In situ Three-Dimensional Imaging of Strain in Gold Nanocrystals During Catalytic Oxidation

Ana F. Suzana^{ab}, Amélie Rochet^{a*}, Aline R. Passosª, João P. Zerbaª, Carla C. Poloª, Celso V. Santilli^b, Sandra H. Pulcinelli^b, Felisa Berenguer^c, Ross Harder^d, Evan Maxey^d, Florian Meneau^{a*}

- ^a Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, SP, Brazil.
- ^b Instituto de Química, UNESP, Rua Professor Francisco Degni, 14800-900 Araraquara, SP, Brazil.
- c Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint Aubin, 91192 Gif-sur-Yvette, France.
- ^d Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA.

Supporting Information

Surface stress determination.

- Fig. S1. Scanning transmission electron microscopy images of the $Au/TiO₂$ nanoparticles.
- Fig. S2. SAXS pattern of the synthetised gold nanoparticles and its fit.
- Fig. S3. Averaged line profiles.
- Fig. S4. In situ Bragg coherent X-ray diffraction imaging.
- Fig. S5. Mass spectrometry signal.

Fig. S6. Displacement map from a cross section of the Au nanocrystal at 200 and 400 °C under $CO/O₂$.

Fig. S7. Line scan of the phase at 400 °C under air.

Movie S1: 3D view of the gold nanocrystal at RT in 1 bar of CO/O2.

Movie S2: 3D view of the gold nanocrystal at 400 °C in 1 bar of CO/O₂.

Surface stress determination.

The surface stress σ_s can be estimated by the Young-Laplace equation:¹

$$
\sigma_{\rm s} = -\frac{3K}{2} \frac{\Delta a}{a} \tag{1}
$$

where $K = 220$ GPa is the bulk modulus of gold, R the radius of the locally rounded region and ∆ $\frac{du}{a}$ the strain. The strain at the position indicated by the grey arrow of Fig. 2b is -3.7 \cdot 10⁻⁴ for the nanocrystal under air and 2.6 \cdot 10⁻⁴ in CO/O₂. We can estimate the radius R of the locally rounded region is 20 nm. Equation (1) leads to a surface stress of 2.4 ± 0.3 N·m⁻¹ for the nanocrystal under air, typical of tensile surface stress of metals in the range of 2 $N·m^{-1,1,2}$ On the other hand, the surface stress of the nanocrystal under $CO/O₂$ turns to be compressive and equals to - $1.7 \pm 0.1 \text{ N} \cdot \text{m}^{-1}$.

Fig. S1. Scanning transmission electron microscopy images of the Au/TiO₂ nanoparticles. (a) Lowmagnification and (b) high-magnification.

Fig. S2. SAXS pattern (black) of the synthetised gold nanoparticles and its fit (red) obtained with a sphere form factor and log-normal distribution.

Fig. S3. Averaged line profiles. Lines (a, black) along the vertical and (b, red) horizontal directions of the particle cross-section corresponding to Figure 3 (shown here as green surface). The derivatives of the line scans are showing that the reconstruction resolution is 12 nm.

Fig. S4. In situ Bragg coherent X-ray diffraction imaging. A grey isosurface (30 %) representing the particle shape of the same Au/TiO₂ nanoparticle in side view at RT under air (a) and under CO/O₂ (b). The dash lines are showing the facetted and rounder shapes of the nanoparticle.

Fig. S5. Mass spectrometry signal of O_2 , CO and CO_2 during a separate experiment, heating the gold catalyst inside the CDI cell.³

Fig. S6. Displacement map from a cross section of the Au nanocrystal at 200 and 400 °C under CO/O2. Cross section of the distribution of the low (yellow) and high (green) phase shift of the same Au/TiO₂ nanoparticle under CO/O₂ at 200 °C (a) and 400 °C (b). The black arrows indicate the position of the nanotwin network.

Fig. S7. Line scan of the phase at 400 °C under air. The line scan is corresponding to the values of the position of the dashed line shown (for 400 °C under $CO/O₂$) in Fig. 2a.

References:

- 1 I. Robinson, J. Phys. Soc. Japan, 2013, 82, 1.
- 2 W. Haiss, Reports Prog. Phys., 2001, 64, 591.
- 3 A. Rochet, A. F. Suzana, A. R. Passos, T. Kalile, F. Berenguer, C. V. Santilli, S. H. Pulcinelli and F. Meneau, Catal. Today, 2018, in press, 10.1016/j.cattod.2018.12.020.