
Journal of Data Intelligence, Vol. 3, No. 2 (2022) 252–277
© Rinton Press

EXTRACTING EXPERIMENT STATISTICS, CONDITIONS, AND TOPICS
FROM SCIENTIFIC PAPERS WITH STEREO

STEFFEN EPP, MARCEL HOFFMANN, NICOLAS LELL, MICHAEL MOHR, and ANSGAR SCHERP

Data Science and Big Data Analytics
Ulm University, Ulm, Germany

{steffen.epp, marcel.hoffmann, nicolas.lell, michael.mohr, ansgar.scherp}@uni-ulm.de

We address the problem of extracting reports of statistics along with information about

the experiment conditions and experiment topics from scientific publications. A common
writing style for statistical results are the recommendations of the American Psychology

Association (APA). In practice, writing styles vary as reports are not 100% following

APA-style or parameters are not reported despite being mandatory. In addition, the
statistics are not reported in isolation but in context of experiment conditions investi-

gated and the general experiment topic. We address these challenges by proposing a

flexible pipeline STEREO based on wrapper induction and unsupervised aspect detec-
tion to extract experiment statistics, conditions, and topics. Thus, in contrast to existing

rule-based tools like statcheck with a pre-defined set of rules, we learn rules via induction.
Hierarchical wrapper induction is applied to learn rules to extract the reported statistics.

Challenge here is to apply wrapper induction on an information extraction task without

having formatting landmarks as they can be exploited in HTML pages. Result of step 1
is a set of extracted statistic reports together with sentences in which the reports were

found. This is used as input to step 2 of STEREO, which has two two parts. We ex-

tract experiment conditions using a grammar-based wrapper. Furthermore, we identify
the experiment topic using an unsupervised attention-based aspect extraction approach

adapted to our problem domain. We applied our pipeline to the over 100, 000 documents

in the CORD-19 dataset. It required only 0.25% of the CORD-19 corpus (about 500 doc-
uments) to learn statistics extraction rules that cover 95% of the sentences in CORD-19.

The statistic extraction has 100% precision on APA-conform statistics, which is identi-

cal with statcheck. In addition, STEREO can extract non-APA writing styles with 95%
precision, which statcheck does not support. Extracting non-APA conform statistics is

important as they make more than 99% of all 113k extracted statistics. We could extract
in 46% the correct conditions from APA-conform reports (30% for non-APA). The best

model for topic extraction achieves a precision of 75% on statistics reported in APA

style (73% for non-APA conform). We conclude that STEREO is a good foundation
for automatic statistic extraction and future developments for scientific paper analysis.

Particularly the extraction of non-APA conform reports is important and allows appli-

cations such as giving feedback to authors about what is missing and could be changed.
Finally, STEREO complements existing metadata extraction tools and can be integrated

in a general scientific paper analysis pipeline.
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1. Introduction

In many fields of science the research results are analyzed and presented with statistical

methods, e. g., in psychology, life sciences, social sciences, economics, and others. Therefore,

there is a large amount of scientific papers which contain statistical data in an unstructured

way. In addition, statistics are not reported in isolation but together with the experiment
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conditions and experiment topics. Our objective is to identify and extract such data from

scientific papers. Tools like statcheck [1] and its extension [2] use a fixed set of regular expres-

sions (rules) to extract statistical reports conform to the American Psychology Association

(APA, https://apastyle.apa.org/). In contrast, our aim is to extract also reports which

are not conform to APA. This is needed as in practice writing styles vary, e. g., reports are not

following APA-style and generally mistakes are being made in reporting statistics. In fact,

our experiments show that of the extracted 113k statistics, more than 99% of all reported

statistics are not conform to APA. Furthermore, we also extract experiment conditions and

experiment topics from scientific papers, which is yet not addressed by the existing tools.

Our pipeline STEREO (STat ExtRaction Experimental cOnditions) uses wrapper induc-

tion to find regular expressions for statistics extraction, even if the reporting does not strictly

follow APA guidelines. For example, with these rules we can extract statistics like “Physical

demand (t(23) = −2.22, p = 0.37) and temporal demand (t(23) = 2.72, p = .012) are signifi-

cantly different”, although APA style dictates the statistics to be at the end of the sentence

and p-values are not to be reported with a leading 0. Beside the robust extraction of not com-

pletely APA-conform statistics, we extract experiment conditions and experiment topics such

as “men”, “women” and “personal data” as reported in the following example: “There was

no significant effect for sex, (t(38) = 1.7, p = .097) despite women attaining higher scores

than men”. This helps to increase the interpretability of our extracted statistical records.

For extracting the conditions, we apply aspect extraction techniques, namely Attention-

based Aspect Extraction (ABAE) [3], and grammar-based condition extraction (GBCE).

The grammar-based approach applies rules based on English grammar and frequently oc-

curring tokens to extract experiment conditions of the corresponding statistic. Overall, the

extracted details of the statistical report, experiment condition, and experiment topics results

in a structured metadata record. For the above example, we extract {degreeOfFreedom =

38, statisticVal = 1.7,pvalue = .097, conditions = {men,women}, topic = personal data}.
We apply and evaluate the STEREO pipeline on the CORD-19 dataset. For learning the

statistic extraction rules, we used 500 documents, i. e., 0.25% of the corpus. Currently, the

models support the statistics Pearson’s Correlation, Spearman Correlation, Student’s t-test,

ANOVA, Mann-Whitney U Test, Wilcoxon Signed-Rank Test, and Chi-Square Test. As it is

a wrapper induction approach, it is easy to extend the rule set to other types of statistic and

learn corresponding rules. Our results show a precision of 100% for the statistic extraction

in the case of APA-conform reports, which is equivalent to statcheck’s APA style extraction

rules [1] and its extension, which reported 99% precision on extracting the p-value with test

statistic [2]. For non-APA conform statistics the precision is 95%. Furthermore, some statistic

types were observed more often than others. For example, more Pearson correlations than

chi-square tests were found. In addition, it was analyzed how different pairs of parameters

were missing. STEREO’s ability to extract non-APA conform reports is important as it allows

to use it in applications like feedback to authors about what is missing and could be changed.

For the extraction of the experiment conditions and experiment topics, the results are

mixed as the problem is much more difficult. Nevertheless, the extraction of experiment

conditions has a precision of 46% for APA-conform reports and 30% for non-APA samples.

For topic extraction, we achieve a best precision of 75% on statistics reported in APA style

and 73% for non-APA conform statistics. About half of them are the trivial topic “statistic”,
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which is expected given the input data are sentences from the statistics extraction step, but

can be easily filtered out from the results.

STEREO can be easily adapted to other datasets and domains. If writing styles in that

domain differ from life sciences, one would use the wrapper induction to add more rules.

The current rule base is already applicable to the range of domains covered by the CORD-19

dataset, as the rules cover 95% of the sentences in the dataset. Overall, STEREO is a good

foundation for automatic extraction of statistics and future developments for scientific paper

analysis such as for condition and topic extraction. STEREO complements the portfolio of

existing metadata extraction tools and can be integrated in a general scientific paper analysis

pipeline.

The paper is organized as follows: Below, we discuss works related to our approach. In

Section 3, we describe the steps of the extraction pipeline and its three components for extract-

ing statistics, experiment conditions, and experiment topics. The experimental apparatus is

described in Section 4 and the results are presented in Section 5. We discuss the results in

Section 6. We present lessons learned in Section 7, before we conclude.

2. Related Work

First, we discuss general and bibliographic metadata extraction from scientific papers. Sub-

sequently, we present works for extracting scientific metadata, followed by a presentation of

the state of the art in aspect extraction.

General Bibliographic Metadata Extraction The extraction of general bibliographic

metadata from scientific papers, such as titles, sections or bibliography, is a well studied prob-

lem where different solutions are available such as CERMINE [4] and Grobid [5]. CERMINE

is a comprehensive tool for automatic metadata extraction such as title, author, abstracts,

and many more. Furthermore, it provides the bibliographic references along with their meta-

data and the full text of the paper, structured in sections and subsections. CERMINE has

two phases. In phase one, it segments the page in meta structures like tiles, sections, and

bibliography. To achieve this, all the characters along with their dimensions and coordinates

are extracted. Subsequently, the hierarchical structure in pages, zones, lines, words, and char-

acters are extracted by a bottom-up algorithm. Finally, the document’s zones are classified

by a support vector machine and rule-based approach into the categories metadata, body,

references, and other. Similar, Grobid (GeneRation Of BIbliographic Data)ais a framework

based on machine learning for extracting, parsing, and re-structuring raw documents such as

PDF into structured XML/TEI encoded documents [5]. In contrast to CERMINE, Grobid’s

machine learning architecture follows a cascade approach and the models are trained using

conditional random field (CRF) models. Each CRF model is optimized on handling different

metadata information. The most comprehensive model processes the header information of

a scientific paper and extracts different metadata information such as titles, authors, affilia-

tions, address, abstract, keywords, etc. To extract references, k-means clustering is used to

divide the reference zones into references strings and extract the reference metadata by using

a CRF. In the end, the output is a XML document which represents the hierarchical structure

of the document and has tags for the extracted metadata. After a complete processing of a

ahttps://github.com/kermitt2/grobid
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PDF, Grobid created 55 labels for relatively fine-grained structures, ranging from traditional

publication metadata (title, author first/last/middlenames, affiliation types, detailed address,

journal, volume, issue, pages, doi, pmid, etc.) to full text structures (section title, paragraph,

reference markers, head-/footnotes, figure headers, etc.). Similar to these tools, we structure

our approach into phases and using a nesting of rule-based and statistical models.

Scientific Metadata Extraction Beyond general purpose metadata extraction tools, there

are more specific extraction tools that relate to our work. For example, Grobid-quantities [6]

is an extension of Grobid for extracting and normalizing measurements, i. e., numerical data

from scientific papers and patents. The extraction supports quantities (atomic values, inter-

vals, and lists), units (such as length, weight), and different value representations (numeric,

alphabetic, or scientific notation). These extracted measurements are then normalized toward

the International Systems of Units (SI). The architecture of Grobid-quantities is separated

into the steps tokenization, measurement extraction, and parsing and quantity normalization.

Before the tokenization step, the text or PDF is structured using Grobid. In the tokenization

step, the tokens are created by splitting by punctuation marks and is then re-tokenized to

separate adjacent digits and alphanumeric characters. The tokens from the tokenization step

are then passed through a cascade of three CRF models, one for quantities, units, and values,

respectively. A list of units with their characteristics is provided for English, German, and

French. This so called Unit Lexicon is used for labeling. For the normalization, an external

Java library called Units of Measurement is used. The tool statcheck [1] uses a fixed set of

regular expressions to extract APA-conform reports for common test statistics used in psy-

chology such as t, F and χ2 statistics. Only statistics written in APA style notation can be

extracted with statcheck, i. e., it misses any statistic that is written in a slightly different writ-

ing style. The regular expression for each statistics have been hard-coded into the tool. Once

a statistic is extracted, statcheck recomputes the p-values to validate the reported statistic.

Analyzing the actual data distribution for pre-conditions such as type of data (interval vs.

ordinal), skewness, or variance is beyond the scope of statcheck. Lanka et al. [2] extended

statcheck by supporting more statistical tests and extracting the sample sizes and number

of hypotheses tested. In contrast to statcheck and its extension, we do not assume that the

reported statistic is perfectly written in APA style. It is a well known problem that oftentimes

crucial information such as the degree of freedom is missing in a reported statistic [7] or uses

a syntax different from APA. Using a flexible wrapper induction approach, we can learn rules

for any writing styles of reported statistics and deviations from APA.

In a larger context, our work embeds in initiatives such as the Automated Screening Work-

ing Groupb. The goal of this initiative is to process manuscripts in the biomedical sciences and

to provide customized feedback to improve that manuscript, such as an automated screening

of COVID-19 preprints [8]. Five metadata extraction tools have been used that extract dif-

ferent information from the papers. SciScorecis a commercial services to extract information

on blinding, randomization, sample-size calculations, sex/gender, ethics and consent state-

ments, resources, and Research Resource Identifiers (RRIDs)d. Other tools detect the use of

bhttps://scicrunch.org/ASWG
chttps://www.sciscore.com/
dhttps://www.rrids.org/
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open data sets (ODDPub [9]), explicit mentioning of limitations (Limitation-Recognizer [10]),

visual depictions of data (Barzookaeand JetFighter [11]), as well domain-specific metadata of

a correct identification of nucleotide sequences, Seek and Blastnf. Thus, statistic extraction

and condition extraction as it is considered here has yet not been done in this initiative but

is planned to be contributed in the future.

Aspect Extraction We discuss the related work on aspect extraction, as it is related to

our task of detecting and extracting sentence topics and experiment conditions from text.

The method by Liu et al. [12] is an unsupervised approach for selecting optimal rules for

aspect extraction. The rules exploit grammar dependency relations between opinion words

and aspects. The approach aims to effectively select a set of rules automatically. Therefore,

a small subset of manually selected rules based on a set of dependency relations is used

as input. For this set of rules, the authors’ algorithm automatically finds the best subset

of rules for the dataset. The rules are divided into three types. The first type of rules is

using opinion words to extract aspects, based on dependency relations between them (R1).

The second type of rules is using aspects to extract other related aspects (R2), and the

third type is using aspects and opinion words to extract new opinion words. The rule-set

selection algorithm runs in three steps. First, every proposed rule is applied to the training

dataset and outputs the precision and recall values of the rule. For each ruleset R1-R3,

a ranking based on the precision of the rules is then calculated. In step three, leveraging

on step 1 and 2, the rules from the ranked rule set are added one by one in descending

order and are evaluated. This is repeated for every rule in the ranked list. The algorithm

then prunes the lower-ranked rules from the rule set to produce the final set of rules only

with the best result on the training dataset. However, the initial rules need to be carefully

selected and tuned manually. This is not possible for our tasks, since we do not have a

labeled dataset to classify the usefulness of created rules. Xu et al. [13] proposed a method

of combining two different word embeddings with a convolutional neural network (CNN)

for aspect extraction. Different embeddings and combinations of embeddings with CNNs

and long short-term memory (LSTM) based neural networks were tested. It was found,

that a general purpose embedding trained on a huge dataset (in their case glove.840B.300d)

combined with a domain specific, smaller embedding that is trained for the specific task

coupled with a CNN and a final softmax layer performed best. Like with Liu et al. [12],

we cannot use this approach as it requires a lot of labeled training data. Karamanolakis

et al. [14] presented a weakly supervised approach for training neural networks for aspect

extraction with only a small set of seed words instead of a large labeled training data. Seed

words are keywords describing an aspect that needs to be available for training. This method

adopts the distillation approach [15], where a simpler neural network (student) gets trained

to imitate the predictions of a complex network (teacher). During training, the parameters

of the teacher are “distilled” to the parameters of the student. In the best case, the student

will perform comparably to the teacher for the given task but with less complexity. The

teacher is trained on a labeled dataset. As teacher, Karamanolakis et al. used a bag-of-words

classifier on the seed words. Therefore, seed words that are predictive of the K aspects get

ehttps://github.com/NicoRiedel/barzooka
fhttp://scigendetection.imag.fr/TPD52/Va/
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incorporated into (generalized) linear bag-of-words classifiers. The student is an embedding-

based neural network. First, a segment is embedded and then classified to the K aspects

by using the softmax function. As embeddings, an unweighted average of Word2Vec (W2V)

embeddings [16] and contextualized BERT embeddings [17] have been used. The student

was trained to imitate the teacher’s predictions by minimizing the cross entropy between

the student’s and the teacher’s predictions. The drawback of this approach is that good

seed words are needed for every aspect. This is possible for aspect extraction on reviews

(restaurants, products, etc.), as there is only a known small number of different aspects [3].

In restaurant reviews, for example, two of the aspects the authors mention are price with the

seed words price, value, money, worth, and paid, and the second aspect drinks with the seed

words wine, beer, glass, and cocktail. Modeling such aspects with seed words is not feasible

for topic extraction, since there can be many different experiment setups with any topic.

Besides the supervised or weakly supervised approaches, He et al. [3] proposed an un-

supervised Attention-based Aspect Extraction (ABAE) approach. ABAE combines word

embeddings with an attention mechanism to create sentence embeddings and tries to extract

an aspect embedding with an autoencoder. ABAE does not need any labels for training. One

problem is that one has to specify beforehand the number of aspects K that ABEA should

try to find in the data. Finally, Multi-Seed Aspect Extractor (MATE) [18] is an extension

to ABEA. MATE uses embeddings of seed words for every aspect to create a seed matrix.

By multiplication with a trained or chosen weight vector, these seed matrices are reduced to

a vector each and are concatenated to form the aspect matrix. This matrix is then used as

aspect matrix in ABAE. Then they use this aspect extraction model together with a polar-

ity prediction model and a segment selection policy to summarize opinions. In the standard

ABAE, the aspect matrix is initialized with the centroids of a clustering on the embedding

and then fine-tuned during training. MATE’s seed method seems to produce slightly better

results than standard ABAE. But as seed words are needed for every aspect, like in the ap-

proach of Karamanolakis et al. [14], we cannot adopt this method for extracting topics or

conditions from scientific experiments. Thus, we decided to apply ABAE to our problem. A

detailed explanation will follow in Section 3.4.

2.1. Summary

Since the structure of statistical records can differ greatly, the tokenization of them is more

complex than, e. g., extracting measurements like Grobid-quantities [6]. Thus, we decided for

a different approach and use a flexible wrapper induction approach to learn rules to find and

extract statistics. Thus, we have no restrictions on the format of the statistical report except

that it can be recognized by humans as a statistic, which contrasts statcheck’s APA-style

only approach [1]. This way, we are able to learn pattern that can detect statistics which

deviate from the APA style guidelines and tolerate incomplete statistics to some degree.

Similarly, we argue for the use of a grammar-based wrapper induction approach for learning

rules to extract experiment conditions. Finally, experiment topics stated in the sentences are

extracted with an adaptation of the unsupervised ABEA approach [3]. Main argument here

is that in contrast to other aspect extractors like [18, 14], ABEA’s training procedure is fully

unsupervised. This is needed as one cannot provide seed words for all topics and conditions

an experiment is about.
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3. STEREO Pipeline to Extract Experiment Metadata

Our metadata extraction pipeline STEREO consists of multiple steps, as illustrated in Fig-

ure 1. First, a pre-processing of the input documents is needed, whose challenges and our

approach is presented in Section 3.1. It takes a set of documents as input and splits them

into sentences. Result of the first step are sentences that can be further processed in the

next step to extract statistical information, i. e., extract the statistics type and its details as

reported in the paper. Here, an interactive wrapper induction approach is applied which aims

to learn rules to extract statistics metadata, which is described in Section 3.2. The rules check

whether a supported statistics is present in a sentence, and extracts its type and values. After

this step, we have a set of sentences containing reported statistics in plain English as well as

corresponding, structured records containing the extracted type and values of the statistic.

Rule-based Statistic
Extraction using 
Active Wrapper

Experimental 
Condition Extraction

Experimental Topic
Extraction

Evaluation

Step 1

Preprocessing

Step 0 Step 2
Evaluation

Fig. 1. STEREO extraction pipeline to extract the type and values of reported statistics, exper-

iment conditions, and experiment topic. The evaluation points indicate when the steps of the
pipeline have been evaluated.

This set of sentences and statistics records is given to the final step of our pipeline, which

consists of two parallel activities to extract experiment conditions and experiment topics.

Here, two different approaches were taken. For the extraction of experiment conditions,

we base again on a wrapper induction approach. However, instead of processing the input

sentences as a sequence of characters, our Grammar-based Condition Extraction (GBCE)

approach learns its rules on a grammar tree. The motivation is that the sentences provided

by step 1 already contain a report of some statistic and, according to APA style, should

also explicitly mention the experiment conditions. These mentions of experiment conditions

should be identified as noun phrases in the sentences. The GBCE is described in detail in

Section 3.3. For extracting the topic of an experiment, we apply the unsupervised attention-

based autoencoder (ABAE) architecture for for aspect extraction [3]. We adapt ABEA to

our purpose of topic extraction as described in Section 3.4. We provide ABEA a sentence

at a time as input, which is then categorized into a fixed number of aspects. The extracted

aspects are interpreted as topic.

3.1. Preprocessing

Our approach expects a set of documents as separative files in JSON format as used in the

CORD-19 dataset, but it can be adapted to any reasonable format. Tools like Grobid can be

used to obtain the correct format, if the files from the given dataset are given in PDF. In a

first step, the documents are split into sentences. The language of each sentence is checked

by langdetectg. Although our STEREO pipeline is in principal independent of the language,

sentences that differs from English will be skipped. The reason is that for different languages,

different rule sets and models have to be learned for the statistics extraction module (step

ghttps://pypi.org/project/langdetect/
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1) and GBCE and ABEA (step 2). 4.2% of the sentences were removed by the language

filter. The removed sentenced were in German, French, Spanish, and Dutch as well as some

parse errors, e. g., in equations, citations and abbreviations.We use a simple regular expression

(\.\s?[A-Z]) for sentence splitting over readily-available NLP libraries as the latter tend to

cut statistics in the middle of a sentence, since they include a “.”. Thus, patterns we are

interested in like a statistic reported in APA style is susceptible to be cut by the state of

the art methods. An example of a typical sentence with statistics conform to APA style is:

“The results of the paired sample t-tests indicated that negative emotion after inducement was

significantly higher than at baseline (t(56) = 13.453, p ¡ .05)”. Especially the last part of the

statistical record [...]p ¡ .05) is susceptible to be cut. Furthermore, if a sentence is split in the

statistic record or somewhere else, it might make it impossible to determine the experiment

conditions and experiment topics. Each sentence not containing digits is filtered out because

they would not contain any statistics.

Furthermore, through the process of converting PDF or HTML files to JSON, some con-

version errors may occur. One such sentence found in CORD-19 is (from [19]): “Inactivation

at 100 ∝ C was, however, complete within seconds (Duizer et al., 2004a) .The resistance of

FeCV (in suspension) to inactivation by UV 253.7 nm radiation was reported to be highly

variable.” The first observation made is, that 100 ∝ C should be 100 °C. These kind of errors

can also occur in statistics. This will make the process of identifying a pattern much harder,

because, in this case, it is not to be expected to find a temperature notation written like this.

Second, this is not one single sentence, it is actually two different sentences, but due to the

lack of a white-space character after the ”.” of the first sentence, the splitting sequence did

not detect the end of the sentence and therefor interprets these two sentences as one.

This instance can be intercepted by slightly modifying the splitting pattern to make the

white-space ”\s” optional, like ”\s?”. However, it is possible, that some sentences can start

with a digit or lower case character instead of an upper case character. Defining a pattern

that will match all these cases could also lead to increased false positive rate and splitting in

the middle of a sentence, corrupting the results. Thus, we did not apply it.

3.2. Wrapper Induction for Statistics Extraction

To extract the statistics of the preprocessed paper, a wrapper induction approach was applied

to determine general rules to detect reported statistics and extract the type and values of this

statistic. Unlike existing wrapper induction approaches like [20] that operate on HTML

document as input, the specific challenge we face is that the input sentences consist of plain,

mostly unstructured text. Thus, no landmark tokens can be easily identified. Furthermore, we

cannot make any assumption about the number of statistics that are reported in a sentence.

There may be none, a single or in some cases even multiple statistics reported in a single

sentence. Finally, a sentence that contains digits and/or parentheses that are indicative for a

statistic record may also be a false positive, which has to be filtered out.

In order to address these challenges, we developed an approach based on two sets of

rules, R+ and R−. The set R+ resembles rules that actually refer to statistics reported in a

sentence. R− is the rule set that confirms that a sentence does not contain statistics. The R+

rules support common types of inferential statistics, namely Pearson’s Correlation, Pearson

Spearman Correlation, Student’s t-test, ANOVA, Mann-Whitney U Test, Wilcoxon Signed-
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Rank Test, and Chi-Square Test. But the concept is transferable to arbitrary types. Statistics

whose type is not identifiable, e. g., due to missing details in the reporting, are summarized

under the type “other”. Sub-rules Si = {s1, . . . , sk} are defined for each statistics rule ri in

R+. Thus, the elements of R+ are actually tuples of the form (ri, Si). The rules ri are used to

detect the different statistic types, such as a student t-test or Analysis of Variance (ANOVA).

The rules sj ∈ Si are used to detect the different statistic parameters. For example, in “[...]

(t(29) = -1.85, p = .074) [...]” the degree of freedom is 29, the p-value is 0.074, and the

t-statistic is −1.85.

The R+ (together with its sub-rules) and R− rules are learned by wrapper induction. The

main loop of the learning process can be seen in Algorithm 1. The algorithm can be applied

to a whole corpus of documents, i. e., it includes step 0. It splits the documents into sentences

(line 6), which are processed based on whether they contain any digits and whether these

digits are already considered, i. e., covered by a rule (see line 10). The respective statistic

type, if detected in a sentence, is defined by the rule set R+. If R+ classifies a sentence as

statistic with rule ri, the respective sub-rules set Si are applied to extract the details (line 14).

If neither R+ nor R− classifies a sentence, it is shown to the user (line 21). The user then

adds a new rule to the respective rule set.

Algorithm 1 Wrapper induction for extracting statistics

1: Input: D // Document(s) to be processed
2: Input: R+ // Set of positive extraction rules (with sub-rules)
3: Input: R− // Set of negative rules
4: Output: L // Statistics records extracted from D
5: L← ∅ // Initialize empty output list
6: S ← D.split // Split D into a set of sentences
7: while S 6= ∅ do
8: s← S.nextElement() // Process next sentence string
9: // String-based processing of each s

10: while s contains unclassified numbers do // String not empty
11: statsType, subR+ ← apply(R+, s)
12: if statsType 6= NONE then
13: // Found a stats using R+, so extract values
14: statsRecord, s ← apply(subR+,s)
15: L.add(statsRecord) // ... and add to output
16: else
17: // no stat found? get confirmation from R− rule
18: nonStat← apply(R−, s) // Confirmation successful?
19: if nonStat = FALSE then
20: // If neither R+ nor R− work on string ...
21: Invoke(“’ask user’ to add rule for s”)
22: end if
23: end if
24: end while
25: end while

This algorithm describes the procedure to learn the rule sets R+ and R− including the related
subrules for statistic extraction.



S. Epp, M. Hoffmann, N. Lell, M. Mohr, and A. Scherp 261

Consider the following example sentence to illustrate the wrapper induction approach:

“The independent sample t-tests indicated that there were not significant differences in the

effect of ibuprofen 400 between males and females, (t(29) = -1.85, p = .074).” First the

R+ rules will be applied. Therefore, the t-test match is found first by a rule like this regu-

lar expression: (?P<ttest>\(t\s?\(\d+\)\s?=\s?\d+\.\d+ \, \s?[p,P] \s? <?=? \s?
\d+\.\d+ \)). The part ?P<ttest> defines the type of the statistic, here a Student’s t-test.

The match of the rule in the sentence is (t(29) = -1.85, p = .074). Out of this sub-sentence,

the detailed values of the t-test will be extracted by using the respective sub-rules. The sub-

rules have the same structure as the main R+ rule, except that the different statistic param-

eters are tagged. For example, P<pval> means that the following rule extracts the p-value:

t\s?\(\d+\)\s?=\s?-?\d+\.\d+\,\s?[p,P]\s?<?=?\s?(?P<pval>\d+ \. \d+). The ex-

tracted values from the example above are df = 29, t = −1.85, p = 0.074 together with the

sentence fragment. But the sentence still contains digits in “ibuprofen 400 ”. When there

is no R+ rule left (like for this case), a corresponding R− rule should match the 400, e. g.:

[a-zA-Z]+\s\d+ \s[a-zA-Z]+. If there are no digits left in the sentence, which are not

covered by some rule, either R+ or R−, the sentence is completed. The next sentence is

processed, until there are no more sentences left. Result of step 1 is a set of sentences, known

to contain statistics. These are further analyzed to extract the experiment conditions and

experiment topics.

3.3. Wrapper Induction for Condition Extraction

We apply a second wrapper to extract experiment conditions from the statistic sentences

provided by step 1. This is motivated from the assumption that the input sentences should

report, besides the statistic, also the experiment conditions of the statistics. To extract

the conditions, we use the off-the-shelf tool spaCy for part-of-speech tagging and extracting

grammatical dependency trees. While generally a trained statistical entity recognition model

would be a preferred approachh, we follow a rule-based approach for condition extraction due

to the lack of training data.

The principle idea of our grammar-based condition extraction (GBCE) approach is the

detection of nominal phrases in the sentences provided by step 1. Thus, the idea behind

GBCE is that all information about experiment conditions contains such a noun. A nominal

phrase is a syntactic, self-contained unit, whose core consists of a noun. All phrases that

are not part of a noun phrase (or dependent components of the noun phrase) can be ignored

by rules when extracting the experiment conditions. For example, in the sentence “There is

a positive statistically significant correlation between perceived knowledge and measured basic

knowledge” a noun phrase would be “a positive statistically significant correlation” with the

core “correlation”, whereas adjective and article are dependent companions of the nominal

head.

Using the spaCy library, we annotate the sentences with linguistic knowledge such as

UnifiedPOS (UPOS) tags, the extended POS tags, e. g., that the verb is past tense or the noun

is proper singular, and the syntactic dependency describing the relation between tokens, e. g.,

preposition and object of preposition. This forms a parse tree with grammatical annotations

and dependencies between tokens, which are used for rule-based matching. An example parse

hhttps://spacy.io/usage/rule-based-matching
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Fig. 2. Example of a parse tree sentence with experiment conditions, image created with spaCy
visualization module.

tree is shown in Figure 2. The data structure of the parse tree that spaCy is working on

is a so called Doc objecti. It is a container of a sequence of tokens for accessing linguistic

annotations. After tokenizing every word of the input sentence, the Doc object is processed.

The default pipeline consists of a tagger, where each token is assigned a POS tag, a parser,

adding dependency labels to aid natural language processing, and an entity recognizer. This

makes it possible to put the individual words of a sentence into context and thus forms

a tree structure, which we refer in the follow as grammar tree. To customize the default

variant, it is possible to exclude default methods and add custom methods. SpaCy allows to

iterate through the sentence with the part-of-speech annotations and extracting grammatical

dependencies in two ways. On the one hand, the parse tree can be processed in sequential

token order. This was mainly used for creating condition extraction rules. On the other

hand, the sentence can also be navigated following the parse tree. This was mainly used

for extracting noun phrases. Further processing for grammar-based condition extraction is

needed. This includes removing all content within parentheses, as they interfere with the

dependency parser and noun phrases could be detected incorrectly. It is safe to remove the

content of the parentheses, since it contains the statistics that is already extracted in step

1. Subsequently, noun phrases are being identified, including their associated grammatical

modifiers. We consider the following modifiers: numeric-, prepositional-, adverbial-, nominal-,

appositional-, adjectival, adverbial clause-modifier and clausal modifier of nouns (adjectival

clause). The tool spaCy is not capable of correctly processing quotation marks. To address

this problem, if a noun phrase was identified inside quotation marks, the whole quotation

gets included into the noun phrase. Also, spaCy interprets the usage of a semicolon as a new

sentence. This would result in two separate parse trees, which our rules are not designed for.

Since no experiment conditions were found after a semicolon, the rest of the sentence was

excluded.

After preprocessing the input data, rules are learned with the goal of extracting experiment

conditions based on noun phrases. Similar to the wrapper induction for statistic extraction

(see Section 3.2), the GBCE operates with two rule sets R+ and R−, since the functionality is

analogously. The difference is that instead of classifying numbers as statistic candidates they

are confirming tokens as noun phrases or removing them. If a noun phrase can be classified

as experiment condition by a R+ rule, the information gets extracted and the noun phrase of

i https://spacy.io/api/doc
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that sentence will not be considered further. In general, if no noun phrases are left to assign

or there are no R+ or R− rules left to be applied, the wrapper stops and outputs the results.

When learning the rules through the wrapper, it was possible to determine specific gram-

matical patterns that never included experiment conditions and thus were added to the R−

rule set. The R− rules includes patterns such as personal pronouns, e. g., “we found”. An-

other R− rule excludes aspects, which is the case when the root of the sentence is not the

main verb but instead a passive auxiliary. A passive auxiliary is a subclass of verbs that

add functional or grammatical meaning to the main verb. In terms of R+ rules, there are

rules that, when matched, all experiment conditions can be extracted and no further rules

need to be applied. These rules exploit the fact, that the English grammar often follows

specific patterns. One such pattern that can be exploited is that the sentences often include

comparative adjectives when describing the experiment conditions. Those are mainly used to

compare differences between two objects. An example pattern is: “Noun (subject) + verb +

comparative adjective + than + noun (object)”. If a perfect match is not possible, a sub-rule

set is applied for locating the experiment conditions. An example is the rule that is identifying

relative clauses, introduced by interrogative words. Relative clauses are non-essential parts

of a sentence. They only add additional meaning to a noun phrase. If a relative clause is

identified, it gets included into the noun phrase. When the relative clause is started by an

interrogative word, the noun phrase is an experiment condition. For example: “Participants

who agreed that the COVID-19 outbreak was threatening their livelihood...”. Another R+ rule

for extracting experiment conditions is checking for enumerations. This rule recognizes an

enumeration, splits the elements, and stores them as separately conditions.

3.4. Aspect Model for Topic Extraction

The final component of STEREO extracts the general topic of the sentence. Here, we adapt an

unsupervised algorithm for aspect extraction (ABEA) [3], which combines word embeddings

into a sentence embedding via an attention mechanism and then compresses the information

further with an autoencoder-like structure to create an aspect embedding. Like GBCE, the

input to the adapted ABAE approach are the sentences extracted from step 1 containing

statistics. For topic extraction, we assume that there are K different aspects in the documents

of the CORD-19 corpus, i. e., K different experiment topics that in principle can be described

by the sentences. The aim is to identify per sentence, the specific instance of an aspect that

the sentence can be classified to. Thus, the number aspects K can be generally quite high

as there can be many different experiment contexts described in the sentences. For instance,

the aspect extracted as experiment topic from the example sentence in the introduction is

“personal data”. In contrast, the number of aspects K considered in the original ABAE

paper were rather small, because there is only a limited number of relevant aspects in reviews

over objects such as restaurants. For example, K = 14 was used for aspects extracted from

restaurant reviews such as food, service, price, etc. Since we cannot make such an assumption,

we trained ABAE with different values of K. We evaluate which model delivers better results.

As ABAE is unsupervised, its aim is to maximize the difference between embedding of the

input sentence and the average word embedding of any negative sample. A negative sample is

a sentence from the input data with a different aspect than the current sentence. As ABAE is

unsupervised, neither the aspect of the current sentence nor the aspect of any other sentence is
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known before and during training. The negative samples are randomly drawn from the input

data for each input sentence and over multiple training epochs. The sentence embeddings are

combined with an aspect embedding matrix, which is optimized during learning to improve

diversity of the aspects. Finally, the most representative words of each aspect are extracted

from the word and aspect embeddings and the aspects are manually inferred from those.

4. Experimental Apparatus

We evaluate each step of our pipeline separately. The dataset and procedures are described

in the following subsections.

4.1. Dataset

We use the Covid-19 Open Research Dataset (CORD-19).j It has been constructed to enable

a basis to develop text and data mining tools that help the medical community answer high

priority scientific questions, especially regarding the COVID-19 pandemic. This dataset has

been created by a coalition of the White House and leading resource groups. It includes

around 200, 000 scientific articles (21st September 2020) of which over 108, 000 are scientific

full text papers about COVID-19, SARS-CoV-2, and related corona viruses. We pre-processed

the dataset as described in Section 3.1, resulting in 16, 141, 291 sentences. We identified how

many sentences potentially contain a test statistic, i. e., how many contain at least a single

digit. From all sentences in CORD-19, about 55% contain at least a single digit. These were

used as input for our approach.

4.2. Procedure and Evaluation Measures for Statistics Extraction

To learn the R+ and R− rule sets, we applied the wrapper induction approach from Section 3.2

on the CORD-19 dataset. Documents are processed in the order of how they are organized in

the dataset, which is according to a random index. We trained the wrapper on the sentences

of the first 500 documents and analyzed the results. To evaluate the statistic extraction, we

took a random sample of 200 non-statistic and statistic sentences, except when there where

less. In that case, we took all found sentences. We did this for each type of statistic, once

for sentences in APA conform writing style and for non-APA conform reports. We regard

a rule conform to APA style, if all parameters are present and the formatting is correct.

However, we tolerate little derivations from the APA style formatting, i. e., P = 0.07 is not

conform to APA, because the P is a capital letter and there is a leading zero before the “.”.

An APA-conform sentence was classified as correct, if all attributes of the statistic could be

extracted. The non-APA conform sentences were classified as correct, if the type of statistic

was correctly detected. The sentences were extracted by the learned R+ and R− rules.

We manually determine the true positives (tp), true negatives (tn), false negatives (fn),

and false positives (fp). Two assessors were responsible for this classification. In ambiguous

cases, a consensus was found. As measures we use precision prec = tp
tp+fp and a count of

how many sentences were extracted in total. We used the combination of prec and amount of

extracted samples, because for some statistic types, we could only obtain a small amount of

samples. For these samples, the precision might not be expressive. Furthermore, a coverage of

jhttps://kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
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our R+ and R− rules was calculated by taking a random sample of 10, 000 unseen documents

from CORD-19 and determining the proportion of covered sentences in these documents.

4.3. Procedure and Evaluation Measures for Condition Extraction

The rules for GBCE were learned on a sample of 130 sentences provided by the statistic

extraction from step 1 of the pipeline (see Section 3.2). To learn the R+ and R− rule sets, we

applied the wrapper induction approach and went through the grammar trees of each sentence

while manually checking if the experiment conditions were extracted correctly. If this was not

the case, an already existing rule was adapted, a new rule was created, or specific words that

often occurred were added to the bag-of-words.

For evaluation of the GBCE, we randomly sampled 200 sentences from the set of sentences

provided by the statistic extraction in step 1. The sentences were evenly sampled to form a

set of 100 sentenced being conform to APA writing style and 100 sentences that are not non-

APA conform. We manually checked the output of the grammar-based condition extraction

rules if they correctly identified noun phrases as the experiment conditions. This was done

by agreement of two different reviewers. If their evaluation differed, it was discussed and an

agreement reached.

4.4. Procedure and Evaluation Measures for Topic Extraction

Multiple ABAE models were trained on different embeddings, subsets of the CORD-19 data

sets, and with different numbers of aspects K. We explain the parameter choices for the

different models, their training, as well as how the models were evaluated. Three different

subsets of CORD-19 were used to train and evaluate the topic extraction with ABEA. These

subsets are first, cord: all sentences from the preprocessed CORD-19 dataset as described

in Section 3.1. Second, all-sen: extracted sentences containing any statistics. Third, supp-

sen: extracted sentences containing only the following statistics: Student’s t-test, Pearson

Correlation, Spearman Correlation, ANOVA, Mann-Whitney U, Wilcoxon Signed-Rank, Chi-

Square. Stopword removal and lemmatization was applied to all three datasets. The number

of unique and total words as well as the number of sentences of each dataset are shown in

Table 1.

Dataset unique words total words sentences
cord 1, 400, 093 238, 582, 456 16, 141, 291
all-sen 45, 071 1, 467, 485 113, 147
supp-sen 7, 189 81, 936 6, 092

Table 1. Number of unique words, total number of words, and sentences per datasets, used for
topic extraction with ABEA.

Three sets of Word2Vec (W2V) [16] embeddings with dimension d = 200 were trained,

one each on cord, supp-sen, and all-sen. We used the skip-gram algorithm and a window size

and negative sampling of 5. For the cord embedding, the number of words in the embeddings

was limited to about 50, 000 by choosing 100 as the minimum word frequency. This was done

because most of the infrequent words do not contain information that the embedding can

learn as well as to reduce the model size. The most frequent 50, 000 words cover about 97%

of the total words in the cord dataset. The distribution of word occurrences covered by the
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Fig. 3. Total word coverage over number of unique words to 100k words on the CORD-19 dataset

after pre-processing. We chose a cutoff of 50k as that covers about 97.0% of the total words

occurrences and there is very little additional return for higher values, e. g. 98.2% of the words
are covered at 100k.

number of unique words is plotted in Figure 3. The other two datasets contained less than

50, 000 words. Thus, for all-sen the minimum word frequency was left on W2V’s standard of

5, which includes about 96.4% of the total words. For supp-sen, the minimum word frequency

was chosen to be 3, which covered 94.1% of the total words. This is a trade-off between giving

W2V enough examples for every word included in the embeddings and covering enough words

of the dataset to have a meaningful result after applying the embedding. For example, for

supp-sen, the W2V standard setting of 5 would have covered only 88.9% of the total words.

After training the W2V embeddings, we trained the ABEA models. We chose to limit the

longest supported sentence length be 70 words, as this covers over 99% of all sentences in the

dataset. All shorter sentences got padded to that length. The relation between the longest

sentence length and coverage of the CORD-19 dataset can be seen in Figure 4. The number of

negative samples m was set to 20. Different values for the number of aspects K were tested,

namely 15, 30, and 60. Thus, different ABEA models were trained once on each dataset with

one of the three sets of W2C embeddings and using the three different values for the number

of aspects K. The only exception was the combination of the W2V embeddings trained on

supp-sen with the ABEA model trained on all-sen, as the training data would contain many

unknown words for the embedding. The weight of the regularization in the loss function was

set to λ = 1 like in the original paper [3].

The embedding matrix E got initialized with one of three the pre-trained W2V embeddings

and was then fixed during training of the other parameters of ABAE. The aspect embedding

matrix T got initialized with the centroids of a k-means run on the word embeddings. The

matrices M , W , and the vector b were initialized randomly. M , W , b and T were trained with

Adaptive moment estimation (Adam). Adam was used for 50 epochs with a learning rate of

0.01, epsilon of 10−7, a batch size of 10 on the smaller and 32 on the larger dataset, and all

other parameters left to the standard setting. Like done in the ABAE paper the model after

the epoch with the smallest loss was saved and evaluated.

After training, the aspects, i. e., the experiment topics were inferred manually from the

set most representative words. See the Appendix ?? for details. If the representative words

did not contain any concise groups of words, the aspect was set to “miscellaneous”, which

will always be evaluated as wrong. For evaluation of topics extracted with ABEA, the same
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Fig. 4. Coverage percentage over sentence lengths to 100 on cord dataset after preprocessing. We

chose a cutoff of 70 as that covers 99.5% of sentences. Most of the very long sentences contain

parse or sentence splitting errors.

randomly sampled 200 sentences were used as for the evaluation of GBCE. The sentences were

sampled such that 100 were APA conform and 100 non-APA conform sentences. All ABEA

models for topic extraction were evaluated on the same 200 sentences by manually checking if

the model extracted a correct aspect. This was done by agreement of two different reviewers,

if their evaluation differed it was discussed to reach agreement.

5. Results

This section presents the results of our experiments. The first subsection is about the statistic

extraction with the rules learned by the wrapper induction approach. The second subsection

covers the conditions extraction and the third the experiment topics extraction.

5.1. Results for Statistics Extraction

We applied the wrapper induction approach for rules introduced in Section 3.2 on the first

500 documents of the CORD-19 dataset, which contained a total of 38, 099 sentences. The

result is a set of 85 R+ rules extracting statistics, and a set of 1, 425 R− rules, which classify

some digits as non-statistic. We checked the coverage of the rules over a random sample of

10, 000 unseen documents in the CORD-19 dataset. It showed that the rules learned on 500

documents, i. e., 0.25% of the corpus, cover 95% of the sentences in the sample.

In Table 2, one can see how many sentences containing statistics were extracted from the

whole CORD-19 dataset. The results are shown per statistic type and based on whether the

reported statistics was conform to APA style or not. Note, we focused learning rules on the

common inferential statistics used in life sciences, psychology, etc. Other statistics such as

odds ratio, interquartile range (IQR), etc., are subsumed under “other statistics”. The row

“non determinable” refers to cases where only a p-value was reported, i. e., it was clear that

this is an inferential statistic, but because of lack of further information the type of statistic

could not be determined. As can be seen from the table, over 113k reported statistics could

be extracted, of which < 1% is APA conform.

We manually evaluated the quality of our R+ extraction results over 200 random samples

per statistic type and split by APA conform and non-APA. Thus, in total we evaluated 1, 383

reported statistics, 330 APA conform and 1, 053 non-APA conform. The precision values for
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Statistic type APA non-APA

Student’s t-test 608 179
Pearson Correlation 113 4,962
Spearman Correlation 1 528
ANOVA 0 9
Mann-Whitney U 2 34
Wilcoxon Signed-Rank 0 0
Chi-Square 14 31

Other statistics not applied 19,151
Not determinable (only p-value) not applicable 87,904

Total number of extracted statistics 738 112,798

Table 2. Number of reported statistics from the whole CORD-19 dataset, for APA and non-APA

conform statistics. “Other statistics” are, e. g., odds ratio, IQR etc. If only a p-value was reported,

the type of statistic is “not determinable”.

each statistic type are shown in Table 3. We achieve a precision of 100% for all APA conform

statistics (ANOVA and Wilcoxon Signed-Rank did not occur in APA conform writing style).

In the case of non-APA conform report, the precision ranged from 91% to 100%. The Wilcoxon

Signed-Rang test could not be evaluated, since we did not extract any sentence reporting that

statistic. The smallest precision for statistic extraction was for the non-APA Student’s t-test

with 91%.

Student’s t-test 100% 91%
Pearson Correlation 100% 98%
Spearman Correlation 100% 100%
ANOVA n/a 100%
Mann-Whitney U 100% 100%
Wilcoxon Signed-Rank n/a n/a
Chi-Square 100% 97%

Other statistics - 95%

Table 3. Precision values for the extraction of reported statistic. The precision is calculated on
200 samples for each statistic type and for both APA conform and non-APA reporting. If less

than 200 samples were available for some statistic type, the precision has been calculated only the

respective amount of extracted samples.

The amount of sentences covered by our R+ rules was 95%. Thus, we also checked a

random sample of 200 sentences from the uncovered sentences, if they contained statistics

we have not learned. Of this sample, 21 contained some statistic, 157 were without statistic.

22 of the sentences contained a text conversion error in the CORD-19 dataset, independent

of them containing statistics or not. An example for such an error is the sentence “Notably,

however, CD8a - DCs and also pDCs can cross-prime CD8 + T-cell responses under certain

conditions (102) (103) (104) 123)”. However, the original sentence is “[...] responses under

certain conditions (102–104, 123)”k. To evaluate the R− sentences, i. e., to determine if the

negative rules successfully rejected numbers in a sentence as non-statistics, we took another

random sample of 200 sentences. This sample is taken from the R− matches on the CORD-19

corpus, except the first 500 documents we used for training. Of this sample of 200 sentences,

99.5% were correctly classified as not containing a statistic report.

khttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603245/
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Missing Parameter doF tval pval other Sum

Degree of freedom (doF) 0 75 21 1 97

t value (tval) 0 0 1 76

Significance level (pval) 0 1 22

Table 4. Count of missing parameters from non-APA conform Student’s t-tests samples. Cal-

culated on 179 samples (i. e., all extracted non-APA conform t-tests). Column “other” refers to
samples where all parameters doF + tval + pval were missing.

Regarding the non-APA conform statistics we extracted, it is interesting to understand

what specific statistical parameter was missing in the report, e. g., the degree of freedom,

etc., and how many times this parameter was missing in the sample. Tables 4 to 9 report

this information per statistic. The diagonal show how many times a parameter was missing

on its own. In the other entries, one can see how often a pair of parameters was missing.

For example, in Table 4 the row degree of freedom (doF) and column t-value (tval) shows

how often doF and tval were missing together. The column margin shows how often a value

was missing, either alone or in combination with another parameter. One can see that the

elements in the diagonal are all 0, i. e., no parameter was missing on its own. In contrast, in

Table 5 one can see that doF was the only missing parameter in 527 samples.

Missing Parameter doF rs pval Sum

Degree of freedom (doF) 527 0 1 528

Spearman correlation (rs) 0 0 0

Significance level (pval) 0 1

Table 5. Missing parameters from non-APA conform Spearman Correlation samples. Calculated
on 528 samples.

Missing Parameter doF r pval other Sum

Degree of freedom (doF) 4961 0 0 1 4962

Pearson Correlation (r) 0 0 1 1

Significance level (pval) 0 1 1

Table 6. Missing parameters from non-APA conform Pearson Correlations. Calculated on 4, 962
samples. Column “other” refers to samples with all parameters doF + pval + r missing.

5.2. Results for Conditions Extraction

For extracting the experiment conditions, we build the rules by manually analyzing 130 sen-

tences, which resulted in 35 rules for GBCE. Less sentences have been used for training

GBCE’s rules than for extracting statistics since the effort needed in defining grammar-based

rules is much higher. For learning grammar-based rules, we were able to discover a high

amount of comparing adjectives as indicators for experiment conditions. This has prompted

us to build several rules about this pattern. GBCE has been evaluated on 100 samples that

were APA conform and 100 non-APA conform statistics. The results are shown in Table 10.

As one can see, the precision for extracting the correct conditions was with 46% for APA

conform statistics slightly higher than 30% for non-APA conform statistics. Every time the

experiment conditions were not extracted correctly, we counted the number of occurrences

and also identified the reason for its failure. In several cases, there was a combination of
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Missing Parameter doF fval pval r other Sum

Degree of freedom (doF) 0 0 0 0 2 2

F value (fval) 0 0 7 2 9

Significance level (pval) 0 0 1 1

Effect size (r) 0 2 9

Table 7. Missing parameters from non-APA conform ANOVA samples. Calculated on 9 samples.

Column “other” refers to either doF + fval + r or doF + fval + r + pval missing.

Missing parameter U z pval r oher Sum

U 4 0 0 0 13 17

z 16 0 0 13 29

Significance level (pval) 0 0 0 0

Effect size (r) 0 13 13

Table 8. Missing parameters from non-APA conform Mann-Whitney U samples. Calculated on

34 samples. The column “other” refers to samples where U + z + r was missing.

different reasons. Therefore, the sum of occurrences of reasons is higher than the amount of

incorrect cases. The reasons for failure are classified in five categories: Reason 1: Failed to

built a grammar-based representation: In these cases, false POS-tags or errors in the depen-

dency parser of a sentence occurred. This was mainly due to grammatical mistakes in the

sentence structure or conversion errors in the COVID-19 dataset. Reason 2: Unusual sentence

structure: Describes errors due to unusual sentence structure such as a verb missing. Since

spaCy builds the parse tree with a verb as root, a missing verb affects the grammar-based

process of finding conditions. Reason 3: Error in pre-processing : As described in Section 3.1,

the COVID-19 dataset has some errors in the pre-processing. Another case is when noun

phrases were not correctly extracted. Reason 4: Dependency parser wrongly splits sentence If

a statistic was not correctly excluded form a sample before building the dependency parser,

the statistic often misleads the dependency parser by splitting the sentence at the statistic.

Reason 5: GBCE misses the experiment conditions: Cases, where GBCE could not extract

the conditions due to missing training for specific type of statistics or patterns. All models

were evaluated by both reviewers separately. The results were compared and, if different, an

agreement reached.

5.3. Results for Topics Extraction

We have five different combinations of embeddings and training data with ABEA for topic

extraction as shown in Table 11. For each combination, we trained three models for K = 15,

30, and 60. As explained in Section 4.4, the embeddings are supp-sen, all-sen, and cord.

Training data are different subsets of CORD-19, namely sentenced that are supported by

step 1 (supp-sen), sentences containing some statistics (all-sen), whether it was identifiable

or supported, or not, and finally all CORD-19 sentences (cord). The quality of the extracted

topics was evaluated per model on 100 sentences that strictly followed APA style and 100

sentences with statistics not strictly following APA style. The number of correct topics can

be seen in Table 11. The model that performed best uses K = 30, an embedding trained on

supp-sen, and the final ABEA model trained on supp-sen. As for GBCE, all ABEA models

were evaluated by two reviewers. If classifications differed, consensus was reached.
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Missing Parameter χ2 N pval V other Sum

χ2-value (χ2) 0 0 0 0 2 2

Observations (N) 0 0 1 2 3

Significance level (pval) 0 0 2 2

V 28 2 31

Table 9. Missing parameters from non-APA conform Chi-Square samples. Calculated on 31

samples. Column “other” refers to samples with χ2 + N + pval + V missing.

GBCE APA non-APA

Correctly classified 46 30

Reason 1: Failed grammar 4 5

Reason 2: Sentence structure 10 3

Reason 3: Pre-processing error 9 12

Reason 4: Dependency parser 18 2

Reason 5: GBCE miss 25 47

Table 10. Number of correctly extracted experiment conditions and reasons why the extraction

failed. In several samples, a combination of reasons were the cause.

6. Discussion

6.1. Main Results

The statistics extraction achieves a precision of 100% for APA conform writing style. These

results are in line with the precision of statcheck and its extension [1, 2]. In addition to

APA conform patterns supported by statcheck [1] and its extension [2], our pipeline can also

extract non-APA conform writing styles for statistics. The precision for extracting non-APA

conform writing styles is 95%, which is due to the high variety in which statistical analysis

are reported. From the 113k statistics extracted from the entire CORD-19 dataset, over 99%

is not APA conform. Thus, it is important to be able to extract non-APA statistics.

The basic idea of experiment condition extraction with GBCE is that sentences containing

statistics mostly follow a common sentence structure. Therefore, there should be a uniquely

determinable finite set of rules that can exploit those patterns for extracting the experi-

ment condition. However, deviations occurred frequently and we observe differences between

statistical test types. For example, reporting conditions for correlations seem to follow a

common pattern more often, while reporting conditions of chi-square tests did not. Overall,

we achieved a precision of 46% for extracting conditions from APA-conform reports, which is

notably higher than the 30% for non-APA reporting. The reason is that non-APA reporting

generally has a higher variety. The sentences were longer, with a more complex structure, and

also contained more statistics per sentence. This is particularly evident from the higher num-

ber extraction failures due to reason 3 (pre-processing error due to wrong sentences splitting)

and reason 5 (GBCE misses condition due to variety in the reporting) as shown in Table 10.

The sentences containing multiple statistics were cropped during pre-processing. This caused

problems, if the context of the sentence was only comprehensible through neighboring sen-

tences or if the sentence was not grammatically correct. One example is: “The results show,

that female participants used national newspapers [STATISTIC] highly significant less than

male participants and international sources [STATISTIC] and YouTube [STATISTIC]”. In
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Embedding Training data K APA non-APA

supp-sen supp-sen 15 33 31

supp-sen supp-sen 30 75 73

supp-sen supp-sen 60 28 28

all-sen supp-sen 15 51 57

all-sen supp-sen 30 48 49

all-sen supp-sen 60 58 50

all-sen all-sen 15 46 41

all-sen all-sen 30 7 22

all-sen all-sen 60 49 43

cord supp-sen 15 38 37

cord supp-sen 30 42 44

cord supp-sen 60 62 54

cord all-sen 15 57 56

cord all-sen 30 44 37

cord all-sen 60 33 46

Table 11. Number of correct ABAE outputs. Evaluated on 100 samples in APA style and 100

non-APA conform samples. The first three columns shows which model was used: embedding
dataset, training dataset, and number of aspects K.

those cases, it was not possible to automatically distinguish between experiment topics and

conditions.

Regarding the topic extraction from the reported statistic with ABAE, we found neither

a pattern that models with lower or higher values of K nor models with a specific embedding

or trained on a specific dataset generally performed better. As the approach is unsupervised,

we expected that the models perform similarly on the APA conform and non-APA conform

sentences as shown in Table 11. An overall high precision of over 70% correctly extracted

topics can be explained that most models have extracted at least one “statistics” aspect. That

is a correct result, but not useful for our use case, as that applies to every sentence that made

it through step 1 of STEREO. Overall, half of the correct answers were “statistics”. This

can be addressed in a post-processing step, when the topic “statistics” can be filtered out to

obtain the final list of extract topics.

6.2. Threats to Validity

For some statistic types like Pearson correlation and Student’s t-test, we could extract many

samples. For statistic types like ANOVA, where we just extracted 9 samples, the results

could be not representative enough. Nevertheless, the metrics for ANOVA are similar to the

statistic types with more samples. Therefore, it is plausible to assume that the results transfer

to the types with few samples, too.

One may be surprised that we were not able to extract many statistics of every type.

Especially, for the Wilcoxon signed rank test, we did not observe a single occurrence (see

Table 2). To rule out that this is purely due to fact that a Wilcoxon signed rank test was

not part of the documents used for training, we manually added multiple extraction rules for

Wilcoxon tests, which detect APA conform as well as some known non-APA deviations. Using

these rules, we could not extract a single example of a Wilcoxon signed rank test on the whole
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CORD-19 dataset. This maybe due to the fact that there is none, or that Wilcoxon signed

rank tests are written in such an unusual manner that we classified them as other. Likely

there may be no Wilcoxon signed rank test as according to Weissgerber et al. [21], Wilcoxon

tests are not commonly used. In Weissgerber et al. [7] they manually analyzed 328 paper

regarding their statistic writing style. They found many incomplete statistic reports in their

sample from the PubMed dataset. Since our dataset is also from the field of life science and

we extracted a lot more non-APA conform statistics, we conclude that it is quite uncommon

in life sciences to strictly follow this writing style.

The rules for GBCE were created on the basis of the Collins Dictionaryl in cooperation

with an anglistics student. We did not evaluate how the accuracy of GBCE differed between

statistical test types. Therefore, the results could deviate between different datasets with

statistical test types that are not that common in the CORD-19 dataset. Since the evaluation

procedure for GBCE did not vary from the evaluation of the aspect extraction, errors in

GBCE evaluation did probably not occur as well. Especially, since the test cases were selected

randomly, the overall results should generally fit to all possibilities. In few cases, considering

a single sentence only would be not sufficient for condition extraction. A future extension

could consider the surrounding sentences, too.

Regarding topic extraction with ABAE, there are two steps where an error could occur. The

first one is choosing the inferred aspect and the other one is evaluating whether a model

found the right aspect for a sentence. Nevertheless, all extracted terms and abbreviations

were manually looked up, if needed. Furthermore, the evaluation was done by consent of two

assessors.

A completely different problem was the conversion from PDF to JSON in combination

with different writing styles of statistical parameters. For example, “chi-square tests” were

written or got parsed as: chi-square, χ2, Xˆ2, or X2. This is a commonly observed problem

with any kind of metadata extraction tool on PDF to text converted documents such as

scientific papers [2]. To address this problem, we learned additional rules to include special

characters introduced by the conversion process and different writing styles.

6.3. Generalization

Our tool can be applied to datasets of different domains, e. g., psychology, medicine, eco-

nomics, etc., since APA is a common standard in different disciplines. Thus, the rules should

transfer to these domains, including the non-APA writing styles. However, it would be bene-

ficial to fine-tune the existing rule sets on a dataset from a new domain. Especially the R−

rule set contains a lot domain-specific rules. Additional rules for a new domain can be created

by running the active wrapper process again. The existing rules match already 95% of the

sentences in the CORD-19 dataset. This is expected, because although there are different

writing styles for statistics, it still follows a set of common rules, even if the writing is non-

APA conform. Additionally, the extraction quality for R+ and R− has been manually verified.

One may conclude that the same quality of extraction can be reached on other datasets.

GBCE in general is a rule-based approach for experiment condition extraction. Since the

different statistical test types and the English grammar including their structural patterns do

not vary between domains, a generalization should be possible without further adjustments.

l https://grammar.collinsdictionary.com/grammar-pattern



274 Extracting Experiment Statistics, Conditions, and Topics from Scientific Papers with STEREO

The only restriction is that the language must be English, as a different language will have

a different grammatical structure. Regarding the generalization of topic extraction, the em-

beddings and models could be reused if the dataset is in a similar domain. Otherwise, they

could be either fine-tuned or retrained from scratch. This means there have to be enough

example sentences in the dataset to (re-)train the embedding and models. If there is only a

small number of example sentences, one could try a more general embedding, either like we

did with the embedding trained on the whole CORD-19 dataset or a publicly available, most

likely non-domain specific, embedding. That means if there is enough data for training, in

principal this approach can be applied to any similar problem.

6.4. Practical Impact and Future Work

Even for statistics perfectly written in APA style, typing errors can occur. Because of such

errors, it is possible that our defined pattern for the specific statistic type might not find a

match. It might increase the amount of found statistics if the pattern is defined in such a way,

that it can comprehend typing errors or even parse errors. Thus, our tool is in general robust to

these kind of errors. This is a design feature to increase recall. Additionally, we are explicitly

able to distinguish the extracted statistic in APA and non-APA conform classification, which

offers new possibilities for applications, e. g. reporting this back as feedback to the authors.

On the other hand, generalizing such a pattern is not trivial, since tolerating typos could

also lead to an increase in false positives. To provide an aid in the learning process of the

adaptive wrapper, one could implement an automatic test after creating a R− rule. This new

R− rule will be applied on a predefined R+ sentence set, to check if the rule would classify

the sentences correctly. This way, the learn process would be supported to not overgeneralize

and include false positives.

An interesting direction of future work is to find a minimal set of extraction rules. During

the process of wrapper induction, rules may arise that are (partially) covered by another rule

or a subset of other rules. These rules could be removed in a post-processing step. Since

the equivalence of regular expressions is NP hard, this task is challenging and was yet not

considered in the present work.

Regarding GBCE, the use of noun phrases as basis for reducing the point of interest was

in general successful. However, one could think about adding further rule sets, specifically

for the different types of tests. On the one hand, this should achieve better results. On the

other hand, the success depends on the re-usability of the rules that can be applied for every

test. A risk is that this possibly needs a high number of specifically customized rules. Since a

purely rule-based approach performs well for structured patterns like IP addresses or URLs,

it may be possible, that creating a labeled set of data for the training of a neural network

could be a better trade-off than the creating rules for a rule-based approach. Especially since

there are more differing structural patterns than expected.

Regarding ABAE, there are some improvements that could be implemented for our tool.

More effort could be put into the dataset for tasks like sentence splitting, filtering of “bad”

sentences, and to check and adapt the language filter in regards to domain specific technical

terms. One could also train models with a wider range of parameters, some that we touched

like the number of aspects and different datasets, as well as some that we did not cover like

experimenting with the (word) embedding size or trying a different optimizer. The evaluation
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could also be expanded to calculate the output distribution of the models to check if all

outputs are used to an equal amount. Another direction of research could also be to exploit

current Transformer models [17], which however again will require labeled training data.

7. Lessons Learned

Beyond the discussion of main results, threats to validity, generalization, and practical impact

and future work, we also conducted an extensive retrospective analysis of the lessons learned

during our research.

One problem that appeared in the statistic extraction learning phase for our rules is,

that some sentences contained syntactic deviations from the original papers, which probably

happened due to parsing errors from PDF to JSON. Problematic is that the kinds of parsing

errors differ from paper to paper. Some errors are caused, because a single uni-code character

could not be correctly translated. Some of these errors appeared often and could potentially

have an impact on detecting statistics. One of these errors was that a lower case L (l) has

been parsed into the digit 1. In the statistic notations from our supported statistics, we would

not expect a lower case L at all and especially not instead of a numerical value. Therefore,

if this parsing error would happen in a statistical record, the sentence would not be detected

as R+. However, while learning the rules with the wrapper, we did not find any statistics

containing such a parse error.

Another error that appeared in statistical records is that for negative values, the minus

character (-) would not match, because through the parsing process the character has been

transformed into another Unicode character which looks almost the same. However, we were

able to fix this issue by allowing alternative variants of the - in their respective Unicode

encoding. Furthermore, in some documents, the citation syntax could not be properly parsed,

so that instead of a digit inside a bracket [...], e. g. [7], only the digit would be printed. The

digit was then concatenated to the beginning of the next sentence, so that our pattern for

splitting sentences could not detect the ending of the sentence, since we normally do not expect

a sentence to start with a digit. We also observed a similar behavior, when the original papers

did contain line numbers. Overall, this issue could be technically challenged, but it is very

cumbersome and labor intensive.

In the wrapper induction approach for learning statistical records, after loading a docu-

ment, it will be checked in which language the paper is written. If another language than

English is detected, the document will be skipped. This is done using the python library

langdetect. This routine does not work perfectly, i. e. ”Viruses are unique in nature” will be

detected as French with a confidence of> 99.9%. However, in general the language detection

tool has a high accuracy 0.845.mThus, we do not assume that this is a large problem.

For some sentences containing a statistical record, it is not possible to extract the respective

conditions, e. g. ”The subjects were found to be significantly (t (263) = 25.04, p¡0.001)”.

However the original sentence as it is contained in the CORD-19 dataset is ”The subjects

were found to be significantly (t (263) = 25.04, p¡0.001) overweight (23.01 ± 16.82 kg) and

had a mean excess of 4.95± 16.82 kg of fat.”. We made the assumption that the record is

located at the end of the sentence, which would be conform with APA style. After a statistic is

found, we only extract the part of the sentences up to where the statistic is located. However,

mAccording to https://towardsdatascience.com/benchmarking-language-detection-for-nlp-8250ea8b67c
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in the original sentence, the aspect is located directly after the statistical record and thus not

present in the sentence we have extracted. Although every variables of the statistical record

of a t-test are found (i. e., the t-value, df, p-value ...), this sentence may not contain the

information about the experiment conditions or experiment topic. With our current model,

we do not preserve this contextual information, since we work on a single sentence level the

preceding and succeeding sentences are not considered.

Specifically for GBCE, it is sometimes not enough to have one sentence as input, since the

context is not clear without the additional information provided by neighboring sentences.

For example, in the sentence “Increased number of OUCC patients received antibiotics within

60 minutes after algorithm implementation”, it is not clear without contextual information, if

“OUCC patients” is a condition or if the full example is an aspect. Furthermore, a distinction

in the results between different statistical test types could be of value to further increase the

certainty of a high generalizability of GBCE.

8. Conclusion

STEREO is a tool to analyze and extract sentences containing statistics from scientific papers.

We have shown that finding and extracting sentences containing statistics with our hierarchical

regex-based wrapper works very well for both APA-conform and non-APA reports. The

extraction precision of experiment conditions and experiment topic between 30% to 45% is

reasonable given the variety and challenging especially in non-APA conform reports. These

results could be improved as described in the future work above.

Data availability and Reproducibility The source code of STEREO, rule sets, and

models are available here: https://github.com/Foisunt/STEREO.
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