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Metadata location and classification is an important problem for large-scale structured

datasets. For example, Web tables [29] have hundreds of millions of tables, but often
have missing or incorrect labels for rows (or columns) with attribute names. Such errors

[24] significantly complicate all data management tasks such as query processing, data

integration, indexing, etc. Different sources or authors position metadata rows/columns
differently inside a table, which makes its reliable identification challenging. In this work

we describe our scalable, hybrid two-layer Deep- and Machine-learning based ensemble,

combining Long Short Term Memory (LSTM) and Naive Bayes Classifier to accurately
identify Metadata-containing rows or columns in a table. We have performed an exten-

sive evaluation on several datasets, including an ultra large-scale dataset containing more
than 15 million tables coming from more than 26 thousands of sources to justify scala-

bility and resistance to variety, stemming from a large number of sources. We observed

superiority of this two-layer ensemble, compared to the recent previous approaches and
report an impressive 95.73% accuracy at scale with our ensemble model using regular
LSTM.

Keywords: Hierarchical metadata Metadata classification Web tables

1. Introduction

Large-scale structured datasets such as WDC [29], CORD-19 [34], Census Buerau[1] exhibit

a wealth of useful structured data usually originating from hundreds to millions of different

sources. Each source represents even the tables of the same category (e.g. Songs, COVID

vaccines side-effects) differently, hence efficiently accessing or deriving insights from such

heterogeneous and large-scale data is extremely complicated. Not only that, but also some
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sources use only relational tables, other sources may use tables of different non-relational

formats. For example, it is very common that information about a particular product is

stored differently by different Websites with different attributes and formatting. The problem

becomes worse when the table attributes are hierarchical (i.e. several attributes nested inside

another one).

Because of the table format and metadata variety, efficient metadata annotation and

identification is still a subject of ongoing research [28, 24, 9]. Since tabular data can be stored

not only in a relational database, but also in CSV format, as a spreadsheet, etc, there have

been related research focused on CSV structure detection [28], [12] and Web table metadata

annotation [16]. Although these systems showed promising performance, the evaluation sets

used in their experiments have relatively small number of sources, hence are very homogeneous

(i.e. do not exhibit high variety of tabular and metadata representations by contrast to

heterogeneous datasets composed from many sources that we used to evaluate our approach).

Each source has a liberty to choose the table and metadata format, hence an algorithm, which

works good for one source, usually performs much worse for tables from another source unless

the formats are significantly similar. To prove that the approach is robust for diverse sources,

the evaluation sets should be composed from as many sources as possible.

Here, we describe and evaluate an ensemble of a Deep- and Machine-Learning model to

classify metadata rows/columns in a table. To gauge generality, we have evaluated it on

four large-scale datasets - CORD-19 [34] and Web Data Commons (WDC) [29], Lehmberg

[19]. WDC has more than 15 million tables in English respectively and hundred thousands

of different sources, storing data and forming tables in different ways. We have designed an

ensemble, combining either regular Long Short Term Memory (LSTM) or Bi-directional LSTM

[25] Recurrent Neural Network (RNN) [26] with a keras-embedding layer and a Naive Bayes

Classifier. Most of the previous approaches are limited to only on table cell-level analysis,

whereas we take into account the cell context (i.e. the whole tuple or a column) along with

the position of the cell and the surroundings of that cell in the table. The first-layer model is

order-sensitive as order matters for the terms inside a cell (i.e. First Name is different from

Name First). However, the second-layer model is order-insensitive as the order of cells does

not matter in a tuple. For example, a tuple having artist and then album value is the same

as first album then artist. Finally, we designed an algorithm that using our hybrid metadata

classification ensemble can distinguish different kinds of metadata in a table - row/column-

based or hierarchical. To summarize, the main contributions of this paper are the following:

1. A novel two-layer ensemble comprised of a regular LSTM or Bi-directional LSTM with

a keras-embedding layer and Naive Bayes models for metadata detection. On the first

layer, the RNN model performs analysis of an input cell and encodes the context. In

the second step, the feature vectors composed of encodings of all cells in a tuple or a

column are classified with the Naive Bayes classifier combined with the decision-tree.

The output is a binary label indicating whether a a tuple/column contains metadata or

just regular data as well as whether it is of hierarchical or plain type.

2. A Web-scale training and evaluation infrastructure that we architected and which is

essential for experiments with Web-scale datasets.

3. Extensive evaluation on several Web-scale datasets with tables coming from thousands
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to millions of different sources from a a wide variety of domains.

The rest of the paper is structured as follows. First we define the terminology that we used

throughout the paper. Then we describe the methodology, followed by the metadata classi-

fication ensemble description. After it we explain the large-scale evaluation architecture and

experimental study on large-scale datasets with comparative evaluation against the previous

approaches. We finish with the related work discussion and conclusion.

2. Definitions

Relational tables, defined in [13], have the following properties: values are atomic, each

column has values of the same type, each column has unique name. An example of a relational

table is illustrated in 1(a).

Def1: Cell is a data value of a non-composite type (i.e. can be a number, string, etc) found

at the intersection of a row and a column in a table. A relational table has C*R cells total,

where C is a number of columns and R is a number of rows.

Def2: Metadata is a sequence of the attribute names of a table, found in a row or a column.

Metadata can be represented as a row - Figure 1(a), or a column - Figure 1(c)

Def3: We call non-relational here the tables that have hierarchical/nested metadata. For

example, a metadata row or column may have nested metadata, such as in Figure 1(b) -

”Name” column is divided into two columns having ”First name” and ”Last name” separately.

Table 1. Vertical and horizontal alignment of Metadata (a,c); hierarchical metadata (b). Metadata
rows and columns are colored blue.

2.1. Non-relational Table Representation and Conversion

In Figure 1, three different types of tables that our ensenble is working with are shown -

two relational tables (a,c) and a non-relational table having hierarchical Metadata (b). In

Figure 1 we illustrate how we convert non-relational tables with hierarchical metadata into

the relational format by adding a non-breaking space in the corresponding cells to bring it

to a valid relational table format. We converted both the WDC and CORD-19 non-relational

tables like that to the relational format used by the ensemble.
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Fig. 1. Tables with hierarchical metadata and their structural representation. MD denotes Meta-
data.

Fig. 2. Our Ensemble Architecture. The LSTM/Bi-LSTM model is on the first layer, followed

by the Naive Bayes model on the second layer. The green boxes before the Naive Bayes are the

output feature vectors of the Dense layer that represent cell encodings.

3. Methodology

The model architecture is depicted in Figure 2. We use an entire table tuple or column as the

input of our model and the model predicts whether it contains Metadata or not. We do not

check each tuple or column, because to the best of our knowledge metadata is never stored

in the middle, at the very bottom or as a rightmost table column, but if the dataset specifics

requires that, our architecture does not prevent that. Hence, we take the first table tuple, the

first column and the second tuple as input for the model and the model processes them. The

second tuple is taken as input, because for non-relational tables with hierarchical metadata,

the second row contains the second layer of the Metadata as depicted in Figure 1(b). Finally,

to post-filter false-positives, we have designed a custom decision-tree model, based on the

number of spaces in the column or row.

We take two table rows and one column as input and stores the predicted value for each

input. Then it generates the final decision by using the decision-tree, based on the spaces. As

any model, it has false-positives, which we mitigate with this space-based logic. For example,

if both the first and second rows of a table are classified as Metadata rows, but there are

no blank cells in either row, then the second row cannot be the second row of a hierarchical

Metadata. If the first and second rows has the same number of cells without any spaces and
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it can not be hierarchical metadata of a non-relational table.

3.1. Two-layer Ensemble Architecture

In this section, we describe the two-layer ensemble we have designed for tabular Metadata

classification and the ideas behind its design. The first layer consists of a Recurrent Neural

Network (RNN) [26] model containing either regular LSTM or Bidirectional LSTM [25] units

for the analysis of a table cell. The number of rows and columns are different for each table and

also the number of terms inside each cell is different. Keeping this in mind, we have designed

our RNN model to process one cell of a tuple or column at a time. Each cell may contain

different number of terms as its value and the order matters in this case. For example, ”Last

Name” and ”Name Last” are different values both syntactically and semantically. Hence, we

decided to use the LSTM-based model, which is order-sensitive, to predict the probability of

a cell having Metadata. Although, it is understood that many common terms, some of them

referring to data types are used in the Metadata cells, such as ”Time”, ”Date”, ”Name”, etc., a

purely rule-based classification would not be accurate enough at scale given enormous variety

of sources in large-scale datasets, all having different naming conventions, even for the data

types. Moreover, the whole Metadata cells as components forming a tuple or a column are

order-insensitive. For example, suppose there are two columns in a table - ”Name” and ”Age”.

It does not matter if we swap ”Name” with ”Age” in a tuple, the tuple still remains the same,

retaining its semantics. Hence, the second layer that we added (Naive Bayes Classifier [4])

is order-insensitive. After feeding the cell to the RNN model, we layer our model including

Dense, Activation, and a drop out layer. We have taken the output of the intermediate dense

layer as an encoding of the cell and for a whole row or column, we concatenated all such

encodings to form the feature vector, input to the Naive Bayes Classifier. Figure 2 illustrates

the ensemble architecture.

3.1.1. Feature space

We have used 100,000 dimensional feature space, i.e. 100K English terms in our vocabulary

that we have selected by taking all terms from our datasets, sorting by frequency and cutting

off the noise words and spam [33]. Increasing the dimensionality further led to significantly

slower training time, which would prevent or make the experiments much more difficult (see

the Section below for the configuration of our cluster).

3.1.2. Feature vectors

First the term sequence in a cell is converted into a feature vector, encoded by one-hot

encoding [6]. The maximum number of terms in a cell is 734 for our datasets. Each cell

is converted to a collection of 734 vectors, each vector corresponding to a term using zero-

padding. We did not use any pre-trained word embedding, rather we have trained our a

keras- embedding layer using our vocabulary and datasets. The dimensionality of our keras-

embedding layer is 100, which helps reduce the dimensionality of input vector space (100K)

significantly and alleviates sparsity. The vectors output of the embedding layer are passed

to the input of the LSTM/Bi-LSTM units. We have used 64 LSTM/Bi-LSTM units in this

case followed by a fully connected layer, containing 256 dense nodes. Then we have added
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a dropout layer, usually used to avoid overfitting and finally, the output layer has one dense

unit with the sigmoid function as the activation function, which outputs the probability of

the input cell is a Metadata cell, however it does not generate the final decision for an entire

tuple or column.

To generate the final label, the first layer, first, processes all cells of a tuple or column

sequentially, before the second layer starts processing and producing the final decision. Al-

though the individual cells contain sequences of terms that are order-sensitive as discussed, the

order of each cell within the row or column does not matter. So we need an order-insensitive

model to process an order-insensitive sequence of cells. After training the RNN model, for

each cell, we extract the output of the intermediate dense layer that contains 256 dense units.

This layer produces an encoding for each input cell. We have taken each cell’s encodings, con-

catenated them and used it to form the input feature vector for the Naive Bayes Classifier.

For example, if there are 4 cells in a row, each cell will have a feature vector of 256 dimensions

that of the intermediate dense layer. For a tuple, concatenating the individual cell’s feature

vector, we’ll have a vector of 4*256 = 1024 dimensions as the input feature vector for the

Naive Bayes Classifier. The final output is binary, whether the input sequence of cells, i.e. a

tuple or column is a Metadata row/column or not. The output of the Naive Bayes Classifier is

then used with the decision-tree rules to produce the final output having the Metadata type.

3.2. Large-scale Evaluation Architecture

In this work, we have used two different datasets. One is named CORD-19[34] and the other

is Web Data Commons [29], a large-scale corpus having Web Tables from different sources

on different topics. The CORD-19 dataset is a novel collection of papers related to COVID-

19. Tables used in the papers are stored in a JSON file having HTML format and they

have used the structured representation shown in Figure 1. We have extracted the HTML

formatted tables to JSON. Given mostly medical tables in CORD-19, there are tables of all

three formats, metadata on left, metadata on top and hierarchical metadata. Most tables

having hierarchical metadata have metadata on top. From the latest CORD-19 snapshot

papers, we were able to extract ≈256K tables.

Another large-scale dataset that we have used in this work is WDC [29]. This dataset

consists of more than 100M Web tables, including information about their source URL, table

type, text before and after the table, where more than 15M tables are in English language.

The tables are from a variety of domains, including scientific, news articles, product infor-

mation and many other. This dataset is a very robust, large-scale dataset with significant

representation of tables from many domains, so it is very attractive choice for evaluating our

models, scalability, and generalizability across domains and sources. Regarding the metadata

position, we have found six types of tables in total: relational, metadata on the left, metadata

on the top, hierarchical metadata on the left, hierarchical metadata on the top. In total there

are more than 100 million tables from ≈265K different sources.

4. Experimental Study

In this section, we first describe the training and test sets construction followed by the exper-

imental evaluation on several large-scale datasets.

Hardware: We run all our experiments on Amazon AWS EC2 p3.8xlarge instances, each
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having 4 NVIDIA® V100 Tensor Core GPUs, 32 vCPUs, 244 GiB of memory, 10 Gbps

network.

Software: For implementing the RNN model, we have used Keras [3], a popular python

library for deep learning, having Tensorflow [8] framework as the backend. The second step

i.e. the Naive Bayes classifier is implemented using Scikit-learn [7], a popular machine learn-

ing library for python. Throughout the experimentation and implementation, we have used

python as the programming language.

4.1. Training the Models

Our ensemble has 2 layers that we trained separately. On our large-scale datasets, we are

able to achieve at best 93.6 percent accuracy for classifying Metadata with on top with a

Bidirectional LSTM layer, 95.73 percent for Metadata on the left with a regular LSTM layer,

and 93 percent for hierarchical Metadata on top with a Bidirectional LSTM layer. These

are the best results in class, to the best of our knowledge, given the scale, a huge number of

sources, and a variety of domains represented in the datasets.

Main parameter settings: In the first layer, for both LSTM and Bi-LSTM models, we

have used 64 LSTM/Bi-LSTM units and an embedding layer where the keras embedding

dimensionality of 100. LSTM units are either regular or bi-directional and order sensitive.

The input feature vector is composed of a collection of terms in a cell and it is first encoded

using one-hot encoding and then is passed through the embedding layer that reduces the

dimensionality to 100. After the LSTM/Bi-LSTM units, we have added a fully connected

layer with 256 nodes. We have used rectified linear activation function for all nodes. We are

aware that such models tend to overfit even on a large training set. To alleviate that we have

used a dropout layer after the activation layer with a value of 0.2, known to be a balance

between dropping too many features and degree of overfitting. There is a node having sigmoid

as the activation function. Before the activation and dropout layers we have used a Dense

layer that’s output serves as input for the Multinomial Naive Bayes Classifier.

First we have trained the LSTM model as a binary classifier i.e. to classify a cell being a

Metadata cell or not. We have taken the output feature vector of the dense layer having 256

nodes as an encoding of the input cell, i.e. the dimensionality of an encoded vector is 256.

For a tuple or column, there are several cells. We have concatenated their encodings to form

an encoding for a tuple/column. This feature vector is the input of the Multinomial Naive

Bayes Classifier, which is also a binary classifier that predicts the input tuple or column being

Metadata or not.

Dimensionality: Each table has a different number of columns and rows, hence a different

number of cells. Each cell has a different number of terms, some of them can be blank, e.g.

with hierarchical Metadata or just missing values. The largest cell had 764 terms among the

datasets we have used. So after tokenization, we had to pad each cell with zeros to align all

cells to 734 dimensionality. As discussed above, the input we have used in the Naive Bayes

model is the concatenated encodings of all cells in the tuple or column. The widest table has

36 cells in one row. Other vectors, having less cells were amended with zero matrices.

4.2. Training Sets

First, we have selected only English tables from the WDC dataset as the dataset is multilin-
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gual and we wanted to experiment first on the English subset, which is more than 15 million

tables. From our experiments, we have observed that one source maintains a common format

for most of its tables. So if we compose the training set from one source it will be biased to

that source. Hence, we have uniformly sampled at random an equal number of tables from

all sources and constructed the training set containing 570K tables. We used space-based

logic to find the Metadata rows/columns to form the training set. Per the representation

illustrated in Figure 1, tables having hierarchical metadata have spaces inside the Metadata

row. However, this is not a 100% guarantee, sometimes there is a blank space purposefully

in the leftmost column. So we first pre-selected all tables having more than one space in the

top row. Second, we pre-selected the well-formed relational tables that should not have blank

spaces neither in the first row nor the column. After that, we hired two independent annota-

tors who took uniform samples of sufficient size from these subsets and checked the table type

and Metadata location manually to ensure there are 500 correct positive labels for each kind

of metadata. We amended the positively labeled training instances with the same number of

negative (regular data rows and columns, without Metadata) instances by uniformly sampling

tables from the entire dataset and taking the second last row from each table in the sample.

We have asked two independent annotators to manually check and discard any mistakes, but

there were none on this step. To ensure the training set is balanced, we made sure there is

equal number of positively and negatively labeled instances.

4.3. Test Sets

We have constructed three separate test sets - for Metadata in the first row, in the first column,

and hierarchical Metadata. To ensure heterogeneity of our test sets, we have first uniformly

sampled the tables from the entire dataset, excluding the tables used for the training set. In

total, we had 6,785 different sources for the three test sets. Then we hired two independent

annotators to annotate 500 tables for each test set and the same number without metadata

to ensure a balanced test set. We discarded the label, whenever annotators disagreed.

5. Experimental Evaluation

Here we evaluate the accuracy of our trained ensemble to recognize Metadata on two large-

scale tabular corpora - WDC [29] and CORD-19 [34] as well as four other popular corpora

used in the recent related work [12, 16, 11, 28]. We have used accuracy as defined in Equation

1 below as the metric. TP, TN, FP, FN denote the true positives, negatives, false positives,

and negatives respectively as explained in more detail in [2].

Accuracy =
TP+ TN

TP + TN + FP + FN
(1)

Table 2 illustrates Metadata classification accuracy for three Metadata types evaluated on

WDC [29] and CORD-19 [34] datasets. The accuracy varies, depending on the dataset size

and number of sources. The CORD-19 dataset contains only medical tables extracted from

scientific publications on COVID-19. Although the scientific papers are from different sources,

there might be an inherent similarity of formats common among tables in this domain, hence

the accuracy is slightly better than that for WDC [29], which is also much larger and has

hundreds of thousands of sources.
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Dataset Metadata Type Accuracy
Cord-19 Metadata in the first row 83.76%

Metadata in the leftmost first column 82.9%
Hierarchical Metadata 84.35%

WDC Metadata in the first row 79.87%
Metadata in the leftmost first column 76.47%

Hierarchical Metadata 86.4%

Table 2. Classification Accuracy for Three Different Metadata Types on Two Large-scale Corpora.

In recent related work [12, 16, 11, 28], the authors evaluated their Metadata classification

models on much smaller datasets, composed from much fewer sources. By contrast, CORD-19

and especially WDC are ultra large-scale heterogeneous datasets and we would like to highlight

high accuracy and generalizability of our approach in such challenging context. Purely cell-

based approaches that consider and classify just a single table cell in isolation [12, 16, 11, 28]

without treating them sequentially as a row or a column, unlike our approach, do not scale

and generalize very well across domains, datasets, and sources. We implemented a naive

standard cell-level classification including Random Forest classifier as in [28] and evaluated it

on CORD-19 dataset. Its accuracy was 65% (for Metadata in the first row) compared to our

83.7 %, which yields an impressive ≈19% delta in accuracy. For this evaluation we used out

regular LSTM model.

We picked 3 largest and most heterogeneous datasets, used by the authors in [12, 16, 11, 28]

and other recent related work on location and classification of the components of verbose

CSV files, such as Metadata, Header, Group, Data, Notes, etc. to comparatively evaluate

our approach. Our work is most similar to the header detection in these files (i.e. Metadata

in our terminology). Other two datasets were not available for public access as well as are

manually crawled and post-processed, which makes them more customized and less attractive

for comparison. Table 3 compares these and our datasets used for comparative evaluation by

size and the number of sources.

Our approach performs approximately the same on all datasets from these recent works

with a slight delta in F-measure of a few percent. I.e. our F-1 score is higher on DeEx (93.6%

vs. 80.7% ) with our Bi-LSTM and slightly lower on SUAS datasets (95.7% vs. 96%) with

our regular LSTM. The heterogeneity of our training and test sets is much higher, because

they are composed from a large number of sources, which significantly affects generalizability

of our trained ensemble as justified by the comparative evaluation against a regular cell-based

approach on our large-scale datasets (≈ 19% delta in accuracy, see this Section above for

the detailed description). I.e. instead of using many tables from one or several large sources

for training and evaluation, we have uniformly at random taken tables from a wide variety

of sources both for training and evaluation purposes to ensure the trained model is more

robust and naturally resistant to heterogeneity as well as making the evaluation set much

more challenging and realistic at scale.

Except many fundamental data management activities, naturally dependent on metadata

such as query processing, data integration, warehousing, replication and many, another im-

portant application of Metadata location and classification is distinguishing relational and

non-relational tables. In our datasets, we had both kinds of tables and we have evaluated
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Related work Dataset Size Number of Sources
Christodoulakis et. al. [12] 4500 2

Fang et. al. [16] 255 2
Zhe et. al. [11] 1.1 Million Not mentioned
Lan et. al. [28] 1345 5

Our Datasets [29, 34] More than 15 Million More than 26512

Table 3. Large-scale datasets that were used for evaluation. For ”Our Datasets”, we count only
the subsets of WDC and CORD-19 in English.

Dataset Algorithm MD on Top MD on Left Hierarchical MD
Cord-19 [34] w/o NB 77.97% 80.75% 83.43%

with NB 83.7% 82.9% 84.3%
Lehmberg et. al. [29] w/o NB 67.3% 69.8% 74.3%

with NB 78.8% 76.4% 81.5%
DeEx [19] w/o NB 83.7% 91.8% 81.9%

with NB 93.6%* 95.73%* 84.2%
SAUS [19] w/o NB 78.5% 89.3% 91.4%

with NB 74.9% 95.7% 93%*

Table 4. Accuracy of our hybrid ensemble, evaluated on the datasets from the recent works. Here
MD abbreviates Metadata; ”w/o NB” means the results are calculated by using only the first-layer

LSTM/Bi-LSTM model; ”with NB” means the ensemble is two-layer as usual with NB as a second

layer. The best results per dataset are in bold, * indicates best in category

performance of our ensemble on this task as well. Although the number of sources is ultra

large, it performs remarkably well on WDC. We were more interested in Recall, because of

the large number of sources and our goal to evaluate generalizability of our trained ensemble

in context of many sources. Precision was ≈75% for both datasets with regular LSTM, but

we thought Recall is more interesting as in context of thousands of sources it characterizes

the ability to recognize new representations and resistance to heterogeneity at scale, which is

a big challenge in practice [27, 23, 22, 21]. For classifying relational tables we observed Recall

- 79.9% on WDC and 94.6% on CORD-19 and for non-relational tables on WDC - 76.5% and

96.7% on CORD-19 . We would like to highlight stellar Recall on CORD-19 and a lower, but

still remarkable Recall on WDC due to the vast scale and unprecedented heterogeneity of this

unique Web-scale dataset.

We finish by discussing Table 4, which illustrates the comparative evaluation results of

our ensemble for the same classification task of three different kinds of Metadata - Metadata

on the Top, Metadata on the Left and Hierarchical Metadata. This experiment is performed

on 4 different datasets and the accuracy of locating these metadata types is presented.

From these last evaluation results, we can infer that using the order-insensitive Naive

Bayes classifier as a second layer generally improves the Metadata classification performance

compared to just using the Deep Learning regular LSTM or Bi-LSTM model alone. In most

cases the ensemble performs better, because analyzing only the cell content, which is done

in the first layer is insufficient. Analyzing the cell composition in a tuple or a column in an

order-insensitive way improves performance. In only two cases for the SAUS metadata on

top, just the first layer performs better, because in these case the Metadata rows have many

numeric values and Naive Bayes is classically term-based [5, 4].
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6. Related Work

Generalizable Metadata location and classification in Web Tables, CSV files, tables, extracted

from scientific publications, other large-scale structured corpora is starting gaining momentum

in the Data Science community [12, 16, 11, 28]. It is due to both fundamental nature of

Metadata and it being of critical importance for many data management tasks on structured

data and the fact that large-scale structured datasets are becoming ubiquitous, lack accurate

Metadata labeling, and are, at the same time invaluable assets full of useful information.

Here, we presented a hybrid, two-layer Machine- and Deep-Learning ensemble for location

and classification of Metadata rows, columns as well as more complex hierarchical Metadata

in tables. Several recent works study discriminating between relational and non-relational

tables, which is related to metadata classification [10], [35]. Except being capable to do the

same and at scale, our approach is also useful for precise Metadata rows or columns location

and Metadata type identification. In [12], the authors proposed Pytheas, a line classification

system for CSV files. Using fuzzy logic, it determines whether a field is data or not and based

on the rules, it detects table border and hence it can differentiate table from metadata to

some extent. Their algorithm uses two phases for the task, offline (training) phase and online

table discovery (inference) phase. In the offline phase, the algorithm learns the weights for

the rule set and in the inference phase, using fuzzy logic it computes confidence value for

each line whether it belongs to data or not data. They have evaluated their algorithm on two

manually annotated datasets containing a total of 4500 CSV files with a recall value of 95.7%.

Although the recall is high, the evaluation set size is much smaller and less heterogeneous

(composed only from two different sources) than the Web-scale corpora, we used to evaluate

our approach. Size and the number of sources used for training and validation sets drastically

affect classification performance at scale and in presence of heterogeneity [27, 17].

The authors in [11] proposed rule-assisted active learning for header spreadsheet property

detection including differentiating header from data to reduce human annotation. They have

used a hybrid iterative learning framework, with and without user-provided rules for learning

property detection of a CSV document. At first, a human labeler labels the spreadsheet prop-

erties manually and the models are trained based on the human labeling activity. They have

worked with two different sources of data, a web-crawled dataset containing 1.1M sheets and

Web400 data containing 400 sheets. Authors have shown 89% accuracy for header detection

in a CSV file. Again the validation set size is much less compared to what we have used

and the number of sources is not specified by the authors. Table 3 compares the datasets

including the one used by the authors.

The authors in [16] used Random Forest classifier to detect and classify table headers.

They have proposed two heuristic strategies to separate data and the header. As a baseline,

they have used the first row and first table columns as default headers. Their evaluation set

contains only 255 tables, which is remarkably small compared to all recent works and our

datasets. They have achieved 92% accuracy on their test set, which does not unfortunately

mean it will remain the same when the validation set becomes larger and more heterogeneous,

even slightly.

To finalize the discussion, the authors in a very recent work [28] performed line and cell

classification in verbose CSV. In this work, authors have focused on CSV structure detection

and for this purpose, they have detected various cell types like metadata, header, group,
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data, derived, notes etc. Our work is similar to the part of their work on cell classification,

more precisely, the header cell classification. For cell classification, they have used content,

contextual and computational features of the cell. That is they have analyzed the number of

empty cells, position of row or column, is there any empty column besides the column being

analyzed, block size, data type etc. This analysis is, however, is purely cell-based and does

not take into account compositional features of cells when they become tuples or columns,

which we do. Our ensemble is also two-layered, where the first layer takes into account term

order inside cells and on the second layer the cells are order-insensitive. This idea has been

proven valuable and sound for structured data in context of set-based relational model and

is absent in [28] as well as all other recent works to the best of our knowledge. Lastly, they

trained a multi-class random forest classifier and evaluated performance of their system on

5 different datasets. Their evaluation results are good compared to the related works, but

the evaluation set is again much smaller than ours. Moreover, the number of sources of their

datasets is also very small compared to our Web-scale datasets, such as WDC, composed from

hundreds of thousands of sources.

We used a keras-embedding layer in our regular and Bi-LSTM. The authors of [14] use

different relational table elements to generate embeddings, and then apply them to different

tasks, such as row population, column population and table retrieval. They trained four

variants of table embeddings: Table2VecW, Table2VecH, Table2VecE and Table2VecE using

words appearing in a page title, caption, table headings, table cells and columns. Their goal

is to return a list of entities based on their likelihood of being added to the core column

of T. For table retrieval a ranked list of tables are returned based on a keyword query and

relevance. In comparison with that approach we train embeddings using only tabular data,

such as tuples, column values and column/row headers. Our embedding layer are used for a

very different task of classifying Metadata tuples and columns. Another interesting study [32]

projects tabular data into two-dimensional embeddings similar to an image, and feeds those

images into fine-tuned two-dimensional CNN models for classification. One of the challenges

of this approach is that columns of the same category might have a very different order,

and a result the features might end up being quasi 1-dimensional, in that case conversion to

images might be not needed. One more creative publication [18] describes embeddings for

tables that can be used to perform blocking in the context of entity matching. They proposed

three approaches for transforming tables to sequences: converted header rows as a sequence of

attributes, values of subject column as sequence of entities and generated a sequence of triples

of the form ¡entity, header, value¿ combining row values and headers. The authors trained

only Word2Vec embeddings on these sequences, obtained the embeddings and used cosine

similarity to find similar vectors/sentences. We used a different context encoding approach,

tried several types of embeddings and chose a local keras-embeddings layer.

[20] used word embedding based similarity measure between tabular datasets to identify

joinable and unionable tabular open data. First, the authors processed the column values to

remove punctuation, split CamelCase and hyphenated words, and converted text to lowercase.

Then a word embedding model was used to extract two vectors for each column: one for the

column name and the second for text in the column. These embedding vectors were used

to compute a cosine similarity between each columns of two tabular datasets. Based on

the similarity scores the authors determined if the tables were joinable and unionable. For
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embedding models they used Word2Vec pre-trained on part of Google News dataset, fastText

pre-trained on Wikipedia 2017 and Word2Vec pre-trained on 1.6 million Wikipedia relational

tables. Compared to their approach we trained our embedding layer on our training sets and

used our model to classify tabular Metadata at scale.

7. Conclusion

Here, we discussed our new two-layer Machine- and Deep-Learning ensemble for location and

classification of Metadata rows and columns as well as more complex hierarchical Metadata

in large-scale structured datasets. For cell-level analysis in the first layer, we used a Hybrid

Recurrent Neural Network (RNN) model composed of both regular and Bi-directional LSTM

units. The cell-level analysis is order-sensitive as the cell content - a sequence of terms is

order-sensitive. On the second layer, which analyses the composition of several cells into a

tuple or a column, we have used the Naive Bayes classifier, which is order-insensitive in accord

with order-insensitivity of a tuple or a column regarding the cell order.

Except this architectural novelty, in the recent works, the authors used relatively small

detests, composed from a small number of sources to evaluate their approaches. We have

evaluated scalability and generalizability our approach on ultra large-scale heterogeneous

datasets such as WDC. We have specifically constructed our training and evaluation sets to

contain tables from thousands of sources. Tables are represented very differently depending

on a source, so the algorithms trained on one source, having high accuracy one or several

sources, do not generalize well to thousands of sources [27, 17, 15, 31, 30]. That is why rule-

based or regular Machine-learning based approaches would be incapable of inferring additional

source-dependent features, unlike Deep-Learning. Our work achieves high accuracy on two

large-scale datasets, WDC and CORD-19 that confirms scalability and generalizability in

context of a large number of sources.
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