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Abstract—The one-time pad, the mother of all encryption
schemes, is well known to be information-theoretically secure,
in contrast to most encryption schemes used in practice, which
are at most computationally secure. In this paper, we focus on
another, completely different aspect in which the one-time pad
is superior to normal encryption, and which surfaces only when
the receiver (not only the eavesdropper) is considered potentially
dishonest, as can be the case in a larger protocol context in which
encryption is used as a sub-protocol.

For example, such a dishonest receiver (who is, say, coerced
by the eavesdropper) can in normal encryption verifiably leak the
message to the eavesdropper by revealing the secret key. While
this leakage feature can provably not be avoided completely, it is
more limited if the one-time pad is used. We use the constructive
cryptography framework to make these statements precise.

I. INTRODUCTION

This paper follows the paradigm of constructive cryptogra-
phy introduced in [1], [2]. A central idea behind it is that a
cryptographic primitive or protocol can be seen as providing
a construction of a so-called ideal resource from a so-called
real resource, for a well-defined notion of construction. One
main advantage of this approach is that when designing a
complex protocol involving several cryptographic primitives
or sub-protocols, one defines the security by the specification
of the ideal resource one obtains when using the protocol
(e.g. a secure channel), and one can therefore directly use
this ideal resource in the construction of a new protocol for a
more advanced ideal resource (e.g. a voting functionality). A
second main advantage is that the security proof of the overall
protocol follows directly, due to a composition theorem of
the framework, from the proofs for the individual construction
steps, i.e., for the individual cryptographic primitives.

In this approach, the purpose of encryption is to construct
a secure channel from a sender Alice to a receiver Bob from
a shared secret key and an authenticated channel. Given a
key as long as the message, Alice can encrypt her message
by bitwise XORing the key to the message, which yields the
corresponding ciphertext. She then sends this ciphertext over
the channel to Bob, who can recover the message by bitwise
XORing the key to the ciphertext. If the key is uniformly
random and used only once, this cryptosystem is called one-
time pad. It was shown in [3] that an eavesdropper Eve does
not learn anything about the message given only the ciphertext.
This means constructively that the one-time pad can be used
to construct a secure channel from a shared secret key and
an authenticated channel if Eve is the only dishonest party,

regardless of her computational power.
This analysis assumes that Alice and Bob are always honest,

which is a standard assumption when analyzing symmetric
encryption schemes. However, when channels are used in a
more complex system with several parties, this assumption
does not always hold. In this paper, we analyze the one-
time pad when Bob is potentially dishonest. This allows us
to understand situations in which Bob is coerced to give
the secret key to another party or in which Bob wants to
betray Alice by convincing a third party that she has sent a
specific message. If Bob sends Eve the key and Alice sends
a message to Bob, Eve can learn the message. Of course,
Bob can just send Eve the message, but if she does not trust
him, there is no reason for her to believe that he sent her the
correct message. However, receiving a key that later decrypts
the ciphertext to a meaningful message is more convincing
because it might be much harder or even impossible for Bob
to find such key. Hence, the resource generally constructed
by encryption schemes cannot exclude that Bob convincingly
leaks the message to Eve.

It is known that the one-time pad shares a feature with so-
called deniable encryption schemes introduced in [4] which
allows one to find a key for each pair of message and ciphertext
such that the ciphertext decrypts to the given message with this
key. Hence, once Bob knows the message, he can create a fake
key that yields an arbitrary message of his choice. Intuitively,
this means that receiving a key from a dishonest Bob after a
message was sent is meaningless. We show that this intuition
can be formalized in the constructive cryptography framework
as follows: The one-time pad can be used to construct a
resource which potentially allows Bob at the beginning to
decide whether he wants to leak the message to Eve or
not. However, he has to make this decision before Alice
sends the message, i.e., his choice to leak the message or
not cannot depend on the message. In contrast, when using
ordinary encryption, one cannot exclude that Bob is still able
to verifiably leak the message after it was sent. Hence, in
addition to perfect secrecy, the one-time pad provides stronger
guarantees than other encryption schemes.

The main contribution of this work is the description of
an ideal resource that can be constructed using the one-time
pad in a setting with a potentially dishonest receiver. This is
the first result of this form involving more than one potentially
dishonest party, which is of independent interest as a new type
of example in the constructive cryptography framework.



II. PRELIMINARIES

A. Resources and Converters

The results in this paper are formulated using the theory
of constructive cryptography. In this section, we introduce the
relevant concepts, following [2] and the exposition given in
[5]. We consider different types of systems, which are objects
with interfaces via which they interact with their environment.
Interfaces are denoted by uppercase letters. One can compose
two systems by connecting one interface of each system. The
composed object is again a system.

Two types of systems we consider here are resources and
converters. Resources are denoted by small capitals or special
symbols such as •−−→ and have a finite set of interfaces
I. Resources with interface set I are called I-resources.
Converters have one inner and one outer interface and are
denoted by lowercase Greek letters. The inner interface of a
converter α can be connected to interface I ∈ I of a resource
R. The outer interface of α then serves as the new interface
I of the composed resource, which is denoted by αIR. We
also write αIR instead of αIIR for a converter αI . For a
vector of converters α = (αI1 , . . . , αIn) with I1, . . . , In ∈ I
and a set P ⊆ {I1, . . . , In} of interfaces, αPR denotes the
I-resource that results from connecting αI to interface I of
R for every I ∈ P . Moreover, αPR denotes the I-resource
one gets when αI is connected to interface I of R for every
I ∈ {I1, . . . , In} \ P .

For two I-resources R and S, the parallel composition
R ‖ S is defined as the I-resource where each interface I ∈ I
allows to access the corresponding interfaces of both sub-
systems R and S. The sequential composition of converters α
and β is denoted by αβ and defined via (αβ)IR := αI

(
βIR

)
for all I-resources R and interfaces I ∈ I.

B. Basic Resources

We now describe basic resources needed later, starting with
communication channels. The channels we consider allow the
sender A to send a single message from a fixed message space
M := {0, 1}l for l ∈ N to the receiver B. We define two
such channels, which differ in the information an eavesdropper
E learns about the message. The notation used here was
introduced in [6].

Definition 1. An authenticated channel, denoted as •−−→, is
a resource with three interfaces A, B, and E. On input a single
message m ∈ M at interface A, the same message is output
at interfaces B and E. Further inputs are ignored.

This channel is called authenticated because E cannot mod-
ify the message. If an eavesdropper can only learn the length
of the transferred message, we get the following resource.

Definition 2. A secure channel, denoted as •−−→•, is a
resource with three interfaces A, B, and E. On input a single
message m ∈ M at interface A, the same message is output
at interface B and the length |m| of the message is output at
interface E. Further inputs are ignored.

We further introduce a resource which outputs a random
value at the interfaces A and B.

Definition 3. A shared secret key, denoted as •===•, is a
resource with three interfaces A, B, and E. It outputs a
uniformly random value at the interfaces A and B and does
not output anything at interface E. All inputs are ignored.

In this notation, the symbol “•” can intuitively be interpreted
as indicating exclusive access of the party at that side of the
resource to the corresponding functionality. For example, in an
authenticated channel •−−→, sending a message is exclusive
to Alice, but receiving the message is not exclusive to Bob
because it leaks to Eve.

C. Indistinguishability

A distinguisher D for resources with n interfaces is a
system with n+ 1 interfaces, where n of them connect to the
interfaces of a resource and a bit B is output at the remaining
one. We write PDR(B = 1) to denote the probability that D
outputs the bit 1 when connected to resource R. The goal of
a distinguisher is to distinguish two resources by outputting
a different bit when connected to a different resource. We
measure its success by the distinguishing advantage.

Definition 4. The distinguishing advantage of a distinguisher
D for resources R and S is defined as

∆D(R, S) :=
∣∣PDR(B = 1)− PDS(B = 1)

∣∣ .
If ∆D(R, S) = 0 for all distinguishers D, we say R and S are
indistinguishable, denoted as R ≡ S.

Remark. The definition of indistinguishability above captures
perfect security. One can also consider statistical security by
allowing a small distinguishing advantage and computational
security by additionally restricting the distinguishers to be
computationally bounded. Information theoretic security refers
to perfect or statistical security.

D. Filtered Resources

In some situations, specific interactions with a resource
might not be guaranteed but only potentially available. As an
example, consider a channel that potentially allows the receiver
to leak the message to an eavesdropper, but does not guarantee
the availability of this feature.

To model such situations, we extend the concept of a
resource. Let R be an I-resource and let φ = (φI)I∈I
be a vector of converters. We define the filtered resource
Rφ as a resource with the same set of interfaces I. For a
party connected to interface I of Rφ, interactions through the
converter φI are guaranteed to be available, while interactions
with R directly are only potentially available to dishonest
parties. The converter φI can be seen as a filter shielding
specific functionality of interface I . Dishonest parties can
potentially remove the filter to get access to all features of
the resource R. Formally, Rφ is defined as a set of resources;
see [2] for more details.



E. Construction of Resources

A protocol is a vector of converters with the purpose of
constructing a so-called ideal resource from an available real
resource. We now define what it means to construct a resource.
Depending on which parties are considered potentially dishon-
est, we get a different notion of construction.

Definition 5. Let Rφ and Sψ be filtered I-resources and let
π = (πI)I∈I be a protocol. Further let U ⊆ I be the set
of interfaces with potentially dishonest behavior. We say π
constructs Sψ from Rφ with potentially dishonest U if there
exist converters σ = (σU )U∈U such that

∀P ⊆ U : πPφPR ≡ σPψPS.

The converters σU are called simulators.

To apply the above definition to an unfiltered resource R,
one can formally introduce trivial filters φI = 1 for I ∈ I that
have no effect and consider the filtered resource Rφ which is
identical to R. In such cases, we will omit the filters. We refer
the reader to [2] for more details.

As an example, consider the typical setting for encryption
where we want to construct a secure channel •−−→• from a
shared secret key •===• and an authenticated channel •−−→
and assume that A and B are always honest while E is poten-
tially dishonest. Here, the real resource is R := •===• ‖ •−−→
and the ideal resource is S := •−−→•. By Definition 5,
a protocol π = (πA, πB , πE) constructs S from R with
potentially dishonest U := {E} if there exists a simulator
σE such that the following two conditions are satisfied:

πAπBπER ≡ S
πAπBR ≡ σES

Intuitively, the first condition ensures that the protocol im-
plements the required functionality and the second condition
ensures that whatever Eve can do when connected to the real
resource without necessarily following the protocol, she could
do as well when connected to the ideal resource by using the
simulator σE . Eve’s protocol is here only hypothetical and
would not be implemented in a real system.

III. ENCRYPTION WITH A DISHONEST RECEIVER

In this section, we examine encryption schemes in general.
All results hold with respect to information-theoretic security
as well as computational security. We investigate which re-
sources one can construct from a shared secret key and an
authenticated channel using encryption in the setting in which
not only Eve but also Bob could be dishonest. If this is used
as part of a larger protocol which allows Bob to exchange
messages with Eve, a dishonest Bob could send her the key,
resulting in Eve learning the message. Since the security
guarantees are preserved under composition in our framework,
the ideal resource constructed by an encryption scheme has to
reflect this. That is, the ideal resource potentially gives Bob
the option to leak the message to Eve. However, this option
is not guaranteed. One reason for this is that Bob cannot leak

the message in a more restricted setting where he does not
have a communication channel to Eve. Therefore, we have a
filtered resource where Bob’s leakage button is shielded by a
filter.

Something else has to be taken into account. Consider
for example the one-time pad. The ciphertext there is a
uniformly random bit string. Hence, when Alice sends an
encrypted message, Bob and Eve get common randomness.
For other types of encryption, they could potentially extract the
randomness of the key from the ciphertext and thereby also get
common randomness. Even if this is not considered to be an
issue, it has to be reflected in the ideal resource. Altogether, the
resource a typical encryption scheme constructs from a shared
secret key and an authenticated channel is a secure channel
which potentially gives Bob the option to leak the message to
Eve and which potentially gives common randomness to Bob
and Eve.

We have just seen that ordinary encryption does not con-
struct a secure channel without additional features from an
authenticated channel and a shared secret key if Bob and
Eve are potentially dishonest. We now show that no protocol
can achieve this (a variant of this was already stated in the
appendix of [2] without proof).

Theorem 1. There exists no protocol π = (πA, πB , πE) that
constructs a secure channel •−−→• from a shared secret key
•===• and an authenticated channel •−−→ with potentially
dishonest B and E.

Proof. Assume such protocol π exists. Then, there exist sim-
ulators σB and σE such that the following conditions hold:

πAπBπE(•===• ‖ •−−→) ≡ •−−→• (1)
πAπE(•===• ‖ •−−→) ≡ σB•−−→• (2)
πAπB(•===• ‖ •−−→) ≡ σE•−−→• (3)
πA(•===• ‖ •−−→) ≡ σBσE•−−→• (4)

At the beginning, the resource πA(•===• ‖ •−−→) outputs
a key at interface B. Hence, (4) implies that σBσE•−−→•
also outputs a key at interface B. Furthermore, (4) implies
that on input a message m ∈ M = {0, 1}l at interface A
of σBσE•−−→• afterwards, the outputs at interfaces B and
E agree. Since σE does not get any information about the
message and the key had been output before the message was
input, no output of σB depends on the message. However, we
can conclude from (1) and (2) that (πBσB)B•−−→• ≡ •−−→•,
i.e., applying protocol πB to the output of σB gives the correct
message. This is only possible with probability 2−l, yielding
a contradiction.

IV. THE ONE-TIME PAD WITH A DISHONEST RECEIVER

In the preceding section, we have seen that ordinary en-
cryption constructs a secure channel that potentially allows the
receiver Bob to leak the message to an eavesdropper Eve and
potentially gives common randomness to Bob and Eve if they
are both dishonest. In this section, we show that, even though it
is impossible to construct a secure channel without additional
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features from a shared secret key and an authenticated channel,
the one-time pad can be used to construct a stronger resource
than the one constructed by ordinary encryption, namely a
resource that does not allow Bob to leak the message anymore
once he has received it.

Intuitively, this is because the one-time pad shares the
feature with so-called deniable encryption [4] that for each
pair of message and ciphertext one can find a key such that the
ciphertext decrypts to the given message with this key. In case
of the one-time pad such key can be obtained by computing
the bitwise XOR of the message and the ciphertext. Therefore,
Bob can generate a fake key to yield any message of his
choice if he already knows the message. This makes receiving
a key from Bob in that case useless because there is no way
to verify whether it is the correct key. This translates to the
ideal resource by not allowing Bob to leak the message after
receiving it. Note that this does not work before Bob knows
the message. Then, he cannot find a key that will decrypt the
ciphertext to a message of his choice.

To capture the fact that Bob can leak the message before
he receives it but not afterwards, we split the receiver into
two phases, B1 that is active at the beginning and B2 that is
active after receiving a message. This is necessary to model
for example that a receiver is following the protocol at first
but changes his strategy depending on the received message.
We first describe the real resource used in our construction.

Definition 6. The resource KACM has the four interfaces A,
B1, B2, and E and consists of a shared secret key •===•A,B1

between A and B1, an authenticated channel •−−→A,B2 from
A to B2, and an l-bit memory MEMB1,B2 writable by B1 and
readable by B2. At interface B1, one can input x ∈ {0, 1}l
to store x in the memory. On input read at interface B2, the
beforehand stored value x is returned to B2. To model that
B1 and B2 exist in different phases of the protocol, all inputs
at interface B1 after something is input at interface A and all
inputs at interface B2 before are ignored.

Now we describe the protocol π = (πA, πB1 , πB2 , πE). Let
πA internally store the key it receives at its inner interface and

PLCRφ

A B2

|·|

E

$
B1

s

Fig. 2. The resource PLCRφ. Interactions that are not guaranteed but only
potentially available to dishonest parties are drawn with dotted lines.

on input a message at the outer interface, compute the bitwise
XOR of this message and the key and input the result into the
authenticated channel to B2. When πB1 receives the key, it
stores it in the memory. When πB2

receives a ciphertext from
A, it reads the key from the memory, computes the bitwise
XOR of the key and the ciphertext and outputs the result at its
outer interface. Eve’s (hypothetical) protocol πE := ⊥ ignores
all inputs. See Fig. 1 for an overview of the protocol and the
involved resources.

We now describe the ideal resource which is constructed
from KACM by that protocol. The guaranteed functionality
allows A to send a message m ∈ M to B2. Moreover, it
potentially allows E to learn the length of the message and
B1 to flip a switch such that E afterwards potentially receives
the message instead of only its length. Also, B2 can potentially
see whether the switch was flipped. For the same reason we
explained in the case of general encryption, B1, B2, and
E could potentially get common randomness. If B1 and B2

are both dishonest, they cannot be prevented from using the
memory in KACM to exchange information. Hence, the ideal
resource potentially also allows B1 to store an l-bit string
which can later be read by B2. See Fig. 2 for an illustration
of this resource. The formal definition of it follows.

Definition 7. The resource PLCR has the four interfaces A,
B1, B2, and E and works as follows:

Initialization
b← false
t← 1
r ← l-bit string chosen uniformly at random
output r at interface B1

Interface A
Input: m ∈M

t← 2
output (r, b,m) at interface B2

if b then
output (r,m) at interface E

else
output (r, |m|) at interface E



Interface B1

Input: leak
if t = 1 then

b← true
Input: (store, x), x ∈ {0, 1}l

if t = 1 then
s← x

Interface B2

Input: read
if t = 2 then

output s at interface B2

Since some of the functionality of PLCR is not guaranteed
by the protocol but only potentially available, we introduce the
following filters: φB1

:= ⊥ and φE := ⊥ ignore all inputs,
φB2

converts inputs of the form (r, b,m) at its inner interface
to m and ignores other inputs, and φA := 1 forwards all
inputs. Let φ := (φA, φB1

, φB2
, φE).

Theorem 2. The protocol π defined above constructs PLCRφ
from KACM with potentially dishonest B1, B2, and E.

Proof. Let σ := (σB1 , σB2 , σE) for the simulators σB1 , σB2 ,
and σE defined below.

Inner Interface of σB1

Input: r
output leak at inner interface
output r at outer interface

Outer Interface of σB1

Input: x ∈ {0, 1}l
output (store, x) at inner interface

Initialization of σB2

s← null

Inner Interface of σB2

Input: (r, b,m)
if b then

s← returned value from read at inner interface
output m⊕ r at outer interface

else
s← m⊕ r
output r at outer interface

Outer Interface of σB2

Input: read
if s 6= null then

output s at outer interface

Inner Interface of σE

Input: (r,m)
output m⊕ r at outer interface

Input: (r, |m|)
output r at outer interface

We have to show that

∀P ⊆ {B1, B2, E} : πPKACM ≡ σPφPPLCR.

We first verify the conditions with B1 ∈ P , i.e., with
σB1 present on the right hand side. In this case, σB1 outputs
a uniformly random l-bit string r at the beginning, as the
resource on the left hand side does at interface B1. Since
σB1

outputs leak at its inner interface, the local variable b
in PLCR is true when a message m is input at interface A.
Hence, σB2

and σE (if present) both output m⊕ r. As in the
resource on the left hand side, the bitwise XOR of the outputs
at interfaces B1 and B2 as well as the outputs at interfaces B1

and E yields the input message m = r ⊕ (m ⊕ r). On input
read at interface B2, σB2

returns the value stored before a
message was input at interface A. Therefore, the resources on
the left and those on the right hand side are indistinguishable
in these four cases.

Now consider the cases with B1 /∈ P . There, b is false
when a message m is input at interface A, so σE will output
a uniformly random l-bit string r in case E ∈ P . If B2 /∈ P ,
this is indistinguishable from the output at interface E of the
resource on the left hand side. Otherwise, σB2 outputs r as
well and sets its internal variable s to m⊕r. Hence, inputting
read and computing the bitwise XOR of the returned value s
and the previous output at interface B2 results in the message
m = (m ⊕ r) ⊕ r, as in the resource on the left hand side.
Therefore, the resources are indistinguishable in all cases.

V. CONCLUSION AND FUTURE WORK

We have shown in the constructive cryptography framework
that it is impossible to construct a secure channel without
additional features from a shared secret key and an authen-
ticated channel when the receiver is potentially dishonest.
Furthermore, we have described which weaker channel typical
encryption schemes construct and how the one-time pad can
be used to construct a stronger resource.

An interesting problem which could not be discussed in
this paper is the one-time pad and encryption in general with
a potentially dishonest sender.
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