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Affinity Propagation is one of the fundamental clustering algorithms used in various Web-

based systems and applications. Although Affinity Propagation finds highly accurate

clusters, it is computationally expensive to apply Affinity Propagation to a large dataset
since it requires iterative computations for all possible pairs of data objects in the dataset.

To address the aforementioned issue, this paper presents efficient Affinity Propagation

algorithms, namely C-AP. In order to increase the clustering speed, C-AP employs cell-
based index to reduce the number of the computed data object pairs in the clustering

procedure. By using the cell-based index, C-AP efficiently detects unnecessary pairs,

which do not contribute to its clustering result. For further reducing the computation
time, we also present an extension of our algorithm named Parallel C-AP that utilizes

thread-parallelization techniques. As a result, C-AP and Parallel C-AP detects the same

clusters as those of Affinity Propagation with much shorter computation time. Extensive
evaluations demonstrate the performance superiority of our proposed algorithms over the

state-of-the-art algorithms.
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1. Introduction

Recent advances in Web services have shown that large-scale data analysis is becoming in-

creasingly important to understand or predict complicated phenomena included in the ser-

vices [1]. The clustering is one of the essential data-mining techniques to understand such

complicated and large-scale datasets in various research areas such as Web-based applications

and social sciences. Since clustering can extract groups of data objects (a.k.a. cluster) or

identify representative examples in an unsupervised way, it can reveal overview relationships

among the data objects and find hidden patterns of them. From a practical perspective, it

provides us useful insights into Web-based applications. For example, web pages that share

similar topics tend to be in the same cluster [2]. Thus, the detection of clusters in web pages

is useful in stripping spam pages from web pages [3, 4]. As well as the web page analysis,

clustering plays important roles in various Web-based applications such as event detection [5]
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and marketing [6]. That is why extracting clusters from the large-scale dataset on Web-based

applications have become an interesting and essential problem.

The problem of finding clusters in a set of data objects has studied for some decades in

many fields [7, 8, 9]. Affinity Propagation [10], proposed by Frey and Dueck in 2007, is one

of the most successful methods among recent works for the cluster finding problem. Affinity

Propagation finds clusters and their corresponding representative data objects called exemplar

from all data objects. By letting X = {x1, x2, · · · , xn} be a set of given data objects, s(xi, xj)

be a similarity value (e.g., Euclidean distance) between xi and xj , Affinity Propagation at-

tempts to detect an exemplar e(xi) for each xi ∈ X so as to maximize an objective measure∑n
i=1 s(xi, e(xi)). After finding the exemplars for all data objects in X, Affinity Propagation

constructs clusters by assigning each data object xi into the same cluster with e(xi). Differ-

ent from the traditional clustering algorithms (e.g., k-means [11], k-medoids [12], and so on),

Affinity Propagation does not require the number of exemplars before the cluster computa-

tion; Affinity Propagation automatically determines the number of clusters from given data

objects X. As a result, Affinity Propagation shows better clustering accuracy compared with

the traditional algorithms on real-world datasets [10]. Therefore, Affinity Propagation has

widely used in many applications such as community detection [13], and representative image

extraction [14, 15].

Although Affinity Propagation is effective in detecting clusters, it has, unfortunately,

a serious weakness; it requires high computational costs to find exemplars that maximize∑n
i=1 s(xi, e(xi)) [10]. This is because Affinity Propagation explores the exemplars from all

data objects by message passing among all data objects. Affinity Propagation uses s(xi, xj)

for all data object pairs (xi, xj) ∈ X×X, and it then iteratively exchanges messages between

the data objects until a set of exemplars is specified. In each iteration, each message reflects

the affinity that a data object has for another data object considered as its exemplar. As a

result, this message passing procedure entails O(n2T ) times, where n is the number of data

objects and T is the number of iterations for the message updates in the worst case [16].

1.1. Existing Approaches and Challenges

To address the expensive computational cost of Affinity Propagation, many efforts have been

made for the recent few years, especially in the data mining community. One of the major

approaches is message pruning technique: FSAP [17], Graph-AP [18], and F-AP [16] are the

most representative methods. These methods prune data object pairs that do not contribute

to explore the exemplars to avoid unnecessary message updates during the iterative com-

putation. Although these methods certainly succeeded in reducing the runtime of Affinity

Propagation for real-world datasets, the computation time is still expensive even if we com-

pute small datasets (e.g., n ≈ 103.) This is because that the methods still spend O(n2) times

for detecting the data object pairs that can be pruned in each iteration since they need to

traverse all pairs of the data objects in X. Thus, it is a challenging task to improve the

computational efficiency for Affinity Propagation.

1.2. Our Approach and Contributions

We focus on the problem of speeding up Affinity Propagation for large datasets. In this paper,

we first present a novel algorithm, C-AP (Cell-based Affinity Propagation), that enables us
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to reduce the computation time of Affinity Propagation. The basic idea underlying C-AP

is to reduce the cost to detect the data object pairs that should be pruned in the existing

approaches [16, 18]. As we described in Section 1.1, the existing approaches require O(n2)

times to prune unnecessary data object pairs in each iteration. To avoid such expensive costs,

we employ cell-based indexing into Affinity Propagation algorithms. By providing the cell-

based index, we partition the given data object set X into several cells that contain at least

one data object. Then, C-AP seeks unnecessary data object pairs by traversing all pairs of the

cells. Since the number of the cells should be smaller than n2, C-AP successfully reduces the

computational cost of Affinity Propagation compared with the existing approaches [18, 16].

In addition to the cell-based indexing, we discuss an extended algorithm of C-AP for fur-

ther improving the clustering efficiency for large-scale datasets. This paper presents a novel

algorithm named Parallel C-AP a. Parallel C-AP employs thread-based parallelization tech-

niques to reduce the computation time of C-AP since our previous algorithm C-AP consists

of several independent loop-blocks (Algorithm 2). By applying loop-level parallelization for

the blocks, Parallel C-AP significantly reduces the running time for large-scale clustering.

As a result, our proposed algorithms have the following attractive characteristics:

• Efficient: Compared with the existing approaches [10, 18, 16], C-AP and Parallel C-

AP achieve high-speed clustering by using the cell-based indexing and thread-based

parallelization, respectively (Section 4.3); C-AP can avoid computing unnecessary data

object pairs for the whole dataset (Section 4.4).

• Scalable: Our proposed algorithms show better scalability than the original Affinity

Propagation algorithm [10] in terms of the number of data objects (Section 4.5). Parallel

C-AP also shows near-linear scalability when we increase the number of threads.

• Exact: While our proposed algorithms achieve efficient and scalable computations for

Affinity Propagation, we theoretically proved that C-AP and Parallel C-AP does not

sacrifice the clustering accuracy (Theorem 1). That is, C-AP and Parallel C-AP al-

ways return the same clustering result as those of the original Affinity Propagation [10]

(Section 4.6).

Our extensive experiments showed that C-AP is up to ×6.85 and ×3.77 faster than the

original Affinity Propagation algorithm [10] and the state-of-the-art algorithms [18, 16], re-

spectively while C-AP does not sacrifice the clustering quality. Also, our parallel algorithm

Parallel C-AP further reduces the running time of C-AP; Parallel C-AP runs ×15.97, ×23.77,

and ×52.92 faster than C-AP, the state-of-the-art methods, and the original Affinity Prop-

agation, respectively. Even though Affinity Propagation is effective in enhancing various

applications, it has been difficult to apply Affinity Propagation to large datasets due to its

performance limitations. However, by providing our efficient and scalable approaches, our

proposed algorithms will help to improve the effectiveness of a broader range of applications.

The rest of this paper is organized as follows: Section 2 briefly describes the backgrounds

of this paper. Section 3 introduces our proposed methods C-AP and Parallel C-AP, and we

report the experimental results on public datasets in Section 4. In Section 5, we briefly review

the related work, and we finally conclude this paper in Section 6.

aThis work is an extension of [19].
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Fig. 1. Clustering proceedure of Affinity Propagation: (a) It first takes n data objects and a set of

similarities between all pairs of the data objects; (b) Then, it iteratively updates the responsibility
and the availability based on Definition 1 for all of the pairs; (c) Finally, it finds an exemplar

based on Definition 2 for each data objects, and constructs clusters.

2. Preliminary

In this section, we formally define the notations and introduces the background of this paper.

Given a set of d-dimentional data objects X = {x1, x2, . . . , xi, . . . , xn} and a set of similarities

S = {s(xi, xj)|xi, xj ∈ X}, Affinity Propagation [10] is the problem to find clusters and

corresponding exemplars that maximize
∑n

i=1 s(xi, e(xi)), where e(xi) is an exemplar of xi.

Note that if xi = xj , s(xi, xj) is called as preference, and it is typically set to the madian

or the minimum of S. Differ from the traditional clustering algorithms (e.g., k-means [11]),

Affinity Propagation does not require the number of clusters, and thus it can automatically

determine an appropriate number of clusters from given X and S.

Since it is NP-hard problem to find exemplars so as to maximize
∑n

i=1 s(xi, e(xi)), Affin-

ity Propagation thus performs an approximated algorithm by using an iterative computation

method. Specifically, it iteratively updates two types of messages, responsibility and availabil-

ity, between all pairs of the data objects. The responsibility, r(xi, xj), is a message that is sent

from xi to xj to denote how well xj is appropriate to be the exemplar of xi. The availability,

a(xi, xj), is also a message that is sent from xj to xi that reflects how appropriate it would be

for xi to choose xj as its exemplar. Formally, the responsibility r(xi, xj) and the availability

a(xi, xj) are defined as follows:

Definition 1 (Responsibility and Availability) Let λ be a damping factor (0 < λ < 1),

responsibility r(xi, xj) and availability a(xi, xj) are real numbers between xi and xj that are

obtained by

r(xi, xj) = (1− λ)ρ(xi, xj) + λr(xi, xj), (1)

a(xi, xj) = (1− λ)α(xi, xj) + λa(xi, xj), (2)

where ρ(xi, xj) and α(xi, xj) are propagating responsibility and propagating availability [18],

respectively; ρ(xi, xj) and α(xi, xj) are formally defined as follows:

ρ(xi, xj) =

{
s(xi, xj)−maxxk 6=xj{a(xi, xk) + s(xi, xk)} (xi 6= xj),

s(xi, xj)−maxxk 6=xj{s(xi, xk)} (xi = xj).
(3)
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Algorithm 1 The original Affinity Propagation [10]

Input: X, S
Output: exemplars for each data object in X

1: repeat
2: for each (xi, xj) ∈ X2 do
3: compute r(xi, xj) by Definition 1;

4: for each (xi, xj) ∈ X2 do
5: compute a(xi, xj) by Definition 1;

6: until all r(xi, xj) and a(xi, xj) are not updated
7: for each xi ∈ X do
8: get an exemplar e(xi) by Definition 2;

α(xi, xj) =

{
min{0, r(xj , xj) +

∑
xk 6=xi,xj

max{0, r(xk, xj)}} (xi 6= xj),∑
xk 6=xi

max{0, r(xk, xj)} (xi = xj).
(4)

Note that λ is typically set to 0.5 in the literature [10, 18, 16], and initial values of the

responsibility and the availability are set as r0(xi, xj) = s(xi, xj) − max
xk 6=xj

{s(xi, xk)} and

a0(xi, xj) = 0, respectively.

As we can see from Definition 1, responsibility r(xi, xj) and availability a(xi, xj) are

mutual recursion with each other; r(xi, xj) is a polynominal function of a(xi, xj) in ρ(xi, xj),

and visa versa. In order to compute such mutual recursion forms, Affinity Propagation iterates

alternate updates of r(xi, xj) and a(xi, xj) for all data object pairs until r(xi, xj) and a(xi, xj)

converge.

After the convergence of the responsibility and the availability on all data object pairs,

the exemplar of each data object xi, e(xi), is determined as follows:

Definition 2 (Exemplar) Let xi be an data object in X, the exemplar of xi is defined as

e(xi) = arg max
xj

{r(xi, xj) + a(xi, xj)}. (5)

Finally, Affinity Propagation constructs clusters by assigning non-exemplar data objects into

the same cluster as an exemplar that has the largest similarity.

Figure 1 shows an overview of the original Affinity Propagation, and the pseudocode of

the algorithm is shown in Algorithm 1. As we can see from Algorithm 1, by letting n and T

be the number of data objects and iterations, respectively, Affinity Propagation takes O(n2T )

computation time to obtain the converged responsibilities and availabilities (lines 1-6).
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Fig. 2. Clustering proceedure of C-AP: (a) First, C-AP constructs a cell-based index for the given

set of data objects X; (b) Then, it performs cell-based pruning to reduce the number of data

object pairs to be computed, and iteratively updates messages for the remaining pairs; (c) Finally,
it finds an exemplar based on Definition 2 for each data objects, and constructs clusters.

3. Proposed method: C-AP

Our goal is to find the same clustering results as those of the original Affinity Propagation

algorithm shown in Section 2 within short runtimes. In this section, we present the details of

our proposal, C-AP. We first overview the main ideas underlying C-AP, and then give a full

description of our proposed approaches.

3.1. Main Ideas

The basic idea underlying C-AP is to reduce the computational costs for obtaining the ex-

emplars for all data objects. From Definition 2, we need to compute the converged respon-

sibility and availability for all data object pairs before determining exemplars. As discussed

in Section 2, this computation incurs a high clustering cost since it iteratively updates the

responsibility and availability for all data object pairs until convergence. Thus, it is essential

to reduce the number of data object pairs whose responsibility and availability should be

updated in each iteration.

To reduce the number of data object pairs to be updated, C-AP employs the following

two approaches:

(1) Cell-based Indexing: C-AP first constructs cell-based index ; it enables us to exclude

unnecessary data object pairs from updating their responsibilities and availabilities. C-AP

divides d-dimensional data space, where given data objects X are located, into d-dimensional

hypercubes whose side length equals to ε; we call each d-dimensional hypercube as cell. By

providing the cell-based index, C-AP partitions the given data object set X into several cells

that contain at least one data object.

(2) Cell-based Message Pruning: C-AP, then, performs cell-based message pruning to

prune pairs of cells that contain unnecessary data object pairs from the iterative message
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updates. Recall Definition 2, Affinity Propagation selects a data object xj as an exemplar of

xi only if xj maximizes r(xi, xj)+a(xi, xj) in X. This means that we do not need to compute

a data object pair (xi, xj) whose value of r(xi, xj)+a(xi, xj) is certainly smaller than another

data objects in X after the convergence. Thus, C-AP excludes pairs of cells that only have

unnecessary data object pairs by computing upper and lower estimates of the r(xi, xj) and

a(xi, xj) for each cell pair before performing each iteration.

These simple ideas have two main advantages. First, we can extract clusters with smaller

computational cost than the original algorithm [10] and the state-of-the-art algorithms [18, 16].

Our ideas successfully reduce the number of computed data object pairs by introducing the

cell-based indexing and the cell-based message pruning. As discussed in Section 2, Affinity

Propagation entails O(n2) times complexity in each iteration. In contrast, our proposal

requires at most O(c2) time complexity in each iteration, where c is the number of cells (s.t.

c � n), each of which contains at least one data object. In Section 4.5, we experimentally

confirmed how C-AP successfully reduces the number of data object pairs to be computed

in the clustering procedure. Second, our algorithm produces the same clustering results as

those of the original algorithm [10] even though we prune data object pairs by using cell-based

message pruning. Our pruning techniques guarantee the pruned data object pairs would never

be the exemplars even if the message updates have not reached convergence. In Section 3.4,

we theoretically confirm the exactness of our proposed pruning techniques.

3.2. Cell-based Indexing

In this section, we introduce the cell-based index. As we described in Section 2, a set of d-

dimensional data objects X = {x1, x2, . . . , xn} and a set of similarities S = {s(xi, xj)|xi, xj ∈
X} are given. From X and S, C-AP constructs an arbitrary grid as an index on the d-

dimensional data space where X locates; each cell of the grid is d-dimensional hypercube

whose side length equals to ε. Figure 2 (a) shows an indexing example when d = 2. A cell C

of the index is non-empty if it contains at least one data object of X; otherwise, C is empty ;

we denote that c as the number of non-empty cells. c is clearly less than n non-empty cells

on the index, and typically c� n.

Based on the cell-based index, we define a cell-based similarity function cs(Ci, Cj) that

evaluates the similarity between two non-empty cells. The definition of cs(Ci, Cj) is as follows:

Definition 3 (Cell-based similarity) Let cs(Ci, Cj) be the cell-based similarity function

that evaluates the similarity between Ci and Cj. cs(Ci, Cj) is defined as

cs(Ci, Cj) =

{
max{s(xa, xb)|xa ∈ Ci and xb ∈ Cj} (Ci 6= Cj),

preference (Ci = Cj).
(6)

3.3. Estimating Upper/Lower Bounds of Messages

To prune unnecessary data object pairs on the cell-based index, we employ the well-known

upper and lower bounds estimation techniques of the responsibility and the availability [18,

20]. In this section, we briefly introduce the definitions.
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3.3.1. Upper and Lower bounds of responsibility

Definition 4 (Upper and Lower Estimates) Let r(xi, xj) and r(xi, xj) be the upper and

lower bounds of the responsibility r(xi, xj) between two data objects xi and xj. r(xi, xj) and

r(xi, xj) are formally defined as follows:

r(xi, xj) =


λr0(xi, xj) + ρ(xi, xj) (r0(xi, xj) > 0, ρ(xi, xj) > 0),

λr0(xi, xj) + (1− λ)ρ(xi, xj) (r0(xi, xj) > 0, ρ(xi, xj) ≤ 0),

ρ(xi, xj) (r0(xi, xj) ≤ 0, ρ(xi, xj) > 0),

(1− λ)ρ(xi, xj) (r0(xi, xj) ≤ 0, ρ(xi, xj) ≤ 0).

(7)

r(xi, xj) =


(1− λ)ρ(xi, xj) (r0(xi, xj) > 0, ρ(xi, xj) > 0),

ρ(xi, xj) (r0(xi, xj) > 0, ρ(xi, xj) ≤ 0),

λr0(xi, xj) + (1− λ)ρ(xi, xj) (r0(xi, xj) ≤ 0, ρ(xi, xj) > 0),

λr0(xi, xj) + ρ(xi, xj) (r0(xi, xj) ≤ 0, ρ(xi, xj) ≤ 0),

(8)

where ρ(xi, xj) and ρ(xi, xj) are upper and lower bounds of the propagating responsibility

ρ(xi, xj), respectively. They are formally given as follows:

ρ(xi, xj) =

s(xi, xj)− s(xi, xi) (xi 6= xj),

s(xi, xj)− max
xk 6=xj

{s(xi, xk)} (xi = xj).
(9)

ρ(xi, xj) =

s(xi, xj)− max
xk 6=xj

{a(xi, xk) + s(xi, xk)} (xi 6= xj),

s(xi, xj)− max
xk 6=xj

{s(xi, xk)} (xi = xj).
(10)

As can be seen from the above equations, we can obtain the upper and lower bounds of

the responsibility by just using the similarities. Hence, we can estimate both bounds before

iteratively exchanging the messages.

3.3.2. Upper and lower bounds of availability

Definition 5 (Upper and Lower Estimates) Upper and lower bounds of availability, a(xi, xj)

and a(xi, xj) are computed as follows:

a(xi, xj) =

{
α(xi, xj) (α(xi, xj) > 0),

(1− λ)α(xi, xj) (α(xi, xj) ≤ 0).
(11)

a(xi, xj) =

{
(1− λ)α(xi, xj) (α(xi, xj) > 0),

α(xi, xj) (α(xi, xj) ≤ 0),
(12)

where α(xi, xj) and α(xi, xj) are upper and lower bounds of the propagating availability

α(xi, xj), respectively. They are formally defined as follows:

α(xi, xj) =

{
min{0, r(xj , xj) +

∑
xk 6=xi,xj

max{0, r(xk, xj)}} (xi 6= xj),∑
xk 6=xi

max{0, r(xk, xj)} (xi = xj).
(13)
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α(xi, xj) =

{
min{0, s(xi, xj)−maxxk 6=xj{s(xi, xk)}} (xi 6= xj).

0 (xi = xj).
(14)

As well as the case of the responsibility shown in Section 3.3.1, we can the upper and lower

bounds of availability from the similarities S. That is, we can also estimate both bounds for

the availability before performing the iterative computations.

3.4. Cell-based Message Pruning

By using the cell-based index (Section 3.2) and the upper/lower bounds estimates (Sec-

tion 3.3), C-AP prunes the unnecessary data object pairs whose responsibilities and avail-

abilities do not contribute to finding exemplars in each iteration. In order to reduce the

number of computed data object pairs, C-AP detects unnecessary cell pairs that contain only

unnecessary data object pairs by using the upper and lower bounds defined in Section 3.3.

Here, we show how to find the unnecessary cell pairs to limit message updates before entering

the iterations.

First, we define a prunable responsibility set Pr that is a set of data object pairs not to

update the responsibilities; C-AP skips to compute the responsibilities for the data object

pairs in Pr.

Definition 6 (Prunable Responsibility Set) Let Ci and Cj be a pair of cells, and Pr be a

set of data object pairs whose responsibility computations are pruned. Pr is defined as follows:

Pr =
⋃

(Ci,Cj)∈Rp

{(xi, xj)|xi ∈ Ci and xj ∈ Cj}, (15)

where Rp = {(Ci, Cj)|Ci 6= Cj and cs(Ci, Cj)− cs(Ci, Ci) ≤ 0}.
As shown in Definition 6, we need to verify any pairs of cells, Ci and Cj , that satisfy both

Ci 6= Cj and cs(Ci, Cj) − cs(Ci, Ci) 6= 0 to make the prunable responsibility set Pr. The

prunable responsibility set Pr has the following property:

Lemma 1 If the responsibilities have been obtained for pairs in R = {X ×X}\Pr, the avail-

abilities of any pairs of data objects can be computed in each iteration.

Proof: Here, we prove that (xi, xj) ∈ Pr never contributes to updating the availabilities for

any pairs of data objects. From Definition 6, (xi, xj) ∈ Pr satisfies Ci 6= Cj and cs(Ci, Cj)−
cs(Ci, Ci) < 0. As shown in Definition 3, we have

cs(Ci, Cj) = max{s(xa, xb)|xa ∈ Ci and xb ∈ Cj}, (16)

cs(Ci, Ci) = s(xi, xi). (17)

The above equations indicate s(xi, xj) < cs(Ci, Cj). Hence, from Definition 1, ρ(xi, xj) =

s(xi, xj) − s(xi, xi) < cs(Ci, Cj) − cs(Ci, Ci) < 0. Recall that r0(xi, xj) is clearly less than

0 since r0(xi, xj) = s(xi, xj) −maxxk 6=xj
{s(xi, xk)} < 0. Thus, if Ci 6= Cj and cs(Ci, Cj) −

cs(Ci, Ci) < 0, we hold r0(xi, xj) < 0 and ρ(xi, xj) < 0.
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From Definition 4, r(xi, xj) = (1 − λ)ρ(xi, xj) < 0 since r0(xi, xj) < 0 and ρ(xi, xj) < 0.

Hence, as shown in Definition 1, the responsibility of (xi, xj) does not affect to α(xi, xj).

This is because that α(xi, xj) takes max{0, r(xi, xj)} = 0 for xi 6= xj since we already

have r(xi, xj) < r(xi, xj) < 0. Therefore, (xi, xj) ∈ Pr never contributes to updating the

availabilities for any pairs of data objects, and finally, Lemma 1 holds.

Next, we define a prunable availability set Pa that is a set of data object pairs not to

update the availabilities.

Definition 7 (Prunable Availability Set) Let Ci and Cj be a pair of cells, and Pa be a

set of data object pairs whose responsibility computations are pruned. Pa is defined as follows:

Pa =
⋃

(Ci,Cj)∈Ap

{(xi, xj)|xi ∈ Ci and xj ∈ Cj}, (18)

where Ap = {(Ci, Cj)|ca(Ci, Cj)− ca(Ci) < 0} such that

ca(Ci, Cj) = max{a(xa, xb) + s(xa, xb)|xa ∈ Ci and xb ∈ Cj}, (19)

ca(Ci) = min{a(xa, x
′′) + s(xa, x

′′)|xa ∈ Ci and x′′ ∈ X}. (20)

Note that x′′ gives the second largest value of a(xa, x
′′) + s(xa, x

′′).

From Definition 7, we need to verify any pairs of cells, Ci and Cj , that satisfy ca(Ci, Cj)−
ca(Ci) < 0 to make the prunable availability set Pa. The prunable availability set Pa has the

following property:

Lemma 2 In the iteration, the responsibilities of any pairs of data objects can be computed

if the availabilities of all pairs in A = {X ×X}\Pa have been found.

Proof: First, we prove that a pair (xi, xj) does not affect to ρ(xi, xj) if (xi, xj) satisfies the

following condition:

a(xi, xj) + s(xi, xj) < a(xi, x
′′) + s(xi, x

′′), (21)

where x′′ gives the second largest value of a(xi, x
′′)+s(xi, x

′′). For the pair (xi, xj), a(xi, x
′′)+

s(xi, x
′′) ≤ maxxl 6=xj

{a(xi, xl) + s(xi, xl)} holds. That is, we have

a(xi, xj) + s(xi, xj) < max
xl 6=xj

{a(xi, xl) + s(xi, xl)}. (22)

Thus, from Definition 1, the availability of the pair is not need to compute ρ(xi, xj) if xi 6= xj .

Clearly, in the case of xi = xj , we can obtain ρ(xi, xj) without using the availability of the

pair. Therefore, if a(xi, xj) + s(xi, xj) < a(xi, x
′′) + s(xi, x

′′) holds, the pair (xi, xj) doesnot

affect to ρ(xi, xj).

Then, we prove that (xi, xj) ∈ Pa does not contribute to updating the responsibility for

any pairs of data objects. Since xi ∈ Ci, xj ∈ Cj , and x′′ ∈ X from Definition 7, we have

a(xi, xj)+s(xi, xj) ≤ ca(Ci, Cj) and ca(Ci) ≤ a(xi, x
′′)+s(xi, x

′′). Hence, from Inequation 21,

we always hold a(xi, xj)+s(xi, xj) < a(xi, x
′′)+s(xi, x

′′) if ca(Ci, Cj)−ca(Ci) < 0 s.t. xi ∈ Ci,

xj ∈ Cj , and x′′ ∈ X. Thus, if (xi, xj) ∈ Pa, the pair (xi, xj) doesnot affect to ρ(xi, xj).
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By following Lemma 1 and 2, C-AP can prune unnecessary pairs of data objects by

finding the prunable responsibility set Pr (Definition 6) and the prunable availability set Pa

(Definition 7). As shown in Definition 6 and 7, C-AP can find Pr and Pa by only checking the

pairs of cells are included in Rp and Ap, respectively. The computational costs for obtaining

Rp and Ap are O(c2), where c is the number of non-empty cells; thus, C-AP can run relatively

faster than the competitive algorithms that require O(n2) times.

Thanks to Lemma 1 and 2, C-AP has the following theorem:

Theorem 1 C-AP always returns the same exemplars as those of the original Affinity

Propagation [10].

Proof: As shown in Definition 2, in order to specify the exemplar for a data object xi, we

need to find the data object xj that maximizes r(xi, xj) + a(xi, xj) by using the converged

r(xi, xj) and a(xi, xj). From Lemma 1 and 2, we theoretically proved that our cell-based

pruning techniques do not affect to find the exact converged values of r(xi, xj) and a(xi, xj).

Therefore, C-AP finds exactly same exemplars as those of the original Affinity Propagation

algorithm since C-AP can obtain exact values of r(xi, xj) + a(xi, xj).

As shown in Section 2, the clustering results are uniquely determined by the exemplars.

Thus, from Theorem 1, C-AP finds exactly same clustering results as those of the original

algorithm [10].

3.5. Algorithm

We can efficiently extract the same clustering results as those of the original algorithm [10]

by using the cell-based index. Figure 2 illustrates the workflow of C-AP, and its pseudo code

is shown in Algorithm 2. Algorithm 2 is designed to take three inputs and return exemplars;

the inputs are a set of data objects X, a set of similarities S, the size of each cell ε. The main

part of Algorithm 2 consists of three steps: cell-based message pruning (lines 1-5), message

exchanging (lines 6-15), and exemplar detection (lines 16-21).

First, C-AP runs the cell-based message pruning (lines 1-5). C-AP constructs the cell-

based index by using the user-specified parameter ε (line 1), then it obtains the upper and

lower bounds of the messages (lines 2-3) to prepare the cell-based message pruning. After

that C-AP prunes unnecessary pairs of data objects by comparing the cells based on the

Definition 6 and 7 (lines 4-5).

Next, C-AP moves to the message exchanging (lines 6-15). C-AP iteratively exchanges the

responsibility and the availability until convergence; C-AP successfully reduces the number of

data object pairs by excluding the pairs included in Pr and Pa before entering the iterations.

Similar to the state-of-the-art method [16], C-AP dynamically skips to compute the pairs

(xi, xj) whose responsibility (or availability) is not updated (lines 8-9 and lines 13-14).

Last, C-AP detects exemplars (lines 16-21). At first, C-AP assigns the responsibility, and

the availabilities for the pruned data object pairs, i.e. Pr and Pa, since these pairs do not have

any values (lines 16-19). Finally, based on Definition 2, C-AP detects and exemplar e(xi) for

each data object xi ∈ X by using the responsibility and the availability (lines 20-21).
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Algorithm 2 C-AP

Input: X, S, ε ∈ R
Output: exemplars for each data object in X

1: construct cell-based index by using ε;
2: for each xi ∈ X do
3: get r, r, a, and a by Definition 4 and 5;

4: obtain R = {X ×X}\Pr based on Definition 6;
5: obtain A = {X ×X}\Pa based on Definition 7;
6: repeat
7: for each (xi, xj) ∈ R do
8: compute r(xi, xj) by Definition 1;
9: if r(xi, xj) is not updated then

10: R = R\{(xi, xj)};
11: for each (xi, xj) ∈ A do
12: compute a(xi, xj) by Definition 1;
13: if a(xi, xj) is not updated then
14: A = A\{(xi, xj)};
15: until R,A = ∅
16: for each (xi, xj) ∈ Pr do
17: get r(xi, xj) = ρ(xi, xj) by Definition 4;

18: for each (xi, xj) ∈ Pa do
19: get a(xi, xj) = α(xi, xj) by Definition 5;

20: for each xi ∈ X do
21: get an exemplar e(xi) by Definition 2;

3.6. Parallel extension of C-AP

For further improving the clustering speed of C-AP, we here introduce a simple extension

of C-AP that employs thread parallelization for computations of data object pairs. As we

can see from Algorithm 2, our proposed algorithm C-AP has several independent loop-blocks,

i.e., lines 2-3, lines 7-10, lines 11-14, lines 16-17, lines 18-19, and lines 20-21 in Algorithm 2.

Since the loop-blocks compute large numbers of data object pairs, the blocks still require

expensive computation time to handle large-scale datasets. Thus, in this paper, we apply

loop-level parallelizations to the aforementioned independent loop-blocks in C-AP to reduce

the expensive computation costs.

Algorithm 3 shows the pseudo code of our parallelized algorithm, namely Parallel C-AP.

As shown in Algorithm 3, Parallel C-AP replaces the loop-blocks in Algorithm 2 with thread-

parallel blocks. In each thread-parallelization, Parallel C-AP assigns a set of data object pairs

for each thread in order to balance task granularities among threads. Specifically, Parallel

C-AP divides the data object pairs, which is inputted to each loop-block, into equal subsets

since most loop-blocks need to compute all of the given data object pairs. By balancing sizes

of the subsets, Parallel C-AP attempts to avoid waiting for time-consuming threads.

Our parallelization approach does not sacrifice the exactness of C-AP that we proved in

Theorem 1. That is, Parallel C-AP also outputs the same exemplars as those of the original

Affinity Propagation algorithm [10]. This is because, as described earlier, we apply thread-
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Algorithm 3 Parallel C-AP

Input: X, S, ε ∈ R
Output: exemplars for each data object in X

1: construct cell-based index by using ε;
2: for each xi ∈ X do in thread-parallel
3: get r, r, a, and a by Definition 4 and 5;

4: obtain R = {X ×X}\Pr based on Definition 6;
5: obtain A = {X ×X}\Pa based on Definition 7;
6: repeat
7: for each (xi, xj) ∈ R do in thread-parallel
8: compute r(xi, xj) by Definition 1;
9: if r(xi, xj) is not updated then

10: R = R\{(xi, xj)};
11: for each (xi, xj) ∈ A do in thread-parallel
12: compute a(xi, xj) by Definition 1;
13: if a(xi, xj) is not updated then
14: A = A\{(xi, xj)};
15: until R,A = ∅
16: for each (xi, xj) ∈ Pr do in thread-parallel
17: get r(xi, xj) = ρ(xi, xj) by Definition 4;

18: for each (xi, xj) ∈ Pa do in thread-parallel
19: get a(xi, xj) = α(xi, xj) by Definition 5;

20: for each xi ∈ X do in thread-parallel
21: get an exemplar e(xi) by Definition 2;

based parallelization only for the independent loop-blocks, each of which does not contain

order dependent operations within the blocks. Therefore, our parallelization algorithm keeps

the exactness of C-AP even though Parallel C-AP drastically reduces the running time for

large datasets. In the next section, we experimentally verify the efficiency and the exactness

of Parallel C-AP by using several real-world datasets.

4. Experimental Analysis

We conducted extensive experiments to evaluate the effectiveness of our proposed approaches.

We designed our experiments to demonstrate that:

• Efficiency: C-AP and Parallel C-AP achieve faster clustering time than the original

and the state-of-the-art algorithms (Section 4.3); our proposed methods effectively avoid

computing unnecessary data object pairs for the whole dataset (Section 4.4).

• Scalability: C-AP and Parallel C-AP show better scalability than the original and

state-of-the-art algorithms in terms of the number of data objects (Section 4.5). Parallel

C-AP also shows near-linear scalability as increasing the number of threads.

• Exactness: While C-AP and Parallel C-AP employ efficient pruning techniques, it does

not sacrifice the clustering quality; our approaches always output the same clustering

results as those of the original algorithm [10] (Section 4.6).
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Fig. 3. Running time.

4.1. Experimental Setup

We compared our proposed algorithms, C-AP and Parallel C-AP, with the original algo-

rithm, denoted by Original-AP [10] and the state-of-the-art algorithms, Graph-AP [18] and

F-AP [16]. All algorithms were implemented in g++ using -O2 option, and we conducted our

experiments on a CentOS server that equips an Intel Xeon E5-2690 2.60 GHz CPU with 14

physical cores and 128 GB RAM. We set the dumping factor λ = 0.5 as recommended in the

existing algorithms [10, 18, 16]. Unless otherwise stated, we set the default number of threads

as 14 for Parallel C-AP.

4.2. Datasets

We evaluated the algorithms on three public datasets that are listed as follows:

• Perfume: This dataset consists of odors of 20 different perfumes, which were obtained

by using an OMX-GR sensor b. The number of data objects is 560, ans we set ε = 2, 500.

• Geo: This is a building location dataset taken from all public facilities in City of

Kitakyushu, Japan c. The number of data objects is 1,309, and we set ε = 0.05.

• Bench: This is a public synthetic dataset, called A-sets, published in Clustering basic

benchmark d. The number of data objects is 3,000, and we set ε = 2, 500.

We used negative Euclidean distance as the similarity S for the above datasets.

bhttps://archive.ics.uci.edu/ml/index.php
chttps://ckan.open-governmentdata.org/dataset/401005_shinoshisetsu
dhttp://cs.uef.fi/sipu/datasets/
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4.3. Efficiency

We compared the running time of our proposed algorithms, C-AP and Parallel C-AP, with the

other competitive algorithms by using the three datasets described in Section 4.2. Figure 3

shows the results of each algorithm on Perfume, Geo, and Bench. Note that Original-AP

and Graph-AP did not finish their clustering on Bench dataset within 24 hours. As shown

in Figure 3, C-AP achieved ×6.85 and ×3.77 faster than runtimes of the original algorithm

Original-AP and the state-of-the-art algorithms, respectively. Specifically, C-AP shows good

performances on a large dataset (i.e., Bench); it reduces by approximately 16 hours compared

with the clustering time of the state-of-the-art algorithm F-AP. Moreover, Figure 3 also

shows that our parallel algorithm successfully reduces the computation time of C-AP under

all settings we examined. Specifically, Parallel C-AP achieved ×15.97,×23.77,×33.19, and

×52.92 faster than C-AP, F-AP, Graph-AP, and Original AP on average, respectively. These

results imply that our Parallel C-AP is potentially applicable for large-scale datasets since

it can significantly reduce the expensive computation time of Affinity Propagation by using

thread-parallel techniques.

4.4. Effectiveness of cell-based indexing

In this section, we experimentally discuss the effectiveness of our cell-based indexing ap-

proaches.

In Figure 4, we first compared the number of data object pairs computed in each iteration

to evaluate the effectiveness of our cell-based pruning approach. As we can see from Figure 4,

C-AP successfully excludes unnecessary pairs of data objects compared with Original-AP.

Specifically, C-AP computes up to only 52% of pairs of data objects what are computed

in the original algorithm. That is, our cell-based indexing successfully reduces unnecessary

computations of data object pairs during the clustering procedure of Affinity Propagation.

We then evaluated the effect of the user-specified parameter ε in C-AP. Figure 5 shows

runtimes of C-AP when we varied ε from 1500 to 4000 on Perfume. As shown in Figure 5, if

we set ε = 2500, C-AP runs faster than the other ε settings. This is because it is difficult for

C-AP to find cell pairs to be pruned when we set large ε values since most of prunable data

object pairs might be in the same cell. Similarly, if we set small ε values, each cell contains

a few data objects, and the number of non-empty cells approaches to the number of data

objects n. Thus, the small ε settings also involve large computation costs.

4.5. Scalability

We assessed the scalability test of C-AP and Parallel in Figure 6 by varying the number of

data objects. To evaluate the scalability, we additionally generated five datasets from Bench

by randomly sampling 500, 1000, 1500, 2000, and 2500 data objects included in Bench; In

Figure 6, we measured the running time of C-AP, Parallel AP, and Original-AP by using the

five datasets.

As we can see from Figure 6, the runtimes of C-AP and Parallel C-AP showed better

scalability than those of Original-AP in terms of the number of data objects. This is because,

as we experimentally confirmed in Section 4.3, C-AP successfully reduces the number of

computed data object pairs by employing the cell-based approaches. Thus, these results verify
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Fig. 4. # of computed pairs. Fig. 5. Runtimes by varying ε.

that C-AP has better scalability than other competitive algorithms. Furthermore, as well as

we showed in Figure 3, Parallel C-AP is more scalable than C-AP since our parallel algorithm

can reduce the computational cost of C-AP significantly by using thread-based parallelization

for the independent loop-blocks. That is, our proposed method, Parallel C-AP, is applicable

to large datasets than those of C-AP and Original-AP.

Also, we evaluate the scalability of Parallel C-AP by varying the number of threads utilized

in our proposed approach. In Figure 7, we measured the running time of Parallel C-AP on

Bench dataset shown in Section 4.2 for the different settings of the number of threads; we

varied the number of threads as 1, 2, 4, 8, 16, and 32 in this evaluation. From Figure 7, we

can observe that Parallel C-AP shows almost linear scalability as increasing the thread sizes.

This is because our approach employs parallelization only for the independent loop-blocks,

which are major time-consuming parts of C-AP as we described in Section 3.6. Parallel

C-AP successfully reduces the computation time by thread-based parallelization since most

time-consuming parts are independent.

4.6. Exactness

Finally, we experimentally confirm the exactness of the clustering results produced by our

proposed algorithms. In order to measure the exactness, we employed the well-known criteria,

precision and recall [21]. In this evaluation, we compared the precision and the recall of

exemplars produced by Original-AP and the others; if C-AP, Parallel C-AP, F-AP, and Graph-

AP return the same set of exemplars as those of Original-AP, the precision, and the recall are 1.

Table 1 shows the results on Perfume and Geo datasets; we omitted the evaluations on Bench

since Original-AP and Graph-AP could not return any results. As we theoretically verified

in Theorem 1, C-AP returns 1 in all settings that we examined. Furthermore, Table 1 shows

that Parallel C-AP also outputs the same exemplars as those of Original-AP even though

our parallel algorithm drastically reduces the computation time as shown in Figure 3. As
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Fig. 6. Scalability by varying data size |X|. Fig. 7. Scalability by varying the number of threads.

Table 1. Accuracy

Graph-AP F-AP C-AP Parallel C-AP

Perfume (Recall) 1.00 1.00 1.00 1.00
Perfume (Precision) 1.00 1.00 1.00 1.00

Geo (Recall) 1.00 1.00 1.00 1.00
Geo (Precision) 1.00 1.00 1.00 1.00

we described in Section 3.6, we apply thread-based parallelization only for the independent

loop-blocks. Hence, Parallel C-AP does not sacrifice the clustering quality of C-AP. From

these results, we experimentally confirmed that C-AP and Parallel C-AP always produce the

exact set of exemplars as those of Original-AP.

5. Related work

The clustering is one of the most fundamental data mining tools for finding hidden patterns in

a given dataset. Thus, the problem of finding clusters has been studied for some decades [22].

k-means [23] and k-medoids [24] are natural choices for this problem. Since cluster structures

are highly complex, Affinity Propagation [10] has been recently introduced. Here, we review

some of the successful Affinity Propagation algorithms.

Affinity Propagation [10], proposed by Frey and Dueck in 2007, is one of the most suc-

cessful methods among recent works for the cluster finding problem. Affinity Propagation

finds clusters, and their corresponding representative data objects called exemplar from all

data objects. Since Affinity Propagation automatically determines the number of clusters

from given data objects, it achieves better clustering results than those of the traditional

approaches [23, 24]; and as a result, Affinity Propagation widely used in various applications,

e.g., text classification [25] and flight analysis [18].

Although Affinity Propagation is effective in detecting clusters, it has, unfortunately, a
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serious weakness; its computational cost is quadratic in the number of data objects. As we

discussed in Section 2, its complexity is O(n2T ), where n and T are the number of data

objects and the iterations, respectively. This high complexity has led to the introduction of

pruning-based algorithms. Jia et al. proposed FSAP [17] that employs two-stage clustering

approach. In FSAP, it first constructs a k-nearest neighbor graph from a give data objects;

it then performs iterative updates of the responsibility and the availability on the graph. By

introducing the k-nearest neighbor graph, FSAP certainly succeeded to reduce the number

of computed data object pairs, it, however, suffers from the clustering accuracy. This is

because that, different from our proposed method C-AP, FSAP prunes the pairs of data

objects without any verifications.

To improve the efficiency, Fujiwara et al. proposed two state-of-the-art algorithms, named

Graph-AP [18] and F-AP [16]. In Graph-AP, it employs the upper and lower bounds estima-

tions, which we also used in Section 3.3, for pruning unnecessary data object pairs. Addition-

ally, in F-AP, they extended Graph-AP by introducing an adaptive pruning technique that

excludes pairs of data objects whose messages are not updated during the iterations. By in-

troducing these pruning approaches, Graph-AP and F-AP achieved faster clustering than the

original algorithm [10] and FSAP [17]. Furthermore, their clustering results are guaranteed to

be the same as those of the original Affinity Propagation [10]. However, as we experimentally

confirmed that their clustering speeds are still expensive for large datasets (e.g., n ≥ 103).

As shown in Section 4, our C-AP is much faster than these algorithms even though C-AP

is guaranteed to output exact clustering results; C-AP successfully reduces approximately 16

hours for the largest dataset that we examined. Furthermore, in this paper, we extended C-

AP so as to reduce the computation time for clustering by using thread-based parallelization.

As a result, our proposed algorithm Parallel C-AP shows near-linear scalability as increasing

the number of data objects and threads as shown in Section 4.5.

6. Conclusion

In this paper, we tackled the problem of increasing efficiency of Affinity Propagation, and we

proposed two cell-based algorithms, C-AP and Parallel C-AP. C-AP is a sequential algorithm

that employs cell-based indexing on large datasets. By using the cell-based index, C-AP

prunes the computations for unnecessary data object pairs from a given dataset. Meanwhile,

Parallel C-AP is an extension of C-AP. We focused on the independent loop-blocks included

in C-AP, and we applied thread-based parallelization for the blocks to increase the clustering

efficiency on manycore processors. Our experimental results showed that C-AP outperforms

the state-of-the-art algorithms [18, 16] even though C-AP does not sacrifices its clustering

qualities compared with those of the original algorithm [10]. Moreover, Parallel C-AP shows

near-linear scalability as increasing the size of datasets and the number of threads, while

Parallel C-AP outputs the same clustering results as C-AP. Affinity Propagation is now a

fundamental data mining tool to current and prospective Web-based systems and applications

in various disciplines. By providing our fast algorithm, it will help to improve the effectiveness

of future applications.
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