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Bounded evaluation using views is to compute the answers Q(D) to a query Q in a dataset D by
accessing only cached views and a small fraction DQ of D such that the size |DQ| of DQ and the
time to identify DQ are independent of |D|, no matter how big D is. Though proven effective for
relational data, it has yet been investigated for graph data. In light of this, we study the problem of
bounded pattern matching using views. We first introduce access schema C for graphs and propose
a notion of joint containment to characterize bounded pattern matching using views. We show that a
pattern query Q can be boundedly evaluated using views V(G) and a fraction GQ of G if and only if
the query Q is jointly contained by V and C. Based on the characterization, we develop an efficient
algorithm as well as an optimization strategy to compute matches by using V(G) and GQ. Using
real-life and synthetic data, we experimentally verify the performance of these algorithms, and show
that (a) our algorithm for joint containment determination is not only effective but also efficient; and
(b) our matching algorithm significantly outperforms its counterpart, and the optimization technique
can further improve performance by eliminating unnecessary input.

Keywords: Bounded evaluation; Graph pattern matching; Views

1. Introduction

With the advent of massive scale data, it is very urgent to have effective methods for query
evaluation on large scale data. One typical solution is by means of scale independence [6, 7], whose
idea is to compute the answers Q(D) to a query Q in a dataset D by accessing a small fraction
DQ of D with bounded size, no matter how big the underlying D is. Following the idea, [11, 12]
show that nontrivial queries can be scale independent under a set C of access constraints, a form
of cardinality constraints with associated indices, and refer to a query Q as boundedly evaluable if
for all datasets D that satisfy C, Q(D) can be evaluated from a fraction DQ of D, and the time for
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(a) Recommendation network G (b) Pattern query Q
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Fig. 1 Graph G, pattern Q, views V , V(G) and access schema ϕ

identifying and fetching DQ and the size |DQ| of DQ are independent of |D|. Still, many queries
are not boundedly evaluable, hence bounded evaluation with views was proposed by [8], which is to
select and materialize a set V of small views, and answer Q on D by using cached views V(D) and
an additional small fraction DQ of D. Then, the queries that are not boundedly evaluable can be
efficiently answered with views and a small fraction of original data with bounded size.

Bounded evaluation with views have proven effective for querying relational data [9], but the need
for studying the problem is even more evident for graph pattern matching (GPM), since (a) GPM has
been widely used in social analysis [27] which is becoming increasingly important nowadays; (b) it
is a challenging task to perform graph pattern matching on real-life graphs due to their sheer size; and
(c) view-based matching technique is often too restrictive. Fortunately, bounded pattern matching
using views fills this critical void. Indeed, cardinality constraints are imposed by social graphs, e.g.,
on LinkedIn, a person can have at most 30000 connections and most of people have friends less than
1000 [2]; on Facekbook, a person can have no more than 5000 friends [5], etc. Given the constraints
and a set of well-chosen views V along with their caches V(G) on graphs G, GPM can be evaluated
by using the views plus a small fraction GQ of G of bounded size, no matter how large G is.

Example : A fraction of a recommendation networkG is shown in Fig. 1(a), where each node denotes
a person with job title (e.g., project manager (PM), business analyst (BA), database administrator
(DBA), programmer (PRG), user interface designer (UI) and software tester (ST)); and each edge
indicates collaboration, e.g., (PM1,PRG1) indicates that PRG1 worked well with PM1 on a project
led by PM1.

To build a team for software development, one issues a pattern query Q depicted in Fig. 1(b). The
team members need to satisfy the following requirements: (1) with expertise: PM, BA, DBA, PRG, UI
and ST; (2) meeting the following collaborative experience: (i) BA, PRG and DBA worked well under
the project manager PM; and (ii) DBA, ST and UI have been supervised by PRG, and collaborated well
with PRG. It is then a daunting task to perform graph pattern matching since it takes O(|G|!|G|) time
to identify all the isomorphic matches of Q in G [10], where |G| = |V |+ |E| indicates the size of G.

While one can do better by bounded pattern matching using views. Suppose that (1) a set of views
V = {V1,V2} is defined and cached (V(G) = {V1(G),V2(G)}) as shown in Fig. 1(c), and (2) there
exists an access constraint ϕ = 〈Qϕ(QL → QR), N0〉 (Fig. 1(d)) that G satisfies. Here ϕ states that
for each DBA that has been supervised by a PM, he can be supervised by at mostN0 distinct PRG. One
may associate ϕ with an index Iϕ for fast access. As will be seen shortly, with index Iϕ, a fraction
GQ of G of bounded size can be efficiently constructed, and Q(G) can be answered by using V(G)

and GQ. Since V(G) already contains partial answers to Q in G, and V(G) and GQ are often much
smaller than G, thus the cost for computing Q(G) can be substantially reduced. 2

This example suggests that we perform pattern matching by using views V , V(G) and a fraction
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GD of original graph G of bounded size. In doing so, two key issues have to be settled. (1) How to
decide whether a pattern query Q is boundedly evaluable with views? (2) How to efficiently compute
Q(G) with V(G) and GQ?

Contributions. This paper investigates the aforementioned questions for bounded pattern matching
using views. We focus on graph pattern matching with subgraph isomorphism [10].

(1) We introduce access schema defined on graph data (Section ), and propose a notion of joint con-
tainment (Section ) for determining whether a pattern query is boundedly evaluable with views. Given
a pattern query Q, a set of views V and access schema C with indexes associated, we show that Q is
boundedly evaluable with views if and only if Q is jointly contained by V and C.

(2) We provide an algorithm, that works in O((||V|| + ||C||)|Q|!|Q|) time to determine joint con-
tainment, where ||V|| and ||C|| refer to the cardinality of V and C, respectively, and |Q| indicates the
size of Q. As the cost of the algorithm is dominated by ||V||, ||C|| and |Q|, which are often small in
practice, the algorithm hence performs very efficiently.

(3) Based on joint containment, we develop an algorithm to evaluate graph pattern matching by
using V(G) and GQ (Section ). Given a pattern query Q, a set of views V and its extension
V(G) on a graph G, and an access schema C that G satisfies, the algorithm computes Q(G) in
O((|V||Q||V(G)|)||V||(|Q||Q| ·Nm)||C||) time, without accessing G at all, when Q is jointly contained
in V and C. It is far less costly than the algorithm [10] that takes O(|G|!|G|) time to evaluate Q

directly on G, since |Q|, |V|, ||V||, ||C|| are very small, and |V(G)| is typically much smaller than
|G| in practice. We also study the minimum containment problem, which is to find a pair of subsets
〈V ′, C′〉 of V and C such that Q is jointly contained by 〈V ′, C′〉 and moreover, the input used by the
matching algorithm can be dramatically reduced.

(4) Using real-life and synthetic graphs, we experimentally verify the performances of our algorithms
(Section ). We find that (a) our algorithm for joint containment checking is very efficient, e.g., taking
only 145.5 milliseconds to determine whether a pattern query is contained by a set of views; (b)
our view-based matching algorithm is efficient: it is 9.7 times faster than conventional method on
Youtube [4] with 1.6 million nodes and 4.5 million edges; (c) our optimization technique is effective:
it can reduce the size of input, i.e., |V(G)| and |GQ| by 75% and improve the efficiency by 143%, on
average, over real-life graphs; and (d) our matching algorithm scales well with the data size.

In a summary of the scientific contributions, this work gives a full treatment for bounded pattern
matching using views, for pattern queries defined in terms of subgraph isomorphism. It introduces
methods to efficiently determine whether a pattern query can be boundedly evaluable with views;
provides effective techniques to evaluate pattern matching using V(G) and GQ which is of bounded
size. In contrast with prior works, this work fills one critical void for evaluating graph pattern
matching on big graphs, and yields a promising approach to querying “big” social data.

This paper is an extended version of our prior work [26]. Compared with [26], we have made
following extensions. (1) We have provided proofs for Theorem 1,2, 4 and Proposition . (2) We
have enriched correctness and complexity analysis for Algorithm JCont and BMatch. (3) We
have provided algorithm Minimum, enriched its analysis along with a running example. (4) We
have also included a few remarks and the summary for experiments for better elaboration.
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Related work. We next categorize related work as follows.

Query answering using views. Answering queries using views has been well studied for relational
data (see [16, 20] for surveys), XML data [15, 22, 24], and [14]. This work differs from them in the
following aspects: (i) we adopt subgraph isomorphism as the semantic of pattern matching, instead
of graph simulation [18] and bounded simulation [13], that are applied by [14]; (ii) we study a more
practical problem to answer graph pattern matching using available views and a small fraction of
graph G with bounded size; and (iii) we also investigate the problem of view selection, and provide
effective technique for this problem.

Scale independence. The idea of scale independence, i.e., querying dataset D by accessing only a
bounded amount of data in D, is proposed by [6–8]. Extending the idea with access schema, [11, 12]
introduced bounded evaluation. To cope with nontrivial queries, [8] proposed bounded evaluation
with views, i.e., evaluating queries that are not boundedly evaluable on a dataset D by accessing not
only cached views V(D) but also a small fraction of D with bounded size. Furthermore, [9] explored
fundamental problems of bounded evaluation with views. This work differs from [8, 9] in that the
query semantics are different, and we not only conduct static analysis for fundamental problems, but
also provide effective technique for matching evaluation.

Organization. The remainder of the paper is organized as follows. Section reviews the notions
of data graphs, pattern queries, graph pattern matching, and views, graph pattern matching using
views. Section introduces pattern containment problem and provides algorithm for pattern contain-
ment checking. Section provides view based matching algorithm, and optimization techniques to
further improve matching evaluation. Extensive experimental studies are conducted in Section . Sec-
tion summarizes the main results of the paper and identifies open issues.

2. Preliminaries

In this section, we first review data graphs, pattern queries and graph pattern matching. We then
introduce the problem of bounded pattern matching using views.

2.1. Basic Definitions

We start with basic notations, i.e., data graphs, pattern queries and graph pattern matching.

Data graphs. A data graph is a node-labeled, directed graph G = (V,E,L), where (1) V is a finite
set of data nodes; (2) E ⊆ V × V , where (v, v′) ∈ E denotes a directed edge from node v to v′; and
(3) L(·) is a function such that for each node v in V , L(v) is a label from an alphabet Σ. Intuitively,
L(·) specifies e.g., job titles, social roles, ratings, etc [19].

Pattern queries. A pattern query (or shortened as pattern) is a directed graph Q = (Vp, Ep, fv),
where (1) Vp is the set of pattern nodes, (2) Ep is the set of pattern edges, and (3) fv(·) is a function
defined on Vp such that for each node u ∈ Vp, fv(u) is a label in Σ.

Subgraphs & Sub-patterns. A graph Gs = (Vs, Es, Ls) is a subgraph of G = (V,E,L), denoted
by Gs ⊆ G, if Vs ⊆ V , Es ⊆ E, and moreover, for each v ∈ Vs, Ls(v) = L(v). Similarly, a pattern
Qs = (Vps , Eps , fvs) is subsumed by another pattern Q = (Vp, Ep, fv), denoted by Qs ⊆ Q, if Qs
is a subgraph of Q, i.e., Vps ⊆ Vp, Eps ⊆ Ep and for each u ∈ Vp, fvs(u) = fv(u). We say Qs a
sub-pattern of Q when Qs ⊆ Q.
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Graph pattern matching [10]. A match of Q in G via subgraph isomorphism is a subgraph Gs of G
that is isomorphic to Q, i.e., there exists a bijective function h from Vp to the node set Vs of Gs such
that (1) for each node u ∈ Vp, fv(u) = L(h(u)) (h(u) ∈ Vs); and (2) (u, u′) is an edge in Q if and
only if (h(u), h(u′)) is an edge in Gs.

We also use the following notations. (1) The match result of Q in G, denoted as Q(G), is a set
consisting of all the matches of Q in G. (2) For a pattern edge e = (u, u′), we derive a set S(e) from
Q(G) by letting S(e) = {(v, v′)|v = h(u), v′ = h(u′), h ∈ Q(G), (v, v′) ∈ E}, and denote S(e) as
the match set of e. (3) We use Q ∼ Gs to denote that Gs is a match of Q. (4) We denote |Vp|+ |Ep|
as the size |Q| of Q and |V |+ |E| as the size |G| of G.

2.2. Problem Formulation

We next formulate the problem of bounded pattern matching using views. We start from notions
of views and view extensions, followed by access schema and problem statement.

Views. A view (a.k.a. view definition) V is also a pattern query. Its match result V(G) in a data
graph G is denoted as view extension, or extension when it is clear from the context [17]. As shown
in Fig. 1(c), a set of views V = {V1,V2} are defined, with extensions V(G) = {V1(G),V2(G)} on
G cached.

Access schema. Extended from [9], we define access schema on graphs as follows. An access
schema C is defined as a set of access constraints ϕ = 〈Qϕ(QL → QR), N〉, where Qϕ is a pattern
query, QL and QR are sub-patterns of Qϕ such that the union of edge sets of QL and QR equals to
the edge set of Qϕ, and N is a natural number.

Given a graph G, a pattern Qϕ and its sub-pattern QL, a match GL (resp. GR) of QL (resp. QR)
is denoted as a QL-value (resp. QR-value) of Qϕ in G. Then, we denote by G[Qϕ:QR](QL ∼ GL) the
set {GR|GR ⊆ Gs, GR ∈ QR(G), GL ⊆ Gs, Gs ∈ Qϕ(G)}, and write it as GQR

(QL ∼ GL), when
Qϕ is clear from the context.

A graph G satisfies the access constraint ϕ, if

◦ for any QL-value GL, |GQR
(QL ∼ GL)| ≤ N ; and

◦ there exists a function (referred to as an index) that given a QL-value GL, returns {Gs|Gs ∈
Qϕ(G), GL ⊆ Gs} from G in O(N) time.

Intuitively, an access constraint ϕ is a combination of a cardinality constraint and an index Iϕ on
QL for QR. It tells us that given any QL-value, there exist at most N distinct QR-values, and these
QR-values can be efficiently fetched by using Iϕ. By using indices, we can also construct a fraction
GQ of G, whose size is bounded by Σϕi∈CNi · |Qϕi

|. We refer to the maximum cardinality of access
constraints in an access schema C as Nm. A graph G satisfies access schema C, denoted by G |= C, if
G satisfies all the access constraints ϕ in C.

Example : An access schema with a single access constraint ϕ is shown in Fig. 1(d). By definition,
pattern Qϕ takes two edges that are from its sub-patterns QL and QR, respectively. Assume that an
index Iϕ is constructed on G (Fig. 1(a)), then given a QL-value (PM2,DBA1), one can fetch from Iϕ
a set of matches of Qϕ, i.e., {(PM2,DBA1,PRG1), (PM2,DBA1,PRG2)}. One may further verify that
|GQR

(QL ∼ GL)| = 2. 2 2

Bounded pattern matching using views. Given a pattern query Q, a set V of view definitions and an
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Symbols Notations

Gs ⊆ G (resp. Qs ⊆ Q) Gs (resp. Qs) is a subgraph
(resp. sub-pattern) of G (resp. Q)

Q(G) match result of Q in G
S(e) match set of pattern edge e in G

V = {V1, . . . ,Vn} a set of view definitions Vi = (VVi
, EVi

, fVi
)

V(G) = {V1(G), . . . ,Vn(G)} a set V(G) of view extensions Vi(G)
ϕ = 〈Qϕ(QL → QR), N〉 access constraint
C = {ϕ1, · · · , ϕn} access schema

Nm maximum cardinality of access constraints in C
Q v V Q is contained in V .

Q vJ [V, C] Q is jointly contained in V and C.
Qg a containing rewriting of Q
Ēg “uncovered edges” of Qg in Q

HQ
V the shadow of a view V in Q

|Q| (resp. |V|) size (total number of nodes and edges)
of a pattern Q (resp. view definition V)

|Q(G)| (resp. |V(G)|) total size of matches of Q (resp. V) in G

|V| (resp. |Q|) total size of view definitions in V
(resp. pattern queries inQ)

||V|| (resp. ||C||, ||Q||) the number of view definitions in V (resp.
access constraints in C, pattern queries inQ)

|V(G)| total size of matches in V(G)

Table 1 A summary of notations

access schema C, bounded pattern matching using views is to find another query A such that for any
graph G that satisfies C,

◦ A is equivalent to Q, i.e., Q(G) = A(G); and
◦ A only refers to views V , their extensions V(G) in G and GQ only, without accessing original

graph G. Here GQ is a fraction of G and can only be constructed with indexes Iϕ, that are as-
sociated with access constraints ϕ ∈ C, such that the time for generatingGQ is inO(Σϕi∈CNi),
and the size |GQ| of GQ is bounded by O(Σϕi∈CNi · |Qϕi

|).

If such an algorithm A exists, we say that pattern Q is boundedly evaluable with views, and can
be evaluated using V(G) and a fraction GQ of G of bounded size, no matter how big G is.

Remark. To make practical use of bounded pattern matching using views, it is critical to identify a
set of views and access schema. There exist a host of works on view selection based on query logs.
For access schema, its identification problem still needs further investigation, while some heuristic
methods can be applied. To be more concentrated, this paper mainly foucses on the matching
evaluation by using views and access schema.

3. Characterization for Bounded Pattern Matching using Views

We propose a characterization for bounded pattern matching using views, i.e., a sufficient and
necessary condition for deciding whether a pattern query is boundedly evaluable with views.

3.1. Joint Containment Problem

We first introduce the notion of joint containment.

Joint containment. A pattern query Q with edge set Ep is jointly contained by a set of views V =

{V1, · · · ,Vn}, and a set of access constraints C = {ϕ1, · · · , ϕk}, denoted by Q vJ [V, C], if for any
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graph G that satisfies C, there exist a pair of mappings 〈λ, ρ〉, such that
◦ Ep is divided into two disjoint parts Ec and Eu;
◦ Ec is mapped via λ to powerset P(

⋃
i∈[1,n]EVi

), and S(e) ⊆
⋃
e′∈λ(e) S(e′) for any e ∈ Ec;

and moreover,
◦ Eu is mapped via ρ to powerset P(

⋃
j∈[1,k]Eϕj ), and S(e) ⊆

⋃
e′∈ρ(e) S(e′) for any edge

e ∈ Eu,
where EVi refers to the edge set of the i-th view definition Vi in V and Eϕj indicates the edge set of
Qϕj

of the j-th access constraint ϕj in C.
Intuitively, Q vJ [V, C] indicates that Q can be divided into two disjoint parts, that take edge sets

Ec and Eu, respectively; and moreover, there exist mappings λ and ρ, that map Ec to edges in V and
Eu to edges in C, respectively, such that match set S(e) can be derived from either V(G) or GQ, for
any e in Q, without accessing original graph G.

Example : Recall G, Q, V and C in Fig. 1. One may verify that Q vJ [V, C], since the edge
set of Q can be divided into two parts Ec = {(PM,BA), (PM,PRG), (PRG,ST), (PRG,UI)} and
Eu = {(PM,DBA), (PRG,DBA)}, that are mapped via mappings λ and ρ to the sets of edges in V
and C, respectively. In any graph G, one may verify that for any edge e of Q, its match set S(e)

must be a subset of the union of the match sets of the edges in λ(e) or ρ(e), e.g., S(PM,DBA) in G is
{(PM1,DBA1), (PM2,DBA1), (PM3,DBA2)}, that is contained in the match set of QL of Qϕ in G. 2

Theorem 1 Given a set of views V and an access schema C, a pattern query Q is boundedly
evaluable with views if and only if Q vJ [V, C]. 2

Proof: We now prove Theorem 1.
(I) We first prove the only if condition, i.e., if Q is boundedly evaluable with views then Q vJ [V, C].
We show this by contradiction. Assume that Q is boundedly evaluable with views, while Q 6vJ [V, C].
By the definition of joint containment, when Q 6vJ [V, C], there must exist some data graph Go,
such that for all possible mapping pairs 〈λ, ρ〉, there always exists at least one edge e in Q, such
that either (a) S(e) 6⊆

⋃
e′∈λ(e) S(e′) when e is mapped via λ to V or (b) S(e) 6⊆

⋃
e′∈ρ(e) S(e′)

when e is mapped via ρ to C. Then, there must exist an edge eg in Go such that eg ∈ S(e) but
eg 6∈

⋃
e′∈λ(e) S(e′) for case (a), or eg 6∈

⋃
e′∈ρ(e) S(e′) for case (b). No matter which case happens,

it contradicts to the assumption that Q can be answered by using V(G) and GQ, since at least for data
graph Go, one match of Q with edge eg can not be found from V(G) and GQ. Thus, Q is boundedly
evaluable with views only if Q vJ [V, C].
(II) We next show the if condition, also by contradiction. Assume that Q vJ [V, C], but Q is not
boundedly evaluable with views. Then there must exist some data graph Go such that Q(Go) contains
a match Gs, that can not be derived from V(G) and GQ. As a result, there must exist an edge eg
in Gs, that is not in S(e′) for any e′ that is mapped either via λ or via ρ from Ep. This contradicts
the assumption, as Q vJ [V, C] (by assumption) already indicates that there exist a pair of mappings
〈λ, ρ〉 such that S(e) is a subset of

⋃
e′∈λ(e) S(e′) or

⋃
e′∈ρ(e) S(e′) for any e in Ep.

Putting these together, Theorem 1 follows. 2

Theorem 1 shows that joint containment determines whether a pattern query is boundedly evalu-
able with views. This further motivates us to study the joint containment (JPC) problem, which is to
determine, given a pattern query Q, a set of views V and an access schema C, whether Q vJ [V, C].

Remarks. (1) A special case of joint containment is the pattern containment [25]. Indeed, when
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access schema C is an empty set, joint containment problem becomes pattern containment problem.
(2) When Q is not contained in V (denoted as Q 6v V), one may find another pattern query
Qg = (Vg, Eg), referred to as a containing rewriting of Q w.r.t. V , such that Qg ⊆ Q and Qg v V ,
compute matches Qg(G) of Qg from V(G) and treat Qg(G) as “approximate matches” [25]. While,
we investigate more practical but nontrivial cases, i.e., Q 6v V , and advocate to integrate access
schema into view-based pattern matching such that exact matches can be identified by using a small
portion of additional data of bounded size.

3.2. Determination of Joint Containment

To characterize joint containment, a notion of shadow, which is introduced in [25] is required. To
make the paper self-contained, we cite it as follows (rephrased).

Given a pattern query Q and a view definition V, one can compute V(Q) by treating Q as data
graph, and V as pattern query. Then the shadow from V to Q, denoted by HQ

V , is defined to be the
union of edge sets of matches of V in Q.

To ease the presentation, we denote by Ēg = Ep \ Eg as the “uncovered edges” of Qg (a
containing rewriting of Q) in Q, where Ep and Eg are the edge sets of Q and Qg , respectively.

The result below shows that shadow yields a characterization of joint containment.
For a pattern Q, a set of view definitions V and an access schema C, Q vJ [V, C] if and only if

there exists a containing rewriting Qg of Q such that Ēg ⊆
⋃
ϕ∈C H

Q
Qϕ

.

Proof: (I) We first show the if condition by contradiction. Assume that there exists a containing
rewriting Qg of Q with Ēg ⊆

⋃
ϕ∈C H

Q
Qϕ

, but Q 6vJ [V, C]. Then by the definition of joint con-
tainment, there must exist a data graph Go with edge eg = (v, v′), such that eg is in S(e) but not in⋃
e′∈λ(e) S(e′) when e is mapped via λ to V , or

⋃
e′∈ρ(e) S(e′) when e is mapped via ρ to C, for an

edge e = (u, u′) of Q.
(1) If e is mapped via λ to V , then one may verify that v, v′ are matches of u, u′, respectively, while
there does not exist a view definition V in V such that v and v′ can match uv and u′v , simultaneously,
where (uv, u

′
v) is an edge in V. This indicates that there does not exist a containing rewriting Qg of

Q w.r.t. V .
(2) When e is mapped via ρ to an edge eϕ in Qϕ of ϕ, it can be easily verified that eg is not
S(eϕ). While, by the assumption that Ēg ⊆

⋃
ϕ∈C H

Q
Qϕ

and the definition of shadow, for each edge
es = (us, u

′
s) in Ēg , there must exist at least one ϕ such that us, u′s are the matches of uv , u′v ,

respectively, where (uv, u
′
v) is an edge in Qϕ of ϕ. Accordingly, one may further verify that nodes

v, v′ in G, that are matches of u, u′, must also be matches of uv , u′v by the semantic of subgraph
isomorphism. Thus, eg must be in

⋃
e′∈ρ(e) S(e′), which contradicts the assumption.

Putting these together, the contradiction is incorrect.

(II) For the Only If condition, we assume by contradiction that Q vJ [V, C], but there does not exist
a containing rewriting Qg of Q with Ēg ⊆

⋃
ϕ∈C H

Q
Qϕ

. By the assumption that there does not exist

a containing rewriting Qg of Q with Ēg =
⋃
ϕ∈C H

Q
Qϕ

, either (a) there does not exist any containing

rewriting Qg of Q w.r.t. V , or (b) Ēg =
⋃
ϕ∈C H

Q
Qϕ

. For case (a), one may verify that there does not
exist a mapping from Ec to V satisfying S(e) ⊆

⋃
e′∈λ(e) S(e′) for any edge e ∈ Ec; for case (b), it

can also be verified that no mapping from Eu to C with S(e) ⊆
⋃
e′∈ρ(e) S(e′) for any edge e ∈ Eu

exists. Either of two cases leads to the contradiction of Q vJ [V, C].
These complete the proof of Proposition . 2
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Input: A pattern Q = (Vp, Ep), views V and access schema C.
Output: A boolean value ans that is true if and only if Q vJ [V, C].

1. boolean ans := false; set Ec := ∅, Eu := ∅, C′ := ∅;
2. for each view definition Vi ∈ V do
3. compute HQ

Vi
; Ec := Ec

⋃
HQ

Vi
;

4. Eu := Ep \ Ec;
5. for each access constraint ϕ = 〈Qϕ(QL → QR), N〉 in C do
6. if HQ

Qϕ
∩ Eu 6= ∅ then

7. C′ := C′ ∪ {ϕ}; Eu := Eu \HQ
Qϕ

;
8. if Eu = ∅ then
9. ans := true; break ;
10.return ans;

Fig. 2 Algorithm JCont

Based on the characterization, we show below that the JPC problem is nontrivial. Despite hard-
ness, we also provide an efficient algorithm for the determination of joint containment.

Theorem 2 (1) The JPC problem is NP-hard. (2) It is in O((||V|| + ||C||)|Q|!|Q|) time to decide
whether Q vJ [V, C], and if so, to compute associated mappings from Q to V , C. 2

Proof: We first show Theorem 2(1). We then show Theorem 2(2) by presenting an algorithm as a
constructive proof.

(I) We show NP-hardness of the JPC problem by reduction from the NP-complete subgraph isomor-
phism problem (ISO) [10].

An instance of ISO consists of a graph G1 = (V1, E1) and a pattern Q1 = (Vp1 , Ep1), ISO is to
decide whether there exists a subgraph Gs in G1 that is isomorphic to Q1. Given such an instance of
ISO, we construct an instance of JPC problem as follows: (a) we create a pattern query Q that takes
the same node and edge set as G1; (b) we create a view set V that takes a single view definition V and
let V equal to Q1; and (c) we create an access schema C that only includes a single access constraint
ϕ and let Qϕ take edges in Q but not in V. The construction is obviously in PTIME. We next verify
that there exists a subgraph Gs of G1 that is isomorphic to Q1 if and only if Ēg ⊆

⋃
ϕ∈C H

Q
Qϕ

.
Assume that there exists a subgraph Gs as a match of Q1 in G1, one can verify that Ēg consists of

edges in G1 but not Gs, and HQ
Qϕ

includes edges of E1 \Ep1 . Thus Ēg ⊆
⋃
ϕ∈C H

Q
Qϕ

. Conversely, if

Ēg ⊆
⋃
ϕ∈C H

Q
Qϕ

, it can be easily verified that a pattern with edge set E1 \ Ēg is a match of Q1.
As ISO is NP-complete, so JPC problem is NP-hard.

(II) We show Theorem 2(2) with an algorithm and its analysis.

Algorithm. The algorithm, denoted as JCont, takes Q, V and C as input, and returns true if and only
if Q vJ [V, C]. The algorithm works in three stages. In the first stage, it initializes a boolean variable
ans, and three empty sets Ec, Eu and C′, to keep track of “covered edges”, “uncovered edges”, and
selected access constraints, respectively (line 1). In the second stage, it identifies an edge set Ec such
that the sub-pattern of Q induced with Ec is contained by V . Specifically, it (1) computes shadow
HQ

Vi
for each Vi in V , by invoking the revised subgraph isomorphism algorithm, which finds all the

matches of Vi in Q with algorithm in [10], and then merges them together; (2) extends Ec with HQ
Vi

(lines 2-3). After all the shadows are merged, JCont generates an edge set Eu = Ep \ Ec (line 4). In
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the last stage, JCont verifies the condition for joint containment as follows. It checks for each access
constraint ϕ whether its Qϕ can cover a part of Eu, i.e., HQ

Qϕ
∩ Eu 6= ∅ (line 6). If so, JCont enlarges

C′ with ϕ and updates Eu with Eu \ HQ
Qϕ

(line 7). When the condition Eu = ∅ is encountered, the
variable ans is changed to true, and the for loop (line 5) immediately terminates (line 9). JCont

finally returns ans as result (line 10).

Example : Recall Q, V = {V1,V2} and C = {ϕ} in Fig. 1. JCont first computes shadows for
each Vi ∈ V and obtains HQ

V1
= {(PM,BA), (PM,PRG)}, HQ

V2
= {(PRG,ST), (PRG,UI)}. Then

Eu contains {(PM,DBA), (PRG,DBA)}. It next computes HQ
Qϕ

= {(PM,DBA), (PRG,DBA)}, that
exactly covers Eu. Lastly, JCont returns true indicating that Q is boundedly evaluable with views. 2

Correctness. The correctness is ensured by that when JCont terminates, JCont correctly identifies a
part Qc (with edge set Ec) of Q that can be answered by using V; and in the meanwhile, the remaining
part Qu (with edge set Eu) of Q can also be covered by C. To see this, observe the following. (1) JCont
always terminates, since two for loops (lines 2-3, 5-9) execute ||V|| and ||C|| times, respectively. (2)
When JCont terminates, (a) Qc consists of edges of shadows from each view definition to Q, i.e.,⋃

Vi∈V H
Q
Vi

. Thus, Qc is contained by V and can be answered using V(G). (b) Eu includes edges of
shadows from each Qϕ to Q, showing how many uncovered edges of Q can be covered by using C.
When Eu turns to an empty set, i.e., all the uncovered edges can be covered, JCont changes ans to
true, indicating that Q vJ [V, C].

Complexity. The initialization of JCont is in constant time. For the second stage, JCont iteratively
computes shadow HQ

Vi
for each Vi ∈ V . As it takes O(|Q|!|Q|) time to compute shadow from Vi to Q

for a single iteration, and the for loop repeats ||V|| times, thus, it is inO(||V|||Q|!|Q|) time for the sec-
ond stage. In the last stage, JCont computes shadow from Qϕ to Q for each access constraint ϕ in C,
which is in O(|Q|!|Q|) time for a single iteration as well. As the iteration executes ||C|| times, it hence
takes JCont O(||C|||Q|!|Q|) time. Putting these together, JCont is in O((||V||+ ||C||)|Q|!|Q|) time.

Remarks. (1) There already exist techniques, e.g., [25] to answer graph pattern matching using views
only. Indeed, after containment checking (lines 2-4 of JCont), if Eu becomes an empty set, then
pattern Q is contained in V , indicating that pattern Q can be answered by using views only, without
access constraints. While, in this paper, we are focusing on nontrivial pattern queries Q, i.e., Q 6v V ,
then Eu is enforced to be a nonempty set after containment checking. (2) Algorithm JCont can be
easily adapted to return a pair of mappings 〈λ, ρ〉 that serve as input for the matching algorithm (will
be given in Section ).

4. Matching Evaluation

In this section, we study how to evaluate pattern matching using views V(G) and a fraction GQ
of G. We first develop an algorithm to find matches from V(G) and GQ. We next study the minimum
containment problem, to optimize the matching evaluation.

4.1. An Matching Algorithm

Along the same line as pattern matching using views, on a graphG that satisfies access schema C, a
pattern query Q can be answered with V(G) andGQ as following: (1) determine whether Q vJ [V, C]
and compute a pair of mappings 〈λ, ρ〉 with revised algorithm of JCont; and (2) compute Q(G) with
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Input: Pattern Q, views V , V(G), access schema C, mappings λ, ρ.
Output: The query result M as Q(G).

1. initialize an empty pattern Qo; set M := ∅, M1 := ∅;
2. for each view Vi that is mapped via λ from Ep do
3. for each Gs ∈ λ−1(Vi) do
4. Qo ⊕Gs;
5. for each m1 ∈ M and each m2 ∈ Vi(G) do
6. if m1 and m2 can be merged then
7. m := m1 ⊕m2; M1 := M1 ∪ {m};
8. update M, M1;
9. for each access constraint ϕ in ρ(Ep) do
10. 〈Qo,M〉 := Expand(Qo,M, ϕ, ρ);
11. return M;

Fig. 3 Algorithm BMatch

an matching algorithm that takes λ, ρ, V , V(G) and C as input, if Q vJ [V, C]. We next show that
such an matching algorithm indeed exists.

Theorem 3 For any graph G that satisfies access schema C, a pattern Q can be answered by
using V , V(G) and GQ in O((|V||Q||V(G)|)||V||(|Q||Q| ·Nm)||C||) time, if Q vJ [V, C]. 2

Proof: We next provide an algorithm with detailed analyses as a constructive proof of Theorem 3.

Algorithm. The algorithm, denoted as BMatch, is shown in Fig. 3. It takes a pattern Q, a set of
views V and V(G) and mappings λ and ρ, as input, and works in two stages: “merging” views Vi(G)

following the mapping λ; and “expanding” partial matches withGQ under the guidance of mapping ρ.
More specifically, BMatch starts with an empty pattern query Qo, an empty set M to keep track

of matches of Qo and another empty set M1 for maintaining intermediate results (line 1). It then
iteratively “merges” Vi(G) following mapping λ (lines 2-8). Specifically, for each view definition
Vi that is mapped via λ from edge set Ep (line 2) and each match Gs of Vi in Q (line 3), BMatch

expands Qo with Gs (line 4), and iteratively expands each match m1 of Qo with each match m2

of Vi if they can be merged in the same way as the merging process of Qo and Gs, and includes
the new match m in M1 (lines 5-7). When a round of merging process for matches of Qo and Vi
finished, BMatch updates M and M1 by letting M := M1 and M1 := ∅ (line 8). When the first stage
finished, Qo turns to a containing rewriting Qg of Q and M includes all the matches of Qg in G. In
the following stage, BMatch iteratively invokes Procedure Expand to “expand” Qo and its matches
under the guidance of mapping ρ (lines 9-10). It finally returns M as matches of Q(G) (line 11).

Procedure Expand. Given mapping ρ, access constraint ϕ, pattern Qo and its match set M, Expand
(not shown) expands Qo and M as follows. It first initializes an empty set M1. For each match Gs
of Qϕ in Q, Expand first extends Qo with Gs; it next expands a match m1 of Qo with a match GL of
QL if m1 has common nodes or edges with GL and further expands m1 with each QR-value GR of
GL, for each match m1 of Qo and each match GL of QL. The new matches are maintained by the set
M1. After all the Gs are processed, Expand returns updated Qo and its match set M1 as final result.

Example : Consider Q, V , V(G) and ϕ shown in Fig. 1. BMatch first merges “partial matches” in
V(G) following the guidance of mapping λ. Specifically, it first initializes Qo and M with V1 and
V1(G) (as shown in Fig. 1(c)); it next expands Qo with V2, and merges each match in M with each
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match in V2(G). After “partial matches” are merged, Qo includes all the edges of V1 and V2, and set
M contains following matches.

id PM BA PRG ST UI id PM BA PRG ST UI

m1 PM1 BA1 PRG1 ST1 UI1 m2 PM2 BA2 PRG2 ST2 UI1
m3 PM2 BA2 PRG2 ST2 UI2 m4 PM2 BA2 PRG2 ST3 UI1
m5 PM2 BA2 PRG2 ST3 UI2 m6 PM3 BA2 PRG3 ST3 UI3

Guided by mapping ρ, BMatch expands Qo and its matches via Procedure Expand. Expand first
merges Qo with Qϕ. Then, it first expands m1 with GL (with edge set {(PM1,DBA1)}), and then
merges m1 with GR (with edge set {(PRG1,DBA1)}). The above merge process repeats another
5 times for each mi (i ∈ [2, 6]). Finally, BMatch returns a set of 6 matches that are grown from
m1 −m6, respectively. 2 2

Correctness. The correctness is guaranteed by the following three invariants: (1) BMatch correctly
merges Qo (resp. M) with views Vi (resp. Vi(G)); (2) procedure Expand correctly expands Qo and
M using indexes associated with access schema; and (3) when BMatch terminates, Qo (resp. M) is
equivalent to Q (resp. Q(G)). To see these, observe the following:
(1) Mappings λ and ρ essentially split pattern Q into two parts: Qc with edge set Ec and Qu with edge
set Eu. These two parts are “covered ” by V and C, respectively.
(2) A view Vi can be mapped to different parts of Qc, via λ−1. BMatch hence merges Qo with each
match Gs of Vi in Q (lines 3-4). This merge process also guides the merge of matches of Qo with
matches of Vi as follows: if a match m2 of Vi can be merged with a match m1 of Qo, along the same
line as the merge of Qo and Gs, then m1 and m2 are merged as a whole (lines 5-7). These guarantee
that when a new round merging process terminates, a new pattern query, that expands Qo with the
shadow of Vi in Qc, is formed, and the set M includes all the matches of the new pattern query.
(3) Guided by ρ−1, Qϕ in ϕ can also be mapped to various parts Gs of Q. Thus Expand iteratively
expands Qo with those Gs. When the outmost loop terminates (line 2), Qo has been enlarged with the
entire shadow of QR in Qu. During the expansion of Qo, Expand first fetches a set of matches GL of
QL from index Iϕ. For each match m1 of Qo and each match GL of QL, if they overlap each other;
Expand merges m1 with GL first and then expands m1 for each QR-value of GL. Thus, it can be
easily verified that each match GL of QL and the corresponding QR-value of GL will not be missed,
during expansion, which ensures that M1 correctly maintains matches of Qo.
(4) When two for loops (lines 2-7 and 8-9) of BMatch terminate, Qo must be equivalent to Q, as
edges in Ec and edges in Eu are all covered, in the meanwhile, M must contain a complete set of
matches of Qo, guaranteed by observations given above.

Complexity. We give a detailed complexity analysis as below.
(I) BMatch iteratively merges Qo and M with view Vi and Vi(G), respectively. For a single iteration,
it takes BMatch |λ−1(Vi)||M||Vi(G)| time for the “merge” task. As in the worst case, (1) there may
exist |VVi

||Qc| matches of Vi in Qc, where VVi
denotes the node set of Vi and |Qc| is bounded by

|Q|, hence |λ−1(Vi)| is bounded by |VVi
||Q|; (2) |M| is bounded by

∏
i∈[1,k−1] |VVi

||Q||Vi(G)| before
the k-th iteration; and (3) the iteration repeats at most ||V|| times, hence the first stage is bounded by∏
i∈[1,||V||] |VVi

||Q||Vi(G)|, which is in O((|V||Q||V(G)|)||V||) time.
(II) BMatch repeatedly invokes Procedure Expand to process expansion of Qo and M with access

constraint ϕ. For a single process, it takes Expand |ρ−1(QR)||M||Iϕ(GL)| time. Note that (1)
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|ρ−1(QR)| is bounded by |VR||Qu| (VR refers to the node set of QR), which is further bounded by
|VR||Q|, as |Qu| is bounded by |Q|; (2) |M| is bounded by (|V||Q||V(G)|)||V|| ·

∏
i∈[1,k−1] |VRi

||Q| ·Ni,
before the k-th iteration; and (3) |Iϕ(GL)| ≤ Nk at the k-th iteration, thus, Expand is in
O(|VR||Q| · (|V||Q||V(G)|)||V||

∏
i∈[1,k](|VRi

||Q| · Ni)) time. As the iteration repeats at most ||C||
times, the second stage is hence in O(|Q||Q|(|V||Q||V(G)|)||V||(|Q||Q| · Nm)||C||) time. Putting these
together, BMatch is in O((|V||Q||V(G)|)||V||(|Q||Q| · Nm)||C||) time, where Nm is the maximum
cardinality of access schema C. 2

4.2. Optimization Strategy

As the cost of BMatch is partially determined by |V(G)| and |GQ|, it is hence beneficial to reduce
the size of the parameters. This motivates us to study the minimum containment problem.

Minimum Containment Problem. Given a pattern query Q, a set of view definitions V with each Vi
associated with weight |Vi(G)|, and an access schema C, the problem, denoted as MCP, is to find a
subset V ′ of V and a subset C′ of C, such that (1) Q vJ [V ′, C′], and (2) for any subset V ′′ of V and any
subset C′′ of C, if Q vJ [V ′′, C′′], then |V ′(G)|+ Σϕi∈C′Ni · |Qϕi | ≤ |V ′′(G)|+ Σϕj∈C′′Nj · |Qϕj |.

As will be seen in Section , MCP is effective: it can eliminate redundant views (as well as their
corresponding extensions), and reduce the size of GQ thereby improving the efficiently of BMatch.
However, MCP is nontrivial, its decision problem is NP-hard. Despite of this, we develop an algorithm
for MCP, which is approximable within O(log |Q|). That’s, the algorithm can identify a subset V ′ of
V and a subset C′ of C when Q vJ [V, C], such that Q v [V ′, C′] and |V ′(G)| + Σϕi∈C′Ni · |Qϕi |
is guaranteed to be no more than log(|Q|) · (|VOPT(G)| + Σϕj∈COPT

Nj · |Qϕj
|), where VOPT and

COPT are the subsets of V and C, respectively, and moreover, Q vJ [VOPT, COPT] and |VOPT(G)| +
Σϕj∈COPT

Nj · |Qϕj
| is minimum, among all possible subset pairs of V and C.

Theorem 4 The MCP is (1) NP-hard (decision problem), but (2) there exists an algorithm for
MCP that finds a subset V ′ of V and a subset C′ of C with Q vJ [V ′, C′] and |V ′(G)| + Σϕi∈C′Ni ·
|Qϕi
| ≤ log(|Q|) · (|VOPT(G)|+ Σϕj∈COPT

Nj · |Qϕj
|) in O(||V|||Q|!|Q|+ (||V|||Q|)3/2) time. 2

Proof. We now prove Theorem 4 (1) and (2), respectively.

(I) We prove NP-hardness of MCP by showing NP-hardness of its special case, i.e., when access
schema C is an empty set. The decision problem of the special case is to determine, given a pattern
query Q, a set of view definitions V = {V1, · · · ,Vn} with each Vi taking integer weight |Vi(G)|
(i ∈ [1, n]), and an integerB, whether there exists a subset V ′ of V such that Q v V ′ and |V ′(G)| ≤ B.

We show that this problem is NP-hard by reduction from the set cover problem (SCP) [23], which
is known NP-complete. An instance of SCP consists of a set U , a collection of subsets of U , S =

{S1, · · · , Sn}, where each subset Si takes integer weight ω(Si), and an integer K, SCP is to decide
whether there exists a subset S ′ of S that covers U , i.e.,

⋃
Si∈S′ Si = U , and has total weight no more

than K. Given such an instance of SCP, we construct an instance of MCP as follows: (a) for each
xi ∈ U , we create a unique edge exi

with two distinct nodes uxi
and vxi

; (b) we define a pattern query
Q as a graph consisting of all edges exi defined in (a); (c) we construct a set V , and define each view
definition Vj in V taking edges exi

and weight ω(Sj) from Sj , for each subset Sj ∈ S and xi ∈ Sj ;
and (d) we set K = B.

The construction is obviously in PTIME. We next verify that there exists a subset S ′ of S with total
weight no more than K if and only if there exists a subset V ′ of V such that Q is contained in V ′ and
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Input: A pattern Q = (Vp, Ep), a set of views V , an access schema C.
Output: A subset V ′ of V and a subset C′ of C such that Q vJ [V ′, C′].

1. initialize sets V ′ := ∅, C′ := ∅, F := ∅;
2. for each view definition Vi ∈ V do
3. compute HQ

Vi
; F := F ∪ {〈HQ

Vi
, |Vi(G)|〉};

4. for each access constraint ϕj ∈ C do
5. compute HQ

Qϕj
; F := F ∪ {〈HQ

Qϕj
, Nj · |Qϕj |〉};

6. 〈V ′, C′〉:= PtnFinder(Q, F);
7. return 〈V ′, C′〉;

Procedure PtnFinder
Input: A pattern query Q = (Vp, Ep), set F .
Output: 〈V ′, C′〉.

1. initialize an empty pattern Qo = (Vo, Eo), set V ′ := ∅, C′ := ∅;
2. while F 6= ∅ do
3. find an object obj with the least α(·) value;
4. if (HQ

obj \Qo) = ∅ then break ;
5. update F ; Qo merges HQ

obj;
6. if obj is a view Vi then V ′ := V ′ ∪ {Vi};
7. else if obj is an access constraint ϕj then C′ := C′ ∪ {ϕj};
8. if Eo 6= Ep then return ∅;
9. return 〈V ′, C′〉;

Fig. 4 Algorithm Minimum

has total weight ΣVj∈V′ |Vj(G)| no larger than B.
(1) Assume that there exists a subset S ′ of S that covers U with total weight at most K. Let V ′ be the
set of views Vj corresponding to Sj ∈ S ′. One can verify that Q v V ′ and ΣVj∈V′ |Vj(G)| ≤ B, since
the union of all the edges from these SQVj

is Eq , and the weight |Vj(G)| = ω(Sj) for each Vj in V ′.
(2) Conversely, if there exists a subset V ′ of V with Q v V ′ and ΣVj∈V′ |Vj(G)| ≤ B, it is easy to see
that the corresponding subset S ′ of S has total weight no more than K and covers U .

As SCP is NP-complete, so is NP-hardness of MCP.

(II) We next show Theorem 4(2) by providing an approximation algorithm as a constructive proof.

Algorithm. The algorithm, denoted as Minimum, is shown in Fig. 4. Given a pattern query Q, a set
of view definitions V with each Vi in V taking a weight |Vi(G)|, and an access schema C, Minimum

identifies a pair 〈V ′, C′〉 of subsets of V and C such that (1) Q vJ [V ′, C′] if Q vJ [V, C] and (2)
|V ′(G)|+ Σϕi∈C′(Ni · |Qϕi |) ≤ log(|Q|) · (|VOPT(G)|+ Σϕj∈COPT

(Nj · |Qϕj |)), where (a) log(|Q|)
is the approximation ratio, and (b) VOPT, COPT are the subsets of V , C, respectively, and moreover,
Q vJ [VOPT, COPT] and |VOPT(G)| + Σϕj∈COPT

(Nj · |Qϕj
|) is minimum, among all possible subset

pairs of V and C.
In a nutshell, the algorithm applies a greedy strategy to find a views Vi in V or an access constraint

ϕj from C that is considered “best” during the iteration. To measure the goodness of the views and

access constraints, we define a metric α(Vi) = |Vi(G)|
|HQ

Vi
\Qo|

for a view Vi, and α(ϕj) =
Nj ·|Qϕj

|
|HQ

Qϕj
\Qo|

for an

access constraint ϕj . Here, Qo takes edges from shadows whose corresponding views (resp. access
constraints) are chosen in V ′ (resp. C′). Intuitively, α(Vi) (resp. α(ϕj)) indicates how costly it is to
“cover” the remaining part Q \ Qo of Q with HQ

Vi
(resp. HQ

Qϕj
), hence a Vi or ϕj with the least α(·)
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(a) Views V={V1,......,V6} (b) Access schema C={φ1,φ2}

Fig. 5 Views V and access schema C

is favored in each round iteration.
The algorithm works in two stages.

(I) It initializes three empty sets V ′, C′ and F (line 1), and computes the shadow HQ
Vi

for each Vi ∈ V
(resp. HQ

Qϕj
for each ϕj ∈ C) and maintains a pair 〈HQ

Vi
, |Vi(G)|〉 (resp. 〈HQ

Qϕj
, Nj · |Qϕj

|〉) in F
(lines 2-5). Intuitively, |Vi(G)| (resp. Nj · |Qϕj

|) can be viewed as the “weight” of its corresponding
Vi (resp. ϕj).
(II) Minimum invokes procedure PtnFinder to compute a pair 〈V ′, C′〉 of subsets of V and C.
Specifically, it first initializes an empty pattern query Qo and two empty sets V ′, C′ (line 1). It then
iteratively selects an object obj, whose corresponding α(·) is the least (line 3). Here, the chosen
object obj is either a view definition Vi or an access constraint ϕj . Once there does not exist any obj

whose corresponding shadow can expand Qo, i.e., (HQ
obj \ Qo) = ∅, PtnFinder breaks the loop (line

4). Otherwise, it updates F by removing 〈HQ
Vi
, |Vi(G)|〉 (resp. 〈HQ

Qϕj
, Nj · |Qϕj

|〉), and expands

Qo with shadow HQobj (line 5). If obj is a view Vi, PtnFinder includes it in V ′ (line 6), otherwise,
PtnFinder enriches C′ with ϕj (line 7). After while loop terminates, if Eo is not equivalent to Ep,
PtnFinder returns an empty set, since Q 6vj [V, C] and hence no subset pair exists (line 8). Otherwise,
PtnFinder returns 〈V ′, C′〉 as final result (line 9).

We next provide detailed analysis for the algorithm Minimum.

Correctness. Observe that Minimum either finds a pair 〈V ′, C′〉 of subsets of V and C such that
Q vJ [V ′, C′] or an empty set indicating Q 6vJ [V, C]. This is ensured by joint containment checking
of the algorithm (line 8 of PtnFinder), by following Proposition . Moreover, PtnFinder identifies
〈V ′, C′〉 with a greedy strategy, which is verified to guarantee log(|Q|) approximation ratio for
weighted set cover problem [23].

Complexity. Algorithm Minimum computes “shadows” for each Vi in V and each ϕj in C in
O((||V|| + ||C||)|Q|!|Q|) time (lines 2-5). The procedure PtnFinder is in O(((||V|| + ||C||)|Q|)3/2)

time, as the while loop is executed min{(||V|| + ||C||), |Q|} times, which is bounded by
O(((||V|| + ||C||)|Q|)1/2) time, and each iteration takes O((||V|| + ||C||)|Q|) time to find a
view with least α(·) [23]. Thus, Minimum is inO((||V||+ ||C||)|Q|!|Q|+((||V||+ ||C||)|Q|)3/2) time.

The analysis above completes the proof of Theorem 4. 2

Example : Recall pattern query Q in Fig. 1 (b). Given a set of views V = {V1, · · · ,V6} and an
access schema C = {ϕ1, ϕ2}, as shown in Fig. 5, algorithm Minimum identifies 〈V ′, C′〉 from V and
C as following. It first computes shadows for each Vi in V and each ϕj in C, and initializes set F as
table below. It next applies PtnFinder to iteratively select Vi (resp. ϕj) based on their α(·) values.
Assume N1 of ϕ1 is 6 and N2 of ϕ2 is 4 (their actual occurrences in G of Fig. 1 (a)). Then, PtnFinder
successively selects V2, ϕ1 and V1 to enrich V ′ and C′, and terminates while loop. Minimum finally
returns V ′ = {V1,V2} and C′ = {ϕ1} as result.
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shadow coverage shadow coverage
V1 {(PM,BA), (PM,PRG)} 3 ∗ 5 V2 {(PRG, ST), (PRG,UI)} 6 ∗ 5
V3 {(PRG,UI), (PRG,DBA)} 4 ∗ 5 V4 ∅ 0
V5 {(PRG, ST), (PRG,DBA)} 4 ∗ 5 V6 {(PRG,UI)} 4 ∗ 5

ϕ1 {(PM,DBA), (PRG,DBA)} N1 ∗ 5 ϕ2 {(PM,PRG), (PRG, ST)} N2 ∗ 5

2

5. Experimental Evaluation

Using real-life and synthetic data, we conducted three sets of tests to evaluate (1) performances
of algorithms for joint containment checking, i.e., the efficiency of algorithm JCont compared with
Minimum; and (2) performances of algorithms for bounded pattern matching using views, i.e., the
effectiveness, efficiency and scalability of algorithms BMatch, BMatchmin.

Experimental setting. We used the following data.

(1) Real-life graphs. We used four real-life graphs: (a) Amazon [3], a product co-purchasing network
with 548K nodes and 1.78M edges. Each node has attributes such as title, group and sales-rank, and an
edge from product x to y indicates that people who buy x also buy y. (b) Citation [1], a collaboration
network with 1.4M nodes and 3M edges, in which nodes represent papers with attributes such as title,
authors, year and venue, and edges denote citations. (c) YouTube [4], a recommendation network with
1.6M nodes and 4.5M edges. Each node is a video with attributes such as category, age and rate, and
each edge from x to y indicates that y is in the related list of x.

(2) Synthetic graphs. We designed a generator to produce random graphs, controlled by the number
|V | of nodes, the number |E| of edges, and an alphabet Σ for node labels. We enforced a set of access
constraints during random generation.

(3) Pattern queries. We implemented a generator for pattern queries controlled by: the number |Vp|
(resp. |Ep|) of pattern nodes (resp. edges), and node label fv from an alphabet Σ of labels drawn from
corresponding real-life graphs. We denote (|Vp|, |Ep|) as the size of pattern queries, and generated a
set of 30 pattern queries with size (|Vp|, |Ep|) ranging from (3, 2) to (8, 16), for each data graph. We
also produced a set of 100 synthetic pattern queries to constitute query workload, using label set Σ,
that is used for synthetic graph generation.

(4) Views. We generated views for Amazon following [21], designed views to search for papers and
authors in computer science for Citation, and generated views for Youtube following [14]. For each of
the real-life graphs, a set V of 50 view definitions with different sizes e.g., (2, 1), (3, 2), (4, 3), (4, 4)

and structures are generated. For synthetic graphs, we randomly generated a set of 50 views whose
node labels are drawn from a set Σ of 10 labels and with sizes of (2, 1), (3, 2), (4, 3) and (4, 4). For
each view set V , we force that Q 6v V , for each Q used for testing.

(5) Access schema. We investigated real-life graphs, and extracted an access schema C with a set of
access constraints ϕ for each of them. A set of typical access constraints are shown in Fig. 6. For
each access constraint ϕ = 〈Qϕ(QL → QR), N〉, we computed an index Iϕ for it. Since N is no
more than 100 for each chosen ϕ, hence the space cost of an index Iϕ ranges from a few megabytes
to dozens of megabytes, for each ϕ. In addition, the index Iϕ is built upon a hashtable, with a distinct
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Fig. 6 Typical access constraints on real-life graphs

match GL of QL as the key, and a set of matches Gs of Qϕ as values. Thus, the fetch time on Iϕ for
any GL is very fast, and can be viewed as a constant. On synthetic graphs, we manually generated
a set of access constraints and computed indexes for these access constraints, along the same line as
performed on real-life graphs. As index construction is a one-off task and can be performed off-line,
we do not report its computational time.

(6) Implementation. We implemented the following algorithms, all in Java: (1) JCont for determina-
tion of joint containment; (2) MCG [25] for finding maximally containing rewritings Qg; (3) VF2 [10]
for performing matching evaluation onG, BMatch for matching with V(G) andGQ; and (4) Minimum

for identifying a pair 〈V ′, C′〉 from V and C, and BMatchmin which revises BMatch by using 〈V ′, C′〉
identified by Minimum.

All the tests were run on a machine with an Intel Core(TM)2 Duo 3.00GHz CPU and 4GB memory,
using Ubuntu. Each experiment was run 10 times and the average is reported.

Experimental results. We next present our findings.

Exp-1: Joint containment checking. We first evaluate the performance of JCont vs. Minimum.

Performance of JCont vs. Minimum. We evaluate the efficiency of JCont vs. Minimum. Fixing V and
C for real-life graphs, we varied the pattern size from (4, 4) to (8, 16), where each size corresponds
to a set of pattern queries with different structures and node labels. We find the following. (1) JCont
and Minimum both are efficient, e.g., it takes JCont on average 145.5 ms to decide whether a pattern
with size (8, 16) is jointly contained in V and C. (2) Both two algorithms spend more time over larger
patterns, which are consistent with their computational complexities. Due to space constraint, we do
not report detailed figures here. (3) We compute a ratio RT = TJCont

TMinimum
, where TJCont and TMinimum

are the time used by JCont and Minimum, respectively, to evaluate performance gap between JCont

and Minimum. As shown in Fig. 7(a), JCont accounts for about 75.7% of the time of Minimum, on
average, since it takes Minimum more time to pick a Vi from V (resp. ϕj from C).

To investigate the effectiveness of Minimum, we defined a ratio RS = Sa

Sb
, where Sa =

|V ′(G)| + Σϕj∈C′Nj · |Qϕj |, Sb = |V(G)| + Σϕj∈CNj · |Qϕj |, as the ratio of the total size of view
extensions V ′(G) andGQ identified by Minimum to the total size of whole set of V(G) and indexes in
C. Fixing V and C over real-life graphs, we varied pattern size (|Vp|, |Ep|) from (4, 4) to (8, 16) and
evaluated the ratio RS . As shown in Fig. 7(b), Minimum is effective, it finds a pair 〈V ′, C′〉 with total
size Sa substantially smaller than Sb, i.e., taking only about 25.2% of Sb for all real-life graphs, on av-
erage. As will be shown, using 〈V ′, C′〉 can substantially improve efficiency of matching computation.

Exp-2: Bounded pattern matching using views. We study the effectiveness, efficiency and
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Fig. 7 Performance evaluation

scalability of BMatch, BMatchmin, compared to VF2 [10] using real-life and synthetic graphs.

Effectiveness. We define following three metrics and evaluate effectiveness of bounded pattern match-
ing using views with real-life graphs.
(1) We defined a ratio RACC as accuracy, to measure the result quality when access schema is absent,
by following F -measure [28]. Here, RACC = 2·recall·precision

recall+precision , where recall = |S|
|St| , precision = |S|

|Sm| , St
consists of matches in Q(G), Sm is the set of matches in Qg(G), and S consists of “true” matches that
can be identified from Qg(G), where Qg refers to the maximally containing rewriting of Q w.r.t. V .

(2) We used RC =
Σϕi∈C′Ni·|Qϕi

|
|Q(G)| to show the propotion of |GQ| in |Q(G)|. Here, GQ is constructed

from C′, which is a subset of C and takes a set of access constraints ϕi that are used by BMatch when
matching evaluation, and |Q(G)| is the total size of matches of Q in G.

(3) We usedRe =
|Ēg|
|Ep| to show how large a pattern query needs to be “covered” by access constraints.

Figures 7(c)-7(e) report three ratios on real-life graphs, which tell us the following. The ratio
RACC is, on average, 77.3%, 73.6%, and 76.8% on Amazon, Citation and Youtube, respectively. In
the meanwhile, the average ratios of RC and Re reach 10.4% and 18.8%, 14% and 20.6%, 11.7% and
19.4% on Amazon, Citation and Youtube, respectively. These together show that access constraints
often cover a small but critical part of pattern queries, e.g., 16.11% of total edges of Q on average, and
provide limited but key information, e.g., 10.89% of the size of match result to improve accuracy by
more than 20%, on average.

Efficiency. Figures 7(f), 7(g) and 7(h) show the efficiency on Amazon, Citation and YouTube,
respectively. The x-axis represents pattern size (|Vp|, |Ep|). The results tell us the following. (1)
BMatch and BMatchmin substantially outperform VF2, taking only 9.5% and 3.8% of its running
time on average over all real-life graphs. (2) All the algorithms spend more time on larger patterns.
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Nonetheless, BMatch and BMatchmin are less sensitive to the increase of |Q| than VF2, as they reuse
earlier computation cached in view extensions and hence save computational cost. (3) BMatchmin

is more efficient than BMatch, taking only 41.2% time on average over real-life graphs, as it uses
smaller V(G) and GQ.

Scalability. Using synthetic graphs, we evaluated the scalability of BMatch, BMatchmin and VF2.
Fixing |Q| = (4, 6), we varied the node number |V | of data graphs from 0.3M to 1M , in 0.1M

increments, and set |E| = 2|V |. As shown in Fig. 7(i), BMatchmin scales best with |G| and is on
average 1.4 and 22.1 times faster than BMatch and VF2, which is consistent with the complexity
analysis, and the observations in Figures 7(f), 7(g) and 7(h).

Summary. We obtain the following findings through our experimental evaluation. (1) It is efficient to
determine whether a pattern query can be boundedly evaluable with views. For a pattern query Q with
size (8, 16), it only takes JCont 145.5 milliseconds to determine whether Q vJ [V, C]. (2) Bounded
pattern matching using views is effective in querying large social graphs. For example, by using
V(G) and GQ, pattern matching via subgraph isomorphism takes only 9.3% of the time needed for
computing matches directly in YouTube, and 10.6% on synthetic graphs. Moreover, our optimization
technique is effective, Minimum can reduce size of V(G) and GQ and improve BMatch by 143% on
real-life graphs. Our matching algorithms also scale well with data size.

6. Conclusion

We have studied bounded pattern matching using views, for pattern queries defined in terms of
subgraph isomorphism, from theory to algorithms. We have introduced access schema for graphs,
proposed a notion of joint containment for characterizing bounded pattern matching using views, and
provided an efficient algorithm for joint containment checking. Based on the characterization, we have
developed an matching algorithm by using views and a size-bounded fraction, and moreover, we have
also provided optimization strategy to improve efficiency of matching computation. Our experimental
results have verified the effectiveness, efficiency and scalability of our algorithms, using real-life and
synthetic data.

The study of bounded pattern matching using views is still in its infancy. One issue is the selection
problem for views and access schema. Another problem concerns scale-independence for GPM.
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