Electronic Supplementary Material (ESI) for Materials Horizons. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Structural Engineering of Gold Thin Films with Channel Cracks for Ultrasensitive Strain Sensing

Tingting Yang,^{‡a,b} Xinming Li,^{‡c} Xin Jiang,^{a,b} Shuyuan Lin,^{a,b} Junchao Lao,^{b,d} Jidong Shi,^c Zhen Zhen,^{a,b} Zhihong Li,^{*b,e} Hongwei Zhu^{*a,b}

 ^aState Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 ^bCenter for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
 ^cNational Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, China
 ^dInstitute for Advanced Study, Nanchang University, Nanchang 330031, China
 ^eNational Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, China
 *Corresponding authors. Emails: hongweizhu@tsinghua.edu.cn, zhhli@pku.edu.cn

Movie S1. Quick extinguishment of a LED.

Figure S1. Channel cracks initiated at edges of the gold film.

Figure S2. XRD characterization of the as-fabricated gold/PDMS assembly. The inset shows the XRD of the PDMS alone.

Figure S3. Pre-stretching the poorly adhered gold/PDMS when the strain was applied (a) from 0% to 2% and (b) from 0% to 5%.

Figure S4. The whole crack is almost closed with crimp matching crack edges for pre-stretch at 60% strain (scale bar: 500 nm).

Figure S5. No obvious crack was generated inside PDMS upon pre-stretch when gold was absent (scale bar: $100 \ \mu m$).

Figure S6. Electromechanical response of strongly adhered gold/PDMS demonstrating micro-crack distribution.

Figure S7. (a) Overlap model matches experiment value well when the strain was applied from 0% to $\sim 0.3\%$. (b) Tunneling model matches experiment value well when the strain was applied from 0.5% to $\sim 1\%$.

Sensing element	Gauge Factor $(\varepsilon < 1\%)$	Stretchability	Ref.
Channel cracks-based gold	~5000	1%; 10% when connected in parallel with graphene	This work
PECVD grapheme	600	2%	S 1
Graphene rubber composites	10	800%	S 2
Graphene woven fabrics	500	10%	S 3
Mechanically exploited grapheme	1.9	3%	S 4
Cracks-based Pt sensor	~800	2%	S5
Liquid metal	3	250%	S 6
Monolayer Au nanoparticle	300	0.3%	S 7
Aligned carbon nanotube thin film	~0	280%	S 8
Cross-stacked super-aligned carbon nanotube	0.1	35%	S 9
Thickness-gradient films of CNTs	~100	150%	S 10
ZnO nanowire/polystyrene hybridized flexible films	10	50%	S11
ZnO piezoelectric fine-wires	1200	1.2%	S12

Table S1. Comparison of strain sensors regarding their gauge factors for weak deformation.

References:

[S1] J. Zhao, G. Wang, R. Yang, X. Lu, M. Cheng, C. He, G. Xie, J. Meng, D. Shi and G. Zhang, *ACS Nano*, 2015, **9**, 1622.

[S2] C. S. Boland, U. Khan, C. Backes, A. O Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton and J. N. Coleman, *ACS Nano*, 2014, **8**, 8819.

[S3] X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng, Q. Zheng, R.
 S. Ruoff and H. Zhu, *Sci. Rep.*, 2012, 2.

[S4] M. Huang, T. A. Pascal, H. Kim, W. A. Goddard and J. R. Greer, *Nano. Lett.*, 2011, **11**, 1241.

[S5] D. Kang, P. V. Pikhitsa, Y. W. Choi, C. Lee, S. S. Shin, L. Piao, B. Park, K. Suh, T. Kim and M. Choi, *Nature*, 2014, **516**, 222.

[S6] Y. Park, B. Chen and R. J. Wood, *IEEE Sens. J.*, 2012, **12**, 2711.

[S7] L. Yi, W. Jiao, K. Wu, L. Qian, X. Yu, Q. Xia, K. Mao, S. Yuan, S. Wang and Y. Jiang, *Nano Res.*, 2015, **8**, 2978.

[S8] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba and K. Hata, *Nat. Nanotechnol.*, 2011, **6**, 296.

[S9] K. Liu, Y. Sun, P. Liu, X. Lin, S. Fan, K. Jiang, Adv. Funct. Mater. 2011, 21, 2721.

[S10] Z. Liu, D. Qi, P. Guo, Y. Liu, B. Zhu, H. Yang, Y. Liu, B. Li, C. Zhang, J. Yu, B. Liedberg and X. Chen, *Adv. Mater.*, 2015, **27**, 6230.

[S11] X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu, Z. Cai, Y. Rong, H. Han, J. Zhou and Z. L. Wang, *Adv. Mater.*, 2011, **23**, 5440.

[S12] J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao and Z. L. Wang, *Nano. Lett.*, 2008, **8**, 3035.