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Fig. S1 Comparison of the calculated upper and lower limits of the effective thermal conductivity
contributed by thermal conduction

Fig. S2 SEM images of the cellular structure of a typical polymer foam fabricated by batch
foaming

Fig. S3 Comparison of modelling results with experimentally measured data. (a) EPS foams.! (b)
Polyolefin foams.? (c) Low-density EPS foams.3 Note: The EPS foam’s structure parameters are not
available in reference 1. The equation provided by Schellenberg and Wallis* was used to correlate

the cell size with the foam density.
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Fig. S1 Comparison of the calculated upper and lower limits of the effective thermal conductivity

contributed by thermal conduction
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Fig. S2 SEM images of the cellular structure of a typical polymer foam fabricated by batch

foaming
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Fig. 3 Comparison of modelling results with experimentally measured data. (a) EPS foams.! (b)

Polyolefin foams (Low-density polyethylene (LD) foam, Low-density polyethylene (50%) + High-

density polyethylene (50%) (LH) foam, Ethylene vinyl acetate copolymer (EVA) foam, and

Metallocene polyethylene (MP) foam).2 (c) Low-density EPS foams.3 Note: In Fig. S3a, the EPS

foam’s structure parameters are not available in reference 1. The equation provided by

Schellenberg and Wallis* was used to correlate the cell size with the foam density.
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