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Abstract
The wavelet transform has emerged over recent years as a powerful time–
frequency analysis and signal coding tool favoured for the interrogation of
complex nonstationary signals. Its application to biosignal processing has been
at the forefront of these developments where it has been found particularly
useful in the study of these, often problematic, signals: none more so than
the ECG. In this review, the emerging role of the wavelet transform in the
interrogation of the ECG is discussed in detail, where both the continuous and
the discrete transform are considered in turn.

Keywords: wavelet transforms, electrocardiogram

(Some figures in this article are in colour only in the electronic version)

1. Introduction

As a result of the infinite extent of the Fourier integral, analysis is time averaged. Thus
it contains only globally averaged information and so has the potential to obscure transient
or location specific features within the signal. This limitation can be partly overcome by
introducing a sliding time window of fixed length to localize the analysis in time. This local or
short time Fourier transform (STFT) provides a degree of temporal resolution by highlighting
changes in spectral response with respect to time. A number of alternative time–frequency
methods are now available for signal analysis. Of these, the wavelet transform has emerged
over recent years as the most favoured tool by researchers for analysing problematic signals
across a wide variety of areas in science, engineering and medicine (Addison 2002). It
is especially valuable because of its ability to elucidate simultaneously local spectral and
temporal information from a signal in a more flexible way than the STFT by employing a
window of variable width. Thus wavelet transforms produce a time–frequency decomposition
of the signal which separates individual signal components more effectively than the traditional
short time Fourier transform (STFT). This flexible temporal–spectral aspect of the transform
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allows a local scale-dependent spectral analysis of individual signal features. In this way
both short duration, high frequency and longer duration, lower frequency information can be
captured simultaneously. Hence the method is particularly useful for the analysis of transients,
aperiodicity and other non-stationary signal features where, through the interrogation of the
transform, subtle changes in signal morphology may be highlighted over the scales of interest.
Another key advantage of wavelet techniques is the variety of wavelet functions available,
thus allowing the most appropriate to be chosen for the signal under investigation. This is in
contrast to Fourier analysis which is restricted to one feature morphology: the sinusoid. In
its discrete form using orthogonal wavelet bases, the wavelet transform is particularly useful
in signal coding, allowing information within the signal to be localized within a number
of pertinent coefficients for compression purposes. Wavelet transform analysis has now
been applied to a wide variety of biomedical signals including: the EMG, EEG, clinical
sounds, respiratory patterns, blood pressure trends and DNA sequences (e.g. Dupuis and
Eugene (2000), Hadjileontiadis and Panas (1997), Marrone et al (1999), Khalil and Duchene
(2000), Petrosian et al (2000), Arneodo et al (1998)) and the subject of this review, the
ECG.

This review will examine the emerging role of wavelet transform analysis in the study
of the ECG. It will begin with a brief overview of the theory of the transform in its two
distinct, and very different, forms—continuous and discrete. This will be followed by a
detailed account of the various areas of application to the electrocardiogram, including the
determination of timing intervals, the detection of abnormalities, the analysis of heart rate
variability and cardiac arrhythmias and signal compression.

2. The wavelet transform

Time–frequency signal analysis methods offer simultaneous interpretation of the signal in
both time and frequency which allows local, transient or intermittent components to be
elucidated. Such components are often obscured due to the averaging inherent within spectral
only methods, i.e. the FFT. A number of time–frequency methods are currently available for
the high resolution decomposition in the time–frequency plane useful for signal analysis,
including the short time Fourier transform (STFT), Wigner–Ville transform (WVT), Choi–
Williams distribution (CWD) and the continuous wavelet transform (CWT). Of these the
continuous wavelet transform has emerged as the most favoured tool by researchers as it
does not contain the cross terms inherent in the WVT and CWD methods while possessing
frequency-dependent windowing which allows for arbitrarily high resolution of the high
frequency signal components (unlike the STFT).

Many of the ideas behind wavelet transforms have been in existence for a long time.
However, wavelet transform analysis as we now know it really began in the mid 1980s where
it was developed to interrogate seismic signals (Goupillaud et al 1984). Interest in wavelet
analysis remained within a small, mainly mathematical community during the rest of the 1980s
with only a handful of scientific papers coming out each year. The application of wavelet
transform analysis in science and engineering really began to take off at the beginning of the
1990s, with a rapid growth in the numbers of researchers turning their attention to wavelet
analysis during that decade. The last few years have each seen the publication of over 1000
refereed journal papers concerning application of the wavelet transform, and these covering
all numerate disciplines.

Wavelet transforms as they are in use today come in essentially two distinct varieties or
classes: the continuous wavelet transform and the discrete wavelet transform. These are now
reviewed separately.



Topical Review R157

2.1. The continuous wavelet transform (CWT)

The continuous wavelet transform (CWT) is a time–frequency analysis method which differs
from the more traditional short time Fourier transform (STFT) by allowing arbitrarily high
localization in time of high frequency signal features. The CWT does this by having a variable
window width, which is related to the scale of observation—a flexibility that allows for the
isolation of the high frequency features. Another important distinction from the STFT is that
the CWT is not limited to using sinusoidal analysing functions. Rather, a large selection of
localized waveforms can be employed as long as they satisfy predefined mathematical criteria
(described below). The wavelet transform of a continuous time signal, x(t), is defined as:

T (a, b) = 1√
a

∫ +∞

−∞
x(t)ψ∗

(
t − b

a

)
dt (1)

where ψ∗(t) is the complex conjugate of the analysing wavelet function ψ(t), a is the dilation
parameter of the wavelet and b is the location parameter of the wavelet. In order to be classified
as a wavelet, a function must satisfy certain mathematical criteria. These are:

(1) It must have finite energy:

E =
∫ ∞

−∞
|ψ(t)|2 dt < ∞. (2)

(2) If ψ̂(f ) is the Fourier transform of ψ(t), i.e.

ψ̂(f ) =
∫ ∞

−∞
ψ(t) e−i(2πf )t dt (3)

then the following condition must hold:

Cg =
∫ ∞

0

|ψ̂(f )|2
f

df < ∞. (4)

This implies that the wavelet has no zero-frequency component, i.e. ψ̂(0) = 0, or to put
it another way, it must have a zero mean. Equation (4) is known as the admissibility
condition and Cg is called the admissibility constant. The value of Cg depends on the
chosen wavelet.

(3) For complex (or analytic) wavelets, the Fourier transform must both be real and vanish
for negative frequencies.

The contribution to the signal energy at the specific a scale and b location is given by the
two-dimensional wavelet energy density function known as the scalogram (analogous to the
spectrogram—the energy density surface of the STFT):

E(a, b) = |T (a, b)|2. (5)

In practice, all functions which differ from |T (a, b)|2 by only a constant multiplicative
factor are also called scalograms, e.g. |T (a, b)|2/Cg , |T (a, b)|2/Cgfc, etc (where fc is a
characteristic frequency of the wavelet function—see later). The scalogram can be integrated
across a and b to recover the total energy in the signal using the admissibility constant, Cg, as
follows:

E = 1

Cg

∫ +∞

−∞

∫ ∞

0
|T (a, b)|2 da

a2
db,

[
=

∫ +∞

−∞
x(t)2 dt

]
. (6)

The relative contribution to the total energy contained within the signal at a specific a
scale is given by the scale-dependent energy distribution:

E(a) = 1

Cg

∫ ∞

−∞
|T (a, b)|2 db. (7)
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Peaks in E(a) highlight the dominant energetic scales within the signal. We may
convert the scale-dependent wavelet energy spectrum of the signal, E(a), to a frequency-
dependent wavelet energy spectrum EW(f ) in order to compare directly with the Fourier
energy spectrum of the signal EF(f ). To do this, we must convert from the wavelet a scale
(which can be interpreted as a representative temporal, or spatial, period for physical data) to
a characteristic frequency of the wavelet such as the spectral peak frequency, passband centre,
central frequency. The spectral components are inversely proportional to the dilation, i.e.
f ∝ 1/a, The frequency associated with a wavelet of arbitrary a scale is given by

f = fc

a
(8)

where the characteristic frequency of the mother wavelet (the archetypal wavelet at scale
a = 1 and location b = 0), fc, becomes a scaling constant and f is the representative or
frequency for the wavelet at arbitrary scale a.

Finally, as with the Fourier transform, the original signal may be reconstructed using an
inverse transform:

x(t) = 1

Cg

∫ ∞

−∞

∫ ∞

0
T (a, b)ψa,b(t)

da db

a2
. (9)

In practice a fine discretization of the CWT is computed where usually the b location is
discretized at the sampling interval and the a scale is discretized logarithmically.

As the wavelet transform given by equation (1) is a convolution of the signal with a
wavelet function we can use the convolution theorem to express the integral as a product in
Fourier space, i.e.,

T (a, b) = 1

2π

∫ ∞

−∞
x̂(ω)ψ̂∗

a,b(ω) dω (10a)

where

ψ̂∗
a,b(ω) = √

aψ̂∗(aω) eiωb (10b)

is the Fourier spectrum of the analysing wavelet at scale a and location b. In this way, a fast
Fourier transform (FFT) algorithm can be employed in practice to speed up the computation
of the wavelet transform.

For its practical implementation the continuous wavelet transform is computed over a
finely discretized time–frequency grid. This discretization involves an approximation of the
transform integral (i.e. a summation) computed on a discrete grid of a scales and b locations.
In general, the wavelet transform is approximated in this way over each time step for a range
of wavelet scales; there is therefore a heavy computational burden involved in the generation
of the CWT and in general an order or two in magnitude more wavelet values generated than
original signal components. A vast amount of repeated information is contained within this
redundant representation of the continuous wavelet transform T (a, b). This can be condensed
considerably by considering only local maxima and minima of the transform. Two definitions
of these maxima are commonly used in wavelet analysis practice, these are:

(1) Wavelet ridges, defined as

d(|T (a, b)2|/a)

da
= 0 (11)

are used for the determination of instantaneous frequencies and amplitudes of signal
components (Delprat et al 1992, Carmona et al 1997). Note that this definition of a ridge
uses the rescaled scalogram, S(a, b) = |T (a, b)|2/a, as it leads to a simpler analytical
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solution relating the ridge locus to the instantaneous frequency when a standard Morlet
wavelet is employed as the analysing wavelet. In addition, the amplitude of the ridge can
be used to compute the amplitude of the instantaneous frequency component. Further,
it has been shown recently how secondary wavelet transforms of ridges can be used to
provide information on the frequency and amplitude modulation of the primary signal
components (Addison and Watson 2004). The method, called secondary wavelet feature
decoupling (SWFD), requires neither the primary signal nor the secondary modulations
to be strictly stationary in nature.

(2) Wavelet modulus maxima, defined as

d|T (a, b)|2
db

= 0 (12)

are used for locating and characterizing singularities in the signal (Kadambe et al 1999,
Bruce and Adhami 1999). (Note that equation (12) also includes inflection points with
zero gradient. These can easily be removed when implementing the modulus maxima
method in practice.)

There are many continuous wavelets to choose from; however, by far the most popular are the
Mexican hat wavelet and the Morlet wavelet. These are described as follows.

2.1.1. The Mexican hat wavelet. The Mexican hat wavelet is the second derivative of a
Gaussian function given by

ψ(t) = (1 − t2) e− t2

2 . (13)

This wavelet, shown in figure 1(b), has been used in practice for a number of data analysis
tasks in science and engineering including: the morphological characterization of engineering
surfaces (Lee et al 1998), the interrogation of laser-induced ultrasonic signals used to measure
stiffness coefficients in a viscoelastic composite material (Guilbaud and Audoin 1999) and the
analysis of turbulent flows (e.g. Collineau and Brunet (1993), Higuchi et al (1994), Addison
(1999)). In addition, the Mexican hat is used extensively in studies requiring the use of
modulus maxima methods as its maxima lines (and those of all other derivatives of Gaussian
functions) are guaranteed continuous across scales for singularities in the signal (Mallat
1998). An example of a Mexican hat-based wavelet transform of a chirp signal is shown in
figure 1(c). The increase in frequency of the components through time in the time–frequency
plane is evident in the plot. Figure 2 shows the wavelet transform of an exponential
discontinuity—a sudden spike in the signal half way along its length followed by a smooth
exponential decay. As the transform plot has been orientated with the smallest scales at the
top it ‘points’ to the signal discontinuity in the signal above.

A complex version of the Mexican hat function can easily be constructed by simply
setting the negative part of its Fourier frequency spectrum to zero before performing an
inverse Fourier transform to get the analytic version of the Mexican hat shown (Addison
et al 2002b). However, in practice the Morlet wavelet is used when a complex wavelet
function is required. Note that the Mexican hat normally used in practice (i.e. that given by
equation (13) and shown in figure 1(b)) is actually the negative of the second derivative of the
Gaussian function. All derivatives of the Gaussian function may be employed as a wavelet.
Which is the most appropriate one to use depends on the application. The first and second
derivatives of the Gaussian are shown in figures 1(a) and (b), respectively. These are the two
that are most often used in practice. Higher order derivatives are less commonplace.
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Figure 1. Segment of a chirp signal with associated transform plot: (a) Gaussian wave (first
derivative of a Gaussian), (b) Mexican hat (second derivative of a Gaussian). (c) Mexican hat-
based transform of chirp signal (small/large a scales correspond to high/low frequency components
respectively). (Reprinted from Addison 2002 The Illustrated Wavelet Transform Handbook
chapter 2. With kind permission of the Institute of Physics Publishing.)

2.1.2. The Morlet wavelet. The Morlet wavelet is the most popular complex wavelet used in
practice. The complete Morlet wavelet is defined as

ψ(t) = 1
4
√

π

(
eiωot − e− ω2

o
2
)

e− t2

2 (14)

where ωo is the central frequency of the mother wavelet. The second term in the brackets is
known as the correction term, as it corrects for the non-zero mean of the complex sinusoid of
the first term. In practice it becomes negligible for values of ωo >5. Previous investigators
have concentrated on wavelet transforms with ωo in the range 5–6, where it can be performed
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small a scales
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Figure 2. Pointing to an exponential discontinuity. (a) A sudden spike with an exponential tail.
(b) The transform plot for the discontinuity. (Reprinted from Addison 2002 The Illustrated Wavelet
Transform Handbook chapter 2. With kind permission of the Institute of Physics Publishing.)

      

Figure 3. Two Morlet wavelets: left ωo = 2.0 (fo = 0.318) and right ωo = 12 (fo = 1.909).

without the correction term since it becomes very small. In this case, the Morlet wavelet
becomes

ψ(t) = 1
4
√

π
eiωot e− t2

2 . (15)

This truncated Morlet wavelet is almost invariably used in the literature and often
referred to as simply the Morlet wavelet. In this paper we use the name standard Morlet
wavelet for this simplified form and complete Morlet wavelet for the complete form given by
equation (14). However, it has been shown that lowering of ωo below 5 allows an interrogation
that is ‘more temporal than spectral’ which can be useful for some data analysis tasks (Addison
et al 2002b). Two examples of Morlet wavelets are shown in figure 3.

Figure 4 contains the same chirp signal as that shown above in figure 1. The Morlet
wavelet with ωo = 5.33 rad s−1 (i.e. f0 = 0.849 Hz) was used to transform the signal. The real
part of the transformed signal is plotted in figure 4(b) and has similarities with the Mexican
hat transform plot in figure 1(c). The discontinuities at the beginning and end of the chirp
segment are picked up well in the phase plot of figure 4(c). These are located using arrows
at the top of the phase plot. The continuous increase in instantaneous frequency associated
with the chirp is highlighted in the modulus plot of figure 4(d). The instantaneous frequency
associated with a signal component can be found from its wavelet transform ridges. These are
the maxima found in the rescaled wavelet transform scalogram. The ridge associated with the
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Figure 4. Segment of a chirp signal with associated transform plots—Morlet wavelet. (a) Chirp
signal segment, (b) real part of Morlet wavelet transform, (c) phase, (d) modulus and (e) a schematic

of the ridge found from the maxima of the rescaled scalogram |T (a,b)|2
a

. The instantaneous
frequency at time bR can be found from aR. We can see the relation between maxima in the
rescaled scalogram and instantaneous frequency by substituting a complex sinusoid as the signal
x(t) in the wavelet transform integral given by equation (1), and using a Morlet wavelet. Then,
using a change of variable t ′ = (t − b)/a, it can be shown that maxima in the rescaled scalogram
correspond to the instantaneous frequencies through their associated scales. (Reprinted from
Addison 2002 The Illustrated Wavelet Transform Handbook chapter 2. With kind permission of
the Institute of Physics Publishing.)

chirp signal is shown schematically in figure 4(e), where the instantaneous scale aR at time bR

can be used to find the instantaneous frequency fR (= f0/aR). The instantaneous amplitude
and phase can also be found from the ridge. Further, if we plot the rescaled scalogram in terms
of a characteristic wavelet frequency where f = f0/a, then the instantaneous frequency can
be read directly off this plot.

The standard Morlet wavelet has a form very similar to the analysing function used for
the short time Fourier transform employing a Gaussian window (sometimes called a Gabor
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transform). The important difference is that, for the Morlet wavelet transform, the window
and enclosed sinusoid are scaled together, whereas for the STFT we keep the window length
constant and scale only the enclosed sinusoid. The wavelet can therefore localize itself in time
for short duration, i.e. high frequency, fluctuations. There is, however, an associated spreading
of the frequency distribution associated with wavelets of short duration. Conversely, there is
a spreading in temporal resolution at low frequencies. This is highlighted for an ECG signal
at the beginning of section 3.

2.2. The discrete wavelet transform (DWT)

In its most common form, the DWT employs a dyadic grid (integer power of two scaling in a
and b) and orthonormal wavelet basis functions and exhibits zero redundancy. (Actually, the
transform integral remains continuous for the DWT but is determined only on a discretized
grid of a scales and b locations. In practice, the input signal is treated as an initial wavelet
approximation to the underlying continuous signal from which, using a multiresolution
algorithm, the wavelet transform and inverse transform can be computed discretely, quickly
and without loss of signal information.) A natural way to sample the parameters a and b is to
use a logarithmic discretization of the a scale and link this, in turn, to the size of steps taken
between b locations. To link b to a we move in discrete steps to each location b, which are
proportional to the a scale. This kind of discretization of the wavelet has the form

ψm,n(t) = 1√
am

0

ψ

(
t − nb0a

m
0

am
0

)
(16)

where the integers m and n control the wavelet dilation and translation respectively; a0 is a
specified fixed dilation step parameter set at a value greater than 1, and b0 is the location
parameter which must be greater than zero. A common choice for discrete wavelet parameters
a0 and b0 are 2 and 1 respectively. This power-of-two logarithmic scaling of both the
dilation and translation steps is known as the dyadic grid arrangement. The dyadic grid
is perhaps the simplest and most efficient discretization for practical purposes and lends itself
to the construction of an orthonormal wavelet basis. Substituting a0 = 2 and b0 = 1 into
equation (16) we see that the dyadic grid wavelet can be written compactly, as

ψm,n(t) = 2−m/2ψ(2−mt − n). (17)

Note that this has the same notation as the general discrete wavelet given by
equation (16). From here on, ψm,n(t) will be used only to denote dyadic grid scaling with
a0 = 2 and b0 = 1. Discrete dyadic grid wavelets are usually chosen to be orthonormal,
i.e. they are both orthogonal to each other and are normalized to have unit energy. This is
expressed as

∫ ∞

−∞
ψm,n(t)ψm′,n′(t) dt =

{
1 if m = m′ and n = n′

0 otherwise.
(18)

This means that the information stored in a wavelet coefficient Tm,n obtained from the
wavelet transform is not repeated elsewhere and allows for the complete regeneration of the
original signal without redundancy. The corresponding family of orthonormal wavelets is an
orthonormal basis. (A basis is a set of vectors, a combination of which can completely define
the signal, x(t). An orthonormal basis has component vectors which, in addition to being able
to completely define the signal, are perpendicular to each other.) Figure 5 shows a number of
examples of orthonormal wavelets.
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Figure 5. Examples of discrete orthogonal wavelets. (a) Three Haar wavelets at three consecutive
scales on a dyadic grid. (b) A Meyer wavelet and associated scaling function (right). (c) Daubechies
D4 wavelet. (d) Daubechies D20 wavelet. (e) C18 Coiflet wavelet (scaling function shown dotted).

Using the dyadic grid wavelet of equation (17), the discrete wavelet transform (DWT)
can be written as:

Tm,n =
∫ ∞

−∞
x(t)ψm,n(t) dt (19)

where Tm,n is known as the wavelet (or detail) coefficient at scale and location indices (m, n).
Before continuing it is important to make clear the distinct difference between the DWT

and the discretized approximations of the CWT used in practice. The discretizations of the
continuous wavelet transform, required for its practical implementation, involve a discrete
approximation of the transform integral (i.e. a summation) computed on a discrete grid of
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a scales and b locations. The inverse continuous wavelet transform is also computed as
a discrete approximation. How close an approximation to the original signal is recovered
depends mainly on the resolution of the discretization used and, with care, usually a very good
approximation can be recovered. On the other hand, for the DWT, as defined in equation (19),
the transform integral remains continuous but is determined only on a discretized grid of a
scales and b locations. We can then sum the DWT coefficients to infinity over m and n to get
the original signal back exactly. We will see later in this section how, given an initial discrete
input signal, which we treat as an initial approximation to the underlying continuous signal,
we can compute the wavelet transform and inverse transform discretely, quickly and without
loss of signal information.

Orthonormal dyadic discrete wavelets are associated with scaling functions and their
dilation equations. The scaling function is associated with the smoothing of the signal and has
the same form as the wavelet, given by

φm,n(t) = 2−m/2φ(2−mt − n). (20)

They have the property∫ ∞

−∞
φ0,0(t) dt = 1 (21)

where φ0,0(t) = φ(t) is sometimes referred to as the father scaling function or father wavelet
(cf mother wavelet). (The integral of a wavelet function is zero.) The scaling function is
orthogonal to translations of itself, but not to dilations of itself. The scaling function can be
convolved with the signal to produce approximation coefficients as follows

Sm,n =
∫ ∞

−∞
x(t)φm,n(t) dt . (22)

From the above, we can see that the approximation coefficients are simply weighted
averages of the continuous signal factored by 2m/2. The approximation coefficients at a
specific scale m are collectively known as the discrete approximation of the signal at that
scale. A continuous approximation of the signal at scale m can be generated by summing
a sequence of scaling functions at this scale factored by the approximation coefficients as
follows

xm(t) =
∞∑

n=−∞
Sm,nφm,n(t) (23)

where xm(t) is a smooth, scaling-function-dependent version of the signal x(t) at scale index
m. This continuous approximation approaches x(t) at small scales, i.e. as m → −∞. A signal
x(t) can then be represented using a combined series expansion using both the approximation
coefficients and the wavelet (detail) coefficients as follows

x(t) =
∞∑

n=−∞
Sm0,nφm0,n(t) +

m0∑
m=−∞

∞∑
n=−∞

Tm,nψm,n(t). (24)

We can see from this equation that the original continuous signal is expressed as a
combination of an approximation of itself, at arbitrary scale index m0, added to a succession of
signal details from scales m0 down to negative infinity. The signal detail at scale m is defined
as

dm(t) =
∞∑

n=−∞
Tm,nψm,n(t) (25)
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hence we can write equation (24) as

x(t) = xm0(t) +
m0∑

m=−∞
dm(t). (26)

From this equation it is easy to show that

xm−1(t) = xm(t) + dm(t) (27)

which tells us that if we add the signal detail at an arbitrary scale (index m) to the approximation
at that scale we get the signal approximation at an increased resolution (i.e. at a smaller scale,
index m − 1). This is called a multiresolution representation (Mallat 1989).

2.2.1. Coefficients from coefficients: multiresolution and the fast wavelet transform. The
approximation coefficients at scale index m + 1 can be generated using the scaling coefficients
at the previous scale.

Sm+1,n = 1√
2

∑
k

ckSm,2n+k = 1√
2

∑
k

ck−2nSm,k. (28)

Similarly the wavelet coefficients can be found from the approximation coefficients at the
previous scale using the reordered scaling coefficients bk as follows

Tm+1,n = 1√
2

∑
k

bkSm,2n+k = 1√
2

∑
k

bk−2nSm,k. (29)

We can see now that if we know the approximation coefficients Sm0,n at a specific scale
m0 then, through the repeated application of equations (28) and (29), we can generate the
approximation and detail wavelet coefficients at all scales larger than m0. Note that, to do
this, we do not even need to know exactly what the underlying continuous signal x(t) is,
only Sm0,n. Equations (28) and (29) represent the multiresolution decomposition algorithm.
The decomposition algorithm is the first half of the fast wavelet transform which allows us
to compute the wavelet coefficients in this way, rather than computing them laboriously from
the convolution of equation (19). Iterating equations (28) and (29) performs, respectively, a
highpass and lowpass filtering of the input (i.e. the coefficients Sm,2n+k) to get the outputs (Sm+1,n

and Tm+1,n). The vectors containing the sequences 1√
2
ck and 1√

2
bk represent the filters: 1√

2
ck is

the lowpass filter, letting through low signal frequencies and hence a smoothed version of the
signal, and 1√

2
bk is the highpass filter, letting through the high frequencies corresponding to

the signal details. The filter coefficients determine the wavelet used. The reader is referred to
Daubechies (1992) for more information on coefficients (including listings) and the resulting
properties of their associated wavelets.

We can go in the opposite direction and reconstruct Sm,n from Sm+1,n and Tm+1,n using the
reconstruction algorithm:

Sm−1,n = 1√
2

∑
k

cn−2kSm,k +
1√
2

∑
k

bn−2kTm,k (30)

where we have reused k as the location index of the transform coefficients at scale index
m to differentiate it from n, the location index at scale m − 1. Hence, at the smaller scale,
m − 1, the approximation coefficients can be found in terms of a combination of approximation
and detail coefficients at the next scale, m. Note that if there are only a finite number of non-
zero scaling coefficients (=NK), then cn − 2k has non-zero values only when in the range 0 to
Nk − 1. The reconstruction algorithm is the second half of the multiresolution algorithm.
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(a)

(b)

Figure 6. Covering the time axis with dyadic grid wavelets. (a) Eight Daubechies D4 wavelets
covering the time axis at scale m. (b) Four Daubechies D4 wavelets covering the time axis at
scale m + 1. These wavelets are twice the width of those in (a). (Reprinted from Addison 2002
The Illustrated Wavelet Transform Handbook chapter 3. With kind permission of the Institute of
Physics Publishing.)

2.2.2. Discrete input signals of finite length. In practice, discrete input signals are analysed.
This is generally taken to be the signal approximation coefficients at scale index m = 0.
(Although this is not correct: see Strang and Nguyen (1996) for further discussion concerning
this practice.) In addition, this series of coefficients, S0,n, is of finite length N, which is an
integer power of 2: N = 2M. Thus the range of scales that can be investigated is 0 < m < M.
Substituting both m = 0 and m = M into equation (24), and noting that we have a finite range
of n which halves at each scale, we can see that the signal approximation scale m = 0 (the
input signal) can be written as the smooth signal at scale M plus a combination of detailed
signals as follows

2M−m−1∑
n=0

S0,nφ0,n(t) = SM,nφM,n(t) +
M∑

m=1

2M−m−1∑
n=0

Tm,nψm,n(t). (31)

This is the form used to describe our finite length discrete signal in terms of its discrete
wavelet expansion. The covering of a finite length time segment with wavelets is illustrated in
figure 6 for Daubechies D4 wavelets at two successive scales. The lower scale covers the time
window using eight wavelets, and the larger scale uses four wavelets. One of the wavelets in
each plot is shown bold for clarity. The wavelets shown which spill over the end of the window
have been wrapped around back to the beginning. Known as wraparound, it is the simplest
and one of the most common treatments of the boundary for a finite length signal. However,
note that by employing this method, we assume that the signal segment under investigation
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represents one period of a periodic signal and we are in effect pasting the end of the signal back
onto the beginning. Obviously, if the signal is not periodic, and in practice it usually is not,
then we create artificial singularities at the boundary which results in large detail coefficients
generated near to the boundary: a point very often overlooked in practice. Details of other
methods for treating the boundaries can be found in Addison (2002).

We can rewrite equation (31) as

x0(t) = xM(t) +
M∑

m=1

dm(t) (32)

where the mean signal approximation at scale M is

xM(t) = SM,nφM,n(t). (33)

As the approximation coefficients are simply factored, weighted averages of the signal
then, when wraparound is employed to deal with the boundaries, the single approximation
component SM,n is related to the mean of the input signal through the relationship S0,n =
SM,n/

√
2M where the overbar denotes the mean of the sequence S0,n. In addition, when

wraparound has been used to deal with the boundaries, the mean signal approximation at the
largest scale, xM(t), is a constant valued function equal to the input signal mean.

After a full decomposition, the energy contained within the coefficients at each scale is
given by

Em =
2M−m−1∑

n=0

(Tm,n)
2. (34)

A wavelet based power spectrum of the signal may be produced using these scale-
dependent energies. To do so, we require a frequency measure which is a reciprocal of the
wavelet dilation e.g. the passband centre of the power spectrum of the wavelet. A wavelet
power spectrum can then be produced for the signal which is directly comparable with both its
Fourier and continuous wavelet counterparts. The sum of the energies contained in the detail
and approximation coefficients is equal to the energy in the discrete input signal, and this is
true for the energy at all stages of the multiresolution decomposition.

The term on the far right of equation (32) represents the series expansion of the fluctuating
components of the finite length signal at various scales in terms of its detail coefficients. The
detail signal approximation corresponding to scale index m is defined for a finite length signal
as

dm(t) =
2M−m−1∑

n=0

Tm,nψm,n(t). (35)

As we saw above (equation (32)), adding the approximation of the signal at scale index M
to the sum of all detail signal components across scales 0 < m < M gives the approximation
of the original signal at scale index 0. Figure 7 shows the details of a chirp signal with a
short burst of noise added to the middle of it. A Daubechies D20 wavelet was used in the
decomposition. The original signal is shown at the top of the plot. Below the signal the details
for ten wavelet scales, d1(t) to d10(t), are shown. The bottom trace is the remaining signal
approximation x10(t). Adding together all these details plus the remaining approximation
(which is the signal mean) returns the original signal. Two things are noticeable from the plot.
First, there is a shift to the left of the large amplitude details with increasing scale, as we would
expect as the chirp oscillation increases in frequency from left to right. The second thing to
notice is that the high frequency burst of noise is captured at the smallest scales, again as we
would expect.
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Figure 7. Multiresolution decomposition of a chirp signal containing a short burst of noise.
(a) Signal details dm(t). (The signals have been displaced from each other on the vertical axis to aid
clarity.) (b) Signal approximations xm(t). (Reprinted from Addison 2002 The Illustrated Wavelet
Transform Handbook chapter 3. With kind permission of the Institute of Physics Publishing.)

Figure 8 contains an example of a wavelet decomposition of a test signal using a discrete
wavelet. The input signal is composed of a section of a sine wave, some high frequency noise
and a flatline. The signal is decomposed using a Daubechies D6 wavelet. A member of this
family is shown in figure 8(b). The discrete transform plot is shown in figure 8(c) where the
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Figure 8. Discrete wavelet transform of a composite signal. The original composite signal (a) is
composed of three segments: a sinusoid, uniformly distributed noise and a flatline. The signal is
decomposed using Daubechies D6 wavelets (b) to give the dyadic array of transform coefficients
plotted in (c). The coefficients corresponding to scales 5 to 9 are kept (d) and used to reconstruct
the signal in (e). Note that a grey scale is used to depict the coefficient values, where the maximum
value is white and the minimum value is black. (a) Original composite signal. (b) A member
of the Daubechies D6 wavelet family. (c) Discrete transform plot. (Note dyadic structure—large
positive coefficient values are white and large negative values black.) (d) Coefficient removal.
(e) Reconstructed signal using only retained coefficients in (d). (Reprinted from Addison 2002
The Illustrated Wavelet Transform Handbook chapter 3. With kind permission of the Institute of
Physics Publishing.)

dyadic grid arrangement may be seen clearly. This plot is simply a discretized dyadic map
of the detail coefficients, Tm,n, where the coefficients at larger scales have correspondingly
longer boxes (as the wavelets cover larger segments of the input signal). In addition to the
detail coefficients, Tm,n, the remaining approximation coefficient SM,0 is added to the bottom
of the plot. As we would expect it covers the whole time axis. We can see from the transform
plot that the dominant oscillation is picked up at scale index m = 6 and the high frequency
noise is picked up within the middle segment of the transform plot at the smaller scales. We
can use the reconstruction algorithm (equation (30)) to get back the original input signal S0,n

from the array of detail coefficients shown in figure 8(c). Alternatively, we can reconstruct a
modified version of the input signal by using only selected coefficients in the reconstruction.
This is shown in figures 8(d) and (e) where only the coefficients corresponding to scales
m = 5 to 8 are kept (the others are set to zero) and the signal is reconstructed. This has
removed a significant amount of the noise from the signal although the sinusoidal waveform
is less smooth than the original in figure 8(a). There are many more sophisticated methods
to remove noise which retain the most significant signal coefficients before reconstructing.
A number of thresholding methods have been developed to allow the optimum selection of
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the most pertinent components. (A full treatment of wavelet thresholding methods is outwith
the scope of this text. The reader is referred instead to Abramovich et al (2000) for a concise
summary of the commonly used wavelet thresholding methods together with a comprehensive
list of references on the subject.) Data compression methods require that only those wavelet
coefficients which carry most of the signal information are identified and retained for use in
the reconstruction of the signal. Thresholding methods have also been used to determine the
significant coefficients pertaining to a pertinent signal feature, e.g. for ECG analysis they can
be used to determine the location of the QRS peak.

We have glossed over much of the mathematical detail of multiresolution analysis here.
Most mathematical accounts of the subject begin with a discussion of orthogonal nested
subspaces and the signal approximations and details, xm(t) and dm(t), as projections onto
these spaces. This more mathematical tack has not been followed herein, see for example
Mallat (1998), Blatter (1998), Sarkar and Su (1998) or Williams and Armatunga (1994).

2.2.3. Methods derivative of the DWT. The discrete wavelet transform has emerged as
a particularly powerful tool for the encoding of data required for compression systems.
Wavelet packet transforms (WPTs) are a generalization of the discrete wavelet transform
which involve particular linear combinations of discrete wavelets and the decomposition of a
signal is performed in a manner similar to the multiresolution algorithm given earlier for the
discrete wavelet transform. The difference being that, in the WPT signal decomposition, both
the approximation and detailed coefficients are further decomposed at each level. At each
stage in the decomposition, the wavelet packet algorithm partitions the time–frequency plane
into rectangles of constant aspect ratio. The optimal WPT coefficient selection is chosen to
represent the signal based on some predefined criterion. This criterion is normally based on
an information cost function which aims to retain as much information in as few coefficients
as possible. The most common measure of information used is the Shannon entropy measure
(Addison 2002). Low entropies occur when the larger coefficient energies are concentrated
at only a few discrete locations. In practice, the set of N wavelet packet coefficients which
contain the least entropy are selected to represent the signal. That is, we want as much of
the signal information to be concentrated within as few coefficients as possible. To find these
coefficients the WPT coefficients are inspected and at each scale, each pair of partitioned
coefficients sets are compared to those from which they were derived. Once the whole WP
array has been inspected and the minimum entropy criterion employed, an optimal tiling of
the time–frequency plane (with respect to the localization of coefficient energies) is obtained.
This tiling provides the best basis for the signal decomposition.

Both the DWT and WPT lack translation invariance. Translation invariance simply
means that if you shift the analysis along the signal by an arbitrary amount all your transform
coefficients simply move along by the same amount. For the dyadic grid structure of the
discrete wavelet transform this is clearly not the case: only if you shift along by the grid
spacing at that scale do the coefficients become translation invariant at that scale and below.
For the discretization of the continuous wavelet transform used in practice, the transform
values are translation invariant only if shifted by any integer multiple of the discrete time
steps, i.e. it is effectively translation invariant as the minimum shift would be the sampling
interval of the signal. The stationary wavelet transform (SWT) is an offshoot of the DWT
whereby the scales are dyadic but the time steps are not subsampled at each level and hence
are not dyadic. This destroys orthogonality in the transform and also leads to the generation
of many more coefficients, but does provide translation invariance. Although orthogonality
is destroyed, the SWT is very useful for some statistical applications (Coifman and Donoho
1995). The SWT is also known by a variety of names in the literature including the dyadic
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wavelet transform (i.e. dyadic in scales), maximal overlap transform and the redundant wavelet
transform. It is outwith the scope of this paper to consider the wavelet packet transform and
the stationary wavelet transform in more detail. For more information concerning the theory
of these derivatives of the DWT the reader is referred to chapter 3 of Addison (2002).

3. Application of wavelet analysis to the electrocardiogram

Muscular contraction is associated with electrical changes known as depolarization. The
electrocardiogram (ECG) is a measure of this electrical activity associated with the heart.
The ECG is measured at the body surface and results from electrical changes associated with
activation first of the two small heart chambers, the atria, and then of the two larger heart
chambers, the ventricles. The contraction of the atria manifests itself as the ‘P’ wave in the
ECG and contraction of the ventricles produces the feature known as the ‘QRS’ complex.
The subsequent return of the ventricular mass to a rest state—repolarization— produces the
‘T’ wave. Repolarization of the atria is, however, hidden within the dominant QRS complex.
Analysis of the local morphology of the ECG signal and its time varying properties has
produced a variety of clinical diagnostic tools. In this section we review the application of the
wavelet transform to the analysis of the ECG signal.

Figure 9 illustrates the shortcomings of traditional short term Fourier transform (STFT)
analysis in detecting signal features of short duration. The figure contains a scalogram and
a spectrogram corresponding to the rhythmic ECG signal shown at the top of the figure.
(The signal is actually derived from a pig heart which has been shocked several times.)
The spectrogram is generated from an STFT employing a 3.4 s Hanning window—typical
for the analysis of this type of signal. The smearing and hence loss of local information across
the spectrogram over these time scales is evident in the plot. Figure 10 contains three beats
of a sinus rhythm from a human heart together with its (Morlet) wavelet energy scalogram
shown as both a plan view (figure 10(b)) and a three-dimensional surface relief (figure 10(c)).
Note that the logarithm of the energy is plotted in the figures as it allows for features with
large differences in their energy to be made visible in the same plot. The QRS complex of
the waveform manifests itself as the conical structures in figure 10(b). These converge to the
high frequency components of the R spike. The P and T waves are also labelled in the plot. In
addition, the continuous band evident in the plot at a frequency of around 2 Hz corresponds to
the beat frequency of the sinus rhythm. The 3D morphology of the signal in wavelet space is
shown in figure 10(c). Figures 9 and 10 highlight the ability to separate out signal components
through the wavelet decomposition.

3.1. ECG timing, morphology, distortions and noise

Producing an algorithm for the detection of the P wave, QRS complex and T wave in an ECG
is a difficult problem due to the time varying morphology of the signal subject to physiological
conditions and the presence of noise. Recently, a number of wavelet-based techniques
have been proposed to detect these features. Senhadji et al (1995) compared the ability of
three different wavelets transforms (Daubechies, spline and Morlet) to recognize and describe
isolated cardiac beats. Sahambi et al (1997a, 1997b) employed a first-order derivative of the
Gaussian function as the wavelet for the characterization of ECG waveforms. They then used
modulus maxima-based wavelet analysis employing the dyadic wavelet transform to detect and
measure various parts of the signal, specifically the location of the onset and offset of the QRS
complex and P and T waves. Sahambi et al showed that the algorithm performed well in the
presence of modelled baseline drift and high frequency noise added to the signal. They used
the method to determine timing intervals of the ECG signal including the widths of the QRS
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Figure 9. Wavelet scalogram versus STFT spectrogram for rhythmic signal. (a) Original rhythmic
ECG signal. (b) Morlet based scalogram corresponding to (a). (c) Spectogram corresponding to
(a) generated using a short time Fourier transform with a 3.4 s Hanning window.

complex, T and P waves, and PR, ST and QT intervals. The measurements of these intervals
give the relative position of the components in the ECG which are important in delineating
the electrical activity of the heart. Improvements to the technique are described in Sahambi
et al (1998). Sivannarayana and Reddy (1999) have proposed the use of both launch points
and wavelet extrema to obtain reliable amplitude and duration parameters from the ECG.

R wave detectors are extremely useful tools for the analysis of ECG signals. They are used
both for finding the fiducial points employed in ensemble averaging analysis methods, and for
computing the R–R time series from which a variety of heart rate variability (HRV) measures
can be extracted (see section 3.3). Both these techniques rely on the accurate determination
of the temporal location of the R wave. There are currently a number of QRS detection
algorithms available which use a variety of signal analysis methods. The most common of
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Figure 10. Wavelet transform of human sinus rhythm.

these are based on signal matched filters or time–frequency decomposition methods. Other
less common methods have also been proposed including neural networks, genetic algorithms
and syntactic methods (Köhler et al 2002). Recently, wavelet-based QRS detection methods
have been suggested by a variety of groups including Li et al (1995) who proposed a method
based on finding the modulus maxima larger than a threshold obtained from the pre-processing
of preselected initial beats. In Li et al’s method, the threshold is updated during the analysis to
obtain a better performance. This method has a post-processing phase in which redundant R
waves or noise peaks are removed. The algorithm achieves a good performance with a reported
sensitivity of 99.90% and positive prediction value of 99.94% when tested on the MIT/BIH
database. Shyu et al (2004) have extended the algorithm of Li et al to detect ventricular
premature contractions (VPCs). By incorporating a fuzzy neural network, they achieved a
99.79% accuracy for VPC classification. Martinez et al (2004) also utilize the algorithm of
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Figure 11. Tape 3203 (isolated uniform ventricular contractions (PVCs): (a) noisy portion of
ECG data plotted with vertical dashed lines indicating cardiologist estimate of the QRS onset and
with tick marks indicating the dyadic WT estimate of the R wave locations. (b)–(d) The dyadic
WT modulus computed at scales a = 21, 22 and 23 respectively. Note the number of peaks and
their locations align at scales 22 and 23. (After Kadambe et al 1999 IEEE Trans. Biomed. Eng.
(© 1999 IEEE).)

Li et al applying a dyadic wavelet transform to a robust ECG delineation system which
identifies the peaks, onsets and offsets of the QRS complexes, and P and T waves.

Kadambe et al (1999) have described an algorithm which finds the local maxima of two
consecutive dyadic wavelet scales, and compared them in order to classify local maxima
produced by R waves and by noise. Figures 11 and 12 illustrate the method which is based
on the dyadic wavelet transform. Figure 11 shows a noise corrupted ECG plotted alongside
a cardiologist’s annotation (vertical dashed lines for the onset of the QRS). The tick marks
indicate the local maxima at each scale which exceed a 60% threshold. These align themselves
with the QRS peaks at scales 2 and 3. This is the basis of the Kadambe algorithm. Figure 12
shows the QRS detection for three example signals: the first including baseline wandering,
the second containing a premature ventricular contraction and the third exhibiting the time
varying arrhythmia known as bigeminy. Kadambe et al report a sensitivity of 96.84% and
a positive predictive value of 95.20% when tested on a limited data set (four 30 min tapes
acquired from the American Heart Association (AHA) database).

Romero Legarreta et al (2005) have extended the work of Li et al and Kadambe et al,
utilizing the continuous wavelet transform. Their CWT-based algorithm affords high
time–frequency resolution which provides a better definition of the QRS modulus maxima
curves. This allows them to be followed across scales in noisy signals, and better defines the
spectral region corresponding to the QRS maxima peak. Figure 13(a) shows a 5 s segment
of an example ECG signal. A 3D view of the transform surface, obtained using a Mexican
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Figure 12. ECG data from AHA tapes 1209. (a) 2206, (b) 4205, (c) in (a)–(c) vertical dashed lines
indicate cardiologists’ estimate of the QRS onset and tic marks indicate the dyadic WT estimate of
R wave locations. The horizontal axis in time in untis of samples (a) contains ECG data from tape
1209 (no PVC’s) hich is corrupted by baseline wander. Tape 2206 in (b) contains portions of ECG
data exhibiting an isolated uniform PVC, and (c) contains a portion of ECG data from tape 4205
exhibiting bigeminy. (After Kadambe et al 1999 IEEE Trans. Biomed. Eng. (© 1999 IEEE).)

hat wavelet, is shown below the signal. Figure 13(c) shows the modulus maxima associated
with the transform surface and figure 13(d) contains a reverse view of the surface. Figure 14
shows a 3D view of the modulus maxima lines of the same signal. Each component of a
single ECG complex has a different time–frequency representation that corresponds with a
modulus maxima line of a specific shape. QRS complexes have more energy and higher
amplitude modulus maxima lines over a longer frequency interval, whilst P and T waves have
less energy and lower amplitude modulus maxima lines over a shorter frequency interval. The
QRS components also have a different shape to the rest of the ECG waveform, a difference
that enables simple QRS detection. Modulus maxima lines therefore act as a summary of
the useful information in the CWT of the signal (Mallat 1998). Romero Legarreta et al used
the characteristic shape of the QRS modulus maxima lines to filter out the QRS from other
signal morphologies including noise and baseline wandering. Examples of their QRS detection
method applied to test signals are shown in figure 15. The algorithm offers a sensitivity of
99.53% and a positive predictivity of 99.73% with signals acquired at the Coronary Care Unit
at the Royal Infirmary of Edinburgh, and a sensitivity of 99.7% and a positive predictivity of
99.68% with standard signals from the MIT/BIH database.

Other work has been undertaken by Park et al (1998) using a wavelet adaptive filter to
minimize the distortion of the ST-segment due to baseline wanderings. In a subsequent paper
by Park et al (2001), a wavelet interpolation filter (WAF) is described for the removal of motion
artefacts in the ST-segment of stress ECGs. A noise reduction method for ECG signals using
the dyadic wavelet transform has been proposed by Inoue and Miyazaki (1998) and Tikkanen
(1999) has evaluated the performance of different wavelet-based and wavelet packet-based
thresholding methods for removing noise from the ECG. More recently, Leman and Marque
(2000) have developed a wavelet packet thresholding algorithm for signal denoising algorithm,
this time to remove the ECG signal from the electrohysterogram—a signal which represents
uterine activity during pregnancy. Nikolaev et al (2001) have suppressed electromyogram
(EMG) noise in the ECG using a method incorporating wavelet transform domain Wiener
filtering. The method resulted in an improvement in signal-to-noise ratio of more than
10 dB. Sternickel (2002) has developed an automated P-wave detector for Holter monitors
which uses multiresolution wavelet transform input to a neural network classifier.



Topical Review R177

(a)

(b)

(c)

(d)

Figure 13. Continuous wavelet transform of a 3 s signal using the Mexican hat CWT.
(a) Original ECG signal. (b) 3D view of the CWT. (c) Modulus maxima points above a threshold
of 90% from the overall maxima. (d) Other 3D view of the CWT with the high frequencies at the
front. (After Romero Legaretta et al 2005 Int. J. Wavelets, Multiresolution Information Process.).

Finally, figure 16 shows the wavelet transform scalogram plot corresponding to the ECG
transition period during a pacing study (Stiles et al 2004). During the trial the pacemaker was
set to AAI pacing mode and second degree heart block, type 1 (Wenckebach phenomenon)
developed as the atrial pacing rate was increased. The ECG in the upper part of the figure
initially shows a one-to-one relationship between P waves and QRS complexes, but at the
half-way point it can be seen that the QRS rate abruptly slows down in an irregular fashion
consistent with every third P wave not conducting through the ventricles. Although it is
difficult to see the specific features in the ECG, there is a clear change in the scalogram with
the onset of the heart block. The constant banding seen in the scalogram prior to the block
becomes oscillatory in nature, repeating its structure synchronous with the 3:2 conduction
rate. Note that the QRS features in the scalogram remain consistent across the scalogram.
Figure 17, from the same study, shows a scalogram from a patient whose pacemaker was set to
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Figure 14. Modulus maxima lines of a 5 s ECG signal using the Mexican hat CWT. (After Romero
Legaretta et al 2005 Int. J. Wavelets, Multiresolution Information Processing.)

DDD pacing mode and the PR interval began to exceed the programmed paced AV interval as
the atrial pacing rate was increased. The ECG in the upper part of the figure shows intrinsically
conducted beats, followed by ‘fusion’ beats where intrinsic ventricular depolarization is
competing with ventricular paced beats, and finally ventricular paced beats alone without
competing intrinsically conducted beats. The ridge of the wavelet band associated with the
beat frequency is shown dashed on the plot. The ridge increases in frequency from fb = 2 Hz
to fm = 2.6 Hz over the fusion region between the two arrows. This band reverts back to the
pre-fusion intrinsic conduction frequency when conduction is no longer competing.

3.2. Detection of localized abnormalities

Tuteur (1989) was one of the first proponents of the wavelet transform as an analysis tool for
medical signal processing, using a complex Morlet wavelet to detect abnormalities in ECG
signals. In particular, Tuteur was interested in an abnormality known as a ventricular late
potential (VLP). These represent low-amplitude electrical activity due to delayed electrical
conduction by the ventricle muscles. VLPs occur in the ECG after the QRS complex and
are often masked by noise. VLPs have been used as a marker to identify patients at risk
from certain types of life threatening arrhythmias. Batista and English (1998) employed both
harmonic and closely related musical wavelets in the detection of VLPs. They performed
a wavelet decomposition of the ST and TP segments of the ECG and compared the relative
energies contained at each level in order to detect VLPs. They reported superior results using
their technique over the Simson method, widely used in clinical practice for the detection of
VLPs. In addition, they found that the reduction in spectral leakage of these wavelets provides
better results than using Daubechies wavelets although there is a reduction in the associated
time resolution.
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Figure 15. Examples of the wave detection algorithm. (a) ECG with very clear QRS complexes.
(b) ECG with QRS complexes with very different morphologies. (c) ECG with a QRS complex
with a big S wave. (d) ECG with some noise. (e) ECG with noise and high P wave. (f ) ECG
with clear QRS complexes and small P wave. (After Romero Legaretta et al 2005 Int. J. Wavelets,
Multiresolution Information Process.)

Couderc et al (1996) have employed the Morlet wavelet transform to analyse high
resolution ECGs in post-myocardial infarction patients both with and without documented
ventricular tachycardia. A discretization of ten wavelet scales covering the relevant
range of the time–frequency plane allowed them to stratify the resulting time–frequency
information concerning ECG abnormalities. In the group of myocardial infarction patients
with documented ventricular tachycardia they found significantly increased high-frequency
components corresponding to prolonged QRS durations and late potentials in the area 80 to
150 ms after QRS onset. They also applied their method to the intra-QRS abnormalities in
patients with congenital long QT syndrome. More information on their wavelet-based tools
for the analysis of the ECG is given in Rubel (1996). Reinhardt et al (1996) have evaluated the
prognostic value of their proposed wavelet correlation function of the signal-averaged ECG
for arrhythmic events after myocardial infarction. The wavelet correlation function provides
an autocorrelation-type measure of the wavelet transform of the signal-averaged data. By
combining the wavelet correlation function with the observation of late potentials (observed
in the time domain) they found an increase in the prognostic value for serious arrhythmic
events after myocardial infarction (from 52% to 72% for inferior and 64% to 76% for anterior
infarctions). Rakotomamonjy et al (1998) have detailed a method for detecting VLPs using
Morlet wavelet preprocessed data as input to a feedforward neural network. They tested the
technique on simulated ECGs containing VLPs and a range of additive noise and found a high
degree of accuracy in classification, even for high levels of noise. Rakotomamonjy et al (1999)
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Figure 16. The Wenckebach phenomenon exhibited as the atrial pacing rate was increased. (After
Stiles et al 2004 Annals of Noninvasive Electrocardiology (Blackwell Publishing).)
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Figure 17. The onset of V pacing. (After Stiles et al 2004 Annals of Noninvasive Electrocardiology
(Blackwell Publishing).)

have also described a discrete wavelet-based filtering method for signal averaged ECGs used
for the detection of late potentials.

Wavelet energy scalograms were used by Meste et al (1994) as a method of highlighting
ventricular late potentials and observing temporal and frequency variability in the ECG from
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(a) (b)

Figure 18. Averaged ECG and contour maps of wavelet transform for test signals: (a) ECG
(Y-lead) of healthy subjects; (b) same signals with simulated late potentials. Time and frequency
ranges for irregularity calculation are marked by straight lines. (After Lewandoswki et al 2000
Med. Biol. Eng. Comput.)

beat to beat. More recently, members of the same group have proposed a VLP detection
method based on the analysis of the behaviour of the wavelet energy density surface in a
selected time–frequency region occurring beyond the end of the QRS complex (Lewandowski
et al 2000). Their method is illustrated in figure 18 where the right hand signal contains
simulated late potentials. The wavelet transforms of the signals are plotted below and the
region in the time–frequency plane examined for the presence of the late potentials is indicated
by the box in the top right hand corner of the figure. They evaluated their method on a group
of 106 post-infarction patients composed of 62 with documented monomorphic ventricular
tachycardia and 44 without arrhythmia. Their results indicated that the method appears to be
a useful tool for the detection of micropotentials indicating good diagnostic relevance for risk
evaluation of cardiac arrhythmia. They report results of 85% sensitivity at 93% specificity for
signals which were preprocessed using polynomial filtering. This result compared favourably
with other methods of analysis including time domain, FFT and auto regressive methods. Wu
et al (2001) have proposed a hybrid method which uses an artificial neural network to recognize
VLPs from the (continuous) wavelet transformed signal. They report a sensitivity of 80% and
specificity of 77% for the detection of beat-to-beat-based VLPs.

Popescu et al (1998) investigated the beat-to-beat variation of the QRS signal in
post-myocardial infarction patients with sustained monomorphic ventricular tachycardia by
analysing the wavelet variance distribution across the time–frequency plane. They found
this measure to be a useful new estimator of ventricular tachycardia risk. In a pilot study,
Gramatikov et al (2000) used Morlet wavelet transforms to analyse the ECG recordings from
patients with left and right coronary stenosis taken before and after angioplasty. They focused
on the morphology of the QRS complex in wavelet space plotting both 2D contour plots
and 3D representations of the transform magnitude and demonstrated the wavelet’s ability to
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detect short lasting events of low amplitude superimposed on large scale deflections. The study
found changes in the mid-frequency range which reflected the ECG’s response to percutaneous
transluminal coronary angioplasty. Link et al (2001) utilized both the amplitude and phase
information obtained from the Morlet-based continuous wavelet transform decomposition of
the ECG and MCG (magnetocardiogram) to detect the beat-to-beat variability of the QRS-
complex, specifically looking for late potentials and abnormal intra-QRS potentials. They
found that their technique provided a basis for distinguishing healthy patients from those prone
to ventricular tachycardia of ventricular fibrillation. The detection of myocardial ischemia
in pigs using a wavelet-based entropy measure is described by Lemire et al (2000). They
considered the morphology of the combined ST segment and T wave, performing a fast
wavelet transform using spline wavelets. The Shannon entropy of the coefficients at each
scale was determined for the combined ST-segment–T-wave at each beat. An increase in
entropy was detected at certain scales due to coronary occlusion, which led the authors to
suggest a threshold entropy value as an indicator of the occlusion state. The best scale for use
as a marker corresponded to an approximate frequency band of 30–60 Hz.

Chevalier et al (2001) used the discrete wavelet transform to identify a common
electrophysiological substrate for both acquired long QT syndrome and congenital long QT
syndrome. This evidence was combined with the results of imaging and genetic studies of the
patients indicated a multiplicity of links between both syndromes. Olmez and Dokur (2003)
employed a hybrid neural network structure in the classification of ECG signals of differing
morphology, including: normal beats, left and right bundle branch block beats, premature
ventricular contraction, paced beat, ventricular escape beat, fusion of ventricular and normal
beats, fusion of paced and normal beats, aberrated atrial premature beat and non-conducted
P waves. They reported a successful classification of 98% using discrete cosine transform
preprocessing compared to 95% attained by preprocessing using a Daubechies D2 wavelet.

3.3. Heart rate variability

Rather than consider the local morphology of the whole ECG signal, many researchers have
focused on the longer term temporal variability of the heartbeat, the analysis of which allows
an assessment of autonomous nervous system activity (Reed et al 2005). The analysis of heart
rate variability (HRV) requires the sequence of timing intervals between beats, taken between
each R point on the QRS complex. This R–R interval can be plotted against time to give the
R–R time series. In normal practice, however, ectopic beats are removed from the R–R series
leaving only normal sinus beats: the N–N time series. It is this modified time series that is
used in the analysis of HRV. The minute fluctuations present in the N–N intervals are used for
assessing the influence of the autonomic nervous system components on the heart rate. Long
range correlations and power law scaling have been found through the analysis of heartbeat
dynamics. Much of the current work concerning heart rate variability focuses on its use as a
marker for the prediction and diagnosis of heart disease and assessment of heart function.

The heart rate and rhythm is largely under the control of the autonomic nervous system.
Traditional spectral analysis of HRV has been reported to aid the understanding of the
modulatory effects of neural mechanisms on the sinus node (Malik 1996). There are three
main spectral components in a traditional spectral calculation, they are generally classed as:
very low frequency (VLF) ranging from 0.003 to 0.04 Hz, low frequency (LF) ranging from
0.04 to 0.15 Hz and high frequency (HF) ranging from 0.15 to 0.4 Hz components. In addition,
sometimes an ultra low frequency (ULF) is defined as spectral components with frequencies
less than 0.003 Hz. The relative contribution of vagal and sympathetic modulation of the
heart rate is attributed to the distribution of spectral power in these bands. Over recent years,



Topical Review R183

(a)

(b)

Figure 19. N–N interval time series from a healthy subject (top) together with its associated
wavelet transform (below). The boundaries of the HF (0.4–0.15 Hz), LF (0.04–0.15 Hz) and VLF
(0.003–0.04 Hz) regions are plotted across the transform surface.

a number of groups have attempted to use wavelet-based methods to gain additional insight
into the mechanisms controlling heart rate variability. Figure 19 shows an example of an N–N
interval time series with its associated wavelet transform surface. The N–N trace was acquired
from a healthy control subject during exposure to diesel fumes as part of a study of COPD
patients (Nyander et al 2004). The subject undertook moderate exercise half way through the
10 min trace as can be seen in the drop in N–N interval associated with the increasing heart
rate. The wavelet transform surface is partitioned into the HF, LF and VLF regions whereby
temporal–spectral characteristics of the surface may then be investigated.

Wiklund et al (1997) used adaptive wavelet transforms (wavelet packets and cosine
packets) to analyse the regulation of heart rate variability (HRV) by the autonomic nervous
system. Their results suggested that adapted wavelet transforms can be used to detect transient
changes in the signal and characterize both tonic and reflex autonomic activity. Thurner
et al (1998b) have employed both Daubechies D10 and Haar wavelets in the analysis of
human heartbeat intervals. They found that, at distinct wavelet scales, corresponding to the
interval 16–32 heartbeats, the scale-dependent standard deviations of the wavelet coefficients
could differentiate between normal patients and those with heart failure. Significantly, they
report 100% accuracy for a standard 27 patient data set. Further development of the technique
is detailed in a subsequent paper by Thurner et al (1998a).

Ivanov et al (1996) investigated the ECG signals acquired from subjects with sleep apnoea.
By sampling at an a scale equivalent to 8 heartbeats, they performed a local smoothing of the
high-frequency variations in the signal in order to probe patterns of duration in the interval
30–60 s. The authors used the data to characterize the nonstationary heartbeat behaviour and
elucidate phase interactions. Bates et al (1998) have compared two Fourier methods (the
discrete Fourier transform and the nonequispaced Fourier transform) of computing the Fourier
coefficients used in the discrete harmonic wavelet transform analysis of heart rate variability.
The same group (Hilton et al 1999) have used the discrete harmonic wavelet transform as well
as the discrete Fourier transform to perform spectral analysis of the HRV signals associated
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with sleep apnoea/hyponeoa syndrome (SAHS). They compared their spectral analysis of the
HRV signals with the current screening method of pulse oximetry. Their results indicated
that spectral analysis of HRV appears to provide a better indicator of SAHS than oximetry in
non-REM sleep and a comparable indicator in REM sleep. Akay and Fischer (1997) compared
a wavelet-based method to others in a study to determine the fractal nature of HRV signals.
Specifically, they used the method to determine the Hurst exponent of the signal. (See also
Fischer and Akay (1996, 1998).) Ivanov et al (1999) have reported on the multifractality found
in the healthy human heart rate signal using a wavelet-based analysis method. Further, they
reported the loss of multifractality for a life threatening pathological condition—congestive
heart failure. See also Havlin et al (1999) in this regard. Zhang et al (1997) employed
techniques from nonlinear dynamics (phase space reconstruction, correlation exponent and
Lyapunov exponents) to investigate heart rate variability. They applied these methods to both
the R–R interval time series and to a time series of the variability of the QRS complex. Both
time series were determined using the wavelet coefficients obtained from a spline wavelet
decomposition of the original ECG signal. Joho et al (1999) analysed heart rate and left
ventricular pressure variability during coronary angioplasty in humans. They presented three-
dimensional, Morlet-based wavelet transform plots which showed clearly a low frequency
response of both signals to coronary occlusion. They concluded that the regional myocardial
ischemia elicited a profound sympathoexcitory response followed by a gradual suppression
over time. This they attributed to the vagal inhibitory reflex.

Pichot et al (1999) used a Daubechies D4-based DWT to analyse HRV during dynamic
changes in autonomous nervous system balance induced by atropine and propranolol. They
favour the wavelet approach over the traditional Fourier-based approach as it ‘provided novel
temporally localized information’. In a later study, again using the D4 transform, Pichot et al
(2002) analysed the nocturnal heart rate of a group of individuals subject to fatiguing exercise
over a three-week period with a subsequent week of rest. They found a significant progressive
decrease in the HRV indices during the three-week exercise period with a marked recovery
during the rest week. In another recent study employing Daubechies D8 DWTs, Chen (2002)
found that sympathovagal balance, as measured by the wavelet-based LF/HF ratio, increases
prior to the onset of non-sustained ventricular tachycardia. And Gamero et al (2002) report on
the analysis of HRV using Daubechies D12 wavelets during myocardial ischemia, their results
suggesting that wavelet analysis provides useful information for the assessment of dynamic
changes during this condition.

Tan et al (2003) have used the Morlet-based CWT in a study of the relationship between
autonomic tone and spontaneous coronary spasm in patients with variant angina. They
found that changes occurred in the original R–R interval time series and their wavelet-based
indices before every attack indicating the imbalance in autonomic tone had occurred before
ST-segment elevation.

In a recent study of early autonomic dysfunction in hypertensive offspring, Davrath
et al (2003) report the early existence of malfunctions in both branches of autonomic control
in individuals at increased risk of hypertension. They employed the continuous wavelet
transform in their work and provided a real time LF and HF power and LF/HF ratio signals
by integrating over the respective frequency ranges in wavelet space. Both the HR signal and
blood pressure signal were used in the analysis. They showed that during periods of rest there
was no difference between offspring of hypertensive parents and the control group consisting
of offspring from normotensive parents. However, during the implementation of autonomic
challenges which allowed abrupt transients in cardiovascular signals, subtle, yet significant,
malfunctions in both branches of the autonomic nervous system were observed for the study
group. In another study by the same group, again utilizing temporal LF and HF power and
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Figure 20. Wavelet analysis of patient T26 (inferoporterior wall myocardial infarction (IW-MI).
Reperfusion marked by the dashed line was clinically detected at t = 1400 s. Note the marked
increase of LFP(t) (by 380%) and R(t) (by 480%) starting at t = 1280 s. The HFP(t) decreases
slightly (7%). HR reduces by 2 beats per minute which is <2%. The increase in LFP(t) can
be clearly seen in the time–frequency decomposition of the HR signal (second panel from top).
The change of HRV parameters suggests a shift in cardiac autonomic activity towards sympathetic
enhancement. (After Toledo et al 2003, used with permission.)

LF/HF ratio signals, they found that their CWT-based analysis of HRV allowed the detection
of patterns directly associated with changes in myocardial perfusion (Toledo et al 2003).
They studied the heart rate of 17 patients during thrombolysis, with reocclusion occurring in
four patients. Marked alterations in their HRV parameters were found in all reperfusion and
occlusion events occurring in these patients. Figure 20 illustrates their method. The figure
contains the heart rate signal from a patient who suffered an inferoposterior wall myocardial
infarction with its associated continuous wavelet transform plot. Below the CWT plot the
low frequency power (LFP) and high frequency power (HFP) signals are plotted. These are
computed by integrating over the energy density scalogram surfaces within their respective
frequency ranges. The bottom signal is the ratio (R) of the LFP and HFP signals. We can
see that clinical reperfusion for this patient was associated with a marked increase in both LFP
and R.

Recent work by Nyander et al (2004) has extended the ideas of Toledo et al (2003)
whereby individual frequency levels may be used to provide a temporal energy density signal.
Further, by employing entropy measures they found that they could characterize the on/off
switching of the autonomic nervous system across each frequency level. This has led them
to detect a significant difference in the behaviour of COPD patients and healthy volunteers
when exposed to diesel fumes during exercise. Figure 21(a) shows the rank Wilcoxon sum
test for the frequency-dependent entropy marker between COPD patients during exposure to
air and diesel. A significant region ( p < 0.05) lies between 0.17 and 0.30 Hz, marked on the
plot. Box plots for the entropy measure at the minimum rank Wilcoxon test value (occurring
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(a) (b)

Figure 21. Separation of the frequency specific entropy statistic in COPD patients during exposure
to air and diesel. (a) Wilcoxon rank sum test for the entropy marker (COPD patients, signal
segment B). (b) Box plots for the entropy measure at 0.190 Hz (COPD patients during exercise).

at 0.190 Hz) are presented in figure 21(b) showing the marked separation of the markers at
this wavelet characteristic frequency.

3.4. Cardiac arrhythmias

A number of wavelet-based techniques have been proposed for the identification, classification
and analysis of arrhythmic ECG signals. In an early paper by Govindan et al (1997), an
algorithm is described for classifying bipolar electrograms from the right atrium of sheep
into four groups—normal sinus rhythm, atrial flutter, paroxysmal atrial fibrillation (AF) and
chronic AF. In their method, they use a Daubechies D6 wavelet to preprocess the ECG
data prior to classification using an artificial neural network. They found paroxysmal AF
the most difficult to classify with a 77% ± 9% average success rate and normal sinus
rhythm the easiest, achieving 94% ± 8%. However, the study did involve small numbers
in the training (10) and test (20) sets. Using a raised cosine wavelet transform, Khadra
et al (1997) have undertaken a preliminary investigation of three arrhythmias—ventricular
fibrillation (VF), ventricular tachycardia (VT) and atrial fibrillation (AF). They developed
an algorithm based on the scale-dependent energy content of the wavelet decomposition to
classify the arrhythmias, distinguishing them from each other and normal sinus rhythm.
Again this study involved low numbers of data: 13 VF, 12 VT, 13 AF and 8 normal
sinus rhythm. Zhang et al (1999) have proposed a novel arrhythmia detection method,
based on a wavelet network, for use in implantable defibrillators. Their system, originally
developed as a model to identify relationships between concurrent epicardial cell action
potentials and bipolar electrogram, detects the bifurcation point in the ECG where normal
sinus rhythm degenerates into a pathological arrhythmia (ventricular fibrillation). Al-Fahoum
and Howitt (1999) have proposed a radial basis neural network for the automatic detection and
classification of arrhythmias which employs preprocessing of the ECG using the Daubechies
D4 wavelet transform. They report 97.5% correct classification of arrhythmia from a dataset
of 159 arrhythmia files from three different sources, with 100% correct classification for both
ventricular fibrillation and ventricular tachycardia.
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Morlet et al (1993) presented a Morlet wavelet-based method for the discrimination
of patients prone to the onset of ventricular tachycardias (VTs). They found that the
detection of strings of local maxima of the wavelet transform vector at or after 98 ms after
the QRS onset point was a reasonable criterion for VT risk stratification in post-infarction
patients. They reported achieving 85% specificity at 90% sensitivity for their patient group.
Englund et al (1998) studied the predictive value of wavelet decomposition of the signal-
averaged ECG in identifying patients with hypertrophic cardiomyopathy at increased risk of
malignant ventricular arrhythmias or sudden death. They concluded, however, that wavelet
decomposition was of limited value in this type of analysis. It is interesting to note, however,
that the wavelet analysis used in their study was undertaken subsequent to signal averaging
of the beats. Thus intermittent local or transient aspects of the ECG can be lost to its
interrogation. A later study by this group (Yi et al 2000) evaluated a number of wavelet
decomposition parameters for their potential for risk stratification of patients with idiopathic
dilated cardiomyopathy. They found that wavelet analysis was superior to time domain
analysis for identifying patients at increased risk of clinical deterioration.

Atrial fibrillation (AF) is an arrhythmia associated with the asynchronous contraction of
the atrial muscle fibres. It is the most prevalent cardiac arrhythmia in the western world, and
is associated with significant morbidity. Duverney et al (2002) have developed a combined
wavelet transform–fractal analysis method for the automatic detection of atrial fibrillation
from heart rate intervals. After training their method on healthy sinus rhythm and chronic AF
ECGs, they achieved 96.1% sensitivity at 92.6% specificity for discriminating AF episodes in
paroxysmal AF. Figures 22 and 23 illustrate a technique for the elucidation of AF from within
an ECG signal using a modulus maxima denoising technique (Watson et al 2001). Figure 22
shows the wavelet transform decomposition of a 2 s segment of ECG from a patient with
atrial fibrillation. Below the trace is a scalogram plot, obtained using a Mexican hat-based
wavelet transform. This yields high temporal resolution in the wavelet domain, but generates
a very large data set. The corresponding modulus maxima are plotted below the scalogram.
As can be seen from the figure, dominant modulus maxima lines at the scale of 10 Hz and
below are almost solely associated with the coherent QRS and T structures. Therefore, the
modulus maxima lines at this scale with a high proportion of the total energy within this
scale are selected. The selected modulus maxima lines are then followed across scales and
subtracted to leave a residual signal associated with both system noise and, more importantly,
atrial activity. An inverse transform, performed separately on both sets of retained maxima
lines, recovers the partitioned signals. This time–frequency partitioning of the signal results
in two components: one (1) containing combined low and high frequency components that
correspond to large scale features in the signal, and a second (2) containing the remaining high
frequency components that correspond to small scale AF features and noise. In practice, most
applications are concerned with signal denoising and hence the retention of component (1).
This application, however, is concerned with the removal of large amplitude features to allow
examination of the lower amplitude AF components of the signal, and hence component (2)
is retained for analysis. Figure 23 contains a 7 s segment of ECG taken during a pilot study
of patients with AF. The signal has been partitioned using the modulus maxima technique
described above where the modulus maxima have been separated into large and small scale
features. An enlarged part of the signal is given in the lower three plots in the figure. The
middle plot contains the partitioned signal with the QRS complex and T wave filtered out,
revealing regular, coherent features that appear at a frequency of approximately 400 beats per
minute, often seen during invasive studies of atrial activity in patients with AF. The lower
plot contains the partition with the filtered out QRS and T waves. Although a relatively
simple modulus maxima technique was used, whereby the modulus maxima lines were simply
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Figure 22. ECG trace exhibiting AF (top) together with its associated scalogram (middle) and
modulus maxima plot (bottom). (After Watson et al 2001 (© 2001 IEEE).)

partitioned into two subsets, the ability of the technique to separate the signal into QRS and T
waves and underlying AF is evident from the preliminary results.

Ventricular tachyarrhythmias, and in particular ventricular fibrillation (VF), are the
primary arrhythmic events in the majority of patients who present with sudden cardiac death.
During ventricular fibrillation the lower chambers of the heart beat in an irregular fashion.
Much work has been conducted over recent years into VF centred on attempts to understand
the pathophysiological processes occurring in sudden cardiac death, predicting the efficacy
of therapy, and guiding the use of alternative or adjunct therapies to improve resuscitation
outcomes (Reed et al 2003). A global view of a long term VF signal in wavelet space is given
in figure 24 which contains an energy scalogram for a 5 min period of pig VF followed by
a 2.5 min period of cardiopulmonary resuscitation (CPR). The onset of CPR is distinguished
by the large amplitude horizontal band appearing at low frequency at 5 min. Distinct banding
can be seen in the scalogram over the first 5 min: a high frequency band at around 10 Hz and
two lower energy bands at lesser frequencies labelled A, B and C. After the onset of CPR, a
gradual increase in the frequency of all three bands over about a minute can be observed in the
scalogram. Note that these increasing bands (varying in frequency over time) are obviously
decoupled from the constant-frequency CPR band, and are not therefore an artefact of the
signal processing. These bands indicate a gradual increase in the underlying frequency of
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Figure 23. Wavelet filtering of the ECG exhibiting AF. (After Watson et al 2001 (© 2001 IEEE).)

fibrillation over a period of about 1 min caused by the administration of CPR (Addison et al
2000).

Figure 25 shows the pressure in the aorta and ECG corresponding to an episode of
ventricular fibrillation in another porcine model. The ECG signal has a typical random or
unstructured appearance. The aorta pressure trace, however, reveals regular low amplitude
spikes. On opening the chest of this animal and observing the heart directly, it became
apparent that the ventricles were fibrillating, but the atria were contracting independently
in a co-ordinated manner (Addison et al 2002a). The irregular activity of the much larger
ventricular muscle mass completely obscured this atrial activity in the standard ECG recording
shown in the second top plot of figure 25. The wavelet energy scalogram for this signal is
plotted below the ECG signal. (A Morlet wavelet was used in the study.) The high amplitude
band at around 8–10 Hz is much more compact in extent in frequency than that found for
other traces where no atrial pulsing was apparent. Furthermore, there is some evidence of
‘pulsing’ in this band between 1 and 2 Hz in the scalogram. This is confirmed in the bottom
plot of figure 25 where the location of zero wavelet phase is plotted over a short range of the
bandpass frequencies, between 1.1 and 1.5 Hz. Below this zero phase plot is the pressure
tracing. The phase plot exhibits a strikingly regular pattern with the zero phase lines aligning
themselves remarkably well with the atrial pulsing of the pressure trace. This result suggests
that (wavelet) phase information, obscure to traditional methods, may be used to interrogate the
ECG for underlying low-level mechanical activity in the atria.



R190 Topical Review

f b
pc

(H
z)

time (minutes)

 onset of CPR

A

B

C
CPR Band

Figure 24. The energy scalogram for the first 7 min of porcine ventricular fibrillation. CPR is
initiated at 5 min as indicated. (After Addison et al 2000 (© 2000 IEEE).)

Many researchers have used animal models in the study of VF. This allows laboratory
study of this fatal arrhythmia, in particular the acquisition of long term VF data sets. The
validity of this approach is questionable, both in terms of the underlying pathophysiology,
and because significant interspecies differences in parameters such as median fibrillation
frequency invalidate direct extrapolation to the human situation. Although these models still
provide important information on the long term aspects of VF, much work has focused on the
analysis of short term traces of pre-shock human VF obtained from out of hospital cardiac
arrests acquired through modified defibrillator devices. Coherent spiking structure has also
been observed in these segments of human VF. An example of this is shown in figure 26
where the ECG signal in the vicinity of a shock is plotted. The preshock VF exhibits
distinct high-frequency spiking activity in wavelet space (indicated by the arrows in the plot).
The observation reveals that human VF, previously thought to represent disorganized and
unstructured electrical activity of the heart, does in fact contain a rich underlying structure
hidden to traditional Fourier techniques (Addison et al 2000, Watson et al 2000). Building
upon these results, a wavelet-based method for the prediction of the outcome from defibrillation
shock in human VF has recently been proposed by Watson et al (2004). An enhanced version
of this method (Watson et al 2005) employing entropy measures of selected modulus maxima
achieves well over 60% specificity at 95% sensitivity for predicting a return of spontaneous
circulation (ROSC). This is significantly better than current alternative techniques based on a
variety of measures including Fourier, fractal, angular velocity, etc. The best of these typically
achieves 50% specificity at 95% sensitivity. This enhancement is due to the ability of the
wavelet transform to isolate and extract specific spectral–temporal features for use in the
analysis. Thus, whereas the proposed alternative methods all characterize behaviour over
time (even although for short periods) the wavelet transform can selectively pull pertinent
information out in time. This is done through a novel entropy-based measure applied to pre-
filtered modulus maxima lines. The incorporation of such outcome prediction technologies
within defibrillation devices will significantly alter their function as current standard protocols,
involving sequences of shocks and CPR, can be altered depending on the likelihood of success
of a shock. If there is a high probability of success a shock-first approach will be adopted,
whereas if there is a substantially low likelihood of success, then an alternative therapy prior
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Figure 25. Simultaneous ECG and pressure recordings. The aorta pressure trace (top), with
ECG (second top), corresponding wavelet energy plot (second bottom) obtained using the Morlet
wavelet. The zero phase lines of the Morlet wavelet transform (bottom). The plots correspond to
the time period 726.23–731.31 s after the initiation of VF. (After Addison et al 2002 IEEE Eng.
Med. Biol. (© IEEE 2002).)

to shock will be used (e.g. CPR and/or a drug) to stimulate the heart and enhance its condition
prior to shocking.

3.5. ECG data compression

ECG signals are collected both over long periods of time and at high resolution. This creates
substantial volumes of data for storage and transmission. Data compression seeks to reduce
the number of bits of information required to store or transmit digitized ECG signals without
significant loss of signal quality. Many schemes have been proposed for this task. These
can be categorized as either direct methods or transform methods. Direct methods involve
the compression performed directly on the ECG signal. Transform methods, as their name
implies, operate by first transforming the ECG signal into another domain including Fourier,
Walsh, Kahunen Loeve, discrete cosine transforms and more recently the wavelet transform
(Jalaleddine et al 1990). An early paper by Crowe et al (1992) suggested the wavelet transform
as a method for compressing both ECG and heart rate variability data sets. Thakor et al (1993a)
compared two methods of data reduction on a dyadic scale for normal and abnormal cardiac
rhythms, detailing the errors associated with increasing data reduction ratios. Using discrete



R192 Topical Review

Time (s)

Time (s)

E
C

G
 (

ar
bi

tr
ar

y  
un

it
s)

f b
pc

 (
H

z)

Figure 26. Attempted defibrillation of human ventricular fibrillation. Top: 7 s of human ECG
exhibiting VF containing a defibrillation shock event. Bottom: scalogram corresponding to the
ECG signal. Note the high frequency spiking prior to the shock evident in the scalogram—indicated
by arrows. (After Addison et al 2002 IEEE Eng. Med. Biol. © IEEE 2002.)

orthonormal wavelet transforms and Daubechies D10 wavelets, Chen et al (1993) compressed
ECG data sets resulting in compression ratios up to 22.9:1 while retaining clinically acceptable
signal quality. In a later paper (Chen and Itoh 1998), again using D10 wavelets, they incorporate
an adaptive quantization strategy which allows a predetermined desired signal quality to be
achieved. Miaou and Lin (2000) also propose a quality driven compression methodology
based on Daubechies wavelets and later (Miaou and Lin 2002) on biorthogonal wavelets.
The latter algorithm adopts the set partitioning of hierarchical tree (SPIHT) coding strategy.
Miaou et al (2002) have also proposed a dynamic vector quantization method employing tree
codevectors in a single codebook. Some examples of original and compressed signals from
this work are shown in figure 27.

Bradie (1996) suggested the use of a wavelet-packet-based algorithm for compression of
the ECG. When compared to the Karhunen–Loeve transform (KLT) applied to the same data
the WP method generated significantly lower data rates at less than one-third the computational
effort with generally excellent reconstructed signal quality. However, Blanchett et al (1998)
report at least as good compression results for a KLT-based method. By first normalizing
beat periods using multirate processing and normalizing beat amplitudes Ramakrishnan and
Saha (1997) converted the ECG into a near cyclostationary sequence. They then employed a
uniform choice of significant Daubechies D4 wavelet transform coefficients within each beat
thus reducing the data storage required. Their method encodes the QRS complexes with an
error equal to that obtained in the other regions of the cardiac cycle.

Popescu et al (1999) have developed a multiresolution distributed filtering data reduction
method for high resolution ECG signals (HRECGs) used in the assessment of ventricular
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Figure 27. Typical waveform segments of original (solid line) and reconstructed (dashed line)
signals. (After Miaou et al 2002 (© 2002 IEEE).)

tachycardia risk in post-myocardial infarction patients. The method employs adaptive
Bayesian shrinkage of the wavelet coefficients prior to reconstruction which allows a significant
reduction in data required to represent the signals. The method is particularly suited to
HRECGs which are often used to detect small-amplitude late potentials, which are established
arrhythmogenic markers in this group of patients. The authors found the Bayesian method
superior to hard and soft wavelet thresholding techniques as well as other established non-
wavelet methods.

A comparison of the performance of the many ECG compression methods—wavelets
and other—can be found in the paper by Cárdenas-Barrera and Lorenzo-Ginori (1999). More
recent data compression schemes for the ECG include the method using non-orthogonal
wavelet transforms by Ahmed et al (2000) and the set partitioning in hierarchical trees (SPIHT)
algorithm employed by Lu et al (2000).

Istepanian and Petrosian (2000) describe the implementation of a mobile telecardiology
system based on their optimal zonal wavelet coding (OZWC) wavelet transform compression
technique. They found that compression ratios of up to 18:1 could be achieved without reducing
the clinical quality of the transmitted ECG whilst retaining the necessary features for clinical
diagnosis at the receiver end. A more recent paper by Istepanian et al (2001) compares the
OZWC method with their wavelet transform higher order statistics-based coding (WHOSC)
scheme. They found that although the WHOSC scheme produced higher compression ratios
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Figure 28. Reconstruction results of the OZWC algorithm on a section from the MIT100 record.
(a) Original ECG, (b) reconstructed ECG. (After Istepanian et al 2001 (© 2001 IEEE).)

it had poorer normalized rms error when compared with the OZWC method. Both methods
can be used for mobile telemedical applications. Figure 28 shows an original segment of ECG
together with an ECG reconstructed using the OZWC algorithm.

4. Discussion and concluding remarks

The wavelet transform has emerged over recent years as a key time–frequency analysis and
coding tool for the ECG. As we have seen in this review, its ability to separate out pertinent
signal components has led to a number of wavelet-based techniques which supersede those
based on traditional Fourier methods. In its continuous form, the CWT allows a powerful
analysis of non-stationary signals, making it ideally suited for the high-resolution interrogation
of the ECG over a wide range of applications. In its discrete form, the DWT and its offshoots,
the SWT and WPT, provide the basis of powerful methodologies for partitioning pertinent
signal components which serve as a basis for potent compression strategies.

It is interesting to note that researchers coming to the wavelet transform tend to take an
either/or approach to their study: either concentrating on the DWT or the CWT. Relatively few
explore both in depth. The DWT has interesting mathematics and fits in with standard signal
filtering and encoding methodologies. It produces few coefficients, its practical application is
simple with many off-the-shelf software toolboxes available (e.g. Matlab Wavelet Toolbox R©),
and the user does not have to worry about losing energy during the transform process or
its inverse. However, it exhibits non-stationarity and coarse time–frequency resolution.
The CWT, on the other hand, allows arbitrarily high resolution of the signal in the time–
frequency plane, which is a necessity for the accurate identification and partitioning of pertinent
components. However, the discretization of the continuous wavelet transform, required for
its practical implementation with discrete signals, involves a discrete approximation of the
transform integral (i.e. a summation) computed on a discrete (but not dyadic) grid of a scales
and b locations. The inverse continuous wavelet transform is also computed as a discrete
approximation. How close an approximation to the original signal is recovered depends mainly
on the resolution of the discretization used and, with care, usually a very good approximation
can be recovered. CWT algorithms are widely available, however, the inverse CWT algorithm
is not available in standard software toolboxes: you have to write your own!
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This either/or approach, evident in the literature, has led to a number of papers appearing
where the discrete transform has been used in the analysis of the signal, whereby the coarseness
of the resulting decomposition makes identification of pertinent features within the transform
difficult, if not practically impossible. The non-stationarity of the DWT can also cause
problems in terms of repeatability and robustness of the analysis, unless it particularly
lends itself to an ensemble averaged method. Although the stationary wavelet transform
can overcome this, it is still limited to dyadic frequency scales and involves significantly more
coefficients than the DWT.

The author expects that the future will see the application of the CWT to many of the
problems that the DWT (or SWT) has previously been applied to. The often cited argument
for using the DWT in an analysis role, because the CWT is significantly more expensive
computationally, is most often a spurious one: especially true given the computing power now
generally available—even in fairly basic medical devices. It is also envisaged that further
study of techniques for compacting the information contained in the CWT into a tiny subset
of coefficients, such as modulus maxima, ridge following and perhaps even reassignment
methods (Clifton et al 2003), will lead to further novel CWT-based analysis and compression
techniques in the future.

In conclusion, it has been shown that the wavelet transform is a flexible time–frequency
decomposition tool which can form the basis of useful signal analysis and coding strategies.
It is envisaged that the future will see further application of the wavelet transform to the ECG
as the emerging technologies based on them are honed for practical purpose.

Additional information

The wavelet newsgroup, Wavelet Digest, is an e-mail periodical and associate website
(www.wavelet.org) which contains news and views from the wavelet community including
details of new books, conferences, papers, recent theses, software, courses and so on. The
Wavelet Digest contains much useful information for novice and expert alike.
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