Supporting Information

Bright tricolor ultrabroad-band emission carbon dots for white light-emitting diodes with a 96.5 high color rendering index

Xiaoxi Li, Zifei Wang*, Yang Liu, Weiguang Zhang, Chaofeng Zhu*, and Xiangeng Meng

Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Province, School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China E-mail: wangzifei2013@126.com; cfzhu@qlu.edu.cn

List of Contents

1. Fig. S1-S6

2. Table S1-S5

Fig. S1. PL spectra of B- (a), G- (b), and R-CDs (c) recorded upon excitation at different

wavelengths.

Fig. S2. Time-resolved PL spectra of B- (a), G- (b), and R-CDs (c), respectively.

Fig. S3. Photostability of B- (a), G- (b), and R-CDs (c) under continuous illumination with an UV

(365 nm, 5 W) lamp for 10 h.

Fig. S4. Illustration of the growth mechanism of Tri-CDs.

Fig. S5. PL spectra of B-, G- and R-CD films (left to right) at different temperatures from 293 to

453 K.

Fig. S6. EL spectra of the WLED recorded under different operating time intervals.

Table S1. FWHM values of B-, C	G-, and R-CDs of the PL	spectra obtained upon	excitation at
--------------------------------	-------------------------	-----------------------	---------------

different wavelengths.

Sample	B-CDs					G-CDs				R-CDs										
Ex (nm)	340	360	380	400	420	440	380	400	420	440	460	480	40) 44() 46	0	480	500	520	540
FWHM	103	106	118	120	122	123	111	109	107	106	104	101	10) 10	8 10	6	105	103	102	100

Table S2. The C, N, and O element contents of the three selected products determined by XPS

results.

Sample	C (%)	N (%)	O (%)
B-CDs	55.23	37.47	7.3
G-CDs	73.79	19.99	6.22
R-CDs	75.80	18.94	5.26

		C 1s		N 1s				
Samples	284.3 eV	285.3 eV	286.8 eV	398.9 eV	399.9 eV	400.5 eV		
	C-C/C=C	C-N	C-O	Pyridinic N	Amine N	Graphitic N		
B-CDs	55.23%	37.47%	7.3%	46.67%	30.83%	22.50%		
G-CDs	73.79%	19.99%	6.22%	37.40%	33.96%	28.64%		
R-CDs	75.80%	18.90%	5.26%	33.21%	35.51%	31.28%		

Table S3. The content of various chemical bonds in three samples.

Table S4. CIE color coordinates (x, y), CRI, and CCT of WLEDs 1–7.

WLEDs	CIE (x, y)	CRI	CCT/K
1	(0.2957,0.3074)	93.1	8203
2	(0.3344,0.3415)	94.6	5762
3	(0.3616,0.3698)	96.5	4650
4	(0.3908,0.3878)	95.2	3750

Luminescent materials	CIE	CRI	References
CsVO ₃ /Mg ₂ TiO ₄ :Mn ⁴⁺ red phosphor	(0.330, 0.382)	91.1	[27]
Mg ₁₄ Ge ₅ O ₂₄ :Mn ⁴⁺ red phosphor/YAG yellow phosphor	(0.36, 0.37)	80.6	[28]
$BaMgAl_{10-2x}O_{17}:xMn^{4+},xMg^{2+}/$	(0.339, 0.349)	86.0	[29]
R-CDs/green CNP phosphors	(0.35, 0.36)	84.9	[30]
G-CDs/R-CDs	(0.34, 0.31)	82.4	[31]
B-CDs/carbon nanoplates	(0.3308, 0.3312)	88.0	[32]
B-/G-/R-CDs	(0.362, 0.370)	96.5	This work

Table S5. Comparison of CRI of WLEDs based on CDs and rare-earth phosphors.