
Modeling Memory System Performance of NUMA Multicore-Multiprocessors

Zoltán Majó

c© Zoltán Majó, 2014.

DISS. ETH No. 22006

Modeling Memory System Performance of
NUMA Multicore-Multiprocessors

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by
ZOLTÁN MAJÓ

Ing. dipl., Technical University of Cluj-Napoca
born on June 18, 1983

citizen of Hungary and Romania

accepted on the recommendation of
Prof. Dr. Thomas R. Gross, examiner
Prof. Dr. Frank Müller, co-examiner

Prof. Dr. Michael Stumm, co-examiner

2014

Hatházi Anna-Máriának.

Abstract

The performance of many applications depends closely on the way they interact with the com-
puter’s memory system: Many applications obtain good performance only if they utilize the
memory system efficiently.

Unfortunately, obtaining good memory system performance is often difficult, as develop-
ing memory system-aware (system) software requires a thorough and detailed understanding of
both the characteristics of the memory system and of the interaction of applications with the
memory system. Moreover, the design of memory systems evolves as newer processor genera-
tions appear on the market, thus the problem of software–hardware interaction must be revisited
to understand the interaction of (already existing) software with newer memory system designs
as well.

This thesis investigates the memory system performance of a recent class of machines,
multicore-multiprocessors with a non-uniform memory architecture (NUMA). A NUMA
multicore-multiprocessor system consists of several processors where each processor integrates
multiple cores. Typically, cores of a multicore processor share resources (e.g., last-level caches)
and contention for these shared resources can result in significant performance degradations.

NUMA multicore-multiprocessors are shared-memory computers, but the memory space
of a NUMA multicore-multiprocessor system is partitioned between processors. Accessing
the memory of a local processor takes less time than accessing the memory of other (remote)
processors, therefore data locality (a low number of remote memory accesses) is critical for
good performance on NUMA machines.

This thesis presents a performance-oriented model for NUMA multicore-multiprocessors.
The model considers two application classes, multiprogrammed workloads (workloads that con-
sist of multiple, independent processes) and multithreaded programs (programs that consist of a
number of threads that operate in a shared address space). The thesis presents an experimental
analysis of memory system bottlenecks experienced by each application class. Moreover, the
thesis presents techniques to reduce the performance-degrading effects of these bottlenecks.

We determine (based on experimental analysis) that the performance of multiprogrammed
workloads depends on both multicore-specific and NUMA-specific aspects of a NUMA
multicore-multiprocessor’s memory system. Therefore, a process scheduler must find a bal-
ance between reducing cache contention and improving data locality; the N-MASS scheduler
presented by the thesis attempts to strike a balance between these, sometimes contradicting,
goals. N-MASS improves performance up to 32% over the default setup in current Linux im-
plementations on a recent 2-processor 8-core machine.

Based also on experimental analysis we find that data locality is of prime importance for the
performance of multithreaded programs. The thesis presents extensions to two popular parallel
programming frameworks, OpenMP and Intel’s Threading Building Blocks. The extensions

v

vi

allow a programmer to express affinity of data and computations, which, if done appropriately,
helps to improve data locality and thus performance on NUMA multicore-multiprocessors (by
up to 220% on a recent 4-processor 32-core machine). The thesis also shows that adding NUMA
support not only to the programmer interface, but also to the underlying runtime system, allows
programs to be portable across different architectures as well as to be composable with other
programs (that use the same runtime system).

Zusammenfassung

Die Rechenleistung vieler Software-Applikationen hängt von der Interaktion der Applikation
mit dem Speichersystem des Computers ab: Viele Applikationen erreichen eine gute Rechen-
leistung nur wenn sie das Speichersystem des Computers effizient nutzen.

Es ist aber leider oft schwierig Software zu entwickeln, die das Speichersystem effizient
benützt, da Programmierer sowohl die Merkmale des Speichersystems wie auch das Zusam-
menspiel der Software mit dem Speichersystem verstehen müssen, um effiziente Software ent-
wickeln zu können. Darüber hinaus muss häufig das Zusammenspiel (schon existierender) Soft-
ware erneut analysiert and verstanden werden, wenn neue Computerarchitekturen (eventuell mit
einem neuen Typ von Speichersystem) auf den Markt gebracht werden.

Diese Dissertation analysiert das Speichersystem einer neuen Klasse von Rechnern,
Multikern-Multiprozessoren mit einer nicht-uniformen Speicherarchitektur (engl.: non-uniform
memory architecture (NUMA)). Ein NUMA Multikern-Multiprozessor besteht aus mehreren
Prozessoren; jeder Prozessor des Systems besteht aus mehreren Kernen. Die Kerne eines Multi-
kernprozessors teilen in der Regel Ressourcen (z.B. den Cachespeicher des Prozessors) und der
gleichzeitige Gebrauch von geteilten Ressourcen kann zu einer Erhöhung der Laufzeit von Ap-
plikationen führen (im Vergleich mit dem Fall wenn keine Ressourcen geteilt sind).

Jeder Prozessor eines NUMA Multikern-Multiprozessors hat Zugriff auf alle Spei-
cherstellen des Systems, der Adressraum des Systems ist aber zwischen den Prozessoren par-
tizioniert. Zugriffe auf Speicherstellen des lokalen Prozessors dauern weniger lang als Zugriffe
auf Speicherstellen eines entfernten Prozessors, daher ist Datenlokalität (eine niedrige Zahl von
Zugriffen auf die Speicherstellen eines entfernten Prozessors) entscheidend für die Rechenleis-
tung vieler Applikationen.

Diese Dissertation beschreibt ein leistungsorientiertes Modell für NUMA Multikern-
Multiprozessoren. Das Modell betrachtet zwei Klassen von Software-Applikationen, multi-
programmierte Applikationen, welche aus mehreren unabhängigen Prozessen bestehen, und
multithreaded Applikationen, welche aus mehreren Threads bestehen, die miteinander Daten
teilen. Die Dissertation identifiziert Engpässe des Speichersystems, welche die Laufzeit von
Applikationen beider Klassen negativ beinflussen. Die Dissertation beschreibt auch Methoden
um die negativen Auswirkungen der Engpässe zu reduzieren.

Wir stellen fest (mittels experimenteller Analyse), dass sowohl Datenlokalität als auch die
gleichzeitige Benutzung geteilter Ressourcen für die Laufzeit multiprogrammierter Applikatio-
nen entscheidend ist, und dass der Scheduler des Betriebsystem eine Balance zwischen den bei-
den, oft miteinander im Konflikt stehenden Faktoren, finden muss. Die Dissertation beschreibt
einen neuen Scheduler-Algorithmus, N-MASS. Die Verwendung von N-MASS ergibt eine
Verbesserung der Laufzeit multiprogrammierter Applikationen von bis zu 32% (verglichen mit
einer Standard Linux-Implementation auf einem modernen NUMA Multikern-Multiprozessor

vii

viii

mit zwei Prozessoren und 8 Kernen).
Ausserdem stellen wir fest (auch mittels experimenteller Analyse), dass Datenlokalität für

eine effiziente Ausführung von multithreaded Applikationen unerlässlich ist. Die Disserta-
tion präsentiert Erweiterungen für zwei bekannte Frameworks für parallelle Progammierung,
OpenMP und Intel Threading Building Blocks. Mit diesen Erweiterungen können Program-
mierer die Affinität von Daten und Berechnungen ausdrücken, was, wenn dies in geeigneter
Weise getan wird, dazu führt, dass Datenlokalität und somit auch Rechenleistung sich deut-
lich (bis zu 220% auf einem Rechner mit vier Prozessoren mit 32 Kernen) verbessert. Die
Dissertation zeigt auch, dass, wenn nicht nur die Programmierschnittstelle sondern auch das
Laufzeitsystem für NUMA Multikern-Multiprozessoren angepasst wird, optimierte Programme
portabel sind und ihre Datenlokalität auch dann bewahren, wenn sie mit anderen Programmen
zusammengesetzt werden.

Acknowledgments

Many people helped me complete my doctoral studies.
I am grateful to my advisor, Thomas R. Gross, for giving me the opportunity to study at

ETH. I thank Thomas for the advice and guidance he provided me during the years of my
doctoral studies and also for the excellent working environment that he has maintained in the
research group.

I thank my co-examiners, Frank Müller and Michael Stumm, for being on the examination
committee and for their valuable feedback on the dissertation.

Many thanks to my colleagues in the Laboratory of Software Technology for the friendly
and collaborative environment. My thanks go to current colleagues, Luca Della Toffola, Faheem
Ullah, Martin Bättig, Animesh Trivedi, Antonio Barresi, Remi Meier, Michael Fäs, Aristeidis
Mastoras, and Ivana Unković, as well as former members of the research group, Florian Schnei-
der, Yang Su, Mihai Cuibus, Susanne Cech, Oliver Trachsel, Nicholas Matsakis, Stephanie
Balzer, Christoph Angerer, Mathias Payer, Stefan Freudenberger, Michael Pradel, and Albert
Noll.

I was fortunate enough to have many of my friends by my side during the PhD years. The
list is, fortunately, so long that it would, unfortunately, not fit it onto one (and possibly not even
onto several) page(s). But I thank you all.

My biggest thanks go to my wife (Ágota), to my parents (Julianna and Zoltán), to my sister
(Zsuzsa), and to all my family for their unconditional love and support.

ix

Contents

Abstract v

Zusammenfassung vii

Acknowledgments ix

Contents xi

1 Introduction 1
1.1 Thesis statement . 3
1.2 Organization of this dissertation . 4

2 Resource sharing and interconnect overhead 5
2.1 Sharing of local/remote memory bandwidth 5

2.1.1 Experimental setup . 6
2.1.2 Memory system performance . 11
2.1.3 A simple model . 12
2.1.4 Queuing fairness . 14
2.1.5 Aggregate throughput . 15
2.1.6 Limitations . 18
2.1.7 The next generation . 18
2.1.8 Summary . 20

2.2 Cache contention and interconnect overhead 21
2.2.1 Experimental setup . 21
2.2.2 Memory system performance . 22
2.2.3 Summary . 27

2.3 Conclusions . 28

3 Cache-conscious scheduling with data locality constraints 29
3.1 Design . 29

3.1.1 Modeling memory system behavior 29
3.1.2 Characterizing the memory behavior of processes 31
3.1.3 The N-MASS algorithm . 33

3.2 Implementation . 36
3.3 Evaluation . 37

xi

xii CONTENTS

3.3.1 Experimental setup . 37
3.3.2 Dimensions of the evaluation . 38
3.3.3 Influence of data locality and cache contention 39
3.3.4 A detailed look . 43

3.4 Process memory behavior characterization . 44
3.4.1 Estimating the NUMA penalty . 44
3.4.2 Monitoring cache pressure . 44
3.4.3 Determining a process’s home node 45

3.5 Discussion and limitations . 48
3.6 Conclusions . 48

4 Performance analysis of multithreaded programs 51
4.1 Performance scaling . 52
4.2 Experimental setup . 53

4.2.1 Hardware . 53
4.2.2 Benchmark programs . 54
4.2.3 Scheduling and memory allocation . 56
4.2.4 Performance monitoring . 56

4.3 Understanding memory system behavior . 57
4.3.1 Data locality . 57
4.3.2 Prefetcher effectiveness . 59

4.4 Program transformations . 59
4.4.1 Distributing data . 60
4.4.2 Algorithmic changes . 60

4.5 Performance evaluation . 65
4.5.1 Cumulative effect of program transformations 66
4.5.2 Prefetcher performance . 70

4.6 Conclusions . 72
4.6.1 Implications for performance evaluation 72
4.6.2 Implications for performance optimizations 72

5 Matching memory access patterns and data placement 75
5.1 Memory system behavior of loop-parallel programs 75

5.1.1 Experimental setup . 75
5.1.2 Data address profiling . 77
5.1.3 Profile-based page placement . 78

5.2 Memory access and distribution patterns: A detailed look 79
5.2.1 In-memory representation of matrices 79
5.2.2 Matrix memory access patterns . 80
5.2.3 Data sharing . 82
5.2.4 Two examples: bt and ft . 82

5.3 Fine-grained data management and work distribution 86
5.3.1 Data distribution primitives . 86
5.3.2 Iteration distribution primitives . 89

CONTENTS xiii

5.4 Example program transformations . 90
5.4.1 bt . 90
5.4.2 lu . 92

5.5 Evaluation . 92
5.5.1 Data locality . 93
5.5.2 Scalability . 94
5.5.3 Comparison with other optimization techniques 95

5.6 Conclusions . 97

6 A parallel library for locality-aware programming 99
6.1 Practical aspects of implementing data locality optimizations 99

6.1.1 Introduction . 99
6.1.2 Principles of data locality optimizations 100
6.1.3 Enforcing data locality in practice . 102
6.1.4 Goals of TBB-NUMA . 104

6.2 Anatomy of TBB . 104
6.2.1 User programs . 105
6.2.2 Parallel algorithm templates . 105
6.2.3 Task scheduler . 105
6.2.4 Resource Management Layer . 106
6.2.5 Threads . 107

6.3 Implementing NUMA support . 107
6.3.1 Threads . 107
6.3.2 Resource Management Layer . 107
6.3.3 Standard TBB task scheduler . 108
6.3.4 TBB-NUMA task scheduler . 110
6.3.5 Programming with TBB-NUMA . 115

6.4 Evaluation . 115
6.4.1 Experimental setup . 115
6.4.2 Data locality optimizations . 116
6.4.3 Composability . 119
6.4.4 Portability . 121

6.5 Conclusions . 121

7 Related work 123
7.1 Memory system performance analysis . 123

7.1.1 Memory controller performance . 123
7.1.2 Shared resource contention . 124
7.1.3 Data sharing . 124

7.2 Performance optimizations . 125
7.2.1 Reducing shared resource contention 125
7.2.2 Improving data locality . 125

8 Conclusions 129

xiv CONTENTS

Bibliography 133

List of Figures 145

1
Introduction

The performance of a large number of applications depends critically on the memory system;
that is, numerous applications achieve good performance (low end-to-end execution time) only
if they efficiently utilize the memory system of the machine.

Obtaining good memory system performance poses challenges for both hardware and soft-
ware engineers. On the hardware side, it is challenging to design a memory system architecture
that provides high memory bandwidth and, at the same time, low memory access latency for all
processor(s)/core(s) of a system. The problem of providing adequate memory access is further
exacerbated by the recent trend of core counts increasing with every processor generation.

Producing (system) software that uses the capabilities of the memory system efficiently is
difficult as well. To achieve good performance, programmers must understand the interaction
between hardware and software which requires detailed understanding of the properties of both
the memory system and the applications using it. More specifically, given a memory system
architecture, programmers need a performance-oriented model that comprehensively describes
the memory system performance of that architecture. Ideally, such a model

• identifies and describes the performance bottlenecks of the memory system architecture;

• defines and describes a set of application classes, where applications of the same class
interact with the memory system architecture in a well-defined and well-understood way
(that is different from the way applications in other classes interact with the same memory
system architecture);

• identifies and describes performance optimization techniques, that is, ways to improve
the memory system performance of a given application class.

Although a processor manufacturer’s manuals contain plentiful information about the prop-
erties of a given processor [45], they usually specify only a few aspects related to the perfor-
mance of the processor. Thus, manuals are usually augmented either by the processor manu-
facturer itself (e.g., in the form of optimization guides [44, 57]) or by the research community
(usually in the form of experimental studies [4, 18, 22, 39, 73, 108]).

Despite the efforts, however, there are still numerous open questions about memory system
performance. Moreover, as processor memory system design evolves, existing performance
models must be revisited and updated; moreover, if needed, new models must be developed.

For example, recent shared-memory multiprocessor systems (systems built with multiple
processors operating within the same physical address space) are based on multicore processors

1

2 CHAPTER 1. INTRODUCTION

1	

Processor	 1	

Core	 4	 Core	 5	

Core	 6	 Core	 7	

IC	 MC	

DRAM	

Processor	 0	

Core	 0	 Core	 1	

Core	 2	 Core	 3	

MC	 IC	

DRAM	

Last-‐level	 cache	 Last-‐level	 cache	 REMOTE_CACHE:	
186	 cycles	

REMOTE_DRAM:	
310	 cycles	

LOCAL_DRAM:	
190	 cycles	

LOCAL_CACHE:	
38	 cycles	

Figure 1.1: 2-processor 8-core NUMA multicore-multiprocessor.

(processors with multiple cores per processor). Moreover, these systems are typically equipped
with a non-uniform memory architecture (NUMA). These NUMA multicore-multiprocessors
are an attractive and popular platform that are used as both stand-alone systems (e.g., server
computing) or as building blocks in supercomputers, thus it is important to understand the
memory system performance of this class of machines.

The memory system of a typical NUMA multicore-multiprocessor is complex as it has char-
acteristics specific to both its building blocks, that is, it has characteristics specific to both multi-
core and NUMA systems. Although both types of memory system architectures are reasonably
well understood in isolation, the combination of the two memory system architectures requires
further investigation.

To better illustrate the features of the memory system of a NUMA multicore-multiprocessor,
consider the example 2-processor 8-core system shown in Figure 1.1. In the example system
each processor accesses a part of the main memory that is connected to the processor through
an on-chip memory controller (MC). Moreover, to allow each processor to access the memory
of the other processor as well, processors are connected to each other with a cross-chip inter-
connect (each processor has an additional memory interface (IC) that allows the processor to
connect to the cross-chip interconnect).

Partitioning the memory space between processors has the benefit that the memory band-
width available to applications scales with the number of processors. Nevertheless, a partitioned
space can have disadvantages as well, as applications can experience large performance penal-
ties due to remote memory accesses. Remote memory accesses are transferred on the cross-chip
interconnect, thus they encounter an overhead relative to local memory accesses (accesses han-
dled by the on-chip memory controller). Figure 1.1 shows the disparity between local- and
remote memory access latencies, as measured on a NUMA multicore-multiprocessor that is
composed of processors based on the recent Intel Nehalem microarchitecture [73] 1. NUMA
multicore-multiprocessor systems based on other microarchitectures, for example those devel-
oped by AMD, show similar disparities between memory access latencies [39].

The effect of the remote memory access penalty on application performance is well-studied

1The latencies indicated in the Figure 1.1 are measured for read transfers (i.e., read accesses last-level caches
and to DRAM). For cache accesses we report latencies to cache lines in the E cache coherency state. See [73] for
the complete information, e.g., latencies for accessing cache lines in other cache coherency states as well.

1.1. THESIS STATEMENT 3

and well-understood and there exists a large body of work on data locality optimizations (op-
timizations that attempt to reduce the number of remote memory accesses) [56, 60, 67, 68,
72, 79]. However, the memory system of current multicore-based NUMA systems has aspects
specific to multicore processors as well. In a multicore system, processor cores share (some)
memory system resources; shared resources must be managed properly to obtain good mem-
ory system performance. For example, recent multicore processors typically have a last-level
cache that is shared between a (subset) of the cores on a processor (e.g., in the example system
in Figure 1.1 four cores share a last-level cache). As shown recently, cache sharing can both
improve [112] and deteriorate [33, 52] application performance in multicore systems.

In summary, due to the bivalence of NUMA multicore-multiprocessors several questions
arise:

• Do NUMA multicore-multiprocessors systems exhibit multicore-specific or NUMA-
specific performance bottlenecks, or both?

• What kind of performance optimization techniques are worthwhile to be pursued to ad-
dress these bottlenecks?

• Which are the application classes that benefit from these optimization techniques?

This thesis answers these questions by providing a performance-oriented model of applica-
tion memory system performance on NUMA multicore-multiprocessor systems. The contribu-
tions of this thesis are threefold. First, using experimental analysis, the thesis identifies and de-
scribes a set of performance bottlenecks specific to NUMA multicore-multiprocessor memory
systems. Second, the thesis investigates the implications of the previously identified bottlenecks
for two different application classes. Third, the thesis describes performance optimization tech-
niques applicable for each application class and presents a prototype implementation (and an
experimental evaluation) of each technique.

1.1 Thesis statement

The model presented by the thesis considers two application classes: (1) multiprogrammed
workloads, that is, workloads that consists of multiple, independent processes, and (2) multi-
threaded programs, that is, programs that consist of a set of threads that operate on (possibly)
shared data.

Thesis statements:

1. The memory system performance of multiprogrammed workloads on NUMA multicore-
multiprocessors strongly depends on two factors: contention for shared resources and in-
terconnect overhead. Information about a workload’s memory behavior enables process
scheduling to improve the performance of multiprogrammed workloads by accounting for
both factors.

2. The memory system performance of multithreaded programs critically depends on the lo-
cality of DRAM/cache accesses. If provided with task/data affinity information, a NUMA-
aware runtime system can achieve good data locality without compromising load balance,
furthermore, a NUMA-aware runtime system enables portable and composable data lo-
cality optimizations and thus helps amortize the optimization effort.

4 CHAPTER 1. INTRODUCTION

1.2 Organization of this dissertation

This thesis is structured as follows.

The first part of the thesis (Chapters 2 and 3) focuses on multiprogrammed workloads.
Chapter 2 presents an experimental analysis of the memory system performance of multipro-
grammed workloads on NUMA multicore-multiprocessors. The analysis shows that a typical
NUMA multicore-multiprocessor memory system has several bottlenecks; good performance
can be achieved only if all these bottlenecks are taken into consideration. Then, in Chapter 3
we describe the N-MASS process scheduling algorithm that attempts to find a balance between
two memory system bottlenecks, cache contention and interconnect overhead.

The second part of the thesis (Chapters 4, 5, and 6) focuses on multithreaded programs.
Chapter 4 analyzes the performance impact of different schemes for mapping data and compu-
tations. Then, Chapters 5 and 6 present language-level extensions to two parallel programming
frameworks, OpenMP and TBB, to support locality-aware programming.

Chapter 7 presents related work and Chapter 8 concludes the thesis.

2
Resource sharing and
interconnect overhead

This chapter presents an experimental analysis of the memory system performance of NUMA
multicore-multiprocessors. We focus on a single application class, multiprogrammed workloads
(workloads that consist of a set of independent processes that do not share data).

The main question addressed by this chapter is: How much does resource sharing impact
application performance and what is (comparatively) the impact of interconnect overhead? To
provide an answer, this chapter considers two aspects of NUMA-multicore memory system
performance. First, in Section 2.1 we look into the relative cost of interconnect overhead and
memory controller contention by experimentally analyzing the sharing of local/remote memory
bandwidth in a recent NUMA multicore-multiprocessor system. Then, in Section 2.2 we extend
the scope of the analysis and consider contention for a different shared resource, the last-level
caches of a system, as well.

2.1 Sharing of local/remote memory bandwidth

In NUMA multicore-multiprocessors each processor accesses part of the physical memory
directly (via an on-chip memory controller) and has access to the other parts of the physi-
cal memory via the memory controller of other processors. Other processors are reached via
the cross-processor interconnect, and major processor manufacturers have developed their pro-
prietary cross-chip interconnect technology that connects the processors (e.g., AMD’s Hyper-
Transport [1] or Intel’s QuickPath Interconnect (QPI) [64]).

Remote memory accesses (accesses via the interconnect) are subject to various overheads.
The bandwidth provided by the cross-chip interconnect is lower than the bandwidth provided
by the local (on-chip) memory controller. Moreover, the latency of remote memory accesses is
higher than the latency of local (on-chip) memory accesses: Remote memory accesses are first
sent to the interconnect (arbitration may be needed if multiple cores access remote memory at
the same time), then a request is transmitted to another processor, and finally additional steps
may be needed on this remote processor before the memory access can be done.

As a result, the performance penalty of remote memory accesses is significant (we call
this penalty the NUMA penalty): In current systems the NUMA penalty can be as high as
2 (equivalent to a 2X slowdown) for some applications. The NUMA penalty in recent sys-
tems is somewhat lower than in earlier implementations of NUMA (e.g., 3 to 5 in the Stanford
FLASH [107]), but a slowdown of 2X is still high, thus avoiding the NUMA penalty must be

5

6 CHAPTER 2. RESOURCE SHARING AND INTERCONNECT OVERHEAD

considered in recent systems as well.

Traditionally, performance optimizations for NUMA systems aim for increasing data local-
ity (i.e., reducing or even eliminating remote memory accesses in the system) by changing the
allocation of memory and/or the mapping of computations in the system [13, 17, 27, 55, 58, 62,
67, 68, 72, 77, 79, 102–104, 107, 109]. As the performance of many applications is ultimately
limited by the performance of the memory system, it is important to understand the memory
system of NUMA multicore-multiprocessors as simple and realistic models are crucial to find
mappings (of data and computations) that result in good performance on these systems.

Previous research has focused on evaluating the bandwidth and latency of the on-chip mem-
ory controller and of the cross-chip interconnect of modern NUMA machines in separation (i.e.,
when there are either local or remote memory accesses in the system, but not both of them at
the same time) [39, 44, 66, 73]. However, it rarely happens in real systems that a computation’s
memory traffic exclusively flows through either the local memory interface or the cross-chip in-
terconnect that connects to the memory controller of a remote processor. So it is also important
to understand how these two types of memory accesses (local and remote) interact.

A recent study [6] evaluates the problems and opportunities posed by having multiple types
of memory controllers in a system. The authors show that a page placement algorithm that
accounts not only for data locality, but also for contention for memory controllers and for cross-
chip interconnects can obtain good application performance in a system with multiple memory
controllers. However, the study is more concerned about future architectures and less with
existing ones. In the following, we analyze the bandwidth sharing properties of a commercial
microprocessor and discuss the implications of these properties for optimizing programs in
multicore systems. We show that in some cases–when the machine is highly loaded–the cross-
chip interconnect outperforms the on-chip memory controller. Mapping computations so that
all memory traffic flows through the local memory interface is bound to be suboptimal in many
situations due to resource contention.

2.1.1 Experimental setup

In the following, we describe the memory system architecture of the evaluated system, the
benchmark programs, and the experimental methodology we use.

Hardware

We investigate the memory system of a multicore-multiprocessor machine based on the Intel
Nehalem microarchitecture. The machine is equipped with two Intel Xeon E5520 quad-core
CPUs running at 2.26 GHz and a total of 12 GB RAM. The memory system architecture of the
Nehalem-based system is sketched in Chapter 1 (see Figure 1.1). In this section we describe the
memory system of the machine in more detail.

Figure 2.1 shows the Nehalem-based system we investigate. In this system each processor
has a direct connection to half of the memory space via a three-channel integrated memory
controller. The on-chip integrated memory controller (IMC) provides a maximum theoretical
throughput of 25.6 GB/s. Additionally, each processor has two QuickPath Interconnect (QPI)
interfaces [64], one connecting to the remote processor and one to the I/O hub. The interconnect
has a maximum theoretical throughput of 11.72 GB/s in one direction and 23.44 GB/s in both

2.1. SHARING OF LOCAL/REMOTE MEMORY BANDWIDTH 7

IMC QPI QPI

L3 cache

QPI QPI IMCDDR3

I/O

Core 0 Core 2

Core 4 Core 6

Global Queue

Core 1 Core 3

Core 5 Core 7

L3 cache L3 cache

Global Queue

DDR3

Figure 2.1: Intel Nehalem in a 2-processor configuration.

directions.

Although the throughput of the QPI is almost as high as the throughput of the IMC, there
are two IMCs in the system, while there is only one QPI link connecting the two processors.
Thus, if an application has good data locality (it predominantly accesses local memory), the
application can exploit the throughput of the two IMCs (2X25.6 GB/s). Otherwise, the applica-
tion’s performance can be limited by the throughput of the single QPI cross-chip interconnect
in the system (23.44 GB/s). (In addition to bandwidth-related limitations, the application’s per-
formance is negatively influenced by the increased latency of remote memory accesses relative
to local accesses [73].)

Furthermore, each core of a Nehalem processor has its own level 1 and level 2 exclusive
cache, but the per-processor inclusive 8 MB last-level cache (LLC) is shared between all cores
of the same processor. We refer to the subsystem incorporating the LLC, the arbitration mech-
anisms, and the memory controllers as the uncore (the uncore is marked with dotted lines on
Figure 2.1).

When a processor accesses a memory location, there are many different locations that can
hold the data (e.g., local or remote caches, local or remote RAM). Similarly, there can be several
memory requests outstanding, from multiple cores and processors, in flight at any point of
time, so a routing and arbitration mechanism for these requests is necessary. On the Nehalem,
a part of the uncore called the Global Queue (GQ) arbitrates these requests [44]. The GQ
controls and buffers data requests coming from different subsystems of the processor. For each
subsystem (processor cores, L3 cache, IMC, and QPI) there is a separate port at the GQ, as
shown in Figure 2.2. Requests to local and remote memory are tracked separately. As many
different types of accesses go through the GQ, the fairness of the GQ is crucial to assure that
each subsystem experiences the same service quality in terms of the share of the total system
bandwidth.

Intel Nehalem processors feature a dynamic overclocking mechanism called Turbo Boost
that allows raising the clock rate of processor cores over their nominal rate if the per-processor
thermal and power limits still remain within the processor’s design specifications [22]. Turbo
Boost results in a performance improvement of up to 6.6% in both single- and multithreaded
configurations of the benchmarks we use, but we disable it (together with dynamic frequency
scaling) to improve the stability of our measurements and to allow a focus on the memory sys-
tem interface. The hardware and adjacent cache line prefetchers are enabled for all experiments.

8 CHAPTER 2. RESOURCE SHARING AND INTERCONNECT OVERHEAD

Global Queue

Cores 0, 2

Cores 4, 6

 L3 cache

IMC

QPI

Figure 2.2: Global Queue.

Although our 8-core 2-processor evaluation system is small, it nevertheless allows interest-
ing experiments, as it already offers the opportunity to study the interaction between local and
remote memory accesses. It is possible to build larger systems (up to eight sockets) based on
the Intel Nehalem microarchitecture. These systems use a processor with a larger number of
QPIs to allow point-to-point connections between all processors. We used such a system with
4 processors and 32 cores, but the uncore of these systems is more complicated [42]. Thus, a
presentation of the possible interactions between the uncore components would make the exper-
imental analysis much more complicated without giving significantly more (or different) insight
into the problem under investigation (i.e., the sharing of bandwidth between local/remote mem-
ory accesses). Nevertheless, to assess the performance implications of having more than four
cores per processor, in Section 2.1.7 we briefly evaluate the memory system performance of the
6-core die shrink of the Nehalem, the Westmere.

Benchmarks

We use the triad workload of the STREAM benchmark suite [71] to evaluate the sustainable
memory bandwidth of individual cores, processors, and the complete system. The triad
workload is a program with a single execution phase with high memory demands. Figure 2.3
shows the main loop of triad: triad operates on three arrays of double-precision floating-
point numbers (a[], b[], and c[], as shown in the figure); the arrays must be sized so that
they are larger than the last-level cache to cause memory controller traffic.

1 for (i = 0 ; i < ARRAY SIZE ; i ++)
2 {
3 a [i] = b [i] + SCALAR ∗ c [i] ;
4 }

Figure 2.3: triad main loop.

A single instance of the triad workload is not capable of saturating any of the memory
interfaces of our evaluation machine, thus it does not allow us to explore the limits of the
machine’s main memory subsystem. Besides, a single triad instance does not allow for
evaluating the interaction between the different types of memory controllers, because we need
at least one triad instance for each type of memory controller to have two types of memory
accesses in the system at the same time. Hence, we construct multiprogrammed workloads that
consist of co-executing instances of triad (also referred to as triad clones). We refer to
these workloads as xP, where x is the number of triad clones the workload is composed of
(e.g., 3P represents a workload composed of three triad clones).

2.1. SHARING OF LOCAL/REMOTE MEMORY BANDWIDTH 9

IMC QPI QPI

L3 cache

QPI QPI IMCMemory

I/O

Core 0 Core 2

Core 4 Core 6

Global Queue

Core 1 Core 3

Core 5 Core 7

L3 cache L3 cache

Global Queue

L L R

DDR3

Figure 2.4: 3P workload in (2L, 1R) configuration.

To match the application class we study in this chapter (multiprogrammed workloads), the
version of the triad benchmark we use is multiprogrammed and uses processes. (The orig-
inal implementation of the STREAM benchmark suite is implemented with OpenMP and uses
threads.) As a result of using processes, there is no data shared between co-executing triad
clones. The Nehalem microarchitecture implements the MESIF cache coherency protocol, and
accesses to cache lines in each different state (i.e., Modified, Exclusive, Shared, Invalid, or
Forwarding) involve different access latencies [73]. By using a multiprogrammed benchmark,
we restrict the types of cache lines accessed to M, E, and I. Therefore, we do not need to ac-
count for the different latencies of accesses to cache lines in all possible states. As a result, our
measurement data are easier to interpret and to understand. Nevertheless, our analysis can be
easily extended to evaluate the bandwidth sharing properties of accesses to cache lines in other
coherency states as well, following the methodology described in [73].

There are two useful properties of triad that make it well suited for the main memory
system evaluation. First, triad’s cache miss rate per instruction executed is the same (around
53 misses per thousand instructions) for all configurations of the workload (for configurations
when the workload is composed of several triad clones as well as the configuration when the
workload consists of a single triad instance); that is, co-executing triad clones that share a
LLC do not cause additional inter-core misses [93] to each other. Therefore, triad is a cache
gobbler type of program (according to the classification proposed by Sandberg et al. in [90]).
The second useful property of triad is that 94–99% of its read memory accesses that request
data from the LLC miss the LLC and are therefore served by main memory (for details about
write accesses see Section 2.1.2).

As a result of these properties, triad slows down only because of bandwidth saturation,
increased memory access latencies, and contention on the memory controllers of the system,
but not due to an increase of its LLC miss rate. Hence, triad is well suited for evaluating the
throughput of the memory interfaces, and its performance is not influenced by caching effects
(e.g., cache contention) at all (see Section 2.2 for an analysis that considers cache contention as
well).

We use standard Linux system calls [56] to control on which processor the memory is allo-
cated and where the operating system processes executing the triad clones are scheduled. We
use the terms triad process and triad clone interchangeably, as there is a one-to-one map-
ping between a clone (an instance of the triad program) and the process executing it. To

10 CHAPTER 2. RESOURCE SHARING AND INTERCONNECT OVERHEAD

Bit type Bit name
Request DMND DATA READ

DMND DATA RFO
DMND DATA IFETCH
PF DATA READ
PF DATA RFO
PF DATA IFETCH

Response LOCAL DRAM
REMOTE DRAM

Table 2.1: Configuration of OFFCORE RESPONSE 0.

evaluate the interaction between the IMC and the QPI, the memory used by triad processes
is always allocated on a single processor, Processor 0, and we change only the process-to-core
mapping in our experiments. The workloads can execute in multiple configurations, depending
on the number of triad processes mapped onto the same processor. The terms local and re-
mote are always relative to the processor that holds the data in memory. We denote with xL (yR)
the number x (y) of local (remote) processes. For example, a three-process 3P workload execut-
ing in the (2L, 1R) configuration means that two cores access memory locally and one core
accesses memory remotely, as shown in Figure 2.4. We refer to the instances of the workload
executing locally as L processes and we call instances executing remotely R processes. Memory
accesses of L processes must pass just through the Global Queue and the IMC, while R pro-
cesses have the additional overhead of passing through the processor cross-chip interconnect
(QPI) and the GQ of the remote processor. The datapaths used by the (2L, 1R) workload are
also illustrated in Figure 2.4.

Measurements and methodology

The Nehalem machine runs Linux 2.6.30 patched with perfmon2 [30]. We use the processor’s
performance monitoring unit (PMU) to obtain information about the elapsed CPU cycles and the
amount of last-level cache (LLC) misses a program generates. For this purpose we use the per-
formance monitoring events UNHALTED CORE CYCLES and OFFCORE RESPONSE 0 [45],
respectively. These performance monitoring events allow the measured quantities to be at-
tributed to individual cores of a processor, thus they are referred to as per-core events. The
OFFCORE RESPONSE 0 event is configured with a bitmask, each bit of the bitmask corre-
sponds to a type of request/response processed by the processor’s uncore. Table 2.1 shows the
bits in the bitmask we use for the measurements.

We calculate the generated memory bandwidth using Equation 2.1. The cache line size
of the LLC of the Intel Nehalem is 64 bytes. The processors in our system are clocked at
2.26 GHz. We report only the read bandwidth generated by cores because with the per-core
PMU it is possible to measure only the read bandwidth, but not the write bandwidth generated
by cores [44].

bandwidth =
64 · LLC misses · 2.26 · 109

CPU cycles · 106
MB/s (2.1)

In addition to per-core performance monitoring events, Nehalem-based systems support

2.1. SHARING OF LOCAL/REMOTE MEMORY BANDWIDTH 11

uncore events. Accordingly, the processor’s uncore has a PMU as well, in addition to the PMUs
of the individual processor cores. Uncore events can be used to measure quantities for the
complete system, but, unlike per-core events, they do no allow quantities to be attributed to
individual cores. We use the uncore PMU to monitor the state of the GQ and to cross-check
the bandwidth readings obtained with the per-core performance counters (in which case we
compare cumulative per-core event counts with the corresponding uncore counts).

We compile the triad workload with the gcc compiler version 4.3.3, optimization level
O2. To reduce the variation of the results, OS address space layout randomization is disabled
and we also reduce the number of services running concurrently with our benchmarks as much
as possible. As the triad workload is bound on memory bandwidth and has a single program
phase, its bandwidth and performance readings are very stable and do not depend on the factors
reported by Mytkowicz et al. [75] (e.g., the size of the UNIX environment and link-order). All
measurement data are the average of three measurement runs; the variation of the measurements
is negligible.

2.1.2 Memory system performance

To measure the bandwidth sharing properties of the Nehalem microarchitecture, we measure the
bandwidth achieved by each instance of the triad benchmark. We configure the benchmark
with a number of processes ranging from one to eight (the number of cores on our machine),
and then measure all possible local-remote mapping configurations for any given number of
triad processes. Recall that only per-process read bandwidth can be reported due to lim-
itations of the processor’s PMU. However, the total amount of read and write bandwidth on
the interfaces of the system can be measured using uncore performance counters (using the
UNC QHL NORMAL READS and UNC QHL WRITES events). These measurements show that
the triad benchmark is read-intensive, as in any configuration around 75% of the total main
memory bandwidth is caused by reads, and around 25% is due to writes. Therefore, the mea-
surements of the read bandwidth of the system are representative for the behavior of the memory
interfaces of the Nehalem-based system.

Figure 2.5 shows results for the scenario where four local processes share the IMC band-
width with different numbers of remote processes. If there are no remote processes, the com-
plete bandwidth is allocated to local requests (4L, 0R). As a single remote process is added
(resulting in configuration (4L, 1R)), the total bandwidth increases. Then, as the number
of remote processes further increases, the total bandwidth is reduced slightly (configurations
(4L, 2R) to (4L, 4R)). Two remote processes consume the maximal bandwidth that can
be obtained through remote accesses; the share of the remote processes does not grow as we
increase the number of remote processes. As a consequence, each remote process realizes a
smaller and smaller absolute memory bandwidth.

The data in Figure 2.5 might convince a system developer to favor mapping a process onto
the processor that holds the data locally. However, the situation is more complex: Figure 2.5
shows the total bandwidth achieved by all processes. Figure 2.6 contrasts Figure 2.5 by show-
ing the performance of individual R and L processes. If there is a single L and a single R
process, the L process captures almost 50% more of the memory bandwidth (L: 6776 MB/s,
R: 4412 MB/s). As the number of L processes increases, these L processes compete for local
access, and although the R process’s declines as well (to 3472 MB/s), the bandwidth obtained
by each L process declines a lot more (to 2622 MB/s).

12 CHAPTER 2. RESOURCE SHARING AND INTERCONNECT OVERHEAD

0

2

4

6

8

10

12

14

16

(4L, 0R) (4L, 1R) (4L, 2R) (4L, 3R) (4L, 4R)

To
ta

l b
an

d
w

id
th

 [
G

B
/s

]

Configurations

L processes R processes

Figure 2.5: Bandwidth sharing: 4 L processes with variable number of R processes (Nehalem).

0%

10%

20%

30%

40%

50%

60%

70%

(1L,1R) (2L,1R) (3L,1R) (4L,1R)

Sh
ar

e
o

f
to

ta
l b

an
d

w
id

th

Configurations

L process

R process

Figure 2.6: Percentage of total memory bandwidth obtained by an L and an R process (Ne-
halem).

Table 2.2 shows the complete measurement data. Each row reports the bandwidth obtained
by an L instance in the presence of varying number of R processes. Table 2.3 shows the band-
width obtained by an R process in the same set of configurations as in Table 2.2. Figure 2.6
contrasts column 2 of Tables 2.2 and 2.3. Tables 2.4 and 2.5 report the cumulative data (for all
the L respectively R processes in an experiment). Figure 2.5 is based on the last row of Tables
2.4 and 2.5; the sum of these rows yields the total shown in the figure.

2.1.3 A simple model

Our experiments show that if there are only local processes running on the system, the total
bandwidth obtained by these processes can be described as:

bwLtotal
= min(active cores ∗ bwL, bwLmax) (2.2)

In Equation 2.2, bwL is the bandwidth of a single, locally executing triad clone (L pro-
cess) (see column “0 R” of Table 2.2). If the sum of the bandwidth of the individual cores
bwLtotal

is greater than the threshold bwLmax (see column “0 R” of Table 2.4 for the exact val-
ues), each core obtains an equal share of the threshold value (12925 MB/s).

2.1. SHARING OF LOCAL/REMOTE MEMORY BANDWIDTH 13

0 R 1 R 2 R 3 R 4 R
0 L 0 0 0 0 0
1 L 7656 6776 6325 6185 6210
2 L 5512 4460 4189 4142 4121
3 L 4202 3389 3078 3047 3048
4 L 3231 2622 2348 2325 2326

Table 2.2: Per-core L bandwidth [MB/s].

0 R 1 R 2 R 3 R 4 R
0 L 0 4844 3499 2313 1702
1 L 0 4412 3010 2007 1486
2 L 0 4056 2664 1778 1319
3 L 0 3675 2383 1581 1175
4 L 0 3472 2236 1486 1104

Table 2.3: Per-core R bandwidth [MB/s].

0 R 1 R 2 R 3 R 4 R
0 L 0 0 0 0 0
1 L 7656 6776 6325 6185 6210
2 L 11024 8921 8379 8283 8242
3 L 12607 10167 9235 9141 9145
4 L 12925 10487 9393 9299 9302

Table 2.4: Total L bandwidth [MB/s].

0 R 1 R 2 R 3 R 4 R
0 L 0 4844 6998 6938 6807
1 L 0 4412 6020 6020 5945
2 L 0 4056 5329 5335 5275
3 L 0 3675 4765 4742 4699
4 L 0 3472 4472 4459 4416

Table 2.5: Total R bandwidth [MB/s].

0 R 1 R 2 R 3 R 4 R
0 L 0 4844 6998 6938 6807
1 L 7656 11188 12345 12205 12155
2 L 11024 12977 13708 13618 13517
3 L 12607 13842 14001 13882 13844
4 L 12925 13959 13865 13758 13719

Table 2.6: Total cumulative bandwidth [MB/s].

Similarly, the total bandwidth obtained by remote processes can be characterized as:

bwRtotal
= min(active cores ∗ bwR, bwRmax) (2.3)

In Equation 2.3, bwR is the bandwidth achieved by a single triad instance executing
remotely (R process) (see column “0 L” of Table 2.3). The maximum throughput of the R pro-
cesses (bwRmax) is limited by the QPI interface and is 6998 MB/s (experimentally determined).
The QPI is also fair in the sense that if the threshold is to be exceeded, each R processes obtains
an equal share of the total bandwidth.

The total bandwidth obtained by the system is composed of the bandwidth achieved by L
and R processes and is shown in Table 2.6 for all configurations of the triad benchmark.
The limit bwLmax of L processes can be observed in row “4 L” column “0 R” of Table 2.6.
Similarly, the limit bwRmax of R processes can be observed in row “0 L” and column “2 R”
of Table 2.6. Remote processes hit their limit bwRmax with two active cores, while four local
processes are needed to hit the limit bwLmax . This is because the QPI is already saturated by two
triad clones, however all four cores need to be active to saturate the IMC. Next generations
of the Nehalem have a larger number of cores connected to the same local memory controller,
therefore not all cores of a processor are required to achieve the saturation limit of the IMC. In
Section 2.1.7 we briefly look at such a machine.

14 CHAPTER 2. RESOURCE SHARING AND INTERCONNECT OVERHEAD

Formally the total bandwidth in the system can be expressed as:

bwtotal = (1− β) ∗ bwLtotal
+ β ∗ bwRtotal

(2.4)

We call the variable β the sharing factor. The sharing factor determines the share of the
total bandwidth received by local and remote triad clones. β is a real value between 0 and 1.
If β is 1, all bandwidth is obtained by R processes. Similarly, if β is 0, all bandwidth is obtained
by L processes. The value of β is not constant: As the Global Queue (GQ) arbitrates between
local and remote memory accesses, the GQ determines the value of β based on the arrival rate
of requests at its ports.

If the system must handle memory requests coming from a small number of cores, the
bandwidth (and thus the performance) of local processes is much better than the bandwidth
of remote ones. As the load on the system increases and there are more local processes, the
bandwidth obtained by individual local processes (bwL) becomes comparable to the cumulative
bandwidth of the QPI (bwRtotal

). Situations when the bandwidth of the QPI is better than the
bandwidth of individual local processes are also possible (e.g., configuration (4L, 1R) and
(3L, 1R)). Overloading the QPI with a large number of remotely executing memory-bound
processes should be avoided, as the lower throughput of the QPI interface is divided between R
processes, resulting in low performance of R processes, if their number is too large. In conclu-
sion, if the memory system has a low utilization, local execution is preferred. Nevertheless, as
the load on the memory system increases, remote execution becomes more favorable, but care
needs to be taken not to overload the cross-chip interconnect.

To fully understand the system, the dependence of the sharing factor β of the GQ on the
load coming from the local cores and remote memory interfaces needs to be characterized.
However, as most implementation details of the Nehalem queuing system are not disclosed,
moreover, the performance monitoring subsystem of our Nehalem-based processor does not
allow for measuring queue status directly, such a model is difficult to construct. Instead, we
describe two empirically observed properties of the GQ that help understanding the bandwidth
sharing properties of our evaluation system: queuing fairness (Section 2.1.4) and aggregate
throughput (Section 2.1.5).

2.1.4 Queuing fairness

Table 2.5 shows that for any number of local processes there is a significant difference between
the throughput of the non-saturated QPI executing a single R process (the “1 R” column), and
the throughput of the QPI transferring the data for two R processes (the column labeled “2 R”).
Adding more R processes (columns “3 R” and “4 R”) does not modify the overall bandwidth
allocation of the system, as the throughput limit of the QPI has already been reached, and the
QPI is saturated. However, a large difference in the total bandwidth obtained by the L and R
processes is observed by varying the number of L processes (rows “1 L” to “4 L”).

In the following, we consider the QPI as a fifth agent connected to the GQ (in addition
to the four local cores), executing either the 1R workload, or a workload equivalent to the
memory intensity generated by the 2R workload. We take as baseline the performance of two
cases. In the first case, the GQ is serving 1R from the QPI and 1L from the local cores, as
depicted by Figure 2.7(a). In the second case, the GQ is serving the 2R in combination with
1L, as depicted by Figure 2.7(b). Using the previously defined notation, these workloads can

2.1. SHARING OF LOCAL/REMOTE MEMORY BANDWIDTH 15

Processor 1Processor 0

L

RAM

QPI

L

L

L

contenders

R

(a) Baseline workload: (1L, 1R).

Processor 1

L

RAM

QPI

L

L

L

contenders

R

R

Processor 0

(b) Baseline workload: (1L, 2R).

Figure 2.7: Setup to evaluate GQ fairness.

be denoted with (1L, 1R) and (1L, 2R). To increase the contention on the GQ, one, two,
or three additional L process(es) are executed on the system. These L processes (the base L
process plus the additional L processes) contend with the QPI for IMC bandwidth.

Figure 2.8 shows the variation of the sharing factor (parameter β of Equation 2.4) when
contention on the local port of the GQ increases. The sharing factor depends on the load on the
GQ: the more traffic L processes generate, the larger a share of the bandwidth they obtain, and
the more the share of the R processes (given by β) decreases. Nonetheless, if we consider the
performance degradation of the two baseline workloads (1L, 1R) and (1L, 2R) (shown in
Figure 2.9 and in Figure 2.10, respectively), the performance of individual L process in each of
the two workloads degrades more than the performance of the QPI does. Therefore, the more
load there is on the GQ, the more attractive it is to execute some processes remotely.

In conclusion, if the GQ is contended, the Nehalem microarchitecture is unfair towards local
cores (vs. the QPI), as local cores experience a performance degradation that is larger than the
performance degradation of the QPI. Still, this behavior is reasonable as the GQ does not allow
remote cores to starve, and thus it avoids further aggravating the penalty of remote memory
accesses. Nevertheless, this property of the Nehalem is undocumented and can be discovered
only with experimental evaluation.

2.1.5 Aggregate throughput

To further motivate the benefit of having a good proportion of local and remote memory ac-
cesses, we show in Figure 2.11 the total system throughput for the 4P workload in different
mapping configurations (ranging from the configuration when all processes execute locally
to the configuration with all processes executing remotely). In the configurations with some
remote memory accesses the throughput of the memory system can be better (at a peak of
13842 MB/s) relative to the configuration when all memory accesses are local (12925 MB/s).

To take a closer look at the total system throughput, we examine two cases. First, we map
the processes of the triad workload onto local cores. This way, all memory operations use the
local ports of the Global Queue. Then, we move one process to the remote processor, thus the
QPI port of the GQ is also used to actively handle memory requests. For both cases, we compute

16 CHAPTER 2. RESOURCE SHARING AND INTERCONNECT OVERHEAD

0%

10%

20%

30%

40%

50%

60%

+0L +1L +2L +3L

Sh
ar

in
g

fa
ct

o
r
β

Additional contention

(1L,1R)

(1L,2R)

Figure 2.8: Dependence of β on aggregate load.

0%

20%

40%

60%

80%

100%

+1L +2L +3L

P
er

fo
rm

an
ce

 d
e

gr
ad

at
io

n

re
la

ti
ve

 t
o

 (
1

L,
1

R
)

Additional contention

L process

QPI

Figure 2.9: Performance degradation of (1L, 1R).

0%

20%

40%

60%

80%

100%

+1L +2L +3L

P
er

fo
rm

an
ce

 d
e

gr
ad

at
io

n

re
la

ti
ve

 t
o

 (
1

L,
 2

R
)

Additional contention

L process

QPI

Figure 2.10: Performance degradation of (1L, 2R).

overall system throughput as the sum of the instructions per cycle (IPC) values obtained by the
processes:

IPCtotal =
∑

p∈Processes

IPCp (2.5)

The number of instructions executed by the triad workload is measured using the perfor-
mance monitoring event INSTRUCTIONS EXECUTED.

2.1. SHARING OF LOCAL/REMOTE MEMORY BANDWIDTH 17

0

2

4

6

8

10

12

14

16

(4L,0R) (3L,1R) (2L,2R) (1L,3R) (0L,4R)

To
ta

l b
an

d
w

id
th

 [
G

B
/s

]

Configurations

Figure 2.11: Total bandwidth of the 4P workload in different configurations.

0%

1%

2%

3%

4%

5%

6%

7%

8%

2 3 4

Im
p

ro
ve

m
en

t

Number of processes

IPC

Bandwidth

Figure 2.12: Improvement of aggregate IPC and total memory bandwidth when an IMC and a
QPI are used (relative to the case when a single IMC is used).

We are aware that in case of heterogeneous workloads (workloads that execute different in-
struction streams) using the metric defined by Equation 2.5 may not be appropriate, as pointed
out by Eyerman [31]. However, in our case all processes execute the same tight memory-
intensive loop (shown in Figure 2.3) that processes identically sized data, therefore the instruc-
tions executed by each workload are the same. The clock rate of all processor cores is also the
same, so the ratio of instructions executed and cycles consumed is a precise measure for system
throughput. As most memory accesses of triad miss the last-level cache (and are thus served
by main memory), the aggregate memory bandwidth achieved on the system is also directly
proportional to the system throughput. This metric does not characterize the fairness of the
system, but it accurately reflects the throughput of the main memory system.

Figure 2.12 shows the benefit of mapping one process remotely over the all-local case
(where all memory requests come from local cores). The benefit is minor (1.7%) if there
are just two processes running on the system, but it gets significant (7.4 %) if there are four
processes. This increase of performance in the four-process case can be explained by the dis-
tribution of contention on the GQ. When the GQ handles four locally executing triad clones,
its local port is saturated (it is full 10% of the time). (GQ saturation is measured with the
UNC GQ CYCLES FULL event [45]). Moving one process to the remote processor transfers
some of load from the local port of the GQ to its remote port. In this new configuration neither
the local nor the remote port of the GQ is saturated, therefore system throughput increases.

18 CHAPTER 2. RESOURCE SHARING AND INTERCONNECT OVERHEAD

However, if all processes execute remotely, the remote port of the GQ gets saturated (it is full
31% of the time).

In conclusion, in a single-threaded context the bandwidth and latency of the on-chip mem-
ory interface greatly outperform the same parameters of the QPI. However, in the case when
multiple cores are competing, this advantage diminishes as contention on the queuing system
increases. Distributing computations such that there are both local and remote accesses in the
system helps to improve aggregate throughput.

2.1.6 Limitations

In our analysis we did not account for the overhead of the cache coherency protocol. On every
cache miss, there is a snoop request towards the cache of the adjacent processor (as measured
on the read-, write-, and peer–probe-tracker of each processor’s uncore). Snoop requests are
transferred on the cross-chip interconnect of the system. However, while normal reads usually
request data of the size equal to a cache line, we do not know the amount of data transferred
with a snoop request. Therefore, we cannot calculate the amount of traffic generated by snoop
requests, and so we cannot calculate the bandwidth overhead of the cache coherency protocol.

We use a single, homogeneous workload (composed of multiple triad clones) to eval-
uate the memory system performance of a NUMA-multicore machine. Because the triad
benchmark does not benefit from caching (at least not at the level of the LLC), triad’s per-
formance describes the performance of the memory interfaces of our evaluation system well.
In case of heterogeneous workloads (workloads composed of multiple programs with different
memory intensity that have possibly more cache locality than triad), however, caching effects
also come into play in addition to memory controller throughput. We discuss this scenario in
Section 2.2.

2.1.7 The next generation

In 2010 Intel released a die shrink of the Nehalem codenamed Westmere. To see if the previ-
ously described principles apply also to systems based on the Westmere microarchitecture, we
perform all experiments with a Westmere-based machine as well. The Westmere-based system
we evaluate has also two processors, however it shows some differences to the Nehalem-based
machine we have looked at previously. The most important difference is that the processors in
our Westmere-based system contain six cores per processor (two cores more than the processors
of the Nehalem-based system). A detailed comparison of the two systems is shown in Table 2.7.

We conduct the same set of experiments with the Westmere as with the Nehalem, but we do
not present the complete data. Instead, we present two projections of the Westmere data, similar
to the ones presented for the Nehalem in Figure 2.5 and Figure 2.6, respectively. In Figure 2.13
four local processes share the bandwidth of the IMC of Processor 0. As one R process is
added, the total achieved bandwidth increases. Adding more R processes increases the share
of R processes until the saturation limit of the QPI is achieved (in the case of Westmere four R
processes are required to saturate the QPI versus two R processes in the case of the Nehalem).

Figure 2.13 shows a breakdown of the total bandwidth of the two types of processes, L
and R. Figure 2.14 shows the memory bandwidth of a single L resp. R process with increasing
number of L processes. On the Westmere a single R processes is able to achieve more bandwidth

2.1. SHARING OF LOCAL/REMOTE MEMORY BANDWIDTH 19

0	

2	

4	

6	

8	

10	

12	

(4L,	
0R)	

(4L,	
1R)	

(4L,	
2R)	

(4L,	
3R)	

(4L,	
4R)	

(4L,	
5R)	

(4L,	
6R)	

To
ta
l	 b
an

dw
id
th
	 [G

B/
s]
	

Configura8ons	
R	 processes	 L	 processes	

Figure 2.13: Bandwidth sharing: 4 L processes with variable number of R processes (West-
mere).

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

(1L,	 1R)	 (2L,	 1R)	 (3L,	 1R)	 (4L,	 1R)	 (5L,	 1R)	 (6L,	 1R)	

Sh
ar
e	
of
	 to

ta
l	 b
an

dw
id
th
	

Configura4ons	
L	 process	 R	 process	

Figure 2.14: Percentage of total memory bandwidth obtained by an L and an R process (West-
mere).

Nehalem Westmere
Model number Intel Xeon E5520 Intel Xeon X5680
Number of processors 2 2
Cores per processor 4 6
Clock frequency 2.26 GHz 3.33 GHz
L3 cache size 2x8 MB 2x12 MB
IMC bandwidth 2x25.6 GB/s 2x19.2 GB/s
QPI bandwidth 2x11.72 GB/s 2x12.8 GB/s

(2x5.86 GTransfers/s) (2x6.4 GTransfers/s)
Main memory 2x6 GB DDR3 2x72 GB DDR3

Table 2.7: Parameters of the evaluation machines.

than an L process already in the configuration with two locally executing processes.

To compare the Nehalem to the Westmere, Figures 2.15 and 2.16 show the total read band-
width measured on the Nehalem and the Westmere, respectively. As the Westmere includes two

20 CHAPTER 2. RESOURCE SHARING AND INTERCONNECT OVERHEAD

0 L
1 L

2 L
3 L

4 L

0

2

4

6

8

10

12

14

16

0 R
1 R

2 R
3 R

4 R

To
ta

l b
an

d
w

id
th

 [
G

B
/s

]

Configurations

Figure 2.15: Total read bandwidth (Nehalem).

0 L
1 L

2 L
3 L

4 L
5 L

6 L

0

2

4

6

8

10

12

0 R
1 R

2 R
3 R

4 R
5 R

6 R

To
ta

l b
an

d
w

id
th

 [
G

B
/s

]

Configurations

Figure 2.16: Total read bandwidth (Westmere).

cores more than the Nehalem, the thresholds bwLmax and bwRmax defined in Equations 2.2 and
2.3 are more prominent than on the Nehalem: on the Westmere four triad clones are required
to saturate the QPI (vs. two on the Nehalem), while the IMC saturates with four triad clones,
just as on the Nehalem.

In conclusion, the principles we describe for the Nehalem also apply for the Westmere
microarchitecture. Because the Westmere has more cores, a different LLC size, and memory
interfaces with slightly different throughput as the Nehalem, the bandwidth sharing properties
of this machine are quantitatively, but not qualitatively, different.

2.1.8 Summary

Today’s multicore processors integrate a memory controller with the cores and caches on a
single chip. Such a design leads to the new generation of NUMA multicore-multiprocessors

2.2. CACHE CONTENTION AND INTERCONNECT OVERHEAD 21

that present software developers with a new set of challenges and create a different class of
performance optimization problems. The cores put pressure on the memory controller to service
the local memory access requests while, at the same time, the memory controller must deal with
requests by other processors as well. So it is important that the software finds a balance between
local and remote memory accesses if overall performance is to be optimized.

In this section (Section 2.1) we presented an experimental analysis of the bandwidth shar-
ing properties of two commercially available multicore systems, the Intel Nehalem and its die-
shrink, the Intel Westmere. The evaluation shows that if a large part or all of the cores of a
processor are active and thus contention on memory controllers is high, favoring data locality
may not lead to optimal performance. In addition to data locality, the bandwidth limits of the
memory controllers and the fairness of the arbitration between local and remote accesses are
important. Moreover, the overhead of arbitration and queuing is likely to become more impor-
tant in larger systems as the complexity of this mechanism increases with a growing number
of processors in the system. Therefore, it is important that software developers understand the
memory system to be able to balance the memory system demands on such a system so that the
best tradeoff between local and remote accesses can be found.

2.2 Cache contention and interconnect overhead

In recent multicore architectures (including the Nehalem- and Westmere-based systems ana-
lyzed in Section 2.1) there are usually multiple cores connected to a single last-level cache
(LLC). Contention for shared LLCs (short: cache contention) appears when multiple, indepen-
dent programs (e.g., programs of a multiprogrammed workload) are mapped onto a multicore
machine so that several programs use the same LLC simultaneously. Programs using the same
LLC at the same time can evict each other’s cache lines. Such activities result in less cache
capacity available to each program (relative to the case when a program uses the cache alone).
Therefore, for memory intensive programs cache contention can result in severe performance
degradation, as shown by [8, 14, 20, 34, 40, 47, 52, 69, 70, 84, 97, 113].

Section 2.1 analyzes the relative cost of memory controller contention and interconnect
overhead by looking at the bandwidth sharing properties of Intel Nehalem- and Westmere-
based machines. In this this section we extend the experimental analysis to take into account
the relative cost of cache contention as well. Section 2.2.1 describes the experimental setup we
use, in Section 2.2.2 we discuss the effects of cache contention on application performance.

2.2.1 Experimental setup

The analysis in Section 2.1 uses the triad workload for experiments. The triad workload
has a cache miss rate of almost 100% and thus its performance critically depends only on the
available memory bandwidth, but not at all on the amount of cache capacity available to it. As
a result, triad is well suited to analyze the relative cost of memory controller contention and
interconnect overhead, but it cannot be used to compare the cost of cache contention and the
cost of interconnect overhead.

In the current setup we consider programs of the SPEC CPU2006 benchmark suite, instead
of triad. Programs in the SPEC CPU2006 suite have various memory intensities, Sandberg et
al. [90] provides a classification of programs based on their memory behavior. Some programs

22 CHAPTER 2. RESOURCE SHARING AND INTERCONNECT OVERHEAD

are not memory intensive at all, that is, their performance does not depend on the memory sys-
tem at all (i.e., the “don’t care” category in the classification provided by the paper). Some
programs are similar to triad, that is, they are memory intensive but their performance does
not dependent on the available LLC capacity (i.e., the “cache gobbler” category in the classifi-
cation). Finally, numerous programs in the suite are memory intensive and their performance
closely depends on the amount of LLC capacity available (e.g., “victim” and “gobblers and
victims” category in the classification in [90]).

We use programs from the “gobblers and victims” category to evaluate the relative cost of
cache contention and interconnect overhead. The programs are executed with the reference in-
put size (the largest input size available in the suite). The hardware and software environment
used to run experiments is the same as the environment described in Section 2.1 (i.e., use the
same Nehalem- and Westmere-based machines), but we perform a different set of the experi-
ments. First, we analyze the performance impact of cache contention and data locality using
a simple example: mapping two programs onto the 2-processor Nehalem-based system. Then,
we extend the scope of the experiment and analyze the impact of cache contention and data
locality by investigating the mapping of a larger number of programs (on both the Nehalem-
and Westmere-based system).

2.2.2 Memory system performance

Simple example: Mapping a 2-program workload

In this section we consider a simple example: mapping two programs, mcf and lbm, onto the
2-processor Nehalem-based system. Both programs belong to the “cache gobbler and victim“
category [90]. Moreover, both programs are single-threaded, so there is a one-to-one mapping
between a program and the operating system process executing it. In the discussion that follows
we use the term program and process interchangeably.

In a NUMA system a process’s data can be allocated in the memory of any processor in the
system. We say that a process p is homed at Processor i of the system if the process’s data was
allocated only at Processor i. If a process runs on its home processor, it is executed locally.
Similarly, if a process runs on a processor different from its home processor, it is executed
remotely. For our experiments we assume that both processes (executing mcf resp. lbm) are
homed on Processor 0 of the machine. Because both programs are single-threaded, there are
four ways the processes executing the two programs can be mapped onto the system given this
memory allocation setup. Figure 2.17 shows all possible mappings:

(a) Both processes executed locally. As both processes execute on their respective home node
(Processor 0), they both have fast access to main memory. As Processor 0 has only one
LLC, the processes contend for the LLC capacity of Processor 0.

(b) mcf executed locally, lbm executed remotely. As lbm is executed remotely (on Proces-
sor 1), it accesses main memory through the cross-chip interconnect, therefore it experi-
ences lower throughput and increased latency of memory accesses relative to local execu-
tion. Additionally, as the two processes execute on two different processors, they do not
share an LLC, therefore there is no cache contention in the system.

2.2. CACHE CONTENTION AND INTERCONNECT OVERHEAD 23

Processor 0 Processor 1

mcf

Data
mcf

lbm

Data
lbm

(a) Both processes local.

Processor 0 Processor 1

mcf

Data
mcf

lbm

Data
lbm

(b) mcf local, lbm remote.

Processor 0 Processor 1

lbm mcf

Data
mcf

Data
lbm

(c) mcf remote, lbm local.

Processor 0 Processor 1

P1

Data
mcf

P2mcf lbm

Data
lbm

(d) Both processes remote.

Figure 2.17: Possible mappings of a 2-process workload (mcf and lbm).

(c) mcf executed remotely, lbm executed locally. This case is similar to case (b), but in this
case mcf uses the cross-chip interconnect to access main memory instead of lbm.

(d) Both processes executed remotely. Both processes share the LLC, and both processes ex-
ecute remotely. This setup is clearly the worst possible scenario for performance, therefore
we exclude this case from further investigation.

To measure how each mapping effects memory system performance, we execute the two
programs simultaneously. More specifically, we start both programs at the same time. Then,
if a program finishes execution earlier than the other program does, it is restarted (multiple
times, if needed) and is executed until the other program has completed execution as well.
We report performance as the wall clock running time of the first execution of each program.
The performance degradation of a program is calculated as the percent slowdown in wall clock
running time relative to the running time in single-process mode (i.e., when the program is
executed alone and locally on the system, also referred to as solo mode). We use the cache
miss rate per thousand instructions executed (MPKI) to characterize a program’s usage of the
shared LLC. If a program contends with other programs for LLC capacity, the program’s MPKI
increases (relative to the MPKI measured on the program’s solo mode execution). A program’s
MPKI can be measured using the hardware performance counter events listed in Section 2.1.1.
(Due to the limitations mentioned in Section 2.1.1, we can measure only read cache misses.)

Figure 2.18 shows the increase of the MPKI of mcf and lbm relative to each program’s
execution in single-process mode. In case (a) (both processes locally executed), the MPKI
increases by 47% resp. 62% due to cache contention. In cases (b) and (c) (when the processes
are mapped onto different processors, therefore different LLCs), the MPKI increases by at most
4% relative to solo mode. It is unclear what the reason for this increase is, but as the amount of
increase is small, we did not consider investigating this issue further.

Good data locality is crucial for obtaining good performance in NUMA systems. Fig-
ure 2.19 shows the distribution of bandwidth over the interfaces of the system. In case (a),
when both processes are executed locally, the system has good data locality: 100% of the mem-
ory bandwidth in the system is provided by the local memory interface of Processor 0. In

24 CHAPTER 2. RESOURCE SHARING AND INTERCONNECT OVERHEAD

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

(a)	 (b)	 (c)	

Ca
ch
e	
m
is
s	 r
at
e	
(M

PK
I)	

in
cr
ea
se
	 re

la
4v

e	
to
	 so

lo
	

Mapping	

mcf	

lbm	

Figure 2.18: Increase of cache miss rate in different mapping scenarios.

0	
1	
2	
3	
4	
5	
6	
7	

(a)	 (b)	 (c)	

To
ta
l	 s
ys
te
m
	 b
an

dw
id
th
	 [G

B/
s]
	

Mapping	

Remote	

Local	

Figure 2.19: Bandwidth distribution in different mapping scenarios.

0%	

5%	

10%	

15%	

20%	

25%	

30%	

(a)	 (b)	 (c)	

Sl
ow

do
w
n	
re
la
+v

e	
to
	 so

lo
	

Mapping	

mcf	

lbm	

average	

Figure 2.20: Performance degradation in different mapping scenarios.

cases (b) and (c), when one of the two processes executes on Processor 1, data is transferred
also on the cross-chip interconnect of the system: 56% (resp. 33%) of the generated bandwidth
is due to one of the two processes executing remotely. Figure 2.19 also shows the total band-
width measured on the interfaces in the system. If the processes execute locally and thus share
the cache (case (a)), the total bandwidth is approximately 50% higher than in cases (b) and (c)
(when caches are not shared).

We investigate now: Which mapping leads to best performance: when cache contention

2.2. CACHE CONTENTION AND INTERCONNECT OVERHEAD 25

0%	

10%	

20%	

30%	

40%	

0%	 20%	 40%	 60%	 80%	 100%	

Ca
ch
e	
m
is
s	 r
at
e	
(M

PK
I)	

in
cr
ea
se
	 re

la
4v

e	
to
	 so

lo
	

Local	 references	

maximum	 data	
locality	

minimum	 cache	
conten4on	

maximum	 data	
locality	

minimum	 cache	
conten4on	

Figure 2.21: Increase of cache miss rate vs. data locality of soplex (Nehalem).

0%	

20%	

40%	

60%	

80%	

100%	

120%	

140%	

0%	 20%	 40%	 60%	 80%	 100%	

Sl
ow

do
w
n	
re
la
+v

e	
to
	 so

lo
	

Local	 references	

Local	

Remote	

Average	 minimum	 cache	
conten+on	

maximum	 data	 	
locality	

op+mum	
performance	

Figure 2.22: Performance vs. data locality of soplex (Nehalem).

is minimized (cases (b) and (c)), or when data locality is maximized (case (a)). Figure 2.20
shows the individual and average performance degradation of mcf and lbm in all three mapping
scenarios. The average performance of the workload consisting of mcf and lbm is better in
cases (b) and (c) than in case (a). Case (b) shows only a minor improvement over case (a)
because remote execution slows down lbm by almost 30%. However, in case (c) the degradation
is reduced relative to case (a); mcf sees a small improvement, lbm’s slowdown is reduced from
11% to 1%, so the average degradation is reduced from 17% to 11%.

Extended experiments

In general, the tradeoff between local cache contention and interconnect overhead can be ob-
served with memory-bound programs. We focus in the presentation on the soplex benchmark.
This program keeps large amounts of data in the caches, and its performance is hurt if the avail-
able cache capacity is reduced because other memory-bound programs use the same cache at
the same time. There are several other memory-bound programs in the SPEC suite that show
this behavior (see [90] for details), and the principles we discuss here are valid for these pro-
grams as well. We construct a multiprogrammed workload that consists of four identical copies
(clones) of soplex. We allocate the memory of all clones on Processor 0 of the 2-processor

26 CHAPTER 2. RESOURCE SHARING AND INTERCONNECT OVERHEAD

8-core Nehalem-based NUMA-multicore system. We execute the multiprogrammed workload
in various mapping configurations with a different number of clones executed locally respec-
tively remotely. The mapping configurations range from all four clones executed locally (on
Processor 0) to the configuration where all four clones execute remotely (on Processor 1). If a
clone finishes earlier than the other clones in the workload, we restart it. We run the experiment
until all clones execute at least once. We report data about the first execution of each clone.

Figure 2.21 shows the average of the number of misses per thousand instructions (MPKI)
of all soplex clones relative to the solo mode MPKI of soplex (when the clone is executed
alone in the system). Remember that the MPKI of a program increases if in its execution the
program contends for LLC capacity with other programs using the same LLC. When the data
locality is maximal in the system (100% of the references are local because all clones execute
locally on Processor 0), the average increase of MPKI peaks at 35% because all clones execute
on the same processor and thus use the same LLC. When the data locality in the system is 57%
(two clones execute on Processor 0 and two clones execute on Processor 1), cache contention is
minimal as the MPKI increase is also minimal (19%).

In the mapping configuration with 57% data locality two locally executing clones obtain
a higher fraction of the total memory bandwidth (57%) than two remotely executing clones
(43%). Memory bandwidth is not equally partitioned between local and remote clones because
remote clones encounter a higher memory access latency than local clones. As a result remote
clones can issue memory request at a lower rate than local clones.

Figure 2.22 shows the slowdown of the locally respectively remotely executing soplex
clones. The slowdown is calculated relative to the solo mode execution of soplex. We also
plot the average degradation of the clones. Clearly, neither the mapping with minimum cache
contention, nor the mapping with maximum data locality performs best. The average slowdown
(and also the individual slowdown) of the clones is smallest if there is 80% data locality in the
system (i.e., in the mapping configuration with three locally and one remotely executing clone).

We perform a similar experiment on a 2-processor 12-core machine (the Westmere-based
machine described in Section 2.1.7). In this experiment we use a workload composed of 6
soplex clones. Similar to the Nehalem-based experiments, we vary the number of clones
executed locally and remotely. The memory of all clones is allocated at Processor 0. As there
are 6 cores on each processor, the mapping configurations range from all 6 clones executed
locally to all clones executed remotely.

Figure 2.23 shows the average MPKI of all clones relative to the solo mode MPKI of
soplex. Similar to the Nehalem case, cache contention is the lowest when there is 56%
data locality in the system, moreover, when data locality is best (100% local accesses), cache
contention is highest.

Figure 2.24 shows the average slowdown of clones, as well as the individual slowdown
of local and remote clones. The average slowdown is similar in the configuration with 56%
data locality (and minimum cache contention) and in the configuration with 69% data locality.
However, the slowdown of local and remote clones is around the same in the 69% case, while
in the 56% case remote clones experience more slowdown than local clones. Thus, the optimal
mapping (with 69% data locality) is between the mapping with the lowest cache contention and
the mapping with the best data locality.

2.2. CACHE CONTENTION AND INTERCONNECT OVERHEAD 27

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	

0%	 20%	 40%	 60%	 80%	 100%	

Ca
ch
e	
m
is
s	 r
at
e	
(M

PK
I)	

in
cr
ea
se
	 re

la
4v

e	
to
	 so

lo
	

Local	 references	

maximum	 data	
locality	

minimum	 cache	
conten4on	

maximum	 data	
locality	

Figure 2.23: Increase of cache miss rate vs. data locality of soplex (Westmere).

0%	

50%	

100%	

150%	

200%	

250%	

300%	

0%	 20%	 40%	 60%	 80%	 100%	

Sl
ow

do
w
n	
re
la
+v

e	
to
	 so

lo
	

Local	 references	

Local	

Remote	

Average	

minimum	 cache	
conten+on	

maximum	 data	 	
locality	

op+mum	
performance	

Figure 2.24: Performance vs. data locality of soplex (Westmere).

2.2.3 Summary

In NUMA multicore-multiprocessor systems, good data locality is often beneficial for perfor-
mance because local memory accesses have better memory access latency and bandwidth than
remote memory accesses [44, 73]. The experimental analysis in this section (Section 2.2) has
shown, however, that in scenarios when the load on LLCs is high, avoiding cache contention can
improve performance, even at the cost of compromising data locality. In other words, trading
local memory accesses for a combination of cache- and remote memory accesses can improve
performance; software must be aware of this tradeoff to be able to efficiently use the memory
system.

The results presented in this section (Section 2.2) strongly depend on memory system pa-
rameters (e.g., LLC size and memory access latencies) that are specific to our Nehalem- and
Westmere-based machines. On other machines (with possibly different parameters) the results
may differ. For example, on a system with larger LLCs, cache contention might not cause
significant performance degradations; moreover, on systems with more processors and more
elaborate interconnects the penalty of remote memory accesses might be prohibitively high
to allow favoring remote execution over local execution. Nevertheless, the analysis presented
in this section provides insight on (and also compares the cost of) two performance-degrading

28 CHAPTER 2. RESOURCE SHARING AND INTERCONNECT OVERHEAD

factors that effect programs on current NUMA multicore-multiprocessors, cache contention and
interconnect overhead. Moreover, the experiments can be easily repeated and be used to charac-
terize any NUMA multicore-multiprocessor, including newer generations of NUMA-multicore
systems.

2.3 Conclusions

A typical NUMA multicore-multiprocessor memory system has several bottlenecks. This chap-
ter analyzes two types of bottlenecks: (1) the sharing of memory system resources (e.g., mem-
ory controllers and caches), and (2) interconnect overhead. Both types of bottlenecks have
significant effect on application performance.

The performance of multiprogrammed workloads ultimately depends on the mapping of the
workload onto the hardware (i.e., the distribution of the workload’s data and the schedule of the
workload’s computations). It depends on the mapping which bottlenecks of the memory system
influence the performance of an application, if at all. More importantly, however, in some
cases bottlenecks can impose limitations at the same time. Thus, a mapping must consider all
bottlenecks of a memory system to obtain good performance.

3
Cache-conscious scheduling
with data locality constraints

The memory system performance of a multiprogrammed workload critically depends on the
way the workload is mapped onto the hardware. On NUMA multicore-multiprocessors a map-
ping has two components: (1) the distribution of data (i.e., the way the application’s data is
distributed across the processors of the system), and (2) the schedule of computations (i.e., the
way the computations of an application are scheduled onto the cores/processors of the system).

In this chapter we focus on the second component of a mapping, that is, on scheduling com-
putations to cores/processors. (We assume that the distribution of data in the system is given,
that is, data cannot be migrated.) As we consider multiprogrammed workloads, determining
the schedule of computations is equivalent to deciding on how a set of independent operating
system processes are mapped onto the cores/processors of a system.

This chapter presents the design (Section 3.1), implementation (Section 3.2), and evaluation
(Section 3.3) of N-MASS, a process scheduler tailored for NUMA-multicore systems. Ideally,
a process scheduler balances between all bottlenecks of a NUMA-multicore memory system.
N-MASS takes two bottlenecks into account, contention for shared last-level caches (LLCs)
and interconnect overhead, and targets finding a balance these two bottlenecks.

To find a mapping that uses the memory system appropriately, a process scheduler requires
information about the interaction between the hardware and the scheduled processes (e.g., infor-
mation about a process’s utilization of shared caches, about the performance penalty the process
experiences due to remote memory accesses, as well as about the locality of the process’s main
memory accesses). As some of these information is not yet available in current systems, we
simulate their availability by using static traces of program memory behavior. In Section 3.4
we elaborate on possibilities for future extension that could make our approach more practical.

3.1 Design

3.1.1 Modeling memory system behavior

As shown in Chapter 2, process scheduling on NUMA-multicores must target a tradeoff between
improving data locality and reducing cache contention (the optimum performance point on
Figures 2.22 and 2.24). To simplify the discussion, we focus on a setup with two processors.
We also assume that all the cores of a processor share an LLC. There are systems that do not
support this assumption (see multi-socket implementations like the AMD Magny-Cours). In

29

30 CHAPTER 3. CACHE-CONSCIOUS SCHEDULING WITH DATA LOCALITY CONSTRAINTS

Load_0

Load_1

D

Load_1

Load_0

D/2

D/2

Cache 0

Pressure_0

Pressure_1

Cache 1

(a) Initial configuration.

Load_0 Load_1

D

Load_1Load_0

D/2

D/2

Cache 0

Pressure_0’

Cache 1

Pressure_1’

(b) SMP.

Load_0

Load_1

D

Load_1
Load_0

D/2

D/2

Cache 0 Cache 1

NUMA penalty

Pressure_0’’
Pressure_1’’

(c) NUMA.

Figure 3.1: Cache balancing in SMP and NUMA context.

this case you should consider all the cores that share a cache to form a “processor”.

To reduce cache contention in a system, a process scheduler must characterize the way pro-
cesses utilize the shared caches of the system; that is, a process scheduler must characterize
both the contentiousness and sensitivity of each scheduled process [99, 113]. A process’s con-
tentiousness is a measure of how much performance degradation the process causes to other
processes with which it shares a cache. A process’s sensitivity is a measure of the performance
degradation a process suffers due to sharing the cache with other processes.

There are several approaches that enable a process scheduler to determine (or to esti-
mate) the contentiousness and the sensitivity of a process [113]. In practice, however, many
contention-aware process scheduler implementations use a single measure, the cache pressure,
to estimate both the contentiousness and sensitivity of a process [13, 83, 113]. A process’s
cache pressure is, by definition, the ratio of the number of cache misses encountered by the pro-
cess and the number of instructions executed by the process. In current systems with a shared
LLC a process’s cache pressure is often defined as the number of LLC misses encountered by
the process divided by the number of instructions executed by the process. The pressure on a
shared cache is, by definition, as the sum of the cache pressure of each process using that cache.

In recent systems, both a process’s LLC misses and the number of instructions executed by a
process can often be measured using the processor’s performance monitoring unit (PMU) [52].
The low cost of hardware performance counter measurements allow a process scheduler to
characterize a process’s shared cache utilization at runtime with low overhead. Other synthetic
metrics like stack-distance profiles [20, 90] or miss-rate curves [97] can estimate shared cache

3.1. DESIGN 31

utilization with better precision, but generating these metrics might result in higher runtime
overhead than PMU-based measurements. Therefore, we use the cache pressure metric in our
work to characterize the way processes utilize shared caches.

Our approach builds upon the idea of scheduling algorithms for non-NUMA multicore-
multiprocessors (i.e., symmetric multiprocessors (SMPs) built with multicore chips) with shared
caches [52, 113]. The basic principle of these algorithms is illustrated in Figure 3.1 (for a system
with two LLCs). If the difference D between the pressure on the two caches of the system is
large (Figure 3.1(a)), some processes (preferably processes with a cumulative cache pressure
of D/2) are scheduled onto the cache with the smaller pressure. As a result, the difference
between the pressure on the two caches is reduced (Figure 3.1(b)).

Our approach is similar to cache-balancing algorithms in SMPs and relies on two principles.
First, we also distribute pressure across caches, however not evenly as in an SMP system: The
amount of cache pressure transferred to Cache 1 is less than D/2 (half of the difference) – as
illustrated in Figure 3.1(c). If mapping processes onto a different LLC results in the remote
execution of the re-mapped process, then we account also for the performance penalty of re-
mote execution (i.e., the NUMA penalty previously defined in Section 2.1). The performance
degradation experienced by processes is equal if this penalty is also considered. The second
principle of our approach states that overloading the cross-chip interconnect with too many re-
motely executing processes must be avoided. Therefore, if the pressure on the remote cache is
above a threshold, we do not re-map processes for remote execution.

Section 3.1.2 discusses a practical way to characterize a program’s memory behavior (i.e.,
estimating the cache pressure and the NUMA penalty). Then, Section 3.1.3 presents the N-
MASS algorithm that implements the previously discussed two principles.

3.1.2 Characterizing the memory behavior of processes

A scheduling algorithm targeting memory system optimizations must be able to quickly esti-
mate the memory behavior of scheduled processes. Three parameters are necessary to character-
ize the memory behavior of a process on a NUMA multicore-multiprocessor: (1) the cache pres-
sure of the process, (2) the remote execution penalty the process experiences (i.e., the NUMA
penalty), and (3) the distribution of the process’s data.

Cache pressure On many modern processors the cache pressure of process can be measured
using the processor’s PMU. In the Intel Nehalem-based system that we use, however, it is pos-
sible to measure only the LLC read misses of a process (see Section 2.1.1 for more details).
Therefore, we estimate a program’s cache pressure by the read misses per thousand instructions
executed by the process (MPKI).

NUMA penalty As defined in Section 2.1, the NUMA penalty quantifies the slowdown of a
remote execution of a process relative to the process’s local execution. Let CPIlocal denote the
CPI (cycles per instruction) of a process executing locally, and let CPIremote denote the CPI of
the same process executing remotely. Using this notation the NUMA penalty is:

NUMA penalty = CPIremote/CPIlocal (3.1)

32 CHAPTER 3. CACHE-CONSCIOUS SCHEDULING WITH DATA LOCALITY CONSTRAINTS

1

23

4
5

6

7

8
9101115

1617

18

19
2021

2223
24

25

26
2728

29

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 10 20 30 40

N
U

M
A

 p
e

n
al

ty

MPKI

Figure 3.2: NUMA penalty vs. MPKI.

The NUMA penalty is a lower-is-better metric and its minimum value is 1 (if a process does
not slow down in its remote execution). For example, if a process has a NUMA penalty equal
to 1.3, the process slows down 30% on remote execution (i.e., the process’s remote execution
takes 30% more time than its local execution). We measure the NUMA penalty of a process
by executing the process twice, once locally and once remotely. During the measurements all
cores are inactive, except the core that executes the process. Figure 3.2 plots the NUMA penalty
of all programs of the SPEC CPU2006 benchmark suite against their MPKI (we use the SPEC
programs for evaluating the N-MASS scheduler). All programs in the SPEC CPU2006 suite are
sequential, therefore each program maps to a single OS process.

Table 3.1 shows the complete data. The numbers on Figure 3.2 correspond to the numbers
in this table. For comparison, the table lists the MPKI and NUMA penalty of the sequential
version of STREAM triad as well.

Figure 3.2 also plots a linear model fitted onto the data. (The triad benchmark is not
shown in the figure, nor is it included in the linear model.) Although the two parameters are
positively correlated (the NUMA penalty increases with the MPKI), the coefficient of determi-
nation (R2) is relatively low, 0.64. However, as today’s hardware does not provide information
on the NUMA penalty experienced by a process, this regression model can be a simple (and
fast) way to estimate a process’s NUMA penalty based on its MPKI.

Data distribution To simplify the discussion, we assume that all the data of a process is
allocated to one processor. This assumption includes scenarios when co-executing processes
have their memory allocated on specific, possibly different, processors; that is, we assume only
that a single process’s memory is not scattered around in the system. We also assume that
the home processor of a process (i.e, the target of the most of the process’s memory accesses)
cannot be changed. That is, we assume a process’s data is not migrated, neither by the process
scheduler, nor by the underlying OS. In case a process’s data is scattered around in the system,
the home processor of the process must be determined at runtime. In most current systems this
information is not easy to obtain, we discuss this limitation in Section 3.5.

3.1. DESIGN 33

Program MPKI NUMA Type
penalty (C: compute-bound,

M: memory-bound)
1 mcf 39.67 1.20 M
2 milc 26.82 1.46 M
3 libquantum 23.49 1.45 M
4 soplex 21.89 1.28 M
5 lbm 16.34 1.30 M
6 omnetpp 15.54 1.39 M
7 gcc 7.01 1.21 M
8 sphinx 1.04 1.04 C
9 gobmk 0.74 1.02 C

10 perlbench 0.32 1.01 C
11 namd 0.05 1.00 C
12 h264 0.03 1.00 C
13 gamess 0.00 1.00 C
14 povray 0.00 1.00 C
15 bzip2 0.07 1.00 C
16 bwaves 9.72 1.08 M
17 zeusmp 4.57 1.15 C
18 gromacs 0.07 1.00 C
19 cactusADM 2.90 1.10 C
20 leslie3d 5.87 1.06 C
21 dealII 2.72 1.06 C
22 calculix 0.21 1.01 C
23 hmmer 0.03 1.00 C
24 sjeng 0.38 1.04 C
25 gemsFDTD 11.14 1.22 M
26 tonto 0.32 1.00 C
27 astar 2.05 1.06 C
28 wrf 3.93 1.03 C
29 xalanbmk 3.22 1.17 C
30 STREAM triad 53.48 1.58 M

Table 3.1: MPKI and NUMA penalty of SPEC benchmarks and STREAM triad.

3.1.3 The N-MASS algorithm

The NUMA–Multicore-Aware Scheduling Scheme (N-MASS) implements the two principles
of cache-aware scheduling in NUMA systems described in Section 3.1.1. Algorithm 1 presents
an outline of N-MASS. The algorithm is described for a 2-processor NUMA system, but it can
be extended to handle a higher number of processors as well. The algorithm is invoked after
a scheduler epoch has elapsed, and it calculates the mapping Mfinal : Processes 7→ Cores of
processes onto cores. The number of scheduled processes n equals at most the number of cores
in the system (this limitation is discussed later in this section). The algorithm uses the following
performance data about each scheduled process i: the process’s cache pressure (mpkii) and

34 CHAPTER 3. CACHE-CONSCIOUS SCHEDULING WITH DATA LOCALITY CONSTRAINTS

Algorithm 1 N-MASS: maps n processes onto a 2-processor NUMA-multicore system.
Input: List of processes P0 and P1 homed on Processor 0 respectively Processor 1.
Output: A mapping Mfinal of processes to processor cores.

1: // Step 1: Sort list of processes by NUMA penalty
2: Psorted0 ← sort descending by np(P0)
3: Psorted1 ← sort descending by np(P1)
4: // Step 2: Calculate maximum-local mapping
5: Mmaxlocal ← map maxlocal(Psorted0 , Psorted1)
6: // Step 3: Refine maximum-local mapping
7: Mfinal ← refine mapping(Mmaxlocal)

Algorithm 2 map maxlocal: maps n processes onto a 2-processor system NUMA system; pro-
cesses are mapped onto the processor that holds their data in descending order of their NUMA
penalty.
Input: List of processes Psorted0 and Psorted1 homed on Processor 0 respectively Processor 1.

The lists are sorted in descending order of the processes’ NUMA penalty (np).
Output: A mapping Mmaxlocal of processes to processor cores.

1: Mmaxlocal ← ∅
2: p0 ← pop front(Psorted0); p1 ← pop front(Psorted1)
3: while p0 6= NULL or p1 6= NULL do
4: if p1 = NULL or npp0 > npp1 then
5: core← get next available core(Processor 0)
6: push back(Mmaxlocal, (p0, core))
7: p0 ← pop front(Psorted0)
8: else if p0 = NULL or npp0 ≤ npp1 then
9: core← get next available core(Processor 1)

10: push back(Mmaxlocal, (p1, core))
11: p1 ← pop front(Psorted1)
12: end if
13: end while

an estimate of the process’s NUMA penalty (npi). The N-MASS algorithm has three steps.
First, for each processor, it sorts the list of processes homed on the processor in descending
order of the processes’ NUMA penalty (lines 2-3). Second, it maps the processes onto the
system using the maximum-local policy (line 5). If the pressure on the memory system of the
two-processor system is unbalanced, then, in the third step, the algorithm refines the mapping
decision produced by the maximum-local mapping (line 7). In the following paragraphs we
describe Step 2 and Step 3 of N-MASS.

Step 2: Maximum-local mapping The maximum-local scheme (described in detail by Al-
gorithm 2) improves data locality in the system by mapping processes onto their home nodes in
descending order of their NUMA penalty. The algorithm has as its input two lists of processes,
P0 and P1. The processes in list P0 (P1) are homed on Processor 0 (Processor 1). The lists are
sorted in descending order of the NUMA penalty of the processes they contain. The algorithm
merges the two lists. During the merge, the algorithm determines which core each process is
mapped onto. The algorithm guarantees that processes with a high NUMA penalty are mapped

3.1. DESIGN 35

Algorithm 3 refine mapping: refines the maximum-local mapping of n processes to reduce
cache contention.
Input: Maximum-local mapping of processesMmaxlocal. For each process i the NUMA penalty

respectively the MPKI of the last scheduler epoch is available in npi respectively mpkii.
Output: A mapping Mfinal of processes to processor cores.

1: M0 = {(p, core) ∈Mmaxlocal | core ∈ Processor 0}
2: M1 = {(p, core) ∈Mmaxlocal | core ∈ Processor 1}
3: pressure0 =

∑
{mpkip | (p, core) ∈M0}

4: pressure1 =
∑
{mpkip | (p, core) ∈M1}

5: repeat
6: ∆← |pressure1 − pressure0|
7: (p0, core0)← back(M0); (p1, core1)← back(M1)
8: ∆MOVE0→1 ← mpkip0 · npp0

9: ∆MOVE1→0 ← mpkip1 · npp1

10: if ∆MOVE0→1 < ∆MOVE1→0 then
11: pressure0 ← pressure0 −mpkip0

12: pressure1 ← pressure1 +mpkip0 · npp0

13: core← get next available core(Processor 1)
14: // Could be on Processor 0 if 6 ∃ free core on Processor 1
15: if core 6∈ Processor 0

and pressure1 < THRESHOLD then
16: pop back(M0, (p0, core0))
17: push front(M1, (p0, core))
18: decision← MOVE0→1

19: else
20: decision← CURRENT
21: end if
22: end if
23: if ∆MOVE0→1 ≥ ∆MOVE1→0

or decision = CURRENT then
24: // Similar to the MOVE0→1 case
25: end if
26: until decision 6= CURRENT
27: Mfinal ←M0 ∪M1

onto a core of their home node with higher priority than processes with a lower NUMA penalty
that are homed on the same processor. The lists P0 and P1, and the mapping Mmaxlocal of
processes, are double-ended queues. The function pop front(l) removes the element from the
front of the list l; the function push back(l, e) inserts element e at the back of the list l. The
function get next available core(p) returns the next free core, preferably from processor p. If
there are no free cores on processor p, the function returns a free core from a different processor.

Step 3: Cache-aware refinement If the maximum-local mapping results in increased con-
tention on the caches of the system, Step 3 of the N-MASS algorithm refines the mapping
produced by the maximum-local scheme in Step 2. This step implements the two principles
of scheduling in NUMA-multicores previously discussed in Section 3.1.1, and is described in

36 CHAPTER 3. CACHE-CONSCIOUS SCHEDULING WITH DATA LOCALITY CONSTRAINTS

detail in Algorithm 3. First, the algorithm accounts for the performance penalty of remote ex-
ecution by multiplying the MPKI of remotely mapped processes with their respective NUMA
penalty (lines 8, 9, 12). Second, the algorithm avoids overloading the cross-chip interconnect
by moving processes only if the pressure on the remote cache is less than a predefined threshold
(line 14). We discuss in Section 3.2 how the threshold is determined. By construction (line 6
and 10 of Algorithm 2) Mmaxlocal contains pairs (process, core) ordered in descending order of
the processes’ NUMA penalty. The function back(l) returns the last element of list l without
removing it from the list; push front(l, e) inserts element e to the front of list l.

Limitations The N-MASS algorithm requires the number of processes n to be at most the
total number of cores on the system, therefore it can only decide on the spatial multiplexing of
processes (and not on their temporal multiplexing). Nevertheless, if the OS scheduler decides
on the temporal multiplexing (the set of processes that will be executed in the next scheduler
epoch), N-MASS can refine this mapping so that the memory allocation setup in the system is
accounted for, and the memory system is efficiently used.

3.2 Implementation

To demonstrate that N-MASS is capable of finding the tradeoff between reducing cache con-
tention and increasing data locality, we implemented a prototype version of N-MASS. N-MASS
takes a set of programs and then executes these programs. The current implementation of N-
MASS supports only sequential programs. As all programs are sequential, each program maps
to a single OS process. N-MASS periodically gathers information about the memory behav-
ior of each process and then, based on the processes’ memory behavior, it decides on the way
processes are mapped onto the hardware.

As mentioned in Section 3.1.2, a process’s memory behavior is estimated based on three
parameters: the process’s MPKI, its NUMA penalty, and its home node. We simulate the
availability of “perfect” information about a program’s memory behavior: We obtain the MPKI
and NUMA penalty of a process (more precisely: the MPKI and NUMA penalty of the program
executed by the process) from a trace generated on a separate profiling run (with the program
run in solo mode). We use programs of the SPEC CPU2006 benchmark suite; a program trace
contain samples of the program’s memory behavior. Each sample contains information about
the MPKI and NUMA penalty of 2.26 million of instructions of the program’s lifetime. In
Section 3.4 we also evaluate N-MASS with an on-line measurement of the MPKI and and
on-line estimation of the NUMA penalty based on the MPKI. We assume, furthermore, that a
process’s data is allocated at a single processor (each process’s home node is given as parameter
to N-MASS that takes care of data placement).

N-MASS is designed to adapt to program phase changes. Each sample read by N-MASS
includes the MPKI of a process. The scheduler is invoked if a process’s MPKI changes by
more than 20% relative to the previous scheduler epoch. The costs of re-schedules (moving a
process to a different core) can be high. We select an epoch length of 1 second. This epoch
length almost completely eliminates the costs of re-schedules, while the scheduler is still able
to quickly react to program phase changes. We select 60 MPKI for the threshold used by the
refinement step of the N-MASS algorithm (line 14 of Algorithm 3). We base our selection
on the experimental analysis of the Intel Nehalem memory system (Chapter 2). triad is the

3.3. EVALUATION 37

most memory-bound program we have encountered (it has the highest MPKI). The MPKI of
a triad instance is around 53 (see Table 3.1). We want to allow the remote execution of a
number of processes (processes that have a cumulative cache pressure that is approximately
the same as that of a single triad instance), but we want to disallow the remote execution of
processes with a cumulative cache pressure larger than 60 MPKI in order not to saturate the
QPI interconnect of our Nehalem-based system (as shown in Chapter 2, two triad instances
saturate the cross-chip interconnect).

The performance measurements of N-MASS include the overhead of performance moni-
toring, as we sample the number of instructions executed by each process to keep track of the
process’s execution in the trace file. We also record the number of elapsed processor cycles
to measure performance. N-MASS uses the perfmon2 [30] performance monitoring library to
gather hardware performance counter information.

3.3 Evaluation

3.3.1 Experimental setup

We use the 2-processor 8-core system based on the Intel Nehalem microarchitecture for evalu-
ation. Detailed information about the machine’s hardware- and software configuration can be
found in Section 2.1.1.

We are interested in multiprocessor performance, therefore we construct multiprogrammed
workloads with the programs of the SPEC CPU2006 benchmark suite. Our evaluation method-
ology is very similar to the methodology used in [8, 14, 33, 34, 52, 113]. We use a subset of the
SPEC CPU2006 benchmark suite (14 programs out of the total 29 in the suite). Our selection
includes programs 1–14 in Table 3.1. The MPKI of a program (the second column in Table 3.1)
estimates the cache pressure of the program. The selection we use includes both compute-bound
programs (programs with an MPKI less than 7.0) and memory-bound programs (programs with
an MPKI greater or equal to 7.0). (Compute-bound programs are marked with ’C’ in the last
column of the table, memory-bound programs are marked with ’M’ in the table.) The programs
in the subset have a broad range of NUMA penalties (between 1.0 and 1.46).

The subset the SPEC CPU2006 suite we use allows us to construct a number of different
multiprogrammed workloads (different in both terms of memory boundedness, i.e., total cache
pressure, and in terms of the memory behavior of constituent programs). Therefore, the subset
is large enough for a meaningful performance evaluation, yet sufficiently small to allow for a
concise presentation of experimental data.

Similarly to [52], we run each multiprogrammed workload exactly one hour. If a program
terminates before the other programs in a workload do, we restart the program that terminated
early. We use the reference data set and follow the guidelines described in [75] to minimize
measurement variance. This setup usually gives us three measurable runs for each workload
within the one hour limit. For each run we report the average slowdown of each constituent
program relative to its solo mode performance. We also report the average slowdown of the
whole workload, as suggested by Eyerman et al. [31].

38 CHAPTER 3. CACHE-CONSCIOUS SCHEDULING WITH DATA LOCALITY CONSTRAINTS

0

20

40

60

80

100

120

50% 75% 100%

To
ta

l M
P

K
I

Programs homed on Processor 0 [%]

Balanced memory
allocation

Unbalanced memory
allocation

Memory-bound
workloads

CPU-bound
workloads

Figure 3.3: Dimensions of the evaluation.

3.3.2 Dimensions of the evaluation

There are two dimensions that must be considered to evaluate the interaction between memory
allocation and process scheduling in a NUMA-multicore system. The two dimensions (shown
in Figure 3.3) are (1) the memory boundedness of workloads (i.e., the total cache pressure of
workloads shown on the y-axis) and (2) the balance of memory allocation in the system (shown
on the x-axis).

Memory boundedness To show that N-MASS can handle workloads with different memory-
boundedness, we use 11 different multiprogrammed workloads (WL1 to WL11). This setup cor-
responds to evaluating N-MASS along the first dimension (the y-axis in Figure 3.3). The work-
loads are composed of different number of compute-bound (C) respectively memory-bound (M)
programs. The memory-boundedness of a workload is characterized by the sum of the MPKIs
of its constituent programs (measured in solo mode for each program). The total MPKI of each
multiprogrammed workload we use is shown in Figure 3.4. The composition of the multipro-
grammed workloads is shown in Table 3.2. The workloads in the set of 4-process workloads
(WL1 to WL9) contain one to four memory-bound programs. The 8-process workloads (WL10
and WL11) contain three, respectively four, memory-bound programs. In the case of all 11
workloads we add CPU-bound programs so that at the end there are four (respectively eight)
programs in total in each workload.

Balance of memory allocation setup As the performance of process scheduling closely de-
pends on the memory allocation setup in the system, for each workload we consider several
ways memory is allocated in the 2-processor evaluation machine. The second dimension of our
evaluation (the x-axis in Figure 3.3) is the percentage of the processes of a multiprogrammed
workload homed on Processor 0 of the system. (Ideally, we would like to vary the percentage
of memory references to local respectively remote memory, but as we can map only complete
processes, we vary along this dimension by mapping processes.) The left extreme point of
the x-axis represents the configuration with balanced memory allocation (50% of the processes
homed on Processor 0). On the other end of the x-axis we find the most unbalanced configura-

3.3. EVALUATION 39

0	

20	

40	

60	

80	

100	

120	

W
L6
	

W
L1
	

W
L7
	

W
L5
	

W
L4
	

W
L2
	

W
L3
	

W
L8
	

W
L1
0	

W
L9
	

W
L1
1	

To
ta
l	 M

PK
I	

Figure 3.4: Total MPKI of multiprogrammed workloads.

Programs Type
1 soplex sphinx gamess namd 1M, 3C
2 soplex mcf gamess gobmk 2M, 2C
3 mcf libquantum povray gamess 2M, 2C
4 mcf omnetpp h264 namd 2M, 2C
5 milc libquantum povray perlbench 2M, 2C
6 sphinx gcc namd gamess 1M, 3C
7 lbm milc sphinx gobmk 2M, 2C
8 lbm milc mcf namd 3M, 1C
9 mcf milc soplex lbm 4M

10 lbm milc mcf namd 3M, 5C
gobmk perlbench h264 povray

11 mcf milc soplex lbm 4M, 4C
gobmk perlbench namd povray

Table 3.2: Multiprogrammed workloads.

tion (100% of the processes homed on Processor 0). Because of the symmetries of the system
there is no need to extend the range to the case with 0% of the processes’ memory allocated
on Processor 0. This corresponds to 100% of the processes homed on Processor 1, which is
equivalent to all processes homed on Processor 0.

In Section 3.3.3 we evaluate N-MASS along both dimensions: the evaluation considers
workloads with different memory boundedness as well as different memory allocation setups.
Then, in Section 3.3.4, we evaluate N-MASS with an unbalanced memory allocation setup.

3.3.3 Influence of data locality and cache contention

The second dimension of our evaluation is defined as the percentage of the processes homed on
Processor 0 of the system. This percentage, however, does not specify which constituent pro-
cesses of a multiprogrammed workload are homed on each processor in the system. We define
the concept of allocation maps. An allocation map is a sequence M = (m0,m1, . . . , mn),

40 CHAPTER 3. CACHE-CONSCIOUS SCHEDULING WITH DATA LOCALITY CONSTRAINTS

where n is the number of processes in the workload executing on the system, and

mi =

{
0, if the ith process is homed on Processor 0;

1, if the ith process is homed on Processor 1.
(3.2)

There are
4∑

i=0

(
4
i

)
= 24 = 16 ways to allocate memory for a 4-process workload on the

Nehalem system (assuming each program’s memory is allocated entirely on one of the two
processors of the system). Because of the symmetries of the system, however, the number of
combinations is reduced to 8. These allocation maps are shown in Table 3.3. For example,
if 50% of the processes are homed on Processor 0, we must consider three different possibili-
ties. If we look at the performance of a mapping algorithm with a multiprogrammed workload
that has a composition (M, M, C, C) (the first two processes are memory-bound, the last two
compute-bound), then the 50%-allocation maps 1100 and 1010 are different from the point of
view of the maximum-local scheduling scheme. Remember that the maximum-local scheme
maps processes onto their home nodes if possible. In the case of the 1100 allocation map,
maximum-local maps the two memory-bound processes onto the same processor, therefore onto
the same LLC. This setup results in good data locality but also produces high cache contention.
In the case of the 1010 allocation map maximum-local maps the memory-bound processes onto
separate LLCs. Therefore, the maximum-local policy maximizes data locality and minimizes
cache contention in this case.

Processes homed Allocation maps
on Processor 0

50% 1100, 1010, 1001
75% 1000, 0100, 0010, 0001

100% 0000

Table 3.3: Allocation maps for 4-process workloads.

For clarity of presentation we use two workloads from opposite ends of the memory-
boundedness spectrum to evaluate the performance of N-MASS with different allocation maps:
the compute-bound WL1 and the memory-bound WL9. We compare the performance of three
mapping schemes: default, maximum-local and N-MASS. If not stated otherwise, in our eval-
uation N-MASS denotes the version of the algorithm that has “perfect” information about the
NUMA penalty of the programs from profile-based program traces (in Section 3.4 we also eval-
uate N-MASS with an on-line measurement of the MPKI and and on-line estimation of the
NUMA penalty based on the MPKI). The maximum-local policy is similar to N-MASS, ex-
cept it does not include the cache-aware refinement step of N-MASS (Step 3 of Algorithm 1).
We evaluate this scheme to quantify the improvement of the cache-aware refinement step over
maximum-local mapping.

The performance of multiprogrammed workloads varies largely with the default Linux
scheduler, and simple factors like the order in which workloads are started influence the perfor-
mance readings. Because operating system schedulers (including the Linux scheduler) balance
only the CPU load and do not account for data locality or cache contention, processes might
be mapped so that they use the memory system in the most inefficient way possible. To avoid
measurement bias, we account for all schedules that an OS scheduler that balances CPU load

3.3. EVALUATION 41

0%

10%

20%

30%

40%

50%

P
e

rf
o

rm
an

ce
 d

e
gr

ad
at

io
n

Allocation map

mcf

milc

soplex

lbm

average

(a) Performance degradation with default scheduling.

-10%

0%

10%

20%

30%

40%

Im
p

ro
ve

m
e

n
t

o
ve

r
d

e
fa

u
lt

Allocation map

mcf

milc

soplex

lbm

average

(b) N-MASS improvement over default scheduling.

-10%

0%

10%

20%

30%

40%

Im
p

ro
ve

m
e

n
t

o
ve

r
d

e
fa

u
lt

Allocation map

maximum-
local

N-MASS

(c) N-MASS compared to maximum-local. (Error bars: max/min performance
improvement recorded for any constituent program of a workload.)

Figure 3.5: Performance evaluation of the maximum-local and N-MASS schemes with WL9.

would consider. For example, in the case of 4-process workloads the default Linux scheduler
always maps two processes onto each processor so that each processor is allocated half the total
CPU load. For each 4-process workload there are

(
4
2

)
= 6 equally probable different schedules

with the CPU load evenly distributed in the system. Running a single workload in all these
schedules takes 6 hours execution time with our evaluation methodology, which is tolerable.
Therefore, for each multiprogrammed workload we run the workload in each schedule possi-
ble for the default scheduler, and then we report the average performance degradation of the

42 CHAPTER 3. CACHE-CONSCIOUS SCHEDULING WITH DATA LOCALITY CONSTRAINTS

0%

10%

20%

30%

40%

50%

P
e

rf
o

rm
an

ce
 d

e
gr

ad
at

io
n

Allocation map

soplex

sphinx

gamess

namd

average

(a) Performance degradation with default scheduling.

-10%

0%

10%

20%

30%

40%

Im
p

ro
ve

m
e

n
t

o
ve

r
d

e
fa

u
lt

Allocation map

soplex

sphinx

gamess

namd

average

(b) N-MASS improvement over default scheduling.

-10%

0%

10%

20%

30%

40%

Im
p

ro
ve

m
e

n
t

o
ve

r
d

e
fa

u
lt

Allocation map

maximum-
local
N-MASS

(c) N-MASS compared to maximum-local. (Error bars: max/min performance
improvement recorded for any constituent program of a workload.)

Figure 3.6: Performance evaluation of the maximum-local and N-MASS schemes with WL1.

multiprogrammed workload in all schedules as the performance of default scheduling.

Figure 3.5(a) (respectively Figure 3.6(a)) shows the performance degradation of the pro-
grams of WL9 (WL1) with the default scheduler. (The degradations are calculated relative to
the solo mode performance of the programs.) WL9 is composed of more memory-bound pro-
grams than WL1, therefore the degradations experienced by WL9 programs are higher (up to
50% vs. 18%). 3.5(b) (respectively 3.6(b)) shows the performance improvement of N-MASS
relative to default scheduling. Performance improvements of individual programs up to 32%

3.3. EVALUATION 43

are possible.

An interesting question is how much improvement is due to the maximum-local scheme
(i.e., accounting only for data locality in the system), and how much benefit is due to the final
refinement step of N-MASS (i.e., taking cache contention also into account). In Figure 3.5(c)
and Figure 3.6(c) we compare the average performance improvement of N-MASS versus the
maximum-local scheme. The bars show the maximum and performance improvement of the
constituent programs of the workloads: A multiprogrammed workload consists of several in-
dependent programs; bars show the highest and lowest performance improvement recorded for
any constituent program of the workload. (Bars do not show the “standard error”, a negative
performance improvement means performance degradation.)

N-MASS performs approximately the same as maximum-local in most of the cases. How-
ever, when the memory allocation in the system is unbalanced (allocation map 0000 for both
workloads and allocation maps 0001, 0010, and 1100 for WL1), the additional cache-balancing
of the N-MASS scheme improves performance relative to maximum-local. In these cases
maximum-local results in a performance degradation relative to default, because cache con-
tention on the LLCs cancels the benefit of good data locality. There are also some cases when
N-MASS performs slightly worse than maximum-local, but its average performance is never
worse than the performance of default scheduling. In summary, in most cases (for most alloca-
tion maps) optimizing for data locality gives the significant part of the performance improve-
ment measured with N-MASS; accounting for cache contention helps mostly with unbalanced
allocation maps.

3.3.4 A detailed look

In the previous section we have shown that in case of unbalanced memory allocation maps, the
cache-aware refinement step of N-MASS improves performance over maximum-local. In this
section we look in detail at the performance of the policies N-MASS and maximum-local in
case of unbalanced memory allocation maps, and extend our measurements to the 8-process
workloads. Figures 3.7 and 3.11 show the performance for each of the programs in the various
workload sets (Figure 3.7 considers the 4-process workloads WL1–WL9, Figure 3.11 considers
the 8-process workloads WL10 and WL11).

In many cases, the maximum-local mapping scheme performs well and the final refinement
step of N-MASS brings only small benefits. However, in the case of WL1, WL7, WL8, WL9,
and WL11, individual programs of the workloads experience up to 10% less performance degra-
dation with N-MASS than with maximum-local. Performance degradations relative to default
scheduling are also reduced from 12% to at most 3%.

Figures 3.8 and 3.12 show the data locality (as percentage of local main memory references)
of WL10–WL11 and WL1–WL9, respectively. The maximum-local scheme keeps all memory
references local in case of 4-process workloads. For 8-process workloads maximum-local pre-
serves the data locality of its memory-bound processes (P1–P3 in case of WL10 and P1–P4 in
case of WL11). With N-MASS, workloads have less data locality than with maximum-local.
In case of 8-process workloads, N-MASS swaps compute-intensive workloads with memory
intensive workloads (relative to the maximum-local scheme) to reduce cache contention. As a
result, N-MASS increases these workloads’ data locality relative to maximum-local.

Figures 3.9 and 3.13 show the MPKI of WL1–WL9 and WL10–WL11, respectively. N-

44 CHAPTER 3. CACHE-CONSCIOUS SCHEDULING WITH DATA LOCALITY CONSTRAINTS

MASS decreases the MPKI of workloads relative to maximum-local by accounting for cache
contention. These figures contrast the figures showing the workloads’ data locality (Figures 3.8
and 3.12).

3.4 Process memory behavior characterization

Scheduling decisions taken by N-MASS rely on measures that describe a process’s memory
behavior. N-MASS characterizes memory behavior based on three measures: (1) the process’s
NUMA penalty, (2) the process’s cache pressure, and (3) the process’s data distribution. So
far we have simulated the availability of these measures by using statically collected program
traces. In this section we investigate how estimates of memory behavior and information from
the processor’s performance monitoring unit (PMU) can be used to replace static information
and thus make N-MASS more practical.

3.4.1 Estimating the NUMA penalty

Figures 3.7 and 3.11 show the effect of estimating the NUMA penalty through linear regression
(the “regression-based N-MASS” data set in the figures). For this evaluation, we do not use the
profile-based information about the NUMA-penalty of programs (as this number may be diffi-
cult to obtain in current NUMA-multicore systems). Instead, we estimate the NUMA penalty
based on the MPKI (still obtained from statically-collected traces): we fit a simple linear model
onto the data shown in Figure 3.2. Before fitting the model we remove the outlier mcf (data
point “1” on Figure 3.2) as well as all programs with an MPKI smaller than 1.0. The resulting
model’s slope and intercept are 0.015 and 1.05, respectively. For the measurements, the mem-
ory of all processes of the multiprogrammed workloads was allocated on the same processor,
Processor 0 (allocation maps 0000 and 00000000).

Similar to profile-based N-MASS, the regression-based version of N-MASS improves per-
formance over the maximum-local scheme. In some cases, however, using estimates of a pro-
cess’s NUMA penalty results in a different amount of improvement than with profile-based
N-MASS (we measure performance improvements/degradations of individual programs of up
to 10% relative to profile-based N-MASS). The changes in performance are due to the impre-
cision of the MPKI-based estimates of the NUMA penalty. On-line techniques to estimate the
NUMA penalty are difficult to construct with the PMU of current CPU models. We hope that
future PMUs will provide events that can be used to estimate the NUMA penalty better. If the
NUMA penalty cannot be obtained directly, the MPKI offers a reasonable approximation for
this scheduler.

3.4.2 Monitoring cache pressure

When executed in a multiprogrammed configuration, the MPKI of a program can change sig-
nificantly relative to the solo-mode MPKI of the program. Figures 3.14 and 3.10 show the
MPKI of each constituent program of WL10–WL11 and WL1–WL9 (relative to the solo mode
execution of the constituent program), respectively, when the workloads are executed with the
maximum-local and N-MASS schemes. Due to cache contention, programs can experience a

3.4. PROCESS MEMORY BEHAVIOR CHARACTERIZATION 45

high MPKI increase relative to their solo-mode MPKI (up to 10X in case of memory-bound
programs and up to 10’000X for compute-intensive programs).

Previous work [14, 15, 113] has shown that, despite its sensitivity to dynamic conditions,
the MPKI is suitable to estimate cache pressure for scheduling algorithms. However, schedul-
ing decisions made by the N-MASS scheduler rely on both the measure of a process’s cache
pressure and the measure of the process’s NUMA penalty. We configure the N-MASS scheduler
to use MPKI values measured at runtime; in this configuration the NUMA penalty of processes
is estimated with the regression model previously described in Section 3.4.1. The performance
results for the configuration with on-line measurement of a process MPKI are reported as the
data set “N-MASS regression + dynamic MPKI” in Figures 3.7 and 3.11 for 4-process and 8-
process workloads, respectively. The results are largely similar to the configuration using only
static MPKI information (“N-MASS”) and the configuration using static MPKI information and
linear regression (“N-MASS regression”).

3.4.3 Determining a process’s home node

To limit the number of cases that must be evaluated, in the experiments we restrict memory
allocation of a process to a single processor. As a result, the home node of processes is a priori
known.

Determining a process’s home node (the processor whose memory it accesses most fre-
quently) at runtime is difficult. Current OSs provide information about the distribution of a
process’s pages across the processors of the system, but the distribution of a process’s pages of-
ten does not correlate well with the distribution of the process’s accesses to its pages. Many OSs
provide an estimate of how frequently each page is accessed (e.g., by measuring how frequently
accesses to a page result in a page fault) and this information can enable a process scheduler to
estimate a process’s preferred home processor if the process’s memory is scattered around.

Determining a process’s home node based on hardware performance counter feedback is not
easy either because on current microarchitectures there is a limited number of counters available
for monitoring DRAM accesses. For example, on the Intel Nehalem there is only one counter
to monitor DRAM transfers; this counter can be programmed to monitor either local or remote
DRAM transfers, but not both at the same time. Multiplexing several events onto the same
counter is possible but results in somewhat decreased measurement precision [7].

On newer systems (e.g., the Intel Westmere) there are two counters available for monitoring
DRAM transfers, so both local and remote memory transfers can be monitored at the same
time. However, in a Westmere-based system with more than two processors it is impossible to
attribute remote traffic to specific processors with the events supported by the processor (e.g.,
on a 4-processor Westmere-based system 3 processors are remote and DRAM transfers from/to
all these 3 processors are measured by a single hardware performance monitoring event).

Newer processors have advanced features. For example, Intel processors support latency-
above-threshold profiling, a sampling-based technique. Latency-above-threshold profiling can
approximate the distribution of a process’s data by looking at the data addresses used by sam-
pled memory access instructions (as it demonstrated, e.g., by the standard numatop utility of
Linux [49]). The overhead and precision of latency-above-threshold strongly depends on the
sampling rate (as shown by Marathe et al. [67, 68] for past architectures). For current architec-
tures the overhead/precision is yet to be experimentally evaluated.

46 CHAPTER 3. CACHE-CONSCIOUS SCHEDULING WITH DATA LOCALITY CONSTRAINTS

-‐1
5%

	

-‐1
0%

	

-‐5
%
	

0%
	

5%
	

10
%
	

15
%
	

20
%
	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

Improvement	 over	 default	
m
ax
im

um
-‐lo

ca
l	

N
-‐M

AS
S	

N
-‐M

AS
S	

re
gr
es
sio

n	

N
-‐M

AS
S	

re
gr
es
sio

n	
+	

dy
na
m
ic
	 M

PK
I	

W
L1
	

W
L2
	

W
L3
	

W
L5
	

W
L4
	

W
L6
	

	 	 	
	 	 	
	 	 	
	 	 W

L7
	

W
L8
	

W
L9
	

W
L1
	

W
L2
	

W
L3
	

W
L5
	

W
L4
	

W
L6
	

	 	 	
	 	 	
	 	 	
	 	 W

L7
	

W
L8
	

W
L9
	

Fi
gu

re
3.

7:
Pe

rf
or

m
an

ce
im

pr
ov

em
en

to
f4

-p
ro

ce
ss

w
or

kl
oa

ds
.

0%
	

10
%
	

20
%
	

30
%
	

40
%
	

50
%
	

60
%
	

70
%
	

80
%
	

90
%
	

10
0%

	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

Local	 references	 rela,ve	 to	
total	 references	

m
ax
im

um
-‐

lo
ca
l	

N
-‐M

AS
S	

W
L1
	

W
L2
	

W
L3
	

W
L5
	

W
L4
	

W
L6
	

	 	 	
	 	 	
	 	 	
	 	 W

L7
	

W
L8
	

W
L9
	

Fi
gu

re
3.

8:
D

at
a

lo
ca

lit
y

of
4-

pr
oc

es
s

w
or

kl
oa

ds
.

3.4. PROCESS MEMORY BEHAVIOR CHARACTERIZATION 47

0	 10
	

20
	

30
	

40
	

50
	

60
	

70
	

80
	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

MPKI	

m
ax
im

um
-‐

lo
ca
l	

N
-‐M

AS
S	

W
L1
	

W
L2
	

W
L3
	

W
L5
	

W
L4
	

W
L6
	

	 	 	
	 	 	
	 	 	
	 	 W

L7
	

W
L8
	

W
L9
	

Fi
gu

re
3.

9:
A

bs
ol

ut
e

M
PK

Io
f4

-p
ro

ce
ss

w
or

kl
oa

ds
.

1	 10
	

10
0	

10
00
	

10
00
0	

10
00
00
	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

P1
	 P

2	
P3

	 P
4	

MPKI	 rela*ve	 to	 solo	 MPKI	

m
ax
im

um
-‐

lo
ca
l	

N
-‐M

AS
S	

W
L1
	

W
L2
	

W
L3
	

W
L5
	

W
L4
	

W
L6
	

	 	 	
	 	 	
	 	 	
	 	 W

L7
	

W
L8
	

W
L9
	

Fi
gu

re
3.

10
:R

el
at

iv
e

M
PK

Io
f4

-p
ro

ce
ss

w
or

kl
oa

ds
.

48 CHAPTER 3. CACHE-CONSCIOUS SCHEDULING WITH DATA LOCALITY CONSTRAINTS

3.5 Discussion and limitations

In summary, if the memory allocation in the system is balanced (i.e., there is an approximately
equal number of processes homed at every processor), then maximum-local scheduling pro-
vides large performance benefits. If the memory allocation setup of the system is unbalanced,
the mapping given by the maximum-local scheme often needs adjustment, as maximum-local
mapping can result in contention for shared caches and thus a performance degradation (even
relative to default scheduling). In cases with unbalanced memory allocation, the refinement step
of N-MASS can re-map processes onto a different LLC to reduce cache contention.

Memory migration is an alternative technique to improve data locality in NUMA systems.
We limit the discussion to process scheduling because of two issues: (1) it is difficult to estimate
the cost of memory migration, and (2) memory migration is not always possible because there
is not always enough free memory available on the destination processor. In these cases the
process scheduler is the only part of the system software that can optimize performance.

We do not consider multithreaded programs with a shared address space. For these programs
sharing caches can be beneficial, therefore finding a tradeoff between data locality and cache
contention is difficult. Recent work by Dey et al. [28] extends resource-conscious scheduling
to multithreaded programs as well.

The N-MASS algorithm is designed for 2-processor systems. On systems with more proces-
sors the algorithm must consider balancing between all caches/processors. That is, maximum-
local mapping must distribute processes across all processors of the system (in descending order
of the processes’ NUMA penalties). Moreover, in cases when maximum-local mapping results
in an unbalanced distribution of cache pressure between the LLCs of the system, it can be bene-
ficial to distribute cache pressure across LLCs, but only judiciously, so that the remote execution
penalty experienced by processes remains within reasonable limits. We leave the extension of
the N-MASS algorithm for larger systems for future work.

Porting the N-MASS scheduler to systems with enabled simultaneous multithreading
(SMT) [106] would require extending the N-MASS algorithm to consider not only the per-
formance degradation due to remote execution and cache contention, but also the performance
degradation due to sharing resources (e.g., execution units, memory ports) of a single core (e.g.,
in cases when processes are mapped onto hardware threads of the same processor core). Exist-
ing schedulers for SMT systems can evaluate [92] or approximate [32] on-line the performance
degradation programs experience due to sharing on-core resources. The N-MASS algorithm
could be extended to use any of the previously mentioned approaches to characterize the per-
formance impact on on-core resource sharing as well. We leave the extension of N-MASS to
SMT systems for future work.

3.6 Conclusions

We have shown that operating system scheduling fails to obtain good performance in NUMA-
multicores if it does not consider the structure of the memory system and the allocation of
physical memory in the system. If memory allocation in a NUMA-multicore system is bal-
anced (the cumulative memory demand of processes homed on each processor in the system
is approximately the same), then it is beneficial to simply map processes onto the architec-
ture so that data locality is favored, and avoiding cache contention does not bring any benefits.

3.6. CONCLUSIONS 49

-‐10%	

0%	

10%	

20%	

30%	

40%	

P1	 P2	 P3	 P4	 P5	 P6	 P7	 P8	 P1	 P2	 P3	 P4	 P5	 P6	 P7	 P8	

Im
pr
ov
em

en
t	 o

ve
r	 d

ef
au

lt	

maximum-‐local	 N-‐MASS	 N-‐MASS	 regression	 N-‐MASS	 regression	 +	 dynamic	 MPKI	

WL10	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WL11	

Figure 3.11: Performance improvement of 8-process workloads.

0%	

20%	

40%	

60%	

80%	

100%	

P1	 P2	 P3	 P4	 P5	 P6	 P7	 P8	 P1	 P2	 P3	 P4	 P5	 P6	 P7	 P8	

Lo
ca
l	 r
ef
er
en

ce
s	 r
el
a,

ve
	 to

	
to
ta
l	 r
ef
er
en

ce
s	

maximum-‐local	 N-‐MASS	

WL10	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WL11	

Figure 3.12: Data locality of 8-process workloads.

0	
10	
20	
30	
40	
50	
60	
70	
80	

P1	 P2	 P3	 P4	 P5	 P6	 P7	 P8	 P1	 P2	 P3	 P4	 P5	 P6	 P7	 P8	

M
PK

I	

maximum-‐local	 N-‐MASS	

WL10	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WL11	

Figure 3.13: Absolute MPKI of 8-process workloads.

1	

10	

100	

1000	

10000	

100000	

P1	 P2	 P3	 P4	 P5	 P6	 P7	 P8	 P1	 P2	 P3	 P4	 P5	 P6	 P7	 P8	

M
PK

I	 r
el
a*

ve
	 to

	 so
lo
	 M

PK
I	

maximum-‐local	 N-‐MASS	

WL10	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 WL11	

Figure 3.14: Relative MPKI of 8-process workloads.

50 CHAPTER 3. CACHE-CONSCIOUS SCHEDULING WITH DATA LOCALITY CONSTRAINTS

Nonetheless, when the memory allocation in the system is unbalanced (the sum of the memory
demands of processes homed on each processor in the system is different), then mapping pro-
cesses so that data locality is favored can lead to severe cache contention. In these cases refining
the maximum-local mapping so that cache contention is reduced improves performance, even
with the cost of some processes executing remotely. The N-MASS scheme described in this
chapter successfully combines memory management and process scheduling to better exploit
the potential of NUMA multicore-multiprocessors.

4
Performance analysis of
multithreaded programs

A multithreaded program consist of a set of threads that operate in a single shared memory re-
gion. Multithreaded programs belong to a separate application class and are thus fundamentally
different from multiprogrammed workloads, the class of applications considered in the pre-
vious chapters. Consequently, the memory system bottlenecks experienced by multithreaded
programs are possibly different from the bottlenecks experienced by multiprogrammed work-
loads.

This chapter focuses on understanding the memory system performance of multithreaded
programs on NUMA multicore-multiprocessors. We start the discussion by investigating the
performance scaling of a set of programs from the well-known PARSEC benchmark suite [10]
(Section 4.1). Then, in Section 4.2 we present the setup we use for experimental evaluation.
Section 4.3 presents a detailed analysis of the memory system performance of the PARSEC
benchmark programs. Based on the analysis we identify and quantify two performance-limiting
factors, program-level data sharing and irregular memory access patterns. These factors result
in inefficient usage of the memory system: data sharing causes bad data locality, irregular mem-
ory access patterns are difficult to predict by hardware prefetcher units and, as a result, programs
experience the full access latency of their memory accesses.

To understand the performance implications of program-level data sharing and irregular
memory access patterns, we restructure the benchmark programs to eliminate them so that the
memory behavior of the programs matches with the requirements of the memory system. In
Section 4.4 we describe three simple source-level techniques that we use: (1) controlling the
data distribution of the program to make sure that memory regions are allocated at well-defined
and distinct processors, (2) controlling the computation distribution of the program to guarantee
that computations operate on distinct subsets of program data, and (3) regularizing memory
access patterns so that the access patterns are easier to predict for processor prefetcher units.
All techniques rely either on using existing OS functionality or on simple algorithmic changes.

As the proposed techniques effect many layers of a modern NUMA-multicore memory sys-
tem, Section 4.5 reports detailed measurements of orthogonal experiments to quantify how
each distinct layer is affected. Moreover, we compare the performance of the optimized pro-
grams with other optimizations proposed for NUMA-multicores (e.g., page-level interleaving,
data replication), hence the experiments help to understand the implications of data locality
and resource contention for the performance of multithreaded programs on NUMA multicore-
multiprocessors.

51

52 CHAPTER 4. PERFORMANCE ANALYSIS OF MULTITHREADED PROGRAMS

0	
5	
10	
15	
20	
25	
30	

sequen,al	 8	 (1)	 32	 (4)	
Ac#ve	 cores	 (processors)	

streamcluster	 ferret	 dedup	

Speedup	 over	 sequen#al12	 	

(a) Performance scaling.

0	

20	

40	

60	

80	

sequen,al	 8	 (1)	 32	 (4)	
Ac#ve	 cores	 (processors)	

Useful	 cycles	 Other	 stalls	
Back-‐end	 stalls	

CPU	 cycles	 (x1012)	

(b) Cycles: streamcluster.

0	
2	
4	
6	
8	
10	

sequen-al	 8	 (1)	 32	 (4)	
Ac#ve	 cores	 (processors)	

Useful	 cycles	 Other	 stalls	
Back-‐end	 stalls	

CPU	 cycles	 (x1012)	

(c) Cycles: ferret.

0	
0,2	
0,4	
0,6	
0,8	
1	

sequen.al	 8	 (1)	 32	 (4)	
Ac#ve	 cores	 (processors)	

Useful	 cycles	 Other	 stalls	
Back-‐end	 stalls	

CPU	 cycles	 (x1012)	

(d) Cycles: dedup.

Figure 4.1: Performance scaling and cycle breakdown.

4.1 Performance scaling

To understand the the memory system performance of multithreaded workloads, we select three
benchmark programs, streamcluster, ferret, and dedup, from the PARSEC bench-
mark suite [9, 10] and we execute these programs on a recent 4-processor 32-core machine.
The 4-processor 32-core is similar to the 2-processor 12-core machine used in Chapter 2: Both
machines are based on the Westmere microarchitecture and so have a similar memory sys-
tem, however, the 4-processor machine allows additional cross-chip interconnects as there can
be a point-to-point interconnect between any two of the four processors of the system (see
Section 4.2 for more details). In the following we refer to the 4-processor 32-core system as
“Westmere-based system” (that is not to be confused with the 2-processor 12-core system used
in Chapter 2).

Figure 4.1(a) shows the performance scaling of the three benchmark programs on the 4-
processor 32-core Westmere-based system. For each program we report performance in three
cases. The first case is sequential execution when the non-parallelized version of the program
is executed on a single core/processor. In the second case, 8-core (1 processor), the parallel
version of the program is executed on 8 cores, but on a single processor. In the first and second
case the program is restricted to execute at a single processor, thus all program memory is

4.2. EXPERIMENTAL SETUP 53

allocated at that processor. As a result, there is no cross-chip traffic in the system. The third case,
32-core (4 processors), considers the scenario when all cores (and thus all processors) of the
system are used to execute program threads. As the program is running on all cores/processors,
memory allocation is not restricted to a single processor.

Figure 4.1(a) shows that the performance of all three programs scales well to 8 cores (1 pro-
cessor), but the picture is different in the 32-core (4 processors) case: streamcluster shows
bad performance scaling (11X speedup over single-threaded execution), ferret scales better
(20X speedup), and dedup scales well (26X speedup).

There are many possible reasons for the (non-)scalability of parallel programs (e.g., serial-
ization due to extensive synchronization, load imbalance [87]), and there exist many techniques
that target these problems. A crucial and interesting issue is, however, how inefficiencies related
to the memory system effect performance scaling on NUMA-multicores. To get more insight,
we break down the total number of CPU cycles of each program into three categories: (1) useful
cycles, when the CPU makes progress, (2) back-end stalls, when execution is stalled because
the processor’s back-end cannot execute instructions due to the lack of hardware resources, and
(3) other stalls, that is, stalls related to the processor’s front-end (e.g., instruction starvation).
(See Section 4.2 for details about the performance monitoring setup used.)

In Intel Westmere processors the processor back-end can stall due to many reasons (includ-
ing the memory system), however, due to limitations of the Westmere’s performance monitoring
unit we cannot distinguish the number of back-end stalls related to the memory system from
back-end stalls due to other reasons. Nevertheless, as we change only the way a program is
mapped onto the architecture (but not the instruction stream generated by the programs), we
suspect a change in the number of back-end stalls (when comparing two setups) is related to
memory system inefficiencies.

Figure 4.1(b) shows that the sequential version of streamcluster spends already a large
fraction of its cycles on waiting for the back-end. We measure the same amount of back-end
stalls for the case when the parallel version of the program is executed on a single processor
(the 8-core (1-processor) case). However, when the program is executed on multiple processors,
there is almost a 3X increase in the number of back-end stalls. ferret has similar, yet not as
pronounced problems (2X more back-end stall cycles in the multiprocessor configuration than
in the single-processor configurations, as shown Figure 4.1(c)). The performance of dedup
is not affected in the multiprocessor configuration, as its number of back-end stalls increases
only slightly when executed on multiple processors (Figure 4.1(d)). In summary, as long as a
program uses only one processor in a NUMA-multicore system, the performance of the parallel
and sequential version of the program are similar, but if all processors are used, performance can
unexpectedly degrade, most likely due to a program using the memory system inefficiently. To
determine the exact cause, further investigation is needed. Sections 4.2 and 4.3 present details
of this investigation.

4.2 Experimental setup

4.2.1 Hardware

Two machines are used for performance evaluation: a 2-processor 8-core (Intel Nehalem mi-
croarchitecture) and a 4-processor 32-core (Intel Westmere microarchitecture) machine. Ta-

54 CHAPTER 4. PERFORMANCE ANALYSIS OF MULTITHREADED PROGRAMS

ble 4.1 lists the detailed configuration of both systems. The size of per-core level 1 and level 2
caches is the same on both machines, however, the size of the level 3 cache differs between the
machines. In both systems there is a point-to-point connection between every pair of proces-
sors, thus every processor is a one-hop distance from any other processor of the system. We
disable frequency scaling on both machines [22]. Processor prefetcher units are on if not stated
otherwise.

In this chapter, we use the same 2-processor 8-core Nehalem-based machine, as in the pre-
vious chapters, but in a configuration with different total main memory size (48 GB instead of
12 GB). Although different in size, the clock rate, throughput, and the timings of the memory
modules are the same (DDR3-1066, 7-7-7), so the penalty of remote main memory accesses on
the Nehalem-based system is approximately the same in both configurations.

Nehalem Westmere
Model number Intel Xeon E5520 Xeon E7-4830
Number of processors 2 4
Cores per processor 4 8
Total number of cores 8 32
Clock frequency 2.26 GHz 2.13 GHz
L3 cache size 2x8 MB 4x24 MB
Main memory 2x24 GB DDR3 4x16 GB DDR3
Cross-chip interconnect 5.86 GTransfers/s 6.4 GTransfers/s

Table 4.1: Hardware configuration.

4.2.2 Benchmark programs

We consider three programs of the PARSEC benchmark suite [10].

• streamcluster is a data-parallel program that solves the on-line clustering problem
for a set of input points. The program consists of a series of processing loops. Each
loop is parallelized with the OpenMP parallel for directive with static scheduling;
with static scheduling each worker thread is assigned a well-defined subset of the total
iterations processed by a loop [80]. If not specified otherwise, streamcluster is
configured with a number of worker threads equal to the number of cores of the machine
it executes on (so that it makes optimal use of the computational resources offered by the
architecture).

• ferret is a pipeline-parallel program [37, 41, 76, 89, 95] that implements content-
based similarity search of images: given a set of input images, ferret searches in an
image database for images similar to the input image. The program is structured as a
set of 6 stages, as shown in Figure 4.2(a). Stages are interconnected by queues, data
“flows” from the input stage through intermediary stages towards the output stage of the
pipeline. Each pipeline stage of ferret is executed by a number of threads equal to
the number of cores in the system; the input and the output stage is executed by a single
thread each. Figure 4.2(a) shows the runtime configuration of ferret on a 2-processor
8-core machine.

4.2. EXPERIMENTAL SETUP 55

Stage 1:
Segment

Stage 4:
Rank

Input Output Stage 3:
Index

Stage 2:
Extract

Executed at
Processor 0 T2 T3

T0 T1

T2 T3

T0 T1

T2 T3

T0 T1

T2 T3

T0 T1
T0

Executed at
Processor 1 T6 T7

T4 T5

T6 T7

T4 T5

T6 T7

T4 T5

T6 T7

T4 T5

T0

(a) ferret.

Stage 1:
FindItems

Stage 3:
Compress

Stage 2:
ItemProcess

Input Output

Executed at
Processor 0 T2 T3

T0 T1

T2 T3

T0 T1

T2 T3

T0 T1
T0

Executed at
Processor 1 T6 T7

T4 T5

T6 T7

T4 T5

T6 T7

T4 T5

T0

(b) dedup.

Figure 4.2: Structure and configuration of pipeline programs.

• dedup is also a pipeline-parallel programs that consists of 5 stages. dedup compresses
and deduplicates files given to it as input. The structure and runtime configuration of
dedup (after cleanup) is shown in Figure 4.2(b) and it is similar to that of ferret.

Table 4.2 lists the benchmark programs together with the inputs considered for each pro-
gram. We have grown the size of the inputs relative to native, the largest input size available in
the PARSEC suite. Most native-sized inputs fit into the last-level caches of the systems consid-
ered (e.g., the 32-core machine has 96 MB of total last-level cache), thus growing the size of
the inputs allows us to exercise the memory system of the machines.

Execution time
Program Input Nehalem Westmere

(8 cores) (32 cores)
streamcluster 10 M input points 1232 s 937 s
ferret image database with 700 M images 292 s 133 s

and 3500 input images to process
dedup 4.4 GB disk image 46 s 14 s

Table 4.2: Benchmark inputs and run times with default setup.

56 CHAPTER 4. PERFORMANCE ANALYSIS OF MULTITHREADED PROGRAMS

4.2.3 Scheduling and memory allocation

In NUMA systems, the placement of memory pages has a large impact on performance. Both
machines that we use for evaluation run Linux, which, similar to other OSs, relies on the first-
touch page placement policy. According to this policy each page is placed at the processor that
first reads from/writes to the page after it has been allocated.

In NUMA systems not only the placement of memory pages at processors, but also the map-
ping of program threads to cores impacts program performance. In their default configuration
OSs tend to change the thread-to-core mapping during the execution of programs. Such changes
result in large performance variations. To reduce the negative effect of OS reschedules we use
affinity scheduling with identity mapping. Affinity scheduling restricts the execution of each
thread to a specific core. For streamcluster, worker threads that execute a parallel loop
are always mapped to cores so that T0 is executed at Core 0, T1 is executed at Core 1, etc. For
ferret and dedup identity mapping is used for each pipeline stage individually (i.e., for each
pipeline stage the worker threads executing that stage will be mapped to cores using identity
mapping).

Identity mapping defines not only thread-to-core mappings, but implicitly also the thread-
to-processor mapping (in NUMA systems, memory is distributed on a per-processor basis and
not on a per-core basis). By using identity affinity there is an equal number of threads executing
each parallel loop (in case of streamcluster) and each stage (in case of the pipeline pro-
grams) at all processors of the system. For example, on the 2-processor 8-core system threads
T0–T3 of each parallel loop/stage execute on Processor 0, and threads T4–T7 of each paral-
lel loop/stage execute on Processor 1. Figure 4.2(a) and Figure 4.2(b) show how threads are
mapped to processors for the ferret and dedup benchmark, respectively. Using identity
mapping for mapping threads to processors/cores reduces measurement variation; furthermore,
it does not affect the cache performance of the programs, as noted by Zhang et al. in [112].
Table 4.2 lists the execution time of the benchmark programs. The programs are compiled with
the GCC compiler version 4.6.1 using optimization level O3.

4.2.4 Performance monitoring

Table 4.3 lists the performance monitoring events used to break down execution cycles into
three categories (the breakdown shown in Figures 4.1(b)–4.1(d)): useful cycles, back-end stall
cycles, and other stall cycles. As we disable simultaneous multithreading the cycles reported in
the “other stall cycles” category are due to instruction starvation [44] and are calculated as the
difference of the total number of measured stall cycles and the total number of back-end stall
cycles.

Event name Reported as
UNHALTED CORE CYCLES Total execution cycles
UOPS ISSUED:STALL CYCLES Total stall cycles
RESOURCE STALLS:ANY Total back-end stall cycles

Table 4.3: Performance monitoring events.

We measure the read memory traffic generated by programs on the uncore of the evaluation
machines. The uncore of a processor includes the processor’s last-level cache, its on-chip mem-

4.3. UNDERSTANDING MEMORY SYSTEM BEHAVIOR 57

ory controller, and its interfaces to the cross-chip interconnect. We break down uncore memory
traffic into four categories: local/remote last-level cache accesses (cache hits) and local/remote
main memory accesses (cache misses that are served either from local- or from remote main
memory). The four categories are illustrated on Figure 1.1 for a 2-processor system. We use
the OFFCORE RESPONSE 0 performance monitoring event with the response types specified
in Table 4.4. We use the same request types as previously shown in Table 2.1. Limitations of
the performance monitoring unit restrict the kind of information that can be obtained: only read
transfers can be measured on Nehalem/Westmere processors.

Response type Reported as
UNCORE HIT:OTHER CORE HIT SNP:OTHER CORE HITM Local L3 cache accesses
REMOTE CACHE FWD Remote L3 cache accesses
LOCAL DRAM Local DRAM accesses
REMOTE DRAM Remote DRAM accesses

Table 4.4: Response types used with the OFFCORE RESPONSE 0 event.

4.3 Understanding memory system behavior

This section analyzes the memory system performance of the benchmarks. We focus on data
locality (Section 4.3.1) and prefetcher effectiveness (Section 4.3.2).

4.3.1 Data locality

Figure 4.3(a) (4.3(b)) shows the fraction of remote memory transfers relative to the total num-
ber of memory transfers generated by the programs on the 8-core (32-core) machine. On both
machines a large fraction (11–67%) of the program’s memory transfers are handled by remote
main memory. Moreover, in some configurations, the programs show a large fraction of remote
cache accesses, up to 16% of the total number of uncore transfers of the program. The mea-
surements indicate that the PARSEC programs use an ill-suited data distribution (i.e., program
data frequently resides in memory that is remote to the threads accessing it). Using affinity
scheduling has the consequence that OS reschedules do not introduce remote memory transfers
(as there are none). To understand the reasons for the ill-suited data distribution, we perform
data address profiling on all three programs.

Data address profiling is a sampling-based approach that records the target data address (and
thus the target memory page) of each sampled memory operation [2, 13, 27, 55, 62, 68]. As
data address profiling is sampling-based, it only approximates program behavior. Nonetheless,
profiling data addresses still provides a good indication of where to concentrate the optimization
effort. Similarly to the MemProf profiler [55], we use the processor’s performance monitoring
unit to gather address profiles. We use the load latency performance monitoring facility of In-
tel processors [45, 68]. Other microarchitectures support data-address profiling as well (e.g.,
AMD processors implement Instruction-Based Sampling [13, 27, 61] which offers functionali-
ties similar to the Intel implementation of data address profiling).

Because of limitations of the Linux performance monitoring system, programs are profiled
only on the 2-processor 8-core Nehalem-based machine. On Nehalem-based systems the PMU

58 CHAPTER 4. PERFORMANCE ANALYSIS OF MULTITHREADED PROGRAMS

0%	

20%	

40%	

60%	

80%	

streamc.	 ferret	 dedup	

REMOTE_DRAM	 REMOTE_CACHE	

Frac%on	 remote	 transfers	

(a) 8-core machine.

0%	

20%	

40%	

60%	

80%	

streamc.	 ferret	 dedup	

REMOTE_DRAM	 REMOTE_CACHE	

Frac%on	 total	 uncore	 transfers	

(b) 32-core machine.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

8-core 32-core

REMOTE_DRAM REMOTE_CACHE

Total uncore transfers (GTransfers)

Figure 4.3: Remote transfers as fraction of all uncore transfers.

gathers data address profiles for memory load operations (but not for stores) [45]. We use the
MEM INST RETIRED event configured with the LATENCY ABOVE THRESHOLD mask; the
sampling rate is set to 1. The PMU samples only memory load operations that have a latency
greater or equal than the latency threshold. On the Nehalem microarchitecture the L1 data cache
can be accessed in 4 cycles [57]. The latency threshold is therefore set to 4 cycles so that we
sample accesses to all levels of the memory hierarchy.

Based on their target data address, we group memory accesses into two categories:

• accesses to non-shared heap pages (pages where only accesses by a single processor are
recorded)

• accesses to shared heap pages (pages accessed by both processors of the NUMA system).

Accesses to pages that hold the program’s image, dynamically-linked shared objects and the
program’s stack are excluded from profiles.

Exclusively accessed heap pages are placed appropriately in processor memories by the
first-touch page placement policy, as these pages are accessed only by a single core/processor.
Moreover, data from private and exclusively accessed pages is present in only one cache of the
system, so these pages are likely not to be accessed from remote caches. However, for shared
pages it is difficult to find an appropriate placement in a NUMA system: no matter at which
processor of the system a shared page is placed, there will be accesses to these pages from a
remote processor, as all processors access the shared data during the lifetime of the program.
Likewise, the contents of shared pages is likely to be present in multiple caches of the system
at the same time, thus reducing the capacity available to non-shared data and also leading to
remote cache references.

Figure 4.4 shows the results of data address profiling for the PARSEC programs: a large
fraction (10–70%) of the programs’ memory accesses are to problematic shared heap locations.
Investigation of the address profiles and of the program source code reveals that data sharing is
caused by data structures being shared between all threads of the program: As program threads
execute at different processors, some threads are forced to access the shared data structure
through the cross-chip interconnect. In the case of streamcluster, data sharing is caused
by accesses to the data structure holding the coordinates of processed data points. In the case of
ferret, data sharing is caused by lookups in the image database. In the case of dedup, most

4.4. PROGRAM TRANSFORMATIONS 59

0%	
20%	
40%	
60%	
80%	
100%	

streamc.	 ferret	 dedup	

Non-‐shared	 heap	 pages	

Shared	 heap	 pages	

Percentage	 sampled	 address	 space	

Figure 4.4: Data access characterization (8-core machine).

0%	
1%	
2%	
3%	
4%	
5%	

streamc.	 ferret	 dedup	

8-‐core	

32-‐core	

Performance	 improvement	 	 (over	 prefetching	 disabled)	

Figure 4.5: Performance gain w/ prefetching.

shared memory accesses are caused by accesses to a shared hash table that stores compressed
chunks of the input file.

4.3.2 Prefetcher effectiveness

To assess the effectiveness of the hardware prefetchers, we measured the performance of
each benchmark in two configurations: with disabled processor prefetcher units and with
the prefetcher units enabled. Figure 4.5 shows the performance improvement gained due to
prefetching. In general, prefetchers improve performance, however the amount of performance
improvement is small in most cases (5% at most), and in some cases prefetchers do not effect
performance at all. The ineffectiveness of hardware prefetching can be explained by the irreg-
ular access patterns of the programs considered: streamcluster accesses the data points
randomly, and both ferret and dedup store/look up data in hash tables at locations that look
random to prefetchers that are good in recognizing strided data access patterns [110].

4.4 Program transformations

The previous section shows that two factors, program-level data sharing and irregular mem-
ory access patterns, cause the poor performance scalability of the three PARSEC programs on
NUMA systems. This section describes a set of simple source-level changes that allow the
previously considered programs to better use the memory system of NUMA-multicores. The
changes effect the mapping of programs, that is, changes effect both the data distribution and
the computation scheduling of the programs. We set up the mapping by using standard OS func-
tionalities to distribute memory pages across processors (Section 4.4.1) and by making simple
algorithmic changes to the programs (Section 4.4.2).

60 CHAPTER 4. PERFORMANCE ANALYSIS OF MULTITHREADED PROGRAMS

1	

T0	

T1	

A	
B	
C	
D	
E	
F	
G	
H	

points	 coordinates	

(a) Original state.

1	

T0	

T1	

A	
B	
C	
D	
E	
F	
G	
H	

points	 coordinates	

(b) Pointer-based shuffle.

1	

T0	

T1	

G	
C	
B	
H	
F	
E	
A	
D	

points	 coordinates	

(c) Copy-based shuffle.

Figure 4.6: streamcluster: Shuffles.

4.4.1 Distributing data

To avoid remote main memory accesses the programmer must control at which processor data is
allocated. Current operating systems provide support for per-processor memory allocation. For
example, Linux provides the numa alloc() function that allows the programmer to allocate
memory at a specific processor. Because of its high overhead, however, it is recommended to use
this allocator only for the allocation of large memory regions. On Linux, once pages of a mem-
ory region are allocated, they can be migrated to a specific processor using the move pages()
system call. For the performance-critical memory regions of the programs considered we define
a data distribution either by using numa alloc() or by using memory migration. Defining
the data distribution for these regions adds overhead. However, as we enforce the distribution
only once, at program startup, the overhead is compensated for by improved execution times.
The overhead of distributing data is included in the performance measurements (reported in
Section 4.5).

4.4.2 Algorithmic changes

streamcluster

The performance analysis described in Section 4.3 reveals that most memory accesses of the
program are to coordinates of data points processed by the program. The coordinates are stored
in an array, coordinates. The coordinates array is accessed through a set of pointers
stored in the pointers array. Figure 4.6(a) shows the two data structures, assuming that the
program is executed by two threads. Because of data parallelism each thread owns a distinct
subset of pointers (and thus accesses a distinct set of points and coordinates). The situation with
a higher number of threads is analogous to the two-thread case.

4.4. PROGRAM TRANSFORMATIONS 61

Investigation of the program source reveals that the bad memory system performance of
streamcluster is caused by a data shuffling operation: during program execution the set
of data points processed by the program are randomly reshuffled so that clusters are discovered
with higher probability. Figure 4.6(a) shows the state of the points and coordinates
array when the program starts, Figure 4.6(b) shows the state of the program data after the first
shuffle. After shuffling, each thread accesses the same subset of the pointers array as before
the shuffle, but the set of coordinates accessed is different. Shuffling is performed several times
during the lifetime of the program.

The shuffling operation has negative effects on caching, prefetching and also on data locality.
As the set of data accessed by threads changes during program execution, the program does
not have much data reuse. The presence of random pointers makes the access patterns of the
program unpredictable and thus prefetching is not useful for this program. Lastly, due to the
shuffles, each piece of coordinate data is possibly accessed by all threads of the program, thus
coordinate data is shared between processors and it is impossible to distribute these data across
the processors of the system. As a result, most accesses to the coordinates array are remote.

To enable memory system optimizations we change the way shuffle operations are per-
formed. Instead of shuffling pointers so that they point to different data, we keep the pointers
constant and move data instead. Figure 4.6(c) shows the data layout of streamcluster after
a copy-based shuffle is performed on the original data shown in Figure 4.6(a). After the copy-
based shuffle, the location of the coordinate data in memory accessed by each thread is the same
as before the shuffling operations, however, the contents of the data locations has changed. As
a result, during the lifetime of the program each thread will access the same memory locations.
Because data locations are not shared between threads, they can be distributed appropriately
between processors. Moreover, as each thread accesses its pointers sequentially, the access pat-
terns of the program are regular, thus prefetchers have a better chance to predict what data will
be accessed next.

Figure 4.7(a) shows the code of the original, pointer-based shuffle, Figure 4.7(b) shows the
code of the copy-based shuffling operation. Copy-based shuffling involves memcpy operations
that are more costly than switching pointers; however, shuffling is infrequent relative to data
accesses, therefore this change pays off (see the performance evaluation in Section 4.5).

ferret

The performance analysis described in Section 4.3 indicates that ferret’s remote memory
accesses are due to accesses to the shared image database. The image database is queried
in Stage 3 (the indexing stage) of the program. Figure 4.8(a) shows the original pipelined
implementation of this stage. Stage 3 (and other stages as well) receives the processor number
p as parameter (line 1). As a result, each stage instance is aware of the processor as where it is
executing (the processor p is specified by affinity scheduling with identity mapping). To keep
lock contention low, two adjacent stages are usually interconnected by multiple queues, and
only a subset of all threads executing the stage uses the same queue. Thus, each stage instance
receives/puts data from/into queues local to that processor (lines 2 and 4). Database queries are
implemented by the index() function (line 3).

A way to reduce data sharing for the ferret benchmark is to partition the image database
between the processors of the system, so that each processor holds a non-overlapping subset

62 CHAPTER 4. PERFORMANCE ANALYSIS OF MULTITHREADED PROGRAMS

1 void s h u f f l e () {
2 for (i = 0 ; i < NUM POINTS; i ++) {
3 j = random () % NUM POINTS;
4 temp = po in t s [i] . coord ina tes ;
5 po in t s [i] . coord ina tes = po in t s [j] . coord ina tes ;
6 po in t s [j] . coord ina tes = temp ;
7 }
8 }

(a) Shuffle (pointer-based implementation).

1 void s h u f f l e () {
2 for (i = 0 ; i < NUM POINTS; i ++) {
3 j = random () % NUM POINTS;
4 memcpy(temp , po in t s [i] . coord inates , BLOCK SIZE) ;
5 memcpy(po in t s [i] . coord inates ,
6 po in t s [j] . coord inates ,
7 BLOCK SIZE) ;
8 memcpy(po in t s [j] . coord inates , temp , BLOCK SIZE) ;
9 }

10 }

(b) Shuffle (copy-based implementation).

Figure 4.7: streamcluster: Program transformations.

1 void i n d e x p i p e l i n e d (Processor p) {
2 f ea tu res = indexQueue [p] . dequeue () ;
3 cand ida teL i s t = index (fea tu res) ;
4 rankQueue [p] . enqueue (cand ida teL i s t) ;
5 }

(a) Stage 3 (original implementation).

1 void i n d e x p i p e l i n e d (Processor p) {
2 f ea tu res = indexQueue [p] . dequeue () ;
3 i f (p == Processor . MIN) cand ida teL i s t = 0 ;
4 cand ida teL i s t += index (p , fea tu res) ;
5 i f (p < Processor .MAX − 1) {
6 dstProcessor = p + 1;
7 indexQueue [dstProcessor] . enqueue (cand ida teL i s t) ;
8 } else {
9 rankQueue . enqueue (cand ida teL i s t) ;

10 }
11 }

(b) Stage 3 (optimized implementation).

Figure 4.8: ferret: Program transformations.

of the image database. Partitioning is performed at program startup when the image database
is populated. Data distribution (described in Section 4.4.1) is used to ensure that each sub-
set is allocated at the appropriate processor. The image database uses a hash-based index for
lookup [63] that is modified as well to include information about the processor at which each
image is stored.

Database queries must also be changed to support data locality; Figure 4.8(b) shows

4.4. PROGRAM TRANSFORMATIONS 63

Stage 2:
Extract

Stage 4:
Rank

Stage 3-1:
Index

Stage 3-0:
Index

Executed at
Processor 0 T2 T3

T0 T1

T2 T3

T0 T1

T2 T3

T0 T1

Executed at
Processor 1 T6 T7

T4 T5

T6 T7

T4 T5

T6 T7

T4 T5

...

...

...

...

Figure 4.9: ferret: Stages 2, 3, and 4 (optimized implementation).

the locality-aware implementation of Stage 3. The index() function (line 4) is modified
to operate only on a subset p of the image database (p ∈ [0,Processors.MAX) where
Processors.MAX is the total number of processors in the system). As a result, a stage
instance executing at Processor p performs database queries only on partition p of the image
database. Instances of Stage 3 are executed at every processor of the system (due to identity
scheduling) thus all database partitions are eventually queried by the program. The final results
of a query are composed from the results obtained by querying each partition of the complete
image database.

To make sure that each query is performed on all database partitions, the queuing sys-
tem is modified to dispatch queries to the appropriate processor. The partial result (stored in
candidateList) of a query on partition p of the image database is forwarded to an indexing
stage executing at the next processor (i.e., the candidate list is forwarded from Processor p to
Processor p + 1) (lines 6–7 of Figure 4.8(b)). When all subsets of the image database have been
queried, the candidate list contains the result of the query on the complete database and it is
sent to the ranking stage (line 9). All queries must start with the first partition of the image
database. To ensure that each query starts with the first database partition, Stage 2 is modified
to dispatch data to instances of Stage 3 executing at Processor 0. Similarly, to ensure load bal-
ance, the instances of Stage 3 querying the last partition of the image database dispatch data
to all instances of Stage 4 (executing on all processors). As these changes are small, they are
not shown in the code example. Figure 4.9 shows a graphical representation of Stages 2, 3, and
4 of the optimized program as they are executed on a 2-processor system. This representation
indicates the change of queuing in all stages.

The example shown in Figure 4.8(b) is for a 2-processor system. On this system the pro-
posed optimization corresponds to creating two copies of Stage 3, where one copy of this stage,
Stage 3-0, executes at Processor 0, and the other copy, Stage 3-1, executes at Processor 1. This
solution scales with the number of processors (i.e., on n processors n copies of Stage 3 are
created).

dedup

Figure 4.10(a) shows the pipelined implementation of Stage 1 and Stage 2 of dedup. The
performance analysis described in Section 4.3 indicates that accesses to the shared hash table

64 CHAPTER 4. PERFORMANCE ANALYSIS OF MULTITHREADED PROGRAMS

1 / / Stage 1: Div ide data chunk i n t o i tems .
2 void f i n d I t e m s p i p e l i n e d (Processor p) {
3 f i l eChunk = inputQueue [p] . dequeue () ;
4 i tems = f i nd I t ems (f i l eChunk) ;
5 for (i tem : i tems)
6 itemProcessQueue [p] . enqueue (i tem) ;
7 }
8 / / Stage 2: Process an i tem .
9 void i t emProcess p ipe l ined (Processor p) {

10 i tem = itemProcessQueue [p] . dequeue () ;
11 i tem . key = getSHA1Signature (i tem) ;
12 i f ((en t r y = hashTable . get (key)) != n u l l) {
13 en t ry . count ++;
14 outputQueue [p] . put (i tem . key) ;
15 } else {
16 compressQueue [p] . put (i tem) ;
17 }
18 }

(a) Stages 1 and 2 (original implementation).

1 / / Stage 1: Div ide data chunk i n t o i tems .
2 void f i n d I t e m s p i p e l i n e d (Processor p) {
3 f i l eChunk = inputQueue [p] . dequeue () ;
4 i tems = f i nd I t ems (f i l eChunk) ;
5 for (i tem : i tems) {
6 i tem . key = getSHA1Signature (i tem) ;
7 dstProcessor = hashTable . processorForKey (key) ;
8 itemProcessQueue [dstProcessor] . enqueue (key) ;
9 }

10 }
11 / / Stage 2: Process an i tem .
12 void i t emProcess p ipe l ined (Processor p) {
13 i tem = itemProcessQueue [p] . dequeue () ;
14 i tem . key = clone (i tem . key) ;
15 i f ((en t r y = hashTable . get (i tem . key)) != n u l l) {
16 en t ry . count ++;
17 outputQueue [p] . put (i tem . key) ;
18 } else {
19 compressQueue [p] . put (i tem) ;
20 }
21 }

(b) ferret: Stages 1 and 2 (optimized implementation).

Figure 4.10: dedup: Program transformations.

(line 12–13) are the source of data sharing for dedup. Not just data items, but also the key
of every data item (initialized in line 11) is added to the hash table. As these keys are used
frequently for hash table lookups, the processor that holds each key also plays an important role
for data locality.

We change dedup to reduce sharing of hash table elements and also of the hash table
structure itself; the changes are illustrated in Figure 4.10(b). The set of all hash keys is divided
into p non-overlapping subsets, where p is the number of processors in the system. Each subset
is (conceptually) mapped to a different processor. As this mapping closely depends on the

4.5. PERFORMANCE EVALUATION 65

Stage 1:
FindChunks

Stage 3:
Compress

Stage 2:
ChunkProcess

Executed at
Processor 0 T2 T3

T0 T1

T2 T3

T0 T1

T2 T3

T0 T1

Executed at
Processor 1 T6 T7

T4 T5

T6 T7

T4 T5

T6 T7

T4 T5

...

...

...

Dispatch data to Processor 1 Dispatch data to Processor 0

Figure 4.11: dedup: Stages 1, 2, and 3 (optimized implementation).

structure hash table, we add a new method to the hash table, processorForKey() that
determines for each key the processor associated with that key (line 7).

Enforcing the mapping of keys to processors requires data elements to be dispatched to the
appropriate processor. We modify Stage 1 of dedup to achieve this. The original version of
Stage 1 dispatches each data item to the same processor that the data was dequeued from (lines
3 and 6 of Figure 4.10(a)). In the optimized version, however, each data item is dispatched to
the processor its key is associated with (lines 7–8 of Figure 4.10(b)). It is sufficient to change
Stage 1 to enforce the mapping of keys to processors, because by default Stage 2 and Stage 3
enqueue each data element at the same processor that the data was dequeued from, thus as soon
as a data element is enqueued at the appropriate processor by Stage 1, it is processed at the same
processor by all subsequent stages.

Using locality-aware dispatching of data elements guarantees data locality for structures
related to the hash table but not for keys. As keys are computed before the dispatch to sub-
sequent stages can happen (line 6 of Figure 4.10(b)), the keys are not necessarily allocated at
the processor that they are conceptually mapped onto. To enforce the mapping of keys to pro-
cessors, a clone of each key is created after dispatch (in Stage 2, cloning shown in line 14 of
Figure 4.10(b)). As Stage 1 already enforces the previously described key-to-processor map-
ping, the clones created in Stage 2 are guaranteed to reside on the appropriate processor due
to the first-touch page placement policy. Figure 4.11 shows a graphical representation of the
locality-aware implementation of stages 1, 2, and 3 of dedup, including queuing.

4.5 Performance evaluation

This section evaluates the performance of the program-level transformations proposed in Sec-
tion 4.4. As transformations effect both data locality and prefetcher performance, we divide
the evaluation into two parts. First, in Section 4.5.1 we discuss the cumulative effect of the
program transformations on data locality and prefetcher performance. Then, in Section 4.5.2
we quantify the effect of the transformations on prefetcher performance individually.

66 CHAPTER 4. PERFORMANCE ANALYSIS OF MULTITHREADED PROGRAMS

4.5.1 Cumulative effect of program transformations

This section evaluates the effect of program transformations on both data locality and prefetcher
performance cumulatively, therefore the prefetcher units of the processors are turned on for the
measurements presented in this section.

The proposed program transformations influence both aspects of a program’s mapping, that
is, transformations change both the program’s schedule of computations and its data distribu-
tion. The schedule of a program’s computations is defined by the way a program’s threads are
mapped to the processors/cores of a system and by the way computations are mapped to threads.
Threads are mapped using affinity scheduling with identity mapping in all experiments. Com-
putations are mapped to threads by the rules defined by OpenMP static scheduling [80] (in
the case of streamcluster) or by the way pipeline stages are interconnected (in case of
ferret and dedup).

The schedule of computations effects caching and prefetcher performance, the distribution
of data effects the locality of main memory accesses. To be able to delimit the effect of a trans-
formation on each level of the memory system, we consider data distribution separately from
the rest of changes involved by a transformation. More specifically, we evaluate performance
with a set of different execution scenarios. Each execution scenario defines

• the version of the program used (transformed or original), but without any consideration
of the distribution of data, and

• the program’s data distribution, for example, the page placement policy used by the pro-
gram independent of other source-level changes.

We consider four execution scenarios:

• original (first-touch) This execution scenario uses the original, out-of-the-box version of
the programs. The memory allocation policy used is first-touch (the default on many
modern OSs). In the figures this scenario appears as original (FT).

• original (interleaved) This execution scenario also uses the original version of the pro-
grams, but memory regions are allocated using the interleaved page placement policy. The
interleaved page placement policy distributes pages of shared memory regions across the
processors of the system in a round-robin fashion. Interleaved page allocation balances
the load between the memory controllers of a NUMA system and thus mitigates the per-
formance degradation caused by shared data regions being allocated at a single processor
and was thus proposed by recent work [27, 55]. Using interleaved page placement is
equivalent to disabling NUMA in our systems (in the BIOS). For this scenario we use the
shorthand original (INTL) in the figures.

• transformed (interleaved) This scenario evaluates the proposed program transformations
with the interleaved page placement policy. As per-processor memory allocation is not
used in this scenario, performance differences are only caused by the combined effect
of improved caching and prefetcher performance. In the figures this scenario appears as
transformed (INTL).

4.5. PERFORMANCE EVALUATION 67

• transformed (NUMA-alloc) This scenario evaluates the program transformations with per-
processor memory allocation enabled. This scenario has the additional benefit of local
main memory accesses relative to the previous, transformed (interleaved), execution sce-
nario. In the figures this scenario appears as transformed (NA).

We compare the performance of the three benchmarks, streamcluster, ferret and
dedup in all execution scenarios on both machines described in Section 4.2 (2-processor 8-
core and 4-processor 32-core NUMA). Any two adjacent execution scenarios differ in only one
parameter, thus comparing any two adjacent scenarios quantifies the exact cause of performance
improvement. Besides reporting performance we quantify the effect of the transformations
on the memory system by providing a breakdown of total uncore memory transfers for all
configurations of the benchmark programs. (A processor’s uncore includes the processor’s last-
level cache, its on-chip memory controller, and its interfaces to the cross-chip interconnect, thus
at the uncore level we can distinguish between local/remote cache accesses and local/remote
main memory accesses.) In some cases the total number of uncore transfers differs when the
same program binary is executed on two different machines but in the same execution scenario.
Although the two machines used for evaluation have the same microarchitecture, the sizes of
the last-level caches differ between the two machines. The different size of the last-level caches
explains the difference of the total number of total uncore transfers measured.

streamcluster

Figures 4.12(a) and 4.12(b) show the performance improvement of three scenarios, original
(interleaved), transformed (interleaved), and transformed (NUMA-alloc), over the default setup
(original (first-touch)). Figures 4.13(a) and 4.13(b) show the breakdown of all uncore transfers
for all the scenarios considered.

By default the complete coordinates of all data points accessed by streamcluster are
allocated at a single processor. As all threads access these data, the memory controller and
cross-chip interconnect of this processor are overloaded. Using the interleaved page placement
policy instead of the first-touch page placement policy reduces neither the fraction of remote
cache references nor the fraction of remote main memory accesses relative to the first-touch
page placement policy. However, as the interleaved policy distributes the pages of the image
database across the processors of the system in a round-robin fashion, the load on the memory
system is distributed between all memory controllers/cross-chip interconnects of the system.
Using interleaved page placement for streamcluster has been previously suggested by
Lachaize et al. in [55] and it results in a performance improvement of 21% (106%) relative to
the default setup on the 8-core (32-core) machine.

The next scenario considered is program transformations with interleaved page placement
(transformed (INTL)). The total number of transfers executed by the program decreases relative
to the previous scenario. This result indicates better cache usage. In addition, prefetchers are
also able to better predict the memory accesses of the program (see Section 4.5.2). The com-
bined result of these two effects yields an additional performance improvement of 121% (50%)
on the 8-core (32-core) machine. If the data distribution of the program is also set appropriately
(i.e., by using per-processor memory allocation), we record an almost complete elimination
of remote main memory accesses. This setup is reported in the transformed (NA) execution
scenario. For the transformed (NA) scenario we observe a performance improvement of 18%

68 CHAPTER 4. PERFORMANCE ANALYSIS OF MULTITHREADED PROGRAMS

0%	
50%	
100%	
150%	
200%	
250%	

orig
inal

	 (IN
TL)	

tran
sfom

ed	 (
INT

L)	

tran
sfor

med
	 (NA

)	

Performance	 improvement	 	
(over	 original	 (FT))	

(a) 8-core system.

0%	
50%	
100%	
150%	
200%	
250%	

orig
inal

	 (IN
TL)	

tran
sfom

ed	 (
INT

L)	

tran
sfor

med
	 (NA

)	

Performance	 improvement	 	
(over	 original	 (FT))	

(b) 32-core system.

Figure 4.12: streamcluster: Performance improvement (over original (FT)).

0	
50	
100	
150	
200	
250	

orig
inal

	 (FT
)	

orig
inal

	 (IN
TL)	

tran
sfom

ed	 (
INT

L)	

tran
sfor

med
	 (NA

)	

Total	 uncore	 transfers	 (GTransfers)	

(a) 8-core system.

0	
50	
100	
150	
200	
250	

orig
inal

	 (FT
)	

orig
inal

	 (IN
TL)	

tran
sfom

ed	 (
INT

L)	

tran
sfor

med
	 (NA

)	

Total	 uncore	 transfers	 (GTransfers)	

(b) 32-core system.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

8-core 32-core

REMOTE_DRAM LOCAL_DRAM REMOTE_CACHE LOCAL_CACHE

Total uncore transfers (GTransfers)

Figure 4.13: streamcluster: Uncore memory transfers.

(38%) on the 8-core (32-core) machine, in addition to the program transformations (interleaved)
scenario. In the end, the algorithmic changes coupled with per-processor memory allocation im-
prove performance by 2.6X (2.94X) over the out-of-the-box version of the streamcluster
benchmark on the 8-core (32-core) machine.

ferret

Figures 4.14(a) and 4.14(b) compare the performance of ferret in the four execution scenar-
ios considered, Figures 4.15(a) and 4.15(b) present the breakdown of uncore transfers corre-
sponding to each scenario.

With the default setup a large fraction of ferret’s memory accesses hit in the remote
cache or are served by remote main memory, thus ferret experiences large performance
penalties due to increased memory access latencies. By default, the complete image database
is allocated at a single processor. As all threads use the database, the memory controller and
cross-chip interconnect of this processor are overloaded. The interleaved policy balances the
load between all memory controllers/cross-chip interconnects of the system, thus interleaved
allocation results in a performance improvement of 35% relative to the default setup on the

4.5. PERFORMANCE EVALUATION 69

0%	
10%	
20%	
30%	
40%	
50%	
60%	

orig
inal

	 (IN
TL)	

tran
sfom

ed	 (
INT

L)	

tran
sfor

med
	 (NA

)	

rep
lica

ted
	

Performance	 improvement	 	
(over	 original	 (FT))	

(a) 8-core system.

0%	
10%	
20%	
30%	
40%	
50%	
60%	

orig
inal

	 (IN
TL)	

tran
sfom

ed	 (
INT

L)	

tran
sfor

med
	 (NA

)	

rep
lica

ted
	

Performance	 improvement	 	
(over	 original	 (FT))	

(b) 32-core system.

Figure 4.14: ferret: Performance improvement (over original (FT)).

0	
5	
10	
15	
20	
25	
30	
35	
40	

orig
inal

	 (FT
)	

orig
inal

	 (IN
TL)	

tran
sfom

ed	 (
INT

L)	

tran
sfor

med
	 (NA

)	

rep
lica

ted
	

Total	 uncore	 transfers	 (GTransfers)	

(a) 8-core system.

0	
5	
10	
15	
20	
25	
30	
35	
40	

orig
inal

	 (FT
)	

orig
inal

	 (IN
TL)	

tran
sfom

ed	 (
INT

L)	

tran
sfor

med
	 (NA

)	

rep
lica

ted
	

Total	 uncore	 transfers	 (GTransfers)	

(b) 32-core system.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

8-core 32-core

REMOTE_DRAM LOCAL_DRAM REMOTE_CACHE LOCAL_CACHE

Total uncore transfers (GTransfers)

Figure 4.15: ferret: Uncore memory transfers.

32-core machine.

On the 8-core machine we do not observe any performance improvement with interleaved
allocation. By default, the image database is allocated at a single processor and is therefore
accessed through a single memory controller. In the 8-core machine less cores/processors (8
cores/2 processors) access the image database than on the 32-core machine (32 cores/4 proces-
sors); therefore the memory controller used to access the database must handle more load in the
32-core machine than on the 8-core machine. As a result, distributing load across all memory
controllers of the system this load gives more benefit on the 32-core machine than on the 8-core
machine.

The next execution scenario considered is the transformed version of the program used with
interleaved memory allocation. With this execution scenario each processor accesses only a
subset of the complete image database, thus costly remote cache accesses are almost completely
eliminated. If the image database is shared between processors, each processor attempts to
cache the complete image database, which can result in a cache line being loaded into multiple
caches at the same time. If data sharing is eliminated, each processor caches a distinct subset of
the image database, therefore there is more cache capacity available to the program.

Measurements show that the cache hit rate of the program increases due to the program

70 CHAPTER 4. PERFORMANCE ANALYSIS OF MULTITHREADED PROGRAMS

transformations; this results in an additional 2% (6%) performance improvement relative to
the original (interleaved) execution scenario. Distributing pages appropriately at the processors
of the system (the transformed (NA) execution scenario) reduces the fraction of remote main
memory references of the program and thus further improves performance by 9% (16%) on the
8-core (32-core) machine. In summary, the performance of ferret improves 11% (57%) on
the 8-core (32-core) machine.

In the case of ferret, another optimization opportunity is to replicate the shared image
database at each processor. Performance results for this optimization are reported as replicated
in Figures 4.14(a) and 4.14(b) (uncore transfers are reported in Figures 4.15(a) and 4.15(b)).
Replication of the shared image database reduces the fraction of remote memory references,
but it also reduces the effectiveness of caching because each processor’s last-level cache is used
for caching a different replica. The results of replication are inferior to transformed (NA), which
gets the benefits of both caching and few remote memory accesses.

Replication is relatively simple to implement in case of ferret, because the performance-
critical image database is read-only. In the general case (read-write accesses to replicated data),
replication would require synchronizing the replicas, which can be complicated to implement
and adds overhead (to limit the overhead, recent systems disable replication after a fixed number
of synchronization operations, e.g., after 5 synchronization operations in [27]). As the other
two benchmark programs both read and write their critical data structures, we do not evaluate
replication for benchmarks other than ferret.

dedup

Figures 4.16(a) and 4.16(b) compare the performance of the four previously discussed execu-
tion scenarios for the dedup benchmark. Figures 4.17(a) and 4.17(b) show the uncore traffic
breakdown for each configuration.

The shared hash table is constructed during program execution, and all threads add new file
chunks to the hash table as deduplication progresses. As a result, with the first-touch alloca-
tion policy the hash table is spread across the processors of the system. Therefore, all memory
controllers/cross-chip interconnects of a system are used to access these data structures and none
of the interfaces to memory are overloaded. As a result, using the interleaved page placement
policy does not significantly change performance over using the first-touch policy. However,
the transformed version of the program uses locality-aware dispatching of data to processors
and so each processor accesses only a subset of the globally shared hash table. As a result,
the fraction of remote cache accesses (and also the amount of total uncore transfers) decreases
on both machines. Due to better caching, performance increases by 6% (13%) on the 8-core
(32-core) machine. In the last execution scenario considered (transformed with NUMA-aware
allocation), dedup experiences fewer remote main memory transfers, which results in an addi-
tional improvement of 5% (4%) on the 8-core (32-core) machine. In summary, the performance
of dedup improves 11% (17%) on the 8-core (32-core) machine over the default.

4.5.2 Prefetcher performance

The previous section evaluated in detail the performance benefits of the proposed program trans-
formations, however, it did not clearly identify the benefits due to prefetching effects, because

4.5. PERFORMANCE EVALUATION 71

0%	

5%	

10%	

15%	

20%	

orig
inal

	 (IN
TL)	

tran
sfom

ed	 (
INT

L)	

tran
sfor

med
	 (NA

)	

Performance	 improvement	 	
(over	 original	 (FT))	

(a) 8-core system.

0%	

5%	

10%	

15%	

20%	

orig
inal

	 (IN
TL)	

tran
sfom

ed	 (
INT

L)	

tran
sfor

med
	 (NA

)	

Performance	 improvement	 	
(over	 original	 (FT))	

(b) 32-core system.

Figure 4.16: dedup: Performance improvement (over original (FT)).

0	
1	
2	
3	
4	
5	

orig
inal

	 (FT
)	

orig
inal

	 (IN
TL)	

tran
sfom

ed	 (
INT

L)	

tran
sfor

med
	 (NA

)	

Total	 uncore	 transfers	 (GTransfers)	

(a) 8-core system.

0	
1	
2	
3	
4	
5	

orig
inal

	 (FT
)	

orig
inal

	 (IN
TL)	

tran
sfom

ed	 (
INT

L)	

tran
sfor

med
	 (NA

)	

Total	 uncore	 transfers	 (GTransfers)	

(b) 32-core system.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

8-core 32-core

REMOTE_DRAM LOCAL_DRAM REMOTE_CACHE LOCAL_CACHE

Total uncore transfers (GTransfers)

Figure 4.17: dedup: Uncore memory transfers.

the transition from the original (INTL) execution scenario to the transformed (INTL) shows
improvements due to both caching and prefetching effects.

To quantify how much performance benefit is due to the more regular access patterns caused
by the source-level transformations, we perform a simple experiment: we execute each bench-
mark with the processor prefetcher units disabled and then with prefetching enabled. In the end
we compare the performance of the two cases. The results are shown in Figure 4.18(a) (4.18(b))
for the 8-core (32-core) machine.

For the original version of the program (executed in the original (INTL) scenario) there is a
moderate performance improvement due to prefetching (at most 5%). The transformed version
of the program (executed in the transformed (INTL) scenario), however, shows performance
improvements of 60% (11%) due to prefetching for the streamcluster benchmark on the 8-
core (32-core) machine. For the other two benchmarks the benefit of prefetching is roughly the
same as with the original version of the program. As both programs use a hash table-based data
structure intensively, they both have irregular memory access patterns. The hash table is key
to the algorithms implemented by the programs, similarity search based on locality-sensitive
hashing [63] in case of ferret, and data deduplication in case of dedup. Replacing hash
tables with a different data structure would change the essence of these programs and requires

72 CHAPTER 4. PERFORMANCE ANALYSIS OF MULTITHREADED PROGRAMS

0%	

20%	

40%	

60%	

80%	

streamc.	 ferret	 dedup	

Performance	 improvement	
rela0ve	 to	 prefetching	 disabled	

(a) 8-cores.

0%	

5%	

10%	

15%	

streamc.	 ferret	 dedup	

Performance	 improvement	 	
rela0ve	 to	 prefetching	 disabled	

(b) 32-cores.

0%	

5%	

10%	

15%	

stre
amc

lust
er	

ferr
et	

ded
up	

original	 (INTL)	 transformed	 (INTL)	

Performance	 improvement	 	
rela0ve	 to	 prefetching	 disabled	

Figure 4.18: Prefetcher performance.

more significant changes than those described in this chapter.

4.6 Conclusions

4.6.1 Implications for performance evaluation

Program-level data sharing and irregular memory access patterns are two factors with a large
influence on application performance on NUMA-multicore systems. The PARSEC benchmark
programs, originally developed for earlier generations of symmetric multiprocessors, show
sharing and access patterns that inhibit performance on modern platforms with advanced archi-
tecture features such as prefetch units. These factors must be taken into account when evaluating
performance.

By using the PARSEC programs out-of-the-box on recent NUMA-multicore systems, re-
searchers might be misled to conclude that the microprocessor design, the compiler, or the run-
time system are faulty when actually the application software contains performance-limiting
factors to be blamed for unsatisfactory performance. The measurement methodology pre-
sented in this chapter allows for pinpointing software-related problems detrimental to NUMA-
multicore memory system performance. Furthermore, we show that in many cases minor
program-level adjustments suffice to fix these problems.

There are scenarios when it is important to use an out-of-the-box version of an application
for performance evaluation. But when, for example, in a research setting, new features are to
be evaluated, it is essential to identify limitations of an application’s implementation that stand
in the way of meaningful performance measurements. Publishing not only the results of the
evaluation but also the software-level changes required to achieve them is necessary to fully
understand a workload’s or a system’s performance characteristics.

4.6.2 Implications for performance optimizations

Our experience with multithreaded programs from the PARSEC suite shows that programs can
be adjusted with minimal effort to fit modern memory system architectures. The transforma-
tions result in better data locality (fewer accesses to remote data), better use of the caches, and

4.6. CONCLUSIONS 73

increased effectiveness of the prefetch unit. Simple source-level changes result in high perfor-
mance improvements (up to 2.9X) for three benchmark programs on recent NUMA-multicores.
The chapter reports detailed measurements of orthogonal experiments to quantify how these
changes individually effect each distinct layer of a modern NUMA-multicore memory system.

Most program transformations described in this chapter improve the locality of cache- and
main memory accesses. We compare data locality optimizations with other optimization tech-
niques proposed in the literature (e.g., interleaved memory allocation and data replication [27]).
We find that in most cases optimizing multithreaded programs for data locality can result in bet-
ter performance than any of alternative techniques we looked at. As we expect the performance
gap between local and remote accesses to widen (with an increased number of processors and
larger caches), it is important that software developers have the tools and insight necessary to
analyze and understand problems related to data locality. Moreover, as the proposed source-
level changes are specific to the PARSEC programs, more general approaches to implement
data locality optimizations are worthwhile to be considered for investigation.

5
Matching memory access

patterns and data placement

The locality of a multithreaded program’s memory accesses can critically influence a program’s
performance. The previous chapter shows that in some cases minor source-level changes suffice
to achieve good data locality and thus improve performance. Moreover, by applying different
manual optimization techniques to a single program we are able to better understand the way
each technique effects the memory system. Nevertheless, the optimization techniques proposed
in the previous chapter are ad-hoc, that is, they are specific to the programs considered.

This chapter investigates more systematic approaches to achieve good data locality for loop-
parallel programs. In the first part of the chapter we analyze the memory system behavior of
multithreaded scientific computations of the NAS Parallel Benchmark (NPB) suite [48]. Exper-
iments show that in many of these computations the threads access a large number of memory
locations, and we characterize the applications with regard to their access patterns. A conse-
quence of these access patterns is that it is difficult to obtain good data locality (and thus good
performance) on NUMA systems. The experiments show furthermore that data migration (both
profile- and program-based migration) and locality-aware iteration scheduling can in some cases
soften the problems caused by global accesses, however, in many cases the overhead and/or the
complexity of using these mechanisms cancels the benefits of good data locality (or worse).

The mismatch between the distribution of data across processors and the accesses to these
data as performed by the processors’ cores is immediately felt by users of popular parallelization
directives like OpenMP. These directives allow partitioning of computations but do not allow a
programmer to control either the mapping of computations to cores, or the placement of data
in memory. In the second part of this chapter we present a small set of user-level directives
that, combined with simple program transformations, can almost completely eliminate remote
memory accesses for programs of the NPB suite and thus result in a performance improvement
of up to 3.2X over the default setup in a 4-processor 32-core machine.

5.1 Memory system behavior of loop-parallel programs

5.1.1 Experimental setup

This section presents an analysis of the memory behavior of data-parallel programs of the NPB
suite version 2.3 [48]. Table 5.1 shows a short characterization of the NPB programs. The pro-
grams are executed on the 2-processor 8-core Nehalem-based machine configured with 12 GB

75

76 CHAPTER 5. MATCHING MEMORY ACCESS PATTERNS AND DATA PLACEMENT

of RAM (see Section 2.1.1 for further details about the machine).

Benchmark Class Working set size Run time
bt B 1299 MB 125 s
cg B 500 MB 26 s
ep C 72 KB 85 s
ft B 1766 MB 19 s
is B 468 MB 10 s
lu C 750 MB 368 s
mg C 3503 MB 33 s
sp B 423 MB 82 s

Table 5.1: Benchmark programs.

The benchmark programs are configured to execute with 8 worker threads (threads T0–T7)
for all experiments described in this chapter (if not explicitly stated otherwise). The number
of worker threads is equal to the total number of cores in the system to allow a program to use
the full computational power of the Nehalem-based system. Similarly to the setup described in
Section 4.2.3 for the PARSEC programs, the thread-to-core mapping of the worker threads is
set to identity affinity for all experiments. Identity affinity maps each worker thread to the core
with the same number as the thread’s number (e.g., Thread T0 is mapped to Core 0). As threads
are mapped to cores with identity affinity, the terms core and thread are used interchangeably.
Fixing the thread-to-core affinity disables OS reschedules and thus measurement readings are
more stable. Additionally, as the programs of the NPB suite are data-parallel, using thread-to-
core affinities other than identity affinity changes neither the cache hit rate nor the performance
of the programs (as noted previously by Zhang et al. [112]). In NUMA systems, memory
allocation happens on a per-processor basis. Therefore, we refer to processors when we describe
the distribution of data in the system: Processor 0 contains the memory local for threads T0–T3,
and Processor 1 contains memory local for threads T4–T7.

Figure 5.1 shows a breakdown of the total measured memory bandwidth into local and
remote memory bandwidth for all benchmark programs of the NPB suite. We use hardware
performance counters to perform the measurements, the configuration is the same as in Sec-
tion 4.2.4. For the measurements the first-touch page placement policy is in effect. This policy
places every page at the processor that first reads from/writes to this page after page allocation.
We refer to the combination of the first-touch policy and identity affinity as default setup.

As shown in Figure 5.1, the total memory bandwidth generated by ep is negligible. As
a result, the performance of this program does not depend on the memory system, and the
program is excluded from further investigation. The is and mg programs are excluded as
well because both programs exhibit a low percentage of remote memory accesses with the
default setup (on average 3% and 2% of the total bandwidth, respectively). Nonetheless, the
other benchmarks generate a significant amount of bandwidth (up to 23 GB/s) and also show a
significant contribution of remote memory accesses (11%–48% of the total bandwidth). These
high percentages suggest that there is a need for approaches that reduce the number of remote
memory accesses.

5.1. MEMORY SYSTEM BEHAVIOR OF LOOP-PARALLEL PROGRAMS 77

0

5

10

15

20

25

bt cg ep ft is lu mg sp

Local bandwidth Remote bandwidth

Memory bandwidth [GB/s]

Figure 5.1: Memory bandwidth generated by the programs of the NPB suite.

5.1.2 Data address profiling

To explore the memory performance issues in a limit study, we profile the execution of the NPB
programs using the latency-above-threshold profiling mechanism of the Intel Nehalem microar-
chitecture. As already described in Section 4.3.1, this performance-counter-based mechanism
samples memory instructions with access latencies higher than a predefined threshold and pro-
vides detailed information about the data address used by each sampled instruction. Based on
the sampled data addresses it is straightforward to estimate the number of times each page of
the program’s address space is accessed by each core of the system. To account for accesses to
all levels of the memory hierarchy, we set the latency threshold to 4 cycles (accesses to the first
level cache on the Nehalem-based system have a minimum latency of 4 cycles). We use a sam-
pling rate of 1. The profiling technique is portable to many different microarchitectures, because
most recent Intel microarchitectures support latency-above-threshold profiling and AMD pro-
cessors support Instruction-Based Sampling [13], a profiling mechanism very similar to that of
Intel’s. Moreover, on architectures without hardware support for data address profiling, address
profiles can be collected using software-only techniques as well [62].

As memory access profiling on the Intel Nehalem is sampling-based, not all pages of the
program’s address space appear in the profiles. Figure 5.2(a) shows for each program the per-
centage of the virtual address space covered by samples. A page of the address space is covered
if there is at least one sample in the profiles to an address that belongs to the page in question.
Samples cover a large portion of the address space (up to 90%). The coverage is low in the case
of cg because around 50% of the program’s address space is occupied by data structures that
store temporary data. As these structures are used only during the initialization phase of the
program, very few samples are gathered for pages that store these structures.

A program’s address space can be divided into three categories. The first category contains
private pages that belong to each thread’s stack. As the stack is private for each thread, the first-
touch policy (remember that we profile program execution with the default setup) can allocate
the pages for thread-private stacks on each thread’s processor. The first category also contains
pages that are reserved for dynamically linked shared objects and the program’s image in mem-
ory. These latter regions are small and are shared by all threads. As not much can be done for
the first category of pages as far as data placement is concerned, these pages are excluded from
further analysis and optimizations.

78 CHAPTER 5. MATCHING MEMORY ACCESS PATTERNS AND DATA PLACEMENT

0%

20%

40%

60%

80%

100%

bt cg ft lu sp

Shared pages Non-shared pages Private pages

Percentage total virtual address space covered by samples

(a) Sampled and covered address space.

0%

20%

40%

60%

80%

100%

0%

10%

20%

30%

bt cg ft lu sp

Improvement with profile-based allocation (over default setup)

Remaining remote memory acceses after profile-based allocation

Performance improvement Remaining remote accesses

(b) Performance improvement; remaining remote accesses.

Figure 5.2: Data address profiling.

Most data accessed by the computations is allocated on the heap, which holds the second
and third category of pages. Some heap pages are exclusively accessed by a single thread, thus
these pages are non-shared. Other heap regions, however, are accessed by multiple threads, and
are thus shared. Figure 5.2(a) shows the percentages of the address space that belong to the
three categories previously described. The NPB programs we consider exhibit various degrees
of sharing, ranging from almost no sharing (e.g., cg) to intense sharing when up to 51% of the
program address space is accessed by multiple threads (e.g., lu).

5.1.3 Profile-based page placement

Profiles provide a great deal of information about the access patterns of a program, but the use-
fulness of profiles for optimizing data locality remains to be determined. To optimize data lo-
cality we adapt the profile-based page placement approach described by Marathe et al. [67, 68],
and we use a simple heuristic to determine for each page the processor where the page should
be allocated at: On a profile-based run of a benchmark we allocate each page on the proces-
sor whose cores accessed the page the most frequently. Figure 5.2(b) shows the performance

5.2. MEMORY ACCESS AND DISTRIBUTION PATTERNS: A DETAILED LOOK 79

improvement over the default setup when profile-based memory allocation is used. The perfor-
mance measurements include the overhead of reading the profiles and placing data into memory.
Profile-based allocation performs well for only the cg benchmark, which improves 20%; the
remaining benchmarks show minor or no performance improvement over the default setup.

The same figure (Figure 5.2(b)) shows also the percentage of the programs’ default remote
memory accesses remaining after profile-based allocation. The performance improvement cor-
relates well with the reduction of the remote memory traffic measured with the default setup.
For cg (the program with the largest performance improvement) a small percentage of the de-
fault remote memory accesses remains after profile-based allocation. For programs with little
or no performance improvement (e.g., lu) remote memory traffic is the same as with the de-
fault setup, because profile-based memory allocation was not able to determine a distribution of
pages in memory that reduces or removes remote memory traffic (that was originally observed
with the default setup).

The information about the number of shared pages (Figure 5.2(a)) provides additional in-
sights into the performance improvement due to profile-based allocation (Figure 5.2(b)): the
cg benchmark, which has a small fraction of shared pages, improves with profile-based mem-
ory allocation 1, but the other benchmarks, which have a high fraction of shared pages, do
not. Benchmarks with high degree of sharing have the same number of remote memory ac-
cesses both with profile-based memory allocation and the default setup (Figure 5.2(b)). These
measurements show that profile-based allocation cannot correctly allocate exactly those pages
that are shared between multiple processors. In this chapter we describe various techniques to
improve the performance of programs with a high degree of data sharing.

5.2 Memory access and distribution patterns: A detailed look

NUMA systems introduce another aspect into the problem of managing a program’s data space.
The program’s computation determines the memory locations that are accessed; directives (e.g.,
OpenMP) or compilers and the runtime system determine how computations are partitioned
respectively mapped onto cores. A simple characterization of memory access patterns provides
a handle to understand the memory behavior of programs. We start with the memory allocation
and data access patterns that frequently appear in scientific computations (and thus in the NPB
programs). Then we analyze the ability of different mechanisms (in-program data migration
and loop iteration distribution) to improve data locality.

5.2.1 In-memory representation of matrices

Many scientific computations process multidimensional matrices. Figure 5.3 shows a three-
dimensional matrix stored in memory (in row-major order, addresses increase from left to right
and from top to bottom, respectively). The matrix contains NX = 5 rows (the size of the matrix
along the x-dimension, shown vertically in the figure). Each row contains NY = 4 columns

1The cg benchmark touches most of its data for the first time during the initialization phase of the benchmark.
The initialization phase of the benchmark is sequential; as a result, most of the benchmark’s data is allocated at
a single processor (i.e., the processor where the initialization phase is executed). In the computational phase of
the program, however, each thread predominantly accesses a disjoint subset of the benchmark’s data. As a result,
profile-based can place most pages of the benchmark at the appropriate processor.

80 CHAPTER 5. MATCHING MEMORY ACCESS PATTERNS AND DATA PLACEMENT

NX

NY

NZ

NZ

NZ

NZ

NZ

NZ

NZ

NZ

NZ

NZ

NZ

NZ

NZ

NZ

NZ

NZ

0

1

2

3

4

NZ NZ NZ NZ

0 1 2 3

Figure 5.3: Memory layout of 3D matrix (row-major order).

(the size of the matrix along the y-dimension, shown horizontally). As the matrix has a third,
z-dimension, the matrix contains a block of NZ items for each (x,y) element. The memory
layout of matrices with dimensionality higher than three is analogous to the three-dimensional
case, therefore we do not discuss such matrices in detail. Moreover, to keep the following
discussion simple, we focus on two-dimensional matrices.

5.2.2 Matrix memory access patterns

When we study processor memories that are accessed by threads of scientific computations, we
encounter two frequent data access and data distribution patterns for two-dimensional matrices.
We call these the x-wise and y-wise pattern, respectively.

x-wise pattern Figure 5.4(a) shows a simple loop that accesses all elements of a two-
dimensional matrix. In this example the outermost loop (the loop that iterates along the x
dimension of the matrix) is parallelized with a standard OpenMP parallel for construct.
The loop iterations are distributed across all worker threads (here: eight threads). Each thread
gets a chunk of size D = NX / 8 of the total iteration space (assuming that NX is an integer
multiple of 8). Figure 5.4(c) shows the assignment of iterations to worker threads for the code
shown in Figure 5.4(a). Each thread T0 to T7 accesses D non-overlapping rows of the matrix.
Figure 5.4(c) shows the distribution of the matrix’s memory in the system for an x-wise data
access pattern. As we map threads to cores with identity affinity, the first-touch policy allocates
the first 4 × D rows at Processor 0 and the second 4 × D rows at Processor 1. We call this
distribution of the matrix in memory an x-wise data distribution.

y-wise pattern If the second for loop (the one that sweeps the y-dimension) is parallelized
(as shown in Figure 5.4(b)), the result is a different, y-wise, data access and distribution pattern.
Figure 5.4(d) shows both the allocation of the iteration space to worker threads and the distri-
bution of the matrix memory to processors (based on a first-touch allocation). With the y-wise
access pattern, the first 4 × D columns are allocated at Processor 0, and the second 4 × D
columns are allocated at Processor 1.

Some programs that operate on data with a dimensionality higher than two can have higher
order access patterns. For example, in the case of a z-wise access pattern the iteration and data
distribution is analogous to the x-wise and y-wise patterns, respectively. The only difference is
that the blocks of data are distributed among the threads and processors of the system along the
z-dimension.

5.2. MEMORY ACCESS AND DISTRIBUTION PATTERNS: A DETAILED LOOK 81

#pragma omp parallel for

for (i = 0; i < NX; i++)

 for (j = 0; j < NY; j++)

 // access m[i][j]

(a) x-wise data access pattern.

for (i = 0; i < NX; i++)

#pragma omp parallel for

 for (j = 0; j < NY; j++)

 // access m[i][j]

(b) y-wise data access pattern.

T1

T2

T3

T4

T5

T6

T7

T0

D

D

D

D

D

D
D

D

NY

NX

Memory allocated at Processor 0

Memory allocated at Processor 1

(c) x-wise iteration distribution.

NX

D

T1 T2 T3 T4 T5 T6 T7T0

D D D D D D D

NY

Memory allocated at Processor 0

Memory allocated at Processor 1

(d) y-wise iteration distribution.

T1

T2

T3

T4

T5

T6

T7

T0

D

D

D

D

D

D
D

D

NY

NX

D

T1 T2 T3 T4 T5 T6 T7T0

D D D D D D D

Non-shared memory

Shared memory

Stage 1:
x-wise access

Stage 2: y-wise access

(e) Data sharing.

Figure 5.4: Access and distribution patterns; data sharing.

82 CHAPTER 5. MATCHING MEMORY ACCESS PATTERNS AND DATA PLACEMENT

5.2.3 Data sharing

The problem of many data-parallel programs is that in many cases programs access a single
memory region with multiple data access patterns. Let us assume that a two-dimensional matrix
is accessed in two stages by eight worker threads (T0–T7). In the first stage (Figure 5.4(c)) the
worker threads access the matrix with an x-wise access pattern, followed by a y-wise access
pattern in the second stage (Figure 5.4(d)). Figure 5.4(e) shows the iteration distribution (i.e.,
mapping of rows respectively columns to threads for processing) for both stages: the iteration
space distribution of the two stages overlaps.

If we divide the matrix into four equal-sized memory sub-regions (quadrants), then in both
stages the upper left and lower right quadrants of the matrix are accessed exclusively by threads
T0–T3 and threads T4–T7, respectively. Therefore, these quadrants are non-shared and allo-
cating these quadrants at Processor 0 (Processor 1) guarantees good data locality for threads
T0–T3 (T4–T7).

The upper right and lower left quadrants, however, are accessed (and thus shared) by all
threads. For our example, shared quadrants constitute 50% of the memory region presented
in this example. In this case the shared quadrants of the matrix are accessed equally often by
the threads of all processors of the NUMA system. Therefore, the profile-based optimization
technique described in Section 5.1 cannot determine the processor memory that should store
these quadrants. If the processor of threads T0–T3 is preferred in allocation, then threads T4–T7
must access these regions remotely (or threads T0–T3 access their regions remotely if threads
T4–T7 are preferred). For many programs that perform scientific computations data sharing
is a major performance limiting factor, as we have previously seen in Section 5.1. In the next
section we describe in more depth two real-world examples of data-sharing, the bt and ft
benchmarks from NPB.

5.2.4 Two examples: bt and ft

The bt benchmark is a 3D computational fluid dynamics application [48] that iteratively solves
the Navier-Stokes partial differential equations using the alternating direction implicit method
(implemented by the adi() function in Figure 5.5). The adi() function calls several other
functions (also listed in the figure). These functions operate mostly on the same data, but they
have different access patterns: The functions compute rhs(), y solve(), z solve(),
and add() have an x-wise access pattern, but the function x solve() accesses memory y-
wise. Moreover, as the adi() function is also used for data initialization in the first stage
of bt, some of the regions (the ones that are first touched in compute rhs()) are laid out
x-wise in memory, and some of the regions (first used in x solve()) are laid out y-wise. As
a result of this mismatch in data access and memory allocation patterns a high percentage of
this program’s virtual address space is shared (35%), and the program has a high percentage of
remote memory accesses (19%).

The ft benchmark implements a spectral method that is based on a 3D Fast Fourier Trans-
form (FFT). The memory access patterns of ft are similar to that of bt: the ft benchmark
also alternates between accessing memory with x-wise and y-wise access patterns. ft shows
less sharing than bt (9% of the program’s virtual address space is shared vs. 19% sharing), but
ft has a larger fraction of remote main memory references than bt (41% vs. 35%).

5.2. MEMORY ACCESS AND DISTRIBUTION PATTERNS: A DETAILED LOOK 83

 1: adi() {

 2: compute_rhs(); // x-wise pattern

 3: x_solve(); // y-wise pattern

 4: y_solve(); // x-wise pattern

 5: z_solve(); // x-wise pattern

 6: add(); // x-wise pattern

 7: }

Figure 5.5: bt data access patterns.

 1: adi() {

 2: compute_rhs();

 3:

 4: distribute_to(y_wise);

 5: x_solve();

 6:

 7: distribute_to(x_wise);

 8: y_solve();

 9:

10:

11: z_solve();

12:

13:

14: add();

15: }

Memory allocated at Processor 1

Memory allocated at Processor 0

Figure 5.6: bt with in-program data migration.

In-program data distribution changes

A simple approach to reduce the fraction of remote memory accesses of programs with data
sharing is to change the distribution of the program’s data on-the-fly so that it matches each
different access pattern that appears during program execution. A similar approach has been
described by Bikshandi et al. for a program that calculates the FFT of 3D data in a cluster con-
text [11]. To evaluate the effectiveness of this approach in shared-memory systems we insert
into the code of the bt program calls to functions that change the data distribution in the sys-
tem (lines 4 and 7 in Figure 5.6). These functions are based on the migration primitives offered
by the OS (see Section 5.3 for more details about the implementation). The data distribution
of the regions accessed by x solve() is changed to y-wise data distribution before the call
to x solve() and then changed back to x-wise after the x solve() function completes.
The adi() function is executed in a tight loop; therefore, starting with the second iteration
of the loop, the compute rhs() function will encounter the correct, x-wise, data distribu-
tion it requires (due to the previous iteration of adi()). Similar in-program data distribution

84 CHAPTER 5. MATCHING MEMORY ACCESS PATTERNS AND DATA PLACEMENT

0%

20%

40%

60%

bt ft
default setup
in-program data migration

Remote bandwidth relative
to total bandwidth

(a) Remote bandwidth.

0

1

2

3

bt ft
computation
data migration

Execution time relative
to default setup

(b) Performance.

Figure 5.7: Evaluation of in-program data migration.

changes can used in case of the ft benchmark, as the memory access pattern of the ft program
alternates between x-wise and y-wise as well.

Figure 5.7(a) compares the bandwidth distribution of the default setup (first-touch memory
allocation) with dynamic in-program data distribution changes for ft and bt. The figure re-
ports the percentage of remote accesses relative to the total number of accesses, as measured in
user-mode. As data migration is performed by the kernel, the bandwidth generated by data mi-
grations is not included in the figure. The measurements show that in-program data distribution
significantly improves data locality for these two programs (bt: reduction of the percentage
remote accesses from 19% to 1%, ft: reduction from 43% to 8%). This reduction of the frac-
tion of remote accesses results in a reduction of execution time of the computations, as shown
in Figure 5.7(b) (this figure shows execution time relative to the default setup, therefore lower
numbers are better). For the computation part, bt experiences a performance improvement of
around 10%, and ft speeds up 16%. However, if we account for the overhead of data mi-
gration, the total performance is worse than without data migration (bt slows down 2.5X, ft
slows down 1.4X).

In conclusion, in-program data migration can eliminate remote memory accesses by guaran-
teeing the data distribution required by each access pattern of the program. However, if access
patterns change frequently (as it is in the case of bt and ft), the overhead of data migration
cancels the benefits of data locality. Moreover, data migrations serialize the execution of mul-
tithreaded code, because access to the page tables shared by the threads requires acquiring a
shared lock (parallel migrations do not result in any improvement relative to serial migrations).
As a result, in-program data distribution changes should be avoided for programs with frequent
access pattern changes (but data migration could be still a viable option for coarser-grained
parallel programs).

Iteration redistribution

Changing the data distribution at runtime causes too much overhead to be a viable option for
programs with alternating memory access patterns. As changing the distribution of compu-
tations has far less overhead than redistributing data, in this section we explore the idea of
changing the schedule of loop iterations so that the access patterns of the program match the

5.2. MEMORY ACCESS AND DISTRIBUTION PATTERNS: A DETAILED LOOK 85

NY

NX

(a) y-wise parallelization.
NY

NX

(b) x-wise parallelization.

Figure 5.8: Access patterns of code with y-wise dependences.

distribution of data in memory.

We start with a simple approach: As the majority of the functions executed by bt has an
x-wise access pattern, we change the distribution of all program data to x-wise (at program
startup). As a result, most functions experience good data locality and their performance im-
proves. However, as the function x solve() has a y-wise access pattern, the number of
remote memory accesses it must perform increases due to the change of the data distribution to
x-wise. At the end, the performance of the whole program (bt) does not improve. The same
approach eliminates some of the remote memory accesses of ft (a reduction of the fraction of
remote memory references from 43% to 18%), but results only in a small improvement (2%).

As the data distribution of all data structures is now set to x-wise, we attempt to improve
performance by changing the memory access pattern of all y-wise loops to x-wise. In case
of bt, we change the distribution of loop iterations in x solve() to x-wise. Our approach
is similar to those described in [51, 58]. This transformation, although it requires significant
source-level changes, reduces the percentage of remote memory accesses from 19% to 2%, and
improves the performance of bt significantly (by 14% relative to the default setup).

Transforming ft in the same way as bt would, however, require, inserting additional syn-
chronization operations into the program code. Y-wise loops in ft have loop-carried depen-
dences along the y-dimension of the processed data. Usually, iterations of loop-parallel code
are distributed among worker threads so that loop-carried dependences are within the iteration
space assigned to each thread for processing. The reason for that is to keep the number of
inter-thread synchronization operations low: if data dependences are within the iteration space
assigned to each thread, threads do not need to synchronize. For example, Figure 5.8 shows the
distribution of the iteration space for two different parallelizations of a computation that has y-
wise data dependences. In the first, y-wise, parallelization (Figure 5.8(a)) the loop dependences
do not cross per-thread iteration space boundaries. In the second, x-wise parallelization of the
code (Figure 5.8(b)) the data dependences cross iteration space boundaries, thus inter-thread
synchronization is required. The overhead of inter-thread synchronization is potentially high
and it can potentially cancel the benefit of data locality achieved with redistributing iterations,
thus we do not explore this option for ft.

86 CHAPTER 5. MATCHING MEMORY ACCESS PATTERNS AND DATA PLACEMENT

data_distr_t *create_block_cyclic_distr(

 void *m, size_t size, size_t block_size);

(a) Block-cyclic data layout.

data_distr_t *create_block_exclusive_distr(

 void *m, size_t size, size_t block_size);

(b) Block-exclusive data layout.

void distribute_to(data_distr_t *distr);

(c) Apply data layout.

Figure 5.9: Data distribution primitives.

5.3 Fine-grained data management and work distribution

In-program data migration can be used to match the data distribution in the system to the access
patterns of programs with data sharing; however, the high cost of the data migration cancels
the benefit of improved data locality. Similarly, it is also possible to redistribute computations
so that the data access patterns of the program match a given data distribution, however this
method can introduce potentially large synchronization overhead. To address the dual problem
of distributing computations and data, we describe a simple system API that can be used to
change both the distribution of computations and the distribution of data in the system. Using
the described API together with simple program-level transformations can almost completely
eliminate remote memory accesses in programs with data sharing and thus helps to better exploit
the performance potential of NUMA systems. The API presented here is implemented as a
library and a set of C preprocessor macros. The API offers two kinds of language primitives:
primitives to manipulate the distribution of a program’s data and additional schedule clauses for
distribution of loop iterations.

5.3.1 Data distribution primitives

Block-cyclic data distribution

The function create block cyclic distr() (shown in Figure 5.9(a)) is used to define
a block-cyclic data distribution [12]. The block size given as a parameter to this function influ-
ences the data distribution. Consider the case of a memory region that stores a two-dimensional
matrix of size NX × NY (as shown in Figure 5.4(c)). If the block size is NX × NY / 2,
the data region will be x-wise distributed as shown in Figure 5.4(c). If, however, the size of
the block is NY / 2, the region will be y-wise distributed (Figure 5.4(d)). By further varying
the block size the function can be used to set up a block-cyclic distribution for matrices with
dimensionality higher than two as well.

Applying data distributions

The primitives of the API decouple the description of the data distribution from the oper-
ations to implement a chosen data distribution. The function create block cyclic -

5.3. FINE-GRAINED DATA MANAGEMENT AND WORK DISTRIBUTION 87

distr() defines only a description of the distribution in memory of a given memory re-
gion m (the memory region is passed to the function as a parameter; the memory region can
be, e.g., a two-dimensional matrix similar to the one described in Section 5.2). The function
distribute to() shown in Figure 5.9(c) takes this description and then applies it (i.e., the
function migrates data to enforce the distribution). For example, the in-program data distribu-
tion described earlier for the bt and ft benchmarks uses this call to change the distribution
of data in the system at runtime (see lines 4 and 7 of Figure 5.6). The implementation of the
distribute to() call relies on the Linux-standard move pages() system call. Other
OSs have similar mechanisms for user-level data migration that can be alternatively used. In
the current implementation data distribution can be enforced at page-level granularity.

Block-exclusive data distribution

Access patterns cannot be easily changed, as changing the access pattern of code with loop-
carried dependences can require frequent inter-thread synchronization. Inter-thread synchro-
nization causes overhead and as a result the data locality gained from changing access patterns
might not increase performance. Alternatively, the distribution of a data region can be changed
to block-exclusive (see Figure 5.10(a)). The key idea behind using a block-exclusive distribu-
tion is that a region with a block-exclusive distribution can be swept by two different data access
patterns (e.g, with an x-wise and a y-wise access pattern) with no parts of the memory region
shared between the processors of the system2. As a result, a block-exclusive data region can be
placed at processors so that all accesses to the region are local.

To illustrate the advantages of the block-exclusive data distribution let us consider the
simple example when eight worker threads access the block-exclusive memory region in Fig-
ure 5.10(a). To simplify further discussion, we divide the memory region into four equal-sized
quadrants (Q1–Q4). The eight worker threads considered in this example traverse the mem-
ory region with two different access patterns, first with an x-wise access pattern followed by a
y-wise access pattern.

The x-wise traversal of the memory region must be processed in two phases due to the block-
exclusive data distribution of the region. These two phases are illustrated in Figure 5.10(b) resp.
Figure 5.10(c). In the first phase (Figure 5.10(b)) the worker threads process in parallel the left
half of the data region (quadrants Q1 and Q3). The iteration distribution is standard OpenMP
static scheduling: threads are assigned iterations in the ascending order of their respective thread
number (threads T0–T3 process Q1, threads T4–T7 process Q3)3. As a result, all threads access
memory locally. In the second phase (Figure 5.10(c)) the threads process quadrants Q2 and Q4,
which are allocated to processors in a different order than quadrants Q1 and Q3. To guarantee
data locality in the second phase as well, the distribution of iterations between the threads is
different from the first processing phase: threads T0–T3 process quadrant Q4, and threads T4–
T7 process quadrant Q2 (as shown in Figure 5.10(c)). Between the two phases of the x-wise
traversal, thread synchronization is required; however, as there is only one place in the traversal

2Intuitively, a block-exclusive data distribution allows threads to sweep the data region with both and x-wise
and y-wise pattern so that threads running at each processor access a part of the data region mostly exclusively (in
many cases sharing between processors cannot be often completely eliminated as in practice data distributions can
be enforced only at page-level granularity).

3The OpenMP standard [16] does not require an assignment of loop iterations to threads in ascending order;
however, many OpenMP implementations (e.g., the OpenMP implementation of GCC) assign loop iterations to
threads that way.

88 CHAPTER 5. MATCHING MEMORY ACCESS PATTERNS AND DATA PLACEMENT

NX

NY

Memory allocated at Processor 0

Memory allocated at Processor 1Q1 Q2

Q3 Q4

(a) Block-exclusive data distribution on two processors.

T1

T2

T3

T4

T5

T6

T7

T0

NY / 2

NX

Q1

Q3

(b) x-wise traversal: phase 1.

T5

T6

T7

T0

T1

T2

T3

T4

NY / 2

NX

Q2

Q4

(c) x-wise traversal: phase 2.

NX / 2

T1 T2 T3 T4 T5 T6 T7T0

NY

Q1 Q2

(d) y-wise traversal: phase 1.

NX / 2

T5 T6 T7 T0 T1 T2 T3T4

NY

Q3 Q4

(e) y-wise traversal: phase 2.

01

NX

NY

Memory allocated at Processor 0

Memory allocated at Processor 1

Memory allocated at Processor 2

Memory allocated at Processor 3

(f) Block-exclusive data distribution on four processors.

Figure 5.10: Block-exclusive data distribution.

5.3. FINE-GRAINED DATA MANAGEMENT AND WORK DISTRIBUTION 89

where cross-thread data is accessed (when execution transitions from processing the first two
quadrants to processing the second two), the cost of this synchronization is negligible.

Data sharing is in many cases caused by a memory region being traversed with an x-wise
pattern followed by a y-wise pattern. So far we have seen an x-wise traversal of a block-
exclusive memory region. A y-wise traversal of the same memory region is also possible, and it
proceeds in two phases. In the first phase (Figure 5.10(d)) the worker threads process quadrants
Q1 and Q2, followed by quadrants Q3 and Q4 in the second phase (Figure 5.10(e)). As the
distribution of loop iterations in the phases of the y-wise traversal is similar to the case of the
x-wise traversal, we do not discuss it any further. Please note, however, that the y-wise traversal
of the memory region guarantees data locality as well.

Figure 5.9(b) shows the programming language primitive to create a block-exclusive data
distribution. So far we have discussed the block-exclusive layout only for two processors. Us-
ing the create block exclusive distr() on a system with a number of processors
higher than two results in a latin-square [26, 98] distribution of memory. The latin-square
distribution of a two-dimensional matrix on a 4-processor system is shown in Figure 5.10(f).
The data distribution primitives described in this section can be used in a system with any
number of cores/processors. The primitives only require that information about the number of
cores/processors is available at runtime (which is the case in many recent OSs, e.g., on Linux
the libnuma library makes hardware-related information available at runtime).

5.3.2 Iteration distribution primitives

Well-known methods for iteration distribution, like static scheduling, are inflexible and cannot
always follow the distribution of data in the system. For example, the assignment of loop
iterations to data shown in Figure 5.10(c) or Figure 5.10(e) is impossible in an OpenMP-like
system. To alleviate this problem we provide a directive (shown in Figure 5.11(a)) to schedule
loop iterations with inverse static scheduling.

Similar to OpenMP static scheduling, inverse static scheduling partitions the iteration space
of a loop into non-overlapping chunks and then assigns each chunk to a worker thread for
processing. Figures 5.10(b) shows the assignment of loop iterations to worker threads with
standard OpenMP static scheduling: Threads are assigned loop iterations in the ascending order
of their respective thread number. Figure 5.10(c) shows the assignment of loop iterations to
worker threads with inverse static scheduling (assuming a 2-processor system): The first half
of the loop iteration space is assigned to the second half of worker threads (threads T4–T7),
the second half of the iteration space is assigned to the first half of the worker threads (threads
T0–T3). With static inverse scheduling, data locality can be achieved also for code accessing
regions with distribution as in Figure 5.10(c) or Figure 5.10(e). To simplify the discussion and
to improve the readability of code examples, Figure 5.11(a) shows a possible way to include
inverse scheduling into the OpenMP standard (and not the current implementation of inverse
scheduling using macros).

We have seen in the previous section that the block-exclusive data distribution can be gen-
eralized to any number of processors (see Figure 5.10(f) for the 4-processor case). As the
distribution of loop iterations must match the distribution of data in the system for data local-
ity, inverse scheduling must be generalized to any number of processors as well. We call the
generalized scheduling primitive block-exclusive scheduling (syntax shown in Figure 5.11(b)).

90 CHAPTER 5. MATCHING MEMORY ACCESS PATTERNS AND DATA PLACEMENT

(a) Inverse static scheduling.

(b) Block-exclusive static scheduling.

Figure 5.11: Loop iteration scheduling primitives.

In the general case the block exclusive data distribution partitions a data region into blocks.
In a system with p processors the data distribution can be seen either as p columns of blocks, or
as p rows of blocks (see Figure 5.10(f) for a block-exclusive data distribution on a system with
p = 4 processors). For example, on an x-wise traversal the data distribution can be viewed as
p columns of blocks and on a y-wise distribution the data distribution can be viewed as p rows
of blocks. For both views of a block-exclusive data distribution there are p different iteration-
to-core distributions, one iteration distribution for each different configuration of columns of
blocks respectively rows of blocks (so that the iterations are allocated to the processors that
hold the block of data processed). As a result, a block-exclusive scheduling clause is defined as
a function of two parameters. The first parameter specifies the view taken (columns of blocks
respectively row of blocks), and the second parameter specifies the identifier id (0 ≤ id < p)
of the schedule used. Section 5.4 presents a detailed example of using the block-exclusive loop
iteration distribution primitive.

5.4 Example program transformations

This section shows how two NPB programs can be transformed with the previously described
API to execute with better data locality.

5.4.1 bt

Figure 5.12(a) shows code that is executed in the main computational loop of bt (for brevity
we show only an excerpt of the complete bt program). The code has a y-wise access pattern
and accesses two matrices, lhs and rhs, in the matvec sub() function. There are loop-
carried dependences in the code: The computations performed on the current row i depend on
the result of the computation on the previous row i - 1.

In a 2-processor system the code is transformed in two steps. At the start of the program the
distribution of both matrices, lhs and rhs, is changed to block-exclusive using the memory
distribution primitives described in Section 5.3. In the second step the outermost loop of the
computation (the loop that iterates through the rows of the arrays using variable i) is split into
two halves. The transformed code is shown in Figure 5.12(b). Both of the resulting half-loops
iterate using variable i, but the first loop processes the first (NX - 2) / 2 rows of the matri-
ces, and the second loop processes the remaining (NX - 2) / 2 rows. The work distribution
in the first loop is standard static block scheduling, but in the second loop inverse scheduling
is required so that the affinity of the worker threads matches the data distribution. Splitting
the outermost loop results in the two-phase traversal previously shown in Figure 5.10(d) and
Figure 5.10(e). Note that the transformation does not break any of the data dependences of the

5.4. EXAMPLE PROGRAM TRANSFORMATIONS 91

for (i = 1; i < NX - 1; i++)

#pragma omp parallel for schedule(static)

 for (j = 1; j < NY - 1; j++)

 for (k = 1; k < NZ - 1; k++)

 matvec_sub(lhs[i][j][k][0],

 rhs[i - 1][j][k],

 rhs[i][j][k]);

(a) Original bt code.

for (i = 1; i < (NX - 2) / 2; i++) {

#pragma omp parallel for schedule(static)

 for (j = 1; j < NY - 1; j++) {

 for (k = 1; k < NZ - 1; k++) {

 matvec_sub(lhs[i][j][k][0],

 rhs[i - 1][j][k],

 rhs[i][j][k]);

for (i = (NX - 2) / 2; i < NX - 1; i++) {

#pragma omp parallel for schedule(static-inverse)

 for (j = 1; j < NY - 1; j++) {

 for (k = 1; k < NZ - 1; k++) {

 matvec_sub(lhs[i][j][k][0],

 rhs[i - 1][j][k],

 rhs[i][j][k]);

(b) 2-processor version of bt code.

for (p = 0; p < processors; p++) {

 for (i = p * (NX - 2) / processors;

 i < (p + 1) * (NX - 2) / processors;

 i++) {

#pragma omp parallel for

 schedule(block-exclusive, X_WISE, p)

 for (j = 1; j < NY - 1; j++)

 for (k = 1; k < NZ - 1; k++) {

 matvec_sub(lhs[i][j][k][0],

 rhs[i - 1][j][k],

 rhs[i][j][k]);

}

(c) Generalized version of bt code.

Figure 5.12: Program transformations in bt.

program. Therefore, only one synchronization operation is required for correctness (at the point
where the first half of the iteration space has been processed). This program transformation can
be generalized to systems with an arbitrary number of processors as shown in Figure 5.12(c).

The main computational loop of bt executes other loops as well (not just the loop shown in
Figure 5.12(a)). Many of these other loops have a different, x-wise, access pattern. To match the
access patterns of these loops to the block-exclusive data distribution of the program’s data, the

92 CHAPTER 5. MATCHING MEMORY ACCESS PATTERNS AND DATA PLACEMENT

#pragma omp parallel for schedule(static)

for (i = 0; i < NX; i++)

 for (j = 0; j < NY; j++)

 // ...

(a) lu lower triangular part.

#pragma omp parallel for schedule(static)

for (i = NX - 1; i >= 0; i--)

 for (j = NY - 1; j >= 0; j--)

 // ...

(b) lu upper triangular part.

#pragma omp parallel for schedule(static-inverse)

for (i = NX - 1; i >= 0; i--)

 for (j = NY - 1; j >= 0; j--)

 // ...

(c) lu upper triangular part with inverse scheduling.

Figure 5.13: Program transformations in lu.

code must be transformed in a manner similar to the transformations shown in Figure 5.12(b)
and 5.12(c). These transformations require programmer effort, but in the end the access patterns
of all loops of the program match the blocked-exclusive distribution of shared data, and data
distribution is required only once (at the start of the program).

5.4.2 lu

The lu program solves the Navier-Stokes equations in two parts: a lower (Figure 5.13(a)),
and an upper part (Figure 5.13(b)). Both parts have an x-wise access pattern, therefore the
memory regions used by the program are initialized x-wise. However, as the upper triangular
part (Figure 5.13(b)) traverses rows in descending order of row numbers, the static scheduling
clause of OpenMP distributes loop iterations between worker threads so that each worker thread
operates on remote data. To increase data locality we match the access pattern of lu to its data
distribution by using the static-inverse scheduling clause for the upper triangular part,
as shown in Figure 5.13(c).

5.5 Evaluation

This section presents an evaluation of the previously described program transformations. In Sec-
tion 5.5.1 we evaluate the effectiveness of the proposed techniques in improving data locality
on the 2-processor 8-core Nehalem-based machine. In Section 5.5.2 we look at the scalability
of program transformations using a larger, 4-processor 32-core machine based on the Westmere
microarchitecture. In Section 5.5.3 we compare the performance of program transformations
with other optimization techniques described in related work. The software and hardware con-
figuration we use is described in Section 4.2. The variation of the measurement readings is
negligible.

5.5. EVALUATION 93

0%

10%

20%

30%

40%

50%

bt cg ft lu sp

default setup

profile-based allocation

program transformations

Remote bandwidth / total bandwidth

(a) Bandwidth distribution.

0%

20%

40%

60%

80%

bt cg ft lu sp

default setup

profile-based allocation

program transformations

Percentage total address space shared

(b) Percentage shared pages.

0%

5%

10%

15%

20%

25%

bt cg ft lu sp

profile-based allocation

program transformations

Improvement over default setup

(c) Performance improvement over default setup (first-touch page placement and identity affinity).

Figure 5.14: Performance with program transformations (2-processor 8-core machine).

5.5.1 Data locality

The original version of sp is synchronization-limited due to a single triple-nested loop that is
parallelized on the innermost level. We eliminate the synchronization boundedness of this loop
by moving the parallelization primitive to the outermost loop. We also store data accessed by

94 CHAPTER 5. MATCHING MEMORY ACCESS PATTERNS AND DATA PLACEMENT

the loop in multi-dimensional arrays (instead of single-dimensional ones), so that loop-carried
data dependences are eliminated; using multi-dimensional arrays results in a negligible increase
of the program’s memory footprint. This simple change gives a 10X speedup over the out-of-
the-box version of the benchmark on our 2-processor 8-core machine; as a result, sp is memory
bound and can profit further from data locality optimizations (we only use the improved version
of the benchmark in this chapter).

Figure 5.14(a) shows the percentage of remote memory bandwidth relative to the total band-
width for each program we consider in three scenarios: (1) the default setup uses the combi-
nation of first-touch page placement and thread mapping with identity affinity, as described in
Section 5.1.1, (2) profile-based allocation (as described in Section 5.1.3), and (3) the program
transformations we propose. Programs are executed with 8 threads in all scenarios.

For bt, lu and sp, program transformations reduce the percentage of remote accesses sig-
nificantly (to around 4% on average). For the cg benchmark, profile-based memory allocation
almost completely eliminates remote memory accesses (see Figure 5.2(b)). However, we are
able to achieve the same effect without profiling by inserting data distribution primitives into
the program. In ft most remote memory accesses are caused by a single loop. Transforming
this loop is possible by inserting fine-grained inter-thread synchronization, which could result
in high overhead that can cancel the benefits of the improved data locality. Nonetheless, we
obtain a reduction of the fraction of remote memory accesses relative to profile-based mem-
ory allocation (from 23% to 18%) by distributing memory so that the distribution matches the
access patterns of the most frequently executing loop of the program.

Figure 5.14(b) shows for each program we consider the percentage of program address space
shared with the default setup, with profile-based memory allocation, and with program trans-
formations (the figures consider only the sharing of heap pages). For three programs (bt, lu,
and sp) program transformations reduce the fraction of shared pages, it is thus possible to place
more pages appropriately than with the original version of the program (either by using the pro-
posed data distribution primitives, or by profiling the program). Finally, Figure 5.14(c) shows
the performance improvement with profile-based memory allocation and program transforma-
tions relative to the default setup. By eliminating sharing we obtain performance improvements
also when profile-based allocation does not. Moreover, for cg (the program that improves with
profile-based allocation) we are able to match the performance of profile-based allocation by
distributing memory so that the distribution of memory matches the program’s access patterns.

5.5.2 Scalability

Adding more processors to a NUMA system increases the complexity of the system. Standard
OSs and runtime systems handle the increase of the number of processors gracefully, however, if
good program performance is also desired, action must be taken (e.g., by the programmer). This
section evaluates the scalability of the proposed program transformations on the 4-processor
32-core Westmere-based machine described in Section 4.2 that is larger than the 2-processor
machine previously examined. For all benchmark programs size C (the largest size) is used.

To look at the scalability of the benchmark programs each program is executed in four
different configurations (i.e., with 4, 8, 16, and 32 threads, respectively). As cache contention
can cause significant performance degradations in NUMA systems [13, 65], we fix the thread-
to-core affinities so that the same number of threads is executed on each processor of the system

5.5. EVALUATION 95

0	
5	
10	
15	
20	
25	
30	
35	

4	 8	 16	 32	 4	 8	 16	 32	 4	 8	 16	 32	 4	 8	 16	 32	 4	 8	 16	 32	
Number	 of	 threads	

default	 setup	 program	 transforma8ons	

Speedup	 over	 sequen4al	 version	

bt.C	 cg.C	 ;.C	 lu.C	 sp.C	

Figure 5.15: Performance with program transformations (4-processor 32-core machine).

and thus the cache capacity available to each thread is maximized (remember that each processor
has a single last-level cache shared between all processor cores). For example, in the 4-thread
configuration one thread is executed on each processor of the 4-processor system; in the 32-
thread configuration each processor runs eight threads.

Figure 5.15 shows the speedup of the benchmark programs over their respective sequential
version. The figure compares two versions of the benchmark for each runtime configuration.
The default setup relies on the first-touch memory allocation policy and uses the previously
discussed thread-to-core assignment (which corresponds to identity affinity in the configuration
with 32-threads). With program transformations the memory distribution and the scheduling
of loop iterations is changed so that data locality is maximized. Performance improves with
program transformations, with results that are similar to those obtained on a 2-processor 8-
core system. In the 32-thread configuration we measure a performance improvement of up to
3.2X (and 1.7X on average) over the default setup. Program performance also scales better
with program transformations than with the default setup. (For the programs of the NAS suite
studied here, the programs obtain a speedup of up to 33.6X over single-core execution, with a
mean speedup of 18.8X.)

5.5.3 Comparison with other optimization techniques

The approach presented in this chapter allows the programmer to control the distribution of
data across the processor of a NUMA-multicore system. There exist, however, alternative tech-
niques for managing a program’s data distribution. Two frequently used techniques are memory
replication and interleaved page placement.

State-of-the-art software systems allow replication of memory regions. However, to limit
the overhead of synchronizing replicas, memory replication is enabled only for memory regions
that are read-only or are written infrequently (e.g., in [27] only pages written less than 5 times
during the lifetime of the program are replicated). The programs of the NAS PB suite we study
in this chapter frequently read/write shared memory regions. We believe, thus, that replication
would cause high overhead for these programs (or it would result in replication to be disabled),
therefore we do not compare our approach to data replication.

In some cases interleaved page placement (i.e., distributing memory pages round-robin
across processors) reduces contention on memory controllers relative to first-touch page place-

96 CHAPTER 5. MATCHING MEMORY ACCESS PATTERNS AND DATA PLACEMENT

-‐10%	
-‐5%	
0%	
5%	

10%	
15%	
20%	
25%	

bt.B	 cg.B	 ..B	 lu.C	 sp.B	

Number	 of	 threads	

interleaved	 program	 transforma>ons	 +	 first-‐touch	 program	 transforma>ons	 +	 interleaved	

Performance	 improvement	 over	 default	 setup	

(a) Comparison with interleaved page placement (8-core machine).

0%	

50%	

100%	

150%	

200%	

250%	

bt.C	 cg.C	 -.C	 lu.C	 sp.C	

Number	 of	 threads	

interleaved	 program	 transforma<ons	 +	 first-‐touch	 program	 transforma<ons	 +	 interleaved	

Performance	 improvement	 over	 default	 setup	

(b) Comparison with interleaved page placement (32-core machine).

ment (the default policy of many OSs, including Linux). Figures 5.16(a) and 5.16(b) report the
performance of the NAS programs with interleaved page placement relative to the default setup
for the 2-processor 8-core and the 4-processor 32-core system, respectively. In some cases
interleaved page placement results in a performance improvement of up to 170% relative to
first-touch page placement (the default setup). In some cases, however, interleaved placement
can decrease performance by at most 5%.

To allow a comparison with interleaved page placement, Figures 5.16(a) and 5.16(b) also
report the performance of the program transformations described earlier in this chapter. Trans-
formations target only a subset of a program’s total data, that is, the migration primitives are
applied only to data structures identified as performance-critical by the programmer. The data
distribution of other program data (i.e., data structures not considered by the programmer) can
effect performance as well, thus we report the performance of program transformations in two
cases:

program transformations + first-touch In this case memory regions not targeted by
programmer-controlled data migration are managed using the default first-touch policy.
This case is the same as the “program transformations” earlier in this chapter.

program transformations + interleaved In this case memory regions not targeted by
programmer-controlled data migration are managed using interleaved page placement. In

5.6. CONCLUSIONS 97

this case a program is started up with the page placement policy set to interleaved. Then
the program applies the data distribution specified by the programmer to performance-
critical memory regions, but leaves the data distribution of other regions at interleaved to
reduce memory controller contention caused by accesses to memory regions not consid-
ered for data migration.

In most cases program transformations (both in combination with first-touch and with in-
terleaved page placement) result in better performance than using interleaved page placement
only (up to 50% more performance improvement). The reason is that interleaved page place-
ment reduces contention whereas transformations achieve good data locality. In one case (the
bt benchmark on the 4-processor 32-core machine), program transformations improve per-
formance over interleaving only when program transformations are used in combination with
interleaved page allocation. In this case the memory controller contention caused by accesses
to data structures not targeted by programmer-controlled data migration is a significant factor
for the program’s performance; using interleaved page placement for these pages reduces con-
tention and enables program transformations to improve over using interleaved page placement
for all program data.

For the ft benchmark interleaving results in better performance than program transforma-
tions, mostly due to the overhead of data migration (encountered by program transformations
but not in the case with interleaved page placement).

5.6 Conclusions

In NUMA systems the performance of many multithreaded scientific computations is limited
by data sharing. In-program memory migration, a conventional method in large cluster environ-
ments, does not help because of its high overhead. In some cases it is possible to redistribute
loop iterations so that the access patterns of a loop match the data distribution. However, in
the presence of loop-carried dependences redistribution of loop iterations is a complex task,
moreover, redistribution can require extensive inter-thread synchronization that may reduce (or
completely eliminate) the benefits of data locality.

This chapter presents a simple system API that is powerful enough to allow for programming
scientific applications in a more architecture-aware manner, yet simple enough to be used by
programmers with a reasonable amount of knowledge about the underlying architecture. Using
this API together with program transformations reduces the number of shared pages and remote
memory accesses for many programs of the NPB suite. This API allows a programmer to
control the mapping of data and computation and realizes a performance improvement of up
to 3.2X (1.7X on average) compared to the first-touch policy for NAS benchmark programs.
Future multiprocessors are likely to see a widening performance gap between local and remote
memory accesses. For these NUMA systems, compilers and programmer must collaborate
to exploit the performance potential of such parallel systems. The techniques described here
provide an approach that attempts to strike a balance between complexity and performance.

6
A parallel library for

locality-aware programming

The previous chapter presented a simple API that allows adjusting the data distribution and
computation scheduling of multithreaded programs. Source-level optimization can increase
the data locality (and thus the performance) of multithreaded programs. Moreover, in case of
programs with complex memory access patterns and/or data sharing, source-level data locality
optimizations are an attractive alternative to automatic performance optimization techniques
(e.g., profile-based data placement).

The API presented in the previous chapter is simple, but it has a number of limitations. First,
the API supports only loop-parallel computations. Furthermore, implementing data locality
optimizations in practice requires additional aspects to be considered. For example, with current
parallel programming frameworks it is difficult to guarantee that data locality optimizations are
portable. Moreover, optimizations implemented with current parallel programming frameworks
are often not composable (e.g., they can lose their favorable properties in runtime systems that
support composable parallel software).

This chapter presents TBB-NUMA, a parallel programming library based on Intel Thread-
ing Building Blocks (TBB) that supports portable and composable NUMA-aware programming.
TBB-NUMA is based on task parallelism, but it supports loop-, pipeline-, and also other forms
of parallelism through high-level algorithm templates. TBB-NUMA provides a model of task
affinity that captures a programmer’s insights on mapping tasks to resources. NUMA-awareness
affects all layers of the library (i.e., resource management, task scheduling, and high-level par-
allel algorithm templates) and requires close coupling between all these layers. Data locality
optimizations implemented with TBB-NUMA (for a set of standard benchmark programs) re-
sult in up to 57% performance improvement over standard TBB, but, more importantly, opti-
mized programs are portable across different NUMA architectures and preserve data locality
also when composed with other parallel computations.

6.1 Practical aspects of implementing data locality optimizations

6.1.1 Introduction

Due to the large performance penalty of cross-chip memory accesses, performance optimiza-
tions for NUMA systems typically target improving data locality, that is, the reduction (or even
elimination) of remote memory accesses [13, 17, 27, 58, 68, 79, 104, 107, 107]. Optimizations

99

100 CHAPTER 6. A PARALLEL LIBRARY FOR LOCALITY-AWARE PROGRAMMING

are often automatic, that is, the runtime system (e.g., the OS or the VM) profiles the memory
accesses of programs and then, based on the profiles, it automatically adjusts the distribution of
data and/or the scheduling of computations to more efficiently use the memory system.

Automatic optimizations for NUMA systems can be highly effective; however, for some
programs (e.g., programs with complex memory access patterns) profiles do not convey enough
information to enable the runtime system to carry out optimizations successfully. In these cases,
high-level information about programs (e.g., program data dependences) is needed. As this type
of information is likely to be available to the programmer, several projects consider making the
development toolchain NUMA-aware. E.g., recent profilers like MemProf [55], Memphis [72],
and DProf [82] present information about a program’s memory behavior to the developer, who
can then change the code to improve performance.

Profilers pinpoint code locations with inefficient usage of the memory system. In practice,
however, programs are rarely optimized for NUMA systems as commonly used parallel lan-
guages and libraries like OpenMP or Intel Threading Building Blocks (TBB) are geared towards
exploiting the lower levels of the memory system (e.g., L1 and L2 caches), if at all, and have
no support for NUMA systems. More specifically, existing parallel programming frameworks
have three main limitations.

First, existing frameworks usually require memory-system-aware code to consider the lay-
out of the memory system in full detail, thus optimized programs are not portable. Second,
NUMA-aware code is not composable. Mapping data and computations depends on the hard-
ware resources (i.e., cores/processors) available to the program. However, in frameworks with
support for composable parallel software (i.e., parallel software composed of multiple, concur-
rently executing parallel computations [81]) the amount of resources available to a computation
can change over time, which requires memory-system-aware programs to adapt the mapping at
runtime. Existing frameworks provide the programmer little information about the program’s
runtime configuration, thus optimizations often simply assume that all hardware resources (i.e.,
all cores/processors) are continuously available. As a result, the advantages of memory sys-
tem optimizations are annulled as soon as the optimized computation is composed with other
parallel computations. Finally, existing parallel programming frameworks have no support for
explicit mapping of data and computations, i.e., the programmer is required to be aware of
runtime/compiler/library internals to be able to set up a mapping. Thus, even if a program-
mer conceptually knows how to optimize a program, implementing optimizations is difficult (or
even impossible) with existing frameworks.

Due to the previously mentioned limitations, source-level optimizations for NUMA systems
are rare in practice and the performance potential of NUMA systems is often unexploited. To fill
the gap in the development toolchain for NUMA systems, this chapter presents TBB-NUMA,
a parallel programming library for programming NUMA systems. We first discuss theoretical
and practical considerations for implementing data locality optimizations (Sections 6.1.2 and
6.1.3) and then we articulate the goals of TBB-NUMA library (Section 6.1.4).

6.1.2 Principles of data locality optimizations

Data locality optimizations for NUMA systems have traditionally targeted the co-location of
data and computations. To understand the principles of these optimizations, let us consider an
example multithreaded program that is parallelized for a 2-processor 8-core NUMA system (the

6.1. PRACTICAL ASPECTS OF IMPLEMENTING DATA LOCALITY OPTIMIZATIONS 101

Processor	 0	

C0	 C1	

C2	 C3	

MC	 IC	

DRAM	

Last-‐level	 cache	

Processor	 1	

C4	 C5	

C6	 C7	

IC	 MC	

DRAM	

Last-‐level	 cache	

D0	 D1	 D2	 D3	 D4	 D5	 D6	 D7	

Figure 6.1: Computation optimized for data locality.

Processor	 0	

CA0	 CA1	

CA2	 CA3	

MC	 IC	

DRAM	

Last-‐level	 cache	

Processor	 1	

CB0	 CB1	

CB2	 CB3	

IC	 MC	

DRAM	

Last-‐level	 cache	

DA0	 DA1	 DB0	 DB1	 DA2	 DA3	 DB2	 DB3	

Figure 6.2: Shared threads: Unfortunate mapping.

Processor	 0	

CA0	 CB0	

CA1	 CB1	

MC	 IC	

DRAM	

Last-‐level	 cache	

Processor	 1	

CA2	 CB2	

CA3	 CB3	

IC	 MC	

DRAM	

Last-‐level	 cache	

DA0	 DA1	 DB0	 DB1	 DA2	 DA3	 DB2	 DB3	

Figure 6.3: Shared threads: Appropriate mapping.

102 CHAPTER 6. A PARALLEL LIBRARY FOR LOCALITY-AWARE PROGRAMMING

system in Figure 6.1). The program consists of a set of concurrently executing computations
C0, C1, . . . , C7; each computation accesses a subset D0, D1, . . . , D7 of the total data used by
the program.

To achieve good data locality, the programmer must go through a series of steps. First, the
programmer must parallelize the algorithm (i.e., define the computations Ci) so that the data
subsets Di overlap as little as possible. Second, the programmer must distribute data subsets
among processors. The final step is to schedule computations so that each computation Ci

executes at the same processor as where its data Di is placed at.

Figure 6.1 shows the mapping of the example program onto the 2-processor 8-core NUMA
system. In the figure each computation executes at the processor where its data is allocated. If
data subsets do not overlap (small adjustments often suffice to adjust overlap in multi-threaded
computations, as shown by previous work [112]), this mapping is beneficial for both caching
and DRAM performance: (1) The cache capacity available to the computation is maximized
(data subsets are disjoint; as a result, each piece of data can be present in only one cache),
(2) as data is placed at all DRAM modules, all paths to memory are utilized, which increases
the bandwidth available to the program and reduces contention on memory interfaces, and (3)
as each computation accesses locally placed data, the program does not encounter any remote
(cache or DRAM) memory accesses.

6.1.3 Enforcing data locality in practice

Data locality optimizations are simple in theory but difficult to implement in practice. Although
data distribution is well supported in recent OSs (e.g., Linux supports per-processor memory
allocation through the libnuma library and memory migration through the move pages()
system call), scheduling computations at appropriate processors is problematic in today’s paral-
lel languages and libraries. In commonly used parallel frameworks scheduling computations at
processors depends on two components. Most parallel frameworks operate with thread pools,
thus computations must be first mapped to threads in the pool; this chapter concerns task-based
parallelism, we thus use the terminology of setting task-to-thread affinities for mapping compu-
tations to threads. Second, threads from the pool must be pinned to processors of the system to
ensure that computations execute where intended. If both mappings are set up right, the system
guarantees data locality. In the following we discuss problems related to both components.

Component 1: Setting task-to-thread affinities

In commonly used parallel frameworks task-to-thread affinities are implicit, that is, the pro-
grammer has no direct control on how to map computations to threads. OpenMP static loop
partitioning is an example of implicit computation scheduling. For statically partitioned paral-
lel loops the OpenMP runtime assigns a well-defined chunk of the iteration space to each thread.
If the programmer is aware of the internals of static partitioning and knows which pieces of data
are touched by each loop iteration, she can distribute data among processors so that each thread
accesses its data locally. With other OpenMP work-division schemes (e.g., dynamic partition-
ing), however, the distribution of loop iterations between threads is not deterministic [80], thus
the programmer cannot assume much about the data accesses of the program and data locality
is, as a result, not controllable.

6.1. PRACTICAL ASPECTS OF IMPLEMENTING DATA LOCALITY OPTIMIZATIONS 103

Setting up task-to-thread affinities is not easy in case of systems based on task parallelism
either. For example, in Intel TBB each task can be assigned a special value; the value defines the
affinity of that task to a thread in the pool. The TBB Reference Manual [43] states the following
about the values of a task’s affinity:

“A value of 0 indicates no affinity. Other values represent affinity to a particular
thread. Do not assume anything about non-zero values. The mapping of non-zero
values to threads is internal to the Intel TBB implementation.”

This would require the programmer to reverse-engineer the TBB implementation to be able to
set up a mapping between tasks and threads. Due to this limitation, it is difficult to implement
NUMA data locality optimizations in TBB.

Finally, defining task-to-thread affinities depends on the number of threads available to the
program (a value that can change at runtime) but the distribution of data is expressed depending
on the number of processors in the system. To ensure data locality on any system and in any
runtime configuration the programmer must consider both parameters, which makes writing
NUMA-aware programs with current systems even more cumbersome.

Component 2: Pinning threads to processors

The second component of mapping computations to processors is pinning threads to processors.
Unless threads are pinned, the OS scheduler is allowed to freely move threads around in the
system. OS re-schedules can result in remote memory accesses (or costly data migrations if
data follows the computations using it, e.g., in systems with automatic data migration [13];
therefore, this chapter assumes a standard OS without automatic data migration).

Some OpenMP implementations allow (although not required by the OpenMP stan-
dard [80]) pinning thread pool threads to processors. Pinning threads requires understanding
the memory system for every new machine the program is to be run on. If threads are pinned to
processors, moreover, the programmer has distributed data and she has also set up task-to-thread
affinities (e.g., by relying on the properties of static loop scheduling, as discussed before), each
piece of data will be accessed at a well-defined processor and the program has thereby good
data locality.

Pinning threads to processors works well as long as only one parallel computation uses a
thread pool at a time. Modern runtime systems, however, support composable parallel soft-
ware, that is, programs that contain nested parallelism, programs that reuse functionality from
parallelized libraries, or programs that are parallelized using different parallel languages/li-
braries [81]. For these programs the thread pool of the runtime is shared by multiple parallel
computations and the runtime distributes threads between all computations registered with it.

To illustrate the problems composability causes for programs optimized for NUMA systems,
Figure 6.2 shows an example where two parallel computations, CA and CB, execute in parallel
on the example 2-processor 8-core system. Computation CA is composed of subcomputations
CA0 . . . CA3; each subcomputation CAi

accesses a different data subset DAi
. Similarly, each

subcomputationCBi
ofCB accesses a distinct data subsetDBi

. The programmer optimized both
computations for NUMA, thus data used by the computations is distributed across processors
(according to the principles discussed in Section 6.1.2). The programmer has set up task-to-
thread affinities as well, but as the runtime is not aware of the programmer’s intentions, it can

104 CHAPTER 6. A PARALLEL LIBRARY FOR LOCALITY-AWARE PROGRAMMING

allocate threads to computations in several ways. Figure 6.2 shows an unfortunate allocation
that cancels the optimization intended by the programmer: CA is mapped to threads executing
at Processor 0 and CB is mapped to threads executing at Processor 1. Thus, both computations
access some of their data remotely (DA2 , DA3 , DB0 , DB1). Figure 6.3 shows an appropriate
assignment of threads to computations: In this case each computation is assigned threads from
both processors so that each computation can access data locally and exploits all caches of the
system.

6.1.4 Goals of TBB-NUMA

TBB-NUMA aims to support programming NUMAs by:

Explicit mapping The programmer can define the distribution of data among processors and,
in addition, can also express the preferred schedule of computations in the form of hints to
the library’s work-stealing scheduler without being required to understand runtime system
internals. The scheduler honors these hints unless there are idle resources; in this case a
task may be moved by the scheduler to a different processor in an attempt to balance the
load (as in current systems, incurring the overhead of remote execution is preferable to
idling processing resources). To hide the complexity of the work-stealing scheduler and
therefore make writing NUMA-aware code easier, TBB-NUMA defines a set of parallel
algorithm templates that programmers can adapt and reuse.

Portability Programmers are not required to have information about the exact hardware layout:
TBB-NUMA programs are written for a generic NUMA system with P processors, the
library automatically determines the remaining details of pinning threads to appropriate
processors. As a result, optimized programs are portable.

Composability The runtime manages its thread pool so that the advantages of data locality
optimizations are preserved even if only a fraction of all system resources are available
for an optimized computation. This setup allows optimized programs to be included as
part of libraries (or reuse functionalities from libraries already parallelized) and to utilize
the memory system appropriately at the same time.

TBB-NUMA extends Intel TBB, so the chapter first focuses on the architecture of stan-
dard TBB (Section 6.2). Then, Section 6.3 highlights the differences between standard TBB
and TBB-NUMA in terms of locality-aware programming. Finally, Section 6.4 presents an
evaluation of the performance, composability, and portability of data locality optimizations im-
plemented with TBB and TBB-NUMA for a set of well-known benchmark programs.

6.2 Anatomy of TBB

Standard TBB has a layered architecture (shown in Figure 6.4(a)1). This section describes the
layers top-down, that is, the discussion starts with the layer closest to the programmer and ends
with the farthest layer (the layer closest to the hardware).

1TBB has an additional layer, the task arena, below the task scheduler layer. Threads are registered with the
task arena, the task scheduler implements only scheduling. To simplify the discussion we refer to the task scheduler
and task arena layers as one layer (task scheduler), see [43] for exact details of TBB’s implementation.

6.2. ANATOMY OF TBB 105

Threads	

T1	 T2	 …	 TN	

Parallel	
algorithm	
templates	

Task	 scheduler	

User	 program	

RML	

(a) TBB layers.

Threads	

T1	 T2	 …	 TN	

.	

.	

.	

TS	

User	 program	

RML	

TS	 OMP	

.	

.	

.	

.	

.	

.	

(b) Composed program.

Figure 6.4: TBB architecture.

6.2.1 User programs

There are two ways to implement parallelism with standard TBB: programmers can either use
the library’s Cilk-style work-stealing scheduler [35] directly or they can reuse parallel algorithm
templates from a set of templates defined by the library. Templates hide the complexity of the
work-stealing scheduler from the programmer, but they still use the work-stealing scheduler
internally.

6.2.2 Parallel algorithm templates

TBB supports loop parallelism through the parallel for algorithm template (and variations
of it, e.g., parallel reduce, parallel do). TBB supports pipeline-parallelism as well
(through the pipeline template). In this chapter we concentrate on two algorithm templates,
parallel for and pipeline, because they are widely used and they represent two signifi-
cantly different ways of approaching parallelism. In standard TBB both templates are optimized
for better utilizing L1 and L2 caches. The parallel for template preserves cache locality
if it is given an affinity partitioner object as a parameter. We briefly discuss this op-
timization in Section 6.3.3 (see [3] and [86] for details about the principles and implementation
of this optimization, respectively). Parallel pipelines are optimized for better L1 and L2 cache
locality through the way they generate the task tree corresponding to a pipeline computation
(see Section 6.3.4 for details).

6.2.3 Task scheduler

Similar to Cilk [35], the TBB task scheduler interface exposes library functions to spawn and
join tasks (implemented in TBB by the spawn() and wait for all() methods and vari-
ations of them). TBB allows but does not guarantee parallelism, thus the task scheduler can
have multiple threads (but must have at least one thread) at any given point of time. Each thread
has a local deque where spawned tasks are inserted. A thread removes tasks for execution from
its local deque in LIFO order and, if the local deque is empty, steals tasks from other threads’
deques in FIFO order.

The task scheduler has a set of mailboxes. Each thread in the task scheduler is connected

106 CHAPTER 6. A PARALLEL LIBRARY FOR LOCALITY-AWARE PROGRAMMING

1. The task returned by the current task t.

2. The successor of t (if all predecessors of t have completed).

3. The task removed from the thread’s own deque (LIFO).

4. The task removed from the mailbox this thread is currently connected to.

5. The task removed from the task scheduler’s shared queue.

6. The task removed from an other randomly chosen thread’s deque (FIFO) (steals).

Figure 6.5: Standard TBB: Rules to fetch next task.

to a (different) mailbox. A task can be assigned a special value that specifies the affinity of that
task to a mailbox.

The definition of task affinities provided by the TBB Reference Manual (see Section 6.1.3
and [43]) is misleading. According to the manual, a task affinity implies that a task is associated
with a particular thread, yet an affinity value associates a task only with a mailbox. During the
lifetime of a program possibly different threads (but only one thread at a time) can be connected
to a mailbox. Therefore, affinity values provided by the standard TBB implementation guaran-
tee only that a task is associated with a mailbox, but not with any particular thread. We further
discuss the implications of task-to-mailbox affinities in Section 6.3.3.

An affinitized task (a task with a non-zero affinity value) is sent to the thread currently
connected to the mailbox. Sending is realized by inserting the task into the mailbox. The thread
connected to the mailbox receives the task by removing it from the mailbox. Furthermore, an
affinitized task is inserted not only into the mailbox it is sent to, but into the local deque of the
thread that created it as well. Lastly, task affinities are internal to the TBB implementation by
definition and only the affinity partitioner uses them internally.

TBB supports asynchronous operations through the enqueue() call. Tasks to be executed
asynchronously are inserted into a FIFO queue shared between all threads (but are not inserted
into any thread’s local deque). Due to the multiple types of queues in the task scheduler, TBB
defines a set of rules (Figure 6.5) that specify from where thread is supposed to fetch the next
task to be executed. The rules are listed in order of decreasing priority. If a high priority rule is
unsuccessful, the scheduler tries the next rule.

6.2.4 Resource Management Layer

The number of threads in a task scheduler is determined by the Resource Management Layer
(RML). (To avoid excessive OS scheduler overhead, the RML limits the number of threads
available.) TBB is interoperable with other parallel frameworks (e.g., Intel OpenMP): If a
program is composed of multiple computations (parallelized with possibly different parallel
frameworks), all computations register with the same RML instance that assigns a subset of
the available threads to each computation. Moreover, if the number of computations registered
with a RML changes, threads are redistributed between computations. As a result, the number
of threads assigned to a computation can vary over time.

6.3. IMPLEMENTING NUMA SUPPORT 107

Figure 6.4(b) shows a program composed of two TBB task scheduler-based computations
(TS) and one OpenMP-based (OMP) computation (computations are registered with the same
RML that has N threads). (The example omits higher-level details about the program, e.g., the
parallel algorithm templates it uses.) Upcoming examples consider only TBB task schedulers
but not OpenMP runtimes to be registered with an RML. This simplifies the discussion but is
not a real restriction of either standard TBB nor TBB-NUMA.

6.2.5 Threads

In addition to task schedulers, threads are registered and managed by the RML as well. The
RML manages two types of threads: (1) The RML automatically creates N − 1 worker threads
(N is the number of cores of the system); (2) master threads are created by the user program
with a suitable system library (e.g., pthreads) and are registered the first time they use a
parallel construct.

6.3 Implementing NUMA support

Implementing support for NUMA-aware programming involves all layers of TBB-NUMA’s
architecture, and, in some cases, it requires tight coupling between the layers. The discussion
in this section follows the layers bottom to top. This section focuses on aspects specific to
TBB-NUMA, contrasting it to standard TBB where interesting.

6.3.1 Threads

Previous parallel frameworks (e.g., Intel OpenMP) allow the user to pin thread to cores, i.e.,
each thread is allowed to execute only at one specific core. TBB-NUMA automatically pins
each thread to a specific processor. If a thread is pinned to a processor, the thread is allowed to
execute at any core of that specific processor, but not at cores of any other processor. Threads are
pinned to processors when they are created by the RML (worker threads) or when they register
with the RML (master threads). Threads are distributed round-robin across the processors of a
system (the first thread registered/created is pinned to Processor 1, the second to Processor 2,
and so on); we assume all processors are identical with regard to number and capabilities of
cores, thus the RML guarantees that there is an approximately equal number of threads pinned
to each processor at any given point of time. TBB-NUMA is aware of the memory system’s
layout and threads are pinned to processors without user intervention.

The OS scheduler has fewer constraints with per-processor pinning than with per-core pin-
ning, thus it can possibly balance load better if there are external (non-TBB) threads running on
the system. If threads are not pinned, the TBB-NUMA runtime cannot give any guarantees to
the layers above the threading layer, hence per-processor pinning is the minimal constraint that
must be imposed on the OS scheduler to support NUMA-awareness.

6.3.2 Resource Management Layer

Similar to the RML in standard TBB, the TBB-NUMA RML distributes threads between all
registered task schedulers. In addition to the standard TBB, the TBB-NUMA RML is aware

108 CHAPTER 6. A PARALLEL LIBRARY FOR LOCALITY-AWARE PROGRAMMING

Level	 3	

Level	 2	

Level	 1	

1	
[1-‐250]	

4	
[751-‐1000]	

3	
[501-‐751]	

2	
[251-‐500]	

1	
[1-‐500]	

3	
[501-‐1000]	

1	
[1-‐1000]	

(a) Task tree with task-to-thread affinities (top) and partitioning (bottom).

Task	 scheduler	

T1	 T2	

M1	

T4	 T3	

M4	 M2	 M3	

(b) TS fully populated.

Task	 scheduler	

T1	 ?	

M1	

?	 T3	

M4	 M2	 M3	

(c) TS partially populated.

Figure 6.6: Mailboxing (standard TBB).

of which processor each registered thread is pinned to and it distributes threads so that in each
registered task scheduler there is an approximately equal number of threads from each proces-
sor. Let us assume an example program with two task schedulers running on a 2-processor
8-core system; there are 8 threads registered with the RML. In this case the RML assigns four
threads to each task scheduler, with two threads pinned to Processor 1 and with two threads
pinned to Processor 2. Distributing threads this way guarantees that each task scheduler has ac-
cess to all memory system resources (i.e., last-level caches, memory controllers, and cross-chip
interconnects) and unfortunate assignments like that in Figure 6.2 are avoided.

6.3.3 Standard TBB task scheduler

In standard TBB each task scheduler has a set of mailboxes, the number of mailboxes is usually
set to the number of cores of the machine. When the RML assigns a thread to a task scheduler,
the thread connects to a randomly chosen mailbox.

Figure 6.6(b) shows a task scheduler with four mailboxes (M1 . . .M4); the task scheduler
is allocated four threads by the RML (T1 . . . T4). During its lifetime, a task scheduler can be
allocated different numbers of threads. Moreover, even if the same set of threads are allocated to
a task scheduler, each thread can be connected to a different mailbox during the lifetime of the
task scheduler (e.g., if a thread leaves and then re-joins a scheduler, the thread can be assigned
to a randomly chosen mailbox, and thus possibly not to the same mailbox as it was connected
to before it left the task scheduler). We refer to the combination of the number of threads in
a task scheduler and the mailboxes used by these threads as a task scheduler configuration.
Figure 6.6(b) shows the task scheduler in a fully populated configuration in which there is a
thread connected to each mailbox; in this configuration each thread Ti is connected to mailbox
Mi. In contrast, Figure 6.6(c) shows the task scheduler in a partially populated configuration in
which only mailboxes M1 and M3 are used (by threads T1 and T3, respectively).

If a thread creates a task tree and then submits it to the task scheduler for execution, more-

6.3. IMPLEMENTING NUMA SUPPORT 109

over, tasks in the tree have affinities to mailboxes, these tasks are inserted into the creator
thread’s local deque as well as into the mailbox corresponding to the task’s affinity value.
Threads in the task scheduler attempt to obtain tasks to execute. First, a thread tries to re-
ceive a task from the mailbox the thread is connected to (Rule 4 in Figure 6.5). If the mailbox
is empty, the thread falls back trying to remove a task from the shared queue (Rule 5) or to
randomly stealing a task (Rule 6).

Figure 6.6(a) shows a task tree with three levels; tasks in the tree have affinities specified for
the task scheduler configuration shown in Figure 6.6(b). The example corresponds to a possible
partitioning of an iteration space of 1000 iterations (as done, e.g., by the parallel for
pattern). If the task tree is repeatedly executed with the same set of affinities and with the same
task scheduler configuration, the same subset of the iteration space is sent to the same mailbox.
Thus, each thread processes the same subset of the iteration space. As a result, the computation
has good cache locality. In standard TBB the parallel for algorithm template is based
on this principle: If used with an affinity partitioner object, the parallel for
template stores task affinities into the partitioner object and reuses them on future executions.

In standard TBB affinities are only a hint on the preferred place of a task’s execution, that
is, the task scheduler is allowed to ignore task affinities to better balance the load. More specif-
ically, tasks are not executed by the thread specified by affinities for three main reasons: (1)
steals, (2) revokes, and (3) changes in the task scheduler configuration. First, affinitized tasks
are also inserted into the local deque of the thread that creates them, thus they can be stolen
before they are received at the mailbox they have affinity to. Second, if the thread that created
tasks executes Rule 3, it can revoke tasks from mailboxes and execute them locally itself. Third,
the task scheduler configuration changes at runtime; Figure 6.6(c) shows the task scheduler
partially populated with only two threads. For this task scheduler configuration the affinities
of the task tree do not make sense (because there is no thread connected to mailboxes M2 and
M4), therefore all tasks of the tree (including those with affinity to threads T2 and T4) will be
executed either by thread T1 or by thread T3.

Programmers cannot foresee dynamically changing runtime conditions, thus TBB does not
encourage programmers to specify affinities for tasks. Instead, TBB keeps task affinities internal
to the library’s implementation. The only case where TBB uses affinities, even internally, is the
parallel for template used in combination with an affinity partitioner object.
The parallel for algorithm template automatically and internally adapts the affinities of
task trees to match the effective place of execution. E.g., let us assume a task tree generated
by a parallel for partitioned with an affinity partitioner. Let us furthermore
assume that, when unfolding the task tree, the partitioner sets the affinity value of a task A in the
tree to value 1 (indicating that A is preferably executed by the thread connected to mailbox M1).
If task A is executed by a thread connected to a different mailbox Mi (because of any of the
previously mentioned three reasons), the runtime overwrites the partitioner’s record about the
task’s affinity; after the update the task has its affinity value set to i and this value is used when
the task is re-executed. This strategy is beneficial assuming that the affinities specified by the
partitioner match the configuration of the task scheduler for some time in the future. However,
updating task affinities is not acceptable in NUMA systems: In NUMA systems task affinities
must stay constant because each task must execute at the processor where its data is located.

110 CHAPTER 6. A PARALLEL LIBRARY FOR LOCALITY-AWARE PROGRAMMING

Level	 3	

Level	 2	

Level	 1	

1	
[1-‐250]	

2	
[751-‐1000]	

2	
[501-‐751]	

1	
[251-‐500]	

1	
[1-‐500]	

2	
[501-‐1000]	

1	
[1-‐1000]	

(a) Task tree with task-to-processor affinities (top) and partitioning (bottom).

Task	 scheduler	

T1	 T2	

M1	

T4	 T3	

M2	

Processor	 1	 Processor	 2	

(b) TS fully populated.

Task	 scheduler	

T1	 ?	

M1	

?	 T3	

M2	

Processor	 1	 Processor	 2	

(c) TS partially populated.

Figure 6.7: Mailboxing (TBB-NUMA).

4′ The task removed from mailbox Mi, where the current thread is pinned to Processor i.

5′ The task removed from the task scheduler’s shared queue i, where the current thread is
pinned to Processor i.

5′′ The task removed from the task scheduler’s shared queue 0 (queue w/o affinity for any
processor).

5′′′ The task removed from the task scheduler’s shared queue k, where the current thread is
pinned to Processor i and i 6= k.

Figure 6.8: Rules substituted by TBB-NUMA to fetch next task (relative to standard TBB).

6.3.4 TBB-NUMA task scheduler

Unlike in standard TBB, in TBB-NUMA the programmer can specify task affinities explicitly.
Task affinities are hints in TBB-NUMA as well, but, unlike in standard TBB, affinities are
sticky in TBB-NUMA. That is, the TBB-NUMA runtime is not allowed to modify a task’s
affinity when the task is not executed on a different processor (i.e., a processor not originally
intended by the programmer). To help the TBB-NUMA task scheduler still honor affinities (and
balance load at the same time), the TBB-NUMA runtime implements a set of optimizations in
addition to standard TBB. We first define the semantics of task affinities in TBB-NUMA, then
we describe the optimization to handle scheduler configuration changes, steals, and revokes.

Task-to-processor affinities

In TBB-NUMA tasks have affinity to a processor (instead of a mailbox as in standard TBB).
That is, a task with an affinity value equal to i is not meant to be executed by the single thread

6.3. IMPLEMENTING NUMA SUPPORT 111

connected to mailbox Mi as in TBB, but by any thread running at Processor i. Thus, TBB-
NUMA replaces Rule 4 of standard TBB (Figure 6.5) by Rule 4’ (Figure 6.8). Because affinity
values have a clear meaning backed by the TBB-NUMA runtime system, the programmer is
allowed to use them (either directly by using the task scheduler interface or indirectly by reusing
parallel algorithm templates). To support per-processor task affinities, the number of mailboxes
of a TBB-NUMA task scheduler is equal to the number of processors of the machine (i.e., on
a P -processor system there are P mailboxes). A task with an affinity value of i is inserted into
mailbox Mi and, as the RML allows only threads pinned to Processor i to use this mailbox, the
task is slated to be executed at the appropriate processor. Figure 6.7(b) shows the layout of a
task scheduler populated with 4 threads (on a 2-processor system); two threads are pinned to
each processor.

Figure 6.7(a) shows a NUMA-aware affinitization of a task tree (also for a 2-processor
system). In the example the first half of the iteration space (iterations [1-500]) is mapped
to Processor 1, the second half (iterations [501-1000]) is mapped to Processor 2. If data
accessed by iterations [1-500] ([501-1000]) is allocated at Processor 1 (Processor 2), the
computation has good data locality and thus good performance with TBB-NUMA.

Handling configuration changes (Cause 1)

TBB-NUMA handles the problem of changing task scheduler configurations by hardware-aware
resource management. The TBB-NUMA RML allocates threads to task schedulers so that
each scheduler has an approximately equal number of threads pinned to each processor. As
a result, in every task scheduler the number of threads using each per-processor mailbox is
approximately the same. Thus, every task scheduler has approximately the same share of each
processor’s computational and memory system resources. Figure 6.7(c) shows a task scheduler
populated with two threads (two threads less than in Figure 6.7(b)). Each mailbox is served by
one thread pinned to each processor and the affinitized task tree will execute with good data
locality, just as when the task scheduler is fully populated (Figure 6.7(b)).

In some scenarios (when the number of thread schedulers registered with the RML is close
to or is larger than the total number of threads registered with the RML) threads cannot be
allocated to schedulers so that each mailbox is served by an equal number of threads. But as
long as the number of registered schedulers is low (which is frequently the case in practice), it
is possible to evenly distribute threads between task schedulers.

Handling steals (Cause 2)

An affinitized task is present at two places: in the local deque of the thread that created it and
in the mailbox it is sent to. Affinitization is successful if the task is removed from the mailbox
by the thread connected to the mailbox. Affinitization is unsuccessful if the task is stolen by a
thread that has no work to do and it has fallen back to random stealing (Rule 6) (the stealing
thread that has fallen through Rules 1–5 and is obtaining work according to Rule 6).

Standard TBB prevents a stealing thread from obtaining an affinitized task if there is a good
chance that the task is going to be removed from the destination mailbox soon. Before stealing
an affinitized task, each thread checks if the destination mailbox of the task is idle (by calling
the is idle() function shown in Figure 6.9(a)). If the mailbox is marked as idle, the stealing

112 CHAPTER 6. A PARALLEL LIBRARY FOR LOCALITY-AWARE PROGRAMMING

1 void s e t i d l e (a f f i n i t y id , bool f l a g) {
2 mailbox [i d] . f l a g = f l a g ;
3 }
4 bool i s i d l e (a f f i n i t y i d) {
5 return mailbox [i d] . f l a g ;
6 }

(a) Standard TBB.

1 void s e t i d l e (a f f i n i t y id , bool f l a g) {
2 mailbox [i d] . counter += f l a g ? 1 : −1;
3 }
4 bool i s i d l e (a f f i n i t y i d) {
5 bool threads expected = num threads act ive [i d]
6 < num th reads a l l o t t ed [i d] ;
7 return mailbox [i d] . counter > 0 | | threads expected ;
8 }

(b) TBB-NUMA.

Figure 6.9: Indicating idleness.

thread bypasses the mailbox and tries to obtain a task from some other thread.

A mailbox is marked as idle (by the set idle() function in Figure 6.9(a)) in two cases:
(1) when a thread falls through dequeuing from its local deque (Rule 3), but has not yet peeked at
its mailbox yet (Rule 4), and (2) the thread connected to the mailbox has left the task scheduler.
In the first case bypassing is well-justified because the task will be shortly received by the thread
connected to the mailbox. The second case needs more explanation. A thread leaves the task
scheduler when there is no work available for it. Alternatively, the RML can revoke the thread
from the current task scheduler and then assign it to some other task scheduler. If the thread is
associated with the current task scheduler again, it will empty its mailbox and the task will be
executed at the intended location. But if the thread is permanently assigned to some other task
scheduler, the task will be revoked (executed locally) by the thread spawning it and the task’s
affinity will be updated (which is in conformity with the TBB principle of non-constant task
affinities).

In TBB-NUMA task affinities are constant (by design), thus the idling mechanism of stan-
dard TBB must be revised. If a task is executed repeatedly, due to the constant affinities, a task
with affinity value i will be submitted to the same mailbox Mi over and over again. If there
are no threads connected to mailbox Mi, other threads in the scheduler will bypass mailbox Mi

(assuming the idling mechanism of standard TBB). Bypasses reject work thus they can result
in a high performance penalty. The idling mechanism of standard TBB must be updated also
because TBB-NUMA allows multiple threads attached to a single mailbox.

TBB-NUMA uses an idling mechanism that is tightly coupled with resource management.
The idling mechanism of TBB-NUMA is based on incrementing/decrementing a counter, as
implemented by the set idle() function shown in Figure 6.9(b). A thread increments the
counter before receiving from its mailbox and decrements it after it has received a task. Unlike
with standard TBB, with TBB-NUMA a thread does not indicate idleness when it leaves the
task scheduler. To allow stealing those tasks that are not likely to be picked up at their destina-
tion mailbox and thus provide good load balance, the is idle() function inspects both the
counter and the number of threads allocated/active in the destination’s mailbox, which avoids

6.3. IMPLEMENTING NUMA SUPPORT 113

Stage	 3:	
2	

Stage	 3:	
2	

Stage	 1:	
0	

Stage	 1:	
0	

Root	

Stage	 3:	
2	

Stage	 3:	
2	

Stage	 1:	
0	

Stage	 1:	
0	

Task	 spawned	

Task	 enqueued	
(at	 Processor	 2)	

Processor	 2	

Stage	 2:	
1	

Stage	 2:	
1	

Stage	 2:	
1	

Stage	 2:	
1	

Processor	 1	

Figure 6.10: Shallow task tree: 2-stage pipeline with affinities.

unnecessary bypasses.

Handling revokes (Cause 3)

Affinitized tasks are inserted into the local deque of the thread that creates them. An affinitized
task is revoked if the creator thread retrieves it (Rule 3) before it can be received at the des-
tination processor. Unlike Rule 6, Rule 3 does not bypass affinitized tasks (to guarantee that
each task is eventually executed before the program terminates). TBB-NUMA attempts to avoid
revokes in two ways: by controlling task submission order via reflection (in case of wide task
trees) and by detaching subtrees (in case of shallow task trees).

Controlling task submission order In wide task trees each task (except leafs) has at least
two children tasks. When unfolding wide task trees, it is beneficial to submit tasks affinitized
for the current processor last (the processor where the thread unfolding the tree executes). As
Rule 3 retrieves tasks in LIFO order, tasks enqueued earlier have a chance to be picked up for
execution at their destination thread before the creator thread revokes them.

For example, when unfolding level 2 of the task tree shown in Figure 6.7(a), the
parallel for template spawns the right subtree and continues executing the left subtree,
if the current processor is Processor 1; otherwise it spawns the left subtree and continues exe-
cuting the right subtree (assuming a 2-processor system). To control task submission order the
creator thread must determine its current processor. The library supports this kind of reflection
through the task scheduler init::get current cpu() call. This call is used inter-
nally by the parallel for template. Code using the task scheduler directly can also rely on
this reflection-based capability to control submission order.

Detaching subtrees Figure 6.10 shows a shallow task tree. E.g., the pipeline algorithm tem-
plate of TBB generates shallow subtrees: The pipeline template generates a distinct subtree for
each input element processed by the pipeline; each task in a subtree corresponds to a different
pipeline stage. The task tree shown in Figure 6.10 corresponds to a 3-stage pipeline computa-
tion.

114 CHAPTER 6. A PARALLEL LIBRARY FOR LOCALITY-AWARE PROGRAMMING

In a shallow task tree each task (except the root task) has only one child task that is executed
next by the task scheduler (according to Rule 3). If the memory accesses of a pipeline com-
putation are dominated by accesses to input elements, shallow task trees can be beneficial for
L1/L2 cache locality, because tree shallowness guarantees that each input element is processed
by the same thread (thus the input element is in the cache used by this thread). In some cases,
however, a child task predominantly accesses data other than the input element it processes.
Moreover, in some cases the child task’s accesses do not hit in the L1/L2 cache and are served
by last-level caches (or even by DRAM). In these cases it can be beneficial to schedule the child
tasks at threads executing at well-defined processors to achieve good last-level cache/DRAM
data locality.

E.g., in the pipeline computation in Figure 6.10, Stage 1 of the pipeline is not associated
with any processor (its task-to-processor affinity is 0), but Stage 2 accesses data associated with
Processor 1 and Stage 3 accesses data associated with Processor 2 (Stage 2 and Stage 3 have a
task-to-processor affinity value of 1 and 2, respectively). Spawning affinitized tasks and sending
them to the mailbox of the appropriate thread does not help in this case because the affinitized
task will be revoked (Rule 3 has priority over Rule 4). To allow a child task to execute at the
processor it is associated with, the child task must be detached from its parent task, that is, it
must be sent to the destination processor without inserting it into the local queue.

Standard TBB facilitates detaching tasks through the enqueue() call. Enqueued tasks
are inserted into a queue shared by all threads in a task scheduler, threads receive enqueued
tasks according to Rule 5. In standard TBB enqueued tasks are not allowed to have affinities
to threads. TBB-NUMA extends standard TBB by allowing enqueued tasks to have affinities
as well: the TBB-NUMA task scheduler has P + 1 shared queues (assuming a P -processor
system), tasks with affinity for Processor i are enqueued at Qi, 1 ≤ i ≤ P , tasks with no task-
to-processor affinity defined are enqueued at Q0, thus Rule 5 of TBB is replaced by a set of
rules in TBB-NUMA (Rule 5′-Rule 5′′′ in Figure 6.8).

To illustrate how enqueuing handles revokes, let us consider the 3-stage pipeline example
again (Figure 6.10). Let us assume that the root task runs at Processor 1 (as shown in the
figure). Stage 1 has no task-to-processor affinity, thus the root task unfolds Stage 1 tasks using
spawns. Let us assume that Stage 1 tasks are then also executed at Processor 1. The next stage
(Stage 2) has affinity for Processor 1, but as all Stage 1 tasks are already running at Processor 1,
Stage 2 tasks do not have to be detached (thus they are spawned). When, however, the task tree
is unfolded further (i.e., Stage 3 tasks are created), these tasks have affinity for Processor 2 (a
processor different from the current processor), thus Stage 3 tasks are not spawned but enqueued
(with affinity for Processor 2). Threads at Processor 2 will then dequeue these tasks (Rule 5′)
and each stage is executed where the programmer originally intended. Threads at Processor 1
(the threads that originally unfolded the upper levels of the task tree) in the meantime unfold
new subtrees to process any remaining input elements.

The decision whether to spawn or to enqueue tasks when unfolding a task tree depends
on the processor the current thread is pinned to. The TBB-NUMA pipeline template uses re-
flection to determine the current thread’s processor. E.g., if the root task of the example in
Figure 6.10 executes at Processor 2 instead of Processor 1, enqueuing is used already when
unfolding Stage 2. Finally, similar to the affinity of mailboxed tasks, the affinity of enqueued
tasks is a hint on the preferred place of execution, that is, if a thread cannot get a task from
the shared queue associated with its processor (i.e., Rule 5′ fails), the thread will try all other
queues in the task scheduler (i.e., it will fall back to Rules 5′′ and 5′′′).

6.4. EVALUATION 115

6.3.5 Programming with TBB-NUMA

TBB-NUMA extends TBB, that is, the programmer can define at runtime which rules the task
scheduler uses, the rules of standard TBB or rules specific to TBB-NUMA. If TBB-NUMA is
enabled, the parallel for algorithm template can be used with an additional parameter, a
data distribution object that specifies the distribution of data for the iteration space processed
by the loop. TBB-NUMA includes a set of predefined data distributions (e.g., the block-cyclic
distribution [12] shown in Figure 6.7(a) for a 2-processor system). If needed, the programmer
can define custom data distributions: The parallel for template interfaces with data dis-
tributions through a single method; this method is used to determine the affinity of a subrange
of the iteration space when the task tree corresponding to the iteration space is unfolded. The
pipeline template allows specifying the per-processor affinity of pipeline stages. Finally,
with TBB-NUMA the semantics of task affinities is clearly defined (task-to-processor affinity),
thus the programmer can use task affinities directly with the task scheduler interface.

In addition to specifying hints on the schedule of computations, TBB-NUMA defines helper
functions to enforce data distributions on memory regions as well. Data distributions are en-
forced through memory migrations (e.g., through the move pages() system call in Linux).
Both data distributions and computation schedules depend on the actual hardware configuration.
TBB-NUMA determines the number of processors at runtime and passes on this information to
user programs. As a result, programs can be parametrized for a generic NUMA system and are
thus portable.

6.4 Evaluation

The evaluation presented in this section attempts to answer three questions: (1) do optimiza-
tions improve data locality and performance (Section 6.4.2), (2) are optimizations composable
(Section 6.4.3), and (3) are optimizations portable (Section 6.4.4).

6.4.1 Experimental setup

Three machines are used to run experiments (see Table 6.1).

Intel E7-4830 Intel E5520 AMD 6212
Microarchitecture Westmere Nehalem Bulldozer
of processors/cores 4/32 2/8 4/16
Main memory 4x16 GB 2x24 GB 4x32 GB
Cross-chip interconnect QPI QPI HT
Last-level cache 4x24 MB 2x8 MB 4x8 MB

Table 6.1: Hardware configuration (as reported by Linux).

We use five programs for performance evaluation, three programs use parallel algorithm
templates and two programs use the task scheduler interface directly (see Table 6.2).

116 CHAPTER 6. A PARALLEL LIBRARY FOR LOCALITY-AWARE PROGRAMMING

Benchmark Parallel algorithm
Program Input suite template used
cg input size C NAS PB parallel for
mg input size C NAS PB parallel for
streamc. 10M input points PARSEC none
fluida. 500K particles/500 frames PARSEC none
ferret database (700M images)/ PARSEC pipeline

3500 input images

Table 6.2: Benchmark programs.

6.4.2 Data locality optimizations

Performance in NUMA systems depends on two aspects: the data distribution policy used and
the policy used to schedule computations. We evaluate performance for a series of different
execution scenarios; an execution scenario is defined by the pair (data distribution policy, com-
putation schedule policy) used. Two execution scenarios consecutively listed in the evaluation
differ in only one aspect, that is, they differ either in the data distribution policy used or the
computation schedule policy used, but not both. Performance optimizations for loop-parallel
programs are evaluated in five execution scenarios:

(noap, FT) Default version of the program that does not use task affinitization and uses the
first-touch page placement policy (default policy in many OSs, e.g., Linux).

(noap, INTL) Default version of the program used with the interleaved page placement pol-
icy. The interleaved page placement policy distributes pages across processors in a round-
robin fashion. Interleaved page placement is recommended for source-level optimizations
by [55] and is used in automatic systems as well [27]. Interleaved page placement im-
proves performance by reducing contention on memory interfaces, but it does not reduce
the number of remote memory accesses. In many systems (including the systems in Ta-
ble 6.1) interleaved placement is equivalent to disabling NUMA (in the BIOS).

(ap, INTL) The parallel loops of the program are affinitized with the TBB-standard
affinity partitioner [86]; pages are placed interleaved, as in the previous con-
figuration. The affinity partitioner is designed to improve cache performance.
This configuration shows the benefits of using this partitioner.

(NACS, INTL) While the previous configurations can be achieved with standard TBB, this
configuration is achievable only with TBB-NUMA. This configuration uses NUMA-
Aware Configuration Scheduling (NACS), that is, the task scheduler is given hints about
the distribution of data in memory. Normally, NACS effects both caching and DRAM
data locality. However, to assess how NACS effects caching only, data distribution is not
enforced in this configuration. Instead, the interleaved page placement policy is used,
thus this configuration differs only in one parameter (the schedule of computations) from
the previous configuration.

(NACS, NADD) NUMA-Aware Data Distribution is enforced (in addition to NACS in the pre-
vious configuration). The performance results in this configuration show the benefits due
to both cache and DRAM data locality.

6.4. EVALUATION 117

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	
ap,

	 FT	

ap,
	 INT

L	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(a) cg performance.

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	
ap,

	 FT	

ap,
	 INT

L	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(b) mg performance.

0,00	

0,20	

0,40	

0,60	

0,80	

1,00	

noap,	
FT	

ap,	 FT	 ap,	 INTL	 NACS,	
INTL	

NACS,	
NADD	

Computa9on	 Migra9on	

Execu&on	 &me	 rela&ve	 to	 default,	 FT	

0	

20	

40	

60	

80	

noa
p,	 F

T	
ap,

	 FT	

ap,
	 INT

L	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Uncore	 transfers	 (GTransfers)	

(c) cg uncore traffic.

0	
2	
4	
6	
8	

10	

noa
p,	 F

T	
ap,

	 FT	

ap,
	 INT

L	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Uncore	 transfers	 (GTransfers)	

(d) mg uncore traffic.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

8-core 32-core

REMOTE_DRAM LOCAL_DRAM REMOTE_CACHE LOCAL_CACHE

Total uncore transfers (GTransfers)

Figure 6.11: Performance and uncore traffic of loop-parallel programs w/o contention (West-
mere).

The evaluation described in this section uses the 4-processor 32-core Westmere system (see
Section 6.4.4 for evaluation on the other systems). Figure 6.11(a) and 6.11(b) show the relative
execution time of cg and mg in all five configurations. The execution times are relative to the
(noap, FT) configuration, which has a relative execution time of 1.0. The lower the relative
execution time measured in a configuration, the better the performance of the program in that
configuration.

Relative to the best-performing configuration achievable with standard TBB,
(ap, INTL), cg improves 18% (relative execution time of 0.34 with (NACS,NADD)
vs. relative execution time of 0.4 with (ap, INTL), the best configuration that can be
realized with standard TBB). The computation time of mg improves around 12%, but its overall
performance becomes slightly worse than the best configuration achievable with standard TBB
because the cost of data migration (distributing data) cancels the improvement in computation
time.

To show that performance optimizations improve both cache- and DRAM locality, we mea-
sure the number of uncore transfers a program generates in each of the five examined con-
figurations. There are four types of uncore transfers: local cache/DRAM accesses and remote
cache/DRAM accesses; the latencies of the different types of transfers are listed in Figure 1.1 for
a 2-processor system. Figures 6.11(c) and 6.11(d) show the uncore traffic breakdown of cg and

118 CHAPTER 6. A PARALLEL LIBRARY FOR LOCALITY-AWARE PROGRAMMING

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(a) streamc. performance.

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(b) fluida. performance.

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(c) ferret performance.

0,00	

0,20	

0,40	

0,60	

0,80	

1,00	

noap,	
FT	

ap,	 FT	 ap,	 INTL	 NACS,	
INTL	

NACS,	
NADD	

Computa9on	 Migra9on	

Execu&on	 &me	 rela&ve	 to	 default,	 FT	

0	

50	

100	

150	

200	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Uncore	 transfers	 (GTransfers)	

(d) streamc. uncore traffic.

0	
1	
2	
3	
4	
5	
6	
7	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Uncore	 transfers	 (GTransfers)	

(e) fluida. uncore traffic.

0	
5	
10	
15	
20	
25	
30	
35	
40	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Uncore	 transfers	 (GTransfers)	

(f) ferret uncore traffic.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

8-core 32-core

REMOTE_DRAM LOCAL_DRAM REMOTE_CACHE LOCAL_CACHE

Total uncore transfers (GTransfers)

Figure 6.12: Performance and uncore traffic of non–loop-based programs w/o contention (West-
mere).

mg, respectively. In the (NACS, NADD) configuration almost all remote memory accesses are
eliminated (relative to both the baseline (noap, FT) and the (ap, INTL) configuration).

Figures 6.12(a), 6.12(b), and 6.12(c) show the performance of the remaining three, non–
loop-based programs. The affinity partitioner can be used only with loop-based pro-
grams, thus the (ap, FT) and (ap, INTL) configurations are invalid for non–loop-based pro-
grams. As a result, non-loop-based programs are evaluated in four instead of five configurations:
the invalid configurations are replaced by the (noap, INTL) configuration (version of the
program with no affinities specified, interleaved page placement policy). The principle that two
subsequently listed configurations change only in a single parameter still holds after this change.
Similar to loop-based programs, the two last configuration scenarios shown in the figures can
be realized only with TBB-NUMA. For the non–loop-based programs NUMA-aware memory
system optimizations result in performance improvements between 16–44% over the best pos-
sible configuration achievable with standard TBB (e.g., in case of streamcluster relative
execution time of 0.38 with (NACS, NADD) vs. relative execution time of 0.55 with (noap,
INTL), the best configuration that can be realized with standard TBB). Figures 6.12(d), 6.12(e),
and 6.12(f) show the breakdown of uncore traffic for all three programs in all configurations.
Memory system optimizations reduce the number of remote accesses for these programs, too.

6.4. EVALUATION 119

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	
ap,

	 FT	

ap,
	 INT

L	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(a) cg performance.

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	
ap,

	 FT	

ap,
	 INT

L	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(b) mg performance.

0,00	

0,20	

0,40	

0,60	

0,80	

1,00	

noap,	
FT	

ap,	 FT	 ap,	 INTL	 NACS,	
INTL	

NACS,	
NADD	

Computa9on	 Migra9on	

Execu&on	 &me	 rela&ve	 to	 default,	 FT	

0	

20	

40	

60	

80	

noa
p,	 F

T	
ap,

	 FT	

ap,
	 INT

L	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Uncore	 transfers	 (GTransfers)	

(c) cg uncore traffic.

0	
2	
4	
6	
8	

10	

noa
p,	 F

T	
ap,

	 FT	

ap,
	 INT

L	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Uncore	 transfers	 (GTransfers)	

(d) mg uncore traffic.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

8-core 32-core

REMOTE_DRAM LOCAL_DRAM REMOTE_CACHE LOCAL_CACHE

Total uncore transfers (GTransfers)

Figure 6.13: Performance and uncore traffic of loop-parallel programs w/ contention (West-
mere).

6.4.3 Composability

This section evaluates how the properties of memory system optimizations are preserved when
only a part of the hardware is available for executing optimized computations. Each benchmark
program is executed concurrently with a contender computation. The contender computation
is parallelized and demands all hardware resources (just as the benchmark program it is co-run
with). The RML divides threads between the benchmark program and the contender program.
This setup is similar to the scenario shown in Figure 6.4(b) with the difference that only two
task schedulers (TS) but no OpenMP runtime (OMP) use the RML. The contender computation
is floating-point intensive and its working set fits into the private L1/L2 caches of the cores. As
a result, uncore transfers measured are predominantly caused by the benchmark program (and
not by the contender computation).

Figures 6.13(a), 6.13(b), 6.14(a), 6.14(b), and 6.14(c), show the performance of all bench-
mark programs in all relevant configurations, Figures 6.13(c), 6.13(d), 6.14(d), 6.14(e), and
6.14(f) show the breakdown of uncore traffic corresponding to each program/configuration.
Performance is reported as execution time relative to the (noap, FT) configuration with en-
abled contender. For each program/configuration performance results and the breakdown of
uncore traffic is similar to the corresponding case with no contention. We record minor dif-

120 CHAPTER 6. A PARALLEL LIBRARY FOR LOCALITY-AWARE PROGRAMMING

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(a) streamc. performance.

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(b) fluida. performance.

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(c) ferret performance.

0,00	

0,20	

0,40	

0,60	

0,80	

1,00	

noap,	
FT	

ap,	 FT	 ap,	 INTL	 NACS,	
INTL	

NACS,	
NADD	

Computa9on	 Migra9on	

Execu&on	 &me	 rela&ve	 to	 default,	 FT	

0	

50	

100	

150	

200	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Uncore	 transfers	 (GTransfers)	

(d) streamc. uncore traffic.

0	
1	
2	
3	
4	
5	
6	
7	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Uncore	 transfers	 (GTransfers)	

(e) fluida. uncore traffic.

0	
5	
10	
15	
20	
25	
30	
35	
40	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Uncore	 transfers	 (GTransfers)	

(f) ferret uncore traffic.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

8-core 32-core

REMOTE_DRAM LOCAL_DRAM REMOTE_CACHE LOCAL_CACHE

Total uncore transfers (GTransfers)

Figure 6.14: Performance and uncore traffic of non–loop-based programs w/ contention (West-
mere).

ferences in relative performance numbers and uncore traffic because with contention there is a
different amount of per thread cache capacity available to programs than without contention. In
conclusion, the TBB-NUMA runtime preserves the properties of memory system optimizations
even if only a part of the hardware is available.

An interesting aspect is that using the affinity partitioner with cg causes a slow-
down under contention. The RML is shared with the contender computation and threads fre-
quently “migrate” between the two computations (i.e., thread previously assigned to the task
scheduler running cg are frequently reassigned to the task scheduler running the contender
computation and vice versa). When a thread leaves a task scheduler (because the RML reas-
signed the thread to an other task scheduler), the mailbox of the thread (i.e., the mailbox in
the task scheduler the thread was previously connected to) is marked as idle. Affinitized tasks
present in a mailbox that is marked idle are not removed by stealing threads (i.e., treads looking
for work; see Section 6.3.4 for further details). Instead, the tasks are kept in the mailbox until
the thread that created them becomes available and can process them.

In summary, if threads frequently migrate between task schedulers, stealing threads often
reject work (i.e., reject to execute tasks) by bypassing mailboxes in which work (i.e., affinitized
tasks) is present. As a result, processor cores are often idle, which results in a slowdown in the

6.5. CONCLUSIONS 121

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	
ap,

	 FT	

ap,
	 INT

L	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(a) cg performance.

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	
ap,

	 FT	

ap,
	 INT

L	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(b) mg performance.

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(c) streamc. performance.

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(d) fluida. performance.

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	

noa
p,	 F

T	

noa
p,	 I

NTL
	

NAC
S,	 IN

TL	

NAC
S,	 N

ADD
	

Execu&on	 &me	 rela&ve	 to	 noap,	 FT	

(e) ferret performance.

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

noap,	 FT	 ap,	 FT	 ap,	 INTL	 NACS,	
INTL	

NACS,	
NADD	

Nehalem	 Bulldozer	

Execu&on	 &me	 rela&ve	 to	 default,	 FT	

Figure 6.15: Performance w/o contention (Nehalem and Bulldozer).

case of the cg benchmark. The TBB-NUMA task scheduler is coupled with resource allocation
that helps avoid unnecessary bypasses.

6.4.4 Portability

To show that memory system optimizations are portable, we run the same set of programs
on two additional systems. As memory system optimizations are implemented for a generic
NUMA system, the programs are executed on these systems without modification. Perfor-
mance results are shown in Figures 6.15(a)–6.15(e); the variation of the measurement readings
is negligible. On the Nehalem, optimizations result in 3–18% performance improvement over
the the best configuration that can be realized with standard TBB. On the Bulldozer we measure
6–18% improvement (and no improvement (fluidanimate) resp. a 3% slowdown (mg)).

6.5 Conclusions

The work presented in this chapter contributes to the set of NUMA-aware development tools
that aid programmers in finding and fixing NUMA-related performance problems. TBB-NUMA
is an extension to standard TBB and the programmer can decide when to use NUMA-specific
functionalities. TBB-NUMA supports portable and composable software for NUMA systems

122 CHAPTER 6. A PARALLEL LIBRARY FOR LOCALITY-AWARE PROGRAMMING

by providing a unified interface to the runtime system as well as by implementing memory-
system-aware resource management.

There are several tools to provide information about NUMA performance bottlenecks, but
programmers so far lack a unified way to control the execution of parallel programs on NUMA
systems. TBB-NUMA allows the programmer to pass directives (based on insights and/or per-
formance monitoring information) about computation and data placement to the runtime sys-
tem. With NUMA systems increasing in size we expect the gap between local and remote
memory accesses to increase as well, thus we expect data locality optimizations to be even
more important in the future.

7
Related work

The contributions of this thesis can be grouped into two main areas: (1) analyzing applica-
tion memory system performance and (2) performance optimization techniques that target the
memory system. The following sections present work related to each area.

7.1 Memory system performance analysis

7.1.1 Memory controller performance

Molka et al. [73] analyze in detail the memory system performance of the Intel Nehalem: They
use sophisticated synthetic benchmarks to determine the bandwidth and latency of memory ac-
cesses to different levels of the memory hierarchy (including local/remote DRAM accesses). In
later work, Hackenberg et al. [39] compare the performance of the Intel Nehalem with the AMD
Shanghai by using the same methodology. Their methodology can be used to measure mem-
ory bandwidth and memory access latency and also to analyze the impact of cache coherency.
However, they consider the properties of the different interconnects of multicore chips only in
isolation, and not the interaction between them. The measurements presented in Chapter 2 con-
sider only cache lines in the E, M and I states, but the measurement framework can be extended
to measure the sharing of bandwidth to cache lines in other coherency states as well. We leave
this investigation for future work.

Yang et al. [111] examine the dependence of application performance on memory and thread
placement in an AMD Opteron-based NUMA machine. They quantify execution time, but do
not measure low-level hardware issues (e.g., cache coherency traffic that is significant in some
execution configuration of their benchmarks). Mandal et al. [66] model the memory bandwidth
and memory access latency of commercially available systems (among those also the Nehalem)
as a function of concurrent memory references in the system. However, it is difficult to extend
their model to include sharing between multiple types of memory controllers, because requests
can be produced at different rates through the on-chip memory controller and the QPI. Their
pointer-chasing benchmark also encounters inter-core misses, so the values reported are slightly
dependent on the cache sharing behavior of the evaluated systems.

Tuduce et al. [105] describe the asymmetries of the memory system of a multicore multi-
processor with a shared off-chip memory controller. The authors argue that the hardware per-
formance measurement unit of modern CPUs should be improved to allow system software to
detect and to avoid the performance bottlenecks of the underlying architecture. In this thesis we
analyze a different, Nehalem-based architecture with multiple types of memory controllers and

123

124 CHAPTER 7. RELATED WORK

find that asymmetries are present in this system as well, however, they are of a different nature.
In the Nehalem-based system analyzed in this thesis the fairness of the arbitration mechanism
(the Global Queue) is crucial for performance, therefore better monitoring of this subsystem
should be made possible in successors of the Nehalem microarchitecture.

Awasthi et al. [6] investigate the problem of data placement in a system with multiple mem-
ory controllers. They identify the performance degradation caused by overloading a single
memory controller in the system, and attribute the costs to increased queuing delays and de-
creased DRAM row-buffer hit rates. However, their evaluation focuses more on future architec-
tures and less on present and near-future systems. Blagodurov et al. [14] describe the sources of
performance degradation that cause slowdowns to programs co-executing on NUMA systems
(the remote latency and interconnect degradation). The NUMA penalty proposed in this thesis
quantifies the slowdown that a single program experiences due to both factors. Moreover, this
thesis also considers issues related to the fairness of the memory controller’s queuing system.

7.1.2 Shared resource contention

Chandra et al. [20] use analytical models to predict the inter-thread cache contention of co-
executing programs. Jiang et al. [47] prove that the complexity of optimal co-scheduling on
chip multiprocessor systems is NP-complete. Mars et al. [69, 70] describe several systems that
characterize resource contention at runtime.

Zhuravlev et al. [113] quantify the performance impact of contention for different types of
shared resources in recent multicore-multiprocessor architectures. Furthermore, they compare
the accuracy of different metrics used to characterize the interference of co-executing programs.
They find that the MPKI is reasonably accurate, thus we also use this metric in our work. The
work of Blagodurov et al. [13, 14] extends Zhuravlev’s work and considers contention for shared
resources on NUMA systems as well. Tang et al. [100] analyze the impact of contention for
shared resources in NUMA-multicore systems on the performance of Google workloads.

7.1.3 Data sharing

Several authors have noticed the problem of data sharing in NUMA systems. Thekkath et
al. [101] show that clustering threads based on the level of data sharing introduces load imbal-
ances and cancels the benefits of data locality. Tam et al. [96] schedule threads with a high
degree of data sharing onto the same last-level cache. Verghese et al. [107] describe OS-level
dynamic page migration that migrates thread-private pages but does not consider shared pages.
Therefore, their results show a significant amount of remaining remote memory accesses.

An approach similar to the work of Verghese et al. is described by Nikolopoulos et al. [77].
Remote memory accesses are not eliminated by this approach either. Marathe et al. [67] describe
the profile-based memory placement methodology we use, but they do not discuss how data
sharing influences the effectiveness of their method. Tikir et al. [103] present a profile-based
page placement scheme. Although successful in reducing the percentage of remote memory
accesses for many benchmark programs, their method is not able to eliminate a significant
portion of remote memory accesses for some programs, possibly due to data sharing.

7.2. PERFORMANCE OPTIMIZATIONS 125

7.2 Performance optimizations

7.2.1 Reducing shared resource contention

There are several methods to mitigate shared resource contention. Qureshi et al. [84] partition
caches between concurrently executing processes. Tam et al. [97] identify the size of cache
partitions on runtime. Mars et al. [70] halt low priority processes when contention is detected.
Herdrich et al. [40] analyze the effectiveness of frequency scaling and clock modulation to
reduce shared resource contention. Awasthi et al. [6] show that data migration and adaptive
memory allocation can be used to reduce memory controller overhead in systems with multiple
memory controllers (such as NUMAs). OS process scheduling is also well suited for reducing
contention on shared caches, as described by Fedorova et al. [33].

Fedorova et al. [34] present an OS scheduling algorithm that reduces the performance degra-
dation of programs co-executed on multicore systems. Banikazemi et al. [8] describe a cache
model for a process scheduler that estimates the performance impact of program-to-core map-
ping in multicore systems. The process scheduler mechanism described by Knauerhase et
al. [52] and Zhuravlev et al. [113] is most closely related to the N-MASS scheme presented
in this dissertation. The schemes presented by both groups schedule processes so that each
LLC must handle approximately equal cache pressure. These approaches were evaluated on
SMPs with uniform memory access times. We show that cache balancing algorithms do not
work well in NUMA systems if the memory allocation setup of the system is not considered.
Many approaches on resource-aware scheduling target mostly the application class of multipro-
grammed workloads, but the recent work of Dey et al. describes a resource-aware scheduler
that can handle multithreaded programs as well [28].

Recent research proposed performance-asymmetric multicore processors (AMPs). In con-
trast to AMPs, the cores of a NUMA system have the same performance, but the memory system
is asymmetric and programs have different performance on remote execution. Li et al. present
an OS scheduler for AMPs [59]. They evaluate their system also on NUMA systems, but they
do not account for cache contention. Saez et al. [88] and Koufaty et al. [54] independently de-
scribe a scheduler for AMPS based on the efficiency specialization principle. Their schedulers
implement a strategy similar to the maximum-local policy presented in this thesis, but their
system targets performance asymmetry instead of memory system asymmetry (compute-bound
processes are scheduled onto high performance cores with larger priority than memory-bound
processes).

7.2.2 Improving data locality

Many projects (including the auto partitioner approach of standard TBB) target im-
proving the cache hit rate of programs [24, 50, 51, 86, 101, 112]. There are, however, some
programs whose cache hit rate cannot be easily improved (e.g., programs that process data sets
larger than the size of the caches available on the machine used to execute the program) and in
NUMA systems the locality of a program’s cache misses is often critical to performance. Data
locality optimizations are beneficial for programs that have a bad cache behavior and can thus
be considered orthogonal to cache locality optimizations.

In the following we present related work in the area of data locality optimizations.

126 CHAPTER 7. RELATED WORK

Automatic approaches

There exist many automatic approaches to improve the data locality of multithreaded programs.
OSs are in a good position to increase data locality by migrating data close to the threads using
them [13] and by replicating data across processors [27, 107]. These approaches have large
performance benefits, but they face limitations in case of programs with data sharing, because
no matter how threads/data are placed in the system, there will be some remote memory accesses
to shared data. Tang et al. [100] show that scheduling threads close to the data they access can
be beneficial for data locality, but in some cases cache contention counteracts the benefits of
data locality.

Data placement based on data access profiles gathered on separate profiling runs can im-
prove the performance of multithreaded programs, as shown by Marathe et al. [68]. Page place-
ment can also be performed at runtime based on dynamic data access profiles [77, 79, 104].
Although these approaches are beneficial for performance, they work well only for programs
that have little data shared between threads.

Su et al. [94] show that dynamic data access profiles can guide not only data placement,
but also thread placement to improve data locality. Tam et al. [96] cluster the threads of a
multithreaded program based on the amount of data they share. Threads of the same cluster are
then scheduled onto cores connected to the same last-level cache to reduce the number of remote
cache accesses. The programs considered by Tam et al. exhibit non-uniform data sharing (i.e.,
each thread shares data with only a subset of the threads of the program), but data sharing can
hinder thread clustering, as noted by Thekkath et al. [101]. We expect information additional to
data access profiles (e.g., information about a program’s control flow [46]) can enable a profiler
to better handle data and/or thread placement of programs with data sharing.

Tandir et al. [98] present an automatic compiler-based technique to improve data placement.
It is not clear how their tool distributes loop iterations that access shared memory regions and
have loop-carried dependences at the same time. Kandemir et al. [51] describe an automatic
loop iteration distribution method based on a polyhedral model. Their method can optimize for
data locality, however, in the presence of loop-carried dependences it inserts synchronization
operations. We show that the number of additional synchronization operations can be kept low
if the memory distribution of the program is carefully adjusted. Reddy et al. [85] describe an
approach based on the polyhedral model that can handle both data placement and computation
mapping for programs with affine loop nest sequences.

Language-based approaches

All previously mentioned approaches are fully automatic, that is, the runtime system, the OS,
or the compiler is able to perform the optimizations without programmer intervention. Unfor-
tunately, however, data locality optimizations cannot be automated in many cases because they
require high-level semantic information about the program.

Previous work has shown that the memory system performance (and thus the execution time)
of many multithreaded programs can be improved on the source-code level by using compiler
directives available in today’s commercially available state-of-the-art compilers [91], by making
simple algorithmic changes to the program [112], or by using a combination of the two [55].
Although all previously mentioned papers use recent multicore machines for evaluation, none
of them considers all aspects related to cross-processor accesses on NUMAs: [91] and [112] do

7.2. PERFORMANCE OPTIMIZATIONS 127

not consider NUMA at all; [55] does not take cache performance into account and in many cases
it recommends disabling NUMA (i.e., using page-level interleaving) for problematic memory
regions.

In [78] Nikolopoulos et al. claim that data distribution primitives are not necessary for
languages like OpenMP, because dynamic profiling can place pages correctly. We find that
even with perfect information available, runtime data migrations have too much overhead to be
beneficial for programs with data sharing. Bikshandi et al. [11] describe in-program data migra-
tions in a cluster environment, but their language primitives are too heavyweight in small-scale
NUMA machines. Darte et al. [26] present generalized multipartitioning of multi-dimensional
arrays, a data distribution similar to the block-exclusive data distribution. Multipartitioning,
however, relies on message-passing, while we consider direct accesses to shared memory.
Zhang et al. [112] take an approach similar to the one described in the thesis: They show
that simple program transformations that introduce non-uniformities into inter-thread data shar-
ing improve performance on multicore architectures with shared caches. Chandra et al. [21]
describe language primitives similar to ours, but they do not show how programs must be trans-
formed to eliminate data sharing. McCurdy et al. [72] show that adjusting the initialization
phase of programs (so that data access patterns of the initialization phase are similar to that of
the computations) gives good performance with the first-touch policy. We find that in programs
with multiple phases that have conflicting access patterns, first-touch cannot place pages so that
each program phase experiences good data locality.

Several runtime systems (e.g., Microsoft’s ConcRT, Lithe [81], and Poli-C [5]), support
composable parallel software, but none of these systems is designed to preserve the data local-
ity of NUMA-optimized code. There are several approaches to improve the cache locality of
work stealing [24, 38]. However, [24] focuses only on improving cache utilization but not on
reducing the number of remote memory accesses and [38] supports data locality optimizations,
but balances load individually within the scope of each processor (and not between all proces-
sors of a system, as the TBB-NUMA system presented in this thesis does). TBB-NUMA is
similar to existing PGAS languages [19, 23, 25] in that it gives the programmer explicit con-
trol of the mapping of data and computations. However, while PGAS languages are geared
towards large cluster-based systems and consequently require the programmer to design appli-
cations with a mindset towards large machines, TBB-NUMA targets smaller machines with a
single shared memory domain and it allows (but does not require) the developer to custom-tailor
existing shared memory-based programs to NUMA architectures.

TBB-NUMA uses the concurrent queue of standard TBB to implement per-processor
mailboxes in the task scheduler. Recent work proposed NUMA-aware queuing and locking
techniques [29, 36, 74], and wait-free queues have also been developed [53]. Although the
TBB concurrent queue is highly optimized, it is neither NUMA-aware, nor wait-free,
thus TBB-NUMA could profit from the previously mentioned techniques by using them to
enqueue/dequeue tasks more efficiently. The goal of TBB-NUMA is, however, to optimize
the memory system performance of the tasks executed by the work-stealing system and not
the queuing itself; therefore, we leave the investigation of using NUMA-aware queues with
TBB-NUMA to future work.

8
Conclusions

This thesis presents a performance-oriented model for the memory system of NUMA multicore-
multiprocessors, a type of shared-memory computers that appeared recently on the market. The
thesis investigates two application classes, multiprogrammed workloads and multithreaded pro-
grams, and describes memory system bottlenecks experienced by each application class on
NUMA multicore-multiprocessors. Furthermore, the thesis presents techniques to reduce neg-
ative impact of these bottlenecks on application performance.

Using experimental analysis we show that the performance of multiprogrammed work-
loads strongly depends on contention for processor-local resources, a factor that is specific
to multicore processors (the building blocks of a NUMA multicore-multiprocessor). The non-
uniformity of memory access times (a factor specific to NUMA systems) can have a large ef-
fect on application performance as well. Thus, system software must consider both factors to
achieve good application performance. The N-MASS process scheduler presented in this thesis
accounts for two performance-degrading factors, contention for shared caches and locality of
main memory accesses, and improves performance by up to 32% and 7% on average over the
default setup in current Linux implementations.

We show (also based on experimental analysis) that the locality of cache and DRAM mem-
ory accesses is crucial for the performance of many multithreaded programs, the second ap-
plication class we consider. Unfortunately, however, for some programs data locality can be
hard to achieve with today’s standard parallel programming frameworks. The thesis proposes
extensions to two well-known parallel programming frameworks, OpenMP and TBB; the ex-
tensions allow programmers to convey task and data affinity information to the runtime system.
We show that, based on affinity information provided by the programmer, a NUMA-aware run-
time can realize good data locality that results in up to 220% performance improvement over a
NUMA-unaware runtime running on top of a standard implementation of Linux. Moreover, a
NUMA-aware runtime can also preserve data locality when a program is ported to a different
machine or is composed with other parallel computations.

In summary, this thesis shows the importance of taking the layout of the memory system
into account when developing (system) software. We focus on a particular class of machines,
NUMA multicore-multiprocessors, and we describe strategies to enhance the memory system-
awareness of both OS process scheduling and parallel programming frameworks. We think that
in general there is a need to integrate better memory system support into compilers, runtime
systems, and operating systems if the performance potential of systems is to be exploited.

Currently, it seems likely that the number of cores per processor chip will continue to in-
crease in the (near) future; a good example of this trend are manycore systems, e.g., the recent
generation of Intel Xeon Phi processors with up to 61 cores per processor. More cores can place

129

130 CHAPTER 8. CONCLUSIONS

more demand on the memory system, thus we expect the memory system of future (manycore)
systems to be even more elaborate than that of today’s multicore-based systems. Furthermore,
we expect that future systems will exhibit non-uniform memory access times as well. It is,
therefore, likely that on future architectures the performance penalty of inappropriately using
the memory system will be as high (or possibly even higher) than on current systems; as a result,
memory system-awareness will be even more important for future (system) software.

Producing memory system-aware software (and architecture-aware software in general) re-
quires a thorough and detailed understanding of the interaction between applications and the
underlying hardware. Understanding hardware-software interaction is, however, difficult for
two main reasons.

First, in practical systems there are usually many layers (e.g., the runtime system, the mem-
ory allocator, the linker, or the OS) between the application and the hardware; the performance
of an application can closely depend on actions taken by intermediary layers of a system’s
software stack. In NUMA multicore-multiprocessors, for example, the OS’s decisions on page
placement and on process/thread scheduling can influence application performance. A pro-
grammer seeking to understand and to improve the application’s performance must control both
aspects to achieve meaningful measurement readings; furthermore, an OS must provide the
programmer ways to control both aspects.

The state of the layers of the system’s software stack can also have a significant effect on an
application’s performance. For example, in recent Linux distributions a seemingly innocuous
aspect of the system’s state, the size and data distribution of the OS’s I/O buffer cache, has a
large influence on the data distribution of a program: If the OS’s buffer cache occupies a high
fraction of a processor’s local memory, the OS may satisfy requests for new memory at that
processor from the memory of other (remote) processors. The OS’s decision to allocate pages at
a remote processor can cause remote memory accesses, but, more importantly, it can contradict
the page distribution policy (e.g., first-touch page placement) that is assumed to be valid in the
system. OS support for monitoring and controlling the distribution of the buffer cache across
processors and/or OS-based notifications of violations of the system’s page placement policy
could help a software developer to better and easier understand an application’s interaction with
a NUMA-multicore system.

In summary, in current systems it is often difficult (or even impossible) to control and to
monitor many performance-relevant aspects of the system’s software stack. We hope that future
systems will provide better means to diagnose and control the layers of the software stack
to allow software developers better understand the software stack’s influence onto application
performance.

A second aspect of understanding hardware-software interaction is to understand how an ap-
plication interacts with a given processor’s microarchitecture. Understanding the performance
characteristics of a machine is, however, not always easy. Processor manufacturer’s manuals
often do no include all details about the characteristics of a given system; in these cases careful
(and sometimes tedious) experimental analysis is needed to explore the characteristics of the
system.

Feedback from the performance monitoring units of the processor gives insight into the in-
ternals of a processor’s architecture and can thus also help to understand hardware performance.
Moreover, as information from processor performance monitoring units is typically available at
runtime, hardware performance monitoring can be used to understand and optimize application

131

performance on the fly. Unfortunately, however, the performance monitoring units of today’s
processors have a number of limitations.

First, on today’s hardware only a low number of performance monitoring events can be
counted simultaneously (recent systems have typically around 10 programmable hardware per-
formance monitoring registers) and often not all types of events can be counted at the same time.
As understanding an application’s performance often requires looking at several hardware-
related aspects at the same time, it is important that a large number of events can be measured
simultaneously. On current architectures, multiplexing performance monitoring events allows
several (even mutually exclusive) performance monitoring events to be measured together (with
the cost of somewhat reduced precision). It would be, however, beneficial, if future systems al-
lowed simultaneous monitoring of a large number of events without imposing restrictions on
the events that can be measured together.

Second, both the design and the implementation of the hardware performance monitoring
units of today’s systems lack stability: Monitoring functionality can vary among different mi-
croarchitectures, moreover, performance monitoring unit functionality is often complemented,
reduced, or disabled as new processor models (even based on the same microarchitecture) are
released. With unstable performance monitoring units software developers must first spend
time on understanding the monitoring unit of a system before being able to focus on actual
performance-related aspects of a system. Thus, stable performance monitoring units could po-
tentially speed up the development of architecture-aware software.

Finally, the level of abstraction of most hardware events in current systems is close to
the microarchitecture. As hardware manufacturer’s do not usually describe all details of mi-
croarchitectures they release, some performance monitoring events are difficult to understand.
Moreover, as software often requires (at least in our experience) a level of abstraction above
the abstraction level of the microarchitecture, supporting high-level events in the performance
monitoring unit (in addition to low-level ones) might be beneficial in the future.

We hope that this thesis provides supporting evidence to include appropriate performance
monitoring, debugging, and profiling support into future architectures to allow (easier) devel-
opment of architecture-aware software.

Bibliography

[1] AMD HyperTransport technology-based system architecture. 2002.

[2] Using Intel Vtune performance analyzer to optimize software on Intel Core i7 Processors,
2010.

[3] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work
stealing. In Proceedings of the twelfth annual ACM symposium on Parallel algorithms
and architectures, SPAA ’00, pages 1–12, New York, NY, USA, 2000. ACM.

[4] Milena Milenkovic Aleksandar, Ar Milenkovic, and Jeffrey Kulick. Demystifying Intel
branch predictors. In Proceedings of the annual workshop on duplicating, deconstruct-
ing, and debunking, WDDD ’02, pages 52–61. John Wiley & Sons, 2002.

[5] Zachary Anderson. Efficiently combining parallel software using fine-grained, language-
level, hierarchical resource management policies. In Proceedings of the ACM interna-
tional conference on Object oriented programming systems languages and applications,
OOPSLA ’12, pages 717–736, New York, NY, USA, 2012. ACM.

[6] Manu Awasthi, David W. Nellans, Kshitij Sudan, Rajeev Balasubramonian, and Al Davis.
Handling the problems and opportunities posed by multiple on-chip memory controllers.
In Proceedings of the 19th international conference on Parallel architectures and com-
pilation techniques, PACT ’10, pages 319–330, New York, NY, USA, 2010. ACM.

[7] Reza Azimi, Michael Stumm, and Robert W. Wisniewski. Online performance analysis
by statistical sampling of microprocessor performance counters. In Proceedings of the
19th annual international conference on Supercomputing, ICS ’05, pages 101–110, New
York, NY, USA, 2005. ACM.

[8] Mohammad Banikazemi, Dan Poff, and Bulent Abali. PAM: A novel performance/power
aware meta-scheduler for multi-core systems. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, SC ’08, pages 39:1–39:12, Piscataway, NJ, USA, 2008.
IEEE Press.

[9] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Uni-
versity, January 2011.

[10] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC bench-
mark suite: characterization and architectural implications. In Proceedings of the 17th
international conference on Parallel architectures and compilation techniques, PACT
’08, pages 72–81, New York, NY, USA, 2008. ACM.

133

134 BIBLIOGRAPHY

[11] Ganesh Bikshandi, Jia Guo, Daniel Hoeflinger, Gheorghe Almasi, Basilio B. Fraguela,
Marı́a J. Garzarán, David Padua, and Christoph von Praun. Programming for parallelism
and locality with hierarchically tiled arrays. In Proceedings of the eleventh ACM SIG-
PLAN symposium on Principles and practice of parallel programming, PPoPP ’06, pages
48–57, New York, NY, USA, 2006. ACM.

[12] John Bircsak, Peter Craig, RaeLyn Crowell, Zarka Cvetanovic, Jonathan Harris,
C. Alexander Nelson, and Carl D. Offner. Extending OpenMP for NUMA machines.
In Proceedings of the 2000 ACM/IEEE conference on Supercomputing, SC ’00, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

[13] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexandra Fedorova. A
case for NUMA-aware contention management on multicore processors. In Proceedings
of the USENIX Annual Technical Conference, USENIX ATC ’11, Berkeley, CA, USA,
2011. USENIX Association.

[14] Sergey Blagodurov, Sergey Zhuravlev, and Alexandra Fedorova. Contention-aware
scheduling on multicore systems. ACM Trans. Comput. Syst., 28:8:1–8:45, December
2010.

[15] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. A case for
NUMA-aware contention management on multicore systems. In Proceedings of the 19th
international conference on Parallel architectures and compilation techniques, PACT
’10, pages 557–558, New York, NY, USA, 2010. ACM.

[16] OpenMP Architecture Review Board. OpenMP Application Program Interface. 2008.

[17] W. Bolosky, R. Fitzgerald, and M. Scott. Simple but effective techniques for NUMA
memory management. In Proceedings of the twelfth ACM symposium on Operating sys-
tems principles, SOSP ’89, pages 19–31, New York, NY, USA, 1989. ACM.

[18] James R. Bulpin and Ian A. Pratt. Multiprogramming performance of the Pentium 4 with
hyper-threading. In Proceedings of the annual workshop on Duplicating, deconstructing
and debunking, WDDD ’04, pages 53–62, June 2004.

[19] Bradford L. Chamberlain. A brief overview of Chapel (revision 1.0). 2013.

[20] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. In Proceedings of the 11th
international symposium on High-performance computer architecture, HPCA ’05, pages
340–351, Washington, DC, USA, 2005. IEEE Computer Society.

[21] Rohit Chandra, Ding-Kai Chen, Robert Cox, Dror E. Maydan, Nenad Nedeljkovic, and
Jennifer M. Anderson. Data distribution support on distributed shared memory multi-
processors. In Proceedings of the ACM SIGPLAN 1997 conference on Programming
language design and implementation, PLDI ’97, pages 334–345, New York, NY, USA,
1997. ACM.

[22] James Charles, Preet Jassi, Narayan S. Ananth, Abbas Sadat, and Alexandra Fedorova.
Evaluation of the Intel Core i7 Turbo Boost feature. In Proceedings of the 2009 IEEE

BIBLIOGRAPHY 135

international symposium on Workload characterization, IISWC ’09, pages 188–197,
Washington, DC, USA, 2009. IEEE Computer Society.

[23] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and appli-
cations, OOPSLA ’05, pages 519–538, New York, NY, USA, 2005. ACM.

[24] Quan Chen, Minyi Guo, and Zhiyi Huang. CATS: cache aware task-stealing based on
online profiling in multi-socket multi-core architectures. In Proceedings of the 26th ACM
international conference on Supercomputing, ICS ’12, pages 163–172, New York, NY,
USA, 2012. ACM.

[25] Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey, François Cantonnet, Tarek El-
Ghazawi, Ashrujit Mohanti, Yiyi Yao, and Daniel Chavarrı́a-Miranda. An evaluation
of global address space languages: Co-Array Fortran and Unified Parallel C. In Pro-
ceedings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’05, pages 36–47, New York, NY, USA, 2005. ACM.

[26] Alain Darte, John Mellor-Crummey, Robert Fowler, and Daniel Chavarrı́a-Miranda. Gen-
eralized multipartitioning of multi-dimensional arrays for parallelizing line-sweep com-
putations. J. Parallel Distrib. Comput., 63(9):887–911, September 2003.

[27] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. Traffic management: A holis-
tic approach to memory placement on NUMA systems. In Proceedings of the eighteenth
international conference on Architectural support for programming languages and oper-
ating systems, ASPLOS ’13, pages 381–394, New York, NY, USA, 2013. ACM.

[28] Tanima Dey, Wei Wang, Jack W. Davidson, and Mary Lou Soffa. Resense: Mapping
dynamic workloads of colocated multithreaded applications using resource sensitivity.
ACM Trans. Archit. Code Optim., 10(4):41:1–41:25, December 2013.

[29] Dave Dice, Virendra J. Marathe, and Nir Shavit. Flat-combining NUMA locks. In Pro-
ceedings of the 23rd ACM symposium on Parallelism in algorithms and architectures,
SPAA ’11, pages 65–74, New York, NY, USA, 2011. ACM.

[30] Stéphane Eranian. What can performance counters do for memory subsystem analysis?
In Proceedings of the 2008 ACM SIGPLAN workshop on Memory systems performance
and correctness, MSPC ’08, pages 26–30, New York, NY, USA, 2008. ACM.

[31] Stijn Eyerman and Lieven Eeckhout. System-level performance metrics for multipro-
gram workloads. IEEE Micro, 28(3):42–53, 2008.

[32] Stijn Eyerman and Lieven Eeckhout. Probabilistic job symbiosis modeling for SMT
processor scheduling. In Proceedings of the fifteenth international conference on Archi-
tectural support for programming languages and operating systems, ASPLOS XV, pages
91–102, New York, NY, USA, 2010. ACM.

136 BIBLIOGRAPHY

[33] Alexandra Fedorova, Margo Seltzer, Christoper Small, and Daniel Nussbaum. Perfor-
mance of multithreaded chip multiprocessors and implications for operating system de-
sign. In Proceedings of the USENIX Annual Technical Conference, ATEC ’05, pages
26–26, Berkeley, CA, USA, 2005. USENIX Association.

[34] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. Improving performance
isolation on chip multiprocessors via an operating system scheduler. In PACT ’07: Pro-
ceedings of the 16th International Conference on Parallel Architecture and Compilation
Techniques, pages 25–38, Washington, DC, USA, 2007. IEEE Computer Society.

[35] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the
cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN 1998 conference
on Programming language design and implementation, PLDI ’98, pages 212–223, New
York, NY, USA, 1998. ACM.

[36] Elad Gidron, Idit Keidar, Dmitri Perelman, and Yonathan Perez. SALSA: scalable and
low synchronization NUMA-aware algorithm for producer-consumer pools. In Proceed-
inbgs of the 24th ACM symposium on Parallelism in algorithms and architectures, SPAA
’12, pages 151–160, New York, NY, USA, 2012. ACM.

[37] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs. In Proceedings of the 12th inter-
national conference on Architectural support for programming languages and operating
systems, ASPLOS-XII, pages 151–162, New York, NY, USA, 2006. ACM.

[38] Yi Guo, Jisheng Zhao, Vincent Cav, and Vivek Sarkar. SLAW: A scalable locality-
aware adaptive work-stealing scheduler. In Proceedings of the 24th IEEE international
symposium on Parallel and distributed processing, IPDPS ’10, pages 1–12. IEEE, 2010.

[39] Daniel Hackenberg, Daniel Molka, and Wolfgang E. Nagel. Comparing cache archi-
tectures and coherency protocols on x86-64 multicore smp systems. In Proceedings of
the 42nd Annual IEEE/ACM international symposium on Microarchitecture, MICRO 42,
pages 413–422, New York, NY, USA, 2009. ACM.

[40] Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Don Newell, Vineet Chadha, and Jaideep
Moses. Rate-based QoS techniques for cache/memory in CMP platforms. In Proceedings
of the 23rd international conference on Supercomputing, ICS ’09, pages 479–488, New
York, NY, USA, 2009. ACM.

[41] Amir H. Hormati, Yoonseo Choi, Manjunath Kudlur, Rodric Rabbah, Trevor Mudge, and
Scott Mahlke. Flextream: Adaptive compilation of streaming applications for heteroge-
neous architectures. In Proceedings of the 2009 18th international conference on Parallel
architectures and compilation techniques, PACT ’09, pages 214–223, Washington, DC,
USA, 2009. IEEE Computer Society.

[42] Intel Corporation. Intel Xeon Processor 7500 Series Uncore Programming Guide, March
2010.

[43] Intel Corporation. Intel(R) Threading Building Blocks Reference Manual, 2012.

BIBLIOGRAPHY 137

[44] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual,
April 2012.

[45] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual (Com-
bined Volumes: 1, 2A, 2B, 2C, 3A, 3B, and 3C, September 2013.

[46] Marty Itzkowitz, Oleg Mazurov, Nawal Copty nad, and Yuan Lin. An OpenMP runtime
API for profiling. Technical report, Sun Microsystems, Inc., 2007.

[47] Yunlian Jiang, Xipeng Shen, Jie Chen, and Rahul Tripathi. Analysis and approximation
of optimal co-scheduling on chip multiprocessors. In Proceedings of the 17th interna-
tional conference on Parallel architectures and compilation techniques, PACT ’08, pages
220–229, New York, NY, USA, 2008. ACM.

[48] H. Jin, H. Jin, M. Frumkin, M. Frumkin, J. Yan, and J. Yan. The OpenMP implemen-
tation of NAS parallel benchmarks and its performance. Technical report, NASA Ames
Research Center, Moffett Field, CA, 1999.

[49] Yao Jin. numatop: A tool for memory access locality characterization and analysis. Intel
Open Source Technology Center, 2013.

[50] Md Kamruzzaman, Steven Swanson, and Dean M. Tullsen. Inter-core prefetching for
multicore processors using migrating helper threads. In Proceedings of the sixteenth
international conference on Architectural support for programming languages and oper-
ating systems, ASPLOS XVI, pages 393–404, New York, NY, USA, 2011. ACM.

[51] Mahmut Kandemir, Taylan Yemliha, SaiPrashanth Muralidhara, Shekhar Srikantaiah,
Mary Jane Irwin, and Yuanrui Zhang. Cache topology aware computation mapping for
multicores. In Proceedings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’10, pages 74–85, New York, NY, USA,
2010. ACM.

[52] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and Scott Hahn. Using OS obser-
vations to improve performance in multicore systems. IEEE Micro, 28(3):54–66, May
2008.

[53] Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and dequeuers.
In Proceedings of the 16th ACM symposium on Principles and practice of parallel pro-
gramming, PPoPP ’11, pages 223–234, New York, NY, USA, 2011. ACM.

[54] David Koufaty, Dheeraj Reddy, and Scott Hahn. Bias scheduling in heterogeneous multi-
core architectures. In Proceedings of the 5th European conference on Computer systems,
EuroSys ’10, pages 125–138, New York, NY, USA, 2010. ACM.

[55] Renaud Lachaize, Baptiste Lepers, and Vivien Quéma. Memprof: A memory profiler for
numa multicore systems. In Proceedings of the USENIX Annual Technical Conference,
USENIX ATC’12, pages 5–5, Berkeley, CA, USA, 2012. USENIX Association.

[56] Christoph Lameter. Local and remote remory: Memory in a Linux/NUMA system. SGI,
2006.

138 BIBLIOGRAPHY

[57] David Levinthal. Performance analysis guide for the Intel Core i7 Processor and the
Intel Xeon 5500 processors. Intel Corporation, 2009.

[58] Hui Li, Hui Li Sudarsan, Michael Stumm, and Kenneth C. Sevcik. Locality and loop
scheduling on NUMA multiprocessors. In Proceedings of the 1993 international confer-
ence on Parallel processing, pages 140–147. CRC Press, Inc, 1993.

[59] Tong Li, Dan Baumberger, David A. Koufaty, and Scott Hahn. Efficient operating system
scheduling for performance-asymmetric multi-core architectures. In Proceedings of the
2007 ACM/IEEE conference on Supercomputing, SC ’07, pages 1–11, New York, NY,
USA, 2007. ACM.

[60] Wei Li and Keshav Pingali. Access normalization: Loop restructuring for NUMA com-
pilers. In Proceedings of the Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS V, pages 285–295, New
York, NY, USA, 1992. ACM.

[61] Xu Liu and John Mellor-Crummey. Pinpointing data locality problems using data-centric
analysis. In Proceedings of the 9th annual IEEE/ACM international symposium on Code
generation and optimization, CGO ’11, pages 171–180, Washington, DC, USA, 2011.
IEEE Computer Society.

[62] Xu Liu and John Mellor-Crummey. A tool to analyze the performance of multithreaded
programs on NUMA architectures. In Proceedings of the 19th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming, PPoPP ’14, pages 259–272,
New York, NY, USA, 2014. ACM.

[63] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe LSH:
efficient indexing for high-dimensional similarity search. In Proceedings of the 33rd
international conference on Very large data bases, VLDB ’07, pages 950–961. VLDB
Endowment, 2007.

[64] Robert A. Maddox, Gurbir Singh, and Robert J. Safranek. A first look at the Intel Quick-
Path Interconnect. 2009.

[65] Zoltan Majo and Thomas R. Gross. Memory management in NUMA multicore systems:
Trapped between cache contention and interconnect overhead. In Proceedings of the
international symposium on Memory management, ISMM ’11, pages 11–20, New York,
NY, USA, 2011. ACM.

[66] Anirban Mandal, Rob Fowler, and Allan Porterfield. Modeling memory concurrency
for multi-socket multi-core systems. In Proceedings of the 2010 IEEE international
symposium on Performance analysis of systems and software, ISPASS ’10, pages 66–75,
March 2010.

[67] Jaydeep Marathe and Frank Mueller. Hardware profile-guided automatic page placement
for ccNUMA systems. In Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, PPoPP ’06, pages 90–99, New York,
NY, USA, 2006. ACM.

BIBLIOGRAPHY 139

[68] Jaydeep Marathe, Vivek Thakkar, and Frank Mueller. Feedback-directed page place-
ment for ccNUMA via hardware-generated memory traces. J. Parallel Distrib. Comput.,
70:1204–1219, December 2010.

[69] Jason Mars, Lingjia Tang, and Mary Lou Soffa. Directly characterizing cross core inter-
ference through contention synthesis. In Proceedings of the 6th international conference
on High performance and embedded architectures and compilers, HiPEAC ’11, pages
167–176, New York, NY, USA, 2011. ACM.

[70] Jason Mars, Neil Vachharajani, Mary Lou Soffa, and Robert Hundt. Contention aware
execution: Online contention detection and response. In Proceedings of the 2010 inter-
national symposium on Code generation and optimization, CGO ’10, pages 257–265,
New York, NY, USA, 2010. ACM.

[71] John D. McCalpin. Memory bandwidth and machine balance in current high perfor-
mance computers. IEEE Computer Society Technical Committee on Computer Architec-
ture (TCCA) Newsletter, pages 19–25, December 1995.

[72] Collin McCurdy and Jeffrey S. Vetter. Memphis: Finding and fixing NUMA-related
performance problems on multi-core platforms. In Proceedings of the IEEE international
symposium on Performance analysis of systems and software, ISPASS ’10, pages 87–96,
2010.

[73] Daniel Molka, Daniel Hackenberg, Robert Schne, and Matthias S. Müller. Memory
performance and cache coherency effects on an Intel Nehalem multiprocessor system.
In Proceedings of the 2009 18th international conference on Parallel architectures and
compilation techniques, PACT ’09, pages 261–270, Washington, DC, USA, 2009. IEEE
Computer Society.

[74] Adam Morrison and Yehuda Afek. Fast concurrent queues for x86 processors. In Pro-
ceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’13, pages 103–112, New York, NY, USA, 2013. ACM.

[75] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Producing
wrong data without doing anything obviously wrong! In Proceedings of the 14th inter-
national conference on Architectural support for programming languages and operating
systems, ASPLOS ’09, pages 265–276, New York, NY, USA, 2009. ACM.

[76] Angeles Navarro, Rafael Asenjo, Siham Tabik, and Calin Cascaval. Analytical modeling
of pipeline parallelism. In Proceedings of the 2009 18th international conference on Par-
allel architectures and compilation techniques, PACT ’09, pages 281–290, Washington,
DC, USA, 2009. IEEE Computer Society.

[77] Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Constantine D. Polychronopou-
los, Jesús Labarta, and Eduard Ayguadé. A case for user-level dynamic page migration.
In Proceedings of the 2000 International Conference on Parallel Processing, ICPP ’00,
pages 95–, Washington, DC, USA, 2000. IEEE Computer Society.

[78] Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Constantine D. Polychronopou-
los, Jesus Labarta, and Eduard Ayguade. Is data distribution necessary in OpenMP? In

140 BIBLIOGRAPHY

Proceedings of the 2000 ACM/IEEE conference on Supercomputing, Supercomputing
’00, Washington, DC, USA, 2000. IEEE Computer Society.

[79] Takeshi Ogasawara. NUMA-aware memory manager with dominant-thread-based copy-
ing GC. In Proceeding of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, OOPSLA ’09, pages 377–390, New
York, NY, USA, 2009. ACM.

[80] OpenMP Architecture Review Board. OpenMP Application Programming Interface, Ver-
sion 3.1, July 2011.

[81] Heidi Pan, Benjamin Hindman, and Krste Asanović. Composing parallel software effi-
ciently with lithe. In Proceedings of the 2010 ACM SIGPLAN conference on Program-
ming language design and implementation, PLDI ’10, pages 376–387, New York, NY,
USA, 2010. ACM.

[82] Aleksey Pesterev, Nickolai Zeldovich, and Robert T. Morris. Locating cache perfor-
mance bottlenecks using data profiling. In Proceedings of the 5th European Conference
on Computer Systems, EuroSys ’10, pages 335–348, New York, NY, USA, 2010. ACM.

[83] Kishore Kumar Pusukuri, David Vengerov, Alexandra Fedorova, and Vana Kalogeraki.
FACT: A framework for adaptive contention-aware thread migrations. In Proceedings
of the 8th ACM international conference on Computing frontiers, CF ’11, pages 35:1–
35:10, New York, NY, USA, 2011. ACM.

[84] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches. In Pro-
ceedings of the 39th Annual IEEE/ACM international symposium on Microarchitecture,
MICRO 39, pages 423–432, Washington, DC, USA, 2006. IEEE Computer Society.

[85] Chandan Reddy and Uday Bondhugula. Effective automatic computation placement and
dataallocation for parallelization of regular programs. In Proceedings of the 28th ACM
international conference on Supercomputing, ICS ’14, pages 13–22, New York, NY,
USA, 2014. ACM.

[86] A. Robison, M. Voss, and A. Kukanov. Optimization via reflection on work stealing in
TBB. In Proceedings of the IEEE international symposium on Parallel and distributed
processing, IPDPS’08, pages 1 –8, April 2008.

[87] M. Roth, M.J. Best, C. Mustard, and A. Fedorova. Deconstructing the overhead in par-
allel applications. In Proceedings of the IEEE international symposium on Workload
characterization, IISWC’12, pages 59 –68, nov. 2012.

[88] Juan Carlos Saez, Manuel Prieto, Alexandra Fedorova, and Sergey Blagodurov. A com-
prehensive scheduler for asymmetric multicore systems. In Proceedings of the 5th Eu-
ropean conference on Computer systems, EuroSys ’10, pages 139–152, New York, NY,
USA, 2010. ACM.

[89] Daniel Sanchez, David Lo, Richard M. Yoo, Jeremy Sugerman, and Christos Kozyrakis.
Dynamic fine-grain scheduling of pipeline parallelism. In Proceedings of the 2011 In-
ternational conference on Parallel architectures and compilation techniques, PACT ’11,
pages 22–32, Washington, DC, USA, 2011. IEEE Computer Society.

BIBLIOGRAPHY 141

[90] Andreas Sandberg, David Eklöv, and Erik Hagersten. Reducing cache pollution through
detection and elimination of non-temporal memory accesses. In Proceedings of the 2010
ACM/IEEE international conference for High performance computing, networking, stor-
age and analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE Computer
Society.

[91] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar,
and P. Dubey. Can traditional programming bridge the Ninja performance gap for parallel
computing applications? In Proceedings of the 39th annual international symposium on
Computer architecture, ISCA’12, pages 440 –451, June 2012.

[92] Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a simultaneous mul-
tithreaded processor. In Proceedings of the ninth international conference on Architec-
tural support for programming languages and operating systems, ASPLOS IX, pages
234–244, New York, NY, USA, 2000. ACM.

[93] Shekhar Srikantaiah, Mahmut Kandemir, and Mary Jane Irwin. Adaptive set pinning:
managing shared caches in chip multiprocessors. In Proceedings of the 13th international
conference on Architectural support for programming languages and operating systems,
ASPLOS XIII, pages 135–144, New York, NY, USA, 2008. ACM.

[94] ChunYi Su, Dong Li, Dimitrios S. Nikolopoulos, Matthew Grove, Kirk Cameron, and
Bronis R. de Supinski. Critical path-based thread placement for NUMA systems. SIG-
METRICS Perform. Eval. Rev., 40(2):106–112, October 2012.

[95] M. Aater Suleman, Moinuddin K. Qureshi, Khubaib, and Yale N. Patt. Feedback-directed
pipeline parallelism. In Proceedings of the 19th international conference on Parallel
architectures and compilation techniques, PACT ’10, pages 147–156, New York, NY,
USA, 2010. ACM.

[96] David Tam, Reza Azimi, and Michael Stumm. Thread clustering: Sharing-aware
scheduling on SMP-CMP-SMT multiprocessors. In Proceedings of the 2nd ACM SIGOP-
S/EuroSys European conference on Computer systems, EuroSys ’07, pages 47–58, New
York, NY, USA, 2007. ACM.

[97] David K. Tam, Reza Azimi, Livio B. Soares, and Michael Stumm. RapidMRC: ap-
proximating L2 miss rate curves on commodity systems for online optimizations. In
Proceeding of the 14th international conference on Architectural support for program-
ming languages and operating systems, ASPLOS ’09, pages 121–132, New York, NY,
USA, 2009. ACM.

[98] S. Tandri and T.S. Abdelrahman. Automatic partitioning of data and computations on
scalable shared memory multiprocessors. In Proceedings of the international conference
on Parallel processing, pages 64 –73, August 1997.

[99] Lingjia Tang, Jason Mars, and Mary Lou Soffa. Contentiousness vs. sensitivity: Im-
proving contention aware runtime systems on multicore architectures. In Proceedings of
the 1st international workshop on Adaptive self-tuning computing systems for the exaflop
era, EXADAPT ’11, pages 12–21, New York, NY, USA, 2011. ACM.

142 BIBLIOGRAPHY

[100] Lingjia Tang, Jason Mars, Xiao Zhang, Robert Hagmann, Robert Hundt, and Eric Tune.
Optimizing Google’s warehouse scale computers: The NUMA experience. In Proceed-
ings of the 2013 IEEE 19th international symposium on High performance computer
architecture, HPCA ’13, pages 188–197, Washington, DC, USA, 2013. IEEE Computer
Society.

[101] R. Thekkath and S. J. Eggers. Impact of sharing-based thread placement on multithreaded
architectures. In Proceedings of the 21st annual international symposium on Computer
architecture, ISCA ’94, pages 176–186, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

[102] Mustafa M. Tikir and Jeffery K. Hollingsworth. NUMA-aware Java heaps for server
applications. In Proceedings of the 19th IEEE international symposium on Parallel and
distributed processing, IPDPS ’05, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[103] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Using hardware counters to automati-
cally improve memory performance. In Proceedings of the 2004 ACM/IEEE conference
on Supercomputing, SC ’04, page 46, Washington, DC, USA, 2004. IEEE Computer
Society.

[104] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Hardware monitors for dynamic page
migration. J. Parallel Distrib. Comput., 68(9):1186–1200, 2008.

[105] Irina Tuduce, Zoltan Majo, Adrian Gauch, Brad Chen, and Thomas R. Gross. Asymme-
tries in multi-core systems – or why we need better performance measurement units. The
Exascale Evaluation and Research Techniques Workshop (EXERT) at ASPLOS 2010,
2010.

[106] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading:
Maximizing on-chip parallelism. In 25 Years of the International Symposia on Computer
Architecture (Selected Papers), ISCA ’98, pages 533–544, New York, NY, USA, 1998.
ACM.

[107] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating system
support for improving data locality on CC-NUMA compute servers. In Proceedings
of the seventh international conference on Architectural support for programming lan-
guages and operating systems, ASPLOS ’96, pages 279–289, New York, NY, USA, 1996.
ACM.

[108] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual
performance model for multicore architectures. Commun. ACM, 52(4):65–76, 2009.

[109] Kenneth M. Wilson and Bob B. Aglietti. Dynamic page placement to improve locality
in CC-NUMA multiprocessors for TPC-C. In Proceedings of the 2001 ACM/IEEE con-
ference on Supercomputing, Supercomputing ’01, pages 33–33, New York, NY, USA,
2001. ACM.

[110] Carole-Jean Wu and Margaret Martonosi. Characterization and dynamic mitigation of
intra-application cache interference. In Proceedings of the IEEE international symposium

BIBLIOGRAPHY 143

on Performance analysis of systems and software, ISPASS ’11, pages 2–11, Washington,
DC, USA, 2011. IEEE Computer Society.

[111] R. Yang, J. Antony, P. P. Janes, and A. P. Rendell. Memory and thread placement effects
as a function of cache usage: A study of the gaussian chemistry code on the SunFire
X4600 M2. In Proceedings of the the international symposium on Parallel architectures,
algorithms, and networks, ISPAN ’08, pages 31–36, Washington, DC, USA, 2008. IEEE
Computer Society.

[112] Eddy Z. Zhang, Yunlian Jiang, and Xipeng Shen. Does cache sharing on modern CMP
matter to the performance of contemporary multithreaded programs? In Proceedings of
the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’10, pages 203–212, New York, NY, USA, 2010. ACM.

[113] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared re-
source contention in multicore processors via scheduling. In Proceedings of the fifteenth
international conference on Architectural support for programming languages and oper-
ating systems, ASPLOS XV, pages 129–142, New York, NY, USA, 2010. ACM.

List of Figures

1.1 2-processor 8-core NUMA multicore-multiprocessor. 2

2.1 Intel Nehalem in a 2-processor configuration. 7

2.2 Global Queue. 8

2.3 triad main loop. 8

2.4 3P workload in (2L, 1R) configuration. 9

2.5 Bandwidth sharing: 4 L processes with variable number of R processes (Ne-
halem). 12

2.6 Percentage of total memory bandwidth obtained by an L and an R process (Ne-
halem). 12

2.7 Setup to evaluate GQ fairness. 15

2.8 Dependence of β on aggregate load. 16

2.9 Performance degradation of (1L, 1R). 16

2.10 Performance degradation of (1L, 2R). 16

2.11 Total bandwidth of the 4P workload in different configurations. 17

2.12 Improvement of aggregate IPC and total memory bandwidth when an IMC and
a QPI are used (relative to the case when a single IMC is used). 17

2.13 Bandwidth sharing: 4 L processes with variable number of R processes (West-
mere). 19

2.14 Percentage of total memory bandwidth obtained by an L and an R process
(Westmere). 19

2.15 Total read bandwidth (Nehalem). 20

2.16 Total read bandwidth (Westmere). 20

2.17 Possible mappings of a 2-process workload (mcf and lbm). 23

2.18 Increase of cache miss rate in different mapping scenarios. 24

2.19 Bandwidth distribution in different mapping scenarios. 24

2.20 Performance degradation in different mapping scenarios. 24

2.21 Increase of cache miss rate vs. data locality of soplex (Nehalem). 25

2.22 Performance vs. data locality of soplex (Nehalem). 25

2.23 Increase of cache miss rate vs. data locality of soplex (Westmere). 27

145

146 LIST OF FIGURES

2.24 Performance vs. data locality of soplex (Westmere). 27

3.1 Cache balancing in SMP and NUMA context. 30

3.2 NUMA penalty vs. MPKI. 32

3.3 Dimensions of the evaluation. 38

3.4 Total MPKI of multiprogrammed workloads. 39

3.5 Performance evaluation of the maximum-local and N-MASS schemes with WL9. 41

3.6 Performance evaluation of the maximum-local and N-MASS schemes with WL1. 42

3.7 Performance improvement of 4-process workloads. 46

3.8 Data locality of 4-process workloads. 46

3.9 Absolute MPKI of 4-process workloads. 47

3.10 Relative MPKI of 4-process workloads. 47

3.11 Performance improvement of 8-process workloads. 49

3.12 Data locality of 8-process workloads. 49

3.13 Absolute MPKI of 8-process workloads. 49

3.14 Relative MPKI of 8-process workloads. 49

4.1 Performance scaling and cycle breakdown. 52

4.2 Structure and configuration of pipeline programs. 55

4.3 Remote transfers as fraction of all uncore transfers. 58

4.4 Data access characterization (8-core machine). 59

4.5 Performance gain w/ prefetching. 59

4.6 streamcluster: Shuffles. 60

4.7 streamcluster: Program transformations. 62

4.8 ferret: Program transformations. 62

4.9 ferret: Stages 2, 3, and 4 (optimized implementation). 63

4.10 dedup: Program transformations. 64

4.11 dedup: Stages 1, 2, and 3 (optimized implementation). 65

4.12 streamcluster: Performance improvement (over original (FT)). 68

4.13 streamcluster: Uncore memory transfers. 68

4.14 ferret: Performance improvement (over original (FT)). 69

4.15 ferret: Uncore memory transfers. 69

4.16 dedup: Performance improvement (over original (FT)). 71

4.17 dedup: Uncore memory transfers. 71

4.18 Prefetcher performance. 72

5.1 Memory bandwidth generated by the programs of the NPB suite. 77

5.2 Data address profiling. 78

LIST OF FIGURES 147

5.3 Memory layout of 3D matrix (row-major order). 80

5.4 Access and distribution patterns; data sharing. 81

5.5 bt data access patterns. 83

5.6 bt with in-program data migration. 83

5.7 Evaluation of in-program data migration. 84

5.8 Access patterns of code with y-wise dependences. 85

5.9 Data distribution primitives. 86

5.10 Block-exclusive data distribution. 88

5.11 Loop iteration scheduling primitives. 90

5.12 Program transformations in bt. 91

5.13 Program transformations in lu. 92

5.14 Performance with program transformations (2-processor 8-core machine). . . . 93

5.15 Performance with program transformations (4-processor 32-core machine). . . 95

6.1 Computation optimized for data locality. 101

6.2 Shared threads: Unfortunate mapping. 101

6.3 Shared threads: Appropriate mapping. 101

6.4 TBB architecture. 105

6.5 Standard TBB: Rules to fetch next task. 106

6.6 Mailboxing (standard TBB). 108

6.7 Mailboxing (TBB-NUMA). 110

6.8 Rules substituted by TBB-NUMA to fetch next task (relative to standard TBB). 110

6.9 Indicating idleness. 112

6.10 Shallow task tree: 2-stage pipeline with affinities. 113

6.11 Performance and uncore traffic of loop-parallel programs w/o contention (West-
mere). 117

6.12 Performance and uncore traffic of non–loop-based programs w/o contention
(Westmere). 118

6.13 Performance and uncore traffic of loop-parallel programs w/ contention (West-
mere). 119

6.14 Performance and uncore traffic of non–loop-based programs w/ contention
(Westmere). 120

6.15 Performance w/o contention (Nehalem and Bulldozer). 121

Curriculum Vitae

Zoltán Majó

June 18, 1983 Born in Cluj-Napoca/Klausenburg/Kolozsvár/Kloiznburg, Romania

1998–2002 “Apáczai Csere János” High School, Cluj-Napoca, Romania

2002 High school exit exam (maturity exam)

2002–2007 Studies in Computer Science,
Technical University of Cluj-Napoca, Romania

2007 Diploma of Engineer (“Inginer diplomat”) in Computer Science,
Technical University of Cluj-Napoca, Romania

2007–2008 Teaching Assistant and System Engineer,
Technical University of Cluj-Napoca, Romania

since 2008 Research and Teaching Assistant
Laboratory for Software Technology, ETH Zurich, Switzerland

149

