Lignin-based nano-adsorbent for superfast and highly selective removal of phosphate

Enmin Zong^a, Guobo Huang^{a,#}, Xiaohuan Liu^{b,*}, Weiwei Lei^{c,*}, Shengtao Jiang^a,

Zhongqin Ma^b, Jifu Wang^d, Pingan Song^{b,e,*}

^a*Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China*

^b School of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China

^c Institute of Frontier Materials, Deakin University, Locked Bag 20000, Geelong, VIC
3220, Australia

^d Jiangsu Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, PR China

^e Center for Future Materials, University of Southern Queensland, Toowoomba, 4350, Australia

*Corresponding authors should be addressed at: liuxiaohuancaf@163.com (X.H. Liu), weiwei.lei@deakin.edu.au (W.W. Lei) and pingansong@gmail.com (P.A. Song)

[#]Enmin Zong and Guobo Huang equally contribute to this work as the co-first author.

The main equations used in this study are as follows:

$$\log (q_e - q_t) = \log q_e - \frac{k_1 t}{2.303}$$
(1)
$$\frac{t}{q_t} = \frac{1}{k_2 {q_e}^2} + \frac{t}{q_e}$$
(2)

Where q_t (mg g⁻¹) and q_e are the adsorbed capacities (mg g⁻¹) at time t (min) and equilibrium, respectively, respectively; k_1 (min⁻¹) and k_2 (g mg⁻¹ min⁻¹) are the related reaction rate constants.

$$q_t = k_{di}\sqrt{t} + C \tag{3}$$

Where $k_i \pmod{\text{P g}^{-1} \min^{-1/2}}$ is the diffusion rate constant whereas the *C* is the intercept for the intraparticle diffusion model. Values of k_i and *C* are calculated from the slope of the linear plot of q_i against $t^{1/2}$.

$$\frac{1}{q_e} = \frac{1}{q_m b C_e} + \frac{1}{q_m} \tag{4}$$

$$lnq_e = lnK_f + \frac{1}{n}lnC_e \tag{5}$$

Where q_e and q_m represent the amount of adsorbing phosphate per unit weight of adsorbent at equilibrium and the maximum adsorption capacity (mg g⁻¹), respectively. C_e (mg L⁻¹), b (L mg⁻¹), K_f , and 1/n respectively refer to the equilibrium solution concentration, the Langmuir model constant, a rough indicator of adsorption capacity, and the heterogeneity factor.

$$R_L = \frac{1}{1 + bC_0} \tag{6}$$

Where C_0 is the highest initial phosphate concentration (mg L⁻¹), and the value of R_L can indicate whether the adsorption is irreversible ($R_L = 0$), favorable ($0 < R_L < 1$), linear ($R_L = 1$), or unfavorable ($R_L > 1$).

$$\Delta G^0 = -RT \ln K_d \tag{7}$$

$$\Delta G^0 = \Delta H^0 - T \Delta S^0 \tag{8}$$

$$lnK_d = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT} \tag{9}$$

Where K_d is the adsorption distribution coefficient at different temperatures, and the value is computed by the ratio of the equilibrium (q_e) to equilibrium (C_e)

Fig. S1. Phosphate adsorption isotherm of AL-PEI-La in the ice-water bath at 273 K

Fig. S2. The lanthanum content of AL-PEI-La origin AL-PEI-La and AL-PEI-LA after 3 cycles

Co	(q _{e,exp})			Pseudo kinetics	-first-oro s	der	Pseudo-second-order kinetics		
(mg P L ⁻¹)				$(q_{e,cal})$ (mg P g ⁻¹)	k_1 (g mg ⁻¹ min ⁻¹)	R ²	$(q_{e,cal})$ (mg P g ⁻¹)	k_2 (g mg ⁻¹ min ⁻¹)	R ²
50	37	.27		5.00	0.011	0.8830	37.59	0.07	1.0000
		Intra-partic	on mode	1					
		C ₁ (mg P g ⁻¹)	$k_{d1} \text{ (mg I} \\ g^{-1} \text{ min} \\ \frac{1/2}{2}$	P $r R_1^2$	(£	C ₂ (mg P g ⁻¹)	k_{d2} (m g ⁻¹ 1 1/2)	ng P min ⁻ R ₂	2
50		0	27.43	1.00	0 2	26.29	2.171	0.9	913

Table S1. Adsorption kinetics fitting results for phosphate on AL-PEI-La by pseudo-

first-order, pseudo-second-order, and intraparticle diffusion models.

Table S2. Equilibrium parameters of Langmuir and Freundlich models

	Temperature	Langmiur constans		isotherm	Freundlich constans		isotherm
	(K)	b (L mg ⁻ ¹)	q _m (mg g ⁻ ¹)	R ²	$K_{ m f}$	n	R ²
AL_PEL	298	4.47	65.79	0.9700	52.25	12.74	0.8796
La	308 318	4.32	74.60	0.9249	51.46	8.12	0.7564
		0.57	85.47	0.9213	56.39	9.46	0.8612

Temperature	Thermodynamic parameters						
(K)	$\Delta G^{\theta} (\mathrm{kJ} \mathrm{mol}^{-1})$	ΔH^{0} (kJ mol ⁻¹)	ΔS^{θ} (J mol ⁻¹ K ⁻¹)				
298	-4.43	21.23	85.97				
308	-5.21	21.23	85.97				
318	-6.15	21.23	85.97				

K, 308 K, and 318 K, respectively.

Table S3. Thermodynamic parameters of phosphate adsorption on AL-PEI-La at 298