Supplementary Information for

Disordered Surface Formation of WS₂ via Hydrogen Plasma with Enhanced Anode Performances for Lithium and Sodium Ion Batteries

Hongmei Wang^a, Qian Yuan^a, Dong Wang^{*a}, Ge Chen^{*b}, Xing Cheng^b, Thomas Kups^a and Peter Schaaf^a

a FG Werkstoffe der Elektrotechnik, Institut für Werkstofftechnik und Institut für Mikro- und Nanotechnologien MacroNano[®], TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau, Germany

b Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental & Energy Engineering, Beijing University of Technology, Pingleyuan 100, 100124 Beijing, P. R. China.

*E-mail: <u>dong.wang@tu-ilmenau.de</u> ; <u>chenge@bjut.edu.cn</u>

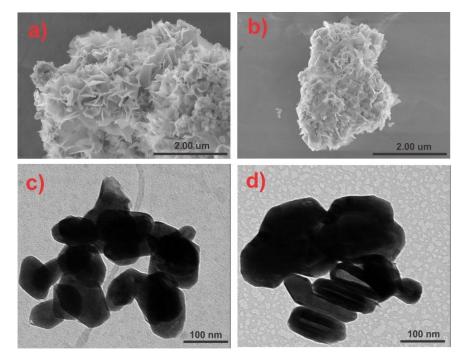


Figure S1. (a) (c) SEM and TEM images of pristine WS_2 ; (b)(d) SEM and TEM images of hydrogenated WS_2 .

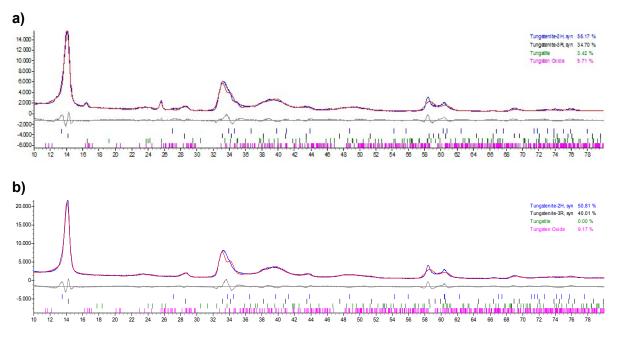


Figure S2. Full pattern quantitative analysis in TOPAS. (a) Pristine WS_2 nanoparticles, (b) hydrogenated WS_2 nanoparticles.

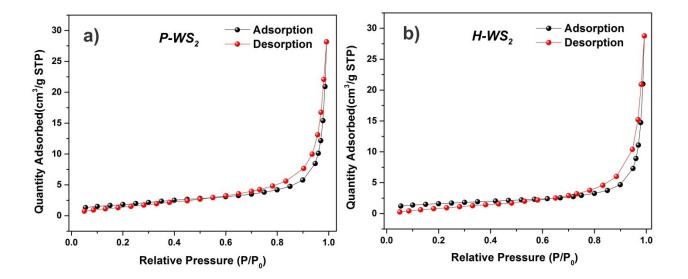


Figure S3. (a) N_2 adsorption/desorption isotherms of pristine WS₂; (b) N_2 adsorption/ desorption isotherms of H-WS₂.

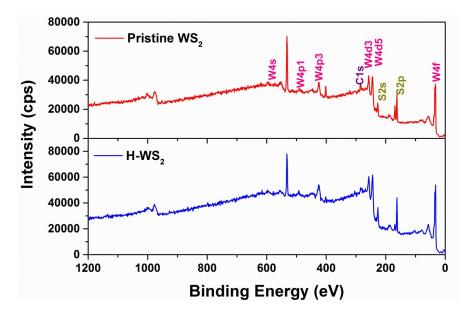


Figure S4. XPS survey spectra of the pristine and hydrogenated WS₂ nanoparticles.

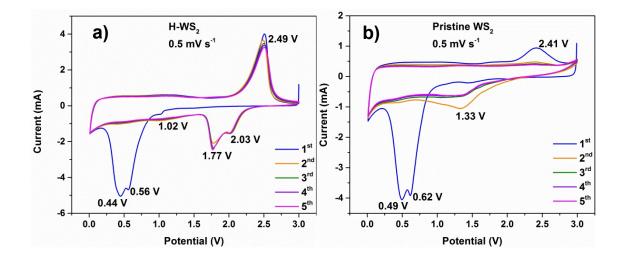


Figure S5. CVs for the (a) H-WS₂ and (b) pristine WS₂ electrodes measured at a scan rate of 0.5 mV·s⁻¹ for different cycles of lithium ion batteries.

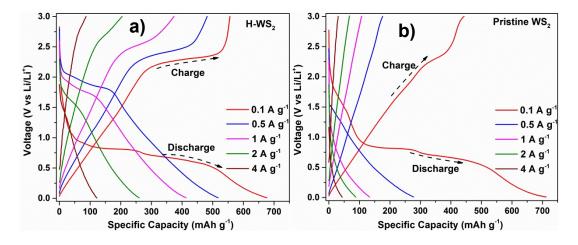


Figure S6 (a) Initial discharge/charge curves of $H-WS_2$ at different rate in the potential window of 0.01–3.0 V, (b) Initial discharge/charge curves of pristine WS_2 at different rate in the potential window of 0.01–3.0 V of lithium ion batteries.

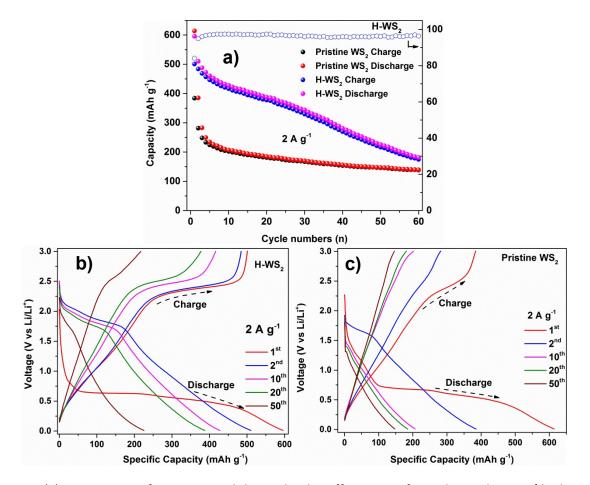


Figure S7. (a) Long term performances and the coulombic efficiencies of samples at charging/discharging rate of 2.0 $A \cdot g^{-1}$ for 60 cycles, (b) Initial discharge/charge curves of H-WS₂ at 2.0 $A \cdot g^{-1}$ for different cycles in the potential window of 0.01-3.0 V, (c) Initial discharge/charge curves of pristine WS₂ at 2.0 $A \cdot g^{-1}$ for different cycles in the potential window of 0.01–3.0 V of lithium ion batteries.

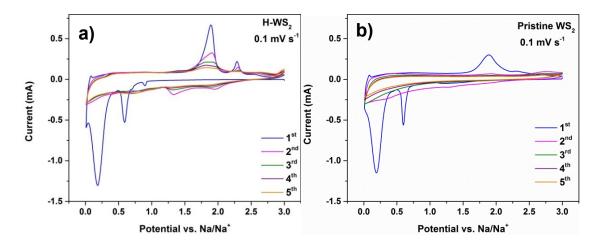
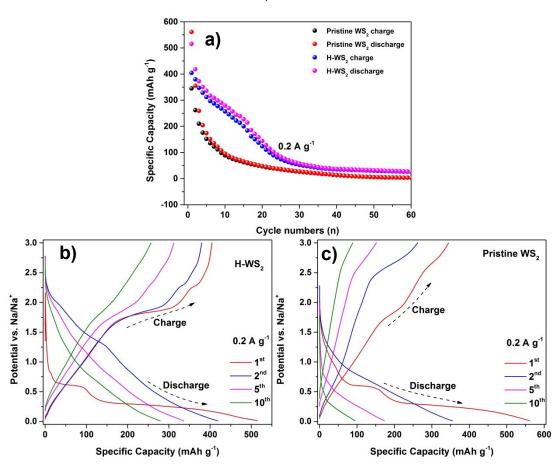



Figure S8. CVs for the (a) H-WS₂ and (b) pristine WS₂ electrodes measured at a scan rate of

0.1 mV·s⁻¹ for different cycles of sodium ion batteries.

Figure S9. (a) Long term performances of samples at charging/discharging rate of 0.2 A·g⁻¹ for 60 cycles, (b) Initial discharge/charge curves of H-WS₂ at 0.2 A·g⁻¹ for different cycles in the potential window of 0.01-3.0 V, (c) Initial discharge/charge curves of pristine WS₂ at 0.2 A·g⁻¹ for different cycles in the potential window of 0.01–3.0 V of sodium ion batteries.

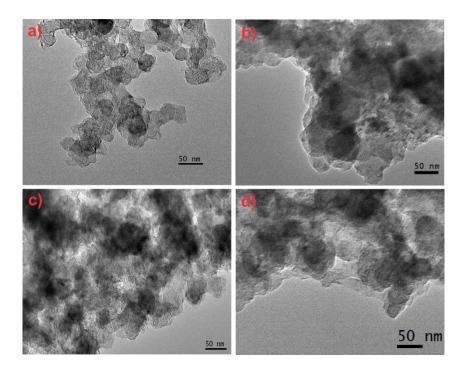


Figure S10. TEM images of (a) pristine WS_2 , (b) $H-WS_2$ after rate performance testing of lithium ion batteries; TEM images of (c) pristine WS_2 , (d) $H-WS_2$ after rate performance testing of sodium ion batteries.

Phases	Tungstenite 2H	Tungstenite 3R	Tungstite	Triclinic WO ₃
Pristine WS ₂	56.17%	34.70%	3.42%	5.71%
H-WS ₂	50.81%	40.01%	0%	9.17%

Table S1. Phase wt % of pristine and hydrogenated WS_2 nanoparticles.

Table S2. Fitted impedance parameters for the electrodes of (a) LIBs and (b) SIBs.

a) LIBs

Electrode	R _s (Ω)	R _{SEI} (Ω)	R _C (Ω)	
Pristine WS ₂	2.93	132.4	313.5	
H-WS ₂	3.47	3.817	7.173	
b) SIBs				
Electrode	R _s (Ω)	R _{SEI} (Ω)	R _C (Ω)	
Pristine WS ₂	7.766	433.2	1177	
H-WS ₂	4.933	117.6	260.5	

Active	Discharge capacity	Current density	Cycle	Battery	Ref.
material	capacity	(mA/g)	numbers	type	
	(mAh/g)				
H-WS ₂	596/515	2000	60	LIBs / SIBs	Current work
Sulfuration WS_2	~800	800	50	LIBs	17
Ordered mesoporous WS ₂	~700	100	100	LIBs	31
Surface functionalized WS ₂ sheets	465	25	50	LIBs	62
WS_2 nanowires	605.3	100	50	SIBs	70
3D porous WS ₂ /C	267	500	300	SIBs	71
WS ₂ -NC	450	1000	100	SIBs	72
WS ₂ composite	519	100	100.	LIBs	73
Few-layer WS ₂	45	1000	50	LIBs	74
WS₂@NGr	455/289	1000	140/60	LIBs / SIBs	75
Graphene-like WS ₂ nanosheets	550	43.2	70	LIBs	76
WS₂ nanosheets @carbon	512/616	200	100/100	LIBs / SIBs	77
Porous WS ₂ in CMK-3 matrix	720/450	100	100/70	LIBs / SIBs	78

Table S3 Comparison of WS_2 anode material for batteries between current work and related references.