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Industry 4.0 (I4.0) standards and standardization frameworks provide a unified way to describe smart
factories. Standards specify the main components, systems, and processes inside a smart factory and
the interaction among all of them. Furthermore, standardization frameworks classify standards ac-
cording to their functions into layers and dimensions. Albeit informative, frameworks can categorize
similar standards differently. As a result, interoperability conflicts are generated whenever smart fac-
tories are described with miss-classified standards. Approaches like ontologies and knowledge graphs
enable the integration of standards and frameworks in a structured way. They also encode the mean-
ing of the standards, known relations among them, as well as their classification according to existing
frameworks. This structured modeling of the I4.0 landscape using a graph data model provides the ba-
sis for graph-based analytical methods to uncover alignments among standards. This paper contributes
to analyzing the relatedness among standards and frameworks; it presents an unsupervised approach
for discovering links among standards. The proposed method resorts to knowledge graph embeddings
to determine relatedness among standards-based on similarity metrics. The proposed method is ag-
nostic to the technique followed to create the embeddings and to the similarity measure. Building on
the similarity values, community detection algorithms can automatically create communities of highly
similar standards. Our approach follows the homophily principle, and assumes that related standards
are together in a community. Thus, alignments across standards are predicted and interoperability is-
sues across them are solved. We empirically evaluate our approach on a knowledge graph of 249 I4.0
standards using the Trans∗ family of embedding models for knowledge graph entities. Our results are
promising and suggest that relations among standards can be detected accurately.
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1. Introduction

The international community recognizes Industry 4.0 (I4.0) as the fourth industrial revolution. The
main objective of I4.0 is the creation of smart factories by combining the Internet of Things (IoT),
Internet of Services (IoS), and Cyber-Physical Systems (CPS). In smart factories, humans, machines,
materials, and CPS cooperate intelligently to produce individualized products. This cooperation re-
quires effective communication and the resolution of interoperability issues generated whenever the
same products are described with different standards. Different industrial communities have defined
standardization frameworks aligning standards according to their features and expressiveness. Rele-
vant examples are the Reference Architecture for Industry 4.0 (RAMI4.0) [1] or the Industrial Inter-
net Connectivity Framework (IICF) in the US [2]. Despite the capacity to categorize existing stan-
dards, standardization frameworks may present divergent interpretations of the same standard. Mis-
matches among standard classifications generate semantic interoperability conflicts that negatively
impact communication effectiveness in smart factories.

Database and Semantic web communities have extensively studied the problem of data integration
[3, 4, 5], and various approaches have been proposed to support data-driven pipelines to transform
industrial data into actionable knowledge in smart factories [6, 7, 8]. Ontology-based approaches
have also contributed to create a shared understanding of the domain [9], and specifically Kovalenko
and Euzenat [4] have equipped data integration with diverse methods for ontology alignment. Fur-
thermore, Lin et al. [10] identify interoperability conflicts across domain specific standards (e.g.,
RAMI4.0 model and the IICF architecture), while works by Grangel-Gonzalez et al. [11, 12, 13]
show the relevant role that Descriptive Logic, Datalog, and Probabilistic Soft Logic play in liaising
I4.0 standards. Certainly, the extensive literature in data integration provides the foundations for en-
abling the semantic description and alignment of "similar" things in a smart factory. Nevertheless,
finding alignments across I4.0 requires the encoding of domain specific knowledge represented in
standards of diverse nature and standardization frameworks defined with different industrial goals.
We rely on state-of-the-art knowledge representation and discovery approaches to embed meaningful
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associations and features of the I4.0 landscape, to enable interoperability.
Problem Statement and Objectives. We address the problem of determining relatedness across

I4.0 standards described in terms of their main features and standardization frameworks. Our goal is
uncovering alignments among related standards, i.e., standards that define the same type of compo-
nents of a smart factory. Moreover, we aim at providing precise classification of the standards and
contributing to a more precise categorizations in the standardization frameworks.

Proposed Solution. We propose a knowledge-driven approach able to integrate standards and
standardization frameworks into a knowledge graph. Knowledge graphs are data structures that repre-
sent data, knowledge, and actionable insights using a graph data model. They naturally model entities
and their relationships, mono- and multi-valued attributes, and the neighborhoods of an entity. The
features of the standards represented in a knowledge graph are exploited to build latent representations
in a low-dimensional space, i.e., embeddings. Values of similarity metrics between embeddings are
used in conjunction with state-of-the-art community detection algorithms to identify patterns among
standards. The homophily prediction principle is performed in each community to discover new links
between standards and frameworks. Our approach is general and agnostic with the technique to create
the embeddings, the similarity measure, and the community detection methods. However, as a proof
of concept, the Trans∗ family of embedding models is utilized in our evaluations. Moreover, different
similarity measures are evaluated to determining relatedness among standards based on the embed-
dings. State-of-the-art community detection methods (e.g., SemEP [14], Metis[15] and KMeans [16])
are applied to group together similar standards. We assess the performance of the proposed methods
in a knowledge graph composed of 249 I4.0 standards connected by 736 relations. These relationships
have been extracted from the literature. The experiments are executed following various configura-
tions and baselines. The observed results are promising and demonstrate the benefits of exploiting
knowledge graphs for the computation of alignments across standards. These outcomes provide evi-
dence of the accuracy of the uncovered patterns and the discovered relations.

Contributions. This paper is an extension of our previous work [17] where we determined relat-
edness among standards and analyzed their properties to detect unknown relations. This work is built
on the results reported on our previous paper and presents the following contributions:

1. A more detailed analysis of the state of the art.

2. A formalization of problem of finding relations among I4.0 standards. It presents I4.0RD, a
knowledge-driven approach to unveil these relations. I4.0RD exploits the semantic description
encoded in a knowledge graph via the creation of embeddings, to identify then communities of
standards that should be related.

3. An extensive evaluation of I4.0RD in different embeddings learning models, similarity mea-
sures, and community detection algorithms. The evaluation material is available at https:
//github.com/i40-Tools/I40KG-Embeddings.

The rest of the paper is organized as follows: Section 2 summarizes the the state of the art. Section
3 illustrates the interoperability problem presented in this paper. Section 4 presents the proposed
approach, while the architecture of the proposed solution is explained in Section 5. Results of the
empirical evaluation of our methods are reported in Section 6. Finally, we close with the conclusion
and future work in Section 7.



Ariam Rivas, Irlan Grangel-Gonzalez, Diego Collarana, Jens Lehmann, and Maria-Esther Vidal 329

2. Related Work

There have been a great deal of research in recent years investigating key aspects of discovering
communities of standards. Furthermore, many approaches are proposed to corroborate and extend the
knowledge of the standardization frameworks and resolving semantic interoperability issues.

2.1. Solving Interoperability in I4.0

Zeid et al. [18] study different approaches to achieve interoperability of different standardization
frameworks. In this work, the current landscape for smart manufacturing is described by highlighting
the existing standardization frameworks in different regions of the globe. Lin et al. [10] present sim-
ilarities and differences between the RAMI4.0 model and the IIRA architecture. Based on the study
of these similarities and differences, the authors proposed a functional alignment among layers in
RAMI4.0 with the functional domains and crosscutting functions in IIRA. Monteiro et al. [19] further
report on the comparison of the RAMI4.0 and IIRA frameworks. In this work, a cooperation model
is presented to align both standardization frameworks. Furthermore, mappings between RAMI4.0 IT
Layers and the IIRA functional domain are established. Moreover, the IIRA and RAMI4.0 frameworks
are compared based on different features, e.g., country of origin, source organization, basic charac-
teristics, application scope, and structure. It further details where correspondences exist between the
IIRA viewpoints and RAMI4.0 layers. In [20], Darmois et al. present the main contributions to the
analysis of IoT standardization. This work has defined knowledge areas used for the classification of
standards and identifies the standardization gaps. The purpose is to support the interoperability in com-
plex IoT systems and provide guidelines that contribute to the semantic interoperability approaches.
Aligning standardization frameworks is useful to solve the interoperability problems but not all stan-
dards are classified by layers in the standardization frameworks. However, these approaches aim to
solve interoperability problems by mapping the different frameworks without creating a common vo-
cabulary that semantically represents the standards. In this article, we propose an approach to solve
interoperability problems among I4.0 standards by discovering unknown relationships.

2.2. Ontology-based Approaches in I4.0

Ontology-based approaches have contributed to creating a shared understanding of the I4.0 domain.
Lelli et al. [9] propose the reuse of existing ontologies as one of the main principles in ontology
design. For this purpose, they make use of Linked Open Vocabulary (LOV) and collect 22 ontolo-
gies related to IoT. They state that project developers in the IoT community do not reuse existing
works, damaging the attempt to define a shared understanding of smart interoperability. Kovalenko
and Euzenat [4] have equipped data integration with diverse methods for ontology alignment. They
examine the problems of ontological correspondence in the context of engineering knowledge inte-
gration. Kovalenko and Euzenat present technologies for defining mappings between ontologies to
support data integration. Finally, they illustrate how mappings can be generated from definitions in
the Expressive and Declarative Ontology Alignment Language (EDOAL). These approaches are lim-
ited to representing the existing characteristics of the knowledge domain in ontologies, which is useful
because it enables data integration in Industry 4.0. However, there are standards that are not classified
in any standardization framework and this limits the solution of the interoperability problem. In this
work, we employ the Standard Ontology, (STO) for representing the main properties of standards and
standardization frameworks, as well as relationships among them [11].
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2.3. Knowledge Graphs and Semantic Data Integration

Sebastian et al. [6] propose a semantically annotated knowledge graph for Industry 4.0 related stan-
dards, norms, and frameworks. The I4.0 knowledge graph helps to overcome Industry 4.0 challenges
that require a comprehensive knowledge of the different standards. Furthermore, the I4.0 knowledge
graph considers the semantics and relations between standards and the standardization framework.
Garofalo et al. [21] outline Knowledge Graph Embeddings for I4.0 use cases. Existing techniques for
generating embeddings on top of KG are examined. Further, the analysis of how these techniques can
be applied to the I4.0 domain is described; specifically, it identifies the predictive maintenance, quality
control, and context-aware robots as the most promising areas to apply the combination of KGs with
embeddings. These approaches mentioned above support data-driven pipelines to transform industrial
data into actionable knowledge in smart factories. Galinski [22] examines the problem of semantic
data integration and interoperability between standards. This work emphasizes the need for metadata,
data models, and metamodels for standards. It also presents an interesting description of which data
to consider when describing a standard. Hodges et al. [7] propose an approach for semantic integra-
tion of standards to achieve interoperability between them by means of ontologies; relevant standards
and well-known ontologies to represent standards are also identified. Albeit representing domain-
specific knowledge, the approaches mentioned above cannot solve interoperability issues across I4.0
standards. We overcome this limitation by exploiting embeddings over a knowledge graph of I4.0
standards to predict relatedness among standards.

Summary of the Related Work. The approaches presented in this section describe and character-
ize existing knowledge in the I4.0 domain. However, in our view, two directions need to be considered
to enhance the knowledge in the domain; 1) the use of a KG based approach to encoding the semantics;
and 2) the use of machine learning techniques to discover and predict new communities of standards
based on their relations. Our goal is uncovering alignments among related standards. Nevertheless,
finding alignments across I4.0 requires the encoding of domain-specific knowledge represented in
standards of diverse nature.

3. Motivating Example

Existing efforts to achieve interoperability in I4.0, mainly focus on the definition of standardization
frameworks. A standardization framework defines different layers to group related I4.0 standards
based on their functions and main characteristics. Typically, classifying existing standards in a cer-
tain layer is not a trivial task and it is biased by the point of view of the community that developed
the framework. RAMI4.0 and IICF are exemplar frameworks, the former is developed in Germany
while the latter in the US; they meet specific I4.0 requirements of certain locations around the globe.
RAMI4.0 classifies the standards OPC UA and MQTT into the Communication layer, stating that
both standards are similar. Contrary, IICF presents OPC UA and MQTT at distinct layers, i.e., the
framework and the transport layers, respectively. Furthermore, independently of the classification of
the standards made by standardization frameworks, standards have relations based on their functions.
Therefore, IEC 61580 is an international standard defining communication protocols for intelligent
electronic devices and ISO 15531 is an standard for industrial automation systems. Both standards
are not not classified at all. Figure 1 depicts these relations across the frameworks RAMI4.0 and IICF,
and the standards; it illustrates interoperability issues in the I4.0 landscape.

Existing data integration approaches rely on the description of the characteristics of entities to
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RAMI 4.0 IICF

OPC UA
MQTT MQTT

OPC UA

IEC 61580

ISO 15531

Fig. 1. Motivating Example. The RAMI4.0 and IICF standardization frameworks are developed for diverse
industrial goals; they classify standards in layers according to their functions, e.g., OPC UA and MQTT under
the communication layer in RAMI4.0, and OPC UA and MQTT in the framework and transport layers in IICF,
respectively. Further, some standards, e.g., IEC 61580 and ISO 15531, are not classified yet.

solve interoperability by discovering alignments among them. Specifically, in the context of I4.0,
semantic-based approaches have been proposed to represent standards, known relations among them,
as well as their classification according to existing frameworks [10, 23, 24, 25]. Despite informative,
the structured modeling of the I4.0 landscape only provides the foundations for detecting interoper-
ability issues. We propose I4.0RD, an approach capable of discovering relation over I4.0 knowledge
graphs to identify unknown relations among standards. Our proposed methods exploit relations repre-
sented in an I4.0 knowledge graph to compute the similarity of the modeled standards. Then, an unsu-
pervised graph partitioning method determines the communities of standards that are similar. I4.0RD
explores communities to identify possible relations of standards, enhancing, thus, interoperability.

4. Problem Definition and Proposed Solution

We tackle the problem of unveiling relations between I4.0 standards. Relations among standards
and standardization frameworks (e.g., in Figure 2 (a)) are represented in a knowledge graph named
I4.0KG. Nodes in a I4.0KG correspond to standards and frameworks; edges represent relations among
standards, as well as the standards grouped in a framework layer. An I4.0KG is defined as follows:

Given sets Ve and Vt of entities and types, respectively, a set E of labelled edges representing
relations, and a set L of labels. An I.40KG is defined as G = (Ve ∪ Vt, E, L):

• The types Standard, Frameworks, and Framework Layer belong to Vt.

• I4.0 standards, frameworks, and layers are represented as instances of Ve.

• The types of the entities in Ve are represented as edges in E that belong to Ve × Vt.

• Edges in E that belong to Ve×Ve represent relations between standards and their classifications
into layers according to a framework.

• Properties relatedTo, Type, classifiedAs, isLayerOf correspond to labels in L that represent
the relations between standards, their type, their classification into layers, and the layers of a
framework, respectively.
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Standard type

ISO 15531
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(a) Actual I4.0 KG
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Transport
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(b) Ideal I4.0 KG
Fig. 2. Example of I4.0KGs. (a) shows known relationships among standards to Framework Layer and Stan-
dardization Framework. (b) depicts all the ideal relationships between the standards expressed with the property
relatedTo. Standards OPC UA and MQTT are related, as well as the standards IEC 61968 and IEC 61400. Our
aim is discovering relations relatedTo in (b).

4.1. Problem Statement

Let G′ = (Ve ∪ Vt, E′, L) and G = (Ve ∪ Vt, E, L) be two I4.0 knowledge graphs. G′ is an ideal
knowledge graph that contains all the existing relations between standard entities and frameworks
in Ve, i.e., an oracle that knows whether two standard entities are related or not, and to which layer
they should belong; Figure 2 (b) illustrates a portion of an ideal I4.0KG, where the relations between
standards are explicitly represented. G = (Ve ∪ Vt, E, L) is an actual I4.0KG, which only contains
a portion of the relations represented in G′, i.e., E ⊆ E′; it represents those relations that are known
and is not necessarily complete. Let ∆(E′, E) = E′ − E be the set of relations existing in the
ideal knowledge graph G′ that are not represented in G. Let Gcomp=(Ve ∪ Vt, Ecomp, L) be a complete
knowledge graph, which includes a relation for each possible combination of elements in Ve and
labels in L, i.e., E ⊆ E′ ⊆ Ecomp. Given a relation e ∈ ∆(Ecomp, E), the problem of discovering
relations consists of determining whether e ∈ E′, i.e., if a relation represented by an edge r=(ei l ej)
corresponds to an existing relation in the ideal knowledge graph G′. Specifically, we focus on the
problem of discovering relations between standards in G = (Ve ∪ Vt, E, L). We are interested in
finding the maximal set of relationships or edges Ea that belong to the ideal I4.0KG, i.e., find a set
Ea that corresponds to a solution of the following optimization problem:

argmax
Ea⊆Ecomp

|Ea ∩ E′|

Considering the knowledge graphs depicted in Figures 2 (a) and (b), the problem addressed in
this work corresponds to the identification of edges in the ideal knowledge graph that correspond to
unknown relations between standards.

4.2. Proposed Solution

We propose a relation discovery method over I4.0KGs to identify unknown relations among stan-
dards. Our proposed method exploits relations represented in an I4.0KG to compute similarity values
between the modeled standards. Further, an unsupervised graph partitioning method determine the
parts of the I4.0KG or communities of standards that are similar. Then, the homophily prediction
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Fig. 3. The I4.0RD Architecture. I4.0RD receives the actual I4.0 KG and outputs an extended version of
the I4.0KG including novel relations. Embeddings for each standard are created using the Trans* family of
models, and similarity values between embeddings are computed; these values are used to partition standards
into communities. Finally, the homophily prediction principle is applied to each community to discover unknown
relations. A KG closer to the ideal I4.0 KG is generated.

principle is applied in a way that similar standards in a community are considered to be related.

5. The I4.0RD Architecture

Figure 3 presents I4.0RD, a pipeline that implements the proposed approach. I4.0RD receives an
I4.0KG G, and returns an I4.0KG G′ that corresponds to a solution of the problem of discovering
relations between standards. First, in order to compute the values of similarity between the enti-
ties an I4.0KG, I4.0RD learns a latent representation of the standards in a high-dimensional space.
Our approach resorts to the Trans∗ family of models to compute the embeddings of the standards.
Then, a distance metric for vector spaces is applied to compute the values of similarity between stan-
dards. Next, community detection algorithms are applied to identify communities of related standards.
METIS [15], KMeans [16], and SemEP [14] are methods included in the pipeline to produce different
communities of standards. Finally, I4.0RD applies the homophily principle to each community to
predict relations or alignments among standards.

5.1. Properties of the relation relatedTo between Standards

The relation relatedTo was extracted from the literature and represents a relation that connects two
standards. Beside relatedTo is an equivalent relation that satisfies three properties, i.e., the relation is
reflexive, symmetric, and transitive. They are defined as follow:

• Reflexive: ∀ei ∈ Ve(ei, relatedTo, ei)

• Symmetric: ∀ei, ej ∈ Ve((ei, relatedTo, ej)⇔ (ej , relatedTo, ei))

• Transitive:

∀ei, ej , ek ∈ Ve : ((ei, relatedTo, ej) ∧ (ej , relatedTo, ek))⇒ (ei, relatedTo, ek)

An example of the transitivity property of relatedTo is presented with the following three stan-
dards: IEC 61310 P3 E2; IEC 61310 P1 E2; IEC 61310 P2 E2. From the literature the next relations
are known: (IEC 61310 P3 E2, relatedTo, IEC 61310 P1 E2) ∧ (IE 61310 P1 E2, relatedTo, IEC
61310 P2 E2) and that implies: (IEC 61310 P3 E2, relatedTo, IEC 61310 P2 E2). Since the property
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relatedTo between standards is an equivalent relation, the transitive closure of the relations is materi-
alized in I4.0KG. Thus, we can capture implicit relations between I4.0 standards. Figure 4 shows the
relation relatedTo before it materialized in I4.0KG (cf. Figure 4a) and after being materialized Figure
4b. Figure 4b illustrates how after the transitive closure of the relations, the I4.0 standards knowledge
graph is more connected. The graphs were plotted using Cytoscapea.

Learning Latent Representations of Standards. I4.0RD utilizes the Trans∗ family of models
to compute latent representations, e.g., vectors, of entities and relations in an I4.0 knowledge graph.
In particular, I4.0RD utilizes TransE, TransD, TransH, and TransR. These models differ on the rep-
resentation of the embeddings for the entities and relations (Wang et al. [26]). Suppose ei, ej , and p,
denote the vectorial representation of two entities related by the labeled edge p in an I4.0 knowledge
graph. Furthermore, ‖x‖2 represents the Euclidean norm.

TransE, TransH, and TranR represent the entity embeddings as (ei, ej ∈ Rd),while TransD char-
acterizes the entity embeddings as: (ei, wei

∈ Rd − ei, wej
∈ Rd). As a consequence of different

embedding representations, the scoring function also varies. For example, TransE is defined in terms
of the score function ‖ei +p−ej‖2

2, while ‖Mpei +p−Mpej‖2
2 defines TransRb. Furthermore, TransH

score function corresponds to ‖ei⊥+dp−ej⊥‖
2
2, where the variables ei⊥ and ej⊥ denote a projection

to the hyperplane wp of the labeled relation p, and dp is the vector of a relation-specific translation
in the hyperplane wp. To learn the embeddings, I4.0RD resorts to the PyKeen (Python KnowlEdge
EmbeddiNgs) framework [27]. As hyperparameters for the models of the Trans∗ family, we use the
ones specified in the original papers of the models. The hyperparameters include embedding dimen-
sion (set to 50), number of epochs (set to 500), batch size (set to 64), seed (set to 0), learning rate (set
to 0.01), scoring function (set to 1 for TransE, and 2 for the rest), margin loss (set to 1 for TransE and
0.05 for the rest). All the configuration classes and hyperparameters are open in GitHub c.

Computing Similarity Values Between Standards. Once the algorithm–Trans∗ family–that
computes the embeddings reaches a termination condition, e.g., the maximum number of epochs, the
I4.0KG embeddings are learned. As the next step, I4.0RD calculates a similarity symmetric matrix
between the embeddings that represent the I4.0 standards. Any distance metric for vector spaces can
be utilized to calculate this value. However, as a proof of concept, I4.0RD applies the Cosine Similar-
ity and the Inverse Euclidean Distance. Let u be an embedding of the Standard-A and v an embedding
of the Standard-B, the similarity score, between both standards, is defined by Cosine Similarityd as
follows:

cosine(u, v) = u.v

||u||2||v||2
The Inverse Euclidean Distancee between the vectors u and v, is defined as follows:

d(u, v) = 1− ||u− v||2

After building the similarity symmetric matrix, I4.0RD applies a threshold to restrict the similar-
ity values. I4.0RD relies on percentiles to calculate the value of such a threshold. Further, I4.0RD
ahttps://cytoscape.org/
bMp corresponds to a projection matrix Mp ∈ Rdxk that projects entities from the entity space to the relation space; further
p ∈ Rk .
chttps://github.com/i40-Tools/I4.0KG-Embeddings
dhttps://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cosine.
html
ehttps://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.
euclidean.html
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(b) Transitive closure of the property relatedTo between I4.0 KG standards
Fig. 4. Relations between I4.0 KG standards. (a) Using explicit relations between standards in I4.0 KG,
109 connected components are found. (b) Applying transitive closure of the property relatedTo, 20 connected
components are found, eight less than in (a). Standards in I4.0 KG are more connected and new relations in the
connected components correspond to meaningful relations.
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utilizes the function Kernel Density Estimation (KDE) to compute the density of both similarity mea-
sures, Cosine Similarity and Inverse Euclidean Distance; it sets to zero the similarity values lower
than the given threshold.

Detecting Communities of Standards. I4.0RD maps the problem of computing groups of po-
tentially related standards to the problem of community detection. Once the embeddings are learned,
the standards are represented in a vectorial way according to their functions preserving their semantic
characteristics. Using the embeddings, I4.0RD computes the similarity between the standards in the
I4.0 KG as mentioned in the previous section. The values of similarity between standards are utilized
to partition the set of standards in a way that standards in a community are highly similar but dissimilar
to the standards in other communities. As proof of concept, three state-of-the-art community detec-
tion algorithms have been used in I4.0RD: SemEP, METIS, and KMeans. They implement diverse
strategies for partitioning a set based on the values of similarity, and our goal is to evaluate which of
the three is more suitable to identify meaningful connections between standards.

Discovering Relations Between Standards. New relations between standards are discovered in
this step; the homophily prediction principle is applied over each of the communities and all the stan-
dards in a community are assumed to be related. Figure 5 depicts an example where new relations are
computed from two communities; unknown relations correspond to connections between standards
in a community that did not existing in the input I4.0KG. Figure 5a shows the equivalent classes of
the I4.0KG example. The Community 1 has five standards where three of them belong to Equivalent
Class 1 and the other two belong to Equivalent Class 2. Applying the homophily prediction principle
to Community 1, six new relations are found between standards from Equivalent Class 1 and Equiva-
lent Class 2, these are: (std1, std4), (std2, std4), (std3, std4), (std1, std5), (std2, std5), (std3, std5).
These new relations are evaluated by expert to proof that they correspond to meaningfully relations.

Equivalent Class 1

std1 std2 std3

Equivalent Class 2

std4 std5
std6 std7

Equivalent Class 3

std8 std9

(a) Equivalent classes induced
by the property relatedTo

  
   Community 2

 

   Community 1 (std1,std2); (std1,std3); 
(std1,std4); (std1,std5);
(std2,std3); (std2,std4);
(std2,std5); (std3,std4);
(std3,std5); (std4,std5)

(std6,std7); (std6,std8); 
(std6,std9); (std7,std8);
(std7,std9); (std8,std9);

std1 std2

std4 std5

std3

std8 std9

std6std7

(b) Application of the Homophily Prediction Principle

Test set
std1 std2

relatedTo

std4 std5
relatedTo

relatedTo

std8 std9
relatedTo

relatedTo
std3

std6

relatedTo

std7

(c) Known Relations used to de-
termine discovered relations be-
tween standards

Fig. 5. Discovering relations between standards. (a) The homophily prediction principle is applied on two com-
munities, as a result, 16 relations between standards are found. (b) Five out of the 16 found relations correspond
to meaningfully relations.
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6. Empirical Evaluation

We use as baseline the equivalent classes induced by the property relatedTo. An equivalent class is
induced by equivalent relations like relatedTo that satisfies three properties, i.e., the relation is reflex-
ive, symmetric, and transitive. The equivalent classes are partitions of the set of standards induced
by the relation relatedTo. Figure 6 shows the number of partitions and how many standards each
partition of our baseline has. Equivalent Class 1 has the highest number of standards with 148. All
the standards in each equivalent class are related to each other but isolated from the other equivalent
classes. Assuming that the different combinations of similarity measures together with the community
detection algorithms are effective predictors of the standards communities, then the distances between
the equivalent classes and the communities discovered should be close. The Average Category-based
Score measure assesses the distance between Communities and the baseline.
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Fig. 6. Baseline of Equivalent Classes. I4.0KG has 20 Equivalent Classes and most of them have less than 10
standards except the Equivalent Classes 1, 2 and 5.

We report on the impact that the knowledge encoded in I4.0 knowledge graph has in the behavior
of I4.0RD. In particular, we assess the following research questions:

RQ1) How the function used to determine the relatedness between standards impact on the outcome
of the problem of uncovering relations among standards?

RQ2) Does a semantic community based analysis on I4.0KG allow for improving the quality of
predicting new relations on the I4.0 standards landscape?

RQ3) What is the effect of combining distinct similarity measures, embedding techniques, and com-
munity detection algorithms in the task of detecting the relatedness among standards?

Experiment Setup: Four embedding algorithms are considered to build the standards embed-
ding. Each of these algorithms is evaluated independently. Next, a similarity matrix for the standards
embedding is computed. Cosine Similarity and Inverse Euclidean Distance are considered as simi-
larity measures. The similarity matrix is required for applying the community detection algorithms.
In our experiments, three algorithms are used to compute the Communities. In total, we evaluate
twenty-four combinations between embedding algorithms, similarity measure and community detec-
tion algorithms. To assure statistical robustness, we execute 5-folds cross-validation with one run. For
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Fig. 7. Similarity density by Cosine and Inverse Euclidean Distance of each fold per Trans∗ methods.
Results from the Inverse Euclidean Distance in all the Trans∗ methods have higher similarity values than Cosine
similarity. Figures 7a, 7b, and 7d show that all folds have values close to zero, i.e., with embeddings created by
TransD, TransE, and TransR the standards are very different from each other. However, TransH in both similarity
measure (cf. Figure 7c and Figure 7g), exploits properties of the standards and generates embeddings with a
different distribution of similarity, i.e., values between 0.0 and 0.4, as well as values close to 1.0. According to
known characteristics of the I4.0 standards, the TransH distribution of similarity using both Cosine Similarity and
Inverse Euclidean Distance better represents their relatedness.

the purposes of understanding how the Trans∗ methods, similarity measures, and community detec-
tion algorithms are performing, we evaluate the similarity density of the standards by Trans∗ methods,
also the quality of the generated Communities, the accuracy of the Communities in discovering new
relationships and the distance between the Communities and the baseline using Cosine and Inverse
Euclidean Distance.

Implementation: Our proposed approach is implemented in Python 2.7 and integrated with the
PyKeen (Python KnowlEdge EmbeddiNgs) framework [27], METIS 5.1 f, SemEP g, and Kmeans h. The
experiments were executed on a GPU server with ten chips Intel(R) Xeon(R) CPU E5-2660, two chips
GeForce GTX 108, and 100 GB RAM.

Thresholds for Computing Values of Similarity. Figure 7 depicts the density function of each
fold for each embedding algorithm using the similarity metrics Cosine Similarity and Inverse Eu-
clidean Distance. We notice that Inverse Euclidean Distance finds a higher density of similar stan-
dards than the Cosine Similarity metric in all Trans∗ methods. Figures 7a and 7b show the values of
the folds of TransD and TransE, in Cosine Similarity, where all the similarity values are close to 0.0,
i.e., all the standards are different. Figure 7d suggests that all the folds have similar behavior with
values between 0.0 and 0.5 and a short group of standards with similarity values in 0.8. Figure 7c and
Figure 7g shows a group of standards similar with values close to 1.0 and the rest of the standards
between 0.0 and 0.4. The percentile of the similarity matrix is computed with a threshold of 0.85.
That means all values of the similarity matrix which are less than the percentile computed, are filled

fhttp://glaros.dtc.umn.edu/gkhome/metis/metis/download
ghttps://github.com/SDM-TIB/semEP
hhttps://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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with 0.0 and then, these two standards are dissimilar. After analyzing the density of each fold (cf.
Figure 7), the thresholds of TransH and TransR using Cosine Similarity are set to 0.50 and 0.75, re-
spectively. The reason is because the two cases with a high threshold find all similar standards and it
will not be possible to create more than one Community of standards. The thresholds of the similarity
matrix using Inverse Euclidean Distance are also modified for the same reason.TransD, TransH and
TransR are set to 0.95, 0.60 and 0.75, respectively. In the case of TransH, there is a high density of
values close to 1.0; it indicates that for a threshold of 0.85, the percentile computed is almost 1.0. the
values of the similarity matrix less than the threshold are filled with 0.0; values of 0.0 represent that
the compared standards are not similar.

6.1. Impact of Metrics for Determining Relatedness among Standards

There are a variety of metrics to evaluate the quality of clusters. We used five recognized cluster
metrics to estimate the quality of the communities from the I4.0KG embeddings. All the metrics are
normalized in the range [0,1] where higher is better score.

a) Conductance (InvC): measures relatedness of entities in a community, and how different they
are to entities outside the community [28]. The inverse of Conductance is reported: 1 −
Conductance(K), where K = {k1, k2, ...., kn} the set of standards communities obtained
by the cluster algorithm, and ki are the computed clusters.

b) Performance (P): sums up the number of intra-community relationships, plus the number of
non-existent relationships between communities [28]. Higher values indicate that a cluster is
both internally dense and externally sparse.

c) Total Cut (InvTC): sums up all similarities among entities in different communities [29]. The
Total Cut values are normalized by dividing the sum of the similarities between the entities. The
inverse of Total Cut is reported as follows: 1−NormTotalCut(K)

d) Modularity (M): is the value of the intra-community similarities between the entities divided
by the sum of all the similarities between the entities, minus the sum of the similarities among
the entities in different communities, in case they are randomly distributed in the communi-
ties [30]. The value of the Modularity is in the range of [−0.5, 1], which can be scaled to [0, 1]
by computing: Modularity(K)+0.5

1.5 .

e) Coverage (Co): compares the fraction of intra-community similarities between entities to the
sum of all similarities between entities [28]. Higher coverage values mean that there are more
edges within clusters than edges linking different clusters.

6.2. Quality of the Predicted Relations among Standards

The quality of the predicted relations among standards is evaluated by the accuracy. In order to
measure the accuracy of the predicted relations in the communities, we are comparing them with
the relations in the test set. The test set (TS) is used to validate the results and it is represented as
TS = {〈s, p, o〉|s, o ∈ Ve, p ∈ relatedTo} and Ve are standards (cf. Figure 5c). Considering we
are applying the homophily prediction principle in the communities, all the standards in a community
(c) are related to each other (cf. Figure 5b). Homophily prediction in a community is defined as



340 Discover Relations in the Industry 4.0 Standards Via Unsupervised Learning on Knowledge Graph Embeddings

follow: H(c) = {〈s, p, o〉|s, o ∈ c ∧ p ∈ relatedTo ∧ s 6= o}. Then, we are selecting from TS the
set of triples 〈s, p, o〉 where s or o are standards from cluster c; it is defined as follow: S(c, TS) =
{〈s, p, o〉|〈s, p, o〉 ∈ TS ∧ (s ∈ c∨ o ∈ c)}. Finally, is evaluated the percentage of predicted relations
acc(c) among standards in community c; acc(c) = |S(c,T S)∪H(c)|

|S(c,T S)| , where the numerator corresponds
to number of discovered relations from c. Since we are executing 5-folds cross-validation with one
run, is reported the average of the accuracy.

6.3. Impact of Community Detection Methods

Average Category-based Score: We compared our baseline, Equivalent Classes, with the commu-
nities generated by the community detection algorithms. Given a Community C of standards, the
average Category-based Score, C(C), corresponds to the average of the ‘Category-based’ measure for
each pair of standards in the clusters of C. Values of C(C) are in the ranges between 0.0 and 1.0.
A value equal to 0.0 indicates that there is no intersection between the classes of equivalence of the
pairs of standards in the clusters of C, whereas a value closed to 1.0 represents that almost all the
pairs of standards in each cluster of C share exactly the same classes of equivalence. Let EC be the
Equivalent classes, ECi be the set of standards in the Equivalent Class i, Ck be the set of standards
in the Community k and Comb(n) represents the number of pair of standards given a set of stan-
dards with cardinality n; it is computed by the number of two combinations of a set of n elements,
Comb(n, r = 2) = n!

(n−2)!∗2! = n∗(n−1)
2 . The Average Category-based Score is defined as follows:

C(Ck) =
∑|EC|

i=1 Comb(|Ck ∪ ECi|)
Comb(|Ck|)

avg(C) =
∑|C|

k=1 C(Ck)
|C|

Quality of the communities: We evaluated three community detection algorithms with two dif-
ferent similarity metrics and four Trans* methods. Considering the five metrics for assessing the
communities, the best communities are obtained by Inverse Euclidean Distance, TransH, and with the
SemEP and KMeans algorithms. Figure 8g shows how the InvTC, M, and Co have values close to one
for SemEP and KMeans. The Performance (P) for SemEP and KMeans is 0.8 and 0.7 respectively,
which means that communities built by KMeans have more external links to other communities than
communities by SemEP. The inverse of Conductance (InvC) is high in both SemEP and KMeans with
0.93 and 0.99 respectively. This metric measures the relatedness of standards in a community, and
how different they are from standards outside the community.

The I4.0RD accuracy: Figure 9b shows the best performance for TransH-KMeans achieving
100% of accuracy. However, KMeans is only able to discover three communities of standards while
our baseline is already known to have twenty equivalence classes. This means that KMeans is cluster-
ing our 249 standards into just three clusters. K-Means finds the optimal number of clusters by com-
puting the K-Elbow curve, but the results are not close to our baseline. Nevertheless, SemEP achieves
an accuracy of over 90% in both similarity measures and furthermore, the number of communities
discovered is very close to our baseline, reaching a mean of 16 communities. All the communities are
assessed against the baseline to validate their closeness to the equivalence classes.

Baseline: TransH is selected as the best embedding according to the results achieved in the metrics
for determining relatedness among Standards (cf. Figure 8) and quality of the predicted relations
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Fig. 8. Quality of the generated communities. Communities evaluated in terms of prediction metrics using the
SemEP, METIS, and KMeans algorithms. Communities are derived for each combinations of Trans∗ method and
similarity measure. In this case higher values are better. Our approach exhibits the best performance with TransH
embeddings in both Cosine Similarity and Inverse Euclidean Distance, i.e., Figure 8c and Figure 8g. SemEP
achieves the highest values in the five evaluated parameters using Inverse Euclidean Distance and in four of the
five evaluated parameters with Cosine Similarity.

among standards (cf. Figure 9). Taking TransH as the best embedding the communities generated by
the three community detection algorithms and the two similarity measures are evaluated. Figure 10
depicts the results of the measure Average Category-based Score for both similarity measures. The
combination SemEP and TransH achived the best performance in both similarity measures, see Figure
10a and Figure 10b. Although KMeans has the highest accuracy, the performance in the measure
Average Category-based Score where it is compared with the baseline is one of the lowest. In contrast,
SemEP has the highest values for this measure and is also over 90% accuracy, which means that the
communities discovered by SemEP are the closest to our baseline and with high accuracy.

Network analysis: The I4.0KG is updated with the communities found by the combination of
TransH, Inverse Euclidean Distance, and SemEP which is the best performer for the metrics evaluated.
With the updated I4.0KG we are adding new links predicted by the communities. Table 1 shows
the analysis of I4.0KG with new predicted links against our baseline. We improve the standards
connectivity by predicting new links.

RQ1 - Corroborating the quality of communities in I4.0KG. To compute accuracy of I4.0RD,
we executed a five-folds cross-validation procedure. To that end, the data set is divided into five
consecutive folds shuffling the data before splitting into folds. Each fold is used once as validation, i.e.,
test set while the remaining fourth folds form the training set. Figure 8 depicts the impact of metrics
for evaluate communities. The best results are obtained with the combination of the Inverse Euclidean
Distance and TransH with SemEP and KMeans algorithms, see Figure 8g. The values obtained for this
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Fig. 9. The I4.0RD accuracy. Percentage of the test set for the property relatedTo is achieved in each cluster.
Figure 9a and Figure 9b shows the precision of the community detection algorithms by the measure Cosine
Similarity and Inverse Euclidean Distance respectively. Our approach exhibits the best performance using TransH
embedding and with the SemEP and KMeans algorithms in both similarity measures reaching an accuracy by up
to 90%.
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Fig. 10. Average Category Based Score respect to Equivalence Class. Figure 10a and Figure 10b shows how
similar our communities are to the baseline. Our approach exhibits the best performance with Inverse Euclidean
Distance and SemEP achieving 82%.

combination for both SemEP and KMeans are high except for the metric Performance (P). SemEP
and KMeans have values of 0.8 and 0.7 respectively, which means that communities built by KMeans
have more external links to other communities than communities by SemEP.

RQ2 - Predicting new relations between standards. In order to assess the second research ques-
tion, the data set is divided into five consecutive folds. Each fold comprises 20% of the relationships
between standards. Next, the precision measurement is applied to evaluate the main objective: to
unveil uncovered associations and, at the same time, corroborate knowledge patterns that are already
known. As shown in Figure 9, the best performances for the property relatedTo are achieved by
TransH embeddings in combination with the SemEP and KMeans algorithm in both similarity mea-
sures. KMeans reaches higher accuracy than SemEP, however, KMeans discover only three commu-
nities of standards while our baseline is already known to have twenty Equivalence Classes. On the
other hand, the number of communities discovered by SemEP is very close to our baseline, reaching
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Table 1. Network connectivity analysis. Table 1 shows the statistics for I4.0KG after transitive closure of
the property relatedTo between standards and the statistics I4.0KG with the new links predicted by combining
TransH, Inverse Euclidean Distance and SemEP. Results reveal a general improvement in connectivity when
predicting new links. The Number of edges, Avg. number of neighbors and Network density increase predicting
new links and this allows for fewer connected components and improves data integration. Measures that improve
are highlighted in bold. The network analysis was performed by Cytoscape [31].

Statistic Baseline TransH-Inv.EuclideanDistance-SemEP
Number of nodes 249 249
Number of edges 22,969 23,207
Avg. number of neighbors 91.245 92.201
Network diameter 1 3
Network radius 1 1
Characteristic path length 1.000 1.001
Clustering coefficient 0.976 0.974
Network density 0.368 0.372
Connected components 20 13
Multi-edge node pairs 11,360 11,479
Number of self-loops 249 249

a mean of 16 communities. The communities of standards discovered using TransH embeddings, In-
verse Euclidean Distance, and the SemEP algorithm contribute to the resolution of interoperability in
I4.0 standards. To provide an example of this, we observe a resulting cluster with the standards IEC
60255 P27 E2, IEC 60255 P151 E1, IEC 60255 2010, IEC 60255 P1 E1, IEC 60255 P149 E1 and
MTConnect. The former provides an information model for describing manufacturing data. The latter
offers a vocabulary for manufacturing equipment. It is important to note that the standard MTConnect
are not related to the training set nor in I4.0KG. The membership of those standards in the cluster
means that them should be classified together in the standardization frameworks. Besides, it also sug-
gests to the creators of the standards that they might look after possible existing synergies between
them. This example suggests that the techniques employed in this work are capable of discovering
new communities of standards. These communities can be used to improve the classification that the
standardization frameworks provide for the standards.

RQ3 - Comparison with the baseline of equivalent classes. From the combination of four Trans
embeddings, two similarity measures, and three community detection algorithms we asses 24 results.
In both the evaluation of the quality of the communities and the accuracy of new relations, the best
results are reached with the TransH embedding, SemEP and KMeans as cluster algorithms, and both
similarity metrics. Finally, in the evaluation with the baseline, the best similarity metric is Inverse
Euclidean Distance and the best clustering algorithm is SemEP. Figure 10b shows Average Category
Based Score achieved by SemEP respect to Equivalence Class. We reach quite high values which
means that almost all the pairs of standards in each community share the same equivalence classes.

6.4. Discussion

The techniques proposed in this paper rely on known relations between I4.0 standards to discover
novel patterns and new relations. During the experimental study, we observe that these techniques
could group together not only standards that are known to be related, but also standards whose relat-
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edness is implicitly represented in the I4.0KG. This feature facilitates the detection of high-quality
communities as reported in Figure 8, as well as for an accurate discovery of relations between stan-
dards (cf. Figure 9) and for the evaluation with the baseline of equivalent classes, as shown in Fig-
ure 10. As observed, the accuracy of the approach can be benefited from the application of the Trans∗

family algorithms, e.g., TransH, and from similarity measures, e.g., Inverse Euclidean Distance. Addi-
tionally, SemEP groups in the same communities highly similar standards, and leads our approach into
high-quality discoveries. Our results suggest that the techniques TransH, Inverse Euclidean Distance,
and SemEP uncover meaningful communities with high quality because, the performance of the five
metrics for evaluating communities are close to one, which means that standards in a community are
different from standards outside the community, and there are more edges within communities than
edges linking different communities. Also, the accuracy is up 90% which means that are discovered
over 90% of the relationships and evaluating with the baseline achieving 82%, i.e., almost all the pairs
of standards in each community share exactly the same equivalence classes. Moreover, the number of
communities is close to the number of equivalent classes in the baseline.

To understand why the aforementioned combination of TransH, Inverse Euclidean Distance and
SemEP produces the best results, we analyze in detail both techniques. TransH introduces the mech-
anism of projecting the relation to a specific hyperplane [32], enabling, thus, the representation of
relations with cardinality many to many. Since the materialization of transitivity and symmetry of the
property relatedTo corresponds to many to many relations, the instances of this materialization are
taken into account during the generation of the embeddings, specifically, during the translating oper-
ation on a hyperplane. Thus, even thought semantics is not explicitly utilized during the computation
of the embeddings, considering different types of relations, empowers the embeddings generated by
TransH. Moreover, it allows for a more precise encoding of the standards represented in I4.0KG. Fig-
ures 7c and 7g illustrate groups of standards in the similarity intervals [0.9, 1.0], and [0.0, 0.4]. Inverse
Euclidean Distance is able to find in all the Trans∗ methods a higher density of similar standards than
Cosine Similarity. The SemEP algorithm can detect these similarities and represent them in high-
precision communities. The other three models embeddings, i.e., TransD, TransE, and TransR do not
represent the standards in the best way with either of the two similarity measures. TransD, TransE,
and TransR report that most of the standards are in the similarity interval [0.0, 0.4] (cf. Figure 7).
This means that no community detection algorithm could be able to discover communities with high
quality. Reported results indicate that the presented approach enables – in average– for discovering
communities of standards by up to 90%. As an example of a relevant community, we observed a
resulting cluster with the standards IEC 60255 P27 E2, IEC 60255 P151 E1, IEC 60255 2010, IEC
60255 P1 E1, IEC 60255 P149 E1, and MTConnect. All of them are related to product safety re-
quirements and vocabulary for manufacturing equipment. It is important to note that the MTConnect
standard is in a different equivalent class than the other community standards. However, our approach
I4.0RD is able to create a community grouping all of them together. Although these results required
the validation of experts in the domain, an initial evaluation suggest that the results are accurate.

7. Conclusions and Future Work

In this paper, we presented the I4.0RD approach that combines knowledge graphs and embeddings
to discover associations between I4.0 standards. Our approach resorts to I4.0KG to discover relations
between standards; I4.0KG represents relations between standards extracted from the literature or
defined according to the classifications stated by the standardization frameworks. Since the relation



Ariam Rivas, Irlan Grangel-Gonzalez, Diego Collarana, Jens Lehmann, and Maria-Esther Vidal 345

between standards is symmetric and transitive, the transitive closure of the relations is materialized
in I4.0KG. Different algorithms for generating embeddings are applied on the standards according to
the relations represented in I4.0KG. Two similarity measure are applied to asses the similarity of the
standards. We employed three community detection algorithms, i.e., SemEP, METIS, and KMeans to
identify similar standards, i.e., communities of standards, as well as to analyze their properties. Ad-
ditionally, by applying the homophily prediction principle, novel relations between standards are dis-
covered. We empirically evaluated the quality of the proposed techniques over 249 standards, initially
related through 736 instances of the property relatedTo; as this relation is symmetric and transitive, its
transitive closure is also represented in I4.0KG with 22,969 instances of relatedTo. Furthermore, the
equivalent classes induced by the property relatedTo were used as baseline in the evaluation process.
The Trans∗ family of embedding models were used to identify a low-dimensional representation of
the standards according to the materialized instances of relatedTo. Results of a 5-fold cross validation
process suggest that our approach is able to effectively identify novel relations between standards. In
addition, the Inverse Euclidean Distance enable to identify patterns and links with higher precision.
Thus, our work broadens the repertoire of knowledge-driven frameworks for understanding I4.0 stan-
dards, and we hope that our outcomes facilitate the resolution of the existing interoperability issues
in the I4.0 landscape. As for future work, we envision having a more fine-grained description of the
I4.0 standards and improve the embeddings of the standards preserving their semantic characteristics.
Furthermore, evaluate other types of embedding methods and other community detection methods.
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