Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Note added after first publication: this version of the Electronic Supplementary Information published on 21st September 2020 replaces the original version published on 4th May 2018, to amend the author list and affiliations in accordance with a recently-published Correction (DOI: 10.1039/D0TA90214D).

Electronic Supplementary Information (ESI) for

Cubic mesoporous Pd-WO₃ loaded graphitic carbon nitride (g-CN) nanohybrids: highly sensitive and temperature dependent VOCs sensors

Ritu Malik^a, Vijay K. Tomer^{b,*}

^a Department of Physics, D.C.R. University of Science & Technology, Murthal 131039, Haryana, India

^b Department of Materials Science & Nanotechnology, D.C.R. University of Science & Technology, Murthal 131039, Haryana, India

Keywords: carbon nitrides, nanocasting, mesoporous, temperature dependant, sensors

* Corresponding author

E-mail: vjtomer@gmail.com (Vijay K. Tomer)

Figure S1: Comparison of sensing performance of Pd-WO₃/g-CN for test VOCs measured using Ag-Pd IDE (—) and ceramic substrate (- - -) measured at 120 °C.

Injected concentration of formaldehyde (ppm)	Formaldehyde detected inside the chamber using Drager's tube (ppm)		
	Day 0	Day 5	

Table ST1: Formaldehyde concentration me	easurement inside the gas cl	hamber using Drager's tube

Injected concentration of	Formaldehyde detected inside the chamber using Drager's tube (ppm)				
formaldehyde (ppm)	Day 0	Day 5			
5	5 ± 0.35	5 ± 0.36			
10	10 ± 0.18	10 ± 0.3			
25	25 ± 0.3	25 ± 0.24			

S. No.	Material	Morphology/Synthesis route	Concentratio n (ppm)	Operating temperature (°C)	Response	Response/ Recovery time (s/s)	Ref
1	SnO ₂	Nanosheets/hydrothermal	100	240	7	1/6	1
2	SnO_2/Zn_2SnO_4	Nanorods/ hydrothermal	1000	162	83.8	35/78	2
3	SnO ₂ /graphene	Mesoporous/solvothermal	100	120	45#	1/85	3
		-				(1 ppm)	
4	NiO/Sn	3-D ordered mesoporous/	100	225	145	30/160	4
		colloidal crystal template					
5	NiO	Flower/solvothermal	100	200	3.5	30/56	5
6	Ag/Al-ZnO	Macro-mesoporous/one step	100	240	87.6	47/5	6
		solution combustion method					
7	Au-ZnO	Single crystalline nanoplates/	50	360	23#	N.D.	7
		hydrothermal + photodeposition					
8	Ag/LaFeO ₃	Cage like/ hydrothermal +	1	70	23	20/30	8
		chemical synthesis					
9	Sr/In ₂ O ₃	Hollow submicrospheres/	100	200	9.4	43#/12#	9
		solvothermal					
10	Zn/SnO ₂	Microspheres/solvothermal	100	160	15.2	2/2	10
11	Ag/Co ₃ O ₄	Microspheres/hydrothermal	20	90	17.25	N.D.	11
12	SnO_2/In_2O_3	Nanotubes/electrospinning	50	300	118	60/97	12
13	Ag/LaFeO ₃	Nanocomposite/molecular	2	125	25#	90/80	13
		imprinting technique					
14	CuO-TiO ₂	Nanofiber/electrospinning +	10	200	5#	1.4/24.8	14
		hydrothermal					
15	Au@In ₂ O ₃	Core shell/ hydrothermal + aging	100	200	17	7/135	15
16	NiO	Ordered mesoporous/	100	300	10#	119/39	16
		hydrothermal + nanocasting				(390 ppm)	
17	Pd-WO ₃ /g-CN	Ordered mesoporous/	25	120	24.2	6.8/4.5	This
		hydrothermal + nanocasting					work

 Table ST2: A comparison of formaldehyde sensing performance of previously published works.

Estimated

S. No	Material	Morphology/Synthesis route	Concentrati on (ppm)	Operating temperature (°C)	Response	Response/ Recovery time (s/s)	Ref
1	SnO ₂	Yolk shell cuboctahedra/ Chemical Synthesis	20	250	28.6	1.8/4.1	17
2	Au/WO ₃	Nanosheets/hydrothermal	100	300	50	2/9	18
3	NiO/SnO ₂	Nanofibers/ Electrospinning	50	330	11	11.2/4	19
4	SnO_2/Fe_2O_3	Nanotubes/Chemical synthesis	50	260	25.3 (50 ppm)		20
			1		3.9 (1 ppm)	5/11	
5	ZnO	Flower like/Hydrothermal	100	350	42.6	53/151	21
6	Au/ZnO	Nanowires/Chemical synthesis	50	340	7.5*	45/39	22
7	rGO/Co ₃ O ₄	Nanosheets/Hydrothermal	5	110	11.3	>150/>180*	23
8	rGO/polyethyle ne oxide	Thin film/Chemical synthesis	80	Room temperatur e	0.03#	127/143	24
9	Co ₃ O ₄	Nanosheets/Chemical synthesis	100	150	6.08	150/200*	25
10	α -Fe ₂ O ₃ /SnO ₂	Heterostructure/Ultrasonic spray pyrolysis	100	90	49.7#	25/20*	26
11	SnO_2	Nanofibers/Electrospinning	100	350	6	1/5	27
12	$\alpha\text{-}Fe_2O_3/SnO_2$	Core-shell nanotubes/ Hydrothermal	100	300	4.2		28
13	Pd-WO ₃ /g-CN	Ordered mesoporous/ hydrothermal + nanocasting	25	120	21.7	7.2/4.9	This work

Table ST3: A comparison of toluene sensing performance of previously published works

* Estimated value

[#]Response = $(R_g - R_a)/R_a$

S. No	Material	Morphology/Synthesis route	Concentration (ppm)	Operating temperature (°C)	Response	Response/ Recovery time (s/s)	Ref
1	La/SnO ₂	Layered nanoarray/ hydrothermal	200	300	70	48/56	29
2	SnO_2	Hollow microspheres / hydrothermal	50	200	15	5/7	30
3	Pt/WO ₃	Hemitubes / Sputter deposition	2	300	4.11		31
4	Y-SnO ₂	Nanobelt/ Thermal evaporation	100	210	11.4	9-25/10-30	32
5	SnO ₂	Hollow nanobelt/ Single capillary electrospinning	100	260	52.7	46/10 (10 ppm)	33
6	Au/WO ₃	Nanorods/ Thermal evaporation	200	300	132	98/91	34
7	Ce-SnO ₂	Hollow spheres/ Chemical synthesis	100	250	11.9	18/7	35
8	WO ₃	Nanotubes/ Electrospinning	40	250	19.7	5/22	36
9	Eu-SnO ₂	Nanofibers/ Electrospinning	100	280	32.2	4/3	37
10	Au/SnO_2	Hollow microspheres/ Hydrothermal	5	220	3.1	0.9/21	38
11	α -Fe ₂ O ₃ / SnO ₂	Nanofibers/ Electrospinning	100	275	53	1.5/2.5	39
12	Au@TiO ₂ - SnO ₂	Flower-like/ Hydrothermal	100	220	43	6.5/8	40
13	Pd-WO ₃ /g-CN	Ordered mesoporous/ hydrothermal + nanocasting	25	120	21.3	8.1/7.1	This work

References

- ^{1.} H. Yu, T. Yang, R. Zhao, B. Xiao, Z. Li and M. Zhang, *RSC Adv.*, 2015, **5**, 104574
- ^{2.} X. Xiao, X. Xing, B. Han, D. Deng X. Cai and Y. Wang, *RSC Adv.*, 2015, **5**, 42628
- ^{3.} S. Chen, Y. Qiao, J. Huang, H. Yao, Y. Zhang, Y. Li, J. Du and W. Fan, RSC Adv., 2016, 6, 25198
- ^{4.} Z. Wang, H. Zhou, D. Han and F. Gu, J. Mater. Chem. C, 2017, 5, 3254
- ^{5.} X. San, G. Zhao, G. Wang, Y. Shen, D. Meng, Y. Zhang and F. Meng, *RSC Adv.*, 2017, 7, 3540
- ^{6.} X. Xing, Y. Li, D. Deng, N. Chen, X. Liu, X. Xiao and Y. Wang, *RSC Adv.*, 2016, **6**, 101304
- ^{7.} X. Han, Y. Sun, Z. Feng, G. Zhang, Z. Chen and J. Zhan, *RSC Adv.*, 2016,6, 37750
- ^{8.} Y. Zhang, J. Zhao, Z. Zhu and Q. Liu, *Phys. Chem. Chem. Phys.*, 2017, **19**, 6973
- ^{9.} X. Shen, L. Guo, G. Zhu, C. Xi, Z. Ji and H. Zhou, *RSC Adv.*, 2015, **5**, 64228
- ^{10.} Y. Wang, D. Jiang, W. Wei, L. Zhu, L. Shen, S. Wen and S. Ruan, *RSC Adv.*, 2015, 5, 50336
- ^{11.} S. Bai, H. Liu, J. Sun, Y. Tian, R. Luo, D. Li and A. Chen, *RSC Adv.*, 2015, 5, 48619
- ^{12.} J. Liu, X. Li, X. Chen, H. Niu, X. Han, T. Zhang, H. Lin and F. Qu, New J. Chem., 2016, 40, 1756
- ^{13.} Y. Zhang, Q. Liu, J. Zhang, Q. Zhu and Z. Zhu, J. Mater. Chem. C, 2014,2, 10067
- ^{14.} J. Deng, L. Wang, Z. Lou and T. Zhang, J. Mater. Chem. A, 2014, 2, 9030
- ^{15.} X. Li, J. Liu, H. Guo, X. Zhou, C. Wang, P. Sun, X. Hu and G. Lu, *RSC Adv.*, 2015, 5, 545
- ^{16.} X. Lai, G. Shen, P. Xue, B. Yan, H. Wang, P. Li, W. Xia and J. Fang, *Nanoscale*, 2015,7, 4005
- Y. Bing, C. Liu, L. Qiao, Y. Zeng, S. Yu, Z. Liang, J. Liu, J. Luo and W. Zheng, Sens. Actuators B, 2016, 231, 365
- ^{18.} F. Li, C. Li, L. Zhu, W. Guo, L. Shen, S. Wen and S. Ruan, Sens. Actuators B, 2016, 223, 761
- L. Liu, Y. Zhang, G. Wang, S. Li, L. Wang, Y. Han, X. Jiang and A. Wei, *Sens. Actuators B*, 2011, 160, 448
- ^{20.} H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo and X. Chi, ACS Appl. Mater. Interfaces, 2013, 5, 6376
- ^{21.} W. Tang and J. Wang, Sens. Actuators B, 2015, 207, 66
- L. Wang, S. Wang, M. Xu, X. Hu, H. Zhang, Y. Wang and W. Huang, *Phys. Chem. Chem. Phys.*, 2013, 15, 17179
- ^{23.} S. Bai, L. Du, J. Sun, R. Luo, D. Li, A. Chen and C. -C. Liu, RSC Adv., 2016, 6, 60109

- ^{24.} Y. Su, G. Xie, J. Chen, H. Du, H. Zhang, Z. Yuan, Z. Ye, X. Du, H. Tai and Y. Jiang, *RSC Adv.*, 2016, 6, 97840
- ^{25.} C. Zhao, B. Huang, J. Zhou and E. Xie, *Phys. Chem. Chem. Phys.*, 2014, 16, 19327
- ^{26.} T. Wang, Z. Huang, Z. Yu, B. Wang, H. Wang, P. Sun, H. Suo, Y. Gao, Y. Sun, T. Li and G. Lu, *RSC Adv.*, 2016, 6, 52604
- ^{27.} Q. Qi, T. Zhang, L. Liu and X. Zheng, Sens. Actuators B, 2009, 137, 471
- ^{28.} Q. Yu, J. Zhu, Z. Xu and X. Huang, Sens. Actuators B, 2015, 213, 27
- ^{29.} F. Gao, G. H. Qin, Y. H. Li, Q. P. Jiang, L. Luo, K. Zhao, Y. J. Liu and H. Y. Zhao, *RSC Adv.*, 2016, 6, 10298
- ^{30.} J. Li, P. Tang, J. Zhang, Y. Feng, R. Luo, A. Chen and D. Li, *Ind. Eng. Chem. Res.*, 2016, **55**, 3588
- S.J. Choi, I. Lee, B.H. Jang, D. Y. Youn, W.H. Ryu, C.O. Park and I.D. Kim, *Anal. Chem.*, 2013, 85, 1792
- ^{32.} X. Li, Y. Liu, S. Li, J. Huang, Y. Wu and D. Yu, Nanoscale Research Lett, 2016, 11, 470
- ^{33.} W.Q. Li, S.Y. Ma, J. Luo, Y.Z. Mao, L. Cheng, D.J. Gengzang, X.L. Xu and S.H. Yan, *Mater. Lett.*, 2014, **132**, 338
- ^{34.} S. Kim, S. Park, S. Park and C. Lee, Sens. Actuators B, 2015, 209, 180
- ^{35.} P. Song, Q. Wang and Z. Yang, Sens. Actuators B, 2012, **173**, 839
- ^{36.} X. Chi, C. Liu, L. Liu, Y. Li, Z. Wang, X. Bo, L. Liu and C. Su, Sens. Actuators B, 2014, 194, 33
- ^{37.} Z. Jiang, R. Zhao, B. Sun, G. Nie, H. Ji, J. Lei and C. Wang, Ceram. Int., 2016, 42, 15881
- ^{38.} Y. Li, L. Qiao, D. Yan, L. Wang, Y. Zeng and H. Yang, J. Alloys Compounds, 2014, 586, 399
- ^{39.} X. Li, H. Zhang, C. Feng, Y. Sun, J. Ma, C. Wang and G. Lu, *RSC Adv.*, 2014, 4, 27552
- ^{40.} R. Malik, V. K. Tomer, V. Chaudhary, M. S. Dahiya, S.P. Nehra, P. S. Rana and S. Duhan, *Chem. Select*, 2016, 1, 3247