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Abstract—This paper presents an adaptive multi-loop control
scheme for inverters interlinking dc voltage sources to single-
phase, low voltage ac grids. Control self-adaptation is particularly
useful in the case of weak grids that, due to frequent physical
modifications (e.g., network reconfigurations, disconnection of
generators/loads) and intrinsic lack of inertia, present strongly
time-variant characteristics. The solution presented in this paper
is based on a high-performance converter controller with auto-
tuning capabilities. It is shown that the applied auto-tuning
method can significantly widen the stability region of the in-
terlinking converter, covering a broad range of grid impedance
values. In addition, within the stable region, the controller
maintains the nominal performance. Experimental results are
reported validating the proposed approach in realistic operating
conditions, including grid voltage distortion and variations of
amplitude and frequency.

Index Terms—auto-tuning; grid-connected inverter; interlink-
ing converter; microgrids; stability.

I. INTRODUCTION

RENEWABLE energy resources, such as photovoltaic
(PV) and wind farms, are nowadays more and more

integrated in electrical power systems, contributing to the
limitation of fossil fuel consumption. The integration process
involves the electrical infrastructure at all levels, from high-
voltage three-phase to low-voltage single-phase grids. Small-
scale PV sources and batteries, especially, are typically being
integrated directly into the latter, often at the consumer’s
premises [1]–[5], and coordinated by local dispatchers or
controllers [6], [7]. State-of-the-art buildings, indeed, integrate
resources organized in smart hybrid nanogrids, which, thanks
to suitable control and communication devices, ensure the
highest flexibility and efficiency in hosting ac as well as
dc loads and sources. Hybrid nanogrids represent the target
application of the converter controller discussed in this paper,
whose purpose is to provide an interface between the dc and
the ac domains.

Typically, low-voltage single-phase grids are characterized
by limited power capability and mainly resistive connection
impedances, which, due to the varying power absorption from
loads and the intermittent power generation from renewables,
bring to grid parameters that are variable both from point to
point and over time. The IEEE standard 1204 [8] describes
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the behavior of an ac power system by stiffness measures that
refer to both static and dynamic performance indexes. The
short-circuit ratio (SCR) is an index referring to the static grid
behavior, being defined as the ratio between the short circuit
power and the power of the installed generator. On the other
hand, the dynamic grid characteristics are evaluated in terms
of inertia, that is, by the capability of the ac power system to
keep the grid frequency constant in the presence of variations
in the power flow. Stiff grids, namely, grids whose voltage
is negligibly affected by power flow and load characteristics,
show high SCR and inertia; vice-versa, grids whose voltage is
significantly affected by power flow variations are said to be
weak and typically show both low SCR and low inertia. These
non-ideal characteristics make the control of the inverters tied
to weak grids particularly challenging.

In these conditions, the typical stability assessment meth-
ods, like those based on the Middlebrook criterion [9], are
complicated by the uncertain and typically time varying char-
acteristics of the grid impedance. Indeed, although a series
resistive-inductive structure is always maintained [10], both
the magnitude and the X/R ratio of the grid impedance are
subject to significant variations among the different inverter
connection sites and over time. Several papers have shown
how suitably shaping the converter output impedance by con-
trol design effectively enhances the converter-grid connection
stability. From this standpoint, control bandwidth maximiza-
tion and control delay minimization [11], active damping
techniques [12], [13], proper feed-forwarding strategies [14]
are all effective provisions. Grid synchronization methods
[15] may also be source of relevant stability issues. Grid
synchronization is often performed by a phase-locked loop
(PLL), whose performance affects the low-frequency behavior
of the converter, especially under weak-grid conditions [16].
While this instability may be conveniently exploited in some
situations [17], it is in general an issue that require dedicated
provisions, like, for example, the tuning of the PLL regulator
based on grid impedance estimations [18].

But, beside maintaining stability, a grid-tied converter
should be capable of tolerating or, better, rejecting different
kinds of exogenous perturbations often encountered in weak
grids. These range from voltage frequency or amplitude vari-
ations to voltage harmonics that, if not dealt with properly,
lead to more detrimental effects, like increased distribution
losses, wearing of components (e.g., transformers windings),
circulating harmonic currents. A satisfactory performance is
therefore as important as stability.

Solutions documented in the literature that aim at complying
with power quality standards [19] include repetitive controllers
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Fig. 1: Large-bandwidth triple-loop control system. ZG is the
total grid impedance, typically affected by uncertainty and
varying over time.

[20], resonant controllers [21], [22], feed-forward of the PCC
(point of common coupling) voltage [23], feedback of capaci-
tor voltage [24]. Unfortunately, achieving robust stability and
performance at the same time is difficult, because provisions
that give stronger benefits in stability tend to penalize the
inverter performance and the other way round.

The solution proposed in this paper aims at overcoming this
undesirable trade-off. It is based on the triple-loop control
structure shown in Fig. 1. The inductor current, capacitor
voltage, and grid current are simultaneously controlled by
high-performance implementations of predictive and digital
proportional-integral (PI) controllers as shown, modeled, and
experimentally validated in details in [25]. It has been shown
[5] that this structure is potentially capable of outstanding
performance and of mitigating many typical weak grid issues,
such as circulating harmonic currents or grid voltage and
frequency perturbations. In this paper, the robustness of this
controller is analyzed considering, in particular, the effect of
the grid characteristics at the point of connection. An auto-
tuning technique is then developed that adapts the controller to
the actual grid characteristics, yielding a much wider stability
region and robust performance. The proposed auto-tuning
technique i) requires minimal a-priori knowledge of the grid
impedance at the point of connection, ii) shows little sensitivity
to grid voltage harmonics and other perturbations (i.e., ensures
robust performance), and iii) can be adapted and applied to any
digital PI controller.

This paper extends [26], presenting additional analyses and
experimental results. The reminder is organized as follows.
Sec. II presents and summarizes the features of the considered
triple-loop control structure. The stability of the controller is
analyzed loop by loop in Sec. III, highlighting that only the
third, grid-current control loop is affected by grid impedance
uncertainty and requires the re-tuning of its parameters to
keep optimal performance. The adopted auto-tuning technique
is then analyzed in Sec. IV, where a design procedure is
derived and the improvements on the grid/inverter connection
stability are described. In Sec. V, the controller performance
is evaluated experimentally while Sec. VI concludes the paper.

II. REVIEW OF THE LARGE-BANDWIDTH TRIPLE-LOOP
INVERTER CONTROLLER

The considered large-bandwidth, triple-loop controller is
shown schematically in Fig. 1. We now recapitulate its main
characteristics.

A. Structure

The controller is made-up of inductor current iL, output
voltage vO, and grid current iG nested control loops. The
inner loops are regulated by deadbeat-type controllers, aiming
at maximizing the bandwidth of the outer grid current loop,
which is governed by a discrete-time, proportional-integral (PI)
controller. The following control equations are implemented.

1) Inductor current controller:

d(k) =
L̃fsw
VDC

·
[
iREFL (k)− iL(k)

]
+
vO(k)

2VDC
+

1

2
, (1)

where L̃ is the modeled value of the filter inductance L and
the inductor current iL is sampled twice per switching period,
so that the duty-cycle update period is Tsw/2.

2) Output voltage controller:

iREFL (n) = C̃Ofsw ·
[
vREFO (n)− vO(n)

]
+ iO(n), (2)

where C̃O is the modeled value of the output capacitance CO
and vO is sampled once per switching period, namely, the
current reference update period is Tsw. To better highlight the
difference with the previous equation, that is fundamental to
explain the dynamic performance of the controller, index n is
used in (2) instead of k.

About the delays and, in particular, computation times in-
volved in performing (1) and (2), nowadays, implementations
are available that achieve computation times amounting to a
negligible fraction of the sampling period. For the considered
application, as is detailed in Sect. V, the computation time
is only 25 ns over the 25µs sampling period. In case these
issues were of some interest, as was often the case in the
past, computation times can be taken into account as done,
for example, in [27].

3) Grid current controller:

vREFO (n) = HPI
iG ·

[
iREFG (n)− iG(n)

]
+ vFFPCC(n) , (3)

where HPI
iG

(z) = Kp + Ki · z/(z − 1) is the grid-current
regulator and the grid-current iG is again sampled at every
switching period Tsw. The grid current reference iREFG is
calculated based on the active and reactive power to be
delivered, namely P ∗ and Q∗, respectively, in Fig. 1, which
may be issued, for example, by an external dispatcher, as
discussed in Sect. I.

It is worth remarking that the multi-loop control scheme in
Fig. 1 results in the implementation of a current source with
current reference i∗G. In principle, the current reference i∗G
can be set in any of the different ways applicable to convert-
ers operating as current sources. Commonly, i∗G generation
makes use of a PLL to derive references that are in-phase
and in-quadrature with respect to the grid voltage, in order
to ease the generation of active and reactive output power
terms, associated to the in-phase and quadrature components,
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respectively [6], [15]. It is known that the use of PLLs to
this purpose may bring to low-frequency (e.g., a few Hz)
stability issues in particular operating conditions [16], even
if the current control system is stable. These require dedicated
analyses and provisions (see, e.g., [17], [28], [29]). Being the
focus of this paper on the stability analyses and auto-tuning
of the considered current control system, having crossover
frequencies in the kHz range, specific PLL-related issues are
not further discussed herein.

B. Features
As discussed in [25], the triple-loop controller shows valu-

able features for the implementation of interlinking converters,
like i) excellent reference tracking, ii) uninterrupted high-
quality local voltage supply, iii) strong attenuation of inverter-
side and grid-side harmonics, iv) seamless transitions between
grid-connected and islanded operation modes, v) resilience to
grid perturbations.

C. Uncertainty effects
Uncertainty in converter and grid parameters, in general,

negatively affects the stability of the grid-converter connection
and the quality of the achievable performance. In the particular
case of Fig. 1, the inner inductor current iL and capacitor
voltage vO loops are controlled by a couple of dead-beat type
controllers, (1) and (2), whose stability only depends on the
accuracy of parameters L̃ and C̃O. Both can be quite precisely
known in the design phase and, most of all, practically do not
vary during operation (neglecting aging and other long-term
phenomena). On the contrary, the grid-current PI regulator
appearing in (3) is directly affected by the uncertain grid
impedance parameters. In order to determine the proportional
and integral gains of the regulator that match the target speci-
fications for the closed-loop bandwidth and the phase margin,
also the grid impedance should be known. Unfortunately, in
the typical case, it can be only roughly estimated and, most
of all, it can change significantly from site to site and over
time. Therefore, while the inner loops can be expected to
exhibit intrinsic robustness, the grid current loop stability and
performance can certainly benefit from automatically adapting
the regulator gains to the specific grid impedance conditions
encountered.

III. STABILITY ANALYSIS

This section discusses the sensitivity of each control loop
stability to the uncertainty affecting the regulator parameters.
All equations assume steady-state operation and consider
electrical variables averaged over the sampling period.

A. Stability of the inductor current control loop (iL loop)
The inductor current loop is the innermost loop (see Fig. 1),

regulated by the dead-beat controller (1). Considering symmet-
rical PWM and averaging the voltage applied to the inductor in
any half of a modulation period, the following average-current
equation can be written:

iL(k + 1) = iL(k) + [2d(k)− 1] · VDC
2Lfsw

− vO(k)

2Lfsw
, (4)

where L is the actual filter inductance. From (1) and (4), the
closed-loop transfer function between the inductor current and
its reference is found to be given by:

WiL(z) =
iL(z)

iREFL (z)
=

L̃
L

z − 1 + L̃
L

. (5)

To maintain stability, the pole of this discrete-time transfer
function must lie within the unity circle. Simple calculations
show that if |(L̃−L)/L| < 1, namely, if the relative error of the
modeled inductance value is less than ±100%, the stability of
the inductor current loop is guaranteed. It is worth remarking
that, in deriving (4), the parasitic resistance of the inductor
is neglected, under the assumption that its L/R time constant
is in any case orders of magnitude longer than the averaging
period. This assumption will be later verified by measuring
the inductor ESR values in the considered test case.

B. Stability of the output voltage control loop (vO loop)

Considering now two consecutive sampling periods of du-
ration Tsw/2, it is possible to write the discrete-time dynamic
equation for the average output voltage, that is given by:

vO(k+2) = vO(k)+
1

2COfsw

[
iL(k+1)+iL(k)

]
+

− 1

2COfsw
· [iO(k+1) + iO(k)] ,

(6)

where CO is the actual filter capacitance. Because the voltage
controller updates iREFL every period Tsw, while the current
controller operates with time step equal to Tsw/2, the current
reference samples in (1) are actually constrained by the
following relation:

iREFL (k+1)= iREFL (k) = iREFL (n). (7)

Now, by Z-transforming (6) and using (2) and (7), after some
algebraic manipulations [25], the reference to output voltage
transfer function can be derived as:

WvO(z)=
L̃C̃O

LCO

2z2−2z(2− L̃
L )+ L̃C̃O

LCO
+2(1− L̃

L )
. (8)

Provided that the inductor L is precisely modeled by the
inner inductor current loop, namely, L̃/L = 1, (8) can be
further simplified as:

WvO(z)=
C̃O

CO

2z2−2z+ C̃O

CO

, (9)

where the uncertainty in the controller parameter CO is explic-
itly represented. By sweeping the relative error of the capacitor
[i.e., (C̃O − CO)/CO], the poles of the transfer function (9)
can be determined as shown in Fig. 2. Notably, an error lower
than 100% for (C̃O −CO)/CO guarantees stability, being the
maximum magnitude of the poles always smaller than unity.
Of course, if the inner and/or the outer loop are not properly
tuned, the controller dynamic performance might significantly
differ from the nominal one. Nevertheless, both loops can
be considered intrinsically robust, as the critical parameter
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estimation error is much larger than the typical component
tolerance.

C. Stability of the grid current control loop (iG loop)

The stability of the grid-current loop can be analyzed
considering its open-loop gain, that is:

TiG(z)=HPI
iG (z)WvO (z)

1

Zo,vO (z)+Z̃G(z)+ZLF
(z)

, (10)

where, Z̃G and ZLF
are, respectively, the estimated grid

impedance and the grid-side inductor impedance while Zo,vO
is the converter output impedance seen from the inverter output
(i.e., filter capacitor CO section in Fig. 1) when the inner loops
are closed:

ZO,vO (z)= −vO(z)

iO(z)
=

1

COfsw

z − 1

2z2 − 2z + 1
. (11)

In the absence of any a-priori knowledge, HPI
iG

can only
be designed based on reasonable assumptions on Z̃G, like its
resistive-inductive structure. A possibility is to consider it to be
negligible (i.e., like in a strong, ideal grid), to design a stable
control loop with desired bandwidth (e.g., 1.0 kHz) and phase
margin (e.g., 45◦) and then to verify the stability margins by
considering the impedance ratio ZG/ZO,iG , where ZG is the
actual grid impedance, measured at the PCC, while ZO,iG is
the converter output impedance. The latter is given by:

ZO,iG(z) =−vPCC(z)

iG(z)
=

=
HPI(z)WvO (z)+ZO,vO (z)+ZLF

(z)

1−WvO (z)HC(z)
,

(12)

where HC is a feed-forward term that may be used to enhance
the performance of the PI regulator (as shown in Fig. 1).

In general, any difference between Z̃G and ZG affects
the controller’s bandwidth and phase margin, making them
differ from the design values. To quantify the impact of
the uncertainty, we may define the controller performance
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Fig. 3: Region of acceptable performance (blue dots) of
the grid current loop; red crosses indicate points of low
performance. Acceptable performance points have bandwidth
≥ 1 kHz and phase margin ≥ 45◦.

acceptable only when its closed loop bandwidth is larger than
1 kHz (i.e., 20 times the grid current frequency) and the phase
margin is higher than 45◦. It is then possible to derive the map
of Fig. 3 that shows, in blue, the combinations of resistive (i.e.,
RG) and inductive (i.e., LG) components of ZG that satisfy
the acceptable performance criterion and, in red, combinations
causing lower performance.

Noticeably, the performance of the grid current loop is
not only related to the SCR (i.e., the magnitude of the grid
impedance) but also to the X/R ratio [30]. For example, in the
considered case of a 3 kVA single-phase interlinking converter,
acceptable grid current control performance are achieved, for
instance, when SCR > 20 and X/R < 1/8. In addition,
the performance of the grid current loop degrades more with
inductive grids (i.e., X/R > 1) than with resistive ones. In
general, without any provision, grid current control perfor-
mance degrades remarkably in weak grids. An auto-tuning
technique that extends the stability region of the considered
controller is presented in the following section.

IV. AUTO-TUNING METHOD

The proposed method can be explained referring to Fig. 4.
It exploits the estimation method discussed in [31] to auto-
matically adjust the coefficients of the PI regulator HPI

iG
in the

control system in Fig. 1. This allows to maintain the desired
bandwidth and phase margin for the grid current control
loop, guaranteeing optimized performance over a wider range
of operating conditions. Please note that, in the following,
a continuous-time modeling approach is adopted, although
the implementation of the auto-tuner will be, in the end,
fully digital. That is only possible because the sampling
and algorithm iteration frequencies (i.e., 20 kHz in the case
considered in Sect. V) are orders of magnitude higher than the
tuner bandwidth (i.e., 100 Hz for the fastest loop considered
in Sect. V). This allows to neglect the effects of discretization
and to design the tuner as if it were a continuous-time system.
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Fig. 5: Simplified block diagram of Fig. 4 considering the
injecting frequency f̃c.

A. Estimation of crossover frequency and phase margin

The auto-tuning technique is based on the injection of an
adjustable-frequency, small-signal sinusoidal perturbation [i.e.,
xp(t) = |xp| sin(ω̃ct), ω̃c=2πf̃c] that allows to monitor the
crossover frequency, fc, and the phase margin, φM , of the
considered loop. With respect to the injected frequency and
based on (10), the system block diagram in Fig. 4 can be
simplified as shown in Fig. 5. In the steady-state, the relation
between the measured signals xin and xout is:

xout(jω̃c)

xin(jω̃c)
= −TiG(jω̃c) . (13)

As shown in Fig. 6, only at the true crossover frequency of
the loop under test (i.e. when ω̃c = ωc), the magnitude of the
loop gain satisfies:

|TiG(jω̃c)| =
|xout(jω̃c)|
|xin(jω̃c)|

= 1 . (14)

Fig. 6 suggests that an accurate estimate of the grid current
loop crossover frequency fc can be obtained by adjusting the
perturbation signal frequency f̃c so as to make the magnitude
difference |xout| − |xin| equal to zero. A PI compensator,
HPI
amp, can be used to this purpose:

f̃c = f∗c + HPI
amp (|xout| − |xin|) , (15)

where f∗c is the desired crossover frequency of grid current
loop. Similarly, an estimate of φM is given by:

φ̃M = π + ∠TiG(jω̃c) =

= ∠xout(jω̃c)− ∠xin(jω̃c) .
(16)

Here, the amplitudes (i.e., |xin| and |xout|) as well as the

|xout(jω̃c)| < |xin(jω̃c)|
⇒ ω̃c in (15) decreases

toward ωc

|xout(jω̃c)| > |xin(jω̃c)|
⇒ ω̃c in (15) increases

toward ωc

ωc

|TiG| =
|xout|
|xin|

ω log

dB

Fig. 6: Basic principle of crossover frequency identification
based on TiG .

phases (i.e., ∠xin and ∠xout) are estimated by performing
projection onto a rotating frame synchronized with signal
xp and a cartesian to polar axes transformation. In order to
extract just their components at f̃c, xin and xout are pre-
filtered by a band-pass filter Hf̃c

, implemented via a second-
order generalized integrator (SOGI) with a peak frequency
adaptively tuned to ω̃c and suitably chosen selectivity gain
kf . Its transfer function is [32]:

Hf̃c
(s) =

kf ω̃
2
cs

s2 + kf ω̃cs+ ω̃2
c

. (17)

An example of what can be observed considering xout and
xin is presented in Fig. 11(c), which refers to the case when
|xout| = |xin| and, accordingly, f̃c = fc and φ̃M = φM .

B. Analysis of the auto-tuner

First of all, let us consider Fig. 7, which shows the open
loop gain (10) with different choices of HPI

iG
. In the figure, TiG

refers to a PI regulator with coefficients giving the desired fc
= 1 kHz and φM = 60 ◦, T

′
iG

with the proportional coefficient
doubled, and T

′′
iG

with the integral coefficient doubled. From
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these plots, it is possible to notice that fc is mainly linked
to the proportional coefficient of HPI

iG
, while φM to the

integral one. A more general approach can be based on the
numerical calculation of the crossover frequency sensitivity to
the controller gains. In the case here considered it is easily
found that the crossover frequency presents a much higher
sensitivity to the proportional gain than to the integral one.
Accordingly, the principle of operation of the proposed tuning
algorithm is to adjust Kp on the basis of the estimated fc, and
to adjust Ki on the basis of the estimated φM [33]. Therefore,
as can be seen in Fig. 4, signals f̃c and φ̃M are firstly compared
with the respective reference values f∗c and φ∗M , then the error
is closed-loop controlled to zero by the integral controllers HI

fc

and HI
φM

. In particular, Kp is increased to increase f̃c, while
Ki is decreased to increase φ̃M .

C. Design of the auto-tuner

The design procedure for the regulators HPI
amp, HI

φM
, and

HI
fc

in Fig. 4 is presented in the following.
1) Design of HPI

amp: a dynamic model describing how
the difference of the estimated amplitudes depends on the
frequency of the injected perturbation signal is necessary for
the design of HPI

amp. To derive that model, namely, the transfer
function e‖x‖(s)/f̃c(s), recalling Fig. 4 and (13), xin and xout
can be written in terms of xp as:xin(s) = 1

1+TiG
(s)xp(s)

xout(s) = − TiG
(s)

1+TiG
(s)xp(s)

. (18)

These signals are pre-filtered by the filter Hf̃c
in (17), whose

response to a signal of the kind x(t) = Ax sin(ω̃ct) for t ≥ 0
is the result of the convolution [32]:

Hf̃c
∗x(t)=

Ax√
1− k2f

4

sin

ω̃c
√

1−
k2f
4
t

 e−
kf ω̃ct

2 +

+Ax sin(ω̃ct) ' Ax
(

1− e−
kf ω̃ct

2

)
sin(ω̃ct) ,

(19)

where the last approximation holds on the assumption that
ω̃c � kf ω̃c/2, that is, the filter dynamics are very slow as

-1.5

-1

-0.5

0

0.5

1

1.5

Hf̃c
∗ x

|x|

x |Hf̃c
∗ x| x in (20)

x given by the
implementation in Fig. 4
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Fig. 8: Relations between the amplitude of x (i.e., |x|) with
signal Hf̃c

∗ x in (19) and signal ‖x‖ in (20).

compared to the period of the input signal, which is true in
the considered application. Fig. 8 displays the relation among
the amplitude of x and Hf̃c

∗x in case ω̃c = 2π 1 krad/s and
kf = 1/5. The transfer function between the amplitude |x|
and the estimated amplitude ‖x‖ is given by the exponential
term in (19), yielding

‖x‖(s)
|x|(s) = Hf (s) · 1

1 + 2
kf ω̃c

s
, (20)

where Hf is the transfer function of the low-pass filter used
to remove the second harmonic oscillations originating from
synchronous demodulation in the projection block. It is worth
highlighting that the filter Hf̃c

allows to reject background
components that may be present in the measured signals
and extract just the signal component of interest, at ωf̃c .
The final relation among amplitude variations of x and the
corresponding estimate ‖x‖ is displayed in Fig. 8.

As can be seen, the amplitude estimation generated by (20)
pretty much follows the envelope of the real implementation
response. Furthermore, in both cases, the steady-state value is
consistent with the amplitude of the input signal. The dynamic
model of the amplitude response to frequency variations is
therefore validated.

From (18) and (20), the amplitude error e‖x‖ can be written
as a function of |xp|, that is:

e‖x‖(s) = [‖xout‖(s)− ‖xin‖(s)] =

= [|xout|(s)− |xin|(s)] ·
Hf (s)

1 + 2
kω̃c

s
=

=
|TiG(s)|−1

|TiG(s)+1| ·
Hf (s)

1 + 2
kω̃c

s
· |xp|(s) .

(21)

In order to find the transfer function e‖x‖(s)/f̃c(s) we observe
that any small variation of f̃c turns into the variation of signals
|xin| and |xout|. The variations in the amplitudes of |xin| and
|xout|, will then turn into a variation of the amplitude error
e‖x‖, whose dynamic is determined by (20). If the auto-tuning
process is designed to be significantly slower than the system
to be tuned (e.g., by one or two orders of magnitude), these
two phases of the dynamic process (21) can be decoupled and
the estimator’s one (20) can become dominant. This means
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that the relation between a small-signal variation of f̃c and the
variations of |xin| and |xout| can be considered instantaneous
and its gain can be reasonably approximated by the partial
derivative of the steady-state value of (21) at frequency f̃c.
The steady-state value of (21) is:

e‖x‖
∣∣
dc

=
|TiG(j2πf̃c)|−1

|TiG(j2πf̃c) + 1|
· |xp|. (22)

Its partial derivative, ∂e‖x‖
∣∣
dc /∂f̃c, can be numerically cal-

culated from (10) and (22). Under the above assumption, we
can finally write the following approximated expression of the
loop gain to be compensated:

e‖x‖(s)

f̃c(s)
≈
∂ e‖x‖

∣∣
dc

∂f̃c
· Hf (s)

1 + 2
kω̃c

s
, (23)

The regulator HPI
amp can be designed now from (23),

following any standard procedure. Herein, a bandwidth of
100 Hz (i.e., approximately a tenth of the system’s crossover
frequency) and a phase margin of 70◦ are adopted.

2) Design of HI
φM

: to the purpose of designing the regu-
lator HI

φM
, a transfer function describing how the estimated

phase margin changes with respect to the adjustments of the
integral gain Ki is needed. Aiming at a tuning process that
should be slow (e.g., with dynamics in the order of 0.1 to 1 s),
the dynamics of the previously designed amplitude-difference
control loop, having a crossover frequency of about a hundred
Hz, can be neglected. Accordingly, the only relevant parameter
in the design of HI

φM
is the dc gain ∂φM/∂Ki|dc, which can

be numerically evaluated by exploiting (10). A purely integral
implementation of HI

φM
, with a crossover frequency of 2 Hz,

is here adopted.
3) Design of HI

fc
: as done for the design of the previous

regulator, the design of HI
fc

can be performed on the basis of
the dc gain ∂fc/∂Kp|dc, which can be numerically evaluated
by exploiting (10). A purely integral implementation of HI

fc
,

with a crossover frequency of 0.5 Hz, is adopted for this
regulator. Finally, it is worth remarking that mismatches in the
estimated transfer function (10) can always occur. This aspect
has to be taken into account in setting the design specifications
of the regulators above (e.g., by setting adequate stability
margins and requiring sufficiently slow response times to
ensure the validity of the adopted models). So doing, a stable
operation of the auto-tuning technique and optimal control
performance can be achieved in cases of practical interest.

D. Effectiveness of the auto-tuner

The aim of the auto-tuner is to adapt the controller coeffi-
cients in order to keep the control bandwidth and phase margin
of the grid current loop constant and, consequently, to get a
robust controller performance when impedance characteristics
change. The stability and performance of the controller, now
equipped with the auto-tuner, are evaluated and reported in
Fig. 9. As in Fig. 3, performance is considered acceptable
when the bandwidth is ≥ 1kHz and the phase margin is ≥ 45◦.
Again, the blue dot area indicates the region of acceptable
performance; the red star area indicates lower bandwidth or

RG (Ω)

L
G
(m

H
)

2.0

1.5

1.0

0.5

0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.5

Fig. 9: Region of acceptable performance (blue dots) of
the grid current loop (bandwidth ≥ 1 kHz, phase margin
≥ 45◦); red crosses indicate points of lower performance. For
comparison, the shaded area is the acceptable performance
region of Fig. 3.

TABLE I: System parameters

Parameter Symbol Value

Nominal DC link voltage VDC 450 V
Switching frequency fsw 20 kHz
Filter inductance L 1.40 mH
Inductor equivalent resistance ESRL 60 mΩ
Output capacitance CO 30 µF
Line inductance LF 0.55 mH
Inductor equivalent resistance ESRLF

75 mΩ
Nominal power SO 3 kVA
Nominal voltage VN 230 V

phase margin. Compared with Fig. 3, with the auto-tuner,
1) the stability of the grid-inverter connection as well as
an acceptable performance of the triple-loop controller are
maintained in a much wider region of grid impedances, 2) the
system can provide high performance not only with stiff grids
(SCR > 20), but also with weak grids (SCR < 5). All these
features are experimentally verified in the following section.
Finally, it is also worth remarking that regions of not adequate
performance (i.e., red dots in Fig. 9) will always exist: they
correspond to unfeasible conditions in which, with the given
controller and system structure, it is not possible to find any
Kp and Ki parameter values that allow to obtain the desired
crossover frequency and phase margin.

V. EXPERIMENTAL RESULTS

The proposed triple-loop controller equipped with the auto-
tuning technique in Fig. 4 was applied to the interlinking-
converter in Fig. 1. The main system parameters are listed
in Tab. I. The control system is deployed on an NI cRIO-
9068, based on a Xilinx Zynq 7020 all-programmable system
on chip (AP-SoC) and equipped with suitable NI C Series
modules for analog and digital input/output. The performed
implementation in the FPGA of the adopted AP-SoC allows
to complete the computation of (1)-(3) within 25 ns.
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In the following, the performance of the proposed control
system is shown and discussed in terms of i) stability, consider-
ing parameters uncertainties, ii) auto-tuning effectiveness, iii)
response to grid-impedance variations, iv) harmonic rejection
capability. In the tests, the magnitude of the injected signal
xp (see Fig. 4) is 5% of the rated current. This value is a
good trade-off between precision of detection and limitation
of harmonic pollution. From experiments, a recommended
magnitude range of xp is found in the range [2%, 10%] of
the rated current. In the practical case, to further limit the
distortion of the grid current, xp injection could be performed
only intermittently.

A. Stability considering parameters uncertainties

The stability of the control loops is determined by the
accuracy of system modeling, in particular, filter inductance L̃,
capacitance C̃O, and grid impedance Z̃G values (see Sect. III).

1) Inductor current loop: Fig. 10(a)-(c) show the small-
signal step responses of the inductor current loop considering:
(a) an underestimation of the filter inductance by 50% (i.e.,
L̃ = 0.5L), (b) the exact value of the filter inductance (i.e.,
L̃ = L), (c) an overestimation of the filter inductance by 50%
(i.e., L̃ = 1.5L). Fig. 10(a) and 10(c) highlight a detrimental
effect on the inductor current regulation, which, however,
keeps stable in both cases. Compared with Fig. 10(b), the
inductor current in Fig. 10(a) shows slower dynamics (i.e., 4
steps) in tracking the current reference.

2) Output voltage loop: Similar tests are performed and
reported in Fig. 10(d)-(f) for the output voltage loop, varying
the value of the modeled output capacitance C̃O, while not
introducing errors in the inductance value (i.e., L̃ = L). For a
50% underestimation of CO [see Fig. 10(d)], a rise time Tr =
109µs is measured, which is almost doubled compared with
that of case Fig. 10(e), where Tr = 51µs. In addition, it is
also verified that a 50% overestimation of CO [see Fig. 10(f)]
does not cause unstable behaviors, neither in the inductor
current nor in the output voltage. This shows the robustness
of the controller with respect to mismatches in the inner loop
parameter values.

3) Grid-current loop: The performance of the grid current
loop is determined mainly by its bandwidth and phase margin.
The PI controller of the grid current loop is designed based on
(10) targeting 1 kHz bandwidth and 45◦ phase margin under
ideal grid conditions (i.e., Z̃G = 0). Its sensitivity to time
varying grid characteristics is now tested. A grid impedance
variation is actuated by switch SW in Fig. 1: when SW is
off, the grid impedance ZG is the series of the impedance
Z

′
G (0.45 mH + 0.15 Ω) and an additional impedance Z

′′
G that

can assume values {1 mH, 3.5 Ω, 1 mH + 3.5 Ω}, when SW
is on, ZG equals Z

′
G. A significantly distorted grid voltage

is considered (THDvG is 4.86 %) and a non-linear load is
connected in parallel with the output capacitor. The harmonic
spectra of the grid voltage and the non-linear load current are
reported in Tab. II.

Fig. 13(a) shows the controller’s performance with the
designed PI regulator (Kp,int and Ki,int) under stiff and
weak grid conditions in phases S1 and S2, respectively. In

TABLE II: Testing conditions of Fig. 13(j) under distorted grid
voltage vPCC and load current iLoad.

% of rated voltage and current in Tab. I

Order h1 h2 h3 h4 h5 h6 h7

vPCC 94.8 5.3 1.1 0.7 2.4 0.6 1.1
iLoad 18.9 0.7 14.7 0.3 8.3 0.1 2.9

Order h8 h9 h10 h11 h12 h13 h14

vPCC 0.1 0.5 0.1 0.1 0 0.1 0.1
iLoad 0.1 2.0 0.1 0.21 0.1 0.11 0.1

Order h15 h16 h17 h18 h19 h20

vPCC 0.2 0 0.1 0 0.1 0
iLoad 0.8 0.1 0.9 0.1 0.1 0

the stiff grid case S1 the total grid impedance is set to
0.45 mH + 0.15 Ω (SCR = 85.5). In the weak grid case S2
the total grid impedance is set to 1.45 mH + 3.65 Ω (SCR =
4.8). Due to the effect of the grid impedance, the measured
crossover frequency and phase margin are far from the target
values (i.e., f∗c = 1 kHz and φ∗M = 45◦): 675 Hz and 64◦ in
S1, 210 Hz and 56◦ in S2 are the measured values when the
converter is connected to the considered grid.

B. Auto-tuning effectiveness

The auto-tuning is now introduced and shown in the basic
case in which the converter is connected to a short circuit,
with reference crossover frequency of 1 kHz and phase margin
60◦. Initially, the controller of the iG control loop is set with
controller’s parameters values computed off-line on the basis
of the open loop gain TiG , the measured converter’s parameters
in Tab. I, and the output impedance ZG = 0. Fig. 11(a)
shows the signals xin and xout in steady-state when their
amplitude are equal. By definition, it is therefore possible to
measure the crossover frequency and the phase margin of the
experimental setup for the considered loop, as discussed in
Sect. IV-A; we found 702 Hz and 68◦, respectively. In these
conditions, Fig. 12(a) shows the obtained response to a step
change of the current reference i∗G, set as a piecewise constant
value for this specific test. The resulting response is consistent
with the measurements in Fig. 11(a), indeed, a slightly slower
and more damped response than expected is obtained, which
can be noticed by comparison with the superimposed dashed
red line representing the response obtained by the simulation
model. The differences in the dynamic responses are due to
the unavoidable small mismatches between the modeled and
the experimental systems.

Fig. 11(b) shows the behavior across the activation of the
auto-tuning algorithm, which smoothly corrects the controller
parameters values to match the given references of crossover
frequency and phase margin. Notably, Kp : 3.3 → 4.3
while Ki : 0.14 → 0.31. Fig. 11(c) provides a zoomed-
in view when the auto-tuning is activated and in steady-
state. In this condition, it is possible to measure the final
crossover frequency and phase margin after tuning, which
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Fig. 10: Behavior of the inner loops if errors are introduced in the parameters of the control laws (1) and (2). Subfigures (a),
(b), and (c) show the behavior of the iL loop, subfigures (d), (e), and (f) show the behavior of the vO loop.

actually correspond to the given references. Fig. 12(b) shows
the step response obtained after tuning, it is possible to notice
a close match between the simulation and experimental results,
both in terms of obtained waveforms and measured rise-time
and overshoot.

C. Response to grid impedance variations

The behavior of the proposed auto-tuning method while grid
connected is now shown, considering different step variations
of ZG = RG + jωLG:
• Auto-tuning activation Fig. 13(b): with the system ini-

tially in the same conditions of S2 in Fig. 13(a), the
auto-tuning is disabled during S1 and enabled during
S2. Remarkably, the auto-tuner smoothly adjusts the
parameters Kp and Ki to restore the target values of
crossover frequency and phase margin.

• From weak to stiff grid in Fig. 13(c): a transition from
a weak grid to a stiff grid condition is shown, where
the total grid impedance changes from ZG = 1.45 mH +
3.65 Ω, SCR = 4.8, in S1, to ZG = 0.45 mH + 0.15 Ω,
SCR = 85.5, in S2. The coefficients Kp and Ki are
smoothly adjusted and f̃c and φ̃M are automatically
brought to the reference values, within 1 s from the
applied change.

• Step increase of RG in Fig. 13(d): a step increase in
the grid resistance RG is shown, where the total grid
impedance changes from ZG = 1.45 mH + 0.15 Ω in S1
to ZG = 1.45 mH + 3.65 Ω in S2.

• Step increase of LG Fig. 13(e): a step increase in the grid
inductance LG is shown, where the total grid impedance

changes from ZG = 0.45 mH + 3.65 Ω in S1 to ZG =
1.45 mH + 3.65 Ω in S2.

• From stiff to weak grid in Fig. 13(f): a transition from
a stiff grid to a weak grid condition is shown, where
the total grid impedance changes from ZG = 0.45 mH
+ 0.15 Ω, SCR = 85.5, in S1, to ZG = 1.45 mH +
3.65 Ω, SCR = 4.8, in S2. A symmetrical behavior can
be observed with respect to Fig. 13(c).

It is possible to remark that the proposed auto-tuner is
capable of guaranteeing the desired bandwidth and phase mar-
gin in the considered testing conditions despite of significant
variations in grid resistance and inductance.

D. Harmonic rejection capability

Fig. 13(g)-(i) show the waveforms obtained during S1 of
Fig. 13(a), S1 of Fig. 13(b), S2 of Fig. 13(b), respectively. The
corresponding harmonic spectrum analysis of the grid current
is reported in Fig. 13(j), grid and load harmonics are reported
in Tab. II.

In the cases of Fig. 13(g) and Fig. 13(h), the auto-tuning is
disabled and the measured bandwidth of the grid current loop
is 675 Hz and 210 Hz, respectively, as reported in Sect. V-A3.
The measured harmonic distortion is THDiG = 2.55% in
Fig. 13(g) and THDiG = 3.29%, in Fig. 13(h).

In the case of Fig. 13(i) the auto-tuner is active, keeping
the grid current control loop crossover frequency always equal
to the given reference of 1 kHz. Due to the higher crossover
frequency and, consequently, loop gain of the current loop,
with respect to the previous case in Fig. 13(h), the measured
THD of the grid current reduces to 1.47%, as indicated in
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Fig. 11: Auto-tuning process. (a) Monitored parameters of the iG control loop before auto-tuning activation; controller’s
parameters set by design on the basis of TiG in (10) and the measured output impedance ZG. (b) Dynamics of the auto-tuning
when activated. (c) Monitored control loop parameters with auto-tuning active. (a) and (c) refer to the steady-state operation
before and after, respectively, the auto-tuning activation shown in (b).
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Fig. 12: Step response of the grid current loop. (a) Before
auto-tuning; controller’s parameters set by design on the
basis of TiG in (10) and the measured output impedance ZG
[conditions as in Fig. 11(a)]; (b) after auto-tuning [conditions
as in Fig. 11(c)].

Fig. 13(h). This improvement is achieved without employing
any further harmonic suppression provisions.

Finally, it is possible to notice that under the considered
various testing conditions the harmonic content fulfills the
IEEE Std. 1547 [19].

VI. CONCLUSIONS

An adaptive, high-performance control scheme is proposed
for interlinking converters connected to weak, single-phase
grids. The control scheme is developed based on a large-
bandwidth triple-loop controller, on top of which an auto-
tuning technique is implemented. Its purpose is to provide the
on-line adjustment of the proportional and integral gains of
the outer, grid current controller. The auto-tuner small-signal
model is firstly derived, based on which design criteria are
given for each of its inner regulators. The tuning strategy is
then implemented in an FPGA control platform and experi-
mentally tested. The experimental results prove that the auto-
tuner can improve the grid connected converter performance
in different ways. First of all, robust stability and performance
are guaranteed in the presence of time-variant grid impedance
characteristics, as often encountered in low-voltage single-
phase ac microgrids. Second, a precise and fast control of
the injected current is achieved and maintained, which allows
the converter to be safely operated even in the presence of
significant grid voltage distortion.
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(j) Harmonic content of the grid current iG in subfigures (g), (h), and (i)

Fig. 13: Performance of the triple-loop controller equipped with the proposed auto-tuning technique. (a) Response to grid
impedance variations with auto-tuning disabled. (b) Auto-tuner from disabled to enabled–initial conditions set as in S2 of (a).
(c) Grid impedance changed from resistive in S1 to inductive in S2. (d) Step change of grid resistance from 0.15 Ω to 3.65 Ω.
(e) Step change of grid inductance from 0.45 mH to 1.45 mΩ. (f) As in (c) but reversed. (j) Harmonic spectrum of the grid
current in (g), (h) and (i); THD values are reported between brackets.
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