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Scientific publishing heavily relies on the assessment of quality of submitted manuscripts

by peer reviewers. Assigning a set of matching reviewers to a submission is a highly

complex task which can be performed only by domain experts.
We introduce and deeply evaluate RevASIDE, a reviewer recommendation system that

assigns suitable sets of complementing reviewers from a predefined candidate pool with-

out requiring manually defined reviewer profiles. Here, suitability includes not only
reviewers expertise, but also their authority in the target domain, their diversity in their

areas of expertise and experience, and their interest in the topics of the manuscript.

We present three new data sets for the expert search and reviewer set assignment tasks
and compare the usefulness of simple text similarity methods to document embeddings

for expert search. We analyse the suitability of the approach for different sizes of reviewer

sets. Furthermore, a quantitative evaluation demonstrates significantly better results in
reviewer set assignment compared to baselines. A qualitative evaluation also shows their

superior perceived quality.
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1. Introduction

Peer review is a popular method of ensuring scientific standards for conferences and jour-

nals. It requires the assignment of suitable experts for each submission, which is often done

manually [1]. These reviewers then provide objective assessment of the manuscript and rec-

ommend accepting or rejecting the submission [2].All of this has to be performed in a tight

time frame [3].

The continuously increasing number of submissions as well as the high complexity of

the task even for experienced chairs of program committees (PC) or journal editors calls for

fully automatic methods of expert assignment. Furthermore, it is not sufficient to focus on the

quality of single reviewers, but a good set of complementing reviewers should be recommended

for each manuscript. The reviewer assignment problem tackles the task of retrieving sets of

suitable reviewers for manuscripts submitted to a venue.

Even though the construction of sets of reviewers fitting submitted manuscripts has been

studied frequently, most work focuses on construction of sets with the highest possible ex-
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102 RevASIDE: Evaluation of Assignments of Suitable Reviewer Sets

pertise but does not consider (m)any other aspects. Such other aspects could help reduce

reviewers’ work load and increase comprehensiveness of reviews. Additionally, actual human

evaluation of the sets and thus a reliable confirmation of results is generally not conducted.

Numerous works [2, 3, 4, 5, 6, 7, 8, 9] tackle the reviewer assignment problem in different

ways, with slightly different definitions for the suitability of reviewers. While expertise of a

reviewer with the topic of the manuscript [2, 3, 4, 5, 6, 8, 9] has been dominating in existing

work, other features like authority [4, 6], research interest [4] and diversity [2, 6, 7] were

considered in some existing work, but not in a holistic way. Additionally, these aspects were

defined heterogeneously in present works. We incorporate the following five aspects into our

definition of suitability of reviewer sets: expertise of reviewers in general topics and methods

of a submission, authority of reviewers in the domain of the manuscript, diversity in terms

of reviewers differing in their areas of expertise, interest of reviewers in the topics of the

submission and diversity in terms of seniority aspects of the reviewer set.

In this work, we embark on finding the best reviewer sets for a submitted scientific paper

from a predefined candidate pool in terms of these five aspects. Unlike some existing work [10,

11], we explicitly do not require the manual definition of keywords or bids on manuscripts

from reviewer candidatesa. To achieve this, we make two important contributions: 1) We

propose and thoroughly evaluate RevASIDE, a new and completely automated technique for

recommending sets of reviewers from a fixed set of candidates for single manuscripts. For

this, we introduce seniority as a completely new aspect and its combination with already

established but redefined features. 2) We publish three different datasets suitable for expert

search as well as reviewer set assignment.

While we build on established expert retrieval methods to find reviewers with high ex-

pertise, our method is the first to incorporate all of the complementary factors authority,

diversity, interest of candidates and seniority to solve the reviewer set assignment problem.

Our approach consists of two steps. Step 1 identifies topically relevant reviewers based on

the similarity of their research direction to the manuscript, utilising expert search methods.

Step 2 then assembles sets from these experts and determines the reviewer set that performs

best in the five aspects. To the best of our knowledge, this is the first work that utilises the

expert search task as a preparatory step for the reviewer set assignment task.

This paper is an extended version of the work presented at iiWAS’21 [13]. The main

extensions are contained in the Sections 2.1, 4.3, 5.4, 8.2.3, 8.2.4 and 8.2.5.

2. Related Work

The reviewer assignment problem is closely related to the team or group formation problem,

as reviewer assignment can be seen as a specialised form of group formation.

Retrieval-based approaches for scientific reviewer assignment treat the manuscript for

which reviewers are searched as a query. They determine fitting reviewers based on different

aspects, often under additional constraints. Such methods can be divided into ones recom-

mending single reviewers for manuscripts, so-called expert search, and those tackling the

assignment of whole reviewer sets.

aAssignments containing bidding information could be problematic as they require e.g. the randomisation of
the order of presented manuscripts to reviewers or the explicit promotion of bid-less manuscripts [12].
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2.1. Team Formation

The team or group formation problem has the goal of retrieving sets of experts with different

skills best suited for a specific task or use case [14]. It is relevant in a multitude of disciplines,

for example in social sciences, product design, product marketing campaigns, customer ser-

vices [15], participatory sensing or software product development [16].

Group formation majorly differs from the reviewer assignment problem as in the former,

the task for the group oftentimes is of collaborative nature [16]. Collaboration in groups

needs to be effective to achieve the highest possible productivity [16] but it also comes with

coordination costs. Minimising them would result in groups of experts being close or similar to

each other, which in general is rather undesirable for recommended sets of reviewers [10, 17].

Reviewer assignment thus can be defined as a variation of the group formation problem with

a non-collaborative task and therefore without coordination costs.

Seleznova et al. [15] propose a group exploration framework utilising reinforcement learn-

ing. They recommend exploration actions suitable for different user datasets and tasks. Re-

trieved candidate groups are relevant targets and increase the overall exploration quality, e.g.

in diversity or coverage. Nikolakai et al. [14] propose team formation where these teams do

not need to meet all of the requirements of the tasks, but instead only cover tasks partially.

They assume the lower the load of experts, the higher is their performance.

A specialised form of group formation utilises social networks and surpasses the mere

resource allocation problem: Datta et al. [16] work on forming effective teams which meet

the requirements of tasks by utilising social connections of members in social networks. Their

approach minimises different social collaboration cost measures to identify the optimal teams

for multiple tasks while not overburdening the respective experts. Anagnostopoulos et al. [17]

study automated online team formation for a stream of different tasks where the skills and

compatibility of experts are modelled in a social network. They also minimise coordination

costs in teams and propose a fair allocation of experts to tasks.

2.2. Expert Search

Several papers target the recommendation of single reviewers for manuscripts, which contrasts

our goal of recommending reviewer sets. We identify and assemble the best fitting experts to

a suitable set, while the following works only handle the expert search task, which disregards

set effects.

Numerous works pursue the expert search task as a matching problem between the query

manuscript and expert profiles formed by their past publications. Some of them also consider

more aspects than textual similarity: MINARET [18] is a recommendation framework based

on publications and affiliations of experts as well as expanded keywords for manuscripts. After

an initial filtering step, it returns a ranked list of reviewers. Candidates receive a score based

on topical coverage, impact, recency, experience in reviewing and their familiarity with the

target venue. Chughtai et al. [1] suggest ontology-based and topic-specific recommendation

of single experts fitting a submission. Macdonald and Ounis [19] propose twelve voting tech-

niques to find suitable experts for query manuscripts. These techniques base on similarity of

the reviewer candidates and the manuscripts. We use and extend their methods in Step 1 of

our approach.

Other works transform single expert finding into a classification problem: Yang et al. [20]
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Table 1. Observed properties expertise (E), authority (A), diversity (D), interest (I) and seniority

(S) in related work (• indicates a paper covers this aspect but might define it differently from us)
as well as indication if the approach is targeting the whole venue (wv?) or can be fully automated

(fa?).

Approach E A D I S wv? fa?
Charlin and Zemel [3] • yes yes
Ishag et al. [2] • • no yes
Jin et al. [4] • • • yes yes
Kalmukov [23] • yes yes
Kou et al. [5] • yes yes
Liu et al. [6] • • • yes yes
Maleszka et al. [7] • • no no
Papagelis et al. [11] • • yes no
Tang et al. [24] • • yes yes
Yang et al. [8] • yes yes
Zhang et al. [9] • no yes
RevASIDE • • • • • no yes

base their approach on word-semantic relatedness via Wikipedia. Reviewers are ranked with

respect to a manuscript by experience in the domain of the submission and their number

of papers. Zhao et al. [21] utilise word embeddings of keywords from author profiles and

manuscripts to suggest fitting reviewers. Similar to this approach, we use embedding methods

to abstract from words while searching for reviewer candidates.

Tran et al. [22] pursue another direction by defining expert search as a task between a

single expert and a group of researchers instead of an expert and a query. They incorporate

only non-textual features such as citation information or co-authorships depending on venues

in their recommendation approach for experts given an existing program committee.

2.3. Reviewer Set Recommendation

Reviewer set recommendation can be observed for single papers or multiple/all papers of a

venue. The following approaches tackle reviewer set recommendation but consider different

or fewer aspects compared to RevASIDE for estimating the quality of reviewer sets. Table 1

compares the presented approaches in a coherent form.

Ishag et al. [2] incorporate the h index of reviewers, citation counts and paper diversity into

their approach based on itemset mining. They return reviewer sets fitting a query manuscript

and estimate the sets’ impact. Contrasting their definition of diversity which uses the number

of different affiliations of authors of a single paper, we define diversity as a measure between

authors to estimate the actual topical differences in reviewer sets. Maleszka et al. [7] tackle

the reviewer set assignment problem for one manuscript at a time by focusing on diversity

aspects in expertise, the co-authorship graph and style of reviewers. They begin the set

recommendation process with a single reviewer determined by another method. Zhang et

al. [9] utilise a multi-label classifier for the construction of reviewer sets. The approach bases

on predicted research labels for manuscripts and predicts reviewers with similar labels. Set-

based effects are ignored, which contrasts our approach.

Works tackling the reviewer set recommendation for multiple papers can be divided in
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ones relying on manual inputs such as bidding by reviewers and fully automated ones. Some

of the papers incorporating manual inputs, contrasting our fully automated method, are the

following: The Toronto Paper Matching System (TPMS) [3] conducts automatic reviewer

assignment for all manuscripts submitted to a conference by using either word count repre-

sentation or LDA topics, but can also incorporate reviewers’ bids on submissions. TPMS

supports some constraints: papers must be reviewed by three reviewers, and reviewers are

assigned not more than a given limit of papers. Reviewers for manuscripts are determined

based on expertise extracted from their publications. TPMS is applied, for example, by the

SIGMOD research track [10], where reviewers upload a representative set of their publica-

tions. Papagelis et al. [11] present a system which incorporates reviewers’ interests in terms

of paper topics, their bids on papers, conflicts of interests and overall workload balance for

the reviewer assignment task. It can either assign reviewer sets automatically if the bidding

is completed or the PC chair can manually adjust the sets.

The following works are fully automated recommendation approaches intended to work

with multiple manuscriptsb: Liu et al. [6] recommend n reviewers for each manuscript, which

are dependent on each other. They model reviewers’ expertise, authority and diversity as a

graph which they traverse with random walk with restart. The number of co-authorships is

modelled as authority which, contrasts our definition of authority. Kou et al. [5] introduce

an assignment system for sets of n reviewers which bases on the topic distributions of re-

viewers and the manuscripts computed with the Author-Topic Model. They define expertise

of reviewer sets in certain topics as the maximum expertise for the topic found in the set;

our definition of expertise deviates. Jin et al. [4] assume reviewers have a certain relevance

in a topic, which is determined by their publications and usage of the Author-Topic Model.

Additionally, authority in form of citations and research interest of researchers are impor-

tant factors. Here, the number of reviewers per paper and the maximum number of papers

a reviewer is assigned to can be predefined. Amongst others, we also observe these factors

but define them differently. Yang et al. [8] utilise LDA to represent manuscripts as well as

past publications of reviewer candidates. They then use a discrete optimisation model which

focuses on expertise to assign reviewers to all manuscripts. Likewise, we also incorporate LDA

in our approach, but we additionally consider more aspects beyond expertise. Kalmukov [23]

uses a weighted bipartite graph to compute sets of reviewers for multiple manuscripts and

solely focuses on maximising the expertise for each one. Additionally, he incorporates the

worthiness of a manuscript to be assigned to a reviewer and equally distributes reviewing

load. He prioritises assignments for papers which have a low number of possible reviewers.

Contrasting this approach, we incorporate more factors and do not solely strive to maximise

experience of reviewer sets. Tang et al. [24] propose a constraint-based optimisation frame-

work that proposes sets of reviewers for query manuscripts and user feedback if available.

They incorporate expertise matching, authority aspects, load balance and want to maximise

the topic coverage between reviewer sets and the manuscripts. For this, they utilise LDA,

which we also use. A major difference is their definition of authority, they define different

expertise levels similar to our concept of seniority.

bNote that we currently refrain from this task as it would require an evaluation dataset which includes all
submissions to the venue, even the rejected ones and their authors. Such a dataset does not exist currently,
to the best of our knowledge.
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3. Aspects

In our work, we assess the appropriateness of a reviewer set with respect to a submission

based on the following seven aspects:

3.1. Aspect 1: No Conflicts of Interests

Reviewers in a reviewer set cannot have conflicts of interests: they can be neither authors

of the submission nor prior co-authors of its authors [11]. This aspect aims at ensuring

unbiased and objective candidates. While we (as well as others [11]) regard this aspect quite

vigorously, less restrictive variants (e.g. disallowing co-authorships in the three years prior to

the submission) are also feasible.

3.2. Aspect 2: Disjoint Publications

Reviewers cannot be co-authors of any other reviewer in the set. Reviewers having disjoint

publications enforces a broader spectrum of different backgrounds. This could produce broader

reviews [7] which is a desirable property in peer review [10].

3.3. Aspect 3: Expertise

Reviewers need to be experienced in the area of the manuscript [5]. The topic of the paper

should be relevant for them and fit their research profile. Not only the content, but also the

number of papers in the area of a submission contributes to our understanding of experience.

This aspect ensures deep reviews, another desirable feature of assessments [10].

3.4. Aspect 4: Authority

Reviewers need to hold authority in the research area of the submission. Reviews of the papers

have to be credible, reviewers should be well recognised in the target domain [6]. Authority

can be assessed, for example, by an area-dependent h index and citation counts of candidates.

3.5. Aspect 5: Diverse Expertise (Diversity)

Reviewers need to be diverse in their area of expertise. Typically, as many topics as possible

of a submission should be assessed to create a comprehensive review [10]. Reviewers that are

proficient in different topics from each other support this goal, as the candidates in a set have

unique perspectives formed by their different experiences and backgrounds [7].

3.6. Aspect 6: Current Interest

Reviewers need to be currently interested in the topics of the manuscripts so they accept the

reviewing request [4] and are not asked to review topics they no longer work in. Scientific

progress makes it impossible to be up-to-date in all areas they were formerly interested in.

Thus, time-aware suggestion should weigh recent works of reviewers much higher than older

publications. If reviewers are interested in the area of the manuscript (e.g. signalled by

bidding on a paper), they should be able to provide sharp and confident reviews [12].

3.7. Aspect 7: Diverse Experience (Seniority)
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Fig. 1. Schematic overview of our approach. The left part depicts the expert search task, the right

part depicts the set of reviewers assignment task.

Reviewers of a manuscript should not solely consist of senior researchers, but they need to

be diverse with respect to the amount of their experience. Senior researchers provide vast

reviewing experience and a global vision, but they should be handled as a sparse resource as

they are asked to review many submissions. Junior researchers are ambitious and resilient

while not having that much experience. Usually, they are less frequently asked to review and

more of an unexhausted resource. Reviewing load needs to be distributed between senior

and junior researchers, such that the lower load for senior researchers and incorporation of

newer researchers benefits the overall quality of reviews. Additionally, junior researchers could

provide new and refreshing perspectives, while the reviewing activity might also benefit their

own development. Breaking up well-established reviewer constellations with new candidates

could also avoid research cliques [3].

4. Approach

RevASIDE is a system for assigning sets of Reviewers utilising Authority, Seniority, Interest,

Diversity and Expertise of reviewers to find the most suitable reviewer set out of a fixed set

of candidates, the reviewer candidate pool RCP , for a given manuscript M . Our approach is

composed of two steps: in Step 1, suitable reviewers are identified from the pool of reviewer

candidates; in Step 2, they are assembled to the most suitable set for the manuscript. Figure 1

depicts the schematic overview of our approach.

4.1. Step 1: Expert Search

Step 1 handles the left part of Figure 1. We represent publications as tf-idf vectors or ones

constructed with BERT [25] or Doc2Vec [26], which allows depicting semantics of documents

instead of single tokens. This enables capturing similarity of concepts of papers.

Let M be the manuscript for which a reviewer set should be computed. We ignore any
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Table 2. Voting techniques VT and accompanying formulas for reviewer R and manuscript M .

VT Formula
V otesδ

∑
P∈P (R)∧sim(P,M)≥δ 1

SUM
∑
P∈P (R) sim(P,M)

AV G
∑
P∈P (R) sim(P,M)

|P (R)|
MNZ |P (R)| ∗

∑
P∈P (R) sim(P,M)

SUMn

∑
P∈P (R)∧rank(P,R,M)≤n sim(P,M)

MIN min
(
{sim(P,M)|P ∈ P (R)}

)
MAX max

(
{sim(P,M)|P ∈ P (R)}

)
RR

∑
P∈P (R)

1
rank(P,M)

mRR 1
|P (R)|

∑
P∈P (R)

1
rank(P,M)

BordaFuse
∑
P∈P (R)(|

⋃
Ri∈RCP P (Ri)| − rank(P,M))

expSUM
∑
P∈P (R) e

sim(P,M)

expAVG
∑
P∈P (R) e

sim(P,M)

|P (R)|
expMNZ |P (R)| ∗

∑
P∈P (R) e

sim(P,M)

reviewers for which a conflict of interest with the authors of M exists (Aspect 1). For the

remaining reviewers from the reviewer candidate poolRCP , let P (R) be the set of publications

written by reviewer R. The similarity between a publication P and a manuscript M is given

by sim(P,M); the utilised similarity measure can be changed between the two steps. In

our experiments, we will use the cosine similarity of the corresponding vectors. We then

sort R’s papers in descending order by their similarity to the manuscript M and denote by

rank(P,R,M) the rank of a certain publication P of reviewer R in this order. Similarly, we

sort all publications in the collection in descending order by their similarity to manuscript M

and denote by rank(P,M) the rank of a publication P in this order.

To obtain a ranked list RL of reviewers, we apply a number of voting techniques (VTs)

that score reviewer candidates with respect to a manuscript. These voting techniques base

on the ones applied by Macdonald and Ounis [19] for expert search. Table 2 shows the

exact formulas for the 13 voting techniques considered in our approach. Higher scores signal

better fit of a reviewer to the given manuscript. V otesδ computes the number of papers of

a reviewer with a similarity to the query manuscript not smaller than a threshold δ; note

that the method was introduced without such a threshold in [19], which corresponds to δ = 0

in our definition. SUM sums up the similarities of the papers of a reviewer with the query

manuscript, AV G uses this score and normalizes it by the total number of papers of the

reviewer. MNZ multiplies the SUM score by the number of papers of the reviewer. SUMn

sums the similarities of the n papers of the reviewer most similar to the manuscript. MIN

returns the smallest similarity of the reviewer’s paper with the manuscript, MAX is defined

analogously. RR sums up the reciprocal ranks of the reviewer’s papers in the ordered list of

all papers. We additionally introduce mRR which normalizes this score by the number of

papers written by the reviewer. BordaFuse utilises Borda-fuse as score. The three voting

techniques expSUM , expANZ and expMNZ are defined as their non-exponential forms but

instead of using similarities, they apply the exponential function on similarities.

For a fixed voting technique, this step generates a ranked list RL of reviewers, i.e. experts,
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fitting the manuscript in question.

4.2. Step 2: Reviewer Set Assignment

Step 2 handles the right part of Figure 1, i.e. the actual formation of reviewer sets for

manuscript M based on the ranked list RL of reviewers generated in Step 1. We denote the

top k reviewers from RL by RLtop; if k = |RL|, the first step becomes irrelevant. A smaller

k restricts the observed candidates in the second step drastically and is especially useful to

improve run time.c

We now represent documents by term-based vectors weighted with tf-idf and by topic-

based vectors computed with LDA [27]; this allows us to capture concrete terms as well as

general topics of publications of reviewer candidates and the submission.dAdditionally, these

document vector representations allow us to easily weight and combine vectors of publications

without destroying their expressiveness as each vector dimension represents a single token or

topic which can be present in a document to a certain extent. This starkly contrasts BERT or

Doc2Vec embeddings, where single dimensions do not have a comprehensible semantics, but

instead the combination of all dimensions represents a document entirely. These tf-idf and

LDA vectors can be constructed either on all parts of manuscripts or only on the technical

sections, which consist of the methodology as well as the evaluation.

For each reviewer R this step considers the set rt(R,M) of their publications whose

similarity to manuscript M is not lower than a threshold t; i.e. rt(R,M) = {P |P ∈
P (R) ∧ sim(P,M) ≥ t}, with t ∈ [0, 1]. The threshold is utilised to define the selectivity

of the research area relevant for the submission. If t = 0 all papers of a reviewer are included,

a value closer to 1 restricts the number of papers taken into account in the second step. We

assume similarities lie in [0, 1].

Let rep(P, V ) be the representation of publication P as a vector of type V ∈ {L, T} with

L representing LDA vectors and T representing tf-idf vectors. Both document vector repre-

sentations (DVs) can be used to compute rt(R,M), e.g. using the cosine of the corresponding

vectors as a similarity function.

Lastly, let PV,R,M,t =
∑
P∈rt(R,M) rep(P,V )

||
∑
P∈rt(R,M) rep(P,V )||2 be the length normalized aggregation vector

of type V that combines all information on relevant publications of a reviewer R with respect

to M .

We now consider all possible candidate reviewer sets of a predefined size (for example 3)

and assess, for each candidate set Rc, its suitability with respect to the aspects defined in

Section 3. We prohibit reviewers in a set Rc to be co-authors of each other (Aspect 2); sets

that include such reviewers are not considered further, they are assigned a final score of 0.

In addition, we observe five different quantifiable aspects for suitability for each such set Rc
of reviewer candidates. These reviewers are taken from RLtop produced in Step 1. Scores for

all aspects are normalised to [0, 1] with 1 being the best and 0 being the worst possible value.

4.2.1. Expertise E

Expertise describes the relevance of the reviewers in a set to the manuscript (Aspect 3).

cThe influence of cut-off k on the overall performance is evaluated in Section 8.2.
dBoth for tf-idf and LDA vector representations of documents, values in all dimensions are non-negative.
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Reviewers should have solid knowledge with terms and topics of the manuscript, substantiated

by numerous publications. Particularly, the submission should be similar to publications

written by the reviewers [6] and their number of such papers should be high. Contrasting Liu

et al.’s work [6] we use the number of co-authorships of reviewer candidates not as an indicator

of authority but rather as an indicator of expertise. In E2 we utilise an adapted definition of

Cabanac [28] who states the topical similarity between researchers can be measured by the

cosine similarity between their tf-idf vectors. These conditions are measured by the following

scores:

E1(Rc,M, t) =

∑
Ri∈Rc sim(PL,Ri,M,t,M)

|Rc|

E2(Rc,M, t) =

∑
Ri∈Rc sim(PT,Ri,M,t,M)

|Rc|

E3(Rc,M, t) =

∑
Ri∈Rc |rt(Ri,M)|

|Rc| ·maxR∈RLtop |rt(R,M)|
These scores are then linearly combined to the final expertise score, with εi ∈ [0, 1] weighting

parameters and ε1 + ε2 + ε3 = 1:

E(Rc,M, t) = ε1E1(Rc,M, t) + ε2E2(Rc,M, t) + ε3E3(Rc,M, t)

4.2.2. Authority A

Reviewers should hold authority in the area the manuscript belongs to (Aspect 4). We propose

two scores to measure authority: the average h index of reviewers [6] h(R,M, t) calculated

on papers relevant to the manuscript rt(R,M) (measured by A1), and the average number of

their obtained citations on these papers (measured by A2):

A1(Rc,M, t) =

∑
Ri∈Rc h(Ri,M, t)

|Rc| ·maxR∈RLtoph(R,M, t)
(1)

A2(Rc,M, t) =

∑
Ri∈Rc

∑
Pj∈rt(Ri,M) c(Pj)

|Rc| ·maxR∈RLtop
∑
P∈rt(R,M) c(P )

with c(P ) being the number of citations a paper P has obtained. These scores are then

linearly combined to the final authority score, with α ∈ [0, 1] a weighting parameter:

A(Rc,M, t) = αA1(Rc,M, t) + (1− α)A2(Rc,M, t)

4.2.3. Diverse Expertise (Diversity) D

We define diversity as a measure to ensure that the expertise of reviewers is distributed to

areas as disjunct as possible (Aspect 5). This allows for reviews to cover multiple aspects of

the manuscript. The corresponding score rewards if topics in which reviewers are proficient

overlap as little as possible [6]:

D(Rc,M, t) = 1−
∑
Ri,Rj∈Rc,i<j sim(PL,Ri,M,t, PL,Rj ,M )

|Rc| · (|Rc| − 1)/2
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4.2.4. Current Interest I

As research objectives of scientists change over time, interest measures the fit of reviewers and

the manuscript with respect to their temporal development (Aspect 6). Interest of reviewers

denotes their willingness to review submissions from certain areas [4]. These interests change

over time. If a reviewer was involved in a topic several years ago but then changed their

focus, they probably no longer follow the rapid developments in the former research area.

Thus, they might not be willing or even able to review current submissions from this area. To

represent the time-aware profiles of reviewers, we combine the publications of reviewers with

regard to their age to a length-normalized vector where recent papers are weighted stronger

than older ones. This measure works on topical representations of documents:

I(Rc,M, t) = |Rc|−1 ·
∑
Ri∈Rc

sim

 ∑
Pj∈rt(Ri,M)

rep(Pj ,L)
a(Pj)

||
∑
Pj∈rt(Ri,M)

rep(Pj ,L)
a(Pj)

||2
,M

 (2)

with a(P ) describing the age of a publication P in years.

4.2.5. Diverse Experience (Seniority) S

In terms of seniority, reviewer sets are desirable which do not solely consist of senior researchers

(Aspect 7). In the recommended group of candidates, at least one senior researcher should be

contained who is familiar with the methodology of the paper [10] (measured by S2). Further

it is desirable to have a diverse group in terms of seniority, the set should include at least

one junior researcher (measured by S1). These requisitions are modelled in the following

equations:

S1(Rc,M, t) = 1− minRi∈Rcrange(Ri,M, t)

maxR∈RLtoprange(R,M, t)

S2(Rc,M, t) = min

(
maxRi∈Rcrange(Ri,M, t)

quantile.75,R∈RLtoprange(R,M, t)
, 1

)
with range(R,M, t) = 1 + maxP∈rt(R,M)a(P ) − minP∈rt(R,M) a(P ) denoting the temporal

range in which reviewer R has published on topics relevant to M . These scores are then

linearly combined to the final seniority score, with σ ∈ [0, 1] a weighting parameter:

S(Rc,M, t) = σS1(Rc,M, t) + (1− σ)S2(Rc,M, t)

4.2.6. Final Equation

We combine all of these five quantifiable aspects to obtain a single score SC for each reviewer

sets. Good reviewer sets will have high values in all aspects; we thus multiply the per-aspect

scores:

SC(Rc,M, t) = A(Rc,M, t) · S(Rc,M, t) · I(Rc,M, t) ·D(Rc,M, t) · E(Rc,M, t) (3)

The candidate reviewer set Rc achieving the highest SC is the most suitable one and rec-

ommended for the manuscript as result of Step 2. We will denote this result as R0 in the

experimental evaluation.
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4.3. Run Time Analysis

We separate this run time analysis into parts which are independent on the single specific

manuscripts and ones which have to be conducted for each manuscript. Manuscript non-

specific parts only need to be conducted once for the assignment per PC. Manuscript specific

parts need to be conducted for each manuscript for which reviewers are assigned.

1. Data preparation: Let n ∈ N be the number of publications of all possible reviewers

from RPC. We load the set of information (O(n)). Additionally, we load the set of co-authors

for each reviewer (O(n)). This part (O(n)) is manuscript non-specific.

2. Step 1: In Step 1 of the algorithm, the similarity of all publications of reviewers to the

manuscript M needs to be calculated (O(n)). Then for all reviewers, the similarity of their

publications needs to be summed (O(n)). Furthermore, all publications need to be ordered

according to their similarity with M (O(n log n). These three parts are summed up such that

the final run time for Step 1 of the algorithm is O(n log n).

3. Restrict |RL|: Before Step 2 of the algorithm can be tackled, we resolve conflicts of

interests in RLtop with the observation of co-authors of reviewers. This potentially excludes

persons from the set of possible reviewers and results in RLtop′ ; |RLtop′ | ≤ |RLtop|. The run

time of this restriction is negligible (O(1)).

4. Pre-computations for Step 2: For the second part of the algorithm, we separate

some pre-calculations which need to be performed for all Rc and the calculations, which are

dependent on the current Rc. Let m ∈ N,m ≤ n be the number of publications of the k

reviewers in RLtop′ . Per definition |Rc| ≥ 2. The pre-calculations include the calculation of

the ranges of all reviewers (O(k)), the citation count of all publications (O(m)), the h index of

all reviewers (O(k)), the max citation count (O(m)), the max h index (O(k)), the similarities

of topics and words of publications with the manuscript M (O(m)) and the length normalized

one vector representations of all reviewers (O(k)).

Similarities of the papers of reviewers from RLtop′ do not need to be computed, as they

were already computed in the first step, here we need to assess if these similarities surpass

the similarity threshold t (O(m)). Similarities of all restricted profiles of reviewer candidates

with all other restricted profiles of reviewer candidates need to be computed as these values

are required in the calculation of diversity in step 2. The cost of compiling the k restricted

profiles is O(m) such that the similarity calculation takes O(m+ k!).

All scores for reviewer candidates for the partial aspects E1, E2, E3, A1, A2, I, S1 and

S2 (with O(k) for each aspect) can be pre-computed per manuscript. The algorithm then

combines the reviewer dependent values once the respective reviewers are part of a reviewer

set. The only Rc dependent part is D but as combinations of reviewer pairs can occur in

multiple Rc, this aspect can also be pre-computed (O(k!)).

The pre-calculations can thus be summed up to a run time of O(m+ k!).

5. ASIDE part of Step 2: The combination of values for the ASIDE part needs to

be performed for each candidate reviewer set |Rc|, i.e.,
(
k
|Rc|
)

times; |Rc| ∈ {1, . . . , k}. The

check for disjoint publications of possible reviewers is negligible (O(1)). The run times for

the look-ups for the combined scores for authority (O(1)), seniority (O(1)), interest (O(1)),

diversity (O(
(|Rc|

2

)
)) and expertise (O(1)) are summed up. The complete run time of the

second step is O(m+ k! +
(
k
|Rc|
)
∗
(|Rc|

2

)
).

Overall Run Time: Except for the first part, all others are dependent on the specific
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manuscript. We thus report the overall run times if we observe j different manuscripts in

a single venue. The full run time in the average and best case with m < n, k < |RL| and

|Rc| < k is O(n+ j ∗ (n log n+m+ k! +
(
k
|Rc|
)
∗
(|Rc|

2

)
)) = O(n log n+m+ k! +

(
k
|Rc|
)
∗
(|Rc|

2

)
).

In the worst case where m = n and k = |RL| = |RPC|, so the list of possible reviewers

RLtop′ is not restricted, the first step of the approach can be omitted resulting in a run time

of O(n+ j ∗ (n+ |RPC|! +
(|RPC|
|Rc|

)
∗
(|Rc|

2

)
)) = O(n+ |RPC|! +

(|RPC|
|Rc|

)
∗
(|Rc|

2

)
).

5. Datasets

To evaluate our proposed reviewer set recommendation approach, we develop three novel

evaluation datasets. We consider manuscripts from three different workshops and conferences

of different size and thematic focus that took place in 2017, namely MOL, BTW, and ECIR. As

it is practically impossible to obtain all papers submitted to a conference, we use all accepted

papers as an approximation instead. Note that this might lead to non-representative topic

distributions of manuscripts and unrealistically low number of manuscripts to be reviewed.

Additional fuzziness is introduced since we do not distinguish between long, short and demo

papers as program committees are oftentimes published in a merged form.

5.1. Data Acquisition

We built three different datasetsebased on data from dblp [29]fwhich was merged with ab-

stracts, citations and references from the AMiner part of the Open Academic Graph [30, 31]g

where available as well as full texts of accepted manuscripts. Information from AMiner was

joined with dblp data (based on matching DOIs where available, or on matching paper titles,

author names and publication years otherwise); this allowed to focus on publications from

computer science or adjacent domains and to build rather precise reviewer profiles due to

dblp’s author disambiguation efforts, compared to using reviewer names only. Full texts of

accepted manuscripts are not included in the AMiner dataset but stem from pdfs collected

by hand which were converted to text files using Science Parseh.

Information on program committees was either taken from conference websites or confer-

ence proceedings. Reviewer names were manually mapped to dblp authors.iFor each reviewer,

we set up a list of their publications identified by their dblp keys. Here, only papers up to

2016 were taken into consideration, corresponding to a reviewer selection process in early

2017. For each of the papers the dataset contains its publication year, the paper length, the

CORE rankjof the venue it was published in, the number of citations it accumulated and

the average h index of its authors. The concatenated title and abstract (where available)

of papers needed to consist of at least three terms to be considered for the dataset. Citing

papers which are not contained in dblp were omitted. Thus, the number of incoming links

might not necessarily represent the number of citations which publications received in the

eAvailable under https://doi.org/10.5281/zenodo.4071874. Data acquired from the manual evaluations in
Section 8.3 as well as templates showcasing the structure of the files are also included in the datasets.
fAs of January 1, 2020; https://dblp.org/xml/release/dblp-2020-01-01.xml.gz
gV1 from mid 2017; https://www.aminer.org/open-academic-graph
hV2.03; https://github.com/allenai/science-parse
iNote that the dblp dataset is being revised continuously, reviewers’ profiles might be imperfect due to dis-
ambiguation problems.
jhttp://www.core.edu.au/

https://doi.org/10.5281/zenodo.4071874
https://dblp.org/xml/release/dblp-2020-01-01.xml.gz
https://www.aminer.org/open-academic-graph
https://github.com/allenai/science-parse
http://www.core.edu.au/
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real world. This influences the number of citations and the average h index.

For each manuscript of our three test conferences the datasets contain a pool of possible re-

viewers. It consists of all members of the program committee, but excludes those with obvious

conflicts of interest accessible by (former) co-authorships of authors of the manuscripts and

reviewers. For each of the papers published by possible reviewers, our datasets also contain

tf-idf, Doc2Vec [26], LDA [27] and BERT [25] vector representations of its title and abstract

where available. For submitted manuscripts, these four kinds of document representation are

contained for the full text as well as only the research sections of the paper (which consist

of all sections excluding the abstract, introduction, related work, conclusion, references and

acknowledgements). The textual content of the papers is not contained. We consider only

English documents for the construction of our datasets.

5.2. Document Representations

We calculated the document frequencies of words for tf-idf on unstemmed titles of all publica-

tions contained in dblp up to 2016 concatenated with abstracts from AMiner where available

which were written in English. In total we used 2,940,996 documents. The final tf-idf vectors

are calculated for unstemmed textual data available in the respective datasets including all

papers of reviewers and submitted manuscripts.

For the construction of BERT [25] vectors, we used the base pretrained uncased model.k

Since the BERT implementation used is only able to process input vectors of at most 512

tokens, documents were cut at punctuation marks or after half of the tokens if sentences

were still too long. A sliding window was used to always input two consecutive sentences to

maintain as much context as possible. The model consists of overall twelve hidden layers each

having 768 features. The last four layers from these twelve layers were concatenated for each

token and averaged over all tokens to receive vectors of length 4 layers×768 features = 3072

dimensions for each publication. [32]

Weights for Doc2Vec [26] are trained on the English Wikipedia corpus from 1st February

2020l. We refrained from using Doc2Vec on a stemmed corpus as this preprocessing is no

prerequisite for achieving good results [26]. We trained two Doc2Vec models, one distributed

bag of words (DBOW) and one distributed memory (DM) model, so that resulting vectors

consist of 300 dimensions each. This size was proposed by Lau and Baldwin [33] for general-

purpose applications.m[32]

For LDA [27] we again used the 2,940,996 documents which we already utilised for the

computation of the document frequency in tf-idf. This procedure ensured the computed topics

were from the area of computer science. The number of topics was set to 100 resulting in the

same number of dimensions for vector representations of manuscripts and publications.n[32]

5.3. MOL’17, BTW’17 and ECIR’17

MOL’17 The dataset contains 12 manuscripts in English language which were accepted

kWe utilised the BERT implementation and model by https://huggingface.co/transformers/model_doc/

bert.html.
l https://dumps.wikimedia.org/enwiki/20200201/
mWe utilised the Doc2Vec implementation by https://radimrehurek.com/gensim/models/doc2vec.html.
nWe utilised the LDA implementation by https://radimrehurek.com/gensim/models/ldamodel.html.

https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://dumps.wikimedia.org/enwiki/20200201/
https://radimrehurek.com/gensim/models/doc2vec.html
https://radimrehurek.com/gensim/models/ldamodel.html


Christin Katharina Kreutz and Ralf Schenkel 115

at Meeting on the Mathematics of Language ’17, 22 program committee members and their

papers in dblp. We excluded extended abstracts. No distinction between different paper types

and program committees was made. On average, each manuscript has 21 possible reviewers,

which do not have conflicts of interests. This dataset represents a small biannual international

conference with a different focus than the other two datasets.

BTW’17 The dataset contains 36 manuscripts in English language which were accepted

at Datenbanksysteme fr Business, Technologie und Web ’17 (the German database confer-

ence), 56 program committee members and their papers in dblp. We again excluded extended

abstracts. No distinction between different paper types was made but the program commit-

tees members are split in scientific, industry and demo paper committee. On average, each

manuscript has 47.78 possible reviewers, which do not have conflicts of interests. This dataset

represents a medium-sized biannual national conference with several lesser-known reviewers.

ECIR’17 The dataset contains 80 manuscripts in English language which were accepted

at European Conference on Information Retrieval ’17, 151 program committee members and

their papers in dblp. A distinction between full-paper meta-reviewers, full-paper program

committee, short paper program committee and demonstration reviewers was made. On av-

erage, each manuscript has 141.35 possible reviewers, which do not have conflicts of interests.

This dataset represents a medium to large annual European conference attributed with CORE

rank A and mostly well-known reviewers.

5.4. Discussion and Challenges

Utilising scientific citation data always comes with challenges: citations need to be han-

dled with care due to self-citations which could vastly improve the perceived authority of

researchers [34], varying citation practices in different areas [35, 36, 37], ambiguous reasons

for citing works [38], the non-existence of citations of newly published papers [39] and the

generally uncited influences [38, 40, 41]. In our case, all observed publications come from the

area of computer science and closely related fields in general. Further restriction of our focus

on the three conferences hopefully also helps in attenuating this effect. New papers hopefully

also do not influence our problem vastly as they should be present for almost all reviewer

candidates and thus cancelling each other out. Unfortunately, the other challenges associated

with usage of citations cannot be tackled in the context of this work.

As we base our datasets on the dblp data, we are dependent on their disambiguation efforts.

Their author profiles are revised continuously, but the disambiguation might not always be

perfect [42]. So, this also influences our reviewers’ and manuscripts’ data. Additionally, names

of reviewers were partially extracted from conference websites where multiple clerical errors

were made and nicknames or abbreviations of names were included. We corrected obvious

mistakes but cannot ensure total correctness of the manual mapping of names to reviewers’

dblp profiles.

It would be desirable to observe all publications which were submitted to a conference,

especially the rejected ones. As such a dataset does not exist currently to the best of our

knowledge, the suitability of our dataset for reviewer recommendation for whole venues is

possibly restricted.

We want to point to the fact that even though it would be possible to consider multiple

versions of the same venue as datasets, they would still need to be considered separately
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as submitted manuscripts, reviewer committee sets as well as papers of reviewers are year-

dependent and liable to changes. The need for bigger datasets could only be fulfilled in

observing bigger conferences.

6. Evaluation: Preface

In our experiments, if not stated otherwiseo, we solely focus on sets consisting of three reviewers,

even though our approach is applicable for different numbers of reviewers per manuscript

as well. This number was chosen as a widespread norm [3] to reduce the dimensionality of

further evaluation steps. We evaluate our approach on the three introduced datasets MOL’17,

BTW’17 and ECIR’17 where we disregard the different manuscript and committee types. By

observing the performance of our approach in venues of different sizes, we strive to make

assumptions on its general applicability. We use Cosine similarity as similarity measure. This

ensures similarity values in [0, 1] for Step 2 as tf-idf and LDA document vector representations

hold non-negative values for all dimensions. For the voting techniques of the algorithm we

run tests with n ∈ {5, 10} and δ ∈ {0, .25, .5, .9}.
For all significance tests, we use a p-value of .05. We evaluate the normal distribution of

values using Kolmogorov-Smirnov tests and test the homogeneity of variances with Levene’s

tests. All depicted values are rounded on four decimal places.

6.1. Hypotheses

Considering the overall challenges and goals of RevASIDE, we investigate the following seven

hypotheses:

H1 Step 1 is useful for the expert search task.

H2 Usage of more advanced document vector representations leads to significantly better

overall results for Step 1 compared to more basic ones.

H3 Utilisation of different document vector representations, voting techniques, cut-off values

k of the result list RL, content types and thresholds t leads to significantly different

overall RevASIDE scores and values for the five quantifiable aspects in Step 2.

H4 Utilisation of the full texts of manuscripts leads to worse overall results than restriction

of the manuscripts’ content to the technical sections in Step 2.

H5 The conduction of Step 1 is profitable for Step 2.

H6 RevASIDE is suitable for different sizes of reviewer sets.

H7 Results of Step 2 are confirmed by human assessment, thus RevASIDE is useful for the

reviewer set assignment task.

7. Evaluation: Step 1 - Expert Search Task

In this part of the evaluation, we intend to assess hypotheses H1 of Step 1 being useful for

the expert search task and H2 of utilisation of more advanced DVs producing better results.

oSee the evaluation of hypothesis H6 in Section 8.2.4 and Section 8.2.5.
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Table 3. Mean average precision@10 (MAP), precision@10 (P@10) and nDCG@10 (nDCG) for all

combinations of voting techniques (VT) and document vector representations of manuscripts from
BTW’17 (upper half) and ECIR’17 (lower half). Best combination in BTW’17: tf-idf + SUM

(short b1). Best combinations in ECIR’17: tf-idf + MNZ (short e1), DBOW + V otesδ=.5 (short

e2). Column SD gives information on whether or not MAP (m), P@10 and nDCG (n) significantly

differ between the different DVs. If !, all three measures are significantly different.
dataset BTW’17
DV tf-idf DM DBOW BERT SD
VT\measure MAP P@10 nDCG MAP P@10 nDCG MAP P@10 nDCG MAP P@10 nDCG

V otesδ=0 .1705 .34 .3677 .1732 .345 .3706 .1705 .34 .3677 .1705 .34 .3677

V otesδ=.25 .0712 .2 .1881 .2056 .36 .4017 .1714 .335 .3685 .1705 .34 .3677 !

V otesδ=.5 .0712 .2 .1881 .1584 .25 .3088 .1966 .325 .373 .1705 .34 .3677 !

V otesδ=.9 .0712 .2 .1881 .0712 .2 .1881 .0712 .2 .1881 .1766 .35 .3701 !
SUM .2947 .42 .4923 .1816 .345 .3721 .1749 .34 .3722 .168 .34 .3635

AVG .2612 .385 .4246 .1222 .265 .2754 .1682 .345 .345 .0604 .16 .1593 !
MNZ .273 .41 .4761 .1787 .345 .3777 .1755 .345 .3725 .1704 .34 .367
SUMn=5 .0303 .1 .1007 .043 .15 .1398 .0697 .18 .1827 .0385 .115 .1113 mn

SUMn=10 .0329 .08 .0891 .0421 .135 .1321 .0659 .175 .1813 .0231 .095 .0872 !
MIN .0364 .155 .1194 .0301 .135 .1023 .0391 .145 .1316 .0168 .08 .0622
MAX .2779 .39 .4589 .2872 .405 .4812 .256 .395 .4517 .2162 .34 .3758

RR .0949 .235 .242 .1027 .265 .2632 .1005 .25 .2386 .2326 .365 .4311 !

mRR .0519 .165 .1505 .0613 .2 .1882 .0683 .185 .1857 .1757 .33 .3614 !
BordaFuse .1545 .325 .3405 .1385 .305 .3192 .12 .275 .2768 .1633 .345 .3459

expSUM .1705 .34 .3677 .1764 .345 .3756 .1725 .34 .3695 .168 .34 .3635

expAVG .2612 .385 .4246 .1248 .265 .2759 .171 .34 .3458 .0589 .16 .1542 !
expMNZ .1705 .34 .3677 .1761 .345 .3752 .171 .34 .3681 .1708 .34 .3679

dataset ECIR’17
DV tf-idf DM DBOW BERT SD
VT\measure MAP P@10 nDCG MAP P@10 nDCG MAP P@10 nDCG MAP P@10 nDCG

V otesδ=0 .1116 .45 .4748 .1132 .455 .4784 .1116 .45 .4748 .1116 .45 .4748

V otesδ=.25 .031 .21 .2095 .1308 .485 .5245 .1195 .48 .4937 .1116 .45 .4748 !

V otesδ=.5 .0317 .21 .2147 .1239 .43 .4733 .164 .555 .5992 .1116 .45 .4748 !

V otesδ=.9 .0317 .21 .2147 .0317 .21 .2147 .0317 .21 .2147 .1252 .48 .5081 !
SUM .1217 .475 .4789 .1283 .49 .5173 .124 .475 .5007 .115 .46 .482

AVG .0664 .315 .3129 .047 .285 .2639 .0567 .33 .3167 .0349 .19 .1843 !
MNZ .1647 .545 .5908 .124 .475 .5012 .1163 .46 .4826 .1132 .455 .4788
SUMn=5 .0309 .19 .1792 .0202 .135 .1353 .0286 .185 .1679 .0431 .175 .1736
SUMn=10 .0284 .16 .1691 .0243 .12 .1311 .0297 .15 .1615 .0473 .165 .1731
MIN .031 .23 .2004 .0181 .165 .149 .0206 .14 .1392 .0274 .17 .1588

MAX .1205 .41 .4429 .1496 .535 .5449 .1525 .535 .565 .0717 .38 .362 !
RR .0535 .275 .2858 .084 .375 .3926 .0651 .37 .3451 .0765 .39 .3693

mRR .0141 .135 .1186 .0311 .23 .2197 .0318 .24 .2299 .0264 .185 .1913 !
BordaFuse .099 .445 .4393 .0957 .425 .427 .0921 .415 .4137 .1014 .43 .4404

expSUM .1116 .45 .4748 .117 .465 .485 .116 .46 .4828 .115 .46 .4818

expAVG .0658 .315 .3164 .049 .295 .2725 .0574 .33 .3171 .038 .19 .1871 !
expMNZ .1116 .45 .4748 .115 .46 .482 .115 .46 .482 .1132 .455 .4788

7.1. Setting

We randomly selected 20 manuscripts from each of the BTW’17 and ECIR’17 datasets. The

manuscripts are represented by their full texts, the profiles of reviewers are represented by their

papers’ titles and abstracts where available. To create a ground-truth of relevant reviewers,

the top 10 reviewer candidates are computed with all 13 (17 with variants) voting techniques

and combined. The resulting pools of reviewers for each manuscript from the BTW’17 dataset

contained 48.35 entries on average and 101.5 entries on average for manuscripts from ECIR’17.

In the former case, about all possible reviewers were contained in the respective lists, contrast-

ing the ECIR’17 lists which contain a lower percentage of possible reviewers. Unfortunately,

a more extensive manual evaluation with more manuscripts would not be feasible.

The manuscripts’ title and abstract as well as the potential reviewers and a link to their

dblp profile were presented to an independent senior researcher in the field who evaluated the

reviewers in terms of appropriateness for the given manuscript. For the manual evaluation

of relevance, only papers up to 2016 of reviewers were considered. The expert was not aware

which method retrieved which reviewers. If the expert observed missing relevant reviewers,



118 RevASIDE: Evaluation of Assignments of Suitable Reviewer Sets

0

1

2

3

4

3 5 6 7 8 9 10 11 12 13 14 16 19 20 21 23 27 29 30 31 32 38 43 47 48 55

N
u

m
b

er
 o

f 
o

cc
u

rr
en

ce
s

Number of relevant reviewers per manuscript

BTW'17

ECIR'17

Fig. 2. Numbers of reviewers which are relevant for single manuscripts per dataset.

they were also included in the ground-truth. In BTW’17, each paper has 10.05 relevant

reviewers on average (min=5, max=14, median=10, standard deviation=2.762). In ECIR’17,

each paper has 27.2 relevant reviewers on average (min=3, max=55, median=25, standard

deviation=13.5671). On average, a reviewer from the program committee is relevant for 3.5893

manuscripts for BTW’17 and 3.1813 manuscripts for ECIR’17.

We report result quality with three established metrics, examining the first 10 retrieved

reviewers of each method. Precision@10 measures the fraction of the top-10 recommended

reviewers that were actually relevant. Non-interpolated mean average precision@10 (MAP)

averages the precision at ranks where a relevant reviewer appears, using a precision of 0 for

each relevant reviewer not appearing in the result list. Normalized cumulative discounted

gain (nDCG) [43] aggregates relevance of all reviewers appearing in the result, but with

a logarithmic discount for later ranks; this follows the intuition that later ranks are less

important to a user than earlier ranks. In addition, it normalizes this aggregation by the

cumulative discounted gain achieved by an ideal ranking where all relevant reviewers appear

in front, thus showing how close the result is to an optimal result and allowing to compare

across different queries with different numbers of relevant results.

7.2. Results (Analysis of H1 and H2)

In BTW’17, each of the 20 papers has 10.05 relevant reviewers on average (min=5,

max=14, median=10, standard deviation=2.762). In ECIR’17, each of them has 27.2 relevant

reviewers on average (min=3, max=55, median=25, standard deviation=13.5671). Figure 2

shows the number of reviewers which are relevant for the 20 observed manuscripts per dataset.

All manuscripts have at least three relevant reviewers. We observe major differences between

the different sized datasets. In ECIR’17, for most manuscripts many relevant reviewers could

be found, for BTW’17 these numbers are much lower. This might partially be influenced by

the explicit topical breadth of BTW’17 but also by the smaller size of the reviewer candidate
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Fig. 3. Numbers of manuscripts, for which single reviewers are relevant per dataset.

pool for this dataset.

On average, a reviewer from the program committee is relevant for 3.5893 manuscripts for

BTW’17 and 3.1813 manuscripts for ECIR’17 out of the 20 observed ones. Figure 3 shows the

amounts of manuscripts from the 20 observed ones, for which single reviewers are relevant per

dataset. Most reviewers are relevant for only few of the observed manuscripts, few reviewers

are relevant for many of them. A non-negligible share of reviewers is not relevant for any of

the 20 observed papers in both datasets.

The upper part of Table 3 shows result quality for all combinations of document vector

representation and voting technique for the twenty manuscripts from BTW’17. V otesδ=0 is

exactly the same for each document vector representation, as this voting technique solely

considers the number of papers of reviewer candidates and not their similarity with query

manuscripts. The lower part of Table 3 shows the same for the twenty manuscripts from

ECIR’17.

In BTW’17, each paper has 2.7801 relevant reviewers per combination of VT and DV on

average, in ECIR’17 this value is significantly (Mann-Whitney U test) higher (3.4838). These

assessments lead to the assumption of the VTs and DVs presented here being useful for the

expert search task and therefore verifying H1.

We found significant (Kruskal-Wallis H tests) differences between the four DVs for several

voting techniques, but not for all of them (see rightmost column of Table 3). The more

advanced document vector representations Doc2Vec and especially BERT did not achieve

better results than tf-idf.

The best voting techniques seem to depend on the dataset and the utilised document vec-

tor representation. BERT performs worse than both tf-idf and the Doc2Vec models. Usage
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of tf-idf and DM achieves comparable results for the best performing VTs for BTW’17; for

ECIR’17, tf-idf and DBOW with their respective best VTs result in similar values. BERT

seems to generalise the concepts of papers too much, such that the VTs cannot clearly distin-

guish between relevant and non-relevant reviewers. This is underlined by the fact that three

versions of V otesδ generate the same values for MAP, P@10 as well as nDCG. Tf-idf has high

selectivity and is able to identify experts versed in the exact same techniques described in a

manuscript. Hence, hypothesis H2 of more sophisticated VRs being more suitable than basic

VRs is rejected.

For the ECIR’17 dataset, P@10 and nDCG are higher than for BTW’17. This might

be caused by ECIR’17 having higher overall numbers of reviewers as well as more relevant

reviewers per manuscript. This disadvantages the smaller BTW’17 dataset.

8. Evaluation Step 2 - Reviewer Set Assignment Task

The evaluation of Step 2 of our algorithm consists of a quantitative and a qualitative evalua-

tion. These parts each encompass numerous experiments.

8.1. Setting

In Equation 3 we set ε1 = ε2 = ε3 = 1
3 and α = σ = .5. Furthermore, except for experiments

in Section 8.2.4 and Section 8.2.5 we only observe |Rc| as three as a widespread lower bound

for sizes of reviewer sets [23] and to reduce the complexity of our following calculation

As a first baseline Bt3, the three highest ranked reviewers in the ranked list RL for each

VT and DV are considered as a reviewer set for a manuscript. Such an approach is common in

reviewer set recommendation [6, 9]. Our second baseline Btr chooses three random reviewers

from RLtop. Our third baseline Br chooses three random reviewers from the whole program

committee, excluding only those with a conflict of interest. For the latter, we cap values of

E3, A1 and A2 at 1.p

We experiment with cut-offs k of reviewers in RL to generate RLtop at position 10 and

20 after Step 1 and without cut-off, i.e. all reviewers without conflicts of interests for the

manuscripts were utilised as a comparison to evaluate the usefulness of Step 1. If we do not

restrict the number of candidate reviewers, i.e. |RL| = k, the voting technique used in Step 1

(which determines the reviewer candidates considered in Step 2) becomes irrelevant for Step 2

but still influences the creation of the baselines. We also experiment with different thresholds

t ∈ {0, .25, .5, .9}.
We divide the manuscripts in non-technical and research sections to better estimate their

true content. Non-technical sections include abstract, introduction, related work, conclusion,

acknowledgements and references. Research sections are all other parts. We compare the

effect of using the full text in Step 2 to using only the content of research sections. Profiles

of reviewers are represented by their papers’ titles and abstracts where available, which are

similar enough (threshold t) to the query manuscript.

8.2. Quantitative Evaluation

pReviewers from Br are possibly not contained in RLtop and thus could theoretically produce values > 1 for
the three partial aspects. The score for this baseline is still calculated based on maxima of papers of relevant
candidate reviewers.
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Table 4. Significant differences between the groups in SC as well as the five quantifiable aspects

by datasets MOL’17 (m), BTW’17 (b) and ECIR’17 (e).

grouped by SC A S I D E
DV mb mb b e mbe mbe
VT mb mbe mbe mbe mbe mbe
k mbe mbe mbe mbe mbe mbe
CT mbe mbe mbe
t in Step 2 mbe mbe mbe mbe mbe mbe
RT mbe mbe mbe mbe mbe mbe

Table 5. Configuration (conf), DV, VT, RLtop cut-off value k, utilised content type and threshold
t resulting in the highest average scores and corresponding values for A, S, I, D as well as E per

dataset and result type.
conf dataset RT DV VT CT k t SC A S I D E

c1 MOL’17 R0 BERT MIN full 20 .5 .053 .6675 .8696 .5277 .3783 .4614
c2 MOL’17 Bt3 BERT V otesδ=0 full 20 .25 .0439 .5972 .8696 .5283 .3109 .5056

c3 MOL’17 Btr DBOW expAVG full 10 .25 .0348 .69 .8158 .5158 .3014 .3738
c4 MOL’17 Br DM BordaFuse full 10 .5 .0251 .4642 .8199 .5408 .2654 .4467
c5 BTW’17 R0 BERT MIN full 20 .5 .0528 .5827 .9935 .5243 .555 .3152
c6 BTW’17 Bt3 BERT SUMn=5 full 10 .5 .0218 .4106 .887 .6078 .3332 .2891
c7 BTW’17 Btr tf-idf SUMn=10 full 10 .5 .0303 .826 .7274 .5559 .2298 .3884
c8 BTW’17 Br BERT MIN full 10 .25 .0193 .3797 .8963 .5192 .3743 .2693
c9 ECIR’17 R0 BERT mRR full 20 .9 .0438 .6348 .8077 .6614 .3162 .4148
c10 ECIR’17 Bt3 BERT mRR full 10 .9 .0192 .5312 .7315 .6704 .2038 .3471
c11 ECIR’17 Btr DM SUMn=5 full 10 .5 .0319 .9517 .6077 .6675 .1977 .4309
c12 ECIR’17 Br DBOW BordaFuse full 10 .5 .0171 .5228 .7271 .6715 .1451 .4581

In this part of the evaluation, we focus on understanding the influence of the different factors of

our approach and prepare the qualitative evaluation by identifying the combinations achieving

the highest scores. In this context, we intend to assess hypotheses H3 and H4 as well as H5

which observes the usefulness of Step 1.

In these experiments, for each combination of document vector representation in Step 1,

voting technique, cut-off of relevant reviewers utilised in Step 2, similarity threshold t in Step

2 as well as used content type (CT) in Step 2 we observe the following result types (RT): the

three baselines (Bt3, Btr, Br) and the best result returned by RevASIDE (R0).

8.2.1. Significance of Factors (Analysis of H3)

In this section, we want to evaluate hypothesis H3 which claims the utilisation of different

DVs, VTs, cut-off values, content types and thresholds results in significantly different scores

SC as well as values for the five quantifiable aspects.

We test for significant differences between groups of experiments to determine which fac-

tors really influence the overall score SC (as computed by Equation 3) and the five quantifiable

aspects introduced in Sections 4.2.1 to 4.2.5. Kruskal-Wallis H tests are used for the follow-

ing experiments since in most of our observed cases, data is not normally distributed in the

different groups or variances are not homogeneous. Table 4 indicates between which groups

of experiments we found significant differences in the scores or the five quantifiable aspects.

We observe 1,632 (4 DVs×17 VTs×3 cut-offs k ×2 CTs×4 t in Step 2) experimental setups

per dataset. Experiments were grouped by document vector type such that there were four

groups of experiments, ones using tf-idf in the first step, ones using Doc2Vec DM, ones using

Doc2Vec DBOW and ones using BERT document vector representations. Grouping by VT
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in Step 1 results in 17 different groups of experiments. When experiments are grouped by

the number of observed candidates k three different groups result. When grouping by content

type, two groups of experiments result, ones which utilise the full text in Step 2 and ones

utilising only the research sections of the query manuscript. Grouping by the threshold value

t in Step 2 results in four different groups. Lastly, grouping by RT produces four groups

containing experiments of types Bt3, Br, Btr and R0.

DV does influence some aspects significantly, but overall, the scores of the ECIR’17 dataset

are not significantly influenced by it. VT significantly influences the five aspects for all

datasets as well as the score for the two smaller ones. The content type which is utilised

in Step 2 is significantly influential for values for all datasets except for authority, diversity,

and seniority. These values are not calculated by directly utilising the query manuscript and

therefore are not influenced by the content type. The cut-off value k which is chosen for

RLtop, the threshold value t as well the result types significantly influence the results in all

three datasets. From these observations, we derive the overall validity of hypothesis H3.

8.2.2. Configurations achieving highest Scores (Analysis of H4 and H5)

Table 5 shows the best combinations of DV, VT, cut-off values, content type and threshold,

measured in terms of the highest overall average scores for R0 and the three baselines Bt3,

Br and Btr for each of the three datasets. SC is calculated with Equation 3 and can take

values between 0 and 1 with 1 being the best. As it is multiplicative, a score of .05 can be

reached if e.g. values of all quantifiable aspects A, S, I, D, and E are around .55.

R0 achieves the highest SC results for each dataset. This, together with the significant

differences between result types observed in the previous experiment (see Table 4), leads to the

conclusion that RevASIDE produces significantly higher average SC scores than the baselines.

This applies to all three different sized datasets, which highlights the general applicability of

our approach.

Utilising full texts of query manuscripts yields better results than only taking the research

sections into account. This leads to the rejection of hypothesis H4.

The restriction of RLtop to k = 10 leads to the best average scores for MOL’17 and

ECIR’17; for BTW’17, no restriction of RLtop leads to the highest average scores (not depicted

in the table). This indicates that the reduction of the number of considered reviewers for

Step 2 (and therefore the entirety of Step 1) is a major factor in small and large datasets.

It also decreases the overall computation time, which in general verifies H5. MOL’17 as well

as ECIR’17 represent relatively focused areas, while BTW’17 is more diverse. For focused

datasets it suffices to regard the few most relevant reviewers to compose a suitable set, but

for a diverse conference, it seems more reviewers need to be considered. When grouping all

1,632 experiments by voting technique and threshold, the highest average scores for MOL’17

are achieved by expSUM and .5; for BTW’17 SUMn=5 and .25; and for ECIR’17 SUMn=10

and .9. BERT is the DV which on average performs best for each dataset. They outperform

the other VTs and thresholds on average but do not appear as a combination in Table 5

under the overall best configurations. Remarkably, the best results for R0 in MOL’17 as well

as BTW’17 were achieved by the same combination of DV, VT, CT, k as well as t. The

combination of BERT with MIN or mRR did not achieve any good results in our manual

evaluation of Step 1 but did prove to be useful in Step 2.
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Table 6. DV, VT, content type CT (rc symbolises content restricted to research sections), cut-off

k, threshold t, RT and scores SC for the highest values for each of the different aspects A, S, I,
D and E for all three datasets.

MOL’17
DV VT CT k t RT SC A S I D E
DM SUMn=5 rc 10 .9 R0 .0455 .7359 .7919 .6073 .3045 .4248
BERT MIN full 10 0 R0 .0003 .3616 .9972 .0041 .7670 .1786
DBOW SUMn=10 full 10 .9 BLtop3 .0110 .2632 .8544 .6423 .2523 .2869
DM SUMn=5 full 10 0 R0 .0011 .4871 .9762 .0166 .8698 .1498
BERT V otesδ=0 full 10 ≥.25 BLtop3 .0434 .5972 .8598 .5283 .3109 .5056

BTW’17
DV VT CT k t RT SC A S I D E
tf-idf SUMn=10 rc 10 .25 BLt3r .0211 .8967 .6433 .5252 .1831 .3807
BERT MIN full 20 .25 R0 .0505 .5831 .9943 .5251 .5531 .2997
DBOW AVG full 10 .5 R0 .0277 .5931 .8849 .6441 .2099 .3986
BERT SUMn=5 rc 10 0 BLtop3 ∼0 .2847 .7776 ∼0 .7532 .0577
DM SUM full |RL| ≥.25 BLtop3 .0155 .6297 .7540 .5726 .1243 .4548

ECIR’17
DV VT CT k t RT SC A S I D E
BERT MIN full 10 .25 BLt3r .0254 .9743 .5849 .6480 .1673 .4201
BERT AVG rc 10 0 R0 .0011 .4591 .9920 .0199 .5817 .1127
DBOW V otesδ=.5 full 10 .5 BLtop3 .0105 .5297 .7591 .7357 .0811 .4492
DM SUMn=5 rc 20 0 R0 .0009 .5271 .9432 .0133 .7315 .1264

DM expSUM full |RL| ≥.5 BLtop3 .0150 .4389 .7762 .6961 .1183 .5334

The highest scores for MOL’17 (.0516), BTW’17 (.0462) as well as ECIR’17 (.0399) for

the best performing combinations from Step 1 of our approach (b1: tf-idf + SUM, e1: tf-idf

+ MNZ, e2: DBOW + V otesδ=.5) are independent of DV and VT as they are achieved

by |RLtop| = |RL|. The threshold t is set to .5. These results cannot surpass the best

configurations from Table 5 for the same data, but also do not significantly differ from them.

For BTW’17 as well as ECIR’17, we found no significant correlation between the scores

produced by the twelve (eleven as c1 = c5) best configurations from Table 5 for R0 and

the number of relevant reviewers per manuscript for the forty manuscripts observed in the

evaluation of Step 1 with Kendall’s τB .

We want to point to the fact that some of the DVs and VTs present in Table 5 achieve low

results in the evaluation of Step 1 (for BTW’17 .0168 to .171 in MAP, .08 to .34 in P@10 and

.0622 to .3677 in nDCG; for ECIR’17 .0264 to .1116 in MAP, .135 to .45 in P@10 and .1353

to .4748 in nDCG). This hints at possible problems with aspects with opposing objectives,

which will be regarded in depth in the following Section as well as the qualitative evaluation

in Section 8.3.

8.2.3. Highest Values for Aspects

In the following evaluation, we observe the highest values that the five quantifiable aspects

were able to reach on average per dataset. The goal of this part is to better understand the

factors influencing the aspects.

Table 6 depicts the highest values for the five quantifiable aspects per dataset, together

with the corresponding configuration and result types.

For high authority cut-off k = 10, so a low number of observed reviewer candidates in

RLtop, seems to be helpful. If few reviewer candidates are observed, the probability of one

having a high h index might be lower. This in terms highly influences the calculation of the

aspect, as the denominator in the respective Equation 1 is smaller, thus increasing the overall

value for A1.
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Seniority seems to be maximised for R0, a low threshold t and usage of BERT as document

vector representation in Step 1. This means the true content of the papers of reviewers is

completely disregarded here. Only the span of years the reviewer candidates published in is

relevant.

High interest of reviewer sets was achieved with utilisation of full texts of publications,

their representation in Step 1 with DBOW, a threshold t of at least .5 and k = 10. A

high influence of papers of reviewer candidates relatively similar to the full content of the

manuscript on this aspect is not surprising, whereas the cut-off value k is not even used in

the calculation of this aspect (see Equation 2).

For a high diversity, all papers of reviewers needed to be considered, not only those which

were similar to the manuscript (t = 0). Additionally, SUMn=5 seems to be helpful to maximise

this aspect. If the five most similar papers of reviewer candidates are observed to construct

the retrieved sets, reviewers from completely disjunct fields - maybe even ones irrelevant to

the manuscript - achieve high diversity values. This assumption is strengthened by the low

expertise and overall score SC of these sets.

High expertise of reviewer sets can be achieved by observing full content of manuscript,

setting the similarity threshold t to at least .25 and usage of result type BLtop3. Utilisation

of publications which are at least somewhat similar to all the information of the manuscript

in question seems like a reasonable approach. Unsurprisingly, the baseline set resulting in the

highest expertise is the one consisting of the three reviewers most similar to the manuscript.

All depicted scores are lower than the highest computed scores per dataset (see Table 5).

In general, we found that one cannot only optimise after one of the quantifiable aspects to

increase the whole score SC. The single different aspects profit from varying, sometimes

opposing configurations.

8.2.4. Number of Reviewers Rc (Analysis of H6)

In this part of the automatic evaluation, we observe the influence of different sizes for the set

of recommended reviewers for manuscripts Rc and thus want to commence the evaluation of

H6. This hypothesis tackles the usefulness of RevASIDE for different reviewer set sizes. In

the previous experiments, |Rc| was set to three. This specification might not depict reality,

as different venues determine different numbers of reviewers per manuscript.

To restrict dimensionality of this observation, we exemplarily utilise the configuration

which achieved the best results for Step 1 e2 (DBOW + V otesδ = .5) and only use the

BTW’17 dataset. Baselines are adjusted to the respective reviewer set sizes. BLtop3 is named

BLtopX , BLt3r will be called BLtXr for these experiments.

Table 7 shows the average values for the score SC as well as the five quantifiable aspects

for different sizes of the retrieved reviewer set for manuscripts. We experiment with sets of

size 2 to 6 as higher numbers seem highly unusual for the presented problem. Other works

define 3 to 5 [24], at least 2 [12] and 3 or more [22] reviewers as suitable.

R0 achieves the best results for all reviewer set sizes. BLtopX achieving the worst results

for set sizes bigger than 3 stands out sharply. This fact is attributed to the highly increased

probability of reviewers which are on the very top of RL having joint publications. With

Aspect 2 we prohibited this, so these sets are attributed with scores of 0.

Expertise is the aspect which most work focuses on [3, 5, 8, 9, 23]. For this aspect R0
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Table 7. Average cores SC as well as values for the five quantifiable aspects A, S, I, D, E for

R0 as well as the three baselines for different sizes of retrieved reviewer sets for all papers from
BTW’17.

|Rc| RT SC A S I D E

2 R0 .0401 .621 .7948 .5738 .3693 .3956
2 BLtopX .0063 .4858 .69415 .6221 .1092 .362
2 BLtXr .0055 .3552 .6971 .5919 .1471 .302
2 BLrand .0062 .2516 .7357 .5784 .216 .2741

4 R0 .0245 .5969 .8353 .5958 .2293 .3642
4 BLtopX .0026 .4467 .7917 .6113 .1142 .3436
4 BLtXr .0038 .3448 .8014 .5958 .1488 .307
4 BLrand .0051 .2686 .8201 .5441 .2184 .2565

5 R0 .0214 .5638 .8399 .5911 .217 .3536
5 BLtopX .0008 .4333 .8045 .6082 .1141 .3365
5 BLtXr .004 .3299 .8088 .5942 .1624 .2994
5 BLrand .0041 .2819 .8628 .5526 .2227 .2675

6 R0 .0191 .5284 .8399 .5956 .2058 .3513
6 BLtopX .0006 .4123 .8145 .6067 .1198 .3336
6 BLtXr .0019 .3407 .8182 .5899 .1511 .3037
6 BLrand .0042 .2693 .8799 .5577 .204 .2761

also achieves the highest average values in these experiments for all sizes of the constructed

reviewer set.

From these observations as well as the ones before where we experimented with |Rc| = 3

we derive partial validity of hypothesis H6. RevASIDE seems highly suitable for different

numbers of reviewer set sizes in terms of numeric quality.

8.2.5. Run Time (Analysis of H6)

To fully evaluate H6 of RevASIDE’s suitability for varying reviewer set sizes, the run time

for the construction of recommended sets is analysed in this section. We report the average

times of 10 runs of the program.

There are two pre-computations which are required for the conduction of Step 1: first,

the collecting and conversion of papers of reviewers in the different document vector rep-

resentations, in all cases the construction of tf-idf and LDA vectors which are needed for

Step 2 also. In theory, this part can be conducted before the manuscripts are submitted

to save some time. Second, the computation of the document vector representation for the

manuscript(s) for which reviewer sets need to be recommended. The actual execution time of

both steps of our approach is observed here, pre-computations which are independent of the

actual manuscripts and only performed once were disregarded in the following calculations.

For MOL’17 the pre-computation took 1.2837 seconds on average, for BTW’17 it took 6.9949

seconds on average and 19.4046 seconds on average for ECIR’17.

We performed the experiments on a server with 251 GB ram.

Again, to restrict dimensionality of this observation, we used the configuration which

achieved the best results for Step 1 e2 (DBOW + V otesδ=.5) which we already utilised in

the previous evaluation in Section 8.2.4. Here in Step 1, papers of reviewer candidates are
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Table 8. Average times in seconds for conduction of Step 1, Step 2 and the combination of both

for all three datasets for different reviewer set sizes |Rc| for single manuscripts.

dataset MOL’17
task\|Rc| 2 3 4 5 6

avg. Step 1 .1988 .1986 .1975 .1976 .1979
avg. Step 2 1.0341 1.0588 1.1833 1.6478 3.0069
avg. Step 1 + Step 2 1.2329 1.2574 1.3808 1.8454 3.2048

dataset BTW’17
task\|Rc| 2 3 4 5 6

avg. Step 1 0.9839 .9857 .985 .9782 .9814
avg. Step 2 2.3582 2.3914 2.6006 3.481 6.264
avg. Step 1 + Step 2 3.3421 3.3771 3.5856 4.4592 7.2454

dataset ECIR’17
task\|Rc| 2 3 4 5 6

avg. Step 1 4.1918 4.189 4.1513 4.1712 4.1652
avg. Step 2 2.7968 2.8432 3.1639 4.3623 8.2469
avg. Step 1 + Step 2 6.9886 7.0322 7.3152 8.5335 12.4121

summed up, if they have a similarity of at least .5 with a manuscript. The complexity of

this calculation is comparable to the other presented voting techniques, so we assume the

generalisation of our experiments is possible.

Table 8 shows the average run times for both steps of our algorithm for varying reviewer

set sizes in seconds. We observe differences in run times for the three observed datasets as

well as |Rc| but in general, both steps can be performed in few seconds. The observed time

frame of 12 seconds per manuscript at most is hard to beat in a manual conduction of the

reviewer set assignments. For fewer reviewers in a reviewer set, this period only decreases.

In general, the size of the reviewer candidate pool of a venue is influential. However, the

bigger the recommended reviewer set size, the higher the probability of two or more authors

from the observed set having a joint publication. This opposes Criterion 2, where we defined

the need for disjunct publications of authors in a reviewer set. In case of co-authorships, the

current reviewer set is disregarded and a score of 0 is returned. This also strongly affects run

times.

In this experiment, we showed the usability of RevASIDE in terms of run times for varying

recommended reviewer set sizes. Together with our previous evaluation in Section 8.2.4 we

conclude the validity of H6 of RevASIDE being suitable for different sizes of reviewer sets.

8.3. Qualitative Evaluation (Analysis of H7)

In this part of the evaluation we assess hypothesis H7 which covers the manual assessment of

the sets resulting from Step 2 and RevASIDE’s overall usefulness.

8.3.1. Best Configurations from Automatic Evaluation

In our first qualitative evaluation of Step 2, we examine the eleven (as c1 = c5) configurations

which performed best for the different result types from the three datasets (see Table 5) in

the quantitative evaluation. For the forty (twenty from ECIR’17 and twenty from BTW’17)



Christin Katharina Kreutz and Ralf Schenkel 127

Table 9. Average positions (pos) sets computed by the different configurations (conf) were ordered

to in the qualitative evaluation as well as the average number of relevant reviewers (#rel) and the
average position of entries from the different RTs per set.

dataset BTW’17
result type R0 Bt3 Btr Br
pos ∀ conf 2.3292 2.9083 2.4083 2.3373
conf\measure #rel pos #rel pos #rel pos #rel pos

c1 = c5 .3 2.05 0 3.65 .25 2.35 .65 1.95
c2 .75 2.8 1.1 2.1 .85 2.2 .55 2.9
c3 1.1 1.95 .85 3 1.1 2.25 .65 2.8
c4 .6 2.55 .85 2.25 .55 2.65 .9 2.55
c6 .4 2.5 .25 2.65 .5 2.5 .55 2.35
c7 .4 2.6 .25 2.95 .25 2.65 .65 1.75
c8 .2 2.1 0 4 .3 2.25 .5 1.65
c9 .8 2.35 1.05 2.3 .85 2.4 .6 2.95
c10 1.05 2.25 1.05 2.25 .95 2.65 .7 2.8
c11 .65 2.3 .3 3.4 .55 2.4 1 1.9
c12 .65 2.45 .7 2.7 .8 2.25 .65 2.5

dataset ECIR’17
result type R0 Bt3 Btr Br
pos ∀ conf 2.1454 2.7272 2.4818 2.5818
conf\measure #rel pos #rel pos #rel pos #rel pos

c1 = c5 .6 2.4 .2 3.2 .6 2.3 .4 2.1
c2 1 2.2 1.6 1.8 1.6 2.0 .7 3.7
c3 .7 2.3 .7 2.2 .7 2.6 .7 2.6
c4 1 1.6 1.5 1.9 .8 2.8 .5 3.7
c6 .2 2.8 .4 2.6 .4 2.7 .3 1.9
c7 .7 2 .5 3.3 .6 2.5 .4 2.2
c8 .6 1.8 .2 3.7 .3 2.7 .8 1.8
c9 .5 1.5 .5 3.2 .5 2.5 .2 2.8
c10 .5 2.4 .5 2.9 .5 2.7 .7 2.0
c11 .5 2.1 .3 3.4 .3 2.6 .7 1.9
c12 1 2.5 1.4 1.8 1.4 1.9 .6 3.7

documents which were used in the first manual evaluation, we compute lists of four reviewer

sets for all configurations, consisting of one reviewer set produced by each of the three baselines

as well as R0. We present the lists to an expert who then ranks the four entries according

to suitability for the query manuscript from 1 (best) to 4 (worst), with the option of ties if

two or more entries are equally suitable. Table 9 shows the average ranks of the result types

in the evaluated lists for the two datasets, their average number of relevant reviewers per

configuration and the average positions that entries from a specific RT achieved.

For BTW’17, the combination achieving the best results is c8 (BERT, MIN , k = 10, t

= .25) and (surprisingly) Br. For ECIR’17, the combination achieving the best results came

from configuration c9 (BERT, mRR, k = 20, t = .9) and R0.

Overall, R0 achieves the best results out of all combinations and datasets. Br generates

the best results for BTW’17, but highly depends on the configuration as it also achieves
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Table 10. Average positions (pos) of sets computed by the different configurations (conf) in the

qualitative evaluation as well as the average number of relevant reviewers (#rel) and the average
position of entries from the different RTs per set. b1: tf-idf + SUM , e1: tf-idf + MNZ, e2:

DBOW + V otesδ=.5.

dataset BTW’17
result type R0 Bt3 Btr Br
pos ∀ conf 1.5833 1.95 2.933 3.5167
conf\measure #rel pos #rel pos #rel pos #rel pos

b1 .9 1.7 1.45 1.95 .95 3.15 .8 3.2
e1 .85 1.55 1.4 1.85 1.05 3.0 .6 3.6
e2 .8 1.5 1.25 2.05 .75 2.65 .6 3.75

dataset ECIR’17
result type R0 Bt3 Btr Br
pos ∀ conf 1.2667 1.3333 1.6167 3.2167
conf\measure #rel pos #rel pos #rel pos #rel pos

b1 1.6 1.6 1.55 1.45 1.25 1.55 .4 3.1
e1 1.55 1.1 2.1 1.15 1.3 1.4 .5 3.15
e2 1.6 1.1 2.05 1.4 1.3 1.9 .9 3.4

considerably bad results, especially for the ECIR’17 dataset. Although the results are greatly

influenced by the configuration, R0 performs consistently well in general. The combination

of configuration and result type achieving the highest number of mean relevant reviewers per

dataset is not the one achieving the best results in terms of positions, e.g. ECIR’17 + cc +

Btr. This leads to the conclusion that it is not sufficient to consider only topical relevance

in determining the most suitable combination. In both datasets, the RT achieving the best

average positions is R0.

As data was not normally distributed in the different groups for both datasets, we used

Kruskal-Wallis H tests on positions of the four RT for the two datasets, which resulted in

significant differences. We conducted Mann-Whitney U tests on the positions of R0 and each

of the three baselines resulting from all configurations together on the respective datasets. In

the BTW’17 dataset, R0 performed significantly better than Bt3 but no significant differences

were found when compared to the two other baselines. In the ECIR’17 dataset, R0 performed

significantly better than all three baselines.

8.3.2. Best Configurations From Step 1

In a second manual evaluation of Step 2, we examined the best combinations from Step 1

(b1, e1 and e2) with CT = full, k = 20, t = .5 as the best performing combinations from

Step 2 performed bad in Step 1. Configuration e2 has already been utilised in the previous

evaluation of H6 (see Section 8.2.4 and Section 8.2.5). Table 10 was constructed exactly as

described previously for Table 9. For both datasets, the best performing RT is R0. It achieves

the best average position for all configurations together, and the combination resulting in the

best position is e2 with R0. For ECIR’17, R0 also produces the best overall position for e1.

To better understand the impact of the five aspects, a human assessor also evaluated the

quality of the results with the best combinations from Step 1 with respect to each aspect,

assigning a value between 0 and 1 for each aspect. Table 11 depicts average scores accord-
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Table 11. Configuration (c) and RTs with corresponding scores per dataset and manually assessed

average values ∈ [0, 1] (with 1 being the best possible and 0 being the worst possible value) for
aspects of sets for the twenty evaluated papers. mA: 1/3 ∀ reviewers with h index ≥ 25; mS:

each 1/3 if set contains at least one senior researcher, at least one junior researcher or at least one

mid-career researcher; mI: 1/3 ∀ reviewers who published a relevant paper in the seven previous
years; mD: 1/3 ∀ reviewer pairs without overlap in their work; mE: 1/3 for each relevant reviewer

in the set. Value mSC is calculated similarly to SC, all manually evaluated aspects are multiplied.

dataset BTW’17
c×RT SC mSC mA mS mI mD mE

b1×R0 .0316 .0383 .8667 .6667 .25 .8833 .3
b1×Bt3 .0089 .0767 .8333 .6333 .3167 .95 .4833
b1×Btr .0079 .0412 .7333 .7333 .25 .9667 .3167
b1×Br .0056 .024 .65 .6833 .2167 .9333 .2667
e1×R0 .0308 .0397 .9833 .6667 .2333 .9167 .2833
e1×Bt3 .0107 .0667 .9833 .55 .2833 .9333 .4667
e1×Btr .0082 .0446 .8333 .6667 .2333 .9833 .35
e1×Br .0085 .0142 .6667 .7333 .15 .9667 .2
e2×R0 .0296 .0338 1 .6333 .2 1 .2667
e2×Bt3 .0078 .0704 .9 .65 .3333 .8667 .4167
e2×Btr .0082 .0223 .8167 .6667 .1667 .9833 .25
e2×Br .0069 .0076 .45 .75 .1167 .9667 .2

dataset ECIR’17
c×RT SC mSC mA mS mI mD mE

b1×R0 .0337 .1539 .8667 .6667 .5167 .9667 .5333
b1×Bt3 .0087 .1182 .8667 .55 .5333 .9 .5167
b1×Btr .009 .0753 .85 .6 .3667 .9667 .4167
b1×Br .0072 .006 .55 .6167 .1333 1 .1333
e1×R0 .03 .122 1 .5667 .4166 1 .5167
e1×Bt3 .0082 .2432 1 .6167 .65 .8667 .7
e1×Btr .0087 .1097 .9667 .65 .4167 .9667 .4333
e1×Br .0043 .0089 .6667 .6833 .1167 1 .1667
e2×R0 .0271 .1493 1 .6 .4667 1 .5333
e2×Bt3 .0096 .1686 .9167 .5 .5667 .95 .6833
e2×Btr .007 .084 .8667 .65 .35 .9833 .4333
e2×Br .0044 .0297 .5667 .6667 .2667 .9833 .3
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ing to Equation 3 for combinations of the three best methods from Step 1 with all result

types, manually assessed average values for the five aspects and “manual” scores computed

by multiplying the per-aspect values. In this evaluation, we wanted to compare the manually

constructed scores to the automatic ones and evaluate possible effects of opposing aspects.

We observe vast differences in the manual scores mSC and the computed scores, in almost

all cases Bt3 achieves the highest mSC. As we have already seen in Tables 9 and 10, R0

generally achieves the best average positions for sets of reviewers. This discrepancy further

underlines the suitability of our approach. RevASIDE produces reviewer sets based on calcu-

lated aspects which are preferable in a manual evaluation to the sets from Bt3 which achieved

the highest mSC in the manual assessment of aspects.

We found a positive correlation of aspectsmA andmI (.597 for BTW’17, .802 for ECIR’17)

which is significant with Pearson’s correlation coefficient for both datasets. A higher authority

might be equivalent to a higher number of papers, especially in the last seven years, which

might increase the probability of one of these papers being from the area of the manuscript

and thus signals reviewers’ interest. Also for both datasets, the negative correlation between

mI and mD (-.589 for BTW’17, -.72 for ECIR’17) is significant with Pearson’s correlation

coefficient. If reviewers in a set are very interested in a manuscript, it seems likely that the set

is not as diverse. In BTW’17, mA is significantly correlated with mS (-.789), in ECIR’17 this

negative correlation is not significant with Pearson’s correlation coefficient. This observation

can be explained as sets having high authority normally consist solely of researchers with

high seniority. We found opposing objectives coded into the aspects which might have led to

methods from Table 5 achieving low results in Step 1 but being useful in Step 2.

In general, average positions of sets from the different RTs are highly dependent on the

configuration in BTW’17 and ECIR’17 for the best performing configurations in Step 2,

but the overall best results are achieved independent of configuration by R0. From these

observations, we conclude that R0 and thereby RevASIDE is a well-performing solution of

the reviewer set assignment problem which is generally applicable. Thus, hypothesis H7 is

verified.

9. Conclusion and Future Work

In this paper, we proposed and evaluated RevASIDE, a method for assigning complementing

reviewer sets for submissions from fixed candidate pools. Our approach incorporates authority,

seniority, interests of researchers, diversity of the reviewer set as well as candidates’ expertise.

Additionally, we presented three new datasets suitable for reviewer set recommendation.

In this context, we examine the expert search as well as the reviewer set assignment tasks

and show RevASIDE’s general applicability: for the first task, we revaluated expert voting

techniques utilising different document representations. We verified the general usefulness of

Step 1 for the expert search (addressed with hypothesis H1) and reviewer set recommendation

task (addressed with hypothesis H5). Additionally, we have shown the suitability of simple

textual similarity methods utilising tf-idf compared to more advanced techniques using BERT,

which in terms rejected hypothesis H2. For the second task, RevASIDE produces significantly

higher overall scores for reviewer set assignment compared to three baselines in a quantita-

tive evaluation, which shows the approach’s usefulness. Our approach is useful for different

recommended reviewer set sizes (see hypothesis H6). In a qualitative evaluation, we observed
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that sets assembled by our system are generally significantly more suitable recommendations

compared to our three baselines. We were able to confirm the results from the quantitative

evaluation and thus verified H7.

Possible extensions might include weighting the different quantifiable aspects defined in

Step 2 of the approach and incorporating the venue which reviewers are recommended for.

The number of assigned reviewers could be varied for each submission to take into account

papers with broad content.

Future work will focus on recommending suitable reviewer sets for whole venues. Here,

the optimisation problem of single manuscripts is extended to include all manuscripts and

several constraints such as individually differing maximal numbers of papers per reviewer come

into consideration. Such an approach should also consider fairness [44] of the recommended

reviewer sets. It would be interesting to observe gaps in the expertise displayed by the program

committee in terms of fit with submitted manuscripts, together with suggesting new reviewers

matching the missing criteria. Another feasible extension might be the recommendation of

a program committee based on former and recent conferences and anticipated submissions.

Here, topical development between years is important. Furthermore, explainability [45] of the

recommended reviewer sets should be a priority. In our case, radar charts could be used for

example to visualise the values which the sets achieved in the different quantifiable aspects.
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