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Our study aims to strengthen truthfulness of the two-path mechanism: an information
diffusion algorithm to find an influential node in non-cooperative directed acyclic graphs

(DAGs). This subject is important because the two-path mechanism ensures only weak

truthfulness (i.e., nodes are indifferent between reporting true or false out-edges), which
restricts node selection accuracy. To enhance the mechanism, we employed an additional

reward layer based on a multi-task peer prediction, where an informative equilibrium

provides strictly higher rewards than any other equilibrium in virtually all cases (strong
truthfulness). Rewards, which are derived from a comparison of each report, encourage

a node to report true out-edges without affecting its own probability of being selected

by the original two-path mechanism. We have also experimentally confirmed that our
proposed strongly truthful two-path mechanism can sufficiently elicit true out-edges from

each node.

Keywords: peer prediction, information diffusion, mechanism design, directed acyclic
graph

1. Introduction

When considering information-diffusion mechanisms used to find an influential node in a given

non-cooperative network, truthfulness (also called strategy-proofness or incentive compatibility)

is an important condition that intuitively represents the situation where no agent can obtain

a higher utility by any possible strategy deviating from the agent’s true preferences (e.g.,

[1]). An example to highlight its importance would be the selection from a directed network

on intellectual contents, such as webpages and patents. If the adopted selection mechanismsa

(e.g., PageRank [2], HITS [3]) were common knowledge for participants of the network, then a

aSee definition 1.
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selfish node (webpage, patent) would deliberately add or remove its out-edges (link, citation)

to increase the probability of being selected by the mechanism. In other words, the nodes

seeking to be influential might strategically misreport their own out-edges as long as the

selection mechanism is not truthful.

The two-path mechanism [4] achieves truthfulness in information diffusion on directed

acyclic graphs (DAGs). This mechanism specifically regards an influential node as the first

intersection of two independent random paths drawn by letting each node report its own

out-edges. This is particularly noteworthy because a node can no longer manipulate its own

probability of becoming an intersection at the point it reports its out-edges. Such simple

but effective modeling brought truthfulness to influential node selection in non-cooperative

DAGsb. A remaining concern here is that the two-path mechanism ensures only weak truthful-

ness, which means that nodes are indifferent between reporting true or false out-edges. The

accuracy of node selection would be restricted under this weak condition, where even rational

nodes do not necessarily report true out-edges.

Accordingly, the aim of this study is to strengthen the truthfulness of the two-path mech-

anism, thereby improving its accuracy. To achieve this objective, we employed an additional

reward layer based on the peer-prediction method, which is a mechanism used to elicit infor-

mative truthful reports for problems with no ground truth (e.g., customer review in Amazon,

peer review of academic papers) by comparing them with other reports associated with the

same task.

Fig. 1. Our model intends to elicit true DAG structure by giving positive (negative) rewards for

truthful (false) reports on its edges.

We can present this approach using a simple example in Fig. 1, assuming that true out-edges

for a node x are (x, 2) and (x, 3). Whereas x can report any out-edge to the powerset of

{1, 2, 3} without the reward layer, x would be induced to report truthfully if peer-prediction

method could provide rewards (penalties) for the report on true (false) out-edges. Our model

is an enhanced two-path mechanism in which reporting itself generates new rewards, and their

expected amount is maximized if nodes report true edge structures.

This merger has significance from a peer-prediction perspective. Peer-prediction method,

which assumes that a group of agents evaluates one independent taskc, would be difficult to

apply simply to an interdependent tasks such as network structure, where a new edge (a

task to be verified) might affect the rewards of all nodes (agents) indirectly across group

bBabichenko et al. [4] mentions that two-path mechanism is also useful for directed cyclic graphs (DCGs) like
Twitter’s social network, by assigning random order to each node.
cSee Fig. 3 as an example.
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Table 1. Our model for overall diffusion ensures strong truthfulness.

Weakly truthful Strongly truthful

One-step diffusion
(voting, reviewing)

Impartial selection mechanism
e.g., [11, 12]

Multi-task peer prediction
e.g., [5, 6]

Overall diffusion
(information diffusion)

Two-path mechanism
[4]

Our model

boundaries. Although peer-prediction works in the case of eliciting only network structure,

each report would be biased if the elicited network were used as a criteria to select influential

nodes (interdependent rewards). Consequently, to avoid the complicated mechanism designs,

it would be practical for such a network to first secure weak truthfulness (i.e., an environment

for impartial reporting) by the two-path mechanism and then introduce peer prediction.

Among many preceding peer-prediction methods, we adopt the mechanism presented by

Dasgupta and Ghosh [5] for the following three reasons. First and foremost, this mechanism

satisfies strong truthfulness [6], where an equilibrium by truthful reports has the highest re-

wards among any other realistic equilibria. Although many peer-prediction methods have

multiple equilibria with homogeneous rewards, [5] achieved strong truthfulness for the first

time because of its multi-task approach, which allocates several tasks to one agent and com-

putes rewards based on various reports. Given the objective of our research, the addition

of peer prediction is expected to satisfy a stronger condition than weak truthfulness to the

greatest possible degree. Secondly, this mechanism, which only requires the report of assigned

tasks, is minimal [6], thereby maintaining the original simplicity of the two-path mechanismd.

In our proposed mechanism, a node only needs to additionally assess its own in-edges with

binary signals. Thirdly, unlike some earlier mechanisms (e.g., [9, 10]), this mechanism is

detail-free [6] in that the designer requires no knowledge about the probability distribution

of model components. This condition is important for the two-path mechanism, originally

designed to search an unobservable network structure.

The remainder of this paper is organized as follows. After introducing related works, we

present our model which is referred to as the strongly truthful two-path mechanism in Section

2, along with the outline of its component elements [4, 5]. Section 3 examines the practical

utility of our proposition through simulation by both synthetic and real-world DAG data.

Conclusions and future works are presented in Section 4.

1.1. Related Work

Work related to our approach can be generally organized into an impartial selection mecha-

nism as a background of the two-path mechanism combined with the peer-prediction method.

Moreover, the classification presented in Table 1 is expected to help clarify the finding in our

work.

1.1.1. Impartial selection mechanism

dIn other peer-prediction mechanisms, agents must do another type of reporting, such as the report of their
belief prior to signal observation [7] and prediction of other agents’ reports [8].
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Previous representative studies of impartial selection mechanisms include those by Alon et al.

[11] and Holzman and Moulin [12], which address the difficulty of strategic manipulation when

a group of peers selects one (or more) winner using reciprocal voting. They proposed weakly

truthful mechanismse, whereby no agent can improve its own probability of being selected by

strategic voting, while formulating the problem as a directed graph, where nodes and edges

denote agents and voting directions, respectively. This research issue has been developing into

several themes, such as an analysis of optimal group sizes and winners [13] and an attempt

to generalize binary voting to quality evaluations [14]. The two-path mechanism [4] is the

first extension of these selection mechanisms to use information diffusion in non-cooperative

networks. Actually, [4] described this novelty as a shift from one-step diffusion to overall

diffusion. The former merely confirms the in-degree of each node as the number of advocates,

whereas the latter (e.g., [2, 15]) uses the entire network structure to measure the influence of

each node.

Following an earlier contribution by [4], our work further enhances the robustness of this

context from weakly truthful to strongly truthful by leveraging multi-task peer prediction, as

presented in Table 1 above.

1.1.2. Peer-prediction method

Peer prediction was first introduced by Miller et al. [9] as an application of the proper scoring

rule [16] and game theory. To model the problem of eliciting private information, [9] allows

each agent to report probabilistic but correlated signals associated with the tasks. The method

calculates rewards (scores) based on how much the report will affect another reference report

on the same task. A common problem in [9] and subsequent models, as examined explicitly in

a report by [17], is that the mechanism has multiple Nash equilibria, including uninformative

ones where reports are independent of the observed signalsf(e.g., always report the same

signals or random signals to avoid the effort of observation). In addition to increasing the

number of reference reports [10], Dasgupta and Ghosh [5] proposed a more simplified multi-

task mechanism as a solution to this problem. This mechanism realizes strong truthfulness to

other uninformative equilibria under the assumption of positively correlated binary signals.

More recent studies generalize multi-task peer prediction from binary to multiple signals

[6] and computationally simulate its convergence to an equilibrium [18]. See the book [19],

for more comprehensive review on peer-prediction method and other information elicitation

models.

To the best of our knowledge, we use such multi-task peer prediction for information

diffusion in non-cooperative networks for the first time. A paper by Mohite and Narahari [20]

is the only report in the relevant literature that describes the use of a peer-prediction-like

mechanism in a similar field of research. However, their model, with a single-task mechanism,

is not strongly truthful and deals with an independent cascade [15], which is a different

influence measurement from what is evaluated in this study.

2. Model

Before presenting a detailed description, we first present basic settings and definitions of the

eWeak truthfulness is often designated as impartiality in this research field.
fUninformative equilibria are designated as a blind agreements in [5].
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equilibrium concepts used in the development of our model.

Definition 1: A selection mechanism M is a function that gives for every G(V,E) a proba-

bility distribution on V ∪ {∅}.

Our work is a selection mechanism M with the above definition, which is quoted from [4].

Here, G(V,E) denotes a DAG (truthfully exists) which comprises nodes V = {1, 2, · · · , v}
and directed edges E ⊆ V × V . The empty-set {∅} implies that the mechanism might not

select any node in some cases.

A common property in M is to make any node x ∈ V reports on any potential edge

t ∈ V × V in G (note that t ∈ E does not always hold). As described herein, we designate t

as task. Also, Tx,M is the set of tasks that x can report in M. Each report r is specified as

rtx when done from x to t, or just as rx when its task need not be emphasized. In addition,

let Rx denote the set of r that x accomplished by picking tasks from Tx,M. Furthermore, R∗x
is specifically Rx, where the elements are all truthful reports.

Whether a report is truthful or not is represented by the stochastic signal s, which any x

can observe from each t and can use it as input information for reporting. Our model assumes

binary signals s ∈ {0, 1} and binary reports r(s) ∈ {0, 1} (0, disapproval; 1, approval), and

uses notations stx, sx in the same manner with reporting. That is, node x supports the

existence of an edge (task) t if rtx(stx) = 1 and does not support it if rtx(stx) = 0. This report

is truthful in rtx(0) = 0 or rtx(1) = 1 case and is not truthful in rtx(0) = 1 or rtx(1) = 0 case.

We add two more assumptions, which are both common in the literature on peer predic-

tion for binary signals (e.g., [17, 7, 5]). First, s, observed by each node from each task,

is positively correlated. Therefore, when we pick another reference node x̂ ∈ V , both

Pr(sx = 0|sx̂ = 0) > Pr(sx = 0) and Pr(sx = 1|sx̂ = 1) > Pr(sx = 1) hold for all x and x̂g.

Secondly, x adopts a uniform reporting strategy which Rx must follow. The set of strategies

feasible in our model is depicted in Fig. 2, which shows the union of mapping strategies and

uninformative (signal-independent) strategies. Mapping strategies literally follow a mapping

rule from signals to reports; on the other hand, reports in uninformative strategies follow a

given stochastic distribution independent of observed signalsh. In the four possible mapping

strategies under the assumption of binary signals, we especially define a strategy that always

reports the truth as truthful strategy, and a strategy that always reports non-truth as opposite

strategy. R∗x is achieved when x adopts truthful strategy.

Here, assuming that x in M obtains some expected utility, Ex,M through Rx (and Ex,M
might be affected by the reports done by other nodes), the truthfulness of a mechanism can

be defined as follows:

Definition 2: Selection mechanism M has the following characteristics.

• Truthful, if Ex,M(R∗x, R−x) ≥ Ex,M(Rx, R−x) holds for all x,Rx, R−x,

• Weakly truthful, if Ex,M(R∗x, R−x) = Ex,M(Rx, R−x) holds for all x,Rx, R−x,

gAccordingly, Pr(sx = 1|sx̂ = 0) < Pr(sx = 1) and Pr(sx = 0|sx̂ = 1) < Pr(sx = 0) hold, simultaneously.
hNote here that the strategy to keep reporting always 0 (and always 1) can be classified as both mapping and
uninformative strategies.
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Fig. 2. Nodes (agents) can take either mapping or uninformative strategies for reporting.

where R−x = (R1..., Rx−1, Rx+1..., Rv). Intuitively, using truthful selection mechanisms, a

node can maximize its expected utility with a truthful strategy, irrespective of the reports

done by other nodes. However, all nodes have the same expected utility no matter what they

report when the selection mechanism is weakly truthful. Weak truthfulness is a necessary

condition of truthfulness.

Although details are discussed in 2.2 and 2.3, the multi-task peer prediction that is part of

the foundation of our model calculates the reward of a node x by comparison of one reference

node whose reports that include at least one common task with x. If notation x̂ is used again,

then strong truthfulness [6] can be defined as follows:

Definition 3: A selection mechanismM is strongly truthful if Ex,M(R∗x, R
∗
x̂) ≥ Ex,M(Rx, Rx̂)

for all x, x̂, Rx, Rx̂. Equality might occur only when both x and x̂ adopt the opposite strategyi.

Consequently, unlike weakly truthful selection mechanisms, strongly truthful selection mech-

anisms can assign strictly higher expected utility to the truthful strategy compared to any

other strategy in virtually all cases. This equilibrium concept is weaker than truthfulness in

terms of being dependent on the reports done by a reference node.

2.1. Two-path mechanism

In the two-path mechanism (we use the notationM2p, according to [4]), as already described,

an influential node is the first intersection of the two independent random paths drawn on

DAGs.

Specifically, M2p follows the iterative process presented in Algorithm 1 (which is quoted

from [4]), where the two random paths {P1, P2} are drawn repeatedly until they intersect or

until all nodes in the network are marked. This mark, denoted by the set U , is attached to

all nodes on which the two paths have passed when they do not intersect. The marked nodes

will never be selected as an influential node z. Since M2p is designed for the environment

i The original definition by [6] generalizes both truthful strategy and opposite strategy as a permutation strategy
in order to encompass the case of multiple (non-binary) signals.
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Algorithm 1 Two-path mechanism M2p by [4]

1: U ← ∅
2: while U 6= V do
3: Pick x ∈ V uniformly at random
4: P1 ← random path starting at x
5: Pick y ∈ V uniformly at random
6: P2 ← random path starting at y
7: if P1 ∩ P2 = ∅ then
8: U ← U ∪ P1 ∪ P2

9: else
10: z ← the first vertex in P1 ∪ P2

11: if z ∈ U then
12: return ∅
13: else
14: return z
15: end if
16: end if
17: end while

where all nodes are selfish and wish to be selected as an influential one, we can write Ex,M2p

as

Ex,M2p = Pr(M2p = x),

where Pr(M2p = x) stands for the probability that M2p selects x.

It must be emphasized that {P1, P2} are drawn by the random-walking on the out-edges

elicited from each node because the designer behind M2p cannot observe the true network

structure. This random-walking enables us to define Tx,M2p
(the set of tasks for x in M2p)

as x’s potential out-edges, as

Tx,M2p = {(x, v) ∈ P × V | x 6= v},

where we define P ⊆ V as the set of nodes with total order, which denotes a path being

drawn. Since x can report any out-edge except the self-edge, |Tx,M2p
| = |V | − 1. Our study

consistently assumes that x reports 0 for all tasks in Tx,M2p
other than the tasks it explicitly

reported as 1. Namely, reporting is to divide Tx,M2p
into the two subsets: 0 (non-existing

edges) and 1 (existing edges). The node would be the end point of the path if it reported 0

for all tasks in Tx,M2p
.

An earlier report [4] presents the argument that M2p consisting of the above settings

is truthful in DAGs, and it can select influential nodes with sufficient accuracyj. However,

strictly speaking, this mechanism satisfies only weak truthfulness.

Proposition 1: M2p is weakly truthful in DAGs.

Proof: The proof of proposition 3.1 expressed in an earlier report [4] is illustrative. This

proof describes that all nodes can no longer manipulate their probability of becoming the first

jSee original paper [4] for the definition of influential and accuracy.
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intersection at the point of reporting, regardless of the out-edges they report. In other words,

Ex,M2p
is neutral with respect to Rx. This outcome corresponds to weak truthfulness.

Therefore, the M2p, where truthful reporting and misreporting are indifferent for all x ∈ V ,

cannot always draw random paths on true directed edges E(G), even if all nodes report

rationally to maximize their expected utility. Whereas [4] uses given DAGs for experiments

to confirm the accuracy of M2p on the grounds of its truthfulness, the possibility remains

that nodes misreport their out-edges.

2.2. Multi-task peer prediction

To overcome such weak-truthfulness, we introduced multi-task peer prediction [5] to the DAGs

as an additional reward layer. This model requires each node (agent) to report on at least

two tasks, and calculates rewards to x when the two nodes (x and a reference node x̂) report

on a common taskk. An important property on multi-task peer prediction is that its reward

computation uses not only the reports that x and x̂ did to a common task, but also the reports

that x and x̂ have done to other assigned tasks. According to earlier studies [5, 6], we can

formulate the amount of reward σt
x when x has a common task t as

σt
x =

[
rtx · rtx̂ + (1− rtx)(1− rtx̂)

]
− (hx,0 · hx̂,0 + hx,1 · hx̂,1),

where hx,0 = |{rx∈Rx|rx=0}|
|Rx| and hx̂,0 = |{rx̂∈Rx̂|rx̂=0}|

|Rx̂| are both empirical frequencies with

which x and x̂ report signal 0 to all assigned tasks (thus, hx,1 = 1 − hx,0 and hx̂,1 = 1 −
hx̂,0). The terms in square brackets are the reward for agreement. It is apparent that the

value of 1 is obtained when two reports return the same signal (rtx, r
t
x̂) = (0, 0) or (1, 1);

otherwise it is 0. The remaining terms are a kind of penalty, which increases as x and x̂

repeat uninformative signal-independent reports. Presuming that x and x̂ always report 1 for

assigned tasks irrespective of the signals, σt
x = 0 holds because penalty terms become 1 even

though a common task between x and x̂ always engenders a reward of 1. A similar result would

be derived in the case of fifty-fifty uninformative strategy (i.e., Pr(r = 0) = Pr(r = 1) = 0.5)

because the expected value of reward terms and penalty terms both become 0.5. Note that

the empirical frequency-based penalty can be interpreted as the expected value of the case

where we randomly select rx ∈ Rx and rx̂ ∈ Rx̂, and assign penalty 1 if they are identical

or assign 0 otherwisel. Actually, σt
x could be negative in case of disagreement because of the

penalty termsm. Although not crucially important for our discussion, we can also make all

rewards positive by adding 1 to all σt
x as a basic reward because penalty terms do not exceed

1.

The original report [5] indicated that the expected (net) reward for a common task E(σt
x)

is maximized in the equilibrium where all nodes adopt the truthful strategy by exerting effort

on signal observation, under the assumption of positively correlated signals. Furthermore,

subsequent studies [6, 18] defined this contribution as strong truthfulness and pointed out

the following necessary conditions to establish multi-task peer prediction without loss of

generality: (i) two agents, (ii) three total tasks, (iii) two or more tasks per agent including at

kThis type of peer prediction method is in some cases designated as an output agreement (OA).
l We use this interpretation for the proof of theorem 1.
mAs described in Section 3, all nodes in our model would have negative total rewards.
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least one common task, and (iv) the environment where each node cannot identify in advance

which of the assigned tasks will be the common task.

Fig. 3. In this minimum multi-task peer prediction, node x (x̂) reports on signals {st2x , st3x }
({st1x̂ , s

t2
x̂ }) emitted from tasks {t2, t3} ({t1, t2}), and common task is t2.

Using the notation in our model, we can depict the minimum model reflecting these

conditions as Fig. 3 above, where x and x̂ can obtain reward or penalty to the common task

t2. Although σt
x uses all reports {rt1x̂ , r

t2
x̂ , r

t2
x , r

t3
x } for reward computation, x and x̂ do not

know which of the two assigned tasks will generate rewards.

2.3. Strongly truthful two-path mechanism

We now present the strongly truthful two-path mechanism (Mst2p), which is essentially a

hybrid of methods described in Sections 2.1 and 2.2.

2.3.1. Settings

First, the expected utility Ex,Mst2p
is defined as a simple combinationnof both components as

Ex,Mst2p
= Pr(Mst2p = x) + E(σt

x).

However, we cannot have any common task under the assumption of Tx,M2p where nodes

report only their out-edges. Mst2p therefore newly allows each node to report its in-edges.

This extension can be expressed as

Tx,Mst2p
= Tx,M2p

∪ {(v, x) ∈ V × P | x 6= v}.

In-edge reporting is done in a same manner as out-edge reporting: a node x reports 1 to the

exsiting in-edges and out-edges and reports 0 to all other tasks in Tx,Mst2p
o. Because every

nodes in a path needs to make |Tx,Mst2p | = 2(|V | − 1) reports, x would obtain a number of

common tasks as a result of the two-path drawings. Mst2p picks one common task t uniformly

at random from them and computes σt
x according to multi-task peer prediction method by

nIt might be unnatural to combine two different types of the terms: Pr(Mst2p = x) and E(σt
x), but this is

not critical to our discussion, as we show in proposition 2.
oIn the adjacency matrix for a DAG composed with V = {1, 2, · · · , v}, the out-edge and in-edge reports by
node x correspond to the declaration of x-th row and x-th column, respectively.
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[5]. Here, we assume that (rtx, r
t
x̂) = (0, 0) is excluded from the candidates of the common

task for reward computation in order to make Mst2p practical in a DAG with low densityp.

To establish compatibility between the two-path mechanism and multi-task peer predic-

tion, we further add two assumptions to in-edge reporting. First, the result of in-edge reports

have no priority over that of out-edge reports. Once an out-edge report r
(x̂,x)
x̂ = 1 is done,

Mst2p accepts the existence of the edge (x̂, x) even if an in-edge report r
(x̂,x)
x = 0 is done

before and after the out-edge report (and vice versa). In other words, an in-edge report is an

assessment and does not directly determine the DAG structure. Secondly, a node cannot know

the result of in-edge reports done by the nodes on the other path until it finishes reporting.

This assumption is important for the two-path mechanism to prevent nodes from abusing

in-edge reports to manipulate their probability of being selected as the first intersection of

two paths. These are all settings to construct Mst2p.

2.3.2. Algorithms and properties

Algorithm 2 Random path derivation for Mst2p

1: function Path(x,R)
2: P ← ∅
3: while true do
4: P ← P ∪ {x}
5: Rx ← reports by x
6: if Rx /∈ R then
7: R← R ∪Rx

8: end if
9: if Rx includes at least one out-edge then

10: x← random-walking according to Rx

11: else
12: return (P,R)
13: end if
14: end while
15: end function

Due to (weak) truthfulness, M2p relies on the assumption that P1 and P2 are simply drawn

at random for a given DAG. Actually,Mst2p would need a more precise definition of random

path derivation because it calculates rewards based on the collected reports. We define the

process of path derivation with the Path(x,R) function shown in Algorithm 2, which returns

(P,R): totally ordered set as the path and the updated set of finished reports, when x and

existing R are given as arguments.

Mst2p is denoted by Algorithm 3, which inherits most of M2p (Algorithm 1). It just

replaces part of random path derivation with Path(x,R) and adds several rows for the reward

calculation.

pIf any common task is a candidate, the common task used for reward computation is very likely to be
(0, 0) in most DAGs because all tasks other than those explicitly reported as 1 are considered to be 0.
We experimentally confirmed that this case diminishes the difference in expected rewards among the pre-
determined strategies. Note that excluding the (0, 0) case does not affect the strong truthfulness of multi-task
peer prediction, as we will confirm in theorem 1.
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Algorithm 3 Strongly truthful two-path mechanism Mst2p

1: U ← ∅
2: R← ∅ . newly added
3: while U 6= V do
4: Pick {x, y} ⊂ V uniformly at random
5: (P1, R1)← Path(x,R) . replaced
6: (P2, R2)← Path(y,R1) . replaced
7: R← R ∪R2 . newly added
8: if P1 ∩ P2 = ∅ then
9: U ← U ∪ P1 ∪ P2

10: else
11: z ← the first vertex in P1 ∪ P2

12: if z ∈ U then
13: return ∅
14: else
15: return z
16: end if
17: end if
18: end while
19: Compute σt

x for all x according to R . newly added
20: return σt

x for all x . newly added

The two properties of Mst2p are worth mentioning. First, all edges composing P1 and P2

become common tasks for the two nodes connected by the edge, as depicted in Fig. 4 where

t2 is a common task for x and x̂.

Fig. 4. All edges on a random path are subject to the reports by their endpoints. In this example,
t2 must be reported by x and x̂ in this case.

Secondly, Mst2p satisfies all necessary conditions to establish multi-task peer prediction

as long as |P1 ∪ P2| ≥ 3 holds. Our mechanism actually can satisfy the necessary conditions

when |V | ≥ 3 holds in a DAG, if we ignore the assumption of excluding (rtx, r
t
x̂) = (0, 0) from

the candidates of the common task for reward computation. In such a case,Mst2p satisfies:

• condition (i), because the mechanism selects at least two nodes as the starting point of

the two paths.

• condition (ii), because the number of total tasks is 3P2 = 6 if |V | = 3 (2P2 = 2 if

|V | = 2).

• condition (iii), because the number of tasks per node is 2(|V | − 1) = 4 if |V | = 3. Also,

a node x must obtain two common tasks (x, x̂) and (x̂, x) as another node x̂ reports
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under the mechanism.

• condition (iv), because nodes have at least two common tasks, and they cannot know

which of the common tasks will be used for reward computation.

However, when we exclude (rtx, r
t
x̂) = (0, 0), an exception is created. Fig. 5 depicts two

minimum examples ofMst2p with three nodes and two edges, where x and y are the starting

points of P1 and P2, respectively (as described in Algorithm 3). In example (a), where

|P1 ∪ P2| = 2, we can see that truthful reporting results in no common tasks available for

reward computation, since the two non-existing edges (x, y) and (y, x) are all common tasks.

Moreover, y having received x’s out-edge report r
(x,y)
x = 0 can definitely make (y, x) the

common task for reward computation, by misreporting r
(y,x)
y as 1. (a) is thus contrary to the

condition (iii) and (iv). To satisfy all necessary conditions, Mst2p needs |P1 ∪ P2| ≥ 3 such

as example (b), where all nodes have at least two common tasks which they believe can both

be used for reward computation at the point of reportingq.

(a) |P1 ∪ P2| = 2 (b) |P1 ∪ P2| = 3
Fig. 5. In the two examples of minimum Mst2p, (a) does not satisfy the necessary conditions for

multi-task peer prediction if we exclude (rtx, r
t
y) = (0, 0) case from the candidates of the common

task.

qAs mentioned before, we here assume that a node cannot know the result of in-edge reports done by the
nodes on the other path until it finishes reporting. Therefore, in both (a) and (b), y cannot know in advance

whether x did in-edge report r
(y,x)
x = 0 or not.
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2.3.3. Strong truthfulness

We can obtain the following proposition from Mst2p.

Proposition 2: Pr(Mst2p = x) is weakly truthful in Mst2p.

Proof: Presuming that P1 reaches a node x, and that x reports its in-edges in addition to

out-edges. As in the case of M2p, x can only be selected by the mechanism if P2 reaches x

before P2 passes any other node of P1. However, x cannot guide P2 in a specific direction by

abusing an in-edge report because the nodes in P2 cannot observe x’s in-edge reports until

they finish reporting. Furthermore, although x strategically reports its out-edges considering

that they would be assessed through future in-edge reports, no out-edge report affects x’s

probability of becoming the first intersection of P1 and P2 in Mst2p (as in M2p). These

conditions are surely applicable to the nodes on P2. Therefore, the additive in-edge reports

have no influence on the weak truthfulness of original M2p. Pr(Mst2p = x) is still neutral

with respect to Rx even if it includes in-edge reports.

In other words, Pr(Mst2p = x) is independent of Rx and E(σt
x). Therefore, it is sufficient to

examine E(σt
x) to prove the strong truthfulness of Mst2p.

Theorem 1: Mst2p is strongly truthful in DAGs.

Proof: For the sake of convenience, this proof first assumes that Mst2p picks any common

task for reward computation, and then removes (rtx, r
t
x̂) = (0, 0) caser. We also use the following

Kronecker’s delta to present the results of the comparison of two reports for given signals.

δrx(sx),rx̂(sx̂) =

{
1 (rx(sx) = rx̂(sx̂))

0 (rx(sx) 6= rx̂(sx̂))

The expected value of the reward terms in σt
x not only depends on δrx(sx),rx̂(sx̂), but also on

the probability distribution of input signals each node observes, as

E
[
rtx · rtx̂ + (1− rtx)(1− rtx̂)

]
=

1∑
sx=0

1∑
sx̂=0

Pr(sx, sx̂) · δrx(sx),rx̂(sx̂),

where Pr(sx, sx̂) is the joint probability distribution on the signals that x and x̂ can receive

from a common task.

As described already, penalty terms denote the expected value of the comparison between

a random rx ∈ Rx and rx̂ ∈ Rx̂. This interpretation enables us to rewrite penalty terms into

a similar form with the expected value of reward terms:

hx,0 · hx̂,0 + hx,1 · hx̂,1 =

1∑
sx=0

1∑
sx̂=0

Pr(sx)Pr(sx̂) · δrx(sx),rx̂(sx̂).

rThis proof is based on the proof of theorem 4.4 presented in an earlier report [6], which can deal with the
case of multiple signals.
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It uses product distribution Pr(sx)Pr(sx̂) instead of Pr(sx, sx̂) because the empirical fre-

quency covers all Rx and Rx̂: not only rtx and rtx̂. Consequently, E(σt
x) can be expressed

as

E(σt
x) =

1∑
sx=0

1∑
sx̂=0

[Pr(sx, sx̂)− Pr(sx)Pr(sx̂)] · δrx(sx),rx̂(sx̂).

In fact, terms in square brackets correspond to the correlation of sx and sx̂. If one

assumes that Pr(sx, sx̂)−Pr(sx)Pr(sx̂) > 0, for example, then both Pr(sx|sx̂) > Pr(sx) and

Pr(sx̂|sx) > Pr(sx̂) hold because Pr(sx, sx̂) = Pr(sx|sx̂)Pr(sx̂) = Pr(sx̂|sx)Pr(sx). That is

to say that sx and sx̂ are positively correlated in this case.

BecauseMst2p assumes positively correlated binary signals, the following condition holds

in the expanded form of E(σt
x) as

E(σt
x) = [Pr(sx = 0, sx̂ = 0)− Pr(sx = 0)Pr(sx̂ = 0)]>0 · δrx(0),rx̂(0)

+ [Pr(sx = 0, sx̂ = 1)− Pr(sx = 0)Pr(sx̂ = 1)]<0 · δrx(0),rx̂(1)
+ [Pr(sx = 1, sx̂ = 0)− Pr(sx = 1)Pr(sx̂ = 0)]<0 · δrx(1),rx̂(0)
+ [Pr(sx = 1, sx̂ = 1)− Pr(sx = 1)Pr(sx̂ = 1)]>0 · δrx(1),rx̂(1),

where [x]>0 and [x]<0 respectively indicate that x is positive and negatives.

It is apparent that E(σt
x) is maximized only when both x and x̂ do truthful reports

(r(0) = 0, r(1) = 1) or opposite reports (r(0) = 1, r(1) = 0). Any other pattern (i.e., nodes

taking asymmetric strategies or always reporting the same signal) produces less-expected

values. Under the assumption of reporting strategies, this outcome implies that E(σt
x) is

maximized only when both x and x̂ adopt either a truthful strategy or an opposite strategy.

This property holds even though Mst2p does not pick (rtx, r
t
x̂) = (0, 0) case, namely,

E(σt
x) = [Pr(sx = 0, sx̂ = 1)− Pr(sx = 0)Pr(sx̂ = 1)]<0 · δrx(0),rx̂(1)

+ [Pr(sx = 1, sx̂ = 0)− Pr(sx = 1)Pr(sx̂ = 0)]<0 · δrx(1),rx̂(0)
+ [Pr(sx = 1, sx̂ = 1)− Pr(sx = 1)Pr(sx̂ = 1)]>0 · δrx(1),rx̂(1).

Hence, Mst2p is strongly truthful in DAGs.

Accordingly, Mst2p can theoretically elicit truthful reports from each node on DAGs.

3. Experimental Study

In this section, we experimentally confirm the utility of strong truthfulness ensured byMst2p,

with both synthetic and real-world data. The synthetic data were generated from the Barabási

and Albert [21] (BA) model, and the real-world data were taken from a patent citation

network. Experiments run Mst2p iteratively to the dataset, and show that the outcome

satisfies our objective by comparing the derived reward distributions. Materials used for

this experiment are uploaded on Github repository (https://github.com/knskito/Materials-

for-ST2P-experiments).

sFurthermore, if we designate Pr(sx = 0, sx̂ = 0)−Pr(sx = 0)Pr(sx̂ = 0) = P00, P r(sx = 0, sx̂ = 1)−Pr(sx =
0)Pr(sx̂ = 1) = P01, P r(sx = 1, sx̂ = 0) − Pr(sx = 1)Pr(sx̂ = 0) = P10, P r(sx = 1, sx̂ = 1) − Pr(sx =
1)Pr(sx̂ = 1) = P11, they have the following relations: P00 = P11, P01 = P10, P00 + P01 + P10 + P11 = 0.
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3.1. Methods

We specifically assume that every node in a DAG stochastically takes either a truthful strategy

or aforementioned fifty-fifty uninformative strategy. The probability of strategy selection is

exogenously determined by randomness parameter ε with which the node selects fifty-fifty

uninformative strategy. This experiment first assigns the same ε to every node in a DAG,

and then repeats Mst2p for a given number of times. After executing this process to all

ε = {0.0, 0.1, 0.2, · · · , 0.9} cases, we finally compare the 10 derived distributions for the total

reward earned by each node. Note that the computed reward distributions do not include the

nodes who did no reports as they have not been on any random paths (i.e., their rewards are

zero.).

Mst2p is expected to give a node x the best expected reward E(σt
x) in the case of ε = 0.0

(i.e., the equilibrium by truthful strategy), if the additional reward layer works well.

3.2. Dataset

(a) BA model
(100 nodes)

(b) US patent citation network
(1,579 nodes)

Fig. 6. Our experiments use two DAGs. (a) is generated from BA model with m0 = m = 2 and

n = 100, and (b) is extracted from the US patent citation network during years 2013-2017.

As mentioned above, we use the synthetic data from a BA model and the real-world data

from the patent citation network.

The BA model is a network generative model in the basis of preferential attachment [21, 22].

At the beginning of the generative process, the model generates m0 nodes. In each step, it

generates one node with m edges and attaches the existing nodes randomly. The process

ends after n steps are executed (i.e., n denotes the number of total nodes in the DAG). The

distribution of attachment is determined by preferential attachment rule whose probability

is proportional to the node’s degree distribution. We set m0 = m = 2 and n = 100 for the

purposes of this experiment.

Real-world data were obtained from the US patent citation network. We have extracted a

strongly connected component with 10,000 patents during years 2013–2017 from the databaset,

and formatted them into a DAG structure with 1,579 nodes. Fig. 6 depicts the two DAGs

generated as a result of the procudure above.

thttp://www.patentsview.org/download/
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3.3. Results

(a) BA model
(100 nodes and 100 iterations)

(b) US patent citation network
(1,579 nodes and 1,000 iterations)

Fig. 7. The box plot shows the median value as orange lines, 25/75 percentile as box, pseudo-

maximum/minimum value as whiskers, and outliers as circles. (a) and (b) present the same trend
that no-randomness provides the highest expected rewards.

Fig. 7 summarizes our experimental results, where we iterated Mst2p to 20 feasible patterns

(2 DAGs · 10 parameters) and displayed the derived reward distributions as box plots.

Fig. 7 (a) is the result of runningMst2p 100 times to each case of BA model with different

randomness values. We can see that the median is a maximum in ε = 0.0 case, and that the

median is decreasing as ε increases. Fig. 7 (b) is the result of running Mst2p 1,000 times

to each case of the US patent citation network with different randomness values. It shows

the same trend as that of the BA model. One feature in our experimental results is that any

median value does not exceed zerou. This is probably due to the two assumptions: regarding

all possible tasks other than report 1 as report 0, and excluding the (0, 0) case from the

common tasks for reward computation. The former increases the penalty by making hx,0 and

hx̂,0 closer to 1, and the latter simply reduces the probability that the selected common task

has an agreement. The scale of these effects would depend on the density of a given DAG.

Although we need a further research on Mst2p and the density, these results imply that

the additional reward layer based on multi-task peer prediction can work as an incentive for

each node to adopt truthful strategy.

4. Conclusion

This study has assessed our strongly truthful two-path mechanism, which is a hybrid of the

two-path mechanism [4] and multi-task peer prediction [5]. This mechanism improves the ac-

curacy of the existing two-path mechanism by changing (strengthening) its weak truthfulness

to strong truthfulness. We can achieve this enhancement simply with the additional reward

layer, and the only new imposition on the nodes is the assessment of their own in-edges.

Nevertheless, this mechanism encourages nodes to report truthfully, as indicated by the the-

orem and the results of simulations. Our these results have a contribution to the discussion

uWe can adjust the median value by means of the basic reward mentioned in Section 2.2.
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of information-diffusion mechanisms used to find an influential node from non-cooperative

networks, such as Web and patent citation.

On the other hand, this approach limits an advantage of original two-path mechanism:

the independence of expected utility against other nodes. This is inevitable because peer

prediction requires reference nodes to elicit truthful reports for the problems with no ground

truth (i.e., the edges on a DAG). It would be a goal for this research field to overcome this

limitation; that is, to present a mechanism that provides strictly higher rewards to the truthful

report, irrespective of the reports done by other nodes.

In addition, two more specific directions should be considered for future research. One is

to extend the mechanism from binary to multiple signals (i.e., from a digraph to a weighted

digraph in the context of network analysis). This would be one of the most required works

because the extension has already been studied in each of preceding research fields, such as

impartial selection mechanisms [14], information diffusion [20] and multi-task peer prediction

[6]. The other important direction for this research is to resolve the budget problem. Our

mechanism with peer prediction must pay an additional reward to the report by nodes, which

imposes a burden for practical applications. Minimizing total payments while maintaining

sufficient incentives for agents (nodes) is a branch of research issues relevant to peer prediction.

It has been studied particularly by Jurca and Faltings [23, 24].
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