t̃) x′i ∈ L∅

Table 5.2. Mappings π(ẽ) of edges ẽ in G̃ (if x′j = a, then there are no edges (ṽi, ṽj)). If
(vi, vj) or (vj , vi) /∈ E , then replace it by ∅ in the table. Here, Ni,b = {e = (vi, vj) ∈ E |
x′i = b, x′j -= b, a} and Ti =

⋃
e∈Ni,b

{ eb }.

Similarly, one can show that π(Γ̃ ∩ Sa) = Γa(x). In consequence, f̃(Γ̃(x)) =∑
b fb(Γb(x)). The expression of the unary terms is analogous in G and G̃, so

indeed Ef (x) = f̃(Γ̃(x) ∩ Ẽc) +
∑

i ψi(xi). This proves Claim 2.

The cooperative cut that corresponds to the expansion move can be solved by any
of the algorithms from Chapter 4. Using the iterative algorithm results in the same
edge weights that result from the direct approximation described in Section 5.4.3.

5.5. Summary and discussion

Since cooperative cuts employ the same graph structure as standard graph cuts,
they can enrich applications of graph cuts by higher-order coupling. In particu-
lar, in this chapter we introduce cooperative cut energy functions and show that
cooperative cuts widen the range of functions representable by cuts to include
higher-order and non-submodular functions. Indeed, energy functions represented
by cooperative cuts need not have any of the simplifying properties that commonly
facilitate inference in the corresponding probabilistic model. Nevertheless, the al-
gorithms from Chapter 4 apply for performing approximate inference. Moreover,
cooperative cut energies unify a number of recently defined models in computer
vision.

The graph structure underlying the coupling in cooperative cuts has further
benefits. We extend the binary domain of the initially discussed energy functions
to wider discrete domains and design move-making algorithms for approximate
minimization. Contrary to the move constructions by [Boykov et al., 2001], the
graphs in our move-making algorithms do not require any auxiliary nodes.

In the following two chapters, we apply the representation of cooperative cut
energies to image segmentation and approximate submodular minimization.

103

Chapter 6.

Applications in Computer Vision

Graph cuts have been successfully used in computer vision, in particular for image
segmentation. However, graph cut models fail in a number of settings. In this
chapter, we show how to significantly improve image segmentation results by cou-
pling graph edges and thereby expressing a new global uniformity criterion. This
criterion builds on the model discussed in Chapter 5.

Beyond image segmentation, cooperative cuts relate to structured regularization
in machine learning, and to old ideas in image processing. The second part of this
chapter establishes these ties.

6.1. Coupling edges for image segmentation

In this chapter, we address interactive figure-ground segmentation for color and
grayscale images. In an interactive segmentation, a user labels a few pixels as
‘object’ or ‘background’, for example by brush strokes. The segmentation algorithm
is to infer the binary labels of the remaining pixels.

Graph cuts have been popular for this task, but fail in particular difficult settings.
Figure 6.1 shows an example that challenges several state-of-the-art segmentation
algorithms.

6.1.1. Problems of cut-based algorithms

The image in Figure 6.1 is only one example. It is also known that the “Graph
Cut” approach faces a shrinking bias : long, fine segments of objects tend to be cut
off, as happens with the objects in Figure 6.7. To understand the reasons for those
problems, we briefly review the standard model underlying Graph Cut for image
segmentation.

Figure-ground segmentation is often formulated as maximum a posteriori (MAP)
inference in a grid-structured Markov Random Field with unary terms and pairwise
terms that span neighboring pixels. The energy associated with such a model is

104

6.1. Coupling edges for image segmentation

original user Canny edge unary Rand. curvature Graph CoopCut
image labels detector terms Walker regul. Cut

Figure 6.1. Segmentation results for an image with shading. The task is difficult despite
many user labels. All algorithms used the same unary terms, except for the Random
Walker, which got enhanced seeds (green). Column 4 is the segmentation obtained from
unary terms alone. The algorithms are described in [Grady, 2006, El-Zehiry and Grady,
2010, Boykov and Jolly, 2001].

a function of the observed image pixels z̄ and variables x, one xi for each pixel i.
The energy has the form

E(x; z̄) =
∑

i∈I

ψi(xi) + λ
∑

(i,j)∈En

ψij(xi, xj) (6.1)

= w(Γ(x) ∩ Et) + λw(Γ(x) ∩ En) + const. (6.2)

The unary terms ψi incorporate the user labels and judge the data fit for each
pixel separately. The pairwise terms add a regularizing effect and enforce smooth
boundaries and coherency.

The corresponding structure graph G = (V , Et ∪ En) is depicted in Figure 6.2. It
has a node vi ∈ V for each variable xi, and two terminal nodes. Its terminal edges
(s, v) and (v, t) ∈ Et for all v ∈ V model the unary potentials, and the remaining
grid edges – we call them En – represent the pairwise terms. The edge weights on
En are a function of the intensity gradient, typically of the form

w(vi, vj) ∝ exp(−‖zi − zj‖2), (6.3)

and their sum may be seen as the weighted length of the object boundary. This
penalty favors short boundaries, and thus results in the aforementioned shortcut-
ting of long boundaries. Similarly, if all edge weights are large due to low contrast,
then there is very little incentive towards the correct boundaries, and shortness
becomes decisive. Lowering the coefficient λ is not a solution since it decreases
the intended smoothing effect: boundaries become noisy and true background is
included into the hypothesized foreground. Figure 6.7 from the experiments demon-
strates this effect. This happens in particular if the unary potentials only provide
very weak guidance, for example owing to the ambiguous color information in
grayscale images (see, for example, the segmentation by unary potentials in Fig-
ure 6.1). In such images, it is very difficult to judge merely by local information
where a boundary should be.

105

Chapter 6. Applications in Computer Vision

1

s

1 1

10

0

0 0 0

0

0

t

1

1

Figure 6.2 Commonly used graph cut representation
of a local pairwise Markov random field. The energy
of the labeling x indicated in the nodes of the graph is
equivalent (up to constants) to the sum of weights of the
edges in Γ(x), i.e., the edges from label-one to label-zero
nodes.

As lowering the weight of all edges is undesirable, we will selectively reward
only boundaries with certain global properties. We use properties that are visible
from the complete set of graph edges of which the boundary is composed. These
properties go beyond the local criterion of mere contrast.

6.1.2. Structured cooperation for congruous boundaries

To remedy the problems outlined above, we aim to selectively reward discriminating
features of true boundaries. We observe that, along true object boundaries, many
images possess a certain congruence, and this may be true globally throughout the
image. Boundary congruity materializes in a number of contexts. For example,
of the many inter-pixel color gradients in Figure 6.7, only few occur along the
true boundary in difficult regions (e.g., dark brown to sand-colored). Shortcutting
introduces new, incongruous, boundary types (e.g., dark brown to slightly less dark
brown). Moreover, the repetitiveness of patterned backgrounds retains congruity
to a large extent. Similarly, if shade is neutralized, congruity extends across lit and
shaded regions in Figure 6.1. In this latter case, we thus need a shade-invariant
congruity criterion.

Let us briefly review the potential advantages of preferring congruous bound-
aries. First, this criterion can weaken the harmful smoothness penalty in areas
that are likely to belong to a realistic boundary. It still retains the smoothing
effect for non-congruous boundaries to remove parts of the background. By prefer-
ring certain boundaries over others, it complements the information given by the
unary potentials. Second, the congruity criterion is very non-local. Therefore it
has potential to transfer information from one region of the image to others. For
example, if the object has some “easier” boundary parts, such as the body of the
vacuum cleaner in Figure 6.1, then we can search for “similar” boundaries in more
ambiguous parts of the image, such as shaded low-contrast regions. In that sense,
the criterion contributes more than merely smoothing the segmentation provided
by the unary potentials. This matters in cases where e.g. the color information is
weak. As an example, by the unary potentials, large parts of the upper left part

106

6.1. Coupling edges for image segmentation

of the tube in Figure 6.1 would be excluded, and they are indeed excluded by the
Graph Cut solution.

To implement the congruity criterion, we observe that the object boundary is
merely the boundary Γ(x) ∩ En in the structure graph. Congruity then translates
into having little diversity among the edges that make up the cut. It will turn out
that such a criterion lends itself to cooperative cuts.

We define a cooperative model that retains the grid graph structure G, and we
replace only the over-smoothing inter-pixel cut (6.1) by a cooperative cut1:

Ef (x) = w(Γ(x) ∩ Et) + λf(Γ(x) ∩ En) (6.4)

=
∑

i∈I
ψi(xi) + λf(Γ(x) ∩ En). (6.5)

Since an object boundary consists of cut edges in G, we desire a submodular edge
cost f that captures the desirable boundary feature of congruity. Consequently, f
should (i) decrease the penalty for globally congruous boundaries, (ii) retain the
common smoothing effect of pairwise potentials for incongruous boundaries, and
(iii) allow automatic and efficient adaptation of the congruence criterion to each
image.

We define congruity in terms of classes or types S(z̄) = {S1, S2, . . . , S&} of similar
edges, Si ⊆ En and En =

⋃
i Si. “Little diversity” then means that a congruous

boundary uses only few edge types. To reward such boundaries, we make it costly
to use an additional class, and relatively cheaper to stick to one group. Diminishing
marginal costs can implement exactly this if they are employed appropriately. We
make f submodular only within classes, and modular across classes:

f(Γ) =
∑

S∈S(z̄)
fS(Γ ∩ S). (6.6)

As a result, (i) f is subadditive within a class, and diminishing costs mean that the
discount on an additional edge increases with the number of edges included from
that class. On the other hand, (ii) there is no discount for cuts that use edges from
many classes, i.e., incongruous cuts. We define the class costs fS to be thresholded
discount functions,

fS(Γ) =

{
w(Γ ∩ S) if w(Γ ∩ S) ≤ θS
θS + g(w(Γ ∩ S)− θS) if w(Γ ∩ S) > θS

, (6.7)

for any nondecreasing, nonnegative concave function g : R → R. The thresholds θS
ensure that rewards are only granted once enough edges from a class are included.
For our experiments, we chose g(x) =

√
x. Alternatives include g(x) = log(1+x) or

roots g(x) = x1/p. Figure 6.3 demonstrates their discounting effect. The modular
case (6.1) corresponds to g(x) = x. The weights w here are the same as used for
the standard modular Graph Cut model.

We call the cooperative cut energy Ef in (6.4) with submodular functions fS as
in (6.7) the “boundary congruity energy” (BC energy).

1Unary potentials can be coupled, too; this was used in Section 5.3.

107

Chapter 6. Applications in Computer Vision

0 50 100 150
0

20

40

60

80

w
S
(Γ)

f S
(Γ

)

g(x) = x

g(x) = x1/2

g(x) = log(1+x)
g(x) = 0

Figure 6.3 Effect of different concave
functions g to introduce discounts in
the cost function in Equation (6.7).

The effect of the cooperative cost function is that instead of “short” boundaries
made up of few light-weight edges, we prefer boundaries that use few classes of
edges. This idea is conceptually close to the formulations of “structured sparsity” for
variable selection in machine learning, where instead of few variables, one aims to
select variables from few groups. Moving from graph cuts to cooperative cuts then
corresponds to moving from .1-regularization to (data-driven) group norms. We
will further explore some of these relations in Section 6.2. We point out, however,
that norms are commonly used for continuous problems and not for combinatorial
discrete problems such as cuts.

Adaptation to a given image

The color statistics of different images can vary, and therefore we adapt the edge
types to the image at hand, in an unsupervised manner. We infer edge classes by
clustering the edges En for each image separately. Each cluster defines an edge
class Si.

Furthermore, the discount only sets in after a threshold θS is reached, and we
adapt θS to the total weight of the class, i.e., θS = ϑw(S) for ϑ ∈ [0, 1], which
improves scale-invariance. For large objects or images, more edges exist, and more
similar edges must be used to deserve the label “congruous”. In that case, more
edges are in a class, and the adaptive threshold demands more edges before admit-
ting a discount. The factor ϑ trades off between completely modular cuts (ϑ = 1)
and completely cooperative cuts (ϑ = 0).

Similarity for inferring edge types

The quantitative gauge of “congruence” depends on the distance measure that we
use to cluster the edges. For an edge e = (vi, vj) with observed pixel values zi, zj,
we define two possible feature vectors φ(e):

1. For uniformly lit images, we use linear color gradients, φl(e) = zj − zi, and
squared Euclidean distance for clustering.

2. To neutralize shading, we use logarithmic intensity ratios φr(e) = log(zj/zi)
which are roughly invariant to shading and the .1-distance for clustering.

108

6.1. Coupling edges for image segmentation

For RGB images, φr is a vector where each entry is the ratio for a particular
channel.

The features φl or φr are then used to cluster the edges. They are in fact only used
for clustering; the cost functions fS use the standard weights of the form (6.3).

6.1.3. Optimization

Chapter 4 presents a range of approximation algorithms. An efficient option for
image segmentation is the iterative algorithm ITB described in Section 4.2.3. As
a subroutine, it repeatedly uses a standard minimum cut in the grid-structured
graph. Since this graph structure is widely used in computer vision, specialized
efficient maximum flow algorithms have been devised for these graphs [Boykov and
Kolmogorov, 2004]. Since we did not change the graph structure, we can profit
from such algorithms as subroutines.

Moreover, the approximation bound in Lemma 4.6 relies on the minimum
marginal cost any edge can take. We found that functions fS yield better seg-
mentations if their marginal costs do not completely decay to zero. Vanishing
marginal costs lead to noisy segmentations, as has also been observed by Allène
et al. [2009].Functions with non-vanishing marginal costs (curvature κf < 1) are
not only empirically preferable but also result in better worst-case approximation
bounds for ITB.

For the experiments in Section 6.1.4, the algorithm converged in five to ten
iterations. We also found that only one initialization, I = {∅}, was sufficient. As
the initialization only determines the approximation of costs for cooperating edges
and not for those with modular costs, this initialization corresponds to starting
with the graph cut solution of the model (6.1).

6.1.4. Experiments

For the task of interactive figure-ground segmentation, our experiments address
three main questions: (i) What is the effect of coupling edges, and does this
strengthen correct boundaries? We compare the cooperative BC energy Ef from
Section 6.1.2 to the standard graph cut model (GC) [Boykov and Jolly, 2001] for
pairwise potentials (referred to as “Graph Cut” in the sequel). (ii) What is the
effect of the structure of coupling, i.e., the classes Si? We compare to randomly
assigning edges to classes. (iii) Does edge cooperation harm the segmentation of ob-
jects requiring standard smoothing? We address this using a standard benchmark
data set.

When investigating the shrinking bias, we also compare to using “curvature reg-
ularity” that prefers boundaries with low curvature [Schoenemann et al., 2009]
instead of considering length (pairwise terms) or congruity (cooperative model)
of the boundary. Curvature is a higher-order feature, but, when implemented

109

Chapter 6. Applications in Computer Vision

with graphs, it is still local and only takes into account few neighboring edges
[El-Zehiry and Grady, 2010]. We re-implemented2 the algorithm in [El-Zehiry
and Grady, 2010]. All algorithms were implemented in C++, using the graph
cut code by Boykov and Kolmogorov [2004], OpenCV for reading in and display-
ing images, and some preprocessing in Matlab. Code and data are available at
ssli.ee.washington.edu/~jegelka/cc.

The congruity criterion requires defining classes of similar edges. We infer these
classes via k-means clustering. If the image has shading, we use .1-distances be-
tween edge features φr(e) = log(zj/zi), otherwise, we use squared Euclidean dis-
tances between linear features φl(e) = zj − zi. All the cluster classes Si, 1 ≤ i ≤ k,
of an image share the same threshold parameter ϑ in the cost (6.7) that determines
the threshold θS = ϑw(S) when the discounts set in. In addition to the k cluster
classes, one extra class Sk+1 pools all edges whose incident pixels have identical
color, i.e., φr(e) = 0 or φl(e) = 0. This extra class does not grant any discount and
uses its own ϑSk+1

= 1.
All of the algorithms involved have at least one parameter. In general, there

are two ways to optimize the parameters of a segmentation model. One approach
is such that the parameters for a model are tuned to each image to give the best
results — this is similar to the small number of sliders in a photo editing program
that lets the user adjust the parameters to optimize the segmentation boundary of
a given image. An alternative strategy is more appropriate for off-line use, where
there might be many images that need to be segmented but there is not the option
to adjust the parameters individually to each image. In this case, we must choose
one set of parameters for each technique (e.g., graph cut or cooperative cut), and
those parameters must be used for a range of images. We compare the algorithms
for both settings and will see that in both cases cooperative cuts outperform Graph
Cuts with respect to the difficulties of low contrast and shrinking bias.

Data

We test the BC energy on three types of images: (i) shaded grayscale and color
images; (ii) non-shaded color images with fine, delicate objects (“twigs and legs”);
and (iii) the Grabcut image segmentation data [Rother et al., 2004, Blake et al.,
2004]. For the Grabcut images, we use the given “Lasso” labeling. For (i) and (ii),
we took high-resolution images using either a Canon 7D or a Canon 5DMkII DLSR
camera. These images were hand-segmented and reduced in size. User labels were
added by hand. The data for (i) consists of 8 grayscale and 7 color images, and
the data for (ii) of 17 color images.

Grayscale images have the added difficulty that there is hardly any color infor-
mation to guide the segmentation; the poor segmentation by mere unary terms in
Figure 6.1 illustrates this.

2We thank Leo Grady and Noha El-Zehiry for fast responses and helpful hints about coding, as
public code was not available.

110

file://localhost/Users/stefje/work/jeff/bigdraft/ssli.ee.washington.edu/~jegelka/cc

6.1. Coupling edges for image segmentation

Figure 6.4. Examples for synthetically shaded images. Unary potentials were computed
on the shaded images and hence less informative than those from the original images.

In addition to naturally shaded images, we synthetically added shading variations
to equally lit color images. The artificial shading tests whether shade that varies
locally with higher frequency affects the improvement achieved by cooperative cuts.
Such variation can be harmful if shading is modelled explicitly on image patches.
To generate examples for high-frequency shading, we selected images from the
“twigs and legs” data. The pixel at location (x, y) in an image was multiplied
by 0.4(1 + sin(2πy/γ)), and γ was varied across images. Figure 6.4 shows some
examples.

Experimental Setup

To ensure equivalent conditions, all methods use the same weights on the terminal
edges (i.e., the same unary potentials), the same 8-neighbor graph structure, and
the same inter-pixel edge weights. The unary potentials either stem from color
histograms [Boykov and Jolly, 2001], or from Gaussian mixture models (GMMs)
with 5 components [Rother et al., 2004, Vicente et al., 2008]. The weight of an
inter-pixel edge e = (vi, vj) ∈ En is

w(e) = 2.5 + 47.5 exp(−0.5‖zi − zj‖2/σ). (6.8)

Recall that zi is the observed color vector for pixel (node) vi. These weights are
equivalent to those used by Vicente et al. [2008], and the constant σ is the variance
of inter-pixel color differences.

For all methods, λ refers to the “regularization coefficient”, that is, the weight of
the inter-pixel terms relative to the weight of the unary terms.

The total error is computed as the number of wrongly assigned pixels divided
by the total number of unlabeled pixels (“unlabeled” means the pixels not labeled
by the user). The total error, however, does not capture well the preservation of
fine elongated structures, because those usually consist of only relatively few pixels.
Therefore, we separately compute the twig error, where we only count the pixels in
regions relevant to such fine difficult parts. Note that the twig error is in general
much higher than the total error, because it refers to much fewer pixels, and a
single mislabeled pixel contributes more to the error ratio than for the total error.

111

Chapter 6. Applications in Computer Vision

Figure 6.5. Examples for ground-truth labelings that were created by hand in Photoshop.
The rightmost image of the beetle shows an example that was used to compute twig error
— the gray region is ignored when computing the error.

Finally, we define a joint error as the weighted combination of total error and twig
error,

errjoint = 2errtot + errtwig. (6.9)

Figure 6.5 shows some examples of ground truth labelings for total and twig error.
The errors are with respect to a hand-segmented ground truth (obtained using
Adobe Photoshop CS4 and CS5). The ground truth labelings contain a few gray
pixels at the boundaries, wherever the exact boundary (at the pixel level) was not
completely clear. These pixels were ignored when computing the error. This style
of labeling is similar to that of the Grabcut data. For the Grabcut data, we used
the given ground truth labelings.

6.1.5. Results: shrinking bias and the effect of the coefficient λ

All segmentation methods we test can be described as minimizing an objective

E(x) = unary-terms(x) + λ smoothness-term(x). (6.10)

The smoothness term acts as a regularizer. We first investigate the regularization
curve, i.e., the effect of varying λ.

Figure 6.6 demonstrates the behavior of Graph Cut and cooperative cut with
respect to the regularization coefficient. For both methods, the total error shrinks
as λ increases. As λ increases, Graph Cut however shortcuts many of the fine,
elongated structures, resulting in a high twig error. This reflects the shrinking
bias. As the fine structures only make up a small fraction of all pixels in the image,
their disappearance does not affect the total error much. However, there is no value
of λ that admits both a low total and a low twig error. In contrast, cooperative

112

6.1. Coupling edges for image segmentation

! !"# $ $"# % %"#

%

&

'

(

$!

$%

$&

!

)*
)+
,-.
//*
/-0
1
2

-

-

!

$!

%!

3!

&!

#!

)4
56
-.
//*
/-0
1
2

-

-

78-)456

8**98-)456

78-)*)+,
8**98-)*)+,
78-)456
8**98-)456

78-)*)+,

Figure 6.6. The effect of λ on the average total and twig error for Graph Cut (dashed
line) and cooperative cut (solid line; ϑ = 10−4, 20 classes) on the “twigs and legs” data.
The plot shows that a very low twig error, i.e., preservation of elongated structures,
coincides with low λ and high total error for Graph Gut. For cooperative cut, the twig
error increases much more slowly with λ, so that both low total and low twig error
are possible simultaneously. The plot also demonstrates that cooperative cut is not too
sensitive to the choice of parameters.

cut preserves fine structures even with higher regularization coefficient, and both
total and twig error are minimized simultaneously. In addition, the plot shows
that cooperative cut is not overly sensitive to parameter choice. The results in
Sections 6.1.6 and 6.1.8, in particular Figures 6.7 and 6.12, illustrate the behavior
indicated in Figure 6.6.

The errors in Figure 6.6 are averages over the “twigs and legs” data; we used
ϑ = 10−4 and 20 classes for cooperative cut.

6.1.6. Results: fixed parameter for each data set

The results in Figure 6.6 use the same parameter values for all images in the data
set. We now continue this viewpoint, and show qualitative and quantitative results
for fixed parameters. However, we choose good parameters for each data set and
method. The results visualize the tendencies indicated by Figure 6.6.

As a baseline, we show not only the results for standard Graph Cut, but also the
results for cooperative cut (CoopCut) with only one class (k = 1, plus the class
Sk+1), and for Graph Cut with logarithmic edge weights. Single-class CoopCut
shows the effect of indiscriminate coupling, i.e., the discount is uniform on all
edges (except Sk+1), and there is no group structure to it. The logarithmic weights
are the non-cooperative equivalent of the edge features φr. This baseline has the
ratio information contained in φr, but no coupling.

CoopCut always uses the edge weights in Equation (6.8), and the ratios φr only
for finding edge types. For CoopCut, we show results for 1, 10, 15 and 20 edge

113

Chapter 6. Applications in Computer Vision

Graph Cut Graph Cut CoopCut, 20 cl.
min error min joint error min error

0.92% 6.49% 0.23%

0.91% 2.74% 0.35%

7.57% 0.94% 0.53%

Figure 6.7. Effect of fixed parameters for Graph Cut and cooperative cut on the “twigs
and legs” data. We show example results for parameters with minimum average error
(Graph Cut, CoopCut) and minimum average joint error (Graph Cut). The first image
contains a confounding mirrored insect that is, however, less sharp.

classes. The error denoted by “unary terms” is the error for Graph Cut with λ = 0,
i.e., the segmentation resulting from unary terms alone.

Summarizing the results ahead, the quantitative results show that coupling edges
(CoopCut) improves on the results by Graph Cut, and that structure in the cou-
pling via edge groups (k > 1) improves on indiscriminate coupling. In fact, in
many cases, a large part of the improvement is due to the grouping of edges. We
do not know of any other method in the image segmentation literature that uses
such groupings.

Shrinking bias and color images

On our benchmark images, Graph Cut appears to be very sensitive to parameter
choice, and using the same single parameter (with the lowest error) for all images
results in segmentations such as those shown in Figure 6.7: either fine structures
are shortcut, or background pixels are included. The fixed parameters here are
λ = 1.5 and λ = 0.05 for Graph Cut, and (λ, 104ϑ) = (1.5, 6) for CoopCut.

114

6.1. Coupling edges for image segmentation

Twigs and legs: errors (in %)
GMM histograms

min total error min joint error min total error min joint error
total twig total twig total twig total twig

unary terms 5.73 15.47 5.73 15.47 10.49 21.46 10.49 21.46
GC 2.10 34.40 3.78 18.08 3.00 50.58 6.74 28.95
CoopCut, 1 1.25 34.35 4.73 15.60 2.85 48.11 8.71 21.89
CoopCut, 10 1.01 18.27 1.17 16.43 1.74 33.18 2.17 29.41
CoopCut, 15 1.01 26.32 1.02 16.36 1.76 37.59 2.82 27.40
CoopCut, 20 0.98 17.78 1.16 15.91 1.75 35.05 2.66 28.51
curvature 3.82 56.09 5.73 16.00 5.00 64.44 10.31 21.85

Twigs and legs: parameters
GMM histograms

λ 104ϑ λ 104ϑ λ 104ϑ λ 104ϑ
GC 1.0 – 0.05 – 1.3 – 1.6 –
CoopCut, 1 1.5 4 10.0 0 1.6 4 12.0 0
CoopCut, 10 1.5 7 2.6 1 3.2 5 1.3 7
CoopCut, 15 22.0 0 1.7 2 3.5 6 2.0 1
CoopCut, 20 1.8 5 1.6 1 3.0 6 2.8 1
curvature 0.3 – 0.001 – 0.5 – 0.002 –

Table 6.1. Errors and parameters for the “twigs and legs” data set. Cooperative cut
better preserves fine structures at low total error, i.e., without including too much back-
ground. “GMM” and “histogram” refer to the unary potentials.

Table 6.1 displays the corresponding quantitative results in detail. Shown are
average percentages of mislabeled pixels (total and twig error) for two parameter
settings: minimum total error and minimum joint error. Like the visual results,
the quantitative results show that CoopCut can achieve low total error and low
twig error, whereas the Graph Cut results minimize either one or the other.

Low contrast and shading in grayscale and color images

Figure 6.8 shows example segmentations of naturally shaded grayscale images ob-
tained with fixed parameter settings, i.e., λ = 0.1 for Graph Cut, and (λ, 104ϑ) =
(6, 5) for CoopCut; these are the parameters with the lowest average error. The
error is indicated at the top of each image. Cooperative cut yields qualitatively
and quantitatively better results.

The visual results for naturally shaded color images in Figure 6.9 are similar. The
color however leads to more informative unary potentials, resulting in overall better
segmentations. Therefore the differences between Graph Cut and cooperative cut
lie mainly in the details of the segmentations, such as holes between the leaves of

115

Chapter 6. Applications in Computer Vision

Graph Cut Cooperative Cut,
15 edge classes

14.18% 3.87%

14.16% 0.51%

3.69% 0.04%

23.61% 2.86%

Figure 6.8. Example results with fixed parameters for shading in grayscale images.

116

6.1. Coupling edges for image segmentation

Graph Cut Cooperative Cut,
15 edge classes

1.82% 1.45%

1.39% 0.78%

7.65% 3.78%

Figure 6.9. Example results with fixed parameters for shading in color images. As the
color provides more guidance than grayscale values, the differences lie in the details.

117

Chapter 6. Applications in Computer Vision

Natural shading: errors (in %)
grayscale color

GMM hist GMM hist
unary terms 15.66 17.42 4.42 8.18
GC 14.03 14.71 3.41 6.49
GC,log wts 13.67 14.13 3.63 6.54
CoopCut, 1 11.58 10.61 2.95 5.31
CoopCut, 10 4.39 5.02 1.67 3.05
CoopCut, 15 3.63 4.27 1.69 2.94
CoopCut, 20 4.33 4.48 1.62 3.00
curvature reg. 17.40 19.48 3.93 7.37

Natural shading: parameters
grayscale color

GMM histogram GMM histogram
λ 104ϑ λ 104ϑ λ 104ϑ λ 104ϑ

GC 0.10 – 0.6 – 0.05 – 0.10 –
GC, log wts 2.60 – 1.9 – 0.05 – 0.05 –
CoopCut, 1 70.0 1 70.0 6 100.0 0 22.0 3
CoopCut, 10 8.0 5 19.0 5 15.0 2 5.7 8
CoopCut, 15 6.0 5 20.0 4 19.0 2 3.5 10
CoopCut, 20 7.0 5 21.0 3 14.0 3 6.5 4
curvature reg. 0.01 – 0.01 – 0.025 – 0.04 –

Table 6.2. Errors in percent for the natural shading setting. Corresponding example
visual results are shown in Figures 6.8 and 6.9. The lower table displays the parameters
with which the errors in the upper table were achieved.

the plant, holes in the grid of the fan, or the smoothness of the boundary of the
calligraphy.

Quantitative errors for both color and grayscale images with low-contrast regions
are listed in Table 6.2. On grayscale images, CoopCut can reduce the total error
by up to 74% compared to Graph Cut. Furthermore, the errors suggest that (i) the
coupling is essential, since neither Graph Cut nor the logarithmic weights baseline
or curvature regularization lead to segmentations as good as with cooperative cut;
and (ii) the selective cooperation achieved via the edge classes Si leads to a sub-
stantial improvement over indiscriminate uniform coupling (1 class). The actual
number of classes, 10, 15 or 20, seems to be far less influential.

Synthetic high-frequency shading

As a proof of concept, we also show segmentation results for synthetic high-
frequency shading. Such shades are less likely to occur naturally, but demonstrate
that cooperative cuts do not rely on large patches having the same contrast: the
results resemble those for the preceding two data sets.

118

6.1. Coupling edges for image segmentation

Graph Cut Cooperative Cut
5.08% 0.64%

Figure 6.10. Example segmentations of a synthetically shaded image. For Graph Cut,
λ = 0.1, and for CoopCut, (λ, 104ϑ) = (1.5, 50) (25 edge classes).

High-frequency shading: errors (in %) parameters
min total error min joint error min tot. err. min joint err.
total twig total twig λ 104ϑ λ 104ϑ

unary terms 5.50 14.55 5.50 14.55 – – – –
GC 2.56 20.96 3.43 13.54 0.2 – 0.05 –
GC,log wts 2.58 23.21 4.11 13.52 0.2 – 0.02 –
CoopCut, 1 1.49 33.03 3.10 12.53 0.9 6 0.05 40
CoopCut, 10 1.26 14.79 1.65 12.47 0.6 12 2.40 2
CoopCut, 15 1.27 14.69 1.73 12.39 0.7 9 0.80 6
CoopCut, 20 1.29 18.10 1.62 12.01 10.0 1 5.00 1
CoopCut, 25 0.78 13.34 1.57 8.38 0.9 15 2.2 1
curvature regul. 3.38 34.50 4.70 14.08 0.15 – 0.01 –

Table 6.3. Errors and parameters for synthetic high-frequency shading (GMM). Twig
and total error together show that, while Graph Cut includes elongated structures at the
cost of a higher total error, cooperative cut preserves them with much lower total error.

Unary terms are computed on the shaded image, so the color information is
impaired compared to the original “twigs and legs” data from which the images
were drawn. Table 6.3 shows both total and twig errors for the high-frequency
data. The results are very similar to those for equally lit images: cooperative cut
provides overall better segmentations and appears to be better suited to reduce
the total error while preserving fine structures. Figure 6.10 illustrates an example
segmentation.

6.1.7. Results: influence of the edge groups

The preceding sections suggest that cooperation between edges can be beneficial
for segmentation. Moreover, the result tables indicate that restricting cooperation

119

Chapter 6. Applications in Computer Vision

Shaded grayscale images
method total error twig error λ 104ϑ
CoopCut, 1 class 11.58 70.0 1
CoopCut, 15 random classes 10.97 – 4.0 7
CoopCut, 15 clustered classes 3.63 – 6.0 5

Shaded color images
CoopCut, 1 class 2.95 100.0 0
CoopCut, 15 random classes 2.95 – 20.0 1
CoopCut, 15 clustered classes 1.69 – 19.0 2

Synthetic shading, min total error parameters
CoopCut, 1 class 1.49 33.03 0.9 6
CoopCut, 15 random classes 0.98 23.24 0.6 7
CoopCut, 15 clustered classes 1.27 14.69 0.7 9

Synthetic shading, min joint error parameters
CoopCut, 1 class 3.10 12.53 0.05 40
CoopCut, 15 random classes 2.64 8.96 0.1 25
CoopCut, 15 clustered classes 1.73 12.39 0.8 6

Table 6.4. Influence of clusters Si in the cost function. For the naturally shaded images,
much better segmentations result from restricting cooperation to similar edges. The
results for random edge classes are similar to those for one class only. This tendency
is not as clear for synthetic shading, but the tendency of a higher twig error with low
total error seems to be stronger for random groups than for clusters. The errors here are
averages, obtained with unary terms from GMMs.

to groups of edges strongly improves the results compared to an indiscriminate
coupling resulting from a single edge class. To test how much the relation of the
clusters to the actual image matters, we compare the results in Tables 6.2 and 6.3
for clusters of similar edges to results where edge classes Si are assigned arbitrarily
at random. That means we replace the k-means clustering by a random partition
of edges into 15 classes, retaining the special class Sk+1. Table 6.4 shows that
the errors for random groups are comparable to those for one uniform group and
suggests that indiscriminate coupling is as good as global uniform coupling. These
results indicate that meaningful edge types are indeed beneficial, and that the edge
types do influence the results.

6.1.8. Results: best parameters per image

One may argue that the results in Section 6.1.6 do not show the full picture, and
that some methods may yield better results if the parameters are optimized for each
image individually, as could be done in a photo processing program. Therefore, we
next show qualitative results where we choose parameters that lead to the lowest
error on the given image.

120

6.1. Coupling edges for image segmentation

Graph Cut Cooperative Cut

0.10% 0.06%

1.24% 0.76%

Figure 6.11. Example segmentations when choosing the optimal parameters (by total
error) for each image separately. The comb illustrates a different type of shading, its
segmentation is obstructed by its own shadow. (Parameters: GC λ = 0.2, 0.05, CoopCut
(λ, 104ϑ) = (5.5, 10), (7.0, 3), 15 and 20 edge classes.)

Figures 6.12 and 6.13 suggest that even when choosing very good parameters for
an image, shrinking bias is still a problem for Graph Cut, and the bias towards
congruous boundaries improves the segmentations. The results with curvature
regularization are worse than with Graph Cuts, possibly because the unary terms
here give a preference to background parts that do not actually belong to the
object.

Figures 6.11 and 6.14 show example segmentations for objects with shaded parts.
The results are similar to those in the previous sections. The unary terms in
Figure 6.14 demonstrate how limited the information in the grayscale color models
is. In particular with such little guidance by color, including additional information
about the boundary helps achieve better segmentations.

6.1.9. Results: Grabcut benchmark

As a “sanity check”, we address the effect of cooperation with objects that do not
have elongated fine structures and that are not shaded either. Thanks to those
properties, we do not expect a great gain from preferring congruous boundaries.
Figure 6.15 shows two example segmentations for objects that are known to be
challenging. Regarding average errors, Table 6.5 shows that the BC energy leads
to slightly better segmentations than Graph Cut, but the gain is not as big as for

121

Chapter 6. Applications in Computer Vision

0.64% Graph Cut, low error 0.95%

4.12% Graph Cut, low twig error 1.35%

15.44% curvature regularization 1.40%

0.31% Cooperative Cut 0.45%

Figure 6.12. Example results for segmentation with the parameters that lead to the
lowest error. When preserving fine structures, Graph Cut and curvature regularization
still include parts of the background, as those methods are more strongly guided by the
unary potentials. (Parameters: GC low error λ = 1.5, 0.05, GC low errtwig λ = 1.0, 0.001;
curvature λ = 0.03, 0.002, CoopCut (λ, 104ϑ) = (1.5, 9), (1.8, 10)).

122

6.1. Coupling edges for image segmentation

Graph Cut Cooperative Cut, 15 classes

0.54% 0.23%

0.37% 0.25%

0.66% 0.34%

1.33% 1.05%

0.22% 0.23%

Figure 6.13. Example segmentations when choosing the optimal parameters (by total
error) for each image separately.

123

Chapter 6. Applications in Computer Vision

labels unary terms GC CoopCut, 15 cl.
6.44% 0.49%

0.18% 0.04%

Figure 6.14. Example segmentations for parameters that lead to the lowest total error,
for each image separately. The third column shows the segmentation by unary terms
alone, illustrating the limited guidance owing to the lack of color information.

the other data sets. Nevertheless, these results suggest that cooperation does not
hurt either.

GC CoopCut
5.97% 5.80%

6.56% 4.79%

Figure 6.15. Two examples from the Grabcut data that are known to be difficult. Graph
Cut either cuts off the tail or trunk, or includes parts of the background (compare the
segmentations in [Blake et al., 2004, Lempitsky et al., 2009]). The cat is challenging for
cooperative cuts as well, because, thanks to camouflage, boundaries congruous to the
true outer boundary may be found even on the animal. (Parameters: GC λ = 1.3, 0.05,
CoopCut (λ, 104ϑ) = (12, 3), (0.4, 7), 15 and 10 edge classes).

124

6.1. Coupling edges for image segmentation

Grabcut data: errors and parameters
error (%) par. GMM par. hist.

GMM histograms λ 104ϑ λ 104ϑ
GC 5.33± 3.7 6.88± 5.0 0.8 – 0.8 –
CoopCut, φl, 10 cl. 5.19± 3.5 6.51± 4.7 0.8 10.0 30.0 2.0
CoopCut, φl, 20 cl. 4.95± 3.2 6.27± 4.2 8.0 2.0 10.0 2.0
CoopCut, φr, 10 cl. 5.28± 3.7 6.50± 4.3 0.5 30.0 10.0 2.0
CoopCut, φr, 20 cl. 4.79± 3.1 6.12± 4.0 10.0 1.0 10.0 2.0

Table 6.5. Results on the Grabcut data with edge features φl and φr.

6.1.10. Summary and outlook

Many models for image segmentation essentially include two terms: the first one,
here the unary potentials, biases the assignment of each pixel to foreground or
background, judging, for instance, the fit of model and data by color or texture.
The second part smoothens out the segmentation induced by the first part alone,
for example by penalizing the curvature of the boundary, or the length of the
boundary as with Graph Cut. If the guidance by the unary terms is weak and
therefore overridden by the smoothness penalty, then the resulting segmentations
will degrade. The shrinking bias, where few pixels inside a branch are outweighed
by the edges around a long boundary, and low-contrast regions, where the color
fails to provide discriminative guidance, are just two examples of this phenomenon.

The cooperative criterion for boundary congruity does a bit more than mere
smoothing, as the global coupling of edges can provide additional guidance. This
might be one reason why the segmentations obtained with cooperative cut in the
experiments are much better than those obtained with Graph Cut.

The class-based boundary congruity energy changes the preference from using
few edges, that means, short boundaries, to globally using few types of edges,
that means, congruous boundaries. The experiments illustrate that coupling edges
indeed improves segmentation results — Figure 6.6 indicates the suitability as a
smoothness criterion — but that the type of coupling strongly influences the results
too: indiscriminate uniform coupling via one class, or via random classes, is not
as good as meaningful edge classes derived from clustering. Finally, compared to
Graph Cut, edge cooperation does not corrupt segmentations if the object neither
has elongated fine structures nor has low-contrast areas.

As an additional concrete example application, we mention the segmentation of
biological images here. Genetic plant experiments, usually require observing the
growth of a range of modified plants over time (Figure 6.16)3. This surveillance
includes the tedious work of measuring the area and shape of plant parts, in particu-
lar of leaves. The automatic fine segmentation of leaf structures is one step towards

3Photos courtesy of George Wang (MPI for Developmental Biology).

125

Chapter 6. Applications in Computer Vision

Figure 6.16. Segmentation of Arabidopsis thaliana at two stages (day 18 and 25). The
color model was learned for a series of images together, and leaves in other images had
strong white content. The segmentations are preliminary results.

an entirely automatic data collection that circumvents tedious measurements by
hand.

6.2. Relaxations, regularization and further models in
computer vision

The congruity bias for image segmentation was an application of the discrete Min-
CoopCut problem, and the above sections demonstrate its suitability as a smooth-
ness or regularization criterion. Next we address the relaxation of MinCoopCut
and its relations to regularization methods. These methods are mostly in computer
vision, but the introduced non-uniform edge-norms may be of interest for a range
of fields. We also derive an algorithm for solving a problem with a regularizing
term derived from a cooperative cut. For readability, we here use non-bold letters
for vectors x, y. To distinguish matrices from sets, we denote them by bold letters.

Many problems in machine learning and computer vision are stated in terms of
a convex loss function L(x) and a regularizing4 term Ω(x), and the key problem
becomes solving the optimization problem

minx∈RV L(x) + λΩ(x). (6.11)

In the previous section, we already indicated that cooperative cut energies closely
relate to such composite functions.

6.2.1. Stating MinCoopCut as regularized minimization

The next Lemma relates composite functions like (6.11) to cooperative cut energies,
in particular to the BC energy (6.4). We denote by (y)+ the element-wise maximum
of 0 and y, and we employ the node-edge incidence matrix A ∈ {0, 1,−1}E×V of a

4We use the common term “regularizer” here for introducing a bias towards smoothness. (Total
variation, for example, has frequently been used in this respect.) We leave statistical aspects
as an interesting direction for future research.

126

6.2. Relaxation and regularization

graph G = (V , E) that is defined via its entries ae,vi for vi ∈ V and e = (vj, vk) ∈ E
as

ae,vi =

0 if i -= j, k

1 if i = k

−1 if i = j.

(6.12)

Lemma 6.1. Minimizing a cooperative cut energy Ef (which is equivalent to solv-
ing an instance of MinCoopCut) for a structure graph with node-edge incidence
matrix A corresponds to minimizing a problem of the form

minx∈{0,1}n L(x) +Ω(x),

with Ω(x) = f̃(|Ax|) for an undirected graph, and Ω(x) = f̃((Ax)+) for a directed
graph. In particular, the energy (6.4) corresponds to

minx∈{0,1}n
∑n

i=1
ψi(x) + f̃((Ax)+).

The above cost functions are equally defined for continuous variables x ≥ 0.

Proof. In a slightly modified fashion compared to the statement in Chapter 4, a
relaxation of a cooperative cut problem in G = (V , E) is

min f̃(y) (6.13)
s.t. ye ≥ xj − xi for all e = (vi, vj) ∈ E

x ≥ 0, y ≥ 0

xs = 0

xt = 1

y ∈ [0, 1]E , x ∈ [0, 1]V .

The first constraint is defined by the matrix A: in vector form it reads as y ≥
Ax. Together with the nonnegativity constraint on y, this becomes y ≥ (Ax)+.
Furthermore, the cost function f̃(y) on y is nondecreasing. This means that for a
given feasible x, an optimal y(x) must be y(x) = (Ax)+. If G is undirected, then
the cut can be solved as a directed cut problem on a directed equivalent of G. The
directed graph has edges (vi, vj) and (vj, vi) for each undirected edge {vi, vj} in G.
This implies that y(x)e = max{(xj − xi)+, (xi − xj)+} = |xi − xy| and therefore an
optimal solution is y(x) = |Ax|.

Moreover, we can include the constraints xs = 0, xt = 1 into the cost function,
for example as L(x) = γ((xs − 0)2 + (xt − 1)2) for a large enough γ > 0. With
these observations, solving the Program (6.13) is equivalent to solving

minx∈[0,1]n L(x) +Ω(x) (6.14)

127

Chapter 6. Applications in Computer Vision

with Ω(x) = f̃((Ax)+) for a directed graph, and Ω(x) = f̃(|Ax|) for an undirected
graph. For a discrete solution, the minimization ranges over x ∈ {0, 1}n.

For the BC energy (6.4), the terminal edges in G are charged by an additive
function, that is, f(S) =

∑
e∈S w(e) for all S that only consist of edges incident to

s or t. To obtain the second formulation in Lemma 6.1, we enforce the constraints
on xs and xt. Fixing xs = 0 sets ye = xi for any edge e = (s, vi), and fixing xt = 1
sets ye = 1 − xi for any edge e = (vi, t). If A is the incidence matrix for the
sub-graph G\s,t = (V \ {s, t}, En), then the energy for fixed xs, xt is minimized by
solving

min
x∈{0,1}n

∑n

i=1
w(s, vi)xi + w(vi, t)(1− xi) + f̃((Ax)+) (6.15)

≡ min
x∈{0,1}n

∑

i

ψi(xi) + f̃((Ax)+) + const. (6.16)

The derivation for undirected graphs is analogous.

The proof shows that Ω(x) here penalizes the differences of xi along edges. De-
pending on the graph structure, these differences can be viewed as a discrete gra-
dient. We call it the edge gradient.

Properties of the function Ω(x) = f̃((Ax)+)

To understand the formulations in Lemma 6.1 better, we investigate some prop-
erties of the function Ω(x). We argue that it is convex and a norm on the edge
gradient.

Proposition 6.1. The functions Ω(x) = f̃(|Ax|) and Ω(x) = f̃((Ax)+) are con-
vex.

To prove the proposition, we will use another observation.

Proposition 6.2. Let f : 2E → R+ be a nondecreasing submodular function. Then
its Lóvasz extension is monotone: for two vectors x, y ∈ R+, where y dominates x
(yi ≥ xi for all entries i), it holds that f̃(y) ≥ f̃(x).

Proof (Proposition 6.2). Without loss of generality, assume f(∅) = 0. The Lovász
extension can also be defined in terms of level sets Xθ = {i | xi ≥ θ} as

f̃(x) =

∫ ∞

0

f(Xθ)dθ. (6.17)

Then, using Xθ ⊆ Yθ for all θ and the monotonicity of f , it follows that

f̃(x) =

∫ ∞

0

f(Xθ)dθ ≤
∫ ∞

0

f(Yθ)dθ = f̃(y).

128

6.2. Relaxation and regularization

Proof (Proposition 6.1). The proposition follows in a straightforward way from
the convexity of f̃(| · |) [Bach, 2010]. For the second function, we observe that
x+ + y+ ≥ (x + y)+ for any x, y ∈ R. To derive convexity, we use Proposition 6.2
and the convexity of the Lovász extension f̃ .

f̃((A(γx1 + (1− γ)x2)+) ≤ f̃(γ(Ax1)+ + (1− γ)(Ax2)+) (6.18)
≤ γf̃((Ax1)+) + (1− γ)f̃((Ax2)+).

Bach [2010, Prop.1] shows that the function f̃(|y|) is a norm if f is nondecreasing
and normalized (f(∅) = 0). This means that Ω(x) is a norm on the vector y+ or y
of differences y = Ax. The function Ω, however, is not a norm on x, because the
null space of A is nontrivial and includes the all-ones vector. Nevertheless, being a
norm on y means that the relaxation of MinCoopCut belongs to a larger family
of problems that is described next.

6.2.2. Edge-norms

We observed that Ω(x) can be written in terms of a particular norm defined by a
Lovász extension, ‖Ax‖ for undirected and ‖(Ax)+‖ for directed graphs. We will
call such norms of cut vectors edge-norms. For continuous variables, the cut vector
is a vector of differences.

Definition 6.1 (Edge-norm). Given a graph G = (V , E), let A ∈{− 1, 0, 1}E×V

denote its node-edge incidence matrix. For a discrete x ∈ {0, 1}V or a continuous
x ∈ RV

+, we define its corresponding edge-norm with respect to a norm ‖ ·‖ as

Ω(x) ! ‖Ax‖ if G is undirected, and
Ω(x) ! ‖(Ax)+‖ if G is directed.

If ‖ ·‖ is a norm, then ‖(·)+‖ is a semi-norm. Depending on the graph structure
and the norm, Ω can express a variety of established and novel terms. Examples
will be shown in Section 6.2.4. By the reasoning in Section 6.2.1, cooperative cuts
and their relaxations correspond to edge-norms. Conversely, many edge-norms
define cooperative cuts:

Lemma 6.2. An edge-norm over discrete variables for any .p-norm with p ≥ 1
corresponds to a cooperative cut. Similarly, a discrete edge-norm for any .1,p group
norm with p ≥ 1 corresponds to a cooperative cut.

Proof. Let y = Ax be the vector of differences between the node labels xi. By
definition, y is the characteristic vector of a cut y = δ(X0) for X0 = {vi ∈ V | xi =
0}. Therefore, it holds that

‖y‖p =
(∑

e∈E

ype

)1/p

=
(∑

e∈δ(X0)

1
)1/p

= |δ(X0)|1/p. (6.19)

129

Chapter 6. Applications in Computer Vision

This is a concave function of the cardinality of a set of edges, and therefore a sub-
modular function on sets of edges. An equivalent statement holds for the directed
case. The group norm is a sum of .p-norms, and the result follows analogously.

The reader should however be warned that the Lovász extension f̃(|x|) for the
function f(S) = |S|1/p is different from ‖x‖p for p > 1.

The proof of Lemma 6.2 shows that the common .p-norms correspond to a uni-
form, indiscriminate coupling of all edges in the graph. The function f(S) = |S|1/p
only depends on the cardinality of the argument (it can be extended to a weighted
sum via a Mahalanobis norm for a diagonal matrix) and is symmetric in this sense.
It does not involve a specific coupling of certain groups of edges like the BC energy
we used for image segmentation. In fact, independently to the work at the begin-
ning of this chapter, Bach [2010] (extended in [Bach, 2011]) introduced the Lovász
extension norm Ω(x) = f̃(|x|) on the variables directly as a sparsity-inducing, reg-
ularizing term for variable selection. There, the underlying submodular function is
defined on subsets of nonzero variables, and, as for BC energies, induces preferences
for certain sparsity structures, that is, patterns of nonzero variables.

Section 6.2.4 will show that instances of edge-norms have been used as regu-
larizing terms. Therefore, we derive an algorithm to solve a composite problem
like (6.11) consisting of a convex loss function and a cooperative edge-norm.

6.2.3. A proximal splitting algorithm

Motivated by a common use of edge-norms as regularizing terms, we derive an
algorithm to minimize the sum of a strictly convex loss function and a cooperative
edge-norm,

minx∈RV L(x) + λf̃(|Ax|). (6.20)

We assume that the loss L(x) prevents trivial or unbounded solutions. Minimiza-
tion problems composed of a strictly convex, differentiable function and a non-
smooth convex function can be solved by proximal methods [Combettes and Pes-
quet, 2011]. At their core, proximal methods iterate two steps. First, in the forward
step, they take a gradient descent step with respect to the loss L, which leads to
a point z. Then, in the backward step, the proximity operator finds a close fea-
sible point with relatively small Ω. The backward step is the generalization of a
projection. The proximity operator is defined as

proxΩ(z) = argminx
1
2‖x− z‖2 + λΩ(x). (6.21)

Together, the forward and backward steps then define the iteration

xt+1 = proxΩ(xt − γt∇L(xt)). (6.22)

The gradient step can also be accelerated [Beck and Teboulle, 2009]. The key issue
here is computing the proximity operator. In the rare case that the cooperative cut

130

6.2. Relaxation and regularization

energy for f and G is submodular, the operator (6.21) can be computed by a para-
metric maxflow [Chambolle and Darbon, 2009]. However, as implied by Lemma 5.1,
cooperative edge-norms Ω(x) are in general not submodular, and the flow method
does not apply. Therefore, we derive a more general algorithm that applies to any
Ω(x) = f̃(|Ax|) derived from a nondecreasing, normalized submodular function f .
If L is the squared loss, then the entire problem (6.20) corresponds to the proximal
problem, and we can solve it directly.

Let hz(x) =
1
2‖x− z‖2. We first derive the dual of the objective (6.21). To do so,

we recall the relaxation (6.13) that has an edge indicator variable y = Ax. With
this auxiliary variable, the proximal problem becomes

min
x,y

hz(x) + λf̃(|y|) s.t. Ax = y. (6.23)

Let µ denote the dual variables for the constraint. Then the Lagrangian is

L (x, y, µ) = hz(x) + λf̃(|y|) + µ.(Ax− y). (6.24)

Using the shorthand g(y) = f̃(|y|) , the Lagrangian leads to the dual function
H (µ) ! infx,y L (x, y, µ), which can be computed as

H (µ) = inf
x
(hz(x) + µ.Ax) + inf

y
(λg(y)− µ.y) (6.25)

= − sup
x
(−µ.Ax− hz(x))− (sup

y
µ.y − λg(y)) (6.26)

= −h∗
z(−A.µ)− λg∗(λ−1µ), (6.27)

=

{
−h∗

z(−A.µ) if |λ−1µ| ∈ Pf

−∞ otherwise.
(6.28)

Here, h∗ and g∗ are the Fenchel duals of h and g, respectively. We derive g∗ via
the definition of the Fenchel dual and the Lovász extension:

g∗(w) = sup
y

w · y − f̃(|y|) (6.29)

= sup
y

w · y −max
s∈Pf

s · |y| (6.30)

= sup
y

min
s∈Pf

w · y − s · |y| (6.31)

= sup
y

min
|s|∈Pf

w · y − s · y (6.32)

= sup
y

min
|s|∈Pf

(w − s) · y (6.33)

=

{
0 if |w| ∈ Pf

∞ otherwise.
(6.34)

To get from (6.31) to (6.32), we use the following proposition. Since f is nonnega-
tive and nondecreasing, Pf must contain a nonnegative vector.

131

Chapter 6. Applications in Computer Vision

Proposition 6.3. If f is nondecreasing, then any s∗ ∈ argmax|s|∈Pf
s · y satisfies

|s∗| ∈ argmaxs∈Pf
s · |y|. Vice versa, for each t+ ∈ argmaxs∈Pf

s · |y|, there exists
t∗ ∈ argmax|s|∈Pf

s · y with |t∗| = t+ and t+ · |y| = t∗ · y.
Proof. We first observe that s∗ · y = |s∗| · |y|. This equality follows because if
there exists an index j with sign(s∗j) -= sign(yj), then either yj = 0, in which case
s∗jyj = |s∗j ||yj|, or we can construct a vector s′ with s′i = s∗i for i -= j, and s′j = −s∗j .
This new vector s′ contradicts the optimality of s∗, because |s′| = |s∗| ∈ Pf and
s′ · y = s∗ · y − 2s∗jyj > s∗ · y.

We prove the Proposition by contradiction. Assume |s∗| /∈ argmaxs∈Pf
s · |y|.

Then there exists a nonnegative vector t ∈ Pf with t · |y| > |s∗| · |y|. We can
construct t by sorting the elements in |y| in descending order, and by setting
tj = f(Aj) − f(Aj−1) ≥ 0 for the chain A0 = ∅ and Aj = {eπ(i)|i ≤ j}. The
nonnegativity of t results from f being nondecreasing, and it implies that t = |t|,
and thus |t| ∈ Pf too.

From this vector t, we construct a vector t′ such that t′ · y = t · |y|: let t′i =
sign(yi)ti. Then it holds that

t′ · y = t · |y| > |s∗| · |y| ≥ s∗ · y. (6.35)

As |t′| = t ∈ P , the vector s∗ cannot be in argmax|s|∈Pf
s · y.

The reverse is analogous. We construct t∗ from t+ like t′ from t. If t∗ was
not a maximizer of s · y, then |t∗| = t+ would not be a maximizer of s · |y|, a
contradiction.

The indicator function (6.34) follows because if |w| ∈ Pf , then setting s = w is
feasible and results in (w − s) · y = 0. Thus, in that case, min|s|∈Pf

(w − s) · y ≤ 0
for any vector y, and y = 0 is a maximizer. If |w| /∈ Pf , then there exists a set
A ⊆ E with |w|(A) > f(A) ≥ |s|(A) for all feasible s. Consider a vector y′ with
y′i = 0 for all ei /∈ A, and y′i = c sign(wi) for some constant c otherwise. For this y′,
it holds that

(w − s) · y′ ≥ w · y′ − |s| · |y′| = (|w|−| s|) · |y′| = (|w|(A)− |s|(A))c. (6.36)

As c tends to infinity, this product becomes unbounded, because (|w|(A)−|s|(A)) >
0 for any |s| ∈ Pf .

The conjugate (6.34), finally, implies the dual function (6.28), which leads to the
optimization problem

max
µ

−h∗
z(−A.µ) s.t. |λ−1µ| ∈ Pf (6.37)

≡ max
µ

−h∗
z(−A.µ) s.t. |µ| ∈ Pλf (6.38)

Substituting h∗
z(x) = z · x+ 1

2‖x‖
2, we obtain h∗

z(−A.µ) = 1
2‖A

.µ‖2 − z.A.µ+
1
2‖z‖

2 − 1
2‖z‖

2 and the dual problem

min
µ

1
2‖A

.µ− z‖2 s.t. |µ| ∈ Pλf . (6.39)

132

6.2. Relaxation and regularization

Two questions remain to be solved: how to optimize the above dual problem and
how to recover the optimum x∗ of the primal problem from it.

To solve the second problem, we use the Karush-Kuhn-Tucker optimality condi-
tions that the derivative of the Lagrangian with respect to x disappears at x∗:

∂L (x, y, µ)

∂x
= (x− z) +A.µ. (6.40)

Setting this derivative to zero yields x∗ = z−A.µ∗. Next we address how to solve
the dual problem (6.39).

Minimizing a quadratic function over Pf

The dual problem (6.39) is a convex minimization over a subset of the submodular
polyhedron. An algorithm by von Hohenbalken [1975] maximizes pseudoconcave
function h over a submodular polyhedron, if the condition ∂h(Dy + w)/∂y = 0
can be solved efficiently (e.g., in closed form) for transformation matrices D. This
algorithm applies to minimize h(µ) = 1

2‖A
.µ − z‖2, because the function h is

convex and the derivative condition holds. The derivative is

∂h(Dy + w)/∂y = ∂/∂y(12‖A
.Dy +A.w − z‖2) (6.41)

= D.A(A.Dy +A.w − z). (6.42)

Setting this derivative to zero yields

D.AA.Dy = −D.AA.w +D.Az (6.43)
⇒ y = −(D.AA.D)†(D.AA.w −D.Az). (6.44)

The constraints of Problem (6.39), however, do not directly refer to Pf , but
require the absolute value of µ to be in Pf . This corresponds to µ being in a
polytope that is a subset of Pf . Von Hohenbalken’s algorithm invokes the polytope
only for a linear maximization over it. Proposition 6.3 shows that we can find
µ∗ ∈ argmax|µ|∈Pf

c · µ by finding µ+ ∈ argmaxµ∈Pf
|c| · µ. For the latter problem,

the greedy algorithm applies.

6.2.4. Special cases of edge-norms in the literature

Finally, we point out special cases of edge-norms in the literature. As opposed to
the BC energies in Section 6.1.2, most of the examples in the sequel use uniform
and not group-inducing norms. Lemma 6.2 implies that the discrete versions of
several of the examples below are cooperative cuts. Furthermore, one of the most
prominent examples for edge-norms is the standard minimum cut, an edge-norm
that uses the .1-norm.

133

Chapter 6. Applications in Computer Vision

Cuts with uniform norms

If the norm in Ω is an .p-norm, we will refer to the problem as a cut with a uniform
norm. Sinop and Grady [2007] define a cut cost

Ω(x) = ‖WAx‖p, (6.45)

where W ∈ RE×E is a diagonal matrix of edge weights and p ≥ 1. They minimize
this function subject to some hard boundary conditions, i.e., the value of some
xi is fixed. If the .p-norm is the only term in the cost function, then one can
instead minimize Ωp, a separable function. In contrast, submodular norms do
not in general offer such separability. Sinop and Grady [2007] point out that the
uniform edge-norm with p = 2 corresponds to the random walk criterion used
for image segmentation in [Grady, 2006]. The authors also address the .∞-norm,
which penalizes the maximum w(vi, vj)|xi − xj| for any edge e = (vi, vj), and they
show a solution using shortest paths. Relations between norms of gradients and
flows or paths were also studied by Strang [1982]. Jimenez and Sra [2010] address
efficient algorithms for minimizing terms ‖Ax‖p for p = 1 and p = 2.

Watersheds

An alternative image segmentation approach has been motivated by watersheds
[Maxwell, 1870, Jordan, 1872]. For watershed cuts, an edge weight is viewed as
the height of that edge, and a watershed (cut) would be the “rim” in a correspond-
ing topographical surface, that is, the lines from where water can flow down in at
least two different directions. Cousty et al. [2009] show that watershed cuts can
be obtained from a minimum spanning forest that leaves initially given seed points
disconnected. The forest defines the partition via its connected components. The
maximum spanning forest is equivalent to a minimum spanning forest for trans-
formed edge weights w, which in turn corresponds to the solution of a minimum
cut with edge weights wp raised to a sufficiently high power p [Allène et al., 2009].
For discrete x ∈ {0, 1}V , such a cut defines an edge-norm (taken to the power p).
The cut cost is then

f(S) =
∑

e∈S

wα(e). (6.46)

As α → ∞, the problem becomes a minimum cut for the .∞ norm.
The discrete edge-.∞-norm is equivalent to a cooperative cut with the submod-

ular cost function fmax(S) = maxe∈S w(e). The cut obtained from a maximum
spanning forest is indeed also a minimum cooperative cut for fmax. The function
fmax penalizes only the maximum edge in the cut, and therefore commonly admits
many optimal cuts, several of which can be long. In other words, it strongly relaxes
the smoothness induced by a sum of edge weights. Allène et al. [2009] too observe
that high powers p may encourage longer cuts that remedy the shrinking bias, but

134

6.2. Relaxation and regularization

that these cuts can be noisy. Lower powers in contrast bias towards smoothing. In
Section 6.1.2 the complete loss of the smoothing effect is counteracted by restrict-
ing cooperation to edge groups and by using non-vanishing marginal costs, which
correspond to lower powers.

Power watersheds [Couprie et al., 2010] combine the idea in [Sinop and Grady,
2007] with the work on watersheds in [Allène et al., 2009, Cousty et al., 2009], by
allowing different powers on the weights and on Ax. If we view the weights raised
to a (finite) power as fixed input, or if we add an integrality constraint on x, then
power watersheds too relate to the norm framework.

Powers of norms

Several further examples exist in the literature where the norm ‖ ·‖ p is replaced
by its pth power. Strictly speaking, the resulting term is not a edge-norm, but
sufficiently related. Given a graph G = (V , E), a common form is

Ωp(x) =
∑

(vi,vj)∈E

(wij|xi − xj|)p. (6.47)

A well-known example from machine learning is Laplacian regularization, where
p = 2. The weights wij in (6.47) are then the square roots of the edge weights in the
graph. Commonly, in semi-supervised learning, some labels xi are given, and the
others must be inferred. The regularizer leads to a labeling that varies smoothly
along edges. Its name stems from the graph Laplacian L, for which Ω2(x) = x.Lx.
This form is also used for spectral clustering [von Luxburg, 2007]. Bühler and Hein
[2009] motivate spectral clustering with the graph p-Laplacian, which corresponds
to function (6.47) for arbitrary p > 0 (see also [Amghibech, 2003]). In particular,
they address the case 1 < p < 2. When expressing the p-Laplacian, the weights in
(6.47) are wij = w̃1/p

ij , where w̃ij are the edge weights in the graph.
Related is also the work by Cho et al. [2010], who use different powers of the

norm of local gradients, and these powers vary across the image, adapting to the
textures’ gradient statistics. This is not the same as a non-uniform edge-norm, but
it shares the idea that a non-uniform, adaptive “prior” can be beneficial.

Discrete total variation and related terms

For image denoising in 2D, Rudin et al. [1992] introduced a discretization of the
continuous total variation. This discretization, with respect to the .2-norm, is
defined in terms of labels xij of vertices vij in a grid with coordinates i, j:

TV1(x) =
∑

i,j
‖[(xi+1,j − xi,j), (xi,j+1 − xi,j)]

.‖2 (6.48)

=
∑

i,j

√
(xi+1,j − xij)2 + (xi,j+1 − xij)2 (6.49)

=
∑

i,j
‖Aijx‖2. (6.50)

135

Chapter 6. Applications in Computer Vision

The term (6.49) is a group norm, i.e., an .1-norm of the vector of .2-norms of
the differences at a pixel. These differences can be written in terms of edges
(vi,j, vi+1,j) and (vi,j, vi,j+1) in a grid-structured graph. The norm uses a group of
edges Eij = {(vi,j, vi+1,j), (vi,j, vi,j+1)} for each node vi,j. We write the norm in
terms of submatrices Aij of the node-edge incidence matrix A that refer to the
groups Eij.

The discretization TV1 easily generalizes to arbitrary graphs; for instance, Cou-
prie et al. [2011] define the combinatorial total variation

TV2(x) =
∑

i
νi

√ ∑

(vi,vj)∈E

(xi − xj)2 (6.51)

=
∑

i

√ ∑

(vi,vj)∈E

ν2
i (xi − xj)2. (6.52)

The coefficients νi are inversely proportional to the gradient of the image at the
particular point i. Relations of total variation and related terms have also been
studied in [Strang, 1983, 2008].

Since group norms are also norms, all the discrete formulas above fall into the
framework of edge-norms. The last term (6.52) has a Mahalanobis norm as the
inner norm.

Chambolle and Darbon [2009] define as a discrete total variation Ω : Rn → R+ a
function that satisfies a discrete co-area formula, i.e., Ω(x) =

∫∞
−∞ Ω(χθ)dθ, where

χθ is the characteristic vector of set of points with xi ≥ z. They mention the
following examples that we re-write as cuts with group norm total variation. Here,
x has two indices and is seen as a 2D image. The first example is an .1-edge-norm,

TV3(x) =
∑

1≤i,j≤M

|xi+1,j − xi,j|+
∑

1≤i,j≤M

|xi,j+1 − xi,j| (6.53)

= ‖Ax‖1. (6.54)

Their second example is an “oscillation”. Define the neighborhood of xij as
Ni,j = {xi,j, xi+1,j, xi,j+1, xi+1,j+1}. We denote by the sub-matrix ANi,j the edge-
node incidence matrix for the complete subgraph over Ni,j. The oscillation is an
edge-norm for an .1,∞-norm:

TV4(x)

=
∑

1≤i,j≤M

max{xi,j, xi+1,j, xi,j+1, xi+1,j+1}−min{xi,j, xi+1,j, xi,j+1, xi+1,j+1}

=
∑

i,j
max

y,z∈Ni,j

|y − z| (6.55)

=
∑

i,j
‖ANi,jx‖∞. (6.56)

136

6.3. Summary and discussion

For discrete variables x, this cost corresponds to a cooperative cut. The resulting
TV4, however, is still submodular. The reason is that the cooperating edges form a
clique in which the edges are treated uniformly. In that respect, TV4 is a continuous
case of the submodular P n functions by Kohli et al. [2009a] that we discuss in
Section 5.3.2.

The final example is a pairwise circulant oscillation and involves cliques Ni,j =
{xi,j, xi+1,j, xi,j+1} over triples of nodes. It couples the edges of such cliques, and
its discrete variant is again a cooperative cut:

TV5(x) =
∑

1≤i,j≤M

max{|xi,j − xi+1,j|, |xi,j − xi,j+1|, |xi+1,j − xi.j+1|}

=
∑

i,j
‖ANi,jx‖∞. (6.57)

6.3. Summary and discussion

This chapter explored cooperative cuts for implementing prior information or regu-
larizing criteria. As a concrete example and application of cooperative cut energies,
we defined a new criterion for image segmentation that reduces the segmentation
error compared to the popular Graph Cut approach by up to 70%. The crite-
rion implements a bias towards congruous object boundaries by using structured
cooperations of edges. The resulting non-submodular energy function couples vari-
ables anywhere in the image. Still, the iterative algorithm yields visually improved
solutions efficiently.

Section 6.2 further develops the viewpoint of regularization and advances the
notion of edge-norms. Edge-norms unify a number of models from the literature,
including the oft-encountered total variation, and connect them to the energy mod-
els discussed in Section 5.3. Combined with ideas from Section 6.1, they lead to
new non-uniform continuous smoothness criteria. In addition, we proposed an op-
timization algorithm for the newly introduced cooperative edge-norms. Exploring
the potential of cooperative edge-norms in further applications is a topic for future
research.

137

Chapter 7.

Representation and Efficient Approximate
Minimization of Submodular Functions

Polynomial-time algorithms for minimizing submodular functions have been the
subject of research for many years. But to date, the known polynomial-time algo-
rithms are computationally too expensive for large data sets. Therefore, research
efforts comprise algorithms that efficiently minimize particular sub-families of sub-
modular functions. However, not every submodular function falls into such a “nice”
sub-family. Thus, this chapter addresses an efficient minimization algorithm that
applies to any submodular function at the cost of a (controlled) approximation.

7.1. Submodular function minimization

For a long time, it remained an open question whether every submodular function
could be minimized in polynomial time. This question was resolved by Grötschel
et al. [1981] as an implication of the ellipsoid method and the solvability of the sep-
aration problem for a polymatroid polytope [Edmonds, 1970]. The resulting algo-
rithm runs in Õ(n5τ+n7) time ([McCormick, 2006], citing an email from L. Lovász).
Here and in the sequel of this chapter, τ denotes the time to evaluate an oracle
of f . A further milestone were the first combinatorial polynomial-time algorithms.
Using results of Edmonds [1970], Cunningham [1985a] set up a network flow-like
framework that led to a pseudo-polynomial algorithm. This framework set the foun-
dation for subsequent polynomial-time algorithms. The first strongly polynomial
algorithms were then devised by Schrijver [2000] and Iwata et al. [2001]. These
combinatorial algorithms and their successors (surveyed in [McCormick, 2006]) run
in polynomial time, but with high complexity: the currently fastest algorithm by
Orlin [2009] still takes O(n6 + n5τ) time.

Those combinatorial algorithms commonly build on a linear program and results
from Edmonds [1970] for finding a vector x in Pf that maximizes 1n · x = x(V)
subject to given upper bounds xi ≤ bi. In the end, these algorithms either minimize
a function f ′(S) + y(V − S) with respect to a point y, derived via a reduction by
Cunningham; or they find a point x that maximizes x−(V) =

∑
i∈V min{xi, 0},

building on the equality

min
S⊆V

f(S) = max{1 · x | x ∈ Pf ,x ≥ 0} = max{x−(V) | x ∈ Bf}. (7.1)

138

7.1. Submodular function minimization

If x∗ is the solution of the last optimization, then the minimal optimal set is the
set S∗ ⊆ V of indices i with negative x∗

i , and the maximal optimal set is the set of
indices i with nonnegative x∗

i .
Owing to the still substantial running times of the combinatorial algorithms,

McCormick [2006] recommends first investigating whether alternative methods may
be feasible. In particular in machine learning or computer vision, where data sets
are often large, a limited complexity of optimization algorithms can be extremely
beneficial.

7.1.1. The minimum norm point algorithm

One alternative to the combinatorial algorithms that is considered faster in practice
is the minimum norm point or Fujishige-Wolfe algorithm [Fujishige et al., 2006,
Fujishige and Isotani, 2011]. This algorithm finds the vector x∗ with minimum
.2-norm in the base polytope Bf . The set {i | x∗

i < 0} indexed by negative entries
in x∗ is the minimal optimal solution, and the set {i | x∗

i ≤ 0} indexed by all
nonnegative entries is the maximal optimal solution. To find x∗, Fujishige et al.
[2006] apply Wolfe’s algorithm [Wolfe, 1976]. This algorithm merely requires that
a linear optimization over the polytope is tractable, and such a problem is solved
by the “greedy algorithm” [Edmonds, 1970].

The empirical results in [Fujishige and Isotani, 2011] show a running time be-
tween O(n3) and O(n3.5), mostly on minimum cut problems (numbers from [Mc-
Cormick, 2006]). However, it is not known whether this algorithm always runs in
polynomial time. Indeed, Hui Lin observed that a simple modification to a graph
cut function can increase the running time of the minimum norm algorithm to
become impractical for large data sets [Jegelka et al., 2011].

The minimum norm point algorithm can become impractical

The difficult example originated from a data subset selection problem in machine
learning and is a submodular function that is induced by a bipartite graph as in
Figure 2.1. Recall that such functions arise from a bipartite graph H = (V ,U , E)
with left and right nodes V and U , respectively, and a nondecreasing submodular
weight function g : 2U → R+. We define the neighborhood of a set S ⊆ V be
N (S) = {u ∈ U : ∃ edge (v, u) ∈ E with v ∈ S}. Then f : 2V → R+, defined as
f(S) = g(N (S)), is nondecreasing submodular (Proposition 2.1). In our example,
the full function is the sum of a nonnegative modular function m and such induced
submodular functions defined on subsets Ui ⊆ U ,

f(S) = λ
∑

i
gi(N (S) ∩ Ui) +m(V \ S). (7.2)

The difficult family uses functions g that are a square root of a nonnegative modular
function w. Figure 1.3 in the introduction shows that on average for (not the worst

139

Chapter 7. Representation and Approximate Minimization

instance of) such a problem, the algorithm scales as n4. Such complexities rule out
large data sets that are involved in the subset selection application from which
these functions arose.

For the experiment in the figure, 20 sub-graphs were sampled from a large graph
for each n. The shown times are averages over those 20 repetitions for the cost
function f(S) = −m(S) + λ

√
w(N (S)). The large graph stems from a corpus

subset extraction problem that is described next and has |V| = 54915 and |U| =
6871 nodes.

A motivating application

The proliferation of large real-world machine-learning data sets is both a blessing
and a curse for machine learning algorithms. On the one hand, a large data set can
accurately represent a complex task, thereby giving an algorithm the opportunity
to live up to its potential. On the other hand, the size of such data sets presents its
own problem: many algorithms have complexities that scale at a level that renders
them impractical for all but small problem sizes.

Thus, Lin and Bilmes [2010, 2011] address the question of how to empirically
evaluate new or expensive algorithms on large data sets without spending an inor-
dinate amount of time doing so. We may wish to test various algorithms quickly,
identifying the one that performs best. If a new idea ends up performing poorly,
knowing this sooner rather than later will avoid futile work. Often the complex-
ity of a training iteration is linear in the number of samples n but polynomial in
the number c of classes or types. For example, for object recognition, it typically
takes O(ck) time to segment an image into regions that each correspond to one of
c objects, using an MRF with non-submodular k-interaction potential functions.
In speech recognition, moreover, a k-gram language model with size-c vocabulary
has a complexity of O(ck), where c is in the hundreds of thousands and k can be
as large as six.

To reduce complexity one can reduce k, but this can be unsatisfactory since the
nature and novelty of the algorithm might entail this very cost. An alternative
is to extract and use a subset of the training data, one with a small number c of
classes.

We would want any such subset to possess as much as possible of the richness and
intricacy of the original data set while simultaneously ensuring that c is bounded.
We also may wish to impose a bias in favor of certain classes, say, on those between
which it is most difficult to discriminate. For example, in computer vision, we may
wish to choose a large subset of a face recognition database that limits the number
of different people but that includes people looking as similar to each other as
possible. In speech recognition, we might desire a large number of utterances that,
collectively, have a small confusable vocabulary [Lin and Bilmes, 2011].

One approach might be to choose a subset of classes of the appropriate size, and
then choose all training samples that contain any of those classes. The resulting set

140

7.2. Representations for efficient minimization

of training samples will contain more than this set of classes, however. This would
be problematic since, say in computer vision, much of the image would contain
real objects that cannot be recognized, and, say, in speech recognition, it would
mean that the resulting corpus has a large out-of-vocabulary set. Alternatively, one
could choose only those training samples that have no more than the selected set
of classes, but this then might result in an extremely small set of training samples.
We thus desire an approach that allows us to, on the one hand, choose a bounded
set of classes, but on the other hand, chooses a subset of training samples that is
very large.

This problem can be solved via submodular function minimization (SFM) using
the family of induced functions described above. Let U be the set of types contained
in a set of training samples V . Moreover, let the modular function w measure the
cost of a type u ∈ U (this corresponds e.g. to the “undesirability” of type u).
Define also a modular function m : 2V → R+, m(S) =

∑
v∈S m(v) as the benefit

of training samples (e.g., in vision, m(v) is the number of different objects in an
image v ∈ V , and in speech, this is the length of utterance v). Then the above
optimization problem can be solved by finding argminS⊆V w(N (S)) − λm(S) =
argminS⊆V w(N (S))+λm(V \S) where λ is a tradeoff coefficient. As shown below,
this can be easily represented and solved efficiently via graph cuts. In some cases,
however, we prefer to pick certain subclasses of U together. We partition U =
U1∪U2 into blocks, and make it beneficial to pick items from the same block. Such
cooperation within blocks can arise from non-negative non-decreasing submodular
functions g : 2U → R+ restricted to blocks. The resulting optimization problem
is minS⊆V

∑
i g(Ui ∩ N (S)) + λm(V \ S); the sum over i expresses the obvious

generalization to a partition into more than just two blocks. Unfortunately, it is
not obvious how this class of functions can be efficiently represented by graph cuts,
and we must resort to general SFM.

7.2. Representations for efficient minimization

To circumvent general SFM algorithms and even the minimum norm point algo-
rithm, (provably) more efficient algorithms exist for subclasses of submodular func-
tions. Two popular classes are functions that are minimizable as graph cuts, and
functions that are scalar concave functions concatenated with modular functions.
We survey both of these classes.

Other specific families that admit more efficient algorithms include symmetric
submodular functions [Queyranne, 1998] and graphic matroids [Preissmann and
Sebő, 2009].

141

Chapter 7. Representation and Approximate Minimization

7.2.1. Graph cuts

The minimum (s, t)-cut problem is equivalent to the minimization of a (submod-
ular) quadratic pseudo-boolean polynomial that has one variable for each node
and constants 1 for terminal node s and 0 for terminal t. The minimum (s, t)-cut
induces a partition of the nodes V into the set Xs reachable from s after cutting
and into its complement Xt. Analogously, in the optimal solution of the equivalent
pseudo-boolean polynomial, the variables xi = 1 indicate the nodes Xs = X(x),
and the variables xi = 0 indicate the variables in Xt. This equivalence between the
(pseudo-boolean or set) function representation and the graph cut representation
has been exploited especially in computer vision [Boykov and Jolly, 2001, Greig
et al., 1989], because more efficient algorithms exist for minimum cut than for
general SFM.

Furthermore, this apparently useful equivalence can be extended by introducing
auxiliary variables (and thus graph nodes) U . Formally, to represent the submodu-
lar function f : 2V → R, one constructs a graph G = (V ∪U ∪{ s, t}, E) with nodes
V ∪U and edge weights w : E → R+ such that the “restricted” minimum cuts in G
are equivalent to f . That means, to evaluate a set S, we enforce the case that we
assign S to Xs and V \ S to Xt, and freely distribute the nodes in U over Xs and
Xt such that the cut weight w(δ(s ∪Xs)) =

∑
e∈δ(s∪Xs)

w(e) of the edges between
Xs and Xt is minimized. This cut value is then equivalent, up to a constant, to
f(S). Formally, we define the class of graph-representable functions as follows:

Definition 7.1 (Fgc). A submodular function f : 2V → R is graph-representable
if there exists a graph G = (V ∪ U ∪{ s, t}, E , w) with nonnegative (modular) edge
weights w and a constant γ such that for any S ⊆ V , it holds that

f(S) + γ = min
U⊆U

w(δs(S ∪ U)) = min
U⊆U

∑

e∈δs(S∪U)

w(e). (7.3)

We denote the family of all graph-representable functions by Fgc.

Here and in the sequel, we use the shorthand δs(S) = δ(s ∪ S). With such a
graph cut representation, any minimizer S∗ of f corresponds to a minimum cut in
G. In the sequel, we will assume without loss of generality that f is normalized,
and that it is shifted (if necessary) to correspond to the cut directly.

Proposition 7.1. Let S∗ be a minimizer of f , and let U∗ ∈ argminU⊆U w(δs(S∗ ∪
U)). Then the boundary δs(S∗ ∪ U∗) ⊆ E is a minimum cut in G.

Proof. Assume that the Proposition is not true and that there is a cut δs(T) around
T ⊆ V ∪U with w(δs(T)) < w(δs(S∗ ∪ U∗)). Let TV = T ∩ V . Then it holds that

f(TV) = minU⊆U w(δs(TV ∪ U)) ≤ w(δs(T)) < w(δs(S
∗ ∪ U∗)) = f(S∗), (7.4)

contradicting the optimality of S∗.

142

7.2. Representations for efficient minimization

Conversely, the proof also illustrates that any minimum cut δs(T ∗) in G leads to
a minimizer S∗ = T ∗ ∩ V of f .

The efficiency of minimum cut algorithms compared to general SFM raised the
question which submodular functions can be represented in the form (7.3). This
question has been studied not only in computer vision, but also in discrete opti-
mization and with respect to constraint satisfaction (we detail references below).
Several of these studies allow the set U to be exponentially larger than V if need
be, and rather address the general representability question. In practice, it is de-
sirable that |U| be at most linear or quadratic in |V|, and similarly |E|. An upper
bound on the number of auxiliary variables needed for representing a representable
function is the Dedekind number of the order of the function1 [Ramalingam et al.,
2011]. (This upper bound is still rather large, e.g., the Dedekind number of 5 is
M(5) = 7581.)

Recall that set functions can equivalently be written as pseudo-boolean func-
tions in terms of characteristic vectors. It is well-known that a pseudo-boolean
polynomial f(x) =

∑
i aixi +

∑
i,j aijxixj is submodular if all coefficients aij are

non-positive [Boros and Hammer, 2002]. This non-positivity is a necessary and
sufficient criterion for quadratic functions to be graph-representable [Hansen and
Simeone, 1979, Picard and Ratliff, 1975, Ivănescu (Hammer), 1965]. In fact, these
quadratic polynomials define exactly the functions that can be represented without
any auxiliary variables apart from s and t. Cunningham [1985b] proves this for an
equivalent criterion: for any three disjoint sets A,B,C ⊆ V , it must hold that

f(A ∪ B ∪ C)

= f(A ∪ B) + f(A ∪ C) + f(B ∪ C)− f(A)− f(B)− f(C) + f(∅). (7.5)

Higher-order functions can be reduced to quadratic polynomials (and thus poten-
tially also to graph cuts) by adding additional variables. A sufficient criterion for
graph-representability is that in the representation as a polynomial the coefficients
of all higher-order terms are non-positive [Freedman and Drineas, 2005]. In a sim-
ilar fashion, Fujishige and Patkar [2001] study the representability of submodular
functions as hypergraph cuts without additional nodes. In essence, both papers
(and also [Kolmogorov and Zabih, 2004]) use the Möbius inversion formula for set
functions:

f(S) =
∑

T⊆S

f (|T |)(T) (7.6)

f (|T |)(T) =
∑

Z⊆T

(−1)|S−T |f(Z). (7.7)

A nonnegative function can be represented by a hypergraph cut if f (i) ≤ 0 for all
i ≥ 2 [Fujishige and Patkar, 2001] (the condition that f(∅) = f(V) = 0 can be over-
ridden by introducing terminal nodes and asking for an (s, t)-cut). Equation (7.6)

1The Dedekind number M(k) is the number of monotone boolean functions of k variables.

143

Chapter 7. Representation and Approximate Minimization

shows that the Möbius inversion formula yields the coefficients of a corresponding
pseudo-boolean function. In the polynomial, all terms will be active whose vari-
ables denote elements of S, and each term will contribute its coefficient. Those
coefficients are exactly the f (|T |)(T) counted in the sum. The viewpoint of polyno-
mials was taken by Freedman and Drineas [2005].

However, the non-positivity of the f (i) (or higher order coefficients) is not a neces-
sary condition, and subsequent work addressed further representations [Z̆ivný and
Jeavons, 2010, Zalesky, 2003]. It is also known that cubic submodular polynomials
[Billionet and Minoux, 1985], and binary valued functions [Cohen et al., 2005] are
representable. Moreover, other types of representability have been studied [Rama-
lingam et al., 2008, Charpiat, 2011] that are not addressed here. Figure 7.2 shows
examples of submodular functions represented by graph cuts.

Finally, Z̆ivný et al. [2009] show that there exist submodular functions that are
not graph cut representable in the sense of Definition 7.1. For functions f over a
ground set of size four, they state necessary and sufficient conditions to be graph-
representable. Being graph-representable for f is equivalent to a particular function
being a “multi-morphism” of f , or to f being in the cone generated by the family
of functions called “fans”. Not all submodular functions over a ground set of size 4
satisfy these conditions.

7.2.2. Concave functions

Another family of submodular functions that lends itself to more efficient algo-
rithms is the one of concave functions applied after modular functions:

Definition 7.2 (Fconc). We denote by Fconc the class of all submodular functions
f : 2V → R that can be written as

f(S) =
k∑

j=1

ψj(wj(S)) (7.8)

for nonnegative modular functions wj and concave scalar functions ψj.

This class is what Stobbe and Krause [2010] term decomposable submodular func-
tions. A sub-class of Fconc are discounted price functions for which f(S) = ψ(w(S))
and ψ is concave and nondecreasing.

In addition to the work summarized below, an exact algorithm for integer-valued
functions was given in [Kolmogorov, 2012]. The constructions in [Kohli et al.,
2009b] apply to piecewise linear concave functions, but can require many additional
edges and nodes.

Optimization by parametric maximum flow

If the function f consists of only one concave function and a modular function
m, f(S) = ψ(w(S)) + m(S), then, under certain conditions, f can be efficiently

144

7.2. Representations for efficient minimization

Figure 7.1 Running time5 of MN, MC
and SLG with varying λ on a graph
with |V| = 300, |U| = 636, and with cut
function f(S) = −m(S) + λw(N (S)). !" !# 0 #

!#$%

!#

!&$%

0

&$%

#

'
(
)
*+,
-
.*
/01
2#
&*
3.
41
56
37 MC

MN
SLG

log10 λ

minimized over a distributive lattice via a parametric maximum flow [Fujishige and
Iwata, 1999]. The conditions are that either ψ is piecewise linear with a polynomial
number of breakpoints, or that w is such that w(S) only takes a polynomial number
of values on the lattice, e.g., w(i) = 1 for all i. In the latter case, one can replace
ψ by a piecewise linear function φ with φ(z) = ψ(z) for all values of z = w(S), by
linearly interpolating between the values z. This function φ has only a polynomial
number of breakpoints.

The function φ is the minimum of a set of linear functions φk that each lead
to a modular set function φk(w(·)). When replacing φ by any φk, the resulting
function can be minimized as a graph cut. Fujishige and Iwata [1999] find the
minimizer Sk for each of those functions, and from those select the overall minimizer,
knowing that S∗ = mink φk(Sk). The minimization for all the linear functions φk

simultaneously can be computed as a parametric maximum flow.

Optimization by accelerated subgradient descent

Instead of representing f as the minimum of concave functions, Stobbe and
Krause [2010] decompose concave functions as a sum of truncations of the form
g(S) = min{

∑
v∈S w(v), γ}. They show how such functions can be minimized by

an accelerated gradient descent [Nesterov, 2004] minimizing the smoothed Lovász
extension. This algorithm (termed SLG by its authors) has the benefit that it
applies to any function in Fconc.

However, experiments show that this algorithm too may not always be fast.
Figure 7.1 compares the running time of SLG2 to those of the minimum norm point
algorithm (MN) and minimum cut3 on a function induced by a bipartite graph.
The reason for the extended running times is the computation of the gradient that
requires finding gradients of |U| truncation functions.

2implementation in C++ by Hui Lin
3code by V. Kolmogorov [Boykov and Kolmogorov, 2004].
5This experiment was performed by Hui Lin.

145

Chapter 7. Representation and Approximate Minimization

Are all submodular functions in Fconc?

As it is known that not all submodular functions can be represented as graph
cuts, and as there appears to be a decomposition into efficiently optimizable base
functions, the question arises whether all submodular functions can be represented
by functions in Fconc. The answer to this question is unfortunately negative:

Theorem 7.1. The class Fconc of concave concatenated with modular functions is
a strict subset of the class of all submodular functions.

To show this result, we need another lemma.

Lemma 7.1. Every submodular function that is a concatenation f(S) = ψ(w(S))
of a nondecreasing nonnegative modular function and a concave scalar function ψ
can be represented as a graph cut (up to a constant).

Before proving the lemma, we observe that it is sufficient to consider nondecreas-
ing concave functions:

Proposition 7.2. Every continuous concave function ψ : [0, θ] → R can be decom-
posed into a non-increasing linear function c and a nondecreasing concave func-
tion φ.

Proposition 7.2 a continuous analogue to Theorem 18 in [Cunningham, 1983].

Proof (Proposition 7.2). If ψ is nondecreasing, we set c ≡ 0 and are done. Oth-
erwise, we define a linear function c(x) = γx with γ <ψ (x) − ψ(y) < 0 for all
x ≤ y ∈ [0, θ]. (If ψ is differentiable at θ, we can use γ = ψ′(θ) < 0). Then

ψ(x) = c(x) + (ψ − c)(x); (7.9)

this implies that φ(x) = (ψ − c)(x). Owing to the definition of c, the function φ
is nondecreasing: it holds that φ(x + h) − φ(x) = ψ(x + h) − ψ(x) − c(h) ≥ 0 for
any x ∈ [0, θ], and 0 ≤ h ≤ θ − x. As φ is the difference between a concave and a
linear function, it is also concave.

Proof (Lemma 7.1). To prove Lemma 7.1, we construct a graph with terminal
nodes s, t, and one node vi for each element i in the ground set. We first use
Proposition 7.2 to decompose f into a negative modular part, m(S) = c(w(S)),
and a nondecreasing part φ(w(S)). Without loss of generality, we can assume the
submodular function f to be normalized. We represent the modular part (up to
a constant, as will be described in Section 7.3.1) by introducing edges (s, vi) with
weight −c(w(i)).

We observe that the only critical points of φ are those where it is actually
evaluated; those are all the values that w(S) can take on 2V , at most 2n many.
Therefore we replace φ with a piecewise linear function ϕ that has a break-point
at each value that w(S) takes; and ϕ(z) = φ(z) at each such break-point z.

146

7.2. Representations for efficient minimization

(This function is merely the linear interpolation between the points (z,φ (z)).)
Note that φ(w(S)) = ϕ(w(S)) for all S ⊆ V . We number the breakpoints
0 = z0 < z1 < . . . < z&, and define the slopes mj = φ(zj)−φ(zj−1)

zj−zj−1
. Then ϕ can

equivalently be written as

φ(x) =
∑

j,zj<x

mj(zj − zj−1) +mj(x)(x− zj(x)−1), (7.10)

where j(x) is such that x ∈ (zj(x)−1, zj(x)]. Using Equation (7.10), we re-write ϕ as
a sum of truncations. Beginning with c& = m&, we define constants

ck = mk −
&∑

j=k+1

cj ≥ 0. (7.11)

Then we can write
&∑

k=1

ck min{x, zk} =
∑

j′<j(x)

cj′zj′ +
∑

j′≥j(x)

cj′x (7.12)

=
∑

j′<j(x)

(zj′ − zj′−1)
&∑

i=j′

ci +
∑

j′≥j(x)

cj′(x− zj(x)−1) (7.13)

=
∑

j′<j(x)

(zj′ − zj′−1)mj′ +mj(x)(x− zj(x)−1) (7.14)

= ϕ(x). (7.15)

We represent each function ck min{w(S), zk} by introducing an auxiliary node tk
and an edge (tk, t) with weight ckzk (as in Figure 7.2(c)). Moreover, we add edges
(vi, tk) with weight w(i)ck. Selecting S means to disconnect the corresponding
nodes from t, that means, on each truncation, we either cut the edges to tk with
weight ckw(S), or the edge (tk, t) with weight ckzk.

With this lemma and known results on representation capacities of graph cuts,
the theorem follows straightforwardly.

Proof (Theorem 7.1). By Lemma 7.1, all of the functions in Fconc can be repre-
sented as (potentially exponentially large) graph cuts. If all submodular functions
were in Fconc, then any submodular function would be graph-representable, and
this contradicts the results by Z̆ivný et al. [2009] that some submodular functions
cannot be represented by graphs as defined in Equation (7.3).

Remark: Jan Vondrák has proved the same result as Theorem 7.1 by directly
constructing a non-representable counterexample [Vondrák, 2010]. After proving
Theorem 7.1, we found that Shapley [1971] also discusses this question for nonde-
creasing supermodular functions.

147

Chapter 7. Representation and Approximate Minimization

7.3. Representing submodular functions by cooperative
cuts

The preceding sections indicate a gap in the optimization landscape for submodular
functions. There exist sub-classes that can be minimized more efficiently, but these
sub-classes are restricted. Thus, for certain functions, one still needs to revert to
the general, computationally expensive algorithms for SFM. Furthermore, even the
supposedly fast minimum norm point algorithm is not always practically applicable.

Motivated by this gap and the need for scalable algorithms, we extend the
graph representation (7.3) to comprise all submodular functions. This extension is
achieved by allowing submodular weights on some edges. The resulting cooperative
cut problem is of course not NP-hard, but the new representation suits other al-
gorithms, in particular the algorithms for MinCoopCut. These algorithms solve
the problem approximately but potentially faster than generic exact algorithms for
SFM. For the approximations, we additionally try to ensure that the number of
auxiliary nodes does not grow too large.

The minimum norm point algorithm too allows to trade accuracy for speed. It
can be accelerated by loosening its accuracy parameter. Unfortunately, this can
sometimes result in very poor solutions, as shown by the experiments in Section 7.5.
Hence, in the sequel we investigate whether using an approximation right from the
beginning can offer a better tradeoff between accuracy and speed.

7.3.1. Basic construction

Unless the submodular function f is already a graph cut function and directly
representable, we first decompose f into a modular function and a nondecreasing
submodular function, and then build up the graph part by part. A sum of graph-
representable functions can be expressed by joining the respective representing
sub-graphs into one large graph.

We first introduce a relevant decomposition result by Cunningham [1983]. A
polymatroid rank function is totally normalized if f(V \ i) = f(V) for all i ∈ V .

Theorem 7.2 ([Cunningham, 1983, Thm. 18]). Any submodular function f can
be decomposed as f(S) = m(S) + g(S) into a modular function m and a totally
normalized polymatroid rank function g. The components are defined as m(S) =∑

v∈S ρf (v|V \ v) and g(S) = f(S)−m(S) for all S ⊆ V.

For unconstrained minimization, we may assume that m(v) < 0 for all v ∈ V .
For if m(v) ≥ 0 for any v ∈ V , then the property of diminishing marginal costs
implies that we can discard element v immediately. By diminishing marginal costs,
it holds that f(S)− f(S \ v) ≥ f(V)− f(V \ v) = m(v) for all S containing v. If
m(v) > 0, then f(S) ≥ m(v) + f(S \ v), and excluding v from S never increases
the value of an SFM solution.

148

7.3. Submodular functions as cooperative cuts

To express the negative costs m in a graph cut, we point out an equivalent
formulation with positive weights: since m(V) is constant, minimizing m(S) =∑

v∈S m(v) is equivalent to minimizing the shifted function m(S)−m(V) = −m(V\
S). Thus, we instead minimize the sum of positive weights on the complement of
the solution. We implement this shifted function in the graph by adding an edge
(s, v) with nonnegative weight −m(v) for each v ∈ V . Every element vj ∈ Xt

(i.e., vj /∈ S) that is not selected must be separated from s, and the edge (s, vj)
contributes −m(vj) to the total cut cost. If f is modular, then f = m and the
optimal solution is the empty cut separating t from V , i.e., the set of all elements
with negative weights as shown in Figure 7.2(a).

Example constructions

Having constructed the modular part of the function f by edges (s, v) for all v ∈ V ,
we address its submodular part g. If g is a sum of functions, we can add a sub-graph
for each function. We begin with some example functions that are explicitly graph-
representable with polynomially many auxiliary nodes U . Figure 7.2 illustrates the
construction of some such example graphs; it includes the modular part m as well.
Graph-representable functions include the following examples.

Maximum. The maximum function g(S) = maxv∈S w(v) charges the maximum
weight of any element in S, for nonnegative weights w. To represent it, we introduce
n− 1 auxiliary nodes uj and connect them to form an imbalanced tree with leaves
V , as illustrated in Figure 7.2(b). The minimum-cost way to disconnect a set S
from t is to cut the single edge (uj−1, uj) with weight w(vj) of the largest element
vj = argmaxv∈S w(v).

Truncations. Truncated functions f(S) = min{w(S), γ} for w,γ ≥ 0 can be
modeled by one extra variable, as shown in Figure 7.2(c). If w(S) > γ, then the min-
imization in the equivalence (7.3) puts u in Xs and cuts the γ-edge. This construc-
tion has been used successfully in computer vision [Kohli et al., 2009b]. Truncations
can model piecewise linear concave functions of w(S) [Kohli et al., 2009b, Stobbe
and Krause, 2010], and also represent negative terms in a pseudo-boolean polyno-
mial6. Furthermore, these functions include rank functions g(S) = min{|S|, k} of
uniform matroids, and rank functions of partition matroids (Fig. 7.2(d)).

Bipartite neighborhoods. We already encountered bipartite submodular func-
tions f(S) =

∑
u∈N (S) w(u) in Section 7.1.1. The bipartite graph that defines N (S)

is part of the representation shown in Figure 7.2(i), and its edges get infinite weight.
As a result, if S ∈ Xs, then all neighbors N (S) of S must also be in Xs, and the
edges (u, t) for all u ∈ N (S) are cut. Each u ∈ U has such an edge (u, t), and the
weight of that edge is the weight w(u) of u.

Dual rank functions. A matroid with rank function r : 2V → R+ has a dual
matroid with rank function r∗(S) = |S|+r(V\S)−r(V) [Schrijver, 2004]. If we can

6To represent the term −c
∏

vi∈Q xi for Q ⊆ V, introduce edges (s, vi) with weight c > 0 for all
vi ∈ Q, and an auxiliary node t′ with edges (vi, t′) weighted c, and (t′, t) weighted γ = |Q|c−c.

149

Chapter 7. Representation and Approximate Minimization

s t

-m
(1)

-m
(n)

V

(a) f = m

s t

-m
(1)

-m
(n)

w(1)

w(2)

w(n)

w(2)

w(n
)

w(3)

V

(b) maximum

s t

-m
(1)

-m
(n)

w(1)

w(
n)

γ

V

(c) truncation

s t

-m
(1)

-m
(n)

V U

1

1

1

1

1

(d) partition matroid

s t
-m
(1)

-m
(n)

V ∞

∞

∞

∞

(e) bipartite & truncation

s t

V
1

1

1

1

1

γ1

γ2

-m
(1)

(f) dual partition matroid

s t

V
1
1

1

1

1

-m
(1)

1
12

(g) graphic matroid via its
dual

s t

-m
(1)

-m
(n)

V

(h) basic submodular construc-
tion

s t

-m
(1)

-m
(n)

V ∞

∞

∞

∞

(i) bipartite

Figure 7.2. Example graph constructions. Dashed edges ending in t can have sub-
modular weights; auxiliary nodes are white. The bipartite graph can have arbitrary
representations between U and t, 7.2(e) is one example. The duals 7.2(f), 7.2(g) can also
have edges (s, v) with weight −m(v) that are not all shown.

represent r, then we can represent r∗ too. Figure 7.2(f) shows the construction for
the dual of a partition matroid, and Proposition 7.3 formalizes the construction.

Proposition 7.3. Let G be a graph that represents the rank r of a matroid. Con-
struct a graph G∗ that has the same nodes as G and that, for each edge (vi, vj) in
G with vi, vj ∈ (V ∪U) \ {s, t}, has an inverted edge (vj, vi). Furthermore, for
each edge (s, v) in G, there is an edge (v, t) in G∗, and for each edge (v, t) in G,
there is an edge (s, v) in G∗. Then we add an edge (vj, t) to G∗ with w(vj, t) = 1
for each vj ∈ V. The resulting graph G∗ represents the rank of the dual matroid:
minU⊆U w(δ(s ∪ S ∪ U)) = r∗(S) + const for all S ⊆ V.

Proof. First, one can check that G∗ without the added weights (vj, t) represents
the function r′(S) = r(V \ S). With those added edges, a cut contains an edge
(vj, t) for each element j ∈ S; these edges contribute |S| to the cost. In sum, it
then holds that minU⊆U w(δ(s∪S ∪U)) = |S|+ r(V \S) = r∗(S) + r(V), and r(V)
is constant.

150

7.3. Submodular functions as cooperative cuts

Sometimes the representation via the dual matroid can be simpler than a direct
representation. Figure 7.2(g) shows the representation of a graphic matroid as the
dual of its dual. Here, the rank r(S) is the size of the largest subset of S that does
not contain a cycle in the defining graph; the elements are edges in that defining
graph. For the dual, r∗(S) = |S| if |S| ≤ 2 and S -= {1, 4}, {2, 3}. For any other
set, r∗(S) = 2. We represent r∗ via two truncations and place it between s and V .
It can be checked that the resulting graph represents r. However, not all graphic
matroids might be representable in this fashion.

All the above constructions can also be applied to subsets Q ⊂ V of nodes. In fact,
the decomposition and constructions above permit us to address arbitrary sums
and restrictions of the represented functions. These example families of functions
shown here already cover a wide variety of functions occurring in applications.

7.3.2. Submodular edge weights

Next we address the generic case of a submodular function that is not (efficiently)
graph-representable or whose functional form is unknown. We can still decompose
this function into a modular part m and a polymatroid g. Then we construct a
simple graph as shown in Figure 7.2(h). The representation of m via edges (s, v)
is the same as above, but the polymatroid rank function g will be represented by
edges with non-additive weights. Each edge (v, t) is associated with exactly one
ground set element v ∈ V , and selecting v (i.e., assigning v to Xs) is equivalent
to cutting the edge (v, t). Thus, the cost of edge (v, t) will model the cost g(v)
of its element v ∈ V . Let Et be the set of edges (v, t) (i.e., edges adjacent to t),
and denote, for any subset C ⊆ Et the set of ground set elements adjacent to C
by V (C) = {v ∈ V | (v, t) ∈ C}. Equivalently, C is the boundary of V (C) in Et:
δs(V (C)) ∩ Et = C. We define the cost of C to be the cost of its adjacent ground
set elements, hg(C) ! g(V (C)); this implies hg(δs(S)∩ Et) = g(S). The equivalent
of Equation (7.3) becomes

f(S) = min
U⊆U

w(δs(S ∪ U) \ Et) + hg(δs(S ∪ U) ∩ Et) = −m(V \ S) + g(S), (7.16)

with U = ∅ in Figure 7.2(h). This generalization from the standard sum of edge
weights to a nondecreasing submodular function permits us to express many more
functions, in fact any submodular function.

The simple construction in Figure 7.2(h) itself corresponds to a general submod-
ular function minimization. It becomes powerful when combined with parts of f
that are explicitly representable. If g decomposes into a sum of graph-representable
functions and a (nondecreasing submodular) remainder gr, then we construct a
sub-graph for each graph-representable function, and combine these sub-graphs
with the submodular-edge construction for gr. All the sub-graphs share the same
ground set nodes V . In addition, we are in no way restricted to separating graph-
representable and general submodular functions. The cost function in our applica-
tion is a submodular function induced by a bipartite graph H = (V ,U , E). Let, as

151

Chapter 7. Representation and Approximate Minimization

before, N (S) be the neighborhood of S ⊆ V in U . Given a nondecreasing submodu-
lar function gU : 2U → R+ on U , the graph H defines a function g(S) = gU(N (S)).

For any such function, we represent H explicitly in G, and then add submodular-
cost edges from U to t with hg(δs(N (S))) = gU(N (S)), as shown in Figure 7.2(i).
If gU is itself exactly representable, then we add the appropriate sub-graph instead
(Figure 7.2(e)).

7.4. Approximate optimization

The graph representation helps minimize a given submodular function f as a co-
operative cut. Any of the approximation algorithms from Chapter 4 applies; we
henceforth build on the efficient iterative algorithm ITB. This algorithm is exact
if the edge costs are modular (instead of submodular), that is, if the function f is
efficiently graph-representable.

The algorithm we will describe approximates f in each iteration by a submodular
function f̂ that is efficiently graph-representable, and minimizes f̂ instead. In this
section, we switch from costs f, f̂ of node sets S, T to costs w, h of edge sets A, B,
C and back.

The approximation f̂ arises from the cut representation constructed in Sec-
tion 7.3.2. Recall that the representing graph G has two types of edges: those
whose weights w are counted as the usual sum, and those charged via a submodu-
lar function hg derived from g. We denote the latter set by Et, and the former by
Em. Following the idea of the iterative, adjusting upper bounds, we approximate
the edge weights in G by modular weights ν. For any e ∈ Em, we use the exact cost
ν(e) = w(e). The submodular cost hg of the remaining edges is upper bounded by
referring to a fixed set B ⊆ E that we specify later. For any A ⊆ Et, we define

ĥB(A) ! hg(B) +
∑

e∈A\B

ρh(e|B ∩ Et)−
∑

e∈B\A

ρh(e|Et \ e) ≥ hg(A). (7.17)

This inequality holds thanks to diminishing marginal costs, and the approximation
is tight at B, i.e., ĥB(B) = hg(B). The proof of Lemma 4.5 shows that, up to a
constant shift, this function is equivalent to the edge weights

νB(e) = ρh(e|B ∩ Et) if e ∈ Et \B; and νB(e) = ρh(e|Et \ e) if e ∈ B ∩ Et.
(7.18)

Replacing the edge weights w and hg by νB in the representation equivalence (7.16)
yields an approximation f̂ of f . In Algorithm 6, B is always the boundary B =
δs(T) of a set of nodes T ⊆ (V∪U). Then G with weights νB represents the function

f̂(S) = min
U⊆U

νB(δs(S ∪ U) ∩ Em) + νB(δs(S ∪ U) ∩ Et) (7.19)

= min
U⊆U

w(δs(S ∪ U) ∩ Em) +
∑

(u,t)∈δs(S∪U)∩B

ρg(u|V ∪ U \ u) (7.20)

152

7.4. Approximate optimization

Algorithm 6 Minimizing graph-based approximations.
construct the representation graph G = (V ∪ U ∪{ s, t}, E)
set S0 = T0 = ∅
for i = 1, 2, . . . do

compute edge weights νi−1 = νδs(Ti−1) (Equation 7.18)
find the (maximal) minimum (s, t)-cut Ti = argminT ⊆ (V∪U) νi−1(δsT)
if f(Ti) = f(Ti−1) then

return Si = Ti ∩ V
end if

end for

+
∑

(u,t)∈δs(S∪U)\B

ρg(u|T). (7.21)

Here, we used the definition hg(C) ! g(V (C)). Importantly, the edge weights νB
are always nonnegative, because, by Theorem 7.2, g is guaranteed to be nondecreas-
ing. Hence, we can efficiently minimize f̂ as a standard minimum cut. Lemma 7.2
states properties of the Ti.

Lemma 7.2. Assume G is any of the graphs in Figure 7.2, and let T ∗ ⊆ V ∪U be
the maximal set defining a minimum-cost cut δs(T ∗) in G, so that S∗ = T ∗∩V is a
minimizer of the function represented by G. Then, in any iteration i of Algorithm 6,
it holds that Ti−1 ⊆ Ti ⊆ T ∗. In particular, S ⊆ S∗ for the returned solution S.

Lemma 7.2 has three important implications. First, the algorithm never picks
any element outside the maximal optimal solution. Second, because the Ti are
growing, there are at most |T ∗| ≤ |V ∪ U| iterations, and the algorithm is strongly
polynomial. Finally, the chain property Ti−1 ⊆ Ti permits more efficient implemen-
tations. The proof of Lemma 7.2 relies on the definition of ν and on submodularity.

Proof. We prove the result for the case of a bipartite graph in Figure 7.2(i) with
node sets V ,U , and cost f(A) = m(A) + g(N (A)) for A ⊆ V . The proof carries
over to the other submodular-weight graphs by identifying V with the right hand
side of the bipartite graph. For a graph with completely modular edge weights,
f̂ = f , and T1 is an optimal solution.

Let Ti ⊆ V ∪U be the selected nodes at iteration i, i.e., the nodes reachable
from s in the min-cut. We first observe that the Ti form a chain, i.e., Ti ⊆ Ti+1 for
all i. The reason lies in the adaptive edge weights. Let νi−1 be the weights based
on Ti−1 by which Ti was chosen. Assume there was a nonempty set Q = Ti \ Ti+1,
with QV = Q ∩ V , QU = Q ∩ U . Let δ+Q be the outgoing edges from Q to t that

153

Chapter 7. Representation and Approximate Minimization

are cut if Q is selected, and let δ−Q be the incoming edges from s to Q that are
cut if Q is not selected. Since Q is a subset of the optimal Ti, it must hold that

0 ≥ νi−1(δsTi)− νi−1(δs(Ti \Q)) (7.22)
= νi−1(δ

+Ti) + νi−1(δ
−(V \ Ti))− (νi−1(δ

+(Ti \QU)))

− νi−1(δ
−(V \ (Ti \QV)))

= νi−1(δ
+QU)− νi−1(δ

−QV). (7.23)
In the next iteration i+1, the weight for any (u, t) ∈ δ+QU cannot increase, because
νi(u, t) = g(U) − g(U \ u) ≤ νi−1(u, t) by the property of diminishing marginal
costs. Together with Inequality (7.23), this implies that νi(δ+QU) ≤ νi−1(δ+QU) ≤
νi−1(δ−QV) = −m(QV) = νi(δ−QV). Thus, cutting δ+QU instead of δ−QV and
including Q in Ti+1 can never increase the cost: as in Equations (7.22) to (7.23),
it holds that

νi−1(δs(Ti+1 ∪Q))− νi−1(δsTi+1) = νi(δ
+QU)− νi(δ

−QV) ≤ 0. (7.24)
This contradicts the maximality and optimality of Ti+1, thus, Q must be empty
and therefore Ti ⊆ Ti+1.

Next, we will see that all the Ti are subsets of T ∗. Initially, the solution is T0 = ∅,
so clearly T0 ⊆ T ∗. Assume that i is the first iteration where Ti \ T ∗ -= ∅, and let
Q = Ti \ T ∗. As before, we define QU = Q ∩ U and QV = Q ∩ V . We will show
that g(QU ∪ T ∗

U)−m(V \ (QV ∪ T ∗
V)) ≤ g(T ∗

U)−m(V \ T ∗
V), and then T ∗ cannot be

the maximal optimal solution, a contradiction. By diminishing marginal costs, it
holds that

f(S∗ ∪QV)− f(S∗) = g(QU ∪ T ∗
U)−m(V \ (QV ∪ T ∗

V))− g(T ∗
U) +m(V \ T ∗

V)

= ρg(QU |T ∗
U) +m(Q) (7.25)

≤ ρg(QU |Ti−1 ∩ U) +m(Q), (7.26)
since Ti−1 ⊆ T ∗ by assumption, and thus Q∩Ti−1 = ∅. Note that ρg(QU |Ti−1∩U) ≤∑

u∈QU
ρg(u|Ti−1 ∩ U): numbering the elements in uk ∈ QU arbitrarily shows that

ρg(QU |Ti−1 ∩ U) =
∑

k

ρg(uk|(Ti−1 ∩ U) ∪ u1 ∪ . . . ∪ uk−1) ≤
∑

k

ρg(uk|Ti−1 ∩ U)

by diminishing marginal costs. Thus, by the definition of νi−1,
g(QU ∪ T ∗

U)−m(V \ (QV ∪ T ∗
V)− g(T ∗

U) +m(V \ (T ∗
V)) (7.27)

≤
∑

u∈QU

ρg(u|Ti−1 ∩ U) +m(Q) (7.28)

=
∑

e∈δ+QU\δ+Ti−1

ρh(e|δ+Ti−1) +m(QV) (7.29)

= νi−1(δ
+QU)− νi−1(δ

−QV) (7.30)
= νi−1(δsTi)− νi−1(δs(Ti \Q)) (7.31)
≤ 0. (7.32)

154

7.4. Approximate optimization

The last part follows like Equations (7.22) to (7.23) and the optimality of Ti. Hence,
including Q in T ∗ would be optimal, and contradicts the maximality of T ∗. Thus,
Q must be empty. Finally, if Ti ⊆ T ∗, then Si = (Ti ∩ V) ⊆ (T ∗ ∩ V) = S∗.

Moreover, Lemma 4.6 holds here as well and implies an approximation bound7:

Corollary 7.1. Let S∗ ⊆ V, and T ∗ ⊆ V ∪U be defined as in Lemma 7.2. For the
solution S returned by Algorithm 6, it holds that

f(S) ≤ |δsT ∗|
1 + (|δsT ∗|− 1)β(T ∗)

f(S∗) ≤ |δsT ∗|f(S∗), (7.33)

where β(T ∗) = minu∈T ∗ ρg(u|U \ u)/maxu∈T ∗ g(u).

7.4.1. Improvement via summarizations

The approximation f̂ is loosest if the sum of edge weights νi(A) significantly over-
estimates the true joint cost hg(A) of sets of edges A ⊆ δsT ∗ \ δsTi that are still to
be cut. This happens if the joint marginal cost ρh(A|δsTi) is much smaller than the
estimated sum of weights νi(A) =

∑
e∈A ρh(e|δsTi). Luckily, many of the functions

we are interested in that show this behavior strongly resemble truncations. Thus,
to tighten the approximation, we summarize the joint cost of groups of edges by
a construction similar to Figure 7.2(c). Then the algorithm can take larger steps
and pick groups of elements.

We partition the set Et of submodular-weight edges into disjoint groups Gk of
edges (u, t). For each group, we introduce an auxiliary node tk and re-connect all
edges (u, t) ∈ Gk to end in tk instead of t. Their cost remains the same. An extra
edge ek connects tk to t, and carries the joint weight νi(ek) of all edges in Gk. This
is a tighter approximation than using marginal costs of single edges. Like the pre-
viously described weights νi(e), the weight νi(ek) is also adapted in each iteration.
Initially, we set ν0(ek) = hg(Gk) = g(V (Gk)). Subsequent approximations νi refer
to cuts δsTi, and such a cut can contain either single edges from Gk or the group
edge ek. We set the next reference set Bi to be a copy of δsTi in which each group
edge ek was replaced by all its group members Gk. The joint group weight νi(ek)
for any k is then νi(ek) = ρh(Gk \ Bi|Bi) +

∑
e∈Gk∩Bi

ρh(e|Et \ e) ≤
∑

e∈Gk
νi(e).

Formally, these weights represent the tighter upper bound

hg(A) ≤

hg(B) +
∑

Gk⊆A

ρh(Gk \B|B) +
∑

e∈(Gk∩A)\B,
Gk *⊆A

ρh(e|B)−
∑

e∈B\A

ρh(e|Et \ e) ≤ ĥB(A),

7The approximation bound holds as stated in Corollary 7.1 if f is equivalent to the graph cuts
without any constant shift.

155

Chapter 7. Representation and Approximate Minimization

where we replace Gk by ek whenever Gk ⊆ A. In the experiments in Section 7.5,
this summarization helps improve the results while simultaneously reducing the
running time.

7.4.2. Parametric constructions for special cases

For certain functions of the form f(S) = m(S) + g(N (S)), the graph represen-
tation in Figure 7.2(i) admits a specific exact algorithm. This algorithm uses
approximations that are exact on limited ranges, and eventually picks the best
range. A sufficient condition for the method to apply is that g has the form
g(U) = ψ(

∑
u∈U w̃(u)) for weights w̃ ≥ 0 and one piecewise linear, concave func-

tion ψ with a small (polynomial) number . of breakpoints. Alternatively, ψ can be
any concave function if the weights w̃ are such that w̃(U) =

∑
u∈U w̃(u) can take

at most polynomially many distinct values xk. For example, if w̃(u) = 1 for all u,
then ψ gets evaluated at only |U| + 1 points, and we can construct an equivalent
piecewise linear concave function with . = |U| + 1 by using the xk as breakpoints
and interpolating. In all these cases, ψ is equivalent to the minimum of at most .
linear (modular) functions.

We build on the approach in [Fujishige and Iwata, 1999], but, whereas their
functions are defined on the ground set V , the function g here is defined on the
right hand side U of a bipartite graph. Contrary to their functions and owing to our
decomposition, the function ψ here is nondecreasing. We define . linear functions,
one for each break-point xk (and use x0 = 0):

ψk(t) = (ψ(xk)− ψ(xk−1))(t− xk) + ψ(xk) = αkt+ βk. (7.34)

The ψk are defined such that ψ(t) = mink ψk(t). Therefore, we approximate f
by a series f̂k(S) = −m(V \ S) + ψk(w̃(N (S))), and find the exact minimizer Sk

for each k. To compute Sk via a minimum cut in G (Fig. 7.2(i)), we define edge
weights νk(e) = w(e) for edges e /∈ Et as in Section 7.4, and νk(u, t) = αkw̃(u) for
e ∈ Et. Then Tk = Sk ∪ N (Sk) defines a minimum cut δsTk in G with respect to
weights νk. We compute the full cost f̂k(Sk) = νk(δsTk) + βk +m(V) for each Sk;
the optimal solution is the Sk with minimum cost f̂k(Sk). This method is exact.
To solve for all k within one maximum flow, we use a parametric max-flow method
[Gallo et al., 1989, Hochbaum, 2008]. Parametric max-flow usually works with
edges both from s and to t. Here, the changing weights νk are nonnegative because
ψ is nondecreasing, and therefore we only need t-edges which already exist in the
bipartite graph G.

This method is limited to few breakpoints. For more general concave ψ and
arbitrary w̃ ≥ 0, we can approximate ψ by a piecewise linear function. Still, the
parametric approach does not directly generalize to more than one nonlinearity,
e.g., to g(U) =

∑
i gi(U ∩Wi) for sets Wi ⊆ U . In contrast, Algorithm 6 (with the

summarization) can approximate all of these cases.

156

7.5. Experiments

Figure 7.3 Comparison of our implementation
for the minimum norm point algorithm with
that by S. Fujishige on graph cut functions (ex-
periment run and implemented by Hui Lin).
The graphs were generated by GENRMF, and
problem size refers to the number of nodes. The
tolerance was set to 10−10. 9 9.5 10 10.5 11 11.5

2

4

6

8

10

12

log n

lo
g

2
 t
im

e
 (

s)

MN

MN Fujishige

O(n4)

O(n3)

We point out that without indirection via the bipartite graph, that means if
f(S) = m(S) + ψ(w(S)) for a function ψ with few breakpoints, we can minimize
f very simply: The solution for ψk includes all j ∈ V with αk ≤ −m(j)/w(j). The
advantage of the graph cut is that it easily combines with other objectives.

7.5. Experiments

Having derived algorithms for approximately minimizing submodular functions as
cooperative cuts, we empirically compare those algorithms to generic exact methods
such as the minimum norm point algorithm. We compare the following methods:
MN: a re-implementation of the minimum norm point algorithm in C++ that is
about four times faster than the C code used in [Fujishige and Isotani, 2011], Fig-
ure 7.3 compares both implementations and shows that our results are not caused
by a slow implementation;
MC: a minimum cut with static edge weights ν(e) = hg(e);
GI: the graph-based iterative Algorithm 6, implemented in C++ with the max-
flow code by Boykov and Kolmogorov [2004], (i) by itself; (ii) with summarization
via

√
|Et| random groups (GIr); (iii) with summarization via groups generated by

sorting the edges in Et by their weights hg(e), and then forming groups Gk of edges
adjacent in the order such that for each e ∈ Gk, hg(e) ≤ 1.1hg(Gk) (GIs);
GP: the parametric method from Section 7.4.2, using |Et| equispaced breakpoints;
based on C code from RIOT8.

As the SLG method was expensive on the type of functions used here (Figure 7.1),
it is excluded from the experiments in the sequel.

Solution quality with solution size

The running time and accuracy depend on the size of the optimal solution S∗.
Therefore we test problem instances with varying solution sizes. We use an example
from the the corpus subset extraction problem described in Section 7.1.1 with a
speech data set [Godfrey et al., 1992]. The cost function is based on a bipartite

8http://riot.ieor.berkeley.edu/riot/Applications/Pseudoflow/parametric.html

157

Chapter 7. Representation and Approximate Minimization

!""" #""" $""" %"""

&"&

&"!

&"'

!

()
*+
,-.

/+
01
2

+

+

(a)

!"" #""" #!"" $"""
"

$

%

&

'(
)*(
''+
'

!

*

*

!"#$%&'
,-
./
./'
./0
.1

(b)

!""" #""" $"""
"

%"""

!"""

#"""

$"""

&'
()
*+
+,
+

!

)

)

(c)

!""" #""" $""" %"""
"

&

!

'

#

(

)*&"#

!

+,
-.
/0,
1*
+0
23

*

*

!"#$%&'
45
67
678
67+
69

(d)

!""" #""" $""" %"""
"

&""

'"""

'&""

!"""

!

()
*+
,-)
./
(-
01

/

/

(e)

Figure 7.4. (a) Running time, (b) relative and (c) absolute error and (d) solution sizes
with varying λ for a data set as described in Section 7.1.1, |V| = 54915, |U| = 6871, and
f(S) = −m(S) + λ

√
|N (S)|. Where f(S∗) = 0, we show absolute errors. (e) is a zoom

into (d) that shows that the minimum norm point algorithm returns solutions of size 500
and more where all other methods find the optimal (empty) set.

graph and has the form f(S) = −m(S) + λ
√

w(N (S)). The bipartite graph has
|V| = 54915 and |U| = 6871 nodes, and uniform weights w(u) = 1 for all u ∈ U .
The results look similar with non-uniform weights, but for uniform weights the
parametric method from Section 7.4.2 always finds the optimal solution and thus
enables us to report errors. The size of the optimal solution depends on the tradeoff
parameter λ. We vary λ from 50 (S∗ ≈ V) to 9600 (S∗ = ∅). Figure 7.4 shows

158

7.5. Experiments

!"#
!"!"

!""

!""

!"$

%&'
()
*+
,

-./)0

)

)

#$%&'!&(
12
34
345
34+
36tim

e
(s

)

log n

(a) Bipartite graph

!"# !"$

!""

!"!

%

&'(
)

*

*

+*,-./01
+""*,-./01
+""""*,-./01

(b) Iwata’s test function

Figure 7.5. Running times with respect to |V|. (a) Running times for f(S) = −m(S)+

λ
√
w(N (S)). Apart from MC, all solution qualities are similar. (b) Groups in Satoru

Iwata’s test function. The solid lines are the running times of the minimum norm point
algorithm, the dashed lines of Algorithm 6 (GI). The steepness of the graphs across these
two figures is not comparable, as the scale of the x axis is different.

the running times and the relative error err(S) = |f(S)−f(S∗)|/|f(S∗)| (note that
f(S∗) ≤ 0). If f(S∗) = 0, we report absolute errors. The running times were
recorded on a machine with CPU 3.8GHz. Because of the large graph, we used the
minimum-norm algorithm with accuracy 10−5. Still, it takes up to 100 times longer
than the other methods. It works well if S∗ is large, but as λ grows, its accuracy
becomes poor. In particular when f(S∗) = f(∅) = 0, it returns large sets with
large positive cost. In contrast, the deviation of the approximate edge weights
νi from the true cost is bounded. All algorithms except MN return an optimal
solution for λ ≥ 2000. Updating the weights ν clearly improves the performance of
Algorithm 6, as does the summarization (GIr/GIs perform identically here). With
the latter, the solutions are very often optimal, and almost always very good.

Scaling

To test how the methods scale with the size |V| of the ground set, we sample small
graphs from the big speech corpus graph, and report average running times across
20 graphs for each size. As the graphs have non-uniform weights, we use GP as an
approximation method and estimate the nonlinearity

√
w(U) by a piecewise linear

function with |U| breakpoints. All algorithms find the same (optimal) solution.
Figure 7.5 shows that the minimum-norm algorithm with high accuracy is much
slower than the other methods. Empirically, MN scales as up to O(n4) or O(n5),
the parametric version approximately as O(n2), and the variants of GI as up to
O(n1.5). Figure 1.3 in the introduction shows results on a larger range for a very
similar data set.

159

Chapter 7. Representation and Approximate Minimization

Groups of Iwata’s test function

We also test running time and performance for a function that is supposed to
be “ideal” for the minimum-norm algorithm [McCormick, 2006]. For this function,
proposed by Satoru Iwata, the elements are numbered j = 1, . . . , n ∈ V . Then
fI(S) = |S||V \ S| −

∑
j∈S(5j − 2n) [Fujishige and Isotani, 2011]. We modify

this function as follows: randomly assign the elements in V to m groups Qi. The
members of each Qi are now numbered 1 to |Qi|, and we apply fI group-wise:
f(S) =

∑m
i=1 fI(S ∩Qi). Here, we implement the simplest version (Figure 7.2(h))

of Algorithm 6, so that we actually do not need the graph explicitly, and for each
element only compare whether ν(s, j) = −m(j) > ν(j, t). Since the solutions form
a chain, we never need to test any selected element again. Figure 7.5(b) shows that
this implementation is even slightly faster than the minimum-norm algorithm, and
scales similarly. In particular, the minimum-norm algorithm becomes slower as
there are more groups, whereas Algorithm 6 (GI) becomes faster. For Algorithm 6,
smaller groups imply fewer iterations. Moreover, it always finds the optimal solu-
tion.

7.6. Summary and discussion

Submodular functions can be minimized in polynomial time, but currently known
algorithms may become practically infeasible for large data. Therefore in this chap-
ter we advance the idea of designing approximation algorithms even for polynomial-
time solvable problems. We designed an algorithm that builds on the function
representation discussed in Chapter 5. Contrary to standard graph cuts, coopera-
tive cuts extend this formulation to cover all submodular functions. We therefore
minimized submodular functions as cooperative cuts.

We proved that any element selected by the algorithm is a member of the max-
imal optimal solution. The basic algorithm works well if the interactions deter-
mining the minimum are detectable by looking at small groups of elements. In
particular, it finds an optimal solution S∗ if the elements in S∗ can be ordered such
that ρg(ei|{e1, . . . , ei−1}) < −m(ei) for all ei ∈ S∗. To handle the case that dis-
counts can only be detected at larger scale, we introduce another layer of groupings.
The experiments show that this modification improves the results.

We tested the algorithm especially on a combination of two types of cost func-
tions that occur frequently: neighborhoods in bipartite graphs and functions from
Fconc. The minimum norm point algorithm, a common method of choice, converges
slowly on the problem, and the SLG method requires too many terms to model
the bipartite graph. On the speech corpus data, the proposed algorithm runs up
to 1.5 orders of magnitude faster than the minimum norm point algorithm. While
the minimum norm algorithm can output very inaccurate solutions, the empirical
approximation factors for the new algorithm were never larger than two.

160

7.6. Summary and discussion

Specifically for the corpus selection problem, we additionally proposed an algo-
rithm that uses parametric maximum flow. This algorithm returns the optimal
solution for a sub-class of problems and works well in practice, but it does not
apply to direct sums of cost functions on U . The iterative algorithm does not have
any such restrictions.

161

Chapter 8.

Structured Online Decision Problems with
Submodular Losses

There exist settings where we do not only wish to solve a problem once, but instead
to solve the same problem repeatedly, while the unknown cost function changes
over time. Sequential Decision Problems cover this setting and implement the
assumption that the cost function is only revealed after we have chosen a solution.
This online setting becomes more challenging if in each round, a combinatorial
structure must be chosen as the solution, e.g., a path or spanning tree [Kalai and
Vempala, 2005, Kakade et al., 2009, Koolen et al., 2010]. Most algorithms for
sequential decision problems involving combinatorial decision spaces address only
linear (modular) cost functions, or otherwise only very simple constraints. This
chapter poses the question whether one can build on the algorithms developed
in Chapter 4 to derive Hannan-consistent algorithms for combinatorial sequential
problems with submodular cost functions.

8.1. Introduction

The typical setting of sequential decision problems proceeds in rounds t = 1, . . . , T .
In each round, the decision maker must decide upon a solution from a decision
space S. Here, we address discrete spaces, and the solution St must be a subset of
a given fixed ground set E . In the continuous setting, one picks a vector xt from a
feasible set. We consider the full information setting, where at iteration t, we have
observed the cost functions up to step t− 1 (i.e., we can query previous costs), but
not the current cost ft. After the player has picked a solution St, the cost function
ft is revealed, and he incurs the loss ft(St).

The problem of selecting St becomes harder when the decision space is combina-
torial, that means in each round we must pick a set of elements having particular
structure, such as a spanning tree or a cut. This combinatorial problem has also
been termed “learning structured concept classes” [Koolen et al., 2010]. In most
other work, the cost function is assumed to be modular and separates over the
single elements. This separability helps cope with the combinatorial explosion of
the space S. It yields, for instance, a compressed representation for algorithms
that maintain weights for each possible structure in S.

162

8.1. Introduction

In the sequel, we address the case where S is combinatorial, and, in addition, the
cost functions ft can be nondecreasing submodular functions that are not separable.
The algorithms and bounds below extend known results for linear (modular) costs
to a wider range of problems. Section 2.5 lists examples where the restriction to
linearity fails to capture the cost in real-world situations. The offline correspondent
of our problem is

min ft(S) subject to S ∈ S; (8.1)

this is what we would solve if we knew ft beforehand. The results in Chapter 3
show the hardness even of the offline problem where the cost function is known,
and thereby imply that apart from the combinatorial decision space and the non-
linear cost function, a third complication of our setting is that we can only use
approximations.

Regret

The crucial question to be solved is how to choose the solution St as well as possible.
We wish to pick solutions that are competitive to the best solution in hindsight.
This competitiveness is measured by the commonly used (external) regret,

R(T) =
1

T

(
T∑

t=1

ft(St)−min
S∈S

T∑

t=1

ft(S)

)
. (8.2)

An algorithm is Hannan-consistent if its regret vanishes, R(T) → 0, as T → ∞.
Regret is commonly used for problems where the minimization minS∈S f(S) for a
known cost f can be solved exactly.

However, we simultaneously aim at an algorithm that does not take exponential
time to select the next solution St. If the minimization problem minS∈S f(S) is
NP-hard even when knowing f , then we cannot expect the online algorithm to
choose an arbitrarily good St in polynomial time. Therefore, in this case one
commonly aims for online approximation algorithms and instead compares to the
best result that is achievable in polynomial time. This is measured by the α-regret
that includes the approximation factor α achievable for the corresponding offline
problem:

Rα(T) =
1

T

(
T∑

t=1

ft(St)− αmin
S∈S

T∑

t=1

ft(S)

)
. (8.3)

In the sequel we address sequential decision problems that involve combinatorial
problems with submodular costs. Many of them are NP-hard, as we saw in Chap-
ter 3, and therefore we devise online approximation algorithms that minimize the
respective α-regret.

163

Chapter 8. Submodular Online Problems

8.1.1. Related work

Most existing online and bandit1 algorithms for combinatorial problems expect a
modular (linear) cost function [Awerbuch and Kleinberg, 2004, Kalai and Vempala,
2005, Balcan and Blum, 2007, Dani et al., 2008, Abernethy et al., 2008, Koolen
et al., 2010, Cesa-Bianchi and Lugosi, 2009, Helmbold and Warmuth, 2009, Au-
dibert et al., 2011]. Many exploit the separability of this function to handle the
exponential number of choices, e.g., when maintaining weights. Submodular func-
tions are not separable in this way. One example for non-separable costs with
multi-task constraints is the work by Lugosi et al. [2009]. Their dynamic program-
ming approach, however, works only for limited constraint sets that keep the state
graph small.

When allowing arbitrary sets and removing the combinatorial constraints of
choosing a structure, that is, S = 2E , then we end up with an unconstrained
submodular minimization problem, which is not NP-hard. Hazan and Kale [2009]
derive online algorithms for unconstrained online submodular minimization and
show regret bounds of O(m/

√
T) for m elements. We partially build on their

techniques and, as a corollary, tighten their bound to O(
√

m/T).
Contrary to the problems in most of the work above, most instances of submod-

ular minimization over combinatorial structures are NP-hard. Integrating approxi-
mations into existing online algorithms can be challenging, and there is no generic
solution [Kakade et al., 2009, Kalai and Vempala, 2005]. Kalai and Vempala [2005]
extend the regret bound for the Follow-the-perturbed leader (FPL) algorithm to
NP-hard combinatorial problems with a modular cost function if there is an al-
gorithm that provides a coordinate-wise approximation to the optimal solution.
This approximation, however, does not apply here. Moreover, Kakade et al. [2009]
show an example where FPL fails when directly used with the greedy set cover
algorithm, and ask how to use FPL in general with approximations. In Section 8.3,
we integrate a class of approximation algorithms for Problem (8.1) into the FPL
framework.

Kakade et al. [2009] show how to derive online approximation algorithms from
offline approximation algorithms for linear-cost problems, generalizing online gra-
dient descent [Zinkevich, 2003] by approximate projections. Their approach is very
general and considers any offline approximation algorithm as a black box. It takes
a step in a descent direction and then uses the offline algorithm to project back
onto the (scaled) feasible set; these are the approximate projections. The authors
too consider only a certain family of cost functions and pose the case of nonlinear
costs as an open problem. Their cost function is of the form c : 2E × Rd → R,
c(S,w) = 〈φ(S), w〉 and must be linear in w. That means it is the dot product
between some feature vector of S and a weight vector. To use this framework, we
must express any nondecreasing submodular function f via a cost vector wf as

1In the bandit setting we never observe the true cost function, only its evaluation ft(St) after
choosing solution St.

164

8.1. Introduction

c(S,wf) = f(S). One possible encoding is via exponential-size feature vectors that
have one entry for each possible set. Simple linear algebra shows that a full basis
is needed to represent all such f meaning that w has an exponential dimension d.
But then a straightforward use of the regret bound by Kakade et al. [2009] leads to
a bound that is exponential in |E|, since their bound is linear in ‖w‖, i.e., growing
with the dimension as

√
d. The exponential bound is of course due to the rep-

resentation, but we do not know of any compact non-exponential representations
of this form that are powerful enough to represent all submodular functions. The
non-constant lower bound for learning submodular functions [Goemans et al., 2009]
rather suggests that there is probably no simple polynomial-size representation of
all submodular functions in terms of linear combinations of features. Furthermore,
the algorithm also assumes that, given any w ∈ Rd, we can project it in polyno-
mial time onto the set of those w for which c(·, w) is a nondecreasing submodular
function. Given the results by Seshadri and Vondrák [2010] and the hardness of
recognizing even a quartic submodular posiform [Gallo and Simeone, 1988], this
too seems to be non-trivial, and thus we use a different approach.

For an online version of approximate submodular maximization, greedy methods
exist [Streeter and Golovin, 2008] that however satisfy constraints in expectation
only. Shalev-Shwartz and Singh [2011] use the multilinear extension [Calinescu
et al., 2011] for an algorithm close to online gradient descent [Zinkevich, 2003] and
then apply pipage rounding. The solutions St satisfy the given matroid constraints.
Other rounding techniques for other constraints [Chekuri et al., 2010] probably
apply equivalently. Adaptive or interactive submodularity [Golovin and Krause,
2010, Guillory and Bilmes, 2011] also implies greedy algorithms, but considers a
setting different from ours.

8.1.2. Three types of algorithms

We build on the offline approximation algorithms from Chapter 4 to tackle sub-
modular cost functions in combinatorial online problems.

First, we show two generic Hannan-consistent algorithms for two main approxi-
mation strategies, one based on subgradient descent (Section 8.2), and one based
on a Follow-the-leader scheme (Section 8.3). Table 8.1 shows regret bounds with
details plugged in for various problems. As a corollary, our Theorem 8.1 tightens
Theorem 1 in [Hazan and Kale, 2009] for unconstrained online submodular min-
imization. While the first two parts address general submodular functions, the
third part focuses on a special class, namely label costs (LC). This class admits
better approximation factors if class-specific algorithms are used. We reformulate
LC problems as label selection problems with cover-type constraints, and derive
an online algorithm that can use any offline algorithm for the LC problem at
hand. Beyond standard LC, our formulation extends to multiple labels and simple
discounts.

165

Chapter 8. Submodular Online Problems

subgradient FPL label costs
descent (Sec. 8.2) (Sec. 8.3) (Sec. 8.4)

set cover O(k
√
m/T) – O(ln |U|

√
|L|/T)

vertex cover O(2
√
m/T) – O(ln |E|

√
|L|/T)

(s, t)-cut O(n
√
m/T) O(nm/

√
T) O(

√
m|L|/T)

spanning tree – O(nm/
√
T) O(lnn

√
|L|/T)

perfect matching – O(nm/
√
T) O(|L|

√
|L|/T)∗

monotone MSCA O(logm
√

m/T) – –

submodular MP O(2
√
m/T) – –

Table 8.1. Overview of the regret bounds derived in this chapter, when applied to
a range of problems. The approximation factor α is underlined, k is the maximum
frequency, U the universe to cover. In a graph G = (V, E), n = |V | is the number of nodes
and m = |E| the number of edges; for set cover, m is the number of sets. MSCA is the
minimum submodular-cost allocation problem [Chekuri and Ene, 2011b], which subsumes
e.g. submodular-cost facility location. MP stands for “multiway partition”. The last two
lines refer to randomized rounding methods and the bounds are in expectation. ∗The
label cost result hold for perfect matching in complete bipartite graphs.

Many approximation algorithms relate an inherently difficult problem to an eas-
ier one, and for the first two algorithms we build on exactly this relation. We
categorize the approaches as in Section 4.1: they simplify either (i) the constraints
or (ii) the cost function. When simplifying the constraints, we consider in partic-
ular relaxations. The respective algorithms treat f as a pseudo-boolean function
on indicator vectors, relax the feasible set S to its convex hull, and finally round
the solution of the relaxed problem. The relaxation is a convex non-smooth min-
imization problem with linear constraints. Such a problem is naturally amenable
to an online, possibly exponentiated, subgradient descent. Algorithms motivated
by (ii) replace f by a tractable approximation f̂ , and minimize f̂ over S. We use
this f̂ in a specific way in the Follow-the-leader framework, and show example
functions that fit our framework. The generic f̂ by Goemans et al. [2009] does not
fit Algorithm 8, but we present a modification that does.

Most of the approximation algorithms surveyed in Chapter 4 fall into one of the
two categories. For any of those, we can use the generic algorithms in Sections 8.2
and 8.3, respectively.

For ease of reading, we denote vectors x ∈ Rm by non-bold lowercase characters.
As in previous chapters, m is the size of the ground set.

166

8.2. Relaxations

Algorithm 7 Rounded subgradient descent
Input: η > 0, initial x1 ∈ K
for t = 1 to T do

get St from xt by rounding with factor α
obtain ft
compute gt = argmaxg∈Pft

g · xt and
xt+1 = ΠK(xt − ηgt)

end for

8.2. Relaxations

We begin with an algorithm that operates on a relaxation and then rounds the con-
tinuous solution in each iteration. The rounding procedure determines the approx-
imation factor. Suitable rounding procedures exist for covering constraints [Iwata
and Nagano, 2009], cuts (Section 4.3.2), the monotone minimum submodular-
cost allocation problem [Chekuri and Ene, 2011b] (with the rounding method
by Kleinberg and Tardos [1999]), and submodular multiway partition with
Half-rounding [Chekuri and Ene, 2011a]. The resulting approximation factors form
the underlined parts of the factors in Table 8.1.

Let K ⊆ [0, 1]E be the convex hull of the decision space S ⊆{ 0, 1}E ; both are
described by the same linear inequalities. The cost function on K corresponding
to ft on S is the convex Lovász extension f̃t. Algorithm 7 maintains two variables:
it performs a subgradient descent based on [Zinkevich, 2003] in continuous space
that yields xt, and then rounds xt to St. In each round t, it takes a step into the
direction of the negative subgradient −gt of f̃t and projects back onto K. The
strongly convex projection ΠK(y) = argminx∈K ‖x−y‖2 is in general easier to solve
than a minimization of the full non-smooth relaxation. As xt is rounded to St

before the actual cost function ft is revealed, the rounding procedure must not
explicitly depend on ft. That is, given a continuous vector x, the procedure must
return a solution S with f(S) ≤ αf̃(x) for any submodular function f that can
occur. All of the above-mentioned rounding procedures satisfy this constraint.

Theorem 8.1. When using a rounding scheme with approximation factor α, con-
stants η =

√
m(M

√
T)−1 and M = maxt,A⊆E βt|ft(A)| with βt = 1 if ft is non-

decreasing and βt = 3 otherwise, then the α-regret of Algorithm 7 is bounded as
Rα(T) ≤ αM

√
m/T = O

(
α
√

m/T
)
.

As a corollary, Theorem 8.1 tightens a bound by Hazan and Kale [2009, Thm. 7]
for unconstrained online submodular minimization (using α = 1, S = {0, 1}E and
their thresholded rounding).

Corollary 8.1. The regret for online submodular minimization with Algorithm 7
is bounded by O(

√
m/T).

167

Chapter 8. Submodular Online Problems

Crucial for the improvement is a bound on the .2-norm of the subgradient. We
assume everywhere that all functions ft are normalized.

Lemma 8.1. Let gt be a subgradient of ft (obtained by the greedy algorithm). Then
‖gt‖ ≤ βmaxA⊆E |ft(A)|, where β = 1 if ft is nondecreasing, and β = 3 otherwise.

Proof (Lemma 8.1). Since t is fixed, we drop the subscript in this proof. Essential
for the proof is that g ∈ Pf , in fact, it lies in the base polytope (Section 2.3.1,
[Fujishige, 2005, Lemma 6.19]). This means that

g · χA ≤ f(A) (8.4)

for all A ⊆ E . Assume first that f is nonnegative and nondecreasing. Then
Equation (8.4) immediately leads to a bound on ‖g‖, by bounding the .2 norm by
the .1 norm:

‖g‖2 ≤ ‖g‖1 = g · χE ≤ f(E). (8.5)

This proves the lemma for nondecreasing functions.
For arbitrary submodular functions, we use the construction of g in slightly

more detail, but the basic arguments are the same. For ease of notation, let
γ = maxA⊆E |f(A)|. We first recall how g was constructed, given x ≥ 0. We
denote the components of x by xi, 1 ≤ i ≤ m. We find a permutation π such
that xπ(1) ≥ xπ(2) ≥ . . . ≥ xπ(m). This ordering induces a maximal chain of sets,
∅ = A0 ⊂ A1 ⊂ . . . ⊂ Am with A0 = ∅ and Ai = Ai−1 ∪ {eπ(i)}. Setting

gπ(i) = f(Ai)− f(Ai−1) (8.6)

yields the subgradient g, with g · χAi = f(Ai). Let g+ = max{g, 0} denote the
element-wise maximum of g and 0.

Claim 8.1. ‖g+‖1 =
∑M

i=1 g
+
i ≤ γ.

Consider the subset E+ of elements ek with gk ≥ 0, and let Bj be the set of the
j first such elements, where we use the ordering π induced by x, restricted to E+.
We call this restriction π+: {1, . . . |E+|} →{ 1, . . . , |E|}. The jth element in E+,
eπ+(j), also occurs at some point π(i(j)) in the full sequence, so that eπ+(j) = eπ(i(j)).
Since the nonnegative elements are a subsequence, we know that i(j) ≥ j and thus
Bj ⊆ Ai(j). By the definition of gj and diminishing marginal costs (submodularity),
it holds for all eπ+(j) ∈ E+ that

gπ+(j) = f(Ai(j)−1 ∪ {eπ+(j)})− f(Ai(j)−1) (8.7)
≤ f(Bj−1 ∪ {eπ+(j)})− f(Bj) =: g′j. (8.8)

The definition of the g+j implies that
∑k

j=1 g
+
j = f(Bk) ≤ γ. In consequence,

‖g+‖1 =
|E+|∑

j=1

gπ+(j) ≤
|E+|∑

j=1

g′j ≤ γ. (8.9)

168

8.2. Relaxations

This proves the claim.
We next use this result to bound the sum of the absolute values of the negative

entries. By the definition of g, we know that
∑k

i=1 gi = f(Ak), in particular also
for k = m. Since −γ ≤ f(Ak) ≤ γ for any k (1 ≤ k ≤ m), it follows that

−γ ≤
∑

i:gi<0

gi +
∑

i:gi≥0

gi ≤ γ. (8.10)

Claim 8.1 now implies that
∑

i:gi<0

gi ≥ −γ −
∑

i:gi≥0

gi ≥ −2γ, (8.11)

and thus
∑

i:gi<0 |gi| ≤ 2γ. In total, this shows that

‖g‖1 =
∑

i:gi<0

|gi|+
∑

i:gi≥0

|gi| ≤ 3γ. (8.12)

With ‖g‖2 ≤ ‖g‖1, Lemma 8.1 follows.

Proof (Theorem 8.1). The proof consists of two steps. First, we bound the α-regret
with α = 1 for the sequence {xt} analogous to [Zinkevich, 2003], and then use this
result to bound the α-regret for the sequence St.

Let S∗ ∈ argminS∈S
∑T

t=1 ft(S). The definition f̃t(x) = maxg∈Pft
g · x implies

ft(S∗) = f̃t(χS∗) and
T∑

t=1

f̃t(xt)−
T∑

t=1

ft(S
∗) ≤

T∑

t=1

gt · xt −
T∑

t=1

gt · χS∗ . (8.13)

A proof similar to that in [Zinkevich, 2003] leads to a bound on the right hand side
of Inequality (8.13) that we bound further:

2
T∑

t=1

gt · (xt − χS∗) ≤ max
x,y∈K

‖x− y‖2/η + ηT max
t

‖gt‖2 (8.14)

≤ m/η +M2Tη. (8.15)

For the second inequality, we used ‖x−y‖2 ≤ m for all x, y ∈ K because K ⊆ [0, 1]E .
Furthermore, we bounded the .2 norm of gt by Lemma 8.1:

‖gt‖ ≤ gt · χE ≤ maxt,A⊆E βt|ft(E)| ≤ M. (8.16)

Finally, the approximation factor for the rounding procedure implies that ft(St) =
f̃t(χSt) ≤ αf̃t(xt), so

T∑

t=1

ft(St)− α
T∑

t=1

ft(S
∗) ≤ α

T∑

t=1

f̃t(xt)− α
T∑

t=1

ft(S
∗) (8.17)

≤ 0.5α(m/η +M2Tη). (8.18)

The regret bound follows with η =
√
m(M

√
T)−1.

169

Chapter 8. Submodular Online Problems

A similar strategy works with exponentiated gradients – the regret bounds are
as for linear cost problems, scaled by a factor α. The proof is analogous.

Suitable rounding techniques are not available for all submodular-cost problems.
Instead, several algorithms approximate the cost function. Such an approach fits
the Follow-the-leader framework that we describe next.

8.3. Approximations of the cost function

We now address algorithms of type (ii) that replace the cost function f by an
approximation f̂ and solve the resulting tractable problem instead. Several ap-
proximations f̂ integrate with the Follow-the-leader principle [Hannan, 1957].

The Follow-the-leader principle suggests playing the best feasible set S given the
costs observed so far. To prevent an adversary to exploit the determinism in this
scheme, we add a regularizing perturbation r : 2E → R. In round t, pick [Kalai
and Vempala, 2005]

St ∈ argmin
S∈S

t−1∑

τ=1

fτ (S) + r(S). (8.19)

In the simplest case, the last term is a modular perturbation r(S) = r · χS by
a random vector r (Follow-the-perturbed-leader, FPL). For appropriately chosen
r, the expected regret is then of order2 O(m/

√
T), and O(

√
m/T) for modular

functions fτ .
In our setting, however, finding a minimizer St is NP-hard. Kakade et al. [2009]

show that in general, an approximate minimizer St from an approximation al-
gorithm does not suffice. Thus, instead of approximately solving the minimiza-
tion (8.19), Algorithm 8 uses the exact expected minimizer of the approximate
costs. The advantage of function-wise approximations is that the deviation of each
f̂t from ft is bounded, whereas a general approximation factor for Problem (8.19)
only refers to the quality with respect to the sum of costs. We define two general
conditions for f̂ and its associated factor α:

C1 The approximation f̂ of f satisfies f(A) ≤ f̂(A) ≤ αf(A) for all A ∈ S.
C2 The following problem can be solved exactly in polynomial time:

argminS∈S

∑
t
f̂t(S) + αr(S). (8.20)

These constraints apply in a variety of settings, as we discuss later. Algorithm
8 integrates such an f̂ into the FPL framework and adapts the perturbation r
accordingly. Condition (C2) ensures that we can find St in polynomial time. If

2The first bound follows from the proof of Theorem 8.2 for α = 1, the second is in [Kalai and
Vempala, 2005]. The discrepancy by a factor

√
m results from a different analysis that is

needed for non-additive functions.

170

8.3. Approximations of the cost function

Algorithm 8 Follow the approximate perturbed leader
Input: η > 0
pick r ∈ [0,M/η]E uniformly at random
for t = 1 to T do

set St = argminS∈S
∑t−1

τ=1 f̂τ (S) + αr(S)
obtain ft
approximate ft by f̂t

end for

(C1) and (C2) hold, then we can bound the expected regret for submodular costs
in an approximation setting even with FPL.

Theorem 8.2. For an approximation f̂ that satisfies (C1) and (C2), and for M =
maxt ft(E) and η = 1/

√
2T , the α-regret of Algorithm 8 is bounded in expectation

as E[Rα(T)] ≤ 2
√
2αmM/

√
T = O(αm/

√
T).

Proof. We define the minimizers

St ∈ argmin
S∈S

t−1∑

τ=1

f̂τ (S) + αr(S); Ŝt ∈ argmin
S∈S

t−1∑

τ=1

f̂τ (S); S∗
t ∈ argmin

S∈S

t∑

τ=1

fτ (S).

(8.21)

First, we show a relation for
∑T

t=1 f̂t(St+1) and later relate it to the actual cost∑T
t=1 f̂t(St). The first inequality is3

∑T

t=1
f̂t(Ŝt+1) ≤

∑T

t=1
f̂t(ŜT+1). (8.22)

It holds trivially for T = 1. The case T +1 follows by induction and the optimality
of ŜT+1:

∑T+1

t=1
f̂t(Ŝt+1) ≤

∑T

t=1
f̂t(ŜT+1) + f̂T+1(ŜT+2) (8.23)

≤
∑T

t=1
f̂t(ŜT+2) + f̂T+1(ŜT+2) (8.24)

=
∑T+1

t=1
f̂t(ŜT+2). (8.25)

We now replace f̂1 in Equation (8.22) by f̂1 + αr to get a bound similar to (8.22)
but in terms of f̂t + αr rather than just in terms of f̂t. We also note that S1 ∈
argminS r(S). This yields

∑T

t=1
f̂t(St+1) + αr(S1) ≤

∑T

t=1
f̂t(ST+1) + αr(ST+1) (8.26)

≤
∑T

t=1
f̂t(ŜT+1) + αr(ŜT+1). (8.27)

3Strictly speaking, we here imagine the algorithm to run for T + 2 steps.

171

Chapter 8. Submodular Online Problems

Rearranging the terms yields

∑T

t=1
f̂t(St+1) ≤

∑T

t=1
f̂t(ŜT+1) + α(r(ŜT+1)− r(S1)). (8.28)

To transfer this result to the series of St, we use that f̂t(St) = f̂t(St+1) + (f̂t(St)−
f̂t(St+1)):

T∑

t=1

f̂t(St) ≤
T∑

t=1

f̂t(ŜT+1) +
T∑

t=1

(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)). (8.29)

Condition (C1) implies that

∑T

t=1
f̂t(ŜT+1) ≤

∑T

t=1
f̂t(S

∗
T) ≤ α

∑T

t=1
ft(S

∗
T), (8.30)

and that
∑T

t=1 ft(St) ≤
∑T

t=1 f̂t(St). Together with Equation (8.29), this yields

∑T

t=1
ft(St)− α

∑T

t=1
ft(S

∗
T)

≤
∑T

t=1
(f̂t(St)− f̂t(St+1)) + α(r(ŜT+1)− r(S1)). (8.31)

It remains to bound the two terms on the right hand side, and these bounds depend
on r ∈ [0,M/η]E . We first address the random perturbation r in [0,M/η]E . The
expectation of the second term can be bounded as

αE[r(ŜT+1)− r(S1)] ≤ αmM/η. (8.32)

To bound the expected sum of differences of the function values, we use a tech-
nique by Hazan and Kale [2009]. For the analysis, one can assume that r is re-
sampled in each round. We first bound P (St -= St+1). A simple union bound
holds:

P (St -= St+1) ≤
m∑

i=1

P (ei ∈ St and ei /∈ St+1) +
m∑

i=1

P (ei /∈ St and ei ∈ St+1).

(8.33)

To bound the right hand side, we fix i and look at P (ei ∈ St and ei /∈ St+1).
Denote the components of r by rj and define r′ : 2E → R as r′(S) =

∑
ej∈S,j *=i rj,

so r′(ej) = r(ej) = rj for all j -= i, but r′(ei) = 0; and define Φ′
t : 2E → R as

Φ′
t(S) =

∑t−1
τ=1 f̂τ (S) + αr′(S). Now let

S1 = argmin
S∈S,ei∈S

Φ′
t(S); S2 = argmin

S∈S,ei /∈S
Φ′

t(S). (8.34)

172

8.3. Approximations of the cost function

The event ei ∈ St only happens if Φ′
t(S

1) + αri ≤ Φ′
t(S

2) and in such case St = S1.
On the other hand, to have ei /∈ St+1, it must be that Φ′

t(S
1)+αri+αM ≥ Φ′

t(S
2),

since otherwise
∑t+1

τ=1
f̂t(S

1) + αr(S1) = Φ′
t(S

1) + αri + f̂t(S
1) (8.35)

< Φ′
t(S

2) (8.36)
< Φ′

t(B) + f̂t(B) (8.37)

for all B ∈ S with ei /∈ B. Here, we used that f̂t(S) ≤ αft(S) ≤ αM for
all S ⊆ E. Let v = α−1(Φ′

t(S
2) − Φ′

t(S
1)), then ei ∈ St and ei /∈ St+1 only if

ri ∈ [v − M, v]. The number ri is in this range with probability at most η since
it is chosen uniformly at random from [0,M/η], so P (ei ∈ St and ei /∈ St+1) ≤ η.
The bound on P (ei /∈ St and ei ∈ St+1) follows by an analogous argumentation.
Together, those results bound the right hand side of (8.33):

P (St -= St+1) ≤
m∑

i=1

P (ei ∈ St and ei /∈ St+1) +
m∑

i=1

P (ei /∈ St and ei ∈ St+1)

≤ 2mη. (8.38)

Equation (8.38) helps to bound the sum of function values, using f̂(C) ≤ αM for
all C:

∑T

t=1
E
[
f̂t(St)− f̂t(St+1)

]
≤

∑T

t=1
P (St -= St+1)max

B∈S
f̂(B)

≤ 2αmMTη. (8.39)

Combining Inequalities (8.31), (8.32) and (8.39) results in

E
[∑T

t=1
ft(St)

]
− α

∑T

t=1
ft(S

∗
T) ≤ αMm/η + 2αmMTη.

The final regret bound follows for η = 1/
√
2T .

8.3.1. Approximations fitting Algorithm 8

Conditions (C1) and (C2) show that a suitable approximation f̂ is decisive. We
list and derive examples for f̂ that can be plugged into Algorithm 8.

Spanning tree and matching

The best approximation bound for Minimum spanning tree (MST) and Per-
fect matching with general submodular costs is O(|V|), and is achieved with
the simple approximation f̂add(S) =

∑
e∈S f(e) [Goel et al., 2009]. Since f̂add is

173

Chapter 8. Submodular Online Problems

additive, any standard algorithm for MST or matching applies for satisfying (C2).
(C1) holds by subadditivity of f .

The simple f̂add, however, often leads to rather loose approximation factors.
Based on the approximation with polymatroidal flows in Section 4.2.2, we derive
a better, nontrivial approximation for the problem structure of cuts.

Approximation for (s, t)-cuts

The approximation for sequential MinCoopCut builds on the approximation in
Section 4.2.2, but requires some modifications. In particular, if we replace each
ft in the problem (8.20) by its approximation f̂pf , then almost always each such
approximation will use a different optimal partition of the set of edges. However,
a sum of such approximations, each using a different partition, is not a straightfor-
ward equivalent of a set of polymatroid network flow constraints that are easy to
handle. Therefore, we instead use the same partition Π for all approximations f̂t.
Selecting the fixed partition uniformly at random ensures in expectation the same
approximation bound as the one in Theorem 4.1.

Let {E−
v }v∈V be the partition of E where E−

v contains all edges e = (u, v) with
head v, and {E+

u }u∈V be the analogous partition that assigns each edge e = (u, v)
to its tail node u. For either partition, we define an approximate cost function
similar to f̂pf :

f̂−(S) =
∑

v∈V

f(S ∩ E−
v); f̂+(S) =

∑

v∈V

f(S ∩ E+
v).

By subadditivity, both functions are upper bounds on f . At the beginning of
Algorithm 8, we decide uniformly at random whether to use f̂ ! f̂− or f̂ ! f̂+ and
retain this choice throughout, so that

∑t−1
τ=1 f̂τ = Φ̂t for Φt !

∑t−1
τ=1 ft throughout.

With this strategy, the factor α in (C1) improves from m (for f̂add) to |V|/2:
Lemma 8.2. Let f̂ be chosen uniformly at random as either f̂− or f̂+. Then
f(S) ≤ E[f̂(S)] ≤ (|V|/2)f(S) for all minimal (s, t)-cuts S.

The lemma follows analogously to Theorem 4.1. If we use the same partition for
all f̂t, then we can solve the minimization (8.20) as a polymatroidal network flow
problem, similar to the approach for f̂pf in Section 4.2.2. Recall that the dual to
a polymatroidal flow is a minimum cut problem with cost function [Lovász, 1983]

c(S) = min
T⊆S

∑

v

capin
v (T ∩ E−

v) + capout
v ((S \ T) ∩ E+

v).

As for f̂pf , we set the capacity functions of the the flow to represent the cost in
(C2). If f̂ = f̂−, then we set capout

v to some large value so that c(S) only uses
capin

v , and set capin
v (A) =

∑
t ft(A ∩ E−

v) + αr(A ∩ E−
v). Then

c(S) =
∑

v

∑
t
ft(S ∩ E−

v) + αr(S ∩ E−
v) =

∑
t
f̂t(S) + αr(S).

The procedure for f̂+ is analogous.

174

8.4. Label costs and related functions

A generic approximation

A generic nontrivial approximation f̂ea for submodular functions was proposed by
Goemans et al. [2009] (outlined in Section 4.1.1), but it does not satisfy (C2) in
a straightforward way. Its functional form is f̂(S) =

√∑
e∈S w(e), and a sum of

square roots is hard to optimize.
Nevertheless, it is possible to use the square f̂ 2

ea. The square satisfies f̂ 2
ea(A) ≤

f 2(A) ≤ α2
gf̂

2
ea(A) for all A ⊆ E , with αg = O(

√
m logm). Even better, f̂ 2 is

a modular function, and modular functions have been studied much more than
nonlinear functions in the online combinatorial setting. We can use any algorithm
for modular costs, and, when observing ft, we pretend to have seen f̂ 2

t .
To state the regret bound, let ν = mint,S∈S ft(S). We make the reasonable

assumption that each element in E has nonzero cost, and then ν > 0.
Lemma 8.3. Let R̂A be the regret of an online algorithm A when used with linear
cost functions f̂ 2

t . Using A with f̂ 2
t when observing ft leads to an αg-regret of

Rαg(T) ≤ αgR̂A/ν.

Proof. Since we use f̂ 2
t in A, the regret R̂A bounds the difference 1

T

∑
t(f̂

2
t (St) −

f̂ 2
t (Ŝ

∗)) to Ŝ∗ = argminS∈S
∑

t f̂
2
t (S). Therefore, we relate the actual regret,

1
T

∑
t(ft(St)−αgft(S∗)), to the regret of A. We use that f̂ 2(S) ≤ f 2(S) ≤ α2

gf̂
2(S)

and that Ŝ∗ is optimal for f̂ 2. It holds that
∑

t
(ft(St)− αgft(S

∗)) =
∑

t

(f 2
t (St)− α2

gf
2
t (S

∗))

(ft(St) + αgft(S∗))

≤
∑

t
(f 2

t (St)− α2
gf

2
t (S

∗))/(αgν)

≤
∑

t
α2
g(f̂

2
t (St)− f̂ 2

t (S
∗))/(αgν)

≤
∑

t
αg(f̂

2
t (St)− f̂ 2

t (Ŝ
∗))/(ν)

= αgR̂A/ν.

8.4. Label costs and related functions

The two preceding sections proposed online algorithms for general submodular
costs. The associated approximation factors α usually match their lower bounds
and in the general case cannot be improved further. However, certain sub-classes
of submodular functions admit better approximation factors. For example, the
approximation factor for Minimum Spanning Tree drops from linear to logarith-
mic in |V| if f is a label cost function. Therefore, we address a specific algorithm
for the label costs introduced in Section 2.5. We begin by a unifying viewpoint
on algorithms for the offline problem in Section 8.4.1. This perspective leads to
generalizations (matroids and Section 8.4.3) and an online algorithm described in
Section 8.4.2.

175

Chapter 8. Submodular Online Problems

8.4.1. Label costs and approximations: a cover viewpoint

A label cost function assigns a set of labels π(e) from a label space L to each element
e in the ground set. In the simplest, most often addressed case, π(e) contains only
one label. Each label . ∈ L has a cost c(.), and the cost of a set S ⊆ E of items is
the additive cost of its labels π(S) = {. | . ∈

⋃
e∈S π(e)}:

f(S) = c
(⋃

e∈S

π(e)
)
=

∑

&∈π(S)

c(.). (8.40)

When designing algorithms for label costs, a key observation is that this cost is
additive in terms of labels. We thus rephrase Problem 8.1 as a modular-cost label
selection problem. To relate labels back to items, we invert the function π and
define E(L) ! {e | π(e) ∈ L}. In other words, selecting a label . means selecting
all items that carry this particular label. The problem now reads as follows: select
the cheapest set L ⊆ L of labels such that E(L) satisfies a relaxed constraint. The
final solution will be a subset of E(L).

The initial constraints require selecting a structure S ∈ S. In terms of labels,
we demand that the selected E(L) must contain a subset T ⊆ E(L) that is in S.
Finding some feasible set T within E(L) is in general much easier than finding a
minimum-cost structure, and this pruning step finishes the algorithm. As the cost
f is nondecreasing, the set T is not more costly than E(L), that is, f(T) ≤ f(E(L)).
Mathematically, we have relaxed the family of feasible sets S to be up-monotone:
any superset of a feasible solution is also feasible. In this light, the new label-
focused problem has the structure of a covering problem: we must include at least
one S ∈ S completely, and may include arbitrary other elements.

Even though not explicitly stated in the respective works, several existing algo-
rithms for label cost problems [Krumke and Wirth, 1998, Monnot, 2005, Hassin
et al., 2007, Zhang et al., 2011] can be viewed as solving this type of covering prob-
lem. Those algorithms include methods for (budgeted) covering to select groups
E(.) via labels.

The difficulty of the transformed problem depends on how easily the structural
constraint S ∈ S propagates via the labels. Covering constraints and matroid
constraints are particularly suitable for the reformulation. The former remain
covering constraints, and matroid constraints result in a submodular cover problem,
as we demonstrate below. The transformation below applies to any set S consisting
of the independent sets of a matroid; spanning trees are a prominent but not the
only example.

Minimum label cost problems with matroid constraints

Before addressing the online algorithm, we demonstrate the above covering scheme
for sets S consisting of the maximal independent sets of a matroid. The known
greedy algorithm for spanning trees follows as a special case. Let r : 2E → N be

176

8.4. Label costs and related functions

the rank function of the matroid. For spanning trees, this is the rank of a graphic
matroid. The constraint S ∈ S is equivalent to demanding that

r(S) ≥ r(E), (8.41)

and that S is minimal in this respect (no subset of S satisfies (8.41)). First, we relax
the minimality constraint and merely enforce the rank constraint (8.41). Second,
to formulate the constraint in terms of labels, we define the function g : 2L → N,

g(L) ! r(E(L)). (8.42)

The function g is an integer-valued polymatroid rank function: it is nondecreasing
submodular, for example by Proposition 2.1. Furthermore, g(L) = g(L) = r(E) if
and only if E(L) contains a feasible set T ∈ S.

Given the cost vector c of the labels, the label selection problem is now a sub-
modular cover problem:

min c(L) s.t. g(L) ≥ g(L). (8.43)

Problem (8.43) is solved by a greedy algorithm for submodular cover problems,
with approximation factor α = H(max& g(.)) = O(log |V|) [Wolsey, 1982]. Here,
H(n) =

∑n
k=1

1
k is the nth harmonic number.

8.4.2. Online algorithm

Next we design an algorithm for sequentially selecting a structure St ∈ S with
low label cost ft. We treat the problem as a label selection problem with covering
constraints. The batch approximation algorithm will help find the desired labels.
We assume in the sequel that the labels of the elements are fixed, but that the cost
of the labels changes over time.

The online algorithm is outlined as Algorithm 9. Instead of directly choosing a
structure, Algorithm 9 picks in each step a set of labels Lt ⊆ L with minimum cost.
This Lt must be such that the set of elements E(Lt) contains the desired structure
St ∈ S, e.g., a tree.

It remains to determine (i) by which criterion to choose Lt, and (ii) how to
find an Lt that contains the desired structure. As to (i), we use an approximate
gradient descent that applies thanks to the structure of ft. Algorithm 9 maintains
a continuous correspondent yt of Lt and moves from yt into the direction of the
negative gradient −ct. The resulting point is projected onto the feasible set of
label sets via the approximate projections by Kakade et al. [2009], denoted by
ApproxProj. This method applies because the cost of our re-formulation is additive
in the labels.

Finally, the approximate projections rely on finding a set Lt with minimum cost
c′ such that E(Lt) contains a set T ∈ S. If S is defined as the bases of a matroid,

177

Chapter 8. Submodular Online Problems

Algorithm 9 Online label cost minimization
pick any S1 ∈ S; set L1 =

⋃
e∈S1

π(e), y1 = χL1

for t = 2 to T do
(yt, Lt) = ApproxProj(yt−1 − ηct−1, Lt−1, yt−1)
find St ⊆ E(Lt), St ∈ S
obtain ft and extract ct

end for

then we use the algorithm from Section 8.4.1. Some structures, such as paths, are
not easily represented by matroids. Given such an S, we solve a minimum label
cost problem with cost c′. Let S∗ be the resulting solution. Then the desired
label set is the set π(S∗) of all labels used by S∗. Approximation algorithms for
label costs exist for paths [Hassin et al., 2007], matchings [Monnot, 2005] and cuts
[Zhang et al., 2011].

The regret bound for Algorithm 9 involves the total number of labels, |L|≤ m,
instead of the size m of the ground set. The factor α is the approximation factor
of the respective offline algorithm.

Theorem 8.3. The regret of Algorithm 9 is bounded as Rα(T) = O(α
√

M |L|/T),
where M = maxt ft(E).

The bound follows from Theorem 3.2 in [Kakade et al., 2009] for η = (α +
1)
√

|L|/(MT), and from the equivalence of picking labels and structures, outlined
above. For spanning trees, Theorem 8.3 immediately implies a regret bound of
O(

√
|L|M log |V|/

√
T).

8.4.3. Multiple labels and truncated costs

If S is the set of all spanning trees of a graph, then the transformation into a label
selection problem extends to multiple labels per edge and to simple thresholded
costs. When facing multi-label costs, let k be the maximum number of labels any
edge can have. We assign k “slots” to each edge, as shown in Figure 8.1(a). Each
label . ∈ π(e) occupies 1 ≤ γe(.) ≤ k slots in edge e, such that

∑
&∈π(e) γe(.) = k.

Define k copies Gi = (V , Ei) of the original graph G. Edge e is contained in Ei(L)
if at least i of its slots are filled by labels in L. Then we use

g(L) =
∑k

i=1
r(Ei(L)). (8.44)

This sum is still submodular, and maximum only if E(L) contains a tree of full
edges, meaning that for at least one tree, all necessary labels are chosen. The
approximation factor increases moderately to O(log(nk)).

In a similar spirit, truncated costs of the form c(L) = min{w · χL, γ} can be
simulated by parallel edges, so that the algorithm can pick a full group or single
edges via labels. Figure 8.1(e) illustrates an example.

178

8.5. Summary and discussion

(a) Slots in G (b) Graph G1 (c) Graph G2 (d) Graph G3 (e) truncated

Figure 8.1. Construction of g for multiple labels. Colors indicate labels, and graphs
G1,G2,G3 refer to a selection of L = {green, yellow} with g(L) = 5. In (e), the cost of
the red label is γ < w({blue, green, orange}).

8.5. Summary and discussion

Previous work on online learning of combinatorial problems has focused on linear
cost functions or simple constraints. Online submodular-cost combinatorial prob-
lems combine three challenges: an exponential decision space, non-separable cost
functions and only approximate batch optimization methods.

We showed two generic approaches to online algorithms for submodular costs
and combinatorial structures: a projected subgradient algorithm that works with
relaxations and a Follow-the-leader strategy for approximations of the cost func-
tion. The algorithms rely on the classification of approximation techniques that
we discuss in Chapter 4. Despite being not completely ignorant of the underlying
approximation strategy, they are still generic enough to cover almost all existing
offline approximation methods for structured concepts with submodular costs. Al-
gorithm 9 is even more generic: it fits any algorithm for a label cost problem,
and yields vanishing α-regret even for the better approximation factors α attain-
able with label costs. The cover viewpoint extends the algorithm to more general
multi-label and truncated label costs.

Our work contributes to extending results for the online combinatorial setting
from linear costs to nonlinear costs. In particular, it yields the first regret bounds
for structured concepts with submodular costs. This complements the work in the
unconstrained setting [Hazan and Kale, 2009], and the work on online submodular
maximization [Streeter and Golovin, 2008, Streeter et al., 2009]. “Combinatorial
bandits” have been explored for linear cost functions [Cesa-Bianchi and Lugosi,
2009] – an open question remains what is achievable in the combinatorial bandit
setting for nonlinear, nonseparable costs.

179

Chapter 9.

Conclusion and Outlook

In Chapter 1 we argued that machine learning and computer vision drive a quest
for modeling discrete problems with interactions between elements. Large data
sets add the demand for algorithms whose running time scales moderately with
the size of the input data. We posed the questions: Which models might well
trade off the representation of rich interactions with algorithmic efficiency? Can
we design models and algorithms that effectively find practically applicable solutions
considering higher-order interactions?

This thesis proposes answers to the above questions by introducing cooperative
cuts and connecting them to applications. In particular, the results in the preced-
ing chapters illustrate three aspects: (1) submodular functions in combinatorial
problems can model relevant interactions; (2) approximation algorithms return
solutions that obey theoretical bounds and that improve results in applications;
(3) the algorithms are applicable to real-world data. The results also raise open
questions that we outline after a discussion of these three points.

Submodular interactions are relevant

The examples in Section 2.5 illustrate that submodular cost functions in combina-
torial problems express various types of variable interactions that are relevant in
real-world problems. Cooperative cuts, in particular, represent a family of functions
on discrete domains that admit higher-order interactions, and these functions unify
and generalize several existing models in computer vision. The improved model for
image segmentation in Chapter 6 and the approximation algorithm for submodular
minimization in Chapter 7 provide further evidence that coupling edges in graphs
introduces not only rich, but also useful interactions. In addition, the relaxed
problem relates to established models in computer vision and machine learning.

Approximate solutions

MinCoopCut is a very hard optimization problem. Important is thus not only
a rich model but also the approximation algorithm: how good are the solutions it
finds, in terms of the mathematical optimization problem and of the application?
Even though we cannot efficiently obtain exact solutions, the results in Chapters 6
and 7 suggest that the proposed approximation algorithms can provide visually

180

and numerically appealing empirical results. As to optimization, all algorithms dis-
cussed in Chapter 4 have bounded approximation factors, and we demonstrated by
an example that the proven factors can be decisive in preventing arbitrarily poor
solutions. Furthermore, the theoretical results in Chapters 3 and 4 complement the
recent theoretical analyses of other combinatorial problems with submodular cost
functions. Chapter 8 extends some of the discussed approximation techniques to
an online framework while ensuring Hannan-consistency. Besides theoretical anal-
yses, the empirical results in Chapter 4 indicate that the approximation factors for
average-case inputs are lower than the theoretical worst-case bounds. We however
also saw that in the worst case, some of the proven bounds are tight.

Applicability

Lastly, some of the proposed algorithms are efficient enough to be used with realistic
data: images (Chapter 6) and a speech corpus (Chapter 7). In particular the
iterative and randomized greedy algorithms are efficient in practice.

The three points suggest that cooperative cuts offer both richness and usable
approximate solutions. Still, the presented results also raise a host of open re-
search questions.

A selection of open problems

1. Cooperative cuts provide models with exploitable structure that yield appeal-
ing empirical results. Nevertheless, the structure is not enough to admit exact
solutions or constant approximation factors in polynomial time. Is there a
combinatorial structure (e.g., certain graphs or matroids) that admits better
approximations while retaining sufficient interaction between elements? In
general, continuing the idea of using combinatorial structures for inference
appears to be an interesting direction to pursue.

2. The approximation factors and the lower bound provided in this thesis ad-
dress general nondecreasing submodular functions. Are there (expressive)
sub-classes of the discussed problems that admit better approximations?
The answer to this question depends on the combination of graph structure
and cost function. While for general graphs, the family of label cost func-
tions is still hard [Zhang et al., 2011], sums of weights and bottleneck costs
f(S) = maxe∈S w(e) are not. The approximation results for specific cases in
[Nikolova, 2010, Goyal and Ravi, 2008, Mittal and Schulz, 2012] might add
to the discussion, as well as the level at which interaction can be detected,
as mentioned in Section 2.3.3.

3. This thesis provides a theoretical foundation for defining energy functions
via cooperative cuts, including models for binary and multi-label discrete
variables, and also continuous regularizing terms. While a selection of appli-
cations is shown, there is much room for further applications of the offered

181

Chapter 9. Conclusion and Outlook

coupling, using general cooperative cut energies or the specific boundary con-
gruity energies. In addition, the combinatorial model itself is applicable, as
indicated e.g. in Section 2.5.

4. We designed online algorithms for submodular-cost combinatorial problems
in the full information setting. An interesting open question is what is achiev-
able for submodular costs and combinatorial constraints with bandit feedback,
where instead of the function oracle, only the evaluation at chosen solutions
is accessible.

In summary, cooperative cuts are one possibility to incorporate higher-order in-
teractions into combinatorial problems. Despite the hardness of the resulting opti-
mization problem, the generality and the empirical results suggest that introducing
and approximating structured variable interactions is a valuable route to take.

182

Appendix A.

Notation

G = (V , E) (structure) graph
E ground set of elements, usually edges in a graph
2E power set of E
n number of nodes
m number of edges and size of the ground set
A,B,C, S, T sets of elements
χA characteristic vector of set A
e an edge
w(S) modular function defined as w(S) =

∑
e∈S w(e)

A+ e A ∪ {e}
A− e A \ {e}
f cost function (a set function)
f̃ Lovász extension of f
f̂ function that approximates f
ρf (A|B) marginal cost of A with respect to B
α approximation factor
G = (V,E) graphical model or auxiliary graph
δ(X) boundary of X ⊆ V : {(u, v) ∈ E|u ∈ X, v /∈ X}
X(x) set of nodes selected by characteristic vector x
Γ(x) boundary induced by binary vector x; Γ(x) = δ(X(x))
E(x) energy function

183

Appendix B.

Further Details

B.1. Derivation of D′(n) (Chapter 3)

In this section, we derive the number D′(n) of modified derangements that was
used to prove MinCoopCut to be NP-hard. A derangement is a permutation,
i.e., a mapping σ : {1, . . . , n} →{ 1, . . . , n}, where no element can be mapped to
itself: σ(i) -= i for all 1 ≤ i ≤ n. We define a relaxed version of a derangement,
where one pre-specified element i′ can be mapped to itself, but no other element
can: σ(i′) ∈ {1, . . . , n}, but σ(i) -= i for all i -= i′. The number D′(n) is the number
of such relaxed derangements given a specific i′.

We derive D′(n) by the method of the forbidden board [Stanley, 1997, pp. 71-
73]. Let, without loss of generality, i′ = n. Then the forbidden board is B =
{(1, 1), (2, 2), . . . , (n − 1, n − 1)}. Let Nj be the number of permutations σ for
which

∣∣{(i,σ (i)}ni=1 ∩B
∣∣ = j; the graph of these permutations coincides with B in

j positions. Furthermore, let rk be the number of k-subsets of B such that no two
elements have a coordinate in common. The polynomial

Nn(x) =
∑

j

Njx
j =

n∑

k=0

rk(n− k)!(x− 1)k (B.1)

gives the desired solution D′(n) = N0 = Nn(0). For the board B above, rk =
(
n−1
k

)
.

Thus,

Nn(x) =
n∑

k=0

rk(n− k)!(x− 1)k (B.2)

=
n∑

k=0

(
n− 1

k

)
(n− k)!(x− 1)k (B.3)

=
n∑

k=0

(n− 1)!

k!(n− 1− k)!
(n− k)!(x− 1)k (B.4)

=
n∑

k=0

(n− 1)!

k!
(n− k)(x− 1)k. (B.5)

Then D′(n) = Nn(0) =
∑n

k=0
(n−1)!

k! (n − k)!(−1)k and D′(n − 1) = Nn−1(0) =∑n−1
k=0

(n−2)!
k! (n− 1− k)!(−1)k.

184

B.2. Expansion moves for general potentials

ψi(a) ψj(a)

ψi(x′
i) ψj(x′

j)

ψij(x′
i, a)

ψij(a, x′
j)

vi vj

(a) x′
i = x′

j

ψij(x′
i, a)

vi vjuij

ψij(a, x′
j)

ψij(x′
i, x

′
j)

ψi(a) ψj(a)

ψi(x′
i) ψj(x′

j)

(b) x′
i -= x′

j

Figure B.1. Graph construction for expanding label a for the approximate energy Ê. If
x′i = a, we set the weight of edge (vi, t) to ∞ rather than to ψi(a), and equally for x′j = a.

B.2. Expansion moves for non-symmetric potentials
(Chapter 5)

In this section, we show an alternative construction for expansion moves that apply
to the approximation Ê of a multi-label cooperative cut energy without assuming
the composite form of Lemma 5.6. This construction is closer to that by [Boykov
et al., 2001]1, with the difference that it does not require symmetry.

The construction in the sequel applies in fact to any type of symmetric or non-
symmetric potential. The only requirement is a triangle inequality for the (uni-
directional) potentials ψij,Γ′ , which is satisfied by M1 and M2. We show it for
M2:

ψij,Γ′(a, b) = wa((vi, vj)) + wb((vj, vi)) (B.6)
≤ wa((vi, vj)) + wc((vj, vi)) + wc((vi, vj)) + wb((vj, vi)) (B.7)
= ψij,Γ′(a, c) + ψij,Γ′(c, b). (B.8)

An expansion move with respect to a label a and a given current assignment x′

finds the best relabeling

xa ∈ argmin Ê(x) s.t. x ∈ X (x′, a).

Lemma 5.5 states that given a current assignment x′ ∈ Ln and any label a, a
minimizer xa ∈ X (x′, a) of Ê can be found via a minimum cut in a graph. We
prove this lemma here without assuming composite potentials.

1We have recently been told that an asymmetric construction was also known to the authors of
that paper but was never published. The construction here is ours.

185

Appendix B. Further Details

Proof (Lemma 5.5). Given a structure graph G = (V , E), we construct an auxiliary
graph G = (V,E). Its nodes consist of the nodes in V , terminal nodes s,t, and
additional auxiliary nodes Va.

For each vi ∈ V , we introduce edges (s, vi) with weight ψi(a) and (vi, t) with
weight ψi(x′

i). If a variable already has label a, x′
i = a, then we set the weight of

edge (vi, t) to infinity, so that node vi will always be in the partition belonging to
t. We will infer a labeling from an (s, t)-cut as follows: if edge (s, vi) is cut, then
we set xi = a, otherwise edge (vi, t) is cut, and we retain the label xi = x′

i. If
the weight w(vi, t) = ∞, then any minimum (s, t)-cut will assign vi to t and yield
xi = a. This proves that any labeling resulting from a minimum cut must be in
X (x′, a).

Now we set the remaining edges such that there is a direct correspondence be-
tween labelings and cuts. In particular, for any assignment x ∈ X (x′, a) the
resulting graph will satisfy

Ê(x) = min
Y⊆Va

w(δ(X(x) ∪ Y)). (B.9)

That means, if we assign each vi ∈ V to s or t according to xi, then we assign the
remaining nodes in G to minimize the corresponding cut.

For each pair vi, vj in V that is connected in G, we introduce connecting edges.
If the current labeling is x′

i = x′
j, then we introduce edges (vi, vj) with weight

ψij(x′
i, a) and (vj, vi) with weight ψij(a, x′

j), as shown in Figure B.1(a). This is the
same construction as in the proof of Lemma 5.6.

If the labels differ in x′, i.e., x′
i -= x′

j, then we introduce an auxiliary node uij ∈ Va,
and construct edges as shown in Figure B.1(b). Enumerating all cuts reveals that
this part of the graph satisfies Equation (B.9) for the pair xi, xj. Table B.1 lists all
those cuts and their costs. For each assignment xi, xj, there are two possibilities
of assigning uij, either to s or to t. One of those cuts is worse, either because its
weight is infinite or thanks to the triangle inequality (B.8). The cost of the better
cut is always equal to the energy Ê(xi, xj). This shows that Equation (B.9) holds.

In summary, Equation (B.9) holds for all pairs xi, xj, and thus for x. As a result,
a minimum cut in G yields a minimum energy labeling, the sought minimizer xa.

186

B.2. Expansion moves for general potentials

to s to t
cut cost

(old label) (new label a)
vi, uij vj ψi(x′

i) + ψj(a) + ψij(x′
i, x

′
j) +∞

5 vi vj, uij ψi(x′
i) + ψj(a) + ψij(x′

i, a)

vj, uij vi ψi(a) + ψj(x′
j) + ψij(x′

i, x
′
j) +∞

5 vj vi, uij ψi(a) + ψj(x′
j) + ψij(a, x′

j)

5 vi, vj, uij — ψi(x′
i) + ψj(x′

j) + ψij(x′
i, x

′
j)

vi, vj uij ψi(x′
i) + ψj(x′

j) + ψij(x′
i, a) + ψij(a, x′

j)

5 — vi, vj, uij ψi(a) + ψj(a)

uij vi, vj ψi(a) + ψj(a) + 2∞

Table B.1. Enumeration of all possible (s, t)-cuts, i.e., assignments of nodes vi, vj , uij
in Figure B.1(b). The preferred cut (for fixed assignments of vi, vj , varying only that of
uij) is marked by a star.

187

Bibliography

A.M. Abdelbar and S.M. Hedetniemi. Approximating MAPs on belief networks is
NP-hard and other theorems. Artificial Intelligence, 102, 1998.

J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An efficient
algorithm for bandit optimization. In Conference on Learning Theory (COLT),
2008.

V. Aggarwal, V. G. Tikekar, and L.-F. Hsu. Bottleneck assignment problem under
categorization. Computers & Operations Research, 13:11–26, 1986.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice Hall, 1993.

C. Allène, J.-Y. Audibert, M. Couprie, and R. Keriven. Some links between ex-
tremum spanning forests, watersheds, and min-cuts. Image and Vision Comput-
ing, 2009.

S. Amghibech. Eigenvalues of the discrete p-Laplacian for graphs. Ars Combin.,
67, 2003.

E. Angel, E. Bampis, and L. Gourvès. On the minimum hitting set of bundles
problem. Theoretical Computer Science, 410(45):4534–4542, 2009.

A. Atamtürk and V. Narayanan. Polymatroids and mean-risk minimization in
discrete optimization. Operations Research Letters, 36(5):618–622, 2008.

J.-Y. Audibert, S. Bubeck, and G. Lugosi. Minimax policies for combinatorial
prediction games. In Conference on Learning Theory (COLT), 2011.

I. Averbakh and O. Berman. Categorized bottleneck-minisum path problems on
networks. Operations Research Letters, 16:291–297, 1994.

B. Awerbuch and R. D. Kleinberg. Adaptive routing with end-to-end feedback:
distributed learning and geometric approaches. In Symposium on Theory of
Computing (STOC), 2004.

F. Bach. Structured sparsity-inducing norms through submodular functions. In
Advances in Neural Information Processing Systems (NIPS), 2010.

F. Bach. Shaping level sets with submodular functions. In Advances in Neural
Information Processing Systems (NIPS), 2011.

188

Bibliography

S. Bagon. Matlab wrapper for graph cut, December 2006. http://www.wisdom.
weizmann.ac.il/~bagon.

M. F. Balcan and A. Blum. Approximation algorithms and online mechanisms for
item pricing. Theory Comput., 3(9):179–195, 2007.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM J. Imaging Sciences, 2(1), 2009.

A. Billionet and M. Minoux. Maximizing a supermodular pseudo-boolean function:
a polynomial algorithm for cubic functions. Discrete Applied Mathematics, 12
(1):1–11, 1985.

J. Bilmes. Dynamic graphical models – an overview. IEEE Signal Processing
Magazine, 27(6):29–42, 2010.

J. Bilmes and C. Bartels. On triangulating dynamic graphical models. In Un-
certainty in Artificial Intelligence (UAI), pages 47–56, Acapulco, Mexico, 2003.
Morgan Kaufmann Publishers.

A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Interactive image segmen-
tation using an adaptive GMMRF model. In Europ. Conf. on Computer Vision
(ECCV), 2004.

E. Boros and P. Hammer. Pseudo-boolean optimization. Discrete Applied Mathe-
matics, 123(1-3):155–225, 2002.

Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary and region
segmentation of objects in n-d images. In Int. Conf. on Computer Vision (ICCV),
2001.

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 26(9):1124–1137, 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Trans. on Pattern Analysis and Machine Intelligence, 23, 2001.

T. Bühler and M. Hein. Spectral clustering based on the graph p-Laplacian. In
Proc. Int. Conf. on Machine Learning (ICML), 2009.

T.N. Bui and C. Jones. Finding good approximate edge and vertex partitions is
np-hard. Information Processing Letters, 42(3):153–159, 1992.

F. Bunke, H. W. Hamacher, F. Maffioli, and A. Schwahn. Minimum cut bases in
undirected networks. Discrete Applied Mathematics, 158(4), 2010.

189

http://www.wisdom.weizmann.ac.il/~bagon
http://www.wisdom.weizmann.ac.il/~bagon

Bibliography

G. Calinescu, S. Kapoor, A. Olshevsky, and A. Zelikovsky. Network lifetime and
power assignment in ad hoc wireless networks. In Proc. Europ. Symp. on Algo-
rithms (ESA), 2003.

G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a submodular set
function subject to a matroid constraint. SIAM J. Computing, Special Issue for
STOC 2008, 40(6), 2011.

N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. In Conference on Learning
Theory (COLT), 2009.

A. Chambolle and J. Darbon. On total variation minimization and surface evolution
using parametric maximum flows. Int. Journal of Computer Vision, 84(3), 2009.

V. Chandrasekaran, N. Srebro, and P. Harsha. Complexity of inference in graphical
models. In Uncertainty in Artificial Intelligence (UAI), 2008.

G. Charpiat. Exhaustive family of energies minimizable exactly by a graph cut. In
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2011.

C. Chekuri and A. Ene. Approximation algorithms for submodular multiway parti-
tion. In Proc. IEEE Symp. on Foundations of Computer Science (FOCS), 2011a.

C. Chekuri and A. Ene. Submodular cost allocation problems and applications. In
Int. Colloquium on Automata, Languages and Programming (ICALP), 2011b.

C. Chekuri, J. Vondrák, and R. Zenclusen. Dependent randomized rounding via
exchange properties of combinatorial structures. In Proc. IEEE Symp. on Foun-
dations of Computer Science (FOCS), 2010.

T. S. Cho, N. Joshi, C. L. Zitnick, S. B. Kang, R. Szeliski, and W. Freeman. A
content-aware image prior. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2010.

L Choquet. Theory of capacities. Ann. Inst. Fournier Grenoble, 5, 1955.

F. A. Chudak and K. Nagano. Efficient solutions to relaxations of combinato-
rial problems with submodular penalties via the Lovász extension and non-
smooth convex optimization. In Proc. SIAM-ACM Symp. on Discrete Algorithms
(SODA), 2007.

J. Chuzhoy and J.S. Naor. The hardness of metric labeling. In Proc. IEEE Symp.
on Foundations of Computer Science (FOCS), 2004.

D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. Supermodular functions and
the complexity of max-csp. Discrete Applied Mathematics, 2005.

190

Bibliography

P. L. Combettes and J.-C. Pesquet. Fixed-Point Algorithms for Inverse Problems
in Science and Engineering, chapter Proximal splitting methods in signal pro-
cessing, pages 185–212. Springer, 2011.

M. Conforti and G. Cornuéjols. Submodular set functions, matroids and the
greedy algorithm: tight worst-case bounds and some generalizations of the Rado-
Edmonds theorem. Discrete Applied Mathematics, 7, 1984.

C. Couprie, L. Grady, L. Najman, and H. Talbot. Power watershed: A unifying
graph-based optimization framework. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 2010.

C. Couprie, L. Grady, H. Talbot, and L. Najman. Combinatorial continuous max-
imum flow. SIAM J Imaging, pages 905–930, 2011.

J. Cousty, G. Bertrand, L. Najman, and M. Couprie. Watershed cuts: Minimum
spanning forests and the drop of water principle. IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence, 2009.

W. H. Cunningham. Decomposition of submodular functions. Combinatorica, 3
(1):53–68, 1983.

W. H. Cunningham. Testing membership in matroid polyhedra. J. Combinatorial
Theory B, 36:161–188, 1984.

W. H. Cunningham. On submodular function minimization. Combinatorica, 3:
185–192, 1985a.

W. H. Cunningham. Minimum cuts, modular functions, and matroid polyhedra.
Networks, 1985b.

V. Dani, T. P. Hayes, and S. M. Kakade. The price of bandit information for online
optimization. In Advances in Neural Information Processing Systems (NIPS),
2008.

G.B. Dantzig and D.R. Fulkerson. On the max flow min cut theorem of networks.
Technical Report P-826, The RAND Corporation, 1955.

G.B. Dantzig and D.R. Fulkerson. Linear Inequalities and related systems, chapter
On the max-flow min-cut theorem of networks. Princeton, 1956.

A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset
selection, sparse approximation and dictionary selection. In Proc. Int. Conf. on
Machine Learning (ICML), 2011.

A. Delong, A. Osokin, H. N. Isack, and Y. Boykov. Fast approximate energy
minimization with label costs. Int. Journal of Computer Vision, 2011.

191

Bibliography

J. Edmonds. Minimum partition of a matroid into independent subsets. Journal
of Research of the National Bureau of Standards—B. Mathematics and Physics,
69B(1–2):67–72, 1965.

J. Edmonds. Combinatorial Structures and their Applications, chapter Submodular
functions, matroids and certain polyhedra, pages 69–87. Gordon and Breach,
1970.

N. El-Zehiry and L. Grady. Fast global optimization of curvature. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2010.

U. Feige, R. Krauthgamer, and K. Nissim. On cutting a few vertices from a graph.
Discrete Applied Mathematics, 127:643–649, 2003.

U. Feige, V.S. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular
functions. SIAM Journal on Computing, 40(4), 2011.

L. Fleischer. Recent progress in submodular function minimization. Mathematical
Programming Society Newsletter, (64):1–11, 2000.

L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Technical Report
P-605, The RAND Corporation, 1954.

L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956.

A. Frank. Szubmoduláris függvények a kombinatorikus optimalizálásban (Submodu-
lar functions in combinatorial optimization). PhD thesis, University of Szeged,
1989.

A. Frank. Surveys in Combinatorics, volume 187 of London Mathematical Society
Lecture Note Series, chapter Applications of submodular functions, pages 85–136.
London Mathematical Society, 1993.

D. Freedman and P. Drineas. Energy minimization via graph cuts: Settling what is
possible. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2005.

S. Fujishige. Foreword. Discrete Applied Mathematics, 131(2):253–254, 2003.

S. Fujishige. Submodular Functions and Optimization. Number 58 in Annals of
Discrete Mathematics. Elsevier Science, 2nd edition, 2005.

S. Fujishige and S. Isotani. A submodular function minimization algorithm based
on the minimum-norm base. Pacific Journal of Optimization, 7:3–17, 2011.

S. Fujishige and S. Iwata. Minimizing a submodular function arising from a concave
function. Discrete Applied Mathematics, 92, 1999.

192

Bibliography

S. Fujishige and S. B. Patkar. Realization of set functions as cut functions of graphs
and hypergraphs. Discrete Mathematics, 226:199–210, 2001.

S. Fujishige, T. Hayashi, and S. Isotani. The minimum norm-point algorithm
applied to submodular function minimization and linear programming. Technical
Report Preprint RIMS-1571, Research Institute for the Mathematical Sciences,
Kyoto University, 2006.

G. Gallo and B. Simeone. On the supermodular knapsack problem. Mathematical
Programming, 45:295–309, 1988.

G. Gallo, M.D. Grigoriadis, and R.E. Tarjan. A fast parametric maximum flow
algorithm and applications. SIAM J Computing, 18(1), 1989.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

I. Giotis and V. Guruswami. Correlation clustering with a fixed number of clusters.
Theory of Computing, 2:249–266, 2006.

J.J. Godfrey, E.C. Holliman, and J. McDaniel. Switchboard: Telephone speech
corpus for research and development. In Proc. ICASSP, volume 1, pages 517–
520, 1992.

G. Goel, C. Karande, P. Tripati, and L. Wang. Approximability of combinatorial
problems with multi-agent submodular cost functions. In Proc. IEEE Symp. on
Foundations of Computer Science (FOCS), 2009.

G. Goel, P. Tripathi, and L. Wang. Combinatorial problems with discounted price
functions in multi-agent systems. In Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), 2010.

M. X. Goemans and J. A. Soto. Symmetric submodular function minimization
under hereditary family constraints. arXiv:1007.2140v1, 2010.

M. X. Goemans, N. J. A. Harvey, R. Kleinberg, and V. S. Mirrokni. On learning
submodular functions – a preliminary draft. Unpublished Manuscript, 2008.

M.X. Goemans, N. J. A. Harvey, S. Iwata, and V. S. Mirrokni. Approximating
submodular functions everywhere. In Proc. SIAM-ACM Symp. on Discrete Al-
gorithms (SODA), 2009.

D. Golovin and A. Krause. Adaptive submodularity: A new approach to active
learning and stochastic optimization. In Conference on Learning Theory (COLT),
2010.

193

Bibliography

D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in
active learning and stochastic optimization. Journal of Artificial Intelligence
Research (JAIR), 42:427–486, 2011.

V. Goyal and R. Ravi. An FPTAS for minimizing a class of low-rank quasi-concave
functions over a convex domain. Technical Report 366, Tepper School of Business,
Carnegie Mellon University, 2008.

L. Grady. Random walks for image segmentation. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 28(11), 2006.

D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori
estimation for binary images. Journal of the Royal Statistical Society, 51(2),
1989.

M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid algorithm and its conse-
quences in combinatorial optimization. Combinatorica, 1:499–513, 1981.

M. Grötschel, L. Lovász, and A. Schrijver. Corrigendum to the paper “the ellipsoid
algorithm and its consequences in combinatorial optimization”. Combinatorica,
4:291–295, 1984.

M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinato-
rial Optimization. Springer, 1988.

A. Guillory and J. A. Bilmes. Simultaneous learning and covering with adversarial
noise. In Proc. Int. Conf. on Machine Learning (ICML), Bellevue, Washington,
2011.

J. Hannan. Approximation to Bayes risk in repeated play. In Contributions to the
Theory of Games, volume III. 1957.

P. Hansen and B. Simeone. A class of quadratic pseudoboolean functions whose
maximization is reducible to a network flow problem. Technical Report CORR
79-39, University of Waterloo, 1979.

N. J. A. Harvey. Matchings, matroids and submodular functions. PhD thesis,
Massachusetts Institute of Technology, 2008.

R. Hassin. Minimum cost flow with set constraints. Networks, 12:1–21, 1982.

R. Hassin, J. Monnot, and D. Segev. Approximation algorithms and hardness
results for labeled connectivity problems. Journal of Combinatorial Optimization,
14(4):437–453, 2007.

E. Hazan and S. Kale. Online submodular minimization. In Advances in Neural
Information Processing Systems (NIPS), 2009.

194

Bibliography

D. P. Helmbold and M. K. Warmuth. Learning permutations with exponential
weights. JMLR, 10:1705–1736, 2009.

D. Hochbaum. The pseudoflow algorithm: a new algorithm for the maximum flow
problem. Operations Research, 58(4), 2008.

D. Hochbaum. Submodular problems – approximations and algorithms.
arXiv:1010.1945.v1, 2010.

D. S. Hochbaum and A. Pathria. The bottleneck graph partitioning problem. Net-
works, 28(4):221–225, 1996.

D. S. Hochbaum and D. B. Shmoys. A unified aproach to approximation algorithms
for bottleneck problems. Journal of the ACM, 33(3):533–550, 1986.

M. Iri and S. Fujishige. Use of matroid theory in operations research, circuits and
systems theory. Int. Journal of Systems Sciences, 12(1):27–54, 1981.

H. Ishikawa. Higher order clique reduction in binary cut. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2009.

P. Ivănescu (Hammer). Some network flow problems solved with pseudo-boolean
programming. Operations Research, 13:388–399, 1965.

S. Iwata and K. Nagano. Submodular function minimization under covering con-
straints. In Proc. IEEE Symp. on Foundations of Computer Science (FOCS),
2009.

S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. Journal of the ACM, 48:761–
777, 2001.

S. Jegelka, H. Lin, and J. Bilmes. On fast approximate submodular minimization.
In Advances in Neural Information Processing Systems (NIPS), 2011.

S. Jha, O. Sheyner, and J.M. Wing. Two formal analyses of attack graphs. In Proc.
of the 15th Computer Security Foundations Workshop, pages 49–63, 2002.

A. Barbero Jimenez and S. Sra. Fast algorithms for total-variation based optimiza-
tion. Technical Report 194, Max Planck Institute for Biological Cybernetics,
2010.

C. Jordan. Nouvelles observations sur les lignes de faites de et de thalweg. Comptes
Rendus des Séances de l’Académie des Sciences, 75:1023–1025, 1872.

S. Kakade, A. T. Kalai, and K. Ligett. Playing games with approximation algo-
rithms. SIAM J. Comput., 39(3):1088–1106, 2009.

195

Bibliography

A.T. Kalai and S. Vempala. Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71:26–40, 2005.

D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through
a social network. In Proc. 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining, 2003.

S. Khot. Ruling out PTAS for graph min-bisection, densest subgraph and bipartite
clique. In Proc. IEEE Symp. on Foundations of Computer Science (FOCS), pages
136–145, 2004.

J. Kleinberg and É. Tardos. Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and markov random fields. In Proc.
IEEE Symp. on Foundations of Computer Science (FOCS), 1999.

T. Kloks. Treewidth: Computations and Approximations. Springer, 1994.

P. Kohli and M.P. Kumar. Energy minimization for linear envelope MRFs. In
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2010.

P. Kohli, M. P. Kumar, and P. Torr. P3 & beyond: solving energies with higher-
order cliques. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2007.

P. Kohli, M.P. Kumar, and P.H.S. Torr. P3 & beyond: Move making algorithms for
solving higher order functions. IEEE Trans. on Pattern Analysis and Machine
Intelligence, pages 1645–1656, 2009a.

P. Kohli, L. Ladický, and P.H.S. Torr. Robust higher order potentials for enforc-
ing label consistency. International Journal of Computer Vision, 82(3):302–324,
2009b.

V. Kolmogorov. Minimizing a sum of submodular functions. Discrete Applied
Mathematics, 2012. accepted.

V. Kolmogorov and C. Rother. Minimizing nonsubmodular functions with graph
cuts–a review. IEEE Trans. on Pattern Analysis and Machine Intelligence, 29
(7):1274–1279, 2007.

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? IEEE Trans. on Pattern Analysis and Machine Intelligence, 26(2):147–159,
2004.

N. Komodakis and N. Paragios. Beyond pairwise energies: efficient optimization
of higher-order energies. In IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2009.

196

Bibliography

W.M. Koolen, M. K. Warmuth, and J. Kivinen. Hedging structured concepts. In
Conference on Learning Theory (COLT), 2010.

C. Koufogiannakis and N. E. Young. Greedy ∆-approximation algorithm for cov-
ering with arbitrary constraints and submodular costs. In Int. Colloquium on
Automata, Languages and Programming (ICALP), 2009.

A. Krause. Matlab toolbox for submodular function optimization, 2009. http:
//www.cs.caltech.edu/~krausea/sfo/.

A. Krause, B. McMahan, C. Guestrin, and A. Gupta. Robust submodular obser-
vation selection. Journal of Machine Learning Research, 9:2761–2801, 2008.

A. Krokhin and B. Larose. Maximizing supermodular functions on product lattices,
with applications to maximum constraint satisfaction. SIAM Journal on Discrete
Math., 22(1):312–328, 2008.

S. O. Krumke and H.-C. Wirth. On the minimum label spanning tree problem.
Information Processing Letters, 66(2):81–85, 1998.

L. Ladický, C. Russell, P. Kohli, and P.H.S. Torr. Graph cut based inference with
co-occurrence statistics. In Europ. Conf. on Computer Vision (ECCV), 2010.

E. L. Lawler and C. U. Martel. Computing maximal “Polymatroidal” network flows.
Mathematics of Operations Research, 7(3):334–347, 1982.

B. Lehmann, D. J. Lehmann, and N. Nisan. Combinatorial auctions with decreasing
marginal cost. Games and Economic Behavior, 55:270–296, 2006.

V. Lempitsky, P. Kohli, C. Rother, and T. Sharp. Image segmentation with a
bounding box prior. In Int. Conf. on Computer Vision (ICCV), 2009.

V. Lempitsky, C. Rother, S. Roth, and A. Blake. Fusion moves for Markov Random
Field optimization. IEEE Trans. on Pattern Analysis and Machine Intelligence,
32(8):1392–1405, 2010.

H. Lin and J. Bilmes. An application of the submodular principal partition to
training data subset selection. In NIPS workshop on Discrete Optimization in
Machine Learning, 2010.

H. Lin and J. Bilmes. Optimal selection of limited vocabulary speech corpora. In
Proc. Interspeech, 2011.

L. Lovász. Mathematical programming – The State of the Art, chapter Submodular
Functions and Convexity, pages 235–257. Springer, 1983.

G. Lugosi, O. Papaspiliopoulos, and G. Stoltz. Online multi-task learning with
hard constraints. In Conference on Learning Theory (COLT), 2009.

197

http://www.cs.caltech.edu/~krausea/sfo/
http://www.cs.caltech.edu/~krausea/sfo/

Bibliography

J. Maxwell. On hills and dales. Philosophical Magazine, 4/40:421–427, 1870.

S. T. McCormick. Handbook on Discrete Optimization, chapter Submodular Func-
tion Minimization, pages 321–391. Elsevier, 2006. updated version 3a (2008).

I. Milis. Task assignment in distributed systems using network flow methods. Proc.
Conf. on Combinatorics and Computer Science (CCS 95), pages 396–405, 1996.

S. Mittal and A. Schulz. An FPTAS for optimizing a class of low-rank functions
over a polytope. Mathematical Programming, 2012.

J. Monnot. The labeled perfect matching in bipartite graphs. Information Process-
ing Letters, 96:81–88, 2005.

H. Nagamochi and T. Ibaraki. A note on minimizing submodular functions. Infor-
mation Processing Letters, 67:239–244, 1998.

K. Nagano, Y. Kawahara, and K. Aihara. Size-constrained submodular minimiza-
tion through minimum norm base. In Proc. Int. Conf. on Machine Learning
(ICML), 2011.

M. Narasimhan and J. Bilmes. A submodular-supermodular procedure with appli-
cations to discriminative structure learning. In Uncertainty in Artificial Intelli-
gence (UAI), 2005.

M. Narasimhan, N. Jojic, and J. Bilmes. Q-clustering. In Advances in Neural
Information Processing Systems (NIPS), Vancouver, Canada, December 2006.

H. Narayanan. Submodular Functions and Electrical Networks. Elsevier Science,
1997.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations
for maximizing submodular functions - i. Mathematical Programming, 14:265–
294, 1978.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-
gramming, 103(1):127–152, 2004.

E. Nikolova. Approximation algorithms for reliable stochastic combinatorial opti-
mization. In APPROX, 2010.

J. B. Orlin. A faster strongly polynomial time algorithm for submodular function
minimization. Mathematical Programming, 118(2):237–251, 2009.

J. G. Oxley. Matroid Theory. Oxford University Press, 1992.

C. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Dover Publica-
tions, 1998.

198

Bibliography

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 2nd printing edition, 1988.

J.C. Picard and H.D. Ratliff. Minimum cuts and related problems. Networks, 5
(4):357–370, 1975.

M. Preissmann and A. Sebő. Research Trends in Combinatorial Optimization,
chapter Graphic Submodular Function Minimization: A Graphic Approach and
Applications, pages 365–385. Springer, 2009.

A. P. Punnen. Traveling salesman problem under categorization. Operations Re-
search Letters, 12:89–95, 1992.

A. P. Punnen. On bottleneck assignment problems under categorization. Comput-
ers & Operations Research, 31:151–154, 2004.

M. Queyranne. Minimizing symmetric submodular functions. Mathematical Pro-
gramming, 82:3–12, 1998.

S. Ramalingam, P. Kohli, K. Alahari, and P. Torr. Exact inference in multi-label
crfs with higher order cliques. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2008.

S. Ramalingam, C. Russell, L. Ladicky, and P. H. S. Torr. Efficient minimiza-
tion of higher order submodular functions using monotonic boolean functions.
arXiv:1109.2304, 2011.

M. B. Richey and A. P. Punnen. Minimum perfect bipartite matchings and span-
ning trees under categorization. Discrete Applied Mathematics, 39:147–153, 1992.

C. Rother, V. Kolmogorov, and A. Blake. Grabcut – interactive foreground extrac-
tion using iterated graph cuts. In SIGGRAPH, 2004.

L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, (60), 1992.

T. Schoenemann, F. Kahl, and D. Cremers. Curvature regularity for region-based
image segmentation and inpainting: A linear programming relaxation. In Int.
Conf. on Computer Vision (ICCV), 2009.

A. Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. Combin. Theory Ser. B, 80:346–355, 2000.

A. Schrijver. Combinatorial Optimization. Springer, 2004.

C. Seshadri and J. Vondrák. Is submodularity testable? arXiv:1008.0831v1, 2010.

199

Bibliography

C.R. Seshan. Some generalizations of the time minimizing assignment problem.
Journal of the Operational Research Society, 32:489–494, 1981.

S. Shalev-Shwartz and V. Singh. Online submodular maximization. manuscript,
Hebrew University, 2011.

R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. In Proc.
28th Workshop on Graph Theory (WG ’02), pages 379–390, 2002.

L. S. Shapley. Cores of convex games. International Journal of Game Theory, 1
(1):11–26, 1971.

A.K. Sinop and L. Grady. A seeded image segmentation framework unifying graph
cuts and random walker which yields a new algorithm. In Int. Conf. on Computer
Vision (ICCV), 2007.

R. P. Stanley. Enumerative Combinatorics, volume I of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 1997.

P. Stobbe and A. Krause. Efficient minimization of decomposable submodular
functions. In Advances in Neural Information Processing Systems (NIPS), 2010.

G. Strang. l1 and l∞ approximation of vector fields in the plane. In Nonlinear
Partial Differential Equations in Applied Science; Proceedings of the U.S. - Japan
Seminar, volume 5 of Lecture Notes in Num. Appl. Anal., pages 273–288, 1982.

G. Strang. Maximum flows through a domain. Mathematical Programming, pages
123–143, 1983.

G. Strang. Maximum flows and minimum cuts in the plane. Journal of global
optimization, 2008.

M. Streeter and D. Golovin. An online algorithm for maximizing submodular
functions. In Advances in Neural Information Processing Systems (NIPS), 2008.

M. Streeter, D. Golovin, and A. Krause. Online learning of assignments. In Ad-
vances in Neural Information Processing Systems (NIPS), 2009.

Z. Svitkina and L. Fleischer. Submodular approximation: Sampling-based algo-
rithms and lower bounds. In Proc. IEEE Symp. on Foundations of Computer
Science (FOCS), 2008.

E. Tardos, C. A. Tovey, and M. A. Trick. Layered augmenting path algorithms.
Mathematics of Operations Research, 11(2), 1986.

S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based image segmenta-
tion with connectivity priors. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2008.

200

Bibliography

B. von Hohenbalken. A finite algorithm to maximize certain pseudoconcave func-
tions on polytopes. Mathematical Programming, 8, 1975.

U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17,
2007.

J. Vondrák. Submodularity in Combinatorial Optimization. PhD thesis, Charles
University, 2007.

J. Vondrák. Optimal approximation for the submodular welfare problem in the
value oracle model. In Symposium on Theory of Computing (STOC), 2008a.

J. Vondrák. Submodularity and curvature: the optimal algorithm. RIMS
Kôkyûroku Bessatsu, 2008b.

J. Vondrák. email communication, 2010.

J. Vondrák. Symmetry and approximability of submodular maximization problems.
arXiv:1110.4860v1, 2011.

D. Wagner and F. Wagner. Between min cut and graph bisection. In Proc. IEEE
Symp. on Foundations of Computer Science (FOCS), pages 744–750, 1993.

P.-J. Wan, G. Călinescu, X.-Y. Li, and O. Frieder. Minimum-energy broadcasting
in static ad hoc wireless networks. Wireless networks, 2002.

P.-J. Wan, D.-Z. Du, P. Pardalos, and W. Wu. Greedy approximations for minimum
submodular cover with submodular cost. Comput Optim Appl, 45:463–474, 2010.

D.J.A. Welsh. Matroid Theory. Academic Press, 1976.

H. Whitney. On the abstract properties of linear dependence. American Journal
of Mathematics, 57(3):509–533, 1935.

J.E. Wieselthier, G.D. Nguyen, and A. Ephremides. On the construction of energy-
efficient broadcast and multicast trees in wireless network. In IEEE Infocom,
2000.

P. Wolfe. Finding the nearest point in a polytope. Mathematical Programming, 11:
128–149, 1976.

L. Wolsey. An analysis of the greedy set cover algorithm for the submodular set
covering problem. Combinatorica, 2(4), 1982.

S. Yuan, S. Varma, and J. P. Jue. Minimum-color path problems for reliability in
mesh networks. In IEEE Infocom, 2005.

201

Bibliography

B. Zalesky. Efficient determination of Gibbs estimators with submodular energy
functions. arXiv:math/0304041, 2003.

P. Zhang, Cai J.-Y, L.-Q. Tang, and W.-B. Zhao. Approximation and hardness re-
sults for label cut and related problems. Journal of Combinatorial Optimization,
2011.

M. Zinkevich. Online convex programming and infinitesimal gradient ascent. In
Proc. Int. Conf. on Machine Learning (ICML), 2003.

S. Z̆ivný and P.G. Jeavons. Classes of submodular constraints expressible by graph
cuts. Constraints, 15:430–452, 2010. ISSN 1383-7133.

S. Z̆ivný, D. A. Cohen, and P. G. Jeavons. The expressive power of binary sub-
modular functions. Discrete Applied Mathematics, 157(15):3347–3358, 2009.

202

	1 Introduction
	1.1 Summary
	1.1.1 Part I: Algorithms and complexity of MinCoopCut
	1.1.2 Part II: Applications of CoopCut
	1.1.3 Part III: Sequential decision problems beyond linear costs

	1.2 Publications contained in this thesis

	2 Background
	2.1 Notation
	2.2 Polynomiality and approximations
	2.3 Submodular functions
	2.3.1 Polyhedra and extensions
	2.3.2 Matroids, polymatroids and submodular functions
	2.3.3 Examples of submodular functions
	2.3.4 Operations and construction of additional submodular functions
	2.3.5 Minimizing submodular functions

	2.4 Graph cuts
	2.5 Submodular-cost combinatorial problems

	3 Hardness of MinCoopCut
	3.1 Related hardness results
	3.2 Minimum Cooperative (s,t)-Cut is NP-hard
	3.3 Lower bound on the approximation factor
	3.4 Discussion

	4 Approximation Algorithms
	4.1 Techniques for approximations: an overview
	4.1.1 Approximations of the cost function
	4.1.2 Convex relaxation or re-formulation of constraints
	4.1.3 Greedy approximations

	4.2 Approximating the cost function
	4.2.1 Generic approximation
	4.2.2 A structural, locally exact approximation
	4.2.3 Iterative approximation

	4.3 Simplifying the constraints
	4.3.1 Greedy covering
	4.3.2 Relaxation

	4.4 An empirical comparison and worst cases
	4.4.1 Benchmark data for average cases
	4.4.2 Worst-case examples

	4.5 Summary and discussion

	5 Cooperative Cuts and Energy Minimization
	5.1 Graph cuts, probabilistic models and inference
	5.1.1 Multi-label energies and move-making algorithms

	5.2 Energy functions induced by cooperative cuts
	5.2.1 Properties of cooperative cut energies

	5.3 Expressive power
	5.3.1 Nonnegative nondecreasing submodular functions
	5.3.2 Pn functions
	5.3.3 Pn Potts model
	5.3.4 Robust Pn potentials
	5.3.5 Co-occurrences of object labels

	5.4 Multi-label cooperative cut energies
	5.4.1 Models of multi-label cooperative cut energies
	5.4.2 A pairwise approximation
	5.4.3 Expansion moves for the approximation E"0362E'
	5.4.4 Cooperative expansion moves

	5.5 Summary and discussion

	6 Applications in Computer Vision
	6.1 Coupling edges for image segmentation
	6.1.1 Problems of cut-based algorithms
	6.1.2 Structured cooperation for congruous boundaries
	6.1.3 Optimization
	6.1.4 Experiments
	6.1.5 Results: shrinking bias and the effect of the coefficient
	6.1.6 Results: fixed parameter for each data set
	6.1.7 Results: influence of the edge groups
	6.1.8 Results: best parameters per image
	6.1.9 Results: Grabcut benchmark
	6.1.10 Summary and outlook

	6.2 Relaxation and regularization
	6.2.1 Stating MinCoopCut as regularized minimization
	6.2.2 Edge-norms
	6.2.3 A proximal splitting algorithm
	6.2.4 Special cases of edge-norms in the literature

	6.3 Summary and discussion

	7 Representation and Approximate Minimization
	7.1 Submodular function minimization
	7.1.1 The minimum norm point algorithm

	7.2 Representations for efficient minimization
	7.2.1 Graph cuts
	7.2.2 Concave functions

	7.3 Submodular functions as cooperative cuts
	7.3.1 Basic construction
	7.3.2 Submodular edge weights

	7.4 Approximate optimization
	7.4.1 Improvement via summarizations
	7.4.2 Parametric constructions for special cases

	7.5 Experiments
	7.6 Summary and discussion

	8 Submodular Online Problems
	8.1 Introduction
	8.1.1 Related work
	8.1.2 Three types of algorithms

	8.2 Relaxations
	8.3 Approximations of the cost function
	8.3.1 Approximations fitting Algorithm 8

	8.4 Label costs and related functions
	8.4.1 Label costs and approximations: a cover viewpoint
	8.4.2 Online algorithm
	8.4.3 Multiple labels and truncated costs

	8.5 Summary and discussion

	9 Conclusion and Outlook
	A Notation
	B Further Details
	B.1 Derivation of D'(n) (Chapter 3)
	B.2 Expansion moves for general potentials

	Bibliography

