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Data compliance laws establish rules intended to protect privacy. These define both

retention durations (how long data must be kept) and purging deadlines (when the data
must be destroyed in storage). To comply with the laws and to minimize liability, com-

panies must destroy data that must be purged or is no longer needed. However, database
backups generally cannot be edited to purge “expired” data and erasing the entire backup

is impractical. To maintain compliance, data curators need a mechanism to support tar-

geted destruction of data in backups. In this paper, we present a cryptographic erasure
framework that can purge data from across database backups. We demonstrate how

different purge policies can be defined through views and enforced without violating

database constraints.
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1. Introduction

Efforts to protect user data privacy and give people control over their data have led to passage

of laws such as the European General Data Protection Regulation (GDPR) [10] and California

Consumer Privacy Act (CCPA) [23]. With the increased emphasis on supporting data gov-
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ernance rules, many organizations are seeking to implement the data retention requirements

into their databases. Laws can dictate how long data must be retained (e.g., United States

Income Revenue Service tax document retention [12]), the consent required from individuals

on how their data may be used (e.g., GDPR Article 6), or purging policies for when data must

be destroyed (e.g., GDPR Article 17). Organizations may furthermore establish their own

retention and purging policies or have to implement custom data governance control (e.g.,

purge data due to the owner’s request).

In this paper, we consider the problem of data purging in a database. We analyze this

problem and propose solutions for both relational and JSON NoSQL database (JSON ND)

logical layouts. Prior research has only focused on the challenges of retention in active (live)

databases [3]. Nevertheless, to fully comply with the policies mandating data purging, a

database system must purge data from the active database as well as from backups. Although

backups are not part of the active database, they can be restored into an active database at

any time. The problem of purging policies and backups has been studied in the context of

relational databases [28]. In this paper, we extended this approach’s framework to support

backup purging for both relational and JSON databases.

1.1. Motivation

A variety of factors make purging data from backups difficult. Backups may potentially be

edited by 1) restoring the backup, 2) making changes in the restored database, and then 3)

creating a new (“edited”) backup. Outside of this cumbersome process, there is no other

method of safely editing a backup. Only a full (i.e., non-incremental, see Section 2.3) backup

can be altered in this manner. Furthermore, editing a full backup would invalidate all of

its dependent incremental backups. Additionally, backups may be be stored remotely (e.g.,

off-site) and on sequential access media (e.g., on tape). Therefore, the ability to make changes

to any data within backups is both limited and costly.

In order to solve this problem, we propose to implement data purging through crypto-

graphic erasure [4]. Intuitively, a cryptographic erasure approach encrypts the data and then

purges that data by deleting decryption keys. The advantage of this approach is that it deletes

the data “remotely” without having to access the backups. When a backup is restored, the

irrecoverable data is purged while the recoverable and non-encrypted data are fully restored

into the active database. This process does not invalidate partial backups.

Our framework creates shadow collections which contain an encrypted copy of all data

subject to purging policies. In a context of a relational database, a collection is simply

a table. With JSON ND databases, data is stored in this manner would be a collection.

Throughout this paper, we use the term collection referring to both relational database tables

and collections in JSON ND. In our approach, the shadow collections are backed up instead

of the original collections; we then use cryptographic erasure to simultaneously purge values

across all existing backups. Our approach requires no changes to current backup practices

and is compatible with both full and incremental backups. In order for any solution to be

implemented in industry, it must not come with a high cost for adaption. Furthermore, it must

be compatible with current processes. If an organization is unable to use major features (e.g.,

incremental backups), they are unlikely to implement a purging framework. One challenge

of implementing cryptographic erasure is in balancing different policy requirements across
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a database logical layout. A single row in a relational table may have columns subject to

different retention and purging requirements; in JSON ND collections, different key-values

may also have different requirements.

Our framework only applies encryption to data which is updated or inserted after the

purge policy is defined and does not retroactively apply encryption to the already-present

data (e.g., if an existing policy is changed). Our approach address the problem of compliance

rather than security. It will guarantee data destruction based on defined policies; thwarting

a malicious insider who previously copied data or decryption keys is beyond the scope of this

paper. Furthermore, purging data that remains recoverable via forensic tools is out of scope

for this paper. In sum, our contributions are:

• We outline the requirements for defining and enforcing data purge policies

• We describe an implementation (and present a prototype) for backup data purging that

can be seamlessly integrated into existing relational and JSON databases during backup

and restore

• We design a key selection mechanism that balances multiple policies and retention period

requirements

• We provide experiments illustrating the purging process in a relational and JSON

database

2. Background

2.1. Database Terminology

Relational Databases: A relational database (RDBMS) represents data in two dimensional

tables. Each table represents a set of records (or tuples) where each record is uniquely

identified by a primary key. Data stored stored across multiple tables (e.g., customer and

purchase information) is connected by foreign key references. RDBMSes enforce referential

integrity, which ensures that all foreign key references are valid (referencing a valid record in

the remote table). Relational database functionality is mostly standardized, consistent across

vendors such as Oracle, PostgreSQL, and MySQL (although each DBMS comes with their

own proprietary features and supported add-ons).

NoSQL: NoSQL databases have been designed to be more flexible and scalable by relaxing

some of the RDMBS constraints (such as referential integrity). There are multiple loosely

defined NoSQL database categories; in this paper, we focus on the broad category of document

stores that store JSON style documents identified by a unique key. A document roughly

corresponds to a tuple in an RDBMS, although it is more loosely defined (e.g., each document

can have a varying number of values or columns). Thus, a NoSQL document corresponds to

an RDBMS table; in MongoDB, documents are named collections. In relational databases,

foreign keys maintain a relationship between tables, data in each column must belong to

the declared data type, and many additional custom constraints can be introduced. NoSQL

constraints are less standardized and not required but can still be introduced. For example,

in MongoDB, schema validations can enforce custom restrictions on values and data types
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within a document. In Elasticsearch, document validation can be implemented with either

mappings and REST filters or on the client application itself.

ACID: Transactions help manage concurrent access to the DBMS and are used for crash

recovery. RDBMSes guarantee that transactions are atomic, consistent, isolated, and durable

(ACID). For example, if a customer transfers $10 from account A($50) to account B($5),
transactions ensure that the transient account state (account A is already at $40 but account

B is still at $5) cannot be observed. Should the transfer fail mid-flight (after subtracting

$10 from A, but before adding $10 to B), transactional mechanism restores account A back

to $50. Changes performed by transactions are stored in the transaction log (e.g., <A, $50,
$40>, <B, $5, $15>), which can undo or reapply the changes, depending on whether the

transaction successfully executed the COMMIT (i.e., was “finalized”).

NoSQL databases offer a more limited ad-hoc support of ACID guarantees. Although out-

side of RDBMS world ACID support is optional, it is a desired feature. ACID was introduced

to NoSQL databases recently: for example, MongoDB for multi-document transactions [17]

was added in version 4.0 (circa 2018). In Elasticsearch, transactions and ACID guarantees are

not yet implemented within the database engine. If this functionality is required, a two-phased

commit approach would need to be implemented [16].

Triggers: Triggers are a mechanism designed to enforce database-wide rules by firing

(executing) in response to a database event. For example, a trigger can act before an UP-

DATE operation and either log the operation before it happens or prevent the update from

happening. RDBMS triggers use an extension of SQL (e.g., PL/SQL, SQL/PL, or T-SQL)

and are ACID-compliant. In NoSQL databases, trigger support has been implemented more

recently. For example, MongoDB Atlas implemented triggers for their cloud solution [19] and

change streams for on-premise deployments as of version 3.6 [18] (circa 2017). Other NoSQL

databases have implemented functionality similar to triggers but with different system-specific

limitations. For example, in Elasticsearch, a Watcher is a process that fires at a fixed inter-

val [9] instead of responding to specific events.

2.2. Compliance Terminology

Business Record: Organizational rules and requirements for data management are defined

in units of business records. United States federal law refers to a business record broadly

as any “memorandum, writing, entry, print, representation or combination thereof, of any

act, transaction, occurrence, or event [that is] kept or recorded [by any] business institution,

member of a profession or calling, or any department or agency of government [...] in the

regular course of business or activity” [6]. A business record may consist of a single document

for an organization (e.g., an email message). In a relational database, a business record may

span combinations of rows across multiple tables (e.g., a purchase order consisting of a buyer,

a product, and the purchase transaction from three tables).

Regardless of database schema, a business record is constructed from a database using a

query. With relational databases, database business record queries are defined using Select-

Project-Join operations. With respect to JSON databases, this is accomplished using find

queries. Aggregations are the result of combining business records; they are not used to

define business records. Therefore throughout this paper, we define a business record as the

result of a non-aggregate query.



Nick Scope, Alexander Rasin, Ben Lenard, James Wagner, and Karen Heart 153

Policy: A policy is any formally established rule for organizations dictating the lifetime

of data. Retention policies can dictate how long data must be saved while purge policies

dictate when data must be destroyed. Policies can originate from a variety of sources such as

legislation or a byproduct of a court ruling. Companies may also establish their own internal

data retention policies to protect confidential data. In practice, database curators work with

domain experts and sometimes with legal counsel to define business records and retention

requirements based on the written policy.

Policies can use a combination of time and external events as the criteria for data purging.

Policies must be mapped to the underlying business records to know which records must either

be retained or purged. For example, retaining employee data until employee termination plus 5

years illustrates a policy criteria that is based on a combination of an external event (employee

termination) and time (5 years). United States Department of Defense (DoD) “DoD 5015-

02-STD” documentation [2] outlines the minimum requirements and guidance for any record

system related to the DoD (although multiple US government agencies, such as the National

Archives, use the same standards). These DoD guidelines state that any storage system must

support retention thresholds such as time or event (Section C2.2.2.7 of [2]).

Purging: In data retention, purging is the permanent and irreversible destruction of data

in a business record [11]. A business record purge can be accomplished by physically destroying

the device which stored the data, encrypting and erasing the decryption key (although the

ciphertext still exists, destroying the decryption key makes it inaccessible and irrecoverable),

or by fully erasing the data from all storage.

Some retention policies require an organization to completely purge business records either

after the passage of time, at the expiration of a contract, or purely when the data is no

longer needed. Additionally, there are an increasing number of regulations (such as the

European Union’s GDPR) which require organizations to purge business records at the request

a customer. Therefore, organizations must be prepared to comply with regular policies as well

as ad-hoc requests.

2.3. Database Backups and Types

Backups are an integral part of business continuity practices to support disaster recovery.

There are many mechanisms for backing up a database [7] both at the file system level

and internal to the DBMS. File system backups range from a full backup with an offline, or

quiesced, database to a partial backup at file system level that incrementally backs up changed

files. Most DBMS platforms provide backup utilities for both full and partial backups, which

create backup in units of pages (rather than individual rows or documents).

Even for a relatively simple task of coping database files at the file system level, there are

various methods ranging from a simple copy command with an offline database to a more

complex copy of the storage system in an active database [25]. Moreover, one can replicate

database changes from one database to another to provide a live backup or replica by using

tools such as Oracle Data Guard [24], in addition to taking traditional backups of the database.

The type of backup depends on two application metrics: Recovery Point Objective (RPO)

and Recovery Time Objective (RTO); as your RPO and RTO shorten, the complex solutions

such as Oracle Data Guard [24] emerge. RTO is defined as the time it takes to recover the

database after a crash and RPO is defined as how close to the crash or error can you restore
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the database. A backup solution could be a simple RDBMS backup utility to snapshot

filesystem contents, replication of the database and then backing up the database as well

as other options [24]. The criticality of the application and data as well as RTO and RPO

determines the backup solution and its complexity; in other words, how much would downtime

or the financial and reputation loss of data could cost your organization. In addition to data,

one might also backup transaction logs, archievelogs (Oracle), logarchive (Db2), binary log

(MySQL), or write ahead log (WAL in Postgres), file backups, to replay transactions to meet

the RPO goal of the application. For example, one would restore last backup before the

failure and then replay the transaction logs to meet the RPO set by the organization’s needs.

Some utilities provide block-level backups with either a full database backup or a partial

backup capturing pages that changed since the last backup. Partial backups can be incremen-

tal or delta. For example, if we took a full backup on Sunday and daily partial backups and

needed to recover on Thursday, database utilities would restore the full backup from Sunday

and then either 1) apply delta backups from Monday, Tuesday, and Wednesday or 2) apply

Wednesday’s incremental backup. Because most organizations use multiple types of backups,

any purging system must work on full, incremental, and delta backups [14].

For JSON databases (e.g., MongoDB), a backup can be categorized into on-premise or

cloud methodologies. For cloud deployments, one has the choice of taking snapshots of the

database, akin taking a full backup of a relational database, or replicating changes to another

target, which is similar Oracle’s Data Guard in that changes are shipped from a primary to

a standby. In terms of on-premise (or legacy deployments), you can backup the database by

copying the underlying files, snap shotting the filesystem, or dumping the database (depending

on your needs) [21]. For MongoDB, the backup stratigies are similar to relational databases

and are driven by the business requirements. Overall, our framework is designed to work

across backup categories.

2.4. Related Work

Kamara and Lauter’s research has shown that using cryptography can increase storage pro-

tections [13]. Furthermore, their research has shown that erasing an encryption key can fulfill

purging requirements. Our system expands on their research by using policy definitions to

assign different encryption keys relative to their policy and expiration date.

Reardon et al. [26] provided a comprehensive overview of secure deletion. The authors

defined three user-level approaches to secure deletion: 1) execute a secure delete feature on

the physical medium 2) overwrite the data before unlinking or 3) unlink the data to the OS

and fill the empty capacity of the physical device’s storage. All methods require the ability

to directly interact with the physical storage device, which may not be possible for database

backups in storage.

Boneh et al. [4] used cryptographic erasure, but each physical device had unique encryption

key. Therefore, they did not develop a key-assignment system at the granularity required by

purging policies. We introduce an encryption key assignment system to facilitate targeted

cryptographic erasure of business records across all backups. In order to fully destroy the

data, users must also securely delete the encryption keys used for cryptographic erasure.

Reardon et al. [26] provide a summary for how to destroy encryption keys to guarantee a

secure delete. Physically erasing the keys depends on the storage medium and is beyond the
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scope of this paper. However, unlike backups, encryption keys are stored on storage medium

that is easily accessible.

Ataullah et al. [3] described some of the challenges associated with record retention imple-

mentation in relational databases. The authors proposed an approach that uses view-based

structure to define business records (similar to our approach); they used view definitions to

prohibit deletion of data that should be retained. Ataullah et al. only consider retaining data

in an active database; they did not consider how their approach would interact with backups.

Currently, there has been limited academic research on implementing purging policy re-

quirements functionality in any NoSQL database. In the private sector, Amazon S3 does offer

an object life-cycle management tool [1]. S3’s object life-cycle management is limited to time

criteria only. Moreover, S3 is file-based and therefore lacks sufficient granularity. All purging

would be done at the file level without the ability to purge specific underlying key-value pairs.

3. Our Process

Fig. 1. Framework Overview

Our proposed framework automatically applies encryption to data that is subject to purge

policy requirements whenever values subject a purging policy are inserted or updated. An

overview of this process is presented in Figure 1. We maintain and backup a shadow (en-

crypted) copy of the collections; other collections not subject to purging rules are not af-

fected. SELECT and FIND queries always interact with the non-encrypted database collec-

tions (rather than shadow collections) and are not impacted by our approach. We translate

(using triggers) DELETE, INSERT, REMOVE, and UPDATE queries into a corresponding

operation on the encrypted shadow copy of the collection.

Our framework relies on stored procedures (e.g., triggers) in order to operate transparently

from the user’s prospective. Using ACID compliant triggers, we make the necessary substi-

tutions, applying encryption and updating the shadow collections in the background. If the

trigger mechanism is not available or it does not support ACID guarantees, the functionality

has to be moved to the application level. Ensuring data purging in the application breaks

transparency, requiring some changes to the operations that modify the database (read-only

queries are not affected). All major relational databases support trigger functionality. On

the other hand, triggers are not always available with JSON databases. For example, in
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MongoDB, triggers exist but only with MongoDB Atlas (the cloud version). Moreover, the

implementation of triggers in Atlas is different from relational databases as they respond only

after an event has happened (in a relational database, the trigger can act before or after an

event). Adding to the complexity, triggers may be delayed further since the trigger applica-

tion may be operating in a different cloud region [20, 22]. In terms of on-premise MongoDB,

the implementation by developers also involves writing a “side-car” application to watch for

events in Mongo after they have occurred. Another popular NoSQL database is ElasticSearch,

and while triggers have been on their roadmap for a few years now, the only functionality

that is akin to triggers is the watcher functionality. [9, 8] The watcher functionality fires on

a set interval and can look for changes within the data.

Our framework is designed to remain transparent to the user. For example, one can use

client-side encryption without affecting our data purging approach. A change in purge policy

has to be manually triggered to encrypt existing data.

In our system, shadow collections are backed up instead of the corresponding user-facing

collections; collections that are not subject to purging policies are backed up normally. When

the shadow collections are restored from a backup, our system decrypts all data except for

purged values. In relational databases, for encryption keys that expired due to a purge

policy, the underlying data would be replaced with NULL (unfortunately, purging of data

unavoidably creates ambiguity with “real” NULLs in the database). In cases where the entire

row must be purged (with all values having been eliminated), the tuple would not be restored.

In JSON databases, once all values in a document are purged, the key is also removed.

Evaluation of possible conflicts between schema and purging policy requirements (e.g.,

purge policy on a column that is restricted to NOT NULL) are resolved during the policy

definition step. When a policy is defined, the framework validates that the purging of data will

not be in-conflict with the underlying schema requirements. MongoDB collections leveraging

schema validation can require specific underlying keys during key-validations. For example,

you can require a field to be present and of a given data type (e.g., a date field must be a

date and within a given range or a field must be one of n options).

Our default implementation uses a collection called encryptionOverview (with column

definition shown in Table 1) to manage encryption keys. This collection is backed up sepa-

rately to avoid the problem of having the encryption keys stored with the backup. The key

backups can be more readily purged of expired contents because they represent a small fraction

of the overall database. Figure 2 illustrates an example of a JSON encryptionOverview.

Field PostgreSQL MongoDB

encryptionID Int String

policy Varchar(50) String

expirationDate Date String

encryptionKey Varchar(50) String

Table 1. encryptionOverview Collection

In our proof-of-concept experiments, the encryptionOverview collection is stored in the

database. However, in a production system the key management collections will be stored in

a separate database. Access to these collections could be established via a database link or

in a federated fashion, allowing the keys to be kept completely separate from the actual data.
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Fig. 2. MongoDB JSON ND encryptionOverview Example

Our framework uses time-based policy criteria for purging, bucketed per-day by default.

A bucket represents a collection of data grouped by a time range and policy that is purged

together as a single unit. All data in the same bucket for the same policy uses the same

encryption key. Our default bucket size is set to one day because, for most purge policies, a

daily purging satisfies policy requirements to where further time granularity is not required

(e.g., GDPR: Article 25 [10]).

Documents may contain data belonging to multiple business records; values in a single

entry may be subject to different policies. In the shadow collections of relational databases,

each original column explicitly includes its [column name]EncryptionID, which serves as its

encryption key identifier (chosen based on which policy takes precedence).

Fig. 3. MongoDB JSON ND AlphaShadow Example

With JSON ND, because each item may have different underlying key-values, JSON ND

does not require a [column name]EncryptionID column for non-encrypted values. Our

framework only adds a key-value pair for the [column name]EncryptionID if encryption

has been applied. Therefore, with the values shown in Figure 3, any non-encrypted values

would not have a corresponding [column name]EncryptionID. In this particular example,

all values were subject to a purge policy and were encrypted.

3.1. Defining Policies

Our method of defining purge policies uses queries to define the underlying business records

and the purge criteria. We require defining a time-based purging period (which, at insert

time, must provide at least one non-NULL time value).

With relational databases, if any one primary key attribute is included in a purge policy,

all other columns must be included. The purge definition must also include all child foreign

keys of the collection to maintain referential integrity. Because foreign keys can point to a

unique column that is not a primary key. One of our framework’s requirement for defining

business records is that joins must uniquely identify each corresponding row between the

collections.

As an example, using the schema in Figure 4, if the customerID in the customer collection
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Fig. 4. Sample company schema

was included under a purge policy, both customer.* columns and sale.customerID must

be included. During the restore process, a purged column value will be restored as a NULL.

Thus, non-primary-key columns subject to a purge policy must not prohibit NULLs, including

any foreign key columns. When all columns are purged from a row, the entire tuple will not

be restored (i.e., ignored on restore).

Consider a policy for a company (Figure 4) that requires purging all customer data in their

relational database where the Super Save enrollment date is over twenty years old. Using the

keyword PURGE, our framework would recognize the VIEW below as a purging policy defi-

nition:

CREATE PURGE customerPurge AS SELECT customer.*, sale.customerID

FROM customer LEFT JOIN sale ON customer.customerID = sale.customerID

WHERE datediff(year, customer.superSaverEnroll,

date part(‘year’, CURRENT DATE)) > 20;

In this example, the superSaveEnroll column will not contain NULL; therefore, at least

one column can be used to determine the purge expiration date, satisfying our definition re-

quirements. For a JSON ND, this would be accomplished using the purge creation definition

below using the new function createPurge.

db.createPurge(

“customerPurge”,

“customer”,

[{“superSaveEnroll”:
{$lte: new Date(ISODate().getTime() - 1000 * 3600 * 24 * 365 * 20 }}])

Our framework recognizes createPurge as VIEW designed specifically for our purging

process. With JSON databases, if a key is included in a purge, all corresponding values in the

collection must also be included. Because of the flexibility of the JSON ND schemas, instead

of restoring purged values with NULL, those key-value pairs are simply ignored during the

restoration process. Unlike with relational databases, in JSON databases each document can

have different underlying key-values; our framework does not have to restore purged values

to satisfy schema requirements. Additionally, referential integrity checks are not required

during the business record definitions with JSON databases. Purging values from collections

are handled independently unless they are defined under a single policy and business record.
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3.2. Encryption Process

When a new record is inserted, we use triggers to determine if any of the values fall under a

purge policy; if so, the trigger determines the relevant policies and their corresponding purge

date. For example, consider a new employee record inserted into the employee collection:

INSERT INTO customer

(customerID,customerName,dob,address,superSaveEnroll,memberLevel)

VALUES (1,‘Johnson,Isabel,‘2/1/1990’,‘Chicago’,‘1/1/2021’,‘Premium’);

Under the previously defined customerPurge policy, Isabel Johnson’s data would have a

purge date of January 1, 2041. We first check if an encryption key for this date bucket and

policy already exists in the encryptionOverview collection. If an encryption key already

exists, we use it to encrypt the values covered by the purge policy; if not, a new key is

generated and stored in the encryptionOverview collection. The encrypted row and the

matching encryption key ID is inserted into the customerShadow collection. With relational

databases, if a column is not covered by a purge policy, a value of -1 is inserted into the

corresponding EncryptionID column. The value of -1 signals that the column has not been

encrypted and contains the original value. In this example, each column in the shadow

collection is encrypted with the same key, but our proposed framework allows policies to be

applied on a per-column basis. Therefore, our framework tracks each column independently

in cases where a row is either partially covered or covered by different policies.

This process would be similar using insertion of Isabel’s data into a JSON database.

db.customer.insert([

{ customerID:1, customerName:“Johnson,Isabel”, dob:“2/1/1990”, address:“Chicago”,

superSaveEnroll:“1/1/2021”, memberLevel:“Premium” }])

With a JSON database, because key values are more flexible, we do not need to worry about

inserting a value of -1. Encryption keys are only stored for values that are encrypted, other-

wise, they key-value is not added to the database. For example, using Figure 3, if any of the

values did not require encryption, the original value would be shown in the shadow collection

with no encryption key data stored.

To support multiple purge policies, we must determine which policies apply to the new

data. A record in a collection may fall under multiple policies (potentially with different

purge periods). Furthermore, a single value may belong to different business records with

different purge period lengths. In data retention the longest retention period has priority; on

the other hand, in data purging, the shortest period has priority. Therefore, we encrypt each

value using the encryption key corresponding to the shortest purge period policy.

It is always possible to shorten the purging period of a policy by purging the data ear-

lier. However, our approach does not support extending the purge period since lengthening

a purge period risks violating another existing policy. Thus, if a policy is dropped, data

already encrypted under that policy will maintain the original expiration date. This is done

to guarantee that a separate policy will not be violated by failing to drop a value when the

another purge policy is removed. For example, let’s say two different policies requiring purg-
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ing. The first policy requires purging at t1 while the second policy requiring purging at t2
(where t2 is after t1). Because the policy at t1 comes first, all overlapping values would be

assigned t1’s encryption key. Once a backup has been created, if the policy with t1 no longer

requires purging, if we simply were to never purge those values, all values requiring purging

at t1 and t2 would be in violation of the policy requirements after t2. When our framework

applies encryption, we only use the Our framework only tracks the earliest purging policy

time when encrypting the values. Furthermore we are unable to apply a different encryption

key post-backup. Therefore, to fully guarantee compliance, we must purge all data in backups

regardless of if a policy is still active.

Continuing with our example, another policy dictates a purge of all “Premium+” cus-

tomer address information ten years after their enrollment date. Because this policy ap-

plies to a subset of columns on the customer collection, some columns are encrypted using

the encryption key for customerPurge policy while other columns are encrypted using the

premiumPlusPurge policy. For example, if a new Premium+ member were enrolled, the

premiumPlusPurge policy would take priority on the address field, with remaining fields en-

crypted using the customerPurge policy key.

3.3. Encryption on Update

Similarly to INSERT, we encrypt all data subject to purge policy during an UPDATE. Nor-

mally, the updated value would simply be re-encrypted and stored in the shadow collection.

However, if an update changes the date and alters the applicable purge policy (e.g., changing

the start or the end date of the employee), the record may have to be re-encrypted with a

different key or decrypted (if purge policy no longer applies) and stored unencrypted in the

shadow collection. Our prototype system decrypts the document identfier columns in the

shadow collection to identify the updated row. This is a PostgreSQL-specific implementation

requirement, which may not be needed in other databases (see Section ). Our system auto-

matically deletes the original row from the shadow collection and inserts the new record (with

encryption applied as necessary), emulating UPDATE by DELETE+INSERT.

In our MongoDB example, we implemented this at the application level. Specifically, we

developed a Python script which performed similar to a BEFORE trigger to execute the nec-

essary encryption functionality. When a value was subject to a policy, the Python determines

which encryption key to use (potentially generating a new key), apply the encryption key,

and insert the data into the original and shadow collections. Specifically with updates, the

Python script determines which value was being updated to remove the old encryption key

from the shadow collection and insert the new updated encrypted value.

Continuing with our example, let’s say Isabel Johnson is promoted to the “Premium+”

level, changing the purge policies for her records. We can identify her row in the shadow

collection using the customerID document identifer combined with the previously used column

customerIDEncryptionID. We would then apply the corresponding updates to encrypt the

fields covered by the policy, based on the new policy’s encryption key.

3.4. Purging Process

Our framework is designed to support purge policies and not for support of retention policies

(i.e., prevent deletions before the retention period expires). Retention requires a separate
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mechanism, similar to work in [3, 27].

The encryption keys can be deleted by a cron-like scheduler, available in most DBMSes.

Purging is automated through a cron-like DBMS job ([5] in Postgres) that removes expired

encryption keys from encryptionOverview with a simple delete. Moreover, key deletion

will need to be supplemented by a secure deletion of the encryption keys on the underlying

hardware [26, 4], guaranteeing the encryption keys are permanently irrecoverable (which is

outside the scope of this paper). While Mongo Atlas has scheduled triggers, akin to CRON,

the on-premise version does not, so the purging would need to be dependent on CRON or

something akin to this.

3.5. Restore Process

When creating the backups, our framework only creates the backups of collections without

shadow copies or the shadow collections of tables. The encryptionOverview collection is

ignored during this step.

Our framework restores the backup with shadow collections that contain encrypted as

well as unencrypted values. Recall that with the relational databases, the shadow collections

include additional columns with encryption ID for each value. A -1 entry in the encryptionID

column indicates that the column is not encrypted and, therefore, does not require decryption

and would be restored as-is. Our system decrypts all values with non-expired encryption keys

into the corresponding active collection. For any encrypted value associated with a purged

encryptionID our system restores the value as a NULL in the active collection. If the entire

row has been purged, the tuples would not be restored into the active collection.

With JSON databases, we are able simply to decrypt all values with using their related

[column name]EncryptionID value. If an encryption key has been purged, the encrypted

value is ignored during the restoration process. If a document key does not have a [column

name]EncryptionID available, it and all underlying values are ignored (regardless of if the

underlying values still have an available encryption key).

4. Experiments

4.1. Relational Database Implementation

We implemented a prototype system in PostgreSQL 12.6 database to demonstrate how our

method supplements backup process with purge rules and effectively purges data from backups

in a relational database. The database VM server consists of 8GB of RAM, 4 vCPUs, 1 x

vNIC and a 25GB VMDK file. The VMDK file was partitioned into: 350MB/boot, 2GB

swap, and the remaining storage was used for the / partition; this was done with standard

partitioning and ext4 filesystem running CentOS 7 on VMware Workstation 16 Pro. We

demonstrate the viability of our approach by showing that it can be implemented without

changing the original schema or standard backup procedures, while guaranteeing data purging

compliance.

We use two collections, Alpha and Beta, with Beta containing children rows of Alpha. As

shown in Figure 5, shadow collections contain the encrypted value for each attribute and the

encryption key used. Shadow collections use the datatype bytea (binary array) to store the



162 Purging Compliance from Database Backups by Encryption

Fig. 5. Collections used in our experiments

encrypted value regardless of the underlying data type as well as an integer field that contains

the encryption key ID used to encrypt the field. We tested the most common datatypes such

as char, varchar and date.

This experiment used two different purge policies. The first policy requires purging data

from both collections where the alphaDate is older than five years old and alphaGroup=‘a’

(randomly generated value occurring in approximately 25% of the rows). The second policy

requires purging only from the Beta collection where betaDate (generated independently

from alphaDate) is older than five years old and betaGroup=‘a’ (separately generated with

the same probabilities).

Our trigger on each collection fires upon INSERT, UPDATE, or DELETE to propagate

the change into the shadow collection(s). When the insertion trigger fires, it first checks for

an encryption key in the encryptionOverview collection for the given policy and expiration

date; if one does not exist, the key is created and stored automatically.

We pre-populated Alpha collection with 1,000 rows and Beta collection with 1,490 rows.

We also generated a random workload of inserts (25), deletes (25), and updates (25) for

the time period between 1/1/2014 to 2/1/2019. Because we used two different policies, we

generated the data so that some of the business records were subject to one of the purge

policies and some records were subject to both purge policies. Roughly 75% of the data

generated was subject to a purge policy. Finally, not all records requiring encryption will

be purged during this experiment due to the purge policy date not having passed. Records

generated with dates from 2017-2019 would have not expired in running of this experiment.

We then perform updates and deletes on the collections to verify that our implementation is

accurately enforcing compliance.

Using a randomly generated string of alphanumeric characters with a length of 50, our pro-

cess uses the function PGP SYM ENCRYPT to generate encryption keys to encrypt the input
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values. alphaID is the primary key of Alpha and (alphaID, alphaIDEncryptionID) is the

primary key of AlphaShadow. If alphaID is not encrypted, the column alphaIDEncryptionID

is set to -1 to maintain uniqueness and primary key constraint.

The UPDATE trigger for the Alpha collection is similar to the INSERT trigger, but it

first deletes the existing row in the shadow collection. Next, we determine the current appli-

cable encryption key and insert an encrypted updated row into the shadow collection. The

DELETE trigger removes the row from the AlphaShadow collection upon deletion of the row

in Alpha. When alphaDate in a row from Alpha changes, the corresponding rows in Beta

collection may fall under a different policy and must be re-encrypted accordingly. Further-

more, when a Alpha row is deleted, the child Beta row must be deleted as well along with the

shadow collection entries. Note that PGP SYM ENCRYPT may generate several different

ciphertext values given the same value and the same encryption key. Therefore, we can-

not encrypt the value from Alpha and compare the encrypted values. Instead, we must scan

the collection and match the decrypted value in the predicate (assuming the key is encrypted):

DELETE FROM alphaShadow

WHERE PGP SYM DECRYPT(alphaID, v encryption key)=old.alphaID

AND alphaIDKey=v key id;

Changes to Beta collection are a little more interesting since there is a foreign key re-

lationship between Beta rows and Alpha rows. When a row is inserted or updated in the

Beta collection, in addition to the Alpha trigger processes, the Beta collection triggers must

compare the expiration date of the Beta row to the expiration date of the Alpha parent row

and select the encryption bucket with the shorter of the two periods.

Initialization: We first import data into the Alpha and Beta collections. We then ran load-

AlphaShadow() and loadBetaShadow() to populate the shadow collections using the corre-

sponding key; the dates in the encryptionOverview collection are initialized based on our ex-

piration dates. Next, we enabled the triggers and incremented dates in encryptionOverview

by five years to simulate the policy’s expiration at a later time.

Validation: We wrote a procedure, RestoreTables(), to restore Alpha and Beta collections

after shadow collections were restored from backup. In a production database, the backup

method would depend on the Recovery Time Objective (RTO) and Recovery Point Objective

(RPO) which would determine the backup methodology implemented, such as with Post-

greSQL’s pg dump and excluding the collections with sensitive data. We tested the basic

backup and restore process by exporting and importing the shadow collections, then truncat-

ing Alpha and Beta, and finally invoking our RestoreTables() procedure. We then modified

the procedure to restore the collections to (temporarily created) Alpha’ and Beta’ so that we

could compare restored collections to Alpha and Beta. We then verified that the values for

the restored collections match the original collections’ non-purged records.

Evaluation: We have verified that by deleting encryption keys to simulate the expiration

of data, the restore process correctly handled the absence of a key to eliminate purged data.

In total, there were 61 rows purged from Alpha and 182 rows purged from Beta, as well as

the same rows purged from AlphaShadow and BetaShadow. Therefore, we have demonstrated

that our framework achieves purging compliance in a relational database without altering
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collections in the existing schema or modifying the standard backup procedures.

Encrypting and maintaining a shadow copy of sensitive data to support purging incurs

processing overheads for every operation that changes database content (read operations are

not affected). Optimizing the performance of this approach is going to be considered in our

future work. During an INSERT on the Alpha collection, our system opens a cursor to check

if an encryption key is available in the encryptionOverview collection. If the applicable key

exists we fetch it, otherwise we create a new one. Once a key is retrieved or a new key is

generated, the values that are under a purge policy are encrypted with PGP SYM ENCRYPT.

Next, we insert encrypted data into the shadow collection as part of the transaction. For an

UPDATE, we follow the same steps but also delete the prior version of the row from the

shadow collection (and may have to take additional steps if the update to the row changes

the applicable purge policy). If the policy condition changes, we insert the shadow row into

AlphaShadow and then evaluate the data in the BetaShadow collection to see if the encryption

key needs to change on the encrypted rows of the BetaShadow where the linkID refers to the

Alpha row that changed.

The restore process is subject to decryption overheads. For example, in PostgreSQL, in

addition to the normal restore operation that restores the shadow collection, we recreate the

unencrypted (active) version of the collection. For each encrypted column, we look up the key,

then apply PGP SYM DECRYPT, and finally insert the row into the active collection (unless

the row already expired). Because the restore process creates an additional insert for every

decrypted row, this also increases the space used for the transaction logs. The performance

overhead for a restore will be correlated with doubling the size of each encrypted collection

(due to the shadow copy addition) plus the decryption costs. During deletion, each time we

decrypt a row, the process of executing PGP SYM ENCRYPT and evaluating each row of

the collection incurs a CPU cost in addition to the I/O cost of deleting an additional row for

each deleted row. The performance for an update statement incurs a higher overhead since

an update is effectively a delete plus insert. Some of these I/O costs, such as fetching the key,

can be mitigated with caching.

4.2. JSON ND Implementation

We conducted a similar experiment in MongoDB 4.4 on-premise, with the same VM setup as

described for PostgreSQL, to demonstrate and confirm we are able to implement our process

in a JSON database for purging data from backups. We used MongoDB since in the fall of

2021, the company was worth around $30 billion dollars, which is indicative of it commercial

use and success [15]. From a logical perspective, the code for two experiments followed a

similar workflow. Because BEFORE triggers are not currently supported in MongoDB, we

implemented our functionality within the MongoDB client driver and our Python application

to ensure that Alpha, Beta, and their shadow collections remain consistent (i.e., the insert

into Alpha and its shadow happen in one transaction, similarly with Beta). MongoDB has

implemented multi-document ACID in version 4.0.

Therefore, instead of using PL/SQL like with our PostgreSQL experiments, we utilized

Python 3.6 and the PyMongo driver. Additionally, we changed the process to find, update,

and delete the shadow documents. With JSON databases, we are able to use a universally

unique identifier (UUID) to determine which row to decrypt, update, and re-encrypt. With
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PostgreSQL, we had to decrypt and scan every row to find the row we need to delete or

update; however with JSON, including Mongo, every document had a id field containing a

UUID. Although many relational databases do have a row identifier, this may change during a

collection reconstruction. By having a consistent UUID, we are able to streamline the process

by minimizing the amount of values we are required to decrypt.

We utilized a different symmetric encryption package to encrypt and decrypt the data

within the shadow document. With our PostgreSQL experiment, we were able to leverage

the included encryption functionality. On the other hand, MongoDB does not currently have

encryption functionality built in. Therefore, we used the Python package Simple Crypt.

MongoDB backup are able to be partitioned at the collection level. Therefore, we were

able to generate backups using only the shadow collections containing the encrypted data.

This experiment used collections that mirrored the collections from our relational database

experiment. Furthermore, the same data, synthetic time lapse, and purging of encryption

keys was executed. Therefore, the values and records purged would match between the two

experiments.

The results mirrored the results from our previous experiment with relational databases.

Our system was able to successfully backup the data, destroy the encryption keys, purge

the necessary records, and restore the database (while ignoring encrypted values where the

encryption key has been purged). Therefore, this experiment proved our framework can

successfully purge inaccessible records in an inaccessible JSON ND backup.

5. Discussion

5.1. Implementation

In our experiments we exported and imported the shadow collections to show that the system

worked as expected; in practice, backup methodology would depend on the RTO and RPO on

the application [14]. There are a plethora of options that can be implemented depending on

the needs of the application. One could use pg dump and exclude the collections containing

sensitive data, so that these collections are excluded from the backup file. If the size of the

database is too large for a periodic pg dump, or if the RTO and RPO warrant a faster backup,

one could replicate the database to another database, and exclude the collections with sensitive

data from replication. Using the clone of the database, one could do filesystem level backups

or a traditional pg dump. Similarly in MongoDB there is a mongodump to backup the database

in a similar fashion. While the clone is a copy, a clone is not versioned in time like backups

would be. For example, if someone dropped a collection, the drop would replicate to the clone

and not protect data against this change, whereas a backup would allow restoring a dropped

collection. We intend to study the performance and granularity trade off (by changing bucket

size) in future work.

We intend to separate the encryptionOverview collection from the database in produc-

tion. Currently, we did not evaluate that functionality in our experiments for this paper.

Because the encryptionOverview is relatively small, it must be separately backed up. Oth-

erwise, if the encryptionOverview collection were to be lost, all backups would be ren-

dered void. To guarantee compliance, the backups of encryptionOverview must regularly

be purged to prevent multiple copies of encryption keys from remaining in perpetuity.
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5.2. JSON ND Functionality Limitations

Our framework is not limited by forcing the solutions we implemented in relational databases

into a JSON databases. Because JSON databases have different limitations compared to a

relational databases, some changes were required. We used BEFORE triggers in the relational

databases. Currently there is no native support for BEFORE triggers in JSON databases.

Therefore, for the solutions to be completely consistent, this either needs to be added to the

native support, or users must build this into the application level. Unfortunately, building

this into the application lessens the transparency to the user.

5.3. ACID Guarantees

If a trigger abends at any point, the transaction is rolled back. With relational databases,

since we attach triggers to the base collections, we are able to provide ACID guarantees.

These guarantees are also extended to the shadow collections because all retention triggers

execute within the same transaction. Overall, for any collection dependencies (either between

the active collections or with the shadow collections), our framework executes all steps in a

single transaction, fully guaranteeing ACID compliance. This guarantee requires additional

steps if we replicate the changes outside of the database since the database is no longer in

control of the transaction.

For example, if the remote database disconnects due to a failure (network or server), the

implementation would have to choose the correct business logic for the primary database. If

the primary database goes into a read-only mode, the primary can keep accepting transactions

or keep a journal to replay on the remote database. If the implementation kept a journal to

replay, organizations must determine if is it acceptable to break ACID guarantees. Oracle

DataGuard and IBM Db2 HADR provide varying levels of replication guaranties; similar

guaranties would need to be built into our framework and verbosely explained as to the

implications. Similarly, supporting asynchronous propagation and encryption of data into

shadow collections would require additional investigation.

MongoDB does currently guarantee ACID (as of version 4.0) if implemented in the appli-

cation and the client driver for Mongo. Specifically, in our MongoDB experiment, we leverage

the ACID functionality in the client driver to implement our encryption framework. With

MongoDB’s locking functionality, we are able to maintain ACID at the cost of transparency.

ACID inherently is not at conflict with transparency. Until BEFORE triggers are sup-

ported though, our framework’s implementation in JSON databases must sacrifice trans-

parency for ACID compliance. In JSON databases where BEFORE triggers are supported,

our framework would be implemented with triggers instead of at the application level (facili-

tating enhanced transaction transparency).

5.4. Future Work

We plan to consider asynchronous propagation (instead of triggers) to shadow collections;

although that would require additional synchronization mechanisms, it has the potential to

reduce overhead for user queries. Because scalability is a concern, tools such as Oracle Gold-

engate or IBM Change Data Capture, provide a framework to replicate changes, apply busi-

ness logic, and replicate the changes to the same database or other heterogeneous databases.
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We also intend to explore developing our framework to replicate changes outside of a single

database.

Our approach can easily incorporate new policies without requiring any changes to the

already defined policies. However, when a policy is removed, all data in the shadow collections

will stay bucketed under the previous policy. Further research is needed to automatically re-

map all data points to the newest policy after a policy has been replaced or altered, to facilitate

up-to-date compliance.

6. Conclusion

Organizations are increasingly subject to new requirements for data retention and purging.

Destroying an entire backup violates retention policies and prevents the backup from being

used to restore data. Encrypting the active database directly (instead of creating shadow en-

crypted collections) would interfere with (commonly used) incremental backups and introduce

additional query overheads. In this paper we have shown how a framework using cryptographic

erasure is able to facilitate compliance with data purging requirements in database backups

with relational and JSON databases.

Our approach does not require changes to the active collections and maintains support for

incremental backups while providing an intuitive method for data curators to define purge

policies. This framework balances multiple overlapping policies and maintains database in-

tegrity constraints (checking policy definitions for entity and referential integrity in relational

databases). We demonstrate that cryptographic erasure supports the ability to destroy indi-

vidual values at the desired granularity across all existing backups.

Overall, our framework provides a clear foundation for how organizations can implement

purging into their backup processes without disrupting the organization’s business continuity

processes. Databases which either have trigger or application level support can use our purging

framework to enforce purging compliance.
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