Supplementary Information

Ultraselective detection of sub-ppm-level benzene using Pd-SnO₂ yolk-shell micro-reactors with catalytic Co₃O₄ overlayer for monitoring air quality

Seong-Yong Jeong, a Ji-Wook Yoon, a Tae-Hyung Kim, a Hyun-Mook Jeong, a

Chul-Soon Lee,^a Yun Chan Kang^a and Jong-Heun Lee^{a,*}

^a Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.

E-mail: *Jong-Heun Lee, jongheun@korea.ac.kr

SUPPLEMENTARY FIGURES

Figure S1

Figure S1 XRD pattern of the Pd-SnO₂ film.

Figure S2 The formation mechanism of the $Pd-SnO_2$ yolk-shell spheres.

Figure S3 (a,b) SEM and (c.d) TEM images of $Pd-SnO_2$ yolk-shell spheres.

Figure S4 Gas -sensing transients of the (a) $Pd-SnO_2(1)$ sensor, (b) $Pd-SnO_2(3)$ sensor, and (c) $Co_3O_4(20)/Pd-SnO_2(3)$ sensor (Concentration of the analyte gas: 5 ppm).

Figure S5 (a) TOF-SIMS depth profile of the $Co_3O_4(20)/Pd$ -SnO₂(3) sensing film and Sn, Co, Pd elemental mapping at sputter times of (b) 10 s, (c) 1010 s, and (d) 2010 s; (e) three-dimensional composition image with sputter time.

Figure S6 90% recovery time of the (a) $Pd-SnO_2(1)$ sensor, (b) $Pd-SnO_2(3)$ sensor, (c) $Co_3O_4(20)/Pd-SnO_2(3)$ sensor, (d) $Co_3O_4(80)/Pd-SnO_2(3)$ sensor, (e) $Co_3O_4(20)/Pd-SnO_2(5)$ sensor, and (f) $Co_3O_4(20)/Pd-SnO_2(8)$ sensor upon exposure to air after sensing of 5 ppm benzene (B), toluene (T), *p*-xylene (X), C_2H_5OH (E), HCHO (F), and CO (C) at 375 °C

Figure S7 (a) 90% response time (τ_{res}) and (b) 90% recovery time (τ_{recov}) of the Co₃O₄(20)/Pd-SnO₂(3) sensor at temperatures in the range of 375–475 °C.