
Manipulation Planning on Constraint Manifolds

Dmitry Berenson† Siddhartha S. Srinivasa‡† Dave Ferguson‡† James J. Kuffner†

†The Robotics Institute, Carnegie Mellon University ‡Intel Research Pittsburgh
5000 Forbes Ave., Pittsburgh, PA, 15213, USA Pittsburgh, PA, 15213, USA

[dberenso, kuffner]@cs.cmu.edu [siddhartha.srinivasa, dave.ferguson]@intel.com

Abstract— We present the Constrained Bi-directional Rapidly-
Exploring Random Tree (CBiRRT) algorithm for planning paths
in configuration spaces with multiple constraints. This algo-
rithm provides a general framework for handling a variety of
constraints in manipulation planning including torque limits,
constraints on the pose of an object held by a robot, and
constraints for following workspace surfaces. CBiRRT extends
the Bi-directional RRT (BiRRT) algorithm by using projection
techniques to explore the configuration space manifolds that
correspond to constraints and to find bridges between them.
Consequently, CBiRRT can solve many problems that the BiRRT
cannot, and only requires one additional parameter: the allowable
error for meeting a constraint. We demonstrate the CBiRRT on
a 7DOF WAM arm with a 4DOF Barrett hand on a mobile base.
The planner allows this robot to perform household tasks, solve
puzzles, and lift heavy objects.

I. INTRODUCTION

Our everyday lives are full of tasks that constrain our
movement. Carrying a coffee mug, lifting a heavy object, or
sliding a milk jug out of a refrigerator, are examples of tasks
that involve constraints imposed on our bodies as well as the
manipulated objects. Enabling autonomous robots to perform
such tasks involves computing motions that are subject to
multiple, often simultaneous, task constraints.

Consider the task of manipulating a heavy object as in
Figure 1. When humans manipulate heavy objects that are
difficult to lift, they often slide the object to support its weight.
This enables human arms with limited muscle strength to
perform a wider range of tasks without violating the maximum
torque constraints imposed on their muscles. To enable robots
to perform similar tasks, a motion planning algorithm is
needed that can generate trajectories that obey joint torque
constraints and slide objects along support surfaces when nec-
essary. Consider the C-space of a 3-DOF manipulator shown
in Figure 1(a). The large purple manifold represents config-
urations where torque constraints are valid (while holding a
3kg weight) and the green manifolds represent configurations
of the robot where the weight is placed on either table. In
order to go from configuration a to configuration e the robot
must find a path along the left green manifold that will bring
it near configuration b, a bridge configuration where the two
manifolds intersect. At b, the robot may lift the weight as
long as it stays within the purple manifold. Note that not all
configurations which place the weight at the edge of the table

Dmitry Berenson was partially supported by the Intel Summer Fellowship
awarded by Intel Research Pittsburgh and by the National Science Foundation
under Grant No. EEC-0540865.

Fig. 1. (a) C-space of a 3DOF manipulator generated by exhaustive sampling.
(b) 3-Link Manipulator configurations corresponding to several points along
a path that moves the weight from one table to the other. (c) Snapshots from
a 7DOF WAM arm with a 8.17kg end-effector mass executing a path found
by the CBiRRT to move the dumbbell from one table to the other.

allow it to be lifted, so the position of the weight alone is
insufficient to determine if a configuration is valid.

For a 3-DOF manipulator, we are able to compute constraint
manifolds by exhaustively sampling the C-space but for a
higher-DOF robot, computing these manifolds online is far
too time-consuming. As a result, the planner has no prior
knowledge of the shape of these manifolds nor where to find
bridges (like b and d) between the manifolds in the general
case. As we will show in subsequent sections, the final path
is often quite complicated, traversing several manifolds and
bridges. The lack of prior knowledge of the manifold structure
precludes the use of task-space control[1] as a complete
solution. Although controllers can be used to perform sub-
tasks, such as sliding the weight on the table or maintaining
its position in the air, a planner like the CBiRRT is required
to orchestrate them, performing the C-space exploration nec-
essary to discover bridges between manifolds and to avoid
complex obstacles.

Many constraints, such as sliding constraints or pose con-
straints on a robot’s end-effector, implicitly define manifolds
that may occupy an infinitesimal volume in the C-space.
Indeed the green sliding manifolds in Figure 1(a) occupy
2D surfaces in the 3D C-space. Discovering a configuration

that lies on such a manifold through randomly sampling
joint-values is extremely unlikely. This fact precludes the
use of standard sampling-based planners such as RRTs or
Probabilistic Road Maps (PRMs) that sample C-space directly.

This paper introduces the Constrained Bi-directional
Rapidly-Exploring Random Tree (CBiRRT) planner, which
addresses the problem of sampling on constraint manifolds.
CBiRRT first samples in the C-space and then uses projection
operations to move samples onto constraint manifolds when
necessary. This technique allows the planner to explore con-
straint manifolds efficiently and to construct paths embedded
in them. CBiRRT also exploits the “connect” sampling heuris-
tic of the RRT to find bridges between manifolds correspond-
ing to different constraints, such as sliding an object and then
lifting it. Such a slide-and-lift motion can be found using a
single extension operation of the CBiRRT algorithm.

In the rest of the paper, we first give a brief overview
of previous work relevant to constrained motion planning.
We then introduce the CBiRRT algorithm and describe how
to formulate various types of constraints. We then present
several example problems and experiments which illustrate the
ability of the CBiRRT to plan for tasks that were previously
unachievable without special-purpose planners. The paper ends
with a discussion of the advantages and limitations of our
approach.

II. BACKGROUND

The CBiRRT algorithm builds on several developments in
motion planning and control research in robotics. In motion
planning, a number of efficient sampling-based planning al-
gorithms have been developed recently for searching high-
dimensional C-spaces. Although CBiRRT is based on the
Rapidly-exploring Random Tree (RRT) algorithm by LaValle
and Kuffner[2], it is possible to adapt some of the ideas
and techniques in this paper to other search algorithms. We
selected RRTs for their ability to explore C-space while
retaining an element of “greediness” in their search for a
solution. The greedy element is most evident in the bidi-
rectional version of the RRT algorithm (BiRRT), where two
trees, one grown from the start configuration and one grown
from the goal configuration, take turns exploring the space
and attempting to connect to each other. In this paper, we
demonstrate that such a search strategy is also effective for
motion planning problems involving constraints when it is
coupled with projection methods that move C-space samples
onto constraint manifolds. Note that RRTs have also been
previously extended to planning for hybrid control systems[3],
which is similar to planning with constraint manifolds.

In the robotics literature, projection methods have arisen
in the context of research in controls and inverse kinematics.
Iterative inverse kinematics algorithms use projection methods
based on the pseudo-inverse or transpose of the Jacobian to
iteratively move a robot’s end-effector closer to some de-
sired workspace transformation (e.g. [4]). Sentis and Khatib’s
potential-field approach[1] uses recursive null-space projec-
tion to project a robot’s configuration away from obstacles and

Algorithm 1: CBiRRT(Qs, Qg)

Ta.Init(Qs); Tb.Init(Qg);1

while TimeRemaining() do2

qrand ← RandomConfig();3

qanear ← NearestNeighbor(Ta, qrand);4

qareached ← ConstrainedExtend(Ta, qanear, qrand);5

qbnear ← NearestNeighbor(Tb, qareached);6

qbreached ← ConstrainedExtend(Tb, qbnear, q
a
reached);7

if qareached = qbreached then8

P ← ExtractPath(Ta, qareached, Tb, qbreached);9

return SmoothPath(P);10

else11

Swap(Ta, Tb);12

end13

end14

return NULL;15

toward desirable configurations. The Randomized Gradient
Descent (RGD)[5] method uses random-sampling of the C-
space to iteratively project a sample towards an arbitrary
constraint[6]. Though [5] showed how to incorporate RGD
into a randomized planner, it requires significant parameter-
tuning and they dealt only with closed-chain kinematic con-
straints, which are a special case of the pose constraints used
in this paper. Furthermore, Stilman [7] showed that when
RGD is extended to work with more general pose constraints
it is significantly less efficient than Jacobian pseudo-inverse
projection and it is sometimes unable to meet more stringent
constraints. Inspired by this result, we also use the Jacobian
pseudo-inverse projection method, though our framework can
use any projection method that moves samples on to constraint
manifolds efficiently.

In some previous work the problem of planning for an
object’s motion is subdivided into planning a path in a
lower-dimensional space[8][9] that lies within some manifold
(like the surface of a table) or using a pre-scripted lower-
dimensional path[10][11][12]. The lower-dimensional path is
then followed in the full C-space of the robot. This approach
suffers from feasibility problems because a lower-dimensional
path may not be trackable by the robot because of joint limits
or collisions. The CBiRRT algorithm therefore plans in the
full C-space of the robot, which incurs a larger computational
burden but allows it to handle more general types of constraints
and to find paths through multiple constraint manifolds.

III. THE CBIRRT ALGORITHM

The CBiRRT algorithm (see Algorithm 1) operates by
growing two trees in the C-space of the robot. During each
iteration of the algorithm one of the trees grows a branch
toward a randomly-sampled configuration qrand using the
ConstrainedExtend function. The branch grows as far as
possible toward qrand but may be stalled due to collision or
constraint violation and will terminate at qareached. The other
tree then grows a branch toward qareached, again growing as far

Algorithm 2: ConstrainedExtend(T , qnear, qtarget)

qs ← qnear; qolds ← qnear;1

while true do2

if qtarget = qs then3

return qs;4

else if |qtarget − qs| >
∣∣qolds − qtarget∣∣ then5

return qolds ;6

end7

qolds ← qs;8

qs ← qs + min(∆qstep, |qtarget − qs|) (qtarget−qs)
|qtarget−qs| ;9

qs ← ConstrainConfig(qolds , qs);10

if qs 6= NULL and CollisionFree(qolds , qs) then11

T .AddVertex(qs);12

T .AddEdge(qolds , qs);13

else14

return qolds ;15

end16

end17

Algorithm 3: SmoothPath(P)

while TimeRemaining() do1

Tshortcut ← {};2

i ← RandomInt(1, P.size− 1);3

j ← RandomInt(i, P.size);4

qreached ← ConstrainedExtend(Tshortcut, Pi, Pj);5

if qreached = Pj and6

Length(Tshortcut) < Length(Pi · · ·Pj) then
P ← [P1 · · ·Pi, Tshortcut, Pj+1 · · ·P.size];7

end8

end9

return P ;10

as possible toward this configuration. If the other tree reaches
qareached, the trees have connected and a path has been found.
If not, the trees are swapped and the above process is repeated.

The ConstrainedExtend function (see Algorithm 2) works
by iteratively moving from a configuration qnear toward a
configuration qtarget with a step size of ∆qstep. After each step
toward qtarget, the function checks if the new configuration
qs has reached qtarget or if it is not making progress toward
qtarget, in either case the function terminates. If the above
conditions are not true then the algorithm takes a step toward
qtarget and passes the new qs to the ConstrainConfig function.
The ConstrainConfig function is problem-specific, and several
examples of such functions are given in the example problems.
If ConstrainConfig is able to project qs to a constraint manifold
and this qs is not in collision, the new qs is added to
the tree and the above process is repeated. Otherwise, Con-
strainedExtend terminates (see Figure 2). ConstrainedExtend
always returns the last configuration reached by the extension
operation.

The CollisionFree(qolds , qs) function checks collision by

Fig. 2. Depiction of one extend operation that moves across two manifolds. The
operation starts at qnear , which is a node of a search tree on constraint manifold C1
and iteratively moves toward qtarget, which is a randomly-sampled configuration in
C-space. Each step toward qtarget is constrained using the ConstrainConfig function to
lie on the closest constraint manifold.

stepping along the interval between qolds and qs. Collision-
checking can also be treated as a constraint, and can be
incorporated in to the ConstrainConfig function.

The SmoothPath function uses the “short-cut” smoothing
method to iteratively shorten the path from the start to the
goal[13]. Since we use the ConstrainedExtend function for
each short-cut, we are guaranteed that the constraints will
be met along the smoothed path. Also, it is important to
note that a short-cut generated by ConstrainedExtend between
two nodes is not necessarily the shortest path between them
because the nodes may have been projected in an arbitrary
way. This necessitates checking whether Length(Pshortcut) is
shorter than the original path between i and j.

Besides handling constraints, an important difference be-
tween CBiRRT and the standard BiRRT algorithm is that
multiple start and goal configurations (Qs and Qg , respec-
tively) can be used to initialize the trees. This capability
is important because many of the constraints that we deal
with can invalidate paths between distant configurations. For
instance, moving from an elbow-up configuration to an elbow-
down configuration may not be possible if the end-effector is
constrained to not move in a certain direction. Thus, when we
run CBiRRT, we usually seed it with multiple IK solutions for
both the start and goal configuration of an object we are trying
to manipulate. Implementing this multiple start/goal capability
is also straightforward. If a tree is stored as an array of nodes
with each node containing a pointer to its parent, we define a
placeholder node as the start/goal and set it as the parent of
the Qs/Qg nodes. The algorithm then proceeds as normal.

Another key point is that the BiRRT algorithm is a spe-
cial case of the CBiRRT algorithm. If the ConstrainConfig()
function always returns an unmodified qs (i.e. there are no
constraints) and |Qs| = |Qg| = 1, the CBiRRT and BiRRT
algorithms behave identically.

IV. CONSTRAINTS

Our planner is capable of handling tasks with multiple
constraints as long as each constraint can be evaluated as
a function of the robot’s configuration. The algorithm can
handle arbitrary strategies for dealing with these constraints by
encoding these strategies in the ConstrainConfig function. In
this paper, we focus on two general strategies for dealing with
constraints: rejection and projection. Neither strategy requires
an analytical representation of the constraint manifold.

In the rejection strategy, we simply check if a given configu-
ration of the robot meets a certain constraint, if it does not, we
deem the configuration invalid. This strategy is effective when
there is a high probability of randomly sampling configurations
that satisfy this constraint, in other words, the constraint
manifold occupies some significant volume in the C-space.

The projection strategy is robust to more stringent con-
straints, namely ones whose manifolds do not occupy a
significant volume of the C-space. However, this robustness
comes at the price of requiring a distance function to evaluate
how close a given configuration is to the constraint manifold.
The projection strategy works by using gradient descent to
iteratively reduce the distance to the constraint manifold and
terminates when a configuration is found that is within some
threshold ε of the manifold.

A. Object/End-Effector Pose Constraints

Many of the constraints we deal with are restrictions on
the pose of an object being manipulated by a robot arm or
the arm’s end-effector, which were first discussed in [14].
We assume that the arm has grasped the object it is holding
rigidly, effectively translating constraints on the object into
constraints on the end-effector. Thus we will treat constraints
on the object and constraints on the robot’s end-effector as
conceptually equivalent.

Throughout this paper, we will be using transformation
matrices of the form Tab , which specifies the pose of b in
the coordinates of frame a. Tab , written in homogeneous
coordinates, consists of a 3×3 rotation matrix Rab and a 3×1
translation vector tab .

Tab =
[

Rab tab
0 1

]
(1)

The first step to working with constraints on the object’s
pose is to define a reference transform for the object T0

obj as
well as a reference transform for the constraint T0

c . T0
c can be

stationary in the world (for instance the hinge of a door) or can
change depending on the pose of the object. Constraints are
then defined in terms of the permissible differences between
T0
obj and T0

c as in Equation 2.

C =

cxmin cxmax

cymin cymax

czmin
czmax

cψmin
cψmax

cθmin
cθmax

cφmin cφmax

 (2)

The first three rows of C bound the allowable translation
along the x, y, and z axes and the last three bound the allowable
rotations about those axes, all in the T0

c frame. Note that this
assumes the Roll-Pitch-Yaw (RPY) Euler Angle convention.

Such a representation has several advantages. First, speci-
fying constraints is intuitive as will be shown in the example
problems. Second, this representation allows us to define a
distance function for pose constraints that is very fast to
compute. Given a configuration qs, we define the Displace-
mentFromConstraint(C, T0

c , qs) function as follows:
First compute the forward kinematics at qs to get T0

obj . Then
compute the pose of the object in constraint-frame coordinates.

Tcobj = (T0
c)
−1T0

obj (3)

Then convert Tcobj from a transformation matrix to a 6-
dimensional displacement vector dc, consisting of displace-
ments in x, y, z, roll, pitch and yaw:

dc =

tcobj

arctan2(Rcobj32 ,R
c
obj33)

−arcsin(Rcobj31)
arctan2(Rcobj21 ,R

c
obj11)

 (4)

Taking into account the bounds in C, we get the displace-
ment to this constraint ∆x:

∆xi =

 dci − Cimax
if dci > Cimax

dci − Cimin if dci < Cimin

0 otherwise
(5)

where i indexes through the six rows of C and six elements
of ∆x and dc. The distance to the constraint is then ‖∆x‖.
Note that this distance function is only used when projecting
to pose constraints, the standard Euclidean distance function
is used when selecting nearest-neighbors in the RRT.

B. Using Projection with Pose Constraints

In order to meet pose constraints, we employ a gradient-
descent projection method based on the Jacobian-pseudo in-
verse which is similar to that used in [7] (see Algorithm 4),
however any effective projection method is acceptable.

Algorithm 4: ProjectConfig(qolds , qs, C, T0
c)

while true do1

∆x ← DisplacementFromConstraint(C, T0
c , qs);2

if ‖∆x‖ < ε then return qs;3

J ← GetJacobian(qs);4

∆qerror ← JT (JJT)−1∆x;5

qs ← (qs −∆qerror);6

if
∣∣qs − qolds ∣∣ > 2∆qstep or OutsideJointLimit(qs)7

then return NULL;
end8

The GetJacobian function returns the Jacobian of the ma-
nipulator with the rotational part of the Jacobian in the RPY
convention. Converting the standard angular-velocity Jacobian

to the RPY Jacobian is done by applying the linear transfor-
mation Erpy(q), which is defined in the Appendix of [7].

C. Torque Constraints

Another constraint we will deal with is the constraint
on joint torques when lifting heavy objects. Since we will
be employing the rejection strategy with respect to torque
constraints, we need only calculate the torques on the joints
in a given qs. This is done using standard Recursive Newton-
Euler techniques described in [15]. To incorporate the object
into the robot model, we take a weighted average of the centers
of mass of the end-effector and the object and set that as the
mass and center of mass of the end-effector. We will refer to
the combined mass as m. Note that this formulation only takes
into account the torque necessary to maintain a given qs, i.e.
it assumes the robot’s motion is quasi-static.

So far this section has described how to find displacements
to a given constraint and how to handle torque constraints.
However when there are multiple constraints, the planner must
make decisions about which constraints to project to and
must sometimes use a combination of rejection and projection
strategies to plan a path. In the following three sections, we
describe three example problems which deal with various
constraints and show effective methods for planning paths
for these problems based on the above two strategies.We also
describe implementation details and simulation results for an
instance of each type of problem.

V. EXAMPLE A: THE MAZE PUZZLE

In this problem, the robot arm must solve a maze puzzle by
drawing a path through the maze with a pen (see Figure 3(a)).
The constraint is that the pen must always be touching the table
however the pen is allowed to pivot about the contact point up
to an angle of α. We define T0

obj to be at the tip of the pen with
no rotation relative to the world frame. We define T0

c to be at
the height of the table at the center of the maze with no rotation
relative to the world frame (z being up). This example is meant
to demonstrate that CBiRRT is capable of solving multiple
narrow passage problems while still moving on a constraint
manifold. It is also meant to demonstrate the generality of the
CBiRRT; no special-purpose planner is needed even for such
a specialized task. The ConstrainConfig function used for this
example is shown in Algorithm 5.

A. Implementation and Results

The robot’s base is fixed in this problem. IK solutions were
generated for both the start and goal position of the pen using
the given grasp and input as Qs and Qg . For this example
we place the base roughly halfway between the start and goal
positions of the object such that it does not collide with any
obstacles. We then compute all IK solutions for both the start
and goal positions of the object up to a 0.05rad discretization
of the arm’s first joint angle. The values in Table I represent
the average of 10 runs for different α values. Runtimes with
a “>” denote that there was at least one run that did not

Fig. 3. Example problems. (a) Maze Puzzle (b) Heavy object with sliding surfaces (c)
Heavy object with sliding surfaces and pose constraints. Yellow planes represent surfaces
that can be used for sliding.

α(rad.) 0.0 0.1 0.2 0.3 0.4 0.5

Avg. Runtime(s) >83.5 >58.8 >49.0 19.5 14.3 15.2
Success Rate 40% 60% 90% 100% 100% 100%

TABLE I: SIMULATION RESULTS FOR EXAMPLE A

terminate before 120 seconds. For such runs, 120 was used in
computing the average. ∆qstep = 0.05 and ε = 0.001.

The shorter runtimes and high success rates for larger α
values demonstrate that the more freedom we allow for the
task, the easier it is for the algorithm to solve it. This shows
a key advantage of formulating the constraints as bounds on
allowable pose as opposed to requiring the pose of the object
to conform exactly to a specified value. For problems where
we do not need to maintain an exact pose for an object we
can allow more freedom, which makes the problem easier. See
Figure 4 for an example trajectory of the tip of the pen.

VI. EXAMPLE B: HEAVY OBJECT WITH SLIDING
SURFACES

In this problem the task is to move a heavy object (a
dumbbell in this example) from a start position to a given goal
position (see Figure 3(b)). It is not known a-priori whether the
object is light enough to lift directly from its start position or if
it can be placed directly into its goal position without sliding.
Sliding surfaces are also provided so that the planner may
use these if necessary. Each sliding surface is a rectangle of

Fig. 4. A trajectory found for Example A using α = 0.4rad. The black points
represent positions of the tip of the pen along the trajectory.

Algorithm 5: ConstrainConfig(qolds , qs) for Example A

C = [−∞ ∞; −∞ ∞; 0 0; −α α; −α α; −∞ ∞];1

T0
c = CenterOfTable();2

return ProjectConfig(qolds , qs,C,T0
c);3

known bounds with an associated surface normal. In general,
the surfaces may be slanted so they may only support part
of the objects’s weight. Each sliding surface gives rise to a
constraint manifold and there can be any number of sliding
surfaces. g is a unit vector representing the direction of gravity
in homogeneous coordinates; for our problem g = [0 0 -1 0]T .

The GetNearestSlidingFrame function (based on the dis-
placement defined in Equation 5) returns the T0

c of the
nearest sliding surface (see Figure 5) along with the constraint
describing that surface, which will be of the form C = [−tw
tw; −tl tl; 0 0; 0 0; 0 0; −∞ ∞], where tw and tl are
the half-width and half-length of the surface. In Algorithm
6 ProjectionConfig is called with this C so that T0

obj moves
toward the closest point on the closest surface.

A. Implementation and Results

We ran this example for both the fixed and mobile base
cases. When planning with a mobile base, we allow translation
of the base in x and y to be considered as two additional
DOF of the robot. No non-holonomic constraints are placed
on the base’s motion. For the fixed base mode, we generate Qs
and Qg the same way as in the Maze Puzzle. For the mobile
base mode, we sampled 200 random base positions in a circle
around the start and goal of the dumbbell and computed all IK
solutions (to a 0.05rad discretization of the first joint) for each
base position. All the collision-free IK solutions were input
as Qs and Qg . The values in Table II represent the average
of 10 runs for different weights of the dumbbell. Runtimes
with a “>” denote that there was at least one run that did not
terminate before 120 seconds. For such runs, 120 was used
in computing the average. The weight of the dumbbell was

Fig. 5. Depiction of the GetNearestSlidingFrame function for choosing a sliding
manifold. The shortest distance from T0

obj to T0
ci

(computed using the Displacement-
ToConstraint function) determines which surface is chosen for projection.

Algorithm 6: ConstrainConfig(qolds , qs) for Example B

if CheckTorque(qs, m) then return qs;1

{T0
c , C} ← GetNearestSlidingFrame(qs);2

ms = m(1− CLAMP(−g · T0
c [0, 0, 1, 0]T , [0 1]));3

if ProjectConfig(qolds , qs, C, T0
c) and4

CheckTorque(qs, ms) then5

return qs;6

else7

return NULL;8

end9

increased until the algorithm could not find a path within 120
seconds in any of the 10 runs. ∆qstep = 0.05 and ε = 0.001.

Weight 7kg 8kg 9kg 10kg 11kg 12kg 13kg 14kg

Fixed Base
Avg. Runtime(s) 1.89 2.06 3.84 5.51 7.29 12.4 27.5 >53.9

Success Rate 100% 100% 100% 100% 100% 100% 100% 80%
Mobile Base
Avg. Runtime(s) 12.9 22.1 17.5 33.5 57.3 >105 >110 >120

Success Rate 100% 100% 100% 100% 100% 40% 40% 0%

TABLE II: SIMULATION RESULTS FOR EXAMPLE B

The shorter runtimes and higher success rates for lower
weights of the dumbbell match our expectations about the
constraints induced by torque limits. As the dumbbell becomes
heavier, the manifold of configurations with valid torque
becomes smaller and thus finding a path through this man-
ifold becomes more difficult. See Figure 7 for two sample
trajectories illustrating this concept. The mobile base tends to
not do as well as the fixed base in this example because the
addition of the base’s DOF expands the size of the C-space
exponentially, thus making the problem more difficult.

We also implemented this problem on our physical WAM
robot. Snapshots from three trajectories for three different
weights are shown in Figure 6. As with the simulation en-
vironment, the robot slid the dumbbell more when the weight

Fig. 6. Experiments on the 7DOF WAM arm for three different dumbbells. Top Row: m = 4.98kg. Middle Row: m = 5.90kg, and Bottom Row: m = 8.17kg. The trajectory
for the lightest dumbbell requires almost no sliding, where as the trajectories for the heavier dumbbells slide the dumbbell to the edge of the table.

was heavier and sometimes picked up the weight without any
sliding for the mass of 4.98kg. Note that we take advantage of
the compliance of our robot to help execute these trajectories
but in general such trajectories should be executed using an
appropriate force-feedback controller. Please see our video at:

http://www.cs.cmu.edu/%7edberenso/constrainedplanning.mp4

VII. EXAMPLE C: HEAVY OBJECT WITH SLIDING
SURFACES AND POSE CONSTRAINT

This problem is similar to the previous one except that there
is a constraint on the pose of the object throughout the task.
The example we use for this kind of task is getting a pitcher
of water out of a refrigerator and placing it on a counter
(see Figure 3(c)). Since the top of the pitcher is open, we
must impose a constraint on the pose of the pitcher so that
the water does not spill out. Again, we do not know a priori
whether the pitcher is light enough to simply lift out of its start
configuration or to place directly in its goal position without
sliding. While this task is more complex than the previous
one, it only requires the addition of the line

if ProjectConfig(qolds , qs,Cnt, I)=NULL then return NULL;

before line 1 in Algorithm 6. Cnt = [−∞ ∞; −∞ ∞; −∞
∞; 0 0; 0 0; −∞∞] specifies the no-tilting constraint bounds
and I is the identity transform. Since we do not want to spill
the water while sliding, only non-tilted sliding surfaces are
considered in this problem.

A. Implementation and Results

This example was also run for the fixed base and mobile
base cases. Qs and Qg are generated the same way as in the
previous example. The weight of the pitcher is incremented
and runtimes are averaged as with the previous example. The
results are summarized in Table III. The center of gravity of

Fig. 7. Two trajectories for example B using a fixed base. Left: Trajectory found
for m = 7kg, Right: Trajectory found for m = 12kg. Green nodes represent points
in the trajectory where the dumbbell is sliding, purple nodes represent points where the
dumbbell is not sliding. In the 7kg case, completing the task does not require much
sliding of the dumbbell and it can be lifted high above the robot. In the 12kg case the
weight of the dumbbell prohibits lifting it above the robot and necessitates more sliding
along the tables.

the pitcher was set to be the same as the center of gravity of the
weight to make the results of the two problems comparable.
∆qstep = 0.05 and ε = 0.001.

Weight 5kg 6kg 7kg 8kg 9kg 10kg 11kg 12kg

Fixed Base
Avg. Runtime(s) 2.79 15.8 18.1 >39.1 >120 >120 >120 >120

Success Rate 100% 100% 100% 90% 0% 0% 0% 0%
Mobile Base
Avg. Runtime(s) 31.2 54.9 57.8 >78.3 >104 >80.9 >90.7 >115

Success Rate 100% 100% 100% 90% 60% 80% 60% 20%

TABLE III: SIMULATION RESULTS FOR EXAMPLE C

The results of this problem demonstrate the advantages of
having a mobile base in cluttered environments. The fixed base
is placed close to both the start and goal locations of the object
so that it can pull the object close to its body while keeping
it on a sliding surface, thus maintaining a low torque when it
lifts the object. However, in order to get from the refrigerator

to the counter, the robot must lift the pitcher over its own body
to avoid collisions, which requires more torque. This make it
difficult to pick a position for the base that will work with
larger weights because the base must be close enough to the
refrigerator and counter to lift the object off of the sliding
surfaces but must be far enough so that the robot can move
the pitcher between the refrigerator and the counter without
requiring a lot of torque. The mobile base is preferable in this
situation because it can access both the refrigerator and the
counter by moving the base closer to them and maintaining
low torques for the arm. It can then drive from the refrigerator
to the counter while keeping the arm in roughly the same
position, thus requiring no increase in torque. See Figure 8
for sample trajectories both with and without the mobile base.

VIII. DISCUSSION

One of the CBiRRT’s main strengths is that it is able
to plan with a variety of constraints, several of which have
been described in this paper. Composing these constraints has
allowed us to plan for manipulation tasks that were previously
unachievable in the general case. However, so far the con-
straints we have considered only apply to configurations of
the robot so the resulting trajectory is only valid assuming the
robot’s motion is quasi-static. This is a common assumption
when planning trajectories in high dimensional spaces but
RRTs have been applied to kinodynamic (position-velocity)
spaces as well[16]. Planning in kinodynamic space incurs the
disadvantages of doubling the dimensionality of the space,
introducing difficulty in connecting search trees, and relying
on an unclear distance metric. As an alternative to kinody-
namic planning, we could impose a worst-case constraint on
edges in the CBiRRT. Assuming bounds on the velocity and
acceleration of the robot, we can determine the worst-case
torques the robot will need to apply to move between two
configurations and determine if those torques exceed the limits.
Such a strategy would be useful for sliding a heavy object
on surfaces with significant friction. Applying such an edge
constraint in the smoothing step can guarantee that a trajectory
found by CBiRRT can be executed within a certain time.

Another limitation of the CBiRRT is that it currently as-
sumes that an object has only one reference transform T0

obj ,
however this may be insufficient. The dumbbell we used could
have slid on either the top or the bottom surface, however
since there is only one reference transform for the end-
effector/object, we are currently limited to using only one of
these sliding modes. We plan to continue development of the
CBiRRT and address these issues in future work.

IX. CONCLUSION

We have presented the CBiRRT algorithm for planning
paths in C-spaces with multiple constraints, including con-
straints on end-effector pose, joint torques, and following
workspace surfaces. We have shown how to formulate these
constraints and how to include them into our algorithm using
combinations of rejection and projection strategies. Finally,
we have presented several example problems on the 7DOF

Fig. 8. Left: Trajectory found for m = 8kg using a fixed base. Right: Trajectory
found for m = 12kg using a mobile base. Green nodes represent points in the trajectory
where the pitcher is sliding, purple nodes represent points where the pitcher is not sliding.
When m = 8kg, the pitcher can be lifted over the body of the robot to avoid collision
but when m = 12kg, the fixed base mode fails because the pitcher cannot be lifted over
the body of the robot.

WAM arm with a mobile base and showed that our planner
is capable of solving complex problems involving diverse and
stringent constraints that were previously unsolvable in the
general case.

REFERENCES

[1] S. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” International Journal of
Humanoid Robotics, 2005.

[2] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” in WAFR, 2000.

[3] M. Branicky, M. Curtiss, J. Levine, and S. Morgan, “RRTs for nonlinear,
discrete, and hybrid planning and control,” in Proc. IEEE Conf. on
Decision and Control, 2003, pp. 657–663.

[4] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manipu-
lators, 2nd ed. Springer, 2000, pp. 96–100.

[5] J. Yakey, S. LaValle, and L. Kavraki, “A probabilistic roadmap approach
for systems with closed kinematic chains,” in IEEE Transactions on
Robotics, 2001.

[6] Z. Yao and K. Gupta, “Path planning with general end-effector con-
straints: Using task space to guide configuration space search,” in IROS,
2005.

[7] M. Stilman, “Task constrained motion planning in robot joint space,” in
IROS, 2007.

[8] Y. Koga, K. Kondo, J. Kuffner, and J. Latombe, “Planning motions with
intentions,” in SIGGRAPH, 1994.

[9] K. Yamane, J. Kuffner, and J. Hodgins, “Synthesizing animations of
human manipulation tasks,” in SIGGRAPH, 2004.

[10] S. Seereeram and J. Wen, “A global approach to path planning for
redundant manipulators,” Robotics and Automation, IEEE Transactions
on, vol. 11, no. 1, pp. 152–160, Feb 1995.

[11] G. Oriolo, M. Ottavi, and M. Vendittelli, “Probabilistic motion planning
for redundant robots along given end-effector paths,” in IROS, 2002.

[12] G. Oriolo and C. Mongillo, “Motion planning for mobile manipulators
along given end-effector paths,” in ICRA, 2005.

[13] P. Chen and Y. Hwang, “SANDROS: a dynamic graph search algorithm
for motion planning,” Robotics and Automation, IEEE Transactions on,
vol. 14, no. 3, pp. 390–403, Jun 1998.

[14] M. Mason, “Compliance and force control for computer controlled
manipulators,” IEEE Trans. on Systems, Man, and Cybernetics, 1981.

[15] M. Walker and D. Orin, “Efficient dynamic computer simulation of
robotic mechanisms,” ASME Journal of Dynamic Systems Measurement
and Control, vol. 104, pp. 205–211, 1982.

[16] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” Inter-
nation Journal of Robotics Research, vol. 20, Jun 2001.

