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Class imbalance is commonly observed in real-world data, and it is problematic in that
it degrades classification performance due to biased supervision. Undersampling is an

effective resampling approach to the class imbalance. The conventional undersampling-

based approaches involve a single fixed sampling ratio. However, different sampling
ratios have different preferences toward classes. In this paper, an undersampling-based

ensemble framework, MUEnsemble, is proposed. This framework involves weak classifiers
of different sampling ratios, and it allows for a flexible design for weighting weak classifiers

in different sampling ratios. To demonstrate the principle of the design, in this paper,

a uniform weighting function and a Gaussian weighting function are presented. An
extensive experimental evaluation shows that MUEnsemble outperforms undersampling-

based and oversampling-based state-of-the-art methods in terms of recall, gmean, F-

measure, and ROC-AUC metrics. Also, the evaluation showcases that the Gaussian
weighting function is superior to the uniform weighting function. This indicates that

the Gaussian weighting function can capture the different preferences of sampling ratios

toward classes. An investigation into the effects of the parameters of the Gaussian
weighting function shows that the parameters of this function can be chosen in terms of

recall, which is preferred in many real-world applications.
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1. Introduction

Class imbalance is a crucial problem in real-world applications that degrades classification

performance, especially with minority classes. Class imbalance refers to a situation with

datasets in which the number of examples in a class is much larger than that in other classes.

The large difference in terms of the numbers of examples causes classifiers to be biased toward

the majority class. Class imbalance has been observed and dealt with in various domains,

such as the clinical domain [7], economic domain [28] and agricultural domain [32], and in

software engineering [29] and computer networks [13].

Resampling is an effective solution to class imbalance, and it has been widely stud-

ied [8, 22, 5, 33]. Resampling techniques can be roughly classified into two categories: over-

sampling (e.g., SMOTE [8] and SWIM [33]) and undersampling (e.g., EasyEnsemble [22] and
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Fig. 1. Small sampling ratios prefer minority, and vice versa.

RUSBoost [31]). Undersampling is a simple and powerful resampling technique for dealing

with class imbalance [11]. Not only using single-shot undersampling but also combining mul-

tiple undersampled datasets in an ensemble manner have done for the problem [22, 17, 31].

A preliminary survey of various datasets on the effects of different undersampling ratios,

shown in Figure 1, indicated that different undersampling ratios have different preferences

toward classes. Sampling ratio refers to the ratio of the sampled majority size over the minority

size. In this paper, the minority class and majority class are regarded as the positive class

and negative class, respectively. A sampling ratio of 1.0 means that the majority examples

are randomly selected so that the number of sampled examples equals that of the minority

examples. A ratio below 1.0 means that the number of sampled majority examples is below

that of the minority examples. In this paper, this is called excessive undersampling and

its antonym is moderate undersampling. The figure depicts the true positive and negative

ratios for different sampling ratios in the Abalone dataset. It indicates that classifiers learned

with excessively undersampled datasets favor the minority class and those by moderately

undersampled datasets favor the majority class, so 1.0 may not be best balanced ratio.

This paper is an attempt to combine classifiers in different sampling ratios by using an

ensemble framework, MUEnsemble. First, the majority examples are undersampled with

different sampling ratios. To utilize a large portion of majority examples, multiple undersam-

pled datasets are generated for each sampling ratio, and a base ensemble classifier is learned

by using the multiple datasets. Then, the overall classifier is an ensemble of the base classi-

fiers. To capture the preferences of sampling ratios toward classes, MUEnsemble introduces

weighting functions on the basis of the voting strategy in ensemble learning. In this paper,

a uniform weighting function and Gaussian function are designed as the weighting functions.

The former is for equivalent voting, while the latter weights classifiers in a sampling ratio

by using a Gaussian function. The Gaussian function is flexible at weighting on a central

sampling ratio and on the other sampling ratios.

MUEnsemble was evaluated with 31 publicly available real-world datasets in terms of

standard evaluation metrics for the class imbalance problem, that is, precision, recall, gmean,

f-measure, and ROC-AUC. The datasets feature a wide range of the dimensionalities, numbers

of records, and imbalance ratios (the dataset statistics are shown in Section 4). MUEnsemble

was compared with the state-of-the-art methods, and it outperformed these methods in terms
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of recall-preferred metrics (i.e., recall, gmean, and f-measure).

The contributions of this paper are abridged as follows.

• Multi-ratio Undersampling-based Ensemble Framework: In this paper, an en-

semble framework, MUEnsemble, for imbalanced data is proposed. MUEnsemble em-

ploys multiple undersampling ratios including excessive undersampling. It learns an

ensemble classifier for each sampling ratio and combines the ensemble classifiers among

sampling ratios in an ensemble manner. It has two weighting functions, uniform and

Gaussian, for ensemble classifiers corresponding to sampling ratios.

• Extensive Experimentation on Various Public Datasets: MUEnsemble is com-

pared with the state-of-the-art resampling methods by using various datasets that are

publicly available. The datasets include various imbalance ratios in a wide range of do-

mains. Standard evaluation metrics for the class imbalance problem are used, namely,

precision, recall, gmean, f-measure, and ROC-AUC. The experiment demonstrates that

MUEnsemble outperforms the state-of-the-art methods in terms of recall-preferred met-

rics. To show the flexibility of the Gaussian weighting function, the possible combina-

tions of parameters are investigated.

The rest of this paper is organized as follows. Section 2 introduces related resampling-based

approaches for imbalanced data. Section 3 explains the proposed framework, MUEnsemble,

and four balancing functions. Section 4 demonstrates the effectiveness of MUEnsemble over

the state-of-the-art methods, and the effects of the excessive undersampling, balancing func-

tions, and parameter optimization are discussed. Finally, Section 5 concludes this paper.

2. Related Work: Resampling Approaches

To deal with class imbalance, there are basically three groups of approaches, namely, resam-

pling, cost-adjustment [10, 20], and algorithm modification [2, 37]. Resampling is the most

commonly used because it has been shown to have robust performance and is applicable to

any classifiers. Resampling approaches are roughly classified into two categories, namely,

oversampling and undersampling.

2.1. Oversampling-based Approaches

A simple oversampling approach is to randomly copy minority examples so that the numbers

of minority and majority examples become the same. This approach easily causes overfitting.

To cope with the overfitting problem, oversampling approaches generate synthetic minority

examples that are close to the minority. SMOTE [8] is the most popular synthetic oversam-

pling method. It generates synthetic minority examples on the basis of the nearest neighbor

technique. Since SMOTE does not take majority examples into consideration, the generated

examples can easily overlap with majority examples. This degrades the classification perfor-

mance. To overcome the weakness of SMOTE, more recent approaches have incorporated

majority examples into the resampling process. SMOTE-Tomek [4] and SMOTE-ENN [5]

employ data cleansing techniques including the removal of Tomek links [35] and Edit Nearest

Neighbours [38]. Along this line, there are more advanced approaches (e.g., ADASYN [15],

borderline-SMOTE [14], and SVM-SMOTE [26]). One of the state-of-the-art synthetic over-

sampling approaches is SWIM [33, 6]. SWIM utilizes the density of each minority example
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with respect to the distribution of majority examples in order to generate synthetic minority

examples. Comprehensive experiments by [18] were conducted to investigate a large number

of SMOTE variants and to compare these variants with diverse kinds of datasets. In this

investigation, PolyFitSMOTE [12] and ProWSyn [3] showed the best performances.

2.2. Undersampling-based Approaches

Undersampling-based approaches can be classified into three categories: example selection

and boosting and bagging ensembles. Example selection is an approach to choosing majority

examples that are expected to contribute to better classification. Major approaches choose

majority examples hard to distinguish from minority examples. NearMiss [25] samples major-

ity examples close to minority examples. Instance hardness [34] is a hardness property that

indicates the likelihood that an example will be misclassified.

Boosting ensemble is a learning method that gradually changes majority examples. For

each iteration, boosting approaches remove a part of the majority examples. BalanceCas-

cade [22] is a boosting approach that removes correctly classified majority examples. RUS-

Boost [31] is a weighted random undersampling approach for removing majority examples

that are likely to be classified correctly. EUSBoost [23] introduces a cost-sensitive weight

modification and an adaptive boundary decision strategy to improve model performance.

Trainable Undersampling [27] is the state-of-the-art in this category. It trains a classifier by

reinforcement learning.

Bagging ensemble combines multiple weak classifiers, each of which is learned on individual

pieces of undersampled training data in a voting manner. Ensemble of Undersampling [17] is

one of the earlier bagging approaches using undersampled training data. EasyEnsemble [22]

is an ensemble-of-ensemble approach that ensembles AdaBoost classifiers for each piece of

undersampled training data in a bagging manner. In [11], a comprehensive experiment on

boosting and bagging approaches is reported. It shows that RUSBoost and EasyEnsemble

are the best performing approaches, and they outperform oversampling-based approaches.

MUEnsemble is classified in the bagging ensemble category. The distinctions of MUEnsem-

ble over existing undersampling approaches are as follows. First, MUEnsemble is the first

ensemble approach combining multiple sampling ratios. Second, it includes excessive under-

sampling, which has not been considered among these approaches. Third, it gives different

weights to weak classifiers on the basis of a Gaussian function.

3. MUEnsemble

MUEnsemble is an ensemble framework that involves multiple sampling ratios. Figure 2 is an

overview of MUEnsemble. It consists of two phases: the sampling phase and ensemble phase.

In the sampling phase, first, given that the user specified the number n of sampling ratios, a set

of sampling ratios with size n is determined. Second, for each sampling ratio, the input data

are undersampled several times to make a batch of undersampled datasets. In the ensemble

phase, each batch of undersampled datasets is used for learning a base ensemble classifier.

Last, the base ensemble classifiers for all sampling ratios are combined into a classifier in an

ensemble manner. In MUEnsemble, there are two major parameters: the set of sampling

ratios and the weights on the base classifiers. In this paper, the weights are considered to

be dominant factors in classification performance, in contrast with a set of sampling ratios.
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Fig. 2. Overview of MUEnsemble

Therefore, to determine a set of sampling ratios, MUEnsemble employs a simple splitting

strategy. For the weights of the base classifiers, in this paper, two functions are designed; one

is a uniform weighting function, and the other is a Gaussian weighting function.

Algorithm 1 displays the pseudo-code of MUEnsemble. Let P and N denote sets of mi-

nority examples and majority examples, respectively. At sampling step c, N is undersampled

to N ′ so that |N
′|
|P| = R(c, nP , nN ), where R(·), nP , and nN are a sampling ratio and the

numbers of the sampling ratios below and above 1, respectively, in the splitting strategy. For

N ′, MUEnsemble trains the base ensemble classifier Hc, which consists of w weak classifiers,

by AdaBoost learning as Hc = sgn
(∑w

j=1 α
c
jh
c
j

)
, where sgn is the sign function, hcj is the

j-th weak classifier, and αcj is its weight.

H = sgn

nP+nN+1∑
c=1

w∑
j=1

W (c)αcjh
c
j

 ,

where W (·) is a weighting function for the sampling ratio.

3.1. Sampling Ratio Determination

Determining sampling ratios to be ensembled is not intuitive for human users; therefore,

automatically determining them is desirable. One approach is to simplify the parameter to

a ratio interval; that is, the user gives an interval value to split imbalance ratio (IR) into

a sequence sampling ratios at intervals of the value. For instance, suppose that the IR is

2.0 and the ratio interval is 0.2; the sampling ratios are determined as {0.2, 0.4, 0.6, . . . , 2.0}.
However, the IR differs dataset by dataset, and when it is too large, the number of sampling

ratios becomes too large. This leads to the ensemble being heavy; that is, so many base
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Algorithm 1 MUEnsemble

Input: P,N , nP , nN , w
Output: H

1: for c← 1 to nP + nN + 1 do
2: for j ← 1 to w do
3: Randomly sample subset N ′ from N s.t. |N ′| : |P| = R(c, nP , nN ) : 1
4: Learn Hc

i using P and N ′

Hc
i = sgn

(∑w
j=1 α

c
jh
c
j

)
5: end for
6: end for
7: H = sgn

(∑nP+nN+1
c=1 W (c)αcjh

c
j

)

𝑛𝒫 = 4 𝑛𝒩 = 4
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Fig. 3. Splitting Strategy

classifiers are trained, and as a result, the training cost becomes too large.

To avoid this issue, MUEnsemble employs a splitting strategy for determining the sampling

ratio. It takes the numbers nP and nN to determine the number |N ′| of sampled majority

examples. nP (resp. nN ) is the number of blocks that equally split the minority (resp.

majority) example size. Figure 3 illustrates an example of the splitting strategy. The majority

example size is divided into nP + nN + 1 blocks (nP = nN = 4 in the example).

Given nP and nN , the sampling ratio determination function R calculates the sampling

ratio as a cumulative ratio of blocks as follows.

R(c, nP , nN ) =


c

nP+1 if c ≤ nP
1 if c = nP + 1

1 + IR
nN

(c− nP) if c > nP + 1

, (1)

where IR = |N |
|P| is the imbalance ratio, which is the number of majority examples over that

of minority examples. In Figure 3, the sampling ratios of the corresponding iteration c are

the blue-shaded areas. The amounts of blue-shaded and orange-shaded areas for the minority

and majority examples are used in the training.
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3.2. Weighting Function

The weighting function is a programmable function for deciding the weights on base classifiers

of sampling ratios. To investigate the base choices for the weight function, in this paper, the

aforementioned uniform weighting function, and Gaussian weighting function are introduced.

The uniform weighting function is a function that equally weights base ensemble classifiers.

In particular, it provides the same weights for all base classifiers, which is defined as follows.

Wuni(c) =
1

nP + nN + 1
(2)

The Gaussian weighting function is a more flexible function than the uniform weighting

function. Different datasets can have different preferences toward sampling ratios. To capture

the differences, a Gaussian function is introduced as follows.

Wgauss(c) = a · exp

(
− (R(c, nP , nN )− µ)

2

2σ2

)
, (3)

where µ and σ2 are tunable parameters, and a is a normalization constant such that a =

(
∑
cWgauss(c))

−1
. When µ = 1.0, most of the weight is on the base classifier trained using

the balanced data, and the weights gradually decrease as R(c, nP , nN ) increases and decreases

from µ.

4. Experimental Evaluation

In this paper, MUEnsemble was evaluated to answer three questions:

Q1: Does MUEnsemble outperform baseline methods? — To answer this question, MUEnsem-

ble was compared with state-of-the-art resampling-based approaches by using datasets

featuring a wide range of domains, dimensionalities, numbers of records, and imbalance

ratios.

Q2: How effective is taking multi-ratio undersampling into consideration for ensemble classi-

fiers? — To answer this question, MUEnsemble was compared with EasyEnsemble [22]

which is a single sampling ratio version of MUEnsemble.

Q3: Is the Gaussian weighting function potentially better than the uniform weighting func-

tion? — To answer this question, MUEnsemble with the Gaussian weighting function

and that with the uniform weighting function were compared. The comparison was two-

fold: the best parameters were compared, and the possible parameters were compared,

and this showed the relationship between the parameters of the Gaussian weighting and

uniform weighting functions.

4.1. Settings

4.1.1. Evaluation

The evaluation metrics were Precision, Recall, Gmean, F2, and AUC. Let TP, FN, TN, and

FP be the true positives, false negatives, true negatives, and false positives. Precision =
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Table 1. Classification Datasets

ID Name #dim #major #minor IR

D1 Abalone (9 v. 18) 8 689 42 16.4
D2 Anuran Calls (Lept. v. Bufo.) 22 4,420 68 65.0
D3 Covertype (2 v. 5) 54 283,301 9,493 29.8
D4 default of credit card clients 23 23,364 6,636 3.5
D5 HTRU2 8 16,259 1,639 9.9
D6 Online Shoppers Purchasing Intention 17 10,422 1,908 5.5
D7 Polish companies bankruptcy 64 5,500 410 13.4
D8 Spambase 57 2,788 1,813 1.5
D9 Wine Quality – Red ((3, 4) v. others) 11 1,536 63 24.4
D10 Wine Quality – White (7 v. 3) 11 880 20 44.0

D11 Churn Modelling 9 7,963 2,037 3.9
D12 Credit Card Fraud Detection 29 284,315 492 577.9
D13 ECG Heartbeat – Arrhythmia (N v. F) 187 90,589 803 112.8
D14 Financial Distress 85 3,536 136 26.0
D15 LoanDefault LTFS AV 39 182,543 50,611 3.6
D16 Mafalda Opel– Driving Style 14 9,530 2,190 4.4
D17 Mafalda Peugeot – Driving Style 14 12,559 678 18.5
D18 Rain in Australia 20 110,316 31,877 3.5
D19 Surgical 24 10,945 3,690 3.0
D20 Paysim1 10 6,354,407 8,213 773.7

D21 cm1 21 449 49 9.2
D22 kc3 39 415 43 9.7
D23 mw1 37 372 31 12.0
D24 pc1 21 1,032 77 13.4
D25 pc3 37 1,403 160 8.8
D26 pc4 37 1,280 178 7.2

D27 Yeast (1 v. 7) 7 429 30 14.3
D28 Yeast (6 v. others) 8 1,449 35 41.4
D29 Abalone (19 v. others) 8 4,142 32 129.4
D30 Wine Quality – Red (3 v. 5) 8 1,890 26 72.7
D31 Abalone (20 v. (8, 9, 10)) 11 681 10 68.1

TP
TP+FP measures how many classified positive instances are correctly classified. Recall =

TP
TP+FN measures how many positive (minority) instances are correctly classified. Gmean =√

Recall · TNR is the geometric mean of the recalls of both classes, where TNR = TN
TN+FP .

Fβ = (1+β2)Recall·Precision
Recall+β2Precision is the harmonic mean of recall and precision, where β determines

the weight on the recall. In this experiment, β was set to 2 because higher recalls are preferred

in many real-world applications. AUC is the area under the receiver operating characteristic

(ROC) curve.

To accurately estimate these evaluation metric values, the experimental process was re-

peated 50 times. In the process, a dataset was randomly separated into 70% for training and

30% for testing, and the classifiers were trained on the training set and evaluated by using

the test set. The overall metric scores were the macro average of the 50 trials.

4.1.2. Datasets
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This evaluation was performed on publicly available datasets that have a wide range of dataset

features. Table 1 summarizes the datasets. D1 - D10 were obtained from the UCI Machine

Learning Repository [9], D11 - D20 were obtained from the Kaggle Dataseta, D21 - D26 were

obtained from the OpenML dataset [36], and D27 - D31 were obtained from the KEEL repos-

itory [1]. These datasets include few categorical attributes, and when categorical attributes

exist, they are dictionary-encoded to numeric attributesb. Some of the datasets were for the

multi-class classification task, and two of the classes in the datasets were selected to be for

the binary classification task, which are represented in the dataset column in brackets. The

datasets had various characteristics in terms of dimensionality (#dim.), the number of ma-

jority and minority examples (#major, #minor), and the imbalance ratio (IR).

4.1.3. Baselines

MUEnsemble was compared with simple baselines, synthetic oversampling approaches and

undersampling-based approaches, listed as follows.

• SMT: SMOTE [8] + AdaBoost Classifier [30]

• PWS: ProWSyn [3] + AdaBoost Classifier

• PFS: SMOTE with Polynomial Fitting [12] + AdaBoost Classifier

• RUS: Random undersampling with sampling ratio of 1 + AdaBoost Classifier

• RBS: RUSBoost [31]

• EE: EasyEnsemble [22]

SMT, PWS, and PFS are synthetic oversampling methods, where SMT is the most popu-

lar method, PRW and PFS have shown superior performances in [18]. RUS is a baseline

approach to undersampling-based classifiers. It is a simple undersampling with a sampling

ratio of 1.0. EasyEnsemble and RUSBoost are undersampling-based ensemble methods, where

EasyEnsemble is a closer algorithm to MUEnsemble except for the inclusion of various sam-

pling ratios, and RUSBoost is a boosting ensemble method. To compare the effects of re-

sampling, the classifiers of the synthetic oversampling approaches and RUS were set to the

AdaBoost classifier [30], which is the base classifier of EasyEnsemble and MUEnsemble. The

implementations of SMT, PWS, and PFS were in [19], and those of RUS, EasyEnsemble, and

RUSBoost were in the imbalanced-learn library [21]. Classifiers were learned using scikit-learn

(v. 0.20.3)c.

4.1.4. Parameters

The parameters of MUEnsemble were set as follows. nP = nN = 10. The parameter spaces

of the Gaussian function, µ and σ2, were set as µ ∈ {0.2, 0.6, 1.0, 1.4, 1.8, 2.0}, and σ2 ∈
{0.2, 0.4, 0.6, . . . , 3.0}. The parameters of the baselines were the default values.

4.2. Results
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Table 2. Precision Comparison

Oversampling Undersampling MUEnsemble
data SMT PWS PFS RUS RBS EE Uni Gau

D1 0.279 0.275 0.402 0.136 0.200 0.158 0.118 0.149
D2 0.998 0.998 0.998 0.999 0.999 0.999 0.999 1.000
D3 0.142 0.246 0.572 0.135 0.139 0.140 0.137 0.140
D4 0.626 0.631 0.668 0.455 0.451 0.468 0.440 0.648
D5 0.749 0.730 0.900 0.690 0.491 0.735 0.698 0.728
D6 0.611 0.621 0.666 0.533 0.472 0.536 0.519 0.545
D7 0.619 0.633 0.849 0.451 0.482 0.498 0.421 0.481
D8 0.918 0.918 0.927 0.903 0.903 0.914 0.888 0.910
D9 0.977 0.974 0.966 0.977 0.969 0.986 0.986 0.990
D10 0.984 0.983 0.985 0.992 0.982 0.991 0.994 1.000
D11 0.635 0.616 0.694 0.457 0.456 0.457 0.429 0.625
D12 0.083 0.109 0.340 0.030 0.040 0.044 0.034 0.045
D13 0.120 0.141 0.841 0.078 0.097 0.093 0.080 0.093
D14 0.271 0.277 0.412 0.150 0.165 0.171 0.145 0.171
D15 0.295 0.285 0.464 0.295 0.296 0.297 0.286 0.432
D16 0.923 0.893 0.859 0.935 0.929 0.944 0.955 0.991
D17 0.979 0.972 0.963 0.988 0.982 0.991 0.994 0.999
D18 0.564 0.604 0.694 0.516 0.518 0.519 0.504 0.663
D19 0.734 0.756 0.854 0.634 0.621 0.646 0.610 0.805
D20 0.047 0.050 0.954 0.036 0.038 0.037 0.036 0.037
D21 0.211 0.245 0.227 0.164 0.181 0.177 0.153 0.184
D22 0.338 0.343 0.439 0.191 0.199 0.189 0.168 0.193
D23 0.265 0.272 0.290 0.156 0.165 0.163 0.147 0.158
D24 0.319 0.262 0.305 0.177 0.163 0.194 0.155 0.200
D25 0.310 0.285 0.350 0.228 0.217 0.241 0.205 0.232
D26 0.529 0.527 0.616 0.410 0.435 0.424 0.379 0.440
D27 0.241 0.178 0.262 0.123 0.163 0.155 0.125 0.176
D28 0.336 0.285 0.493 0.115 0.213 0.142 0.122 0.141
D29 0.028 0.029 0.005 0.017 0.022 0.020 0.016 0.021
D30 0.237 0.223 0.400 0.053 0.128 0.062 0.049 0.061
D31 0.064 0.031 0.025 0.031 0.042 0.039 0.036 0.034

4.2.1. Q1: Does MUEnsemble outperform baseline methods?— Yes, MUEnsemble achieved

the best performance in terms of recall, gmean, F2, and AUC.

Tables 2, 3, 4, 5, and 6 show performance comparisons in terms of precision, recall, gmean, F2,

and AUC, respectively. For the recall, gmean, F2, and AUC metrics, MUEnsemble outper-

formed the other methods. For the precision metric, the oversampling-based approaches, espe-

cially SMOTE with polynomial fitting (PFS), performed the best. On the contrary, the recall

scores of the oversampling-based approaches were lower than those of the undersampling-

based approaches including MUEnsemble. In many real-world applications such as credit

card fraud detection and arrhythmia detection, higher recall is preferred. From this perspec-

tive, the undersampling-based approaches are more preferable than the oversampling-based

ahttps://www.kaggle.com/datasets/
bCoping with categorical attributes is out of the scope of this paper.
chttps://scikit-learn.org/
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Table 3. Recall Comparison

Oversampling Undersampling MUEnsemble
data SMT PWS PFS RUS RBS EE Uni Gau

D1 0.588 0.511 0.328 0.658 0.463 0.717 0.803 0.931
D2 0.886 0.863 0.865 0.947 0.914 0.961 0.968 0.971
D3 0.872 0.521 0.133 0.896 0.887 0.905 0.921 0.992
D4 0.411 0.406 0.357 0.616 0.621 0.613 0.649 0.977
D5 0.902 0.909 0.852 0.912 0.752 0.914 0.919 0.960
D6 0.677 0.655 0.568 0.812 0.733 0.818 0.836 0.957
D7 0.853 0.828 0.732 0.901 0.811 0.917 0.934 0.976
D8 0.926 0.926 0.915 0.932 0.923 0.939 0.956 0.976
D9 0.511 0.447 0.242 0.624 0.377 0.764 0.832 0.968
D10 0.283 0.283 0.350 0.720 0.273 0.683 0.783 1.000
D11 0.553 0.538 0.457 0.733 0.723 0.734 0.769 0.947
D12 0.897 0.878 0.827 0.917 0.875 0.915 0.922 0.959
D13 0.876 0.834 0.456 0.914 0.868 0.910 0.925 0.971
D14 0.593 0.456 0.259 0.826 0.540 0.878 0.921 0.983
D15 0.181 0.121 0.015 0.631 0.628 0.634 0.705 0.993
D16 0.728 0.593 0.360 0.782 0.756 0.816 0.862 0.984
D17 0.675 0.533 0.329 0.828 0.727 0.869 0.915 0.994
D18 0.664 0.606 0.490 0.762 0.760 0.763 0.784 0.951
D19 0.708 0.703 0.666 0.817 0.813 0.814 0.832 0.951
D20 0.944 0.934 0.483 0.983 0.981 0.984 0.985 0.996
D21 0.347 0.393 0.153 0.648 0.388 0.716 0.892 0.960
D22 0.423 0.423 0.331 0.697 0.358 0.772 0.858 0.962
D23 0.320 0.390 0.260 0.686 0.308 0.708 0.784 0.970
D24 0.550 0.446 0.242 0.738 0.352 0.839 0.934 0.971
D25 0.483 0.417 0.300 0.746 0.512 0.798 0.887 0.952
D26 0.704 0.730 0.509 0.880 0.695 0.925 0.949 0.980
D27 0.467 0.467 0.344 0.640 0.398 0.756 0.809 0.967
D28 0.555 0.609 0.482 0.838 0.651 0.847 0.820 0.964
D29 0.450 0.400 0.004 0.698 0.340 0.830 0.930 0.960
D30 0.713 0.637 0.325 0.792 0.552 0.853 0.833 0.963
D31 0.167 0.067 0.067 0.613 0.193 0.693 0.740 0.900

approaches.

4.2.2. Q2: How effective is taking multi-ratio undersampling into consideration for ensemble

classifiers?— The effectiveness can be seen from the fact that MUEnsemble outperformed

EasyEnsemble in most cases, and was comparable in the other cases.

In the undersampling-based approaches, EasyEnsemble (EE) was the closest approach to

MUEnsemble in the sense that EasyEnsemble ensembles multiple weak classifiers with a fixed

undersampling ratio. The differences in recall, gmean, and F2 scores between MUEnsemble

and EasyEnsemble show the effect of involving multiple sampling ratios.

4.2.3. Q3: Is the Gaussian weighting function potentially better than the uniform weight-

ing function?— Yes, the Gaussian weighting function had clear superiority to the uniform

weighting function.
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Table 4. Gmean Comparison

Oversampling Undersampling MUEnsemble
data SMT PWS PFS RUS RBS EE Uni Gau

D1 0.723 0.675 0.552 0.686 0.625 0.734 0.703 0.734
D2 0.940 0.927 0.928 0.947 0.952 0.967 0.972 0.966
D3 0.847 0.702 0.364 0.851 0.851 0.858 0.862 0.860
D4 0.618 0.615 0.582 0.698 0.688 0.701 0.704 0.704
D5 0.935 0.937 0.919 0.935 0.806 0.940 0.939 0.941
D6 0.789 0.779 0.733 0.840 0.774 0.844 0.847 0.850
D7 0.905 0.893 0.851 0.909 0.870 0.924 0.919 0.924
D8 0.936 0.936 0.934 0.933 0.929 0.940 0.938 0.941
D9 0.661 0.604 0.452 0.638 0.537 0.711 0.622 0.710
D10 0.478 0.464 0.537 0.713 0.440 0.732 0.760 0.807
D11 0.712 0.701 0.658 0.754 0.748 0.755 0.753 0.758
D12 0.939 0.931 0.908 0.932 0.917 0.940 0.938 0.939
D13 0.909 0.892 0.674 0.909 0.897 0.915 0.915 0.915
D14 0.745 0.658 0.502 0.821 0.686 0.856 0.852 0.860
D15 0.398 0.332 0.120 0.606 0.606 0.609 0.601 0.609
D16 0.736 0.680 0.569 0.747 0.742 0.762 0.764 0.762
D17 0.751 0.685 0.556 0.803 0.763 0.829 0.822 0.836
D18 0.752 0.732 0.678 0.777 0.777 0.780 0.780 0.781
D19 0.804 0.806 0.800 0.829 0.817 0.832 0.826 0.834
D20 0.960 0.955 0.695 0.974 0.974 0.976 0.975 0.976
D21 0.532 0.575 0.345 0.634 0.540 0.667 0.629 0.695
D22 0.610 0.611 0.554 0.687 0.533 0.708 0.686 0.722
D23 0.538 0.556 0.481 0.668 0.489 0.682 0.675 0.684
D24 0.703 0.631 0.470 0.731 0.537 0.781 0.749 0.789
D25 0.650 0.603 0.528 0.727 0.630 0.753 0.733 0.740
D26 0.800 0.813 0.696 0.849 0.777 0.872 0.860 0.879
D27 0.635 0.616 0.559 0.645 0.561 0.726 0.690 0.759
D28 0.723 0.756 0.681 0.829 0.768 0.856 0.831 0.844
D29 0.624 0.584 0.013 0.680 0.505 0.744 0.705 0.758
D30 0.828 0.782 0.558 0.785 0.709 0.830 0.797 0.840
D31 0.249 0.114 0.113 0.613 0.302 0.692 0.696 0.653

In most cases, MUEnsemble with the Gaussian weighting function was superior to that with

the uniform weighting function for all metrics. This indicates that there are parameters that

lead MUEnsemble to perform better than just voting from the base classifiers.

Figure 4 and 5 show the effects of parameters for the Gaussian weighting function in

comparison with the uniform weighting function. To avoid redundancy in showing these effects

across all datasets, D4 and D20 are shown in these figures as they demonstrate the typical

tendency of the effects. In these figures, the solid lines are the changes in the performance of

MUEnsemble with the Gaussian weighting function, and the dashed horizontal lines are those

with the uniform weighting function. Figure 4 indicates that MUEnsemble was sensitive to the

parameters for D4. For instance, the lowest µ = 0.2 (blue line in the figure) made the recall

of MUEnsemble higher, but it leads to low gmean scores, meaning that the low µ leads to low

true negative ratios. In contrast, Figure 5 shows that MUEnsemble was not that sensitive to

the parameters for D20. From the both figures, larger the σ2, the closer the performances of
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Table 5. F2 Comparison

Oversampling Undersampling MUEnsemble
data SMT PWS PFS RUS RBS EE Uni Gau

D1 0.478 0.431 0.334 0.366 0.354 0.418 0.371 0.406
D2 0.905 0.886 0.887 0.956 0.929 0.968 0.974 0.977
D3 0.430 0.426 0.158 0.422 0.428 0.432 0.430 0.433
D4 0.441 0.437 0.394 0.575 0.574 0.577 0.592 0.631
D5 0.867 0.866 0.862 0.857 0.652 0.871 0.864 0.871
D6 0.662 0.648 0.585 0.735 0.650 0.740 0.745 0.750
D7 0.792 0.779 0.752 0.750 0.711 0.784 0.751 0.780
D8 0.925 0.924 0.917 0.926 0.919 0.934 0.941 0.942
D9 0.563 0.497 0.281 0.670 0.425 0.798 0.857 0.972
D10 0.321 0.323 0.393 0.753 0.310 0.720 0.813 1.000
D11 0.567 0.552 0.490 0.654 0.645 0.654 0.664 0.670
D12 0.303 0.364 0.642 0.131 0.168 0.185 0.146 0.188
D13 0.387 0.421 0.501 0.292 0.335 0.329 0.298 0.330
D14 0.479 0.401 0.278 0.433 0.363 0.481 0.444 0.478
D15 0.196 0.136 0.018 0.514 0.513 0.517 0.546 0.593
D16 0.760 0.636 0.407 0.809 0.785 0.839 0.880 0.986
D17 0.720 0.586 0.378 0.856 0.765 0.891 0.930 0.995
D18 0.641 0.605 0.520 0.696 0.695 0.698 0.706 0.723
D19 0.713 0.713 0.697 0.772 0.763 0.774 0.775 0.777
D20 0.197 0.207 0.536 0.158 0.164 0.163 0.156 0.160
D21 0.305 0.346 0.178 0.405 0.316 0.444 0.452 0.486
D22 0.398 0.401 0.344 0.452 0.300 0.476 0.469 0.496
D23 0.303 0.395 0.263 0.406 0.256 0.420 0.417 0.421
D24 0.479 0.387 0.248 0.448 0.276 0.503 0.464 0.513
D25 0.434 0.380 0.308 0.512 0.399 0.545 0.533 0.529
D26 0.659 0.677 0.526 0.715 0.619 0.747 0.729 0.758
D27 0.382 0.351 0.320 0.343 0.295 0.422 0.383 0.461
D28 0.478 0.486 0.478 0.365 0.441 0.422 0.379 0.408
D29 0.112 0.113 0.097 0.079 0.094 0.092 0.075 0.096
D30 0.500 0.461 0.334 0.206 0.320 0.238 0.198 0.236
D31 0.301 0.270 0.251 0.135 0.205 0.165 0.156 0.156

MUEnsemble are with the Gaussian and uniform weighting functions are. This is a natural

phenomenon because larger the σ2, the flatter distribution of the Gaussian function becomes.

4.3. Lessons Learned

• Oversampling prefers precision and undersampling prefers recall. This is not

that surprising but it is noteworthy. Oversampling methods generate examples of a

minority class on the basis of the distribution of observed examples; therefore, they

increase the density of the data points representing them, and thus, classifiers learn

a boundary around them. This indicates that these classifiers can classify unobserved

examples within the boundary in the minority class with high confidence; therefore,

high precision can be achieved. In contrast, undersampling methods randomly skew

examples of the majority class, while those of the minority class remain as they are.
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Table 6. AUC Comparison

Oversampling Undersampling MUEnsemble
data SMT PWS PFS RUS RBS EE Uni Gau

D1 0.814 0.805 0.798 0.767 0.743 0.810 0.816 0.820
D2 0.994 0.993 0.995 0.982 0.998 0.997 0.997 0.996
D3 0.927 0.901 0.930 0.928 0.928 0.934 0.936 0.936
D4 0.758 0.759 0.770 0.769 0.768 0.775 0.774 0.775
D5 0.976 0.977 0.976 0.976 0.879 0.977 0.977 0.980
D6 0.912 0.911 0.917 0.913 0.861 0.917 0.918 0.918
D7 0.975 0.968 0.972 0.967 0.946 0.976 0.975 0.978
D8 0.979 0.980 0.979 0.978 0.977 0.981 0.982 0.982
D9 0.734 0.654 0.635 0.685 0.614 0.769 0.772 0.784
D10 0.791 0.722 0.740 0.802 0.711 0.846 0.883 0.894
D11 0.842 0.836 0.843 0.835 0.830 0.836 0.835 0.838
D12 0.976 0.971 0.960 0.973 0.961 0.978 0.980 0.981
D13 0.956 0.948 0.965 0.964 0.955 0.969 0.972 0.971
D14 0.902 0.908 0.900 0.902 0.840 0.932 0.933 0.940
D15 0.601 0.597 0.647 0.648 0.649 0.652 0.652 0.652
D16 0.819 0.789 0.790 0.826 0.825 0.841 0.842 0.839
D17 0.860 0.842 0.840 0.886 0.861 0.905 0.905 0.913
D18 0.850 0.846 0.853 0.862 0.862 0.864 0.865 0.866
D19 0.900 0.902 0.910 0.912 0.907 0.912 0.912 0.913
D20 0.993 0.993 0.997 0.996 0.996 0.997 0.997 0.997
D21 0.735 0.749 0.695 0.688 0.629 0.737 0.762 0.785
D22 0.763 0.741 0.728 0.745 0.618 0.805 0.822 0.812
D23 0.734 0.763 0.727 0.743 0.668 0.802 0.795 0.775
D24 0.839 0.830 0.819 0.791 0.652 0.851 0.855 0.861
D25 0.805 0.808 0.795 0.792 0.706 0.816 0.826 0.808
D26 0.929 0.922 0.907 0.904 0.884 0.921 0.928 0.923
D27 0.750 0.760 0.766 0.715 0.692 0.807 0.807 0.812
D28 0.861 0.895 0.867 0.909 0.902 0.937 0.920 0.943
D29 0.767 0.776 0.753 0.748 0.708 0.815 0.823 0.816
D30 0.882 0.854 0.845 0.856 0.877 0.923 0.911 0.929
D31 0.768 0.675 0.702 0.690 0.654 0.805 0.834 0.731

On the basis of the skewed majority examples, classifiers can learn a more relaxed

boundary between minority and majority classes. This indicates that these classifiers

eagerly classify examples close to the observed minority examples as the minority class.

Therefore, undersampling-based approaches increase recall.

• Undersampling with different sampling ratios has different preferences to-

ward classes. Ensemble learning, which is a typical approach to achieving higher

performance in classification tasks, prefers to combine classifiers having diverse clas-

sification criteria. EasyEnsemble combines classifiers trained on different subsets of

examples to realize divergence. In contrast, the proposed method, MUEnsemble, in-

creases diversity by using different sampling ratios. Base classifiers trained on examples

with different sampling ratios have diverse preferences toward classes. The experiment

in this paper showed the superiority of MUEnsemble over EasyEnsemble. Therefore,
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Fig. 4. Effects of Parameters for the Gaussian Weighting Scheme on D4

1 2 3
2

0.00

0.25

0.50

0.75

1.00
Gmean

1 2 3
2

0.00

0.25

0.50

0.75

1.00
F2

1 2 3
2

0.00

0.25

0.50

0.75

1.00
AUC

1 2 3
2

0.00

0.25

0.50

0.75

1.00
Recall

= 0.2 = 0.6 = 1.0 = 1.4 = 1.8 = 2.0 Uniform

Fig. 5. Effects of Parameters for the Gaussian Weighting Scheme on D20

increasing divergence by incorporating multiple sampling ratios contributes to achieving

better ensemble classifier.

• A biased weighting scheme for ensembles can improve simple voting ensem-

bles. As discussed above, the combination of multiple sampling ratios increases the

diversity of classifiers; however, classifiers with sampling ratios that are too low (or

too high) sampling ratios are sometimes too biased toward minority class (or majority

class). Classifiers taht are too biased can wrongly classify examples with quite high

confidence. This can degrade the performance of ensemble classifiers. The experimental

results showing that MUEnsemble with the Gaussian weighting function outperformed

that with the uniform weighting function indicate that weights should be biased toward

the “balanced” sampling ratios. “Balanced” here does not mean that the sampling ratio

equals to 1.0 but rather that it is balanced for the true positive rate and true negative

rate.

5. Conclusion

In this paper, an ensemble classification framework, MUEnsemble, was proposed for the

class imbalance problem, by which multiple undersamplings with different sampling ratios

are applied. In an experiment, the Gaussian balancing function proved its flexibility. Since

there were still datasets (e.g., D15) for which none of the approaches could perform well,

promising future directions would be investigating reasons, such as the possibility that small

disjuncts [16] and the overlapping of example distributions of the majority and minority
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classes [24] were causes, and then combining solutions to the reasons for the degradation into

MUEnsemble. This evaluation also revealed a limitation of MUEnsemble and undersampling-

based approaches; that is, their precision scores tended to be lower than the oversampling-

based approaches. The precision-recall trade-off still remains in the class imbalance problem.
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13. S. E. Gómez, L. Hernández-Callejo, B. C. Mart́ınez, and A. J. Sánchez-Esguevillas. Exploratory
study on Class Imbalance and solutions for Network Traffic Classification. Neurocomputing,
343:100–119, 2019.

14. H. Han, W. Wang, and B. Mao. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced
Data Sets Learning. In ICIC 2005, pages 878–887, 2005.

15. H. He, Y. Bai, E. A. Garcia, and S. Li. ADASYN: Adaptive synthetic sampling approach for
imbalanced learning. In IJCNN 2008, pages 1322–1328, 2008.

16. T. Jo and N. Japkowicz. Class Imbalances versus Small Disjuncts. SIGKDD Explorations, 6(1):40–
49, 2004.

17. P. Kang and S. Cho. EUS SVMs: Ensemble of Under-Sampled SVMs for Data Imbalance Problems.
In ICONIP 2006, pages 837–846, 2006.
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