A New Cathode Material Synthesized by Thiol-modificatory Metal-organic Framework (MOF) Covalently Connecting Sulfur for Superior Long-cycling Stability Lithium-sulfur Batteries

Xu Liu^a, Shi Wang^{a,b}, Ailian Wang^c, Zhinan Wang^a, Jie Chen^a, Qinghui Zeng^a, Pingping Chen^a, Wei Liu^{* a}, Zengxi Li^a *and Liaoyun Zhang^a *

a. School of Chemical Sciences, University of Chinese Academy of Sciences,
 Beijing 100049, China.

b. Key Laboratory for Organic Electronics & Information Displays (KLOEID)
& Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation
Center for Advanced Materials (SICAM), Nanjing University of Posts &
Telecommunications, Nanjing 210023, China.

c. Sionpec Beijing Research Institute of Chemical Industry, Beijing 100013, China.

Email: zhangly@ucas.edu.cn; lizengxi@ucas.edu.cn; weiliu@ucas.edu.cn

Experimental Section

Materials

The CNTs (2-10 nm, purity > 95%) were purchased from Shanghai Aladdin Reagent Co., Ltd. (China). N,N-dimethylformamide (DMF; AR), concentrated sulfuric acid [H₂SO₄; 98%, chemical pure (CP)], hydrochloric acid (HCl; 36%, CP), nitric acid (65-68%) and absolute ethyl alcohol were supplied by Beijing Chemical Works (China) and used as received directly. Zirconium chloride (98%, Aladdin), 2aminoterephthalic acid (99%, Aldrich), Dicyclohexylcarbodiimide (DCC, 99%, Aladdin) and thioglycollic acid (TGA, 99%, Aladdin) were used directly without other processing.

Synthesis of CNT@UiO66-NH₂.

The CNTs were first treated by H_2SO_4 and HNO_3 (volume ratio 3:1) at 60 °C for 2 h to produce acidification of carbon nanotubes (CNT-COOH). For the preparation of Nanosized CNT@UiO66-NH₂ particles, 200 mg of CNT-COOH was first dispersed in 65 mL of DMF under sonication for 0.5 h; then, $ZrCl_4$ (predissolved in a HCl/DMF mixture with v(HCl) : v(DMF) 1 : 5) and 2-amino-4,4 ' -dicarboxylic acid (predissolved in DMF) at a molar ratio of 1 : 1.4 were mixed and heated at 80 °C overnight. The obtained sample was segregated by centrifugation. DMF and absolute ethyl alcohol were successively used to wash the sample 3 times. Finally, the product was dried at 100 °C for 24 h in a vacuum.

Synthesis of CNT@UiO66-SH

 $CNT@UiO66-NH_2$ (0.5 g) and DCC (0.5 g) were added to a round bottom flask

containing 10 ml of DMF. To obtain a homogeneous mixture, the mixture was mixed for 3 min through sonication. TGA (0.6 ml) was added dropwise to the mixture and stirred at 25 °C for 24 h. The obtained product was isolated through centrifugation. Deionized water and absolute ethyl alcohol were successively used to wash the sample 3 times. Finally, the product was dried at 40 °C for 24 h in a vacuum oven.

Shuttle currents tests:

Shuttle current tests were performed based on the Narayanan method. In brief, CNT@UIO66-S and CNT@UIO66-NH₂/S electrodes were prepared with the aforementioned methods. However, the electrolyte was changed to LiNO₃-free electrolyte, aiming to prevent the passivation of lithium anode with LiNO₃. For the measurement of shuttle currents, the cells were firstly charged and discharged three times at C/20 rate. Following this, the voltage of the cells was charged to 2.7 V and the cells stayed with an open-circuit state for 10 minutes. Then, the cells were switched to a potentiostatic mode to offset the drop voltage at different stages (2.70, 2.60, 2.5, 2.4, 2.35, 2.3, and 2.25 V) for 2 hour before reaching a steady-state value. The steady-state current was the shuttle current because the voltage would continue to drop if there was no external current to compromise the shuttle effect.

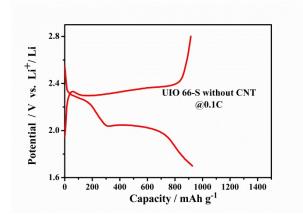


Figure S1 The charge/discharge curve for UIO66-S/Li coin cell, Current density:

0.1C; cut off voltages: 1.7-2.8 V.

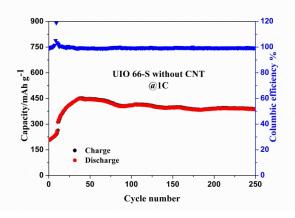


Figure S2 Cycling performance of the UIO66-S/Li coin cells at 1C



Figure S3. CV curves of CNT@UIO66-NH₂/S electrode

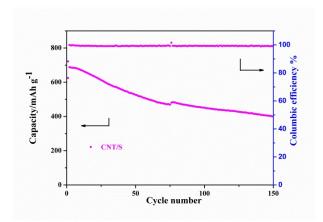


Figure S4 Cycling performance of the CNT/S/Li coin cells at 1C

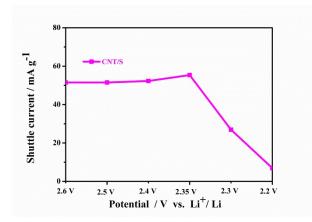


Figure S5The shuttling current of CNT/S/Li coin cells

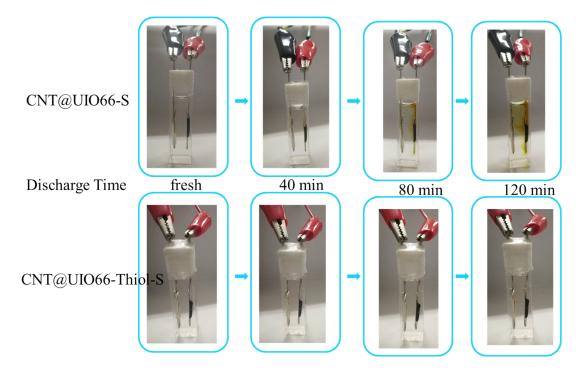


Figure S6. Photographs displaying the dissolution of polysulfide intermediates into electrolyte during discharge at 0.5C for CNT@UIO66-S cathode and CNT@UIO66-NH₂/S cathode

Sample	C wt.%	N wt.%	S wt.%	
CNT@UIO66-NH ₂	45.5	4.3	0.1	
CNT@UIO66-SH	41.9	3.2	7.5	
CNT@UIO66-S	19.3	1.4	53.6	

Table S1 Elemental analyses data of CNT@UIO66-NH₂, CNT@UIO66-SH and CNT@UIO66-S

Cathode materials	Discharge current	Maximum Capacity (mAh g ⁻¹)	Capacity retention (Cycle Numbers)	Capacity fading rate (% per cycles)	Referenc e						
						CNT@UIO66-S	1 C	660	92.12%	0.017	This work
									(550)		
							2 C	519	80.19%	0.022	
		(900)									
S/D-CNTs@ZIF-8	1C	550	85%	0.05	1						
			(300)								
NCCNT-Co-S	1C	986	88%	0.024	2						
			(500)								
S/MOF-74-Ni/CNT	2C	773	65.1%	0.087	3						
			(400)								
CNT@CoNC/S	0.2C	1174.6	79.8%	0.0403	4						
			(500)								
S/CN-5@NSHPC	1C	615	72.3%	0.048	5						
			(500)								
CNT-GC@NC/S	1C	863	67.2%	0.041	6						
			(800)								
S/ZIF-8	0.5C	738	75%	0.083	7						
			(300)								
S@Co-N-GC (ZIF-67)	1C	1150	54%	0.092	8						
			(500)								

Table S2 Comparison of the cycle performance of the reported electrodesmaterial by simply blending sulfur with MOF. ($1C=1675 \text{ mA} \cdot \text{g}^{-1}$)

References

- 1. H. Zhang, W. Zhao, Y. Wu, Y. Wang, M. Zou and A. Cao, *Journal of Materials Chemistry A*, 2019, **7**, 9195-9201.
- 2. H. Lu, C. Zhang, Y. Zhang, Y. Huang, M. Liu and T. Liu, *Nano Research*, 2018, **11**, 6155-6166.
- 3. G. Xu, Y. Zuo and B. Huang, *Journal of Electroanalytical Chemistry*, 2018, **830-831**, 43-49.
- 4. J. Zhao, C. Liu, H. Deng, S. Tang, C. Liu, S. Chen, J. Guo, Q. Lan, Y. Li, Y. Liu, M. Ye, H. Liu, J. Liang and Y.-C. Cao, *Materials Today Energy*, 2018, **8**, 134-142.
- 5. H. Zhang, Z. Zhao, Y.-N. Hou, Y. Tang, Y. Dong, S. Wang, X. Hu, Z. Zhang, X. Wang and J. Qiu, *Journal of Materials Chemistry A*, 2018, **6**, 7133-7141.
- 6. H. Yu, B. Zhang, F. Sun, G. Jiang, N. Zheng, C. Xu and Y. Li, *Applied Surface Science*, 2018, **450**, 364-371.
- 7. J. Zhou, X. Yu, X. Fan, X. Wang, H. Li, Y. Zhang, W. Li, J. Zheng, B. Wang and X. Li, *Journal of Materials Chemistry A*, 2015, **3**, 8272-8275.
- 8. Y.-J. Li, J.-M. Fan, M.-S. Zheng and Q.-F. Dong, *Energy & Environmental Science*, 2016, **9**, 1998-2004.