Co-crystallization experiments of thiocarbamides with bipyridine-type

molecules*

Carol A. Ellis, Michael A. Miller, James Spencer, Julio Zukerman-Schpector and Edward R. T. Tiekink

Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA. Fax 1 210 458 7428; Tel: 1 210 458 5774; E-mail: Edward.Tiekink@utsa.edu

Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas, 78228-0510

Universidade Federal de São Carlos, Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Departamento de Química, C.P. 676, São Carlos, São Paulo, 13565-905, Brazil

*** Electronic Supplementary Information ***

Table S(1). Selected bond distances (Å) for ROC(=S)N(H)R' in their pure crystalline

form	and	in	co-crystals	(1) –	(5).
------	-----	----	-------------	----	-----	------

C1=S1	C1-N1	C101
1.671(1)	1.329(2)	1.329(1)
1.6747(17)	1.336(2)	1.3345(19)
1.664(2)	1.345(2)	1.322(2)
1.661(4)	1.363(5)	1.329(4)
1.636(5)	1.327(7)	1.301(7)
1.651(5)	1.324(7)	1.296(6)
1.650(5)	1.319(7)	1.311(7)
1.6672(16)	1.3309(18)	1.343(2)
1.672(2)	1.354(3)	1.321(3)
1.659(5)	1.369(6)	1.328(5)
1.6748(16)	1.334(2)	1.3216(19)
1.671(3)	1.339(4)	1.330(3)
	C1=S1 1.671(1) 1.6747(17) 1.664(2) 1.661(4) 1.636(5) 1.651(5) 1.650(5) 1.6672(16) 1.672(2) 1.659(5) 1.6748(16) 1.671(3)	C1=S1C1-N1 $1.671(1)$ $1.329(2)$ $1.6747(17)$ $1.336(2)$ $1.664(2)$ $1.345(2)$ $1.661(4)$ $1.363(5)$ $1.651(5)$ $1.327(7)$ $1.650(5)$ $1.319(7)$ $1.6672(16)$ $1.3309(18)$ $1.672(2)$ $1.354(3)$ $1.6748(16)$ $1.334(2)$ $1.671(3)$ $1.339(4)$

a Three independent molecules in the crystallographic asymmetric unit

References: 1. S. Y. Ho, C. S. Lai and E. R. T. Tiekink, *Acta Crystallogr. Sect. E: Struct. Reports Online*, 2003, **59**, o1155; 2. S. Y. Ho, R. P. A. Bettens, D. Dakternieks, A. Duthie and E. R.T. Tiekink, *CrystEngComm*, 2005, **7**, 682; 3. R. L. Taylor and E. R. T. Tiekink, *Z. Kristallogr.*, 1994, **209**, 64; 4. R. E. Benson, G. A. Broker, L. M. Daniels, E. R. T. Tiekink, J. L. Wardell and D. J. Young, *Acta Crystallogr. Sect. E: Struct. Reports Online*, 2006, **62**, o4106; and 5. F. S. Kuan, F. Mohr, P. P. Tadbuppa and E. R.T. Tiekink, *CrystEngComm*, 2007, **9**, 574.

Table S(2). Selected bond and torsion angles (°) for ROC(=S)N(H)R' in their pure crystalline form and in co-crystals (1) – (5).

Compound	S1C1O1	S1C1N1	01C1N1	S1/C1/N1/C2			
	C1/N1/C2/C3						
MeOC(=S)N(H)Ph ¹	124.5(1)	123.0(1)	112.5(1)	178.2(1)	-60.1(2)		
MeOC(=S)N(H)Ph in (1)	124.85(12)	121.96(12)	113.15(14)	-178.62(13)	31.3(3)		
MeOC(=S)N(H)PhNO ₂ -4 ²	124.5(1)	121.9(1)	113.6(2)	-175.9(1)	-176.0(2)		
$MeOC(=S)N(H)PhNO_2-4 in (2)$	125.6(3)	121.5(3)	112.9(3)	173.9(3)	-21.0(6)		
EtOC(=S)N(H)Ph ^{3,a}	125.0(4)	122.2(4)	112.8(5)	174.0(5)	37.1(9)		
	124.9(4)	121.8(4)	113.3(4)	173.5(5)	158.3(6)		
	124.3(4)	122.2(4)	113.6(4)	-177.0(5)	-17(1)		
EtOC(=S)N(H)Ph in (3)	124.54(11)	122.88(11)	112.58(13)	173.39(12)	23.2(3)		
EtOC(=S)N(H)PhNO ₂ -4 ⁴	125.0(2)	121.6(2)	113.5(2)	178.9(2)	-3.8(4)		
$EtOC(=S)N(H)PhNO_2-4 in (4)$	125.3(3)	122.1(3)	112.5(4)	-178.0(4)	4.0(8)		
iPrOC(=S)N(H)Ph ⁵	125.4(1)	121.591)	113.1(1)	178.2(1)	141.7(2)		
iPrOC(=S)N(H)Ph in (5)	125.7(2)	122.0(2)	112.2(2)	-179.7(2)	-48.3(4)		

a Three independent molecules in the crystallographic asymmetric unit

References: 1. S. Y. Ho, C. S. Lai and E. R. T. Tiekink, *Acta Crystallogr. Sect. E: Struct. Reports Online*, 2003, **59**, 01155; 2. S. Y. Ho, R. P. A. Bettens, D. Dakternieks, A. Duthie and E. R.T. Tiekink, *CrystEngComm*, 2005, **7**, 682; 3. R. L. Taylor and E. R. T. Tiekink, *Z. Kristallogr.*, 1994, **209**, 64; 4. R. E. Benson, G. A. Broker, L. M. Daniels, E. R. T. Tiekink, J. L. Wardell and D. J. Young, *Acta Crystallogr. Sect. E: Struct. Reports Online*, 2006, **62**, 04106; and 5. F. S. Kuan, F. Mohr, P. P. Tadbuppa and E. R.T. Tiekink, *CrystEngComm*, 2007, **9**, 574.

Figure S(1). Unit cell contents highlighting the stacking of layers in co-crystal (1). The crystal structure of co-crystal (3) is isomorphous with co-crystal (1). Colour code in this and remaining diagrams: sulphur, yellow; oxygen, red; nitrogen, blue; carbon, grey; and hydrogen, green.

Figure S(2). Layers in the structure of co-crystal (2). Supramolecular chains mediated by N–H...N hydrogen bonds (orange dashed lines) and C–H...O contacts (blue dashed lines) run along the *c*-axis and are connected into layers in the *a*-direction via C-H... π and π ... π interactions (not shown).

Figure S(3). Unit cell contents for co-crystal (4) viewed down the *b*-axis highlighting

the stacking of layers along the *c*-direction.

Figure S(4). PXRD patterns for co-crystal (1): MeOC(=S)N(H)Ph (black trace); *trans*-1,2-bis(4-pyridyl)ethene (red trace); 2:1 mixture (grinding) of MeOC(=S)N(H)Ph and *trans*-1,2-bis(4-pyridyl)ethene (green trace); and 2:1 mixture (solvent drop grinding) of MeOC(=S)N(H)Ph and *trans*-1,2-bis(4-pyridyl)ethene (blue trace).

Summary: Evidence for co-crystal formation.

Figure S(5). PXRD patterns for co-crystal (1): 2:1 mixture (grinding) MeOC(=S)N(H)Ph and *trans*-1,2-bis(4-pyridyl)ethene (black trace); 2:1 mixture (solvent drop grinding) MeOC(=S)N(H)Ph and *trans*-1,2-bis(4-pyridyl)ethene (red trace) isolated single crystals of 2:1 MeOC(=S)N(H)Ph and *trans*-1,2-bis(4-pyridyl)ethene co-crystal (green trace); and calculated pattern from single crystal data for 2:1 MeOC(=S)N(H)Ph and *trans*-1,2-bis(4-pyridyl)ethene co-crystal (blue trace); and *trans*-1,2-bis(4-pyridyl)ethene co-crystal data for 2:1 MeOC(=S)N(H)Ph

Summary: Bulk material corresponds to structure determined by single crystal X-ray crystallography.

Figure S(6). PXRD patterns for co-crystal (2): MeOC(=S)N(H)PhNO₂-4 (black trace); *trans*-1,2-bis(4-pyridyl)ethene (red trace); 2:1 mixture (grinding) of MeOC(=S)N(H)PhNO₂-4 and *trans*-1,2-bis(4-pyridyl)ethene (green trace); and 2:1 mixture (solvent drop grinding) of MeOC(=S)N(H)PhNO₂-4 and *trans*-1,2-bis(4-pyridyl)ethene (blue trace).

Summary: Evidence for co-crystal formation by solvent drop grinding.

Figure S(7). PXRD patterns for co-crystal (2): 2:1 mixture (grinding) MeOC(=S)N(H)PhNO₂-4 and *trans*-1,2-bis(4-pyridyl)ethene (black trace); 2:1 mixture (solvent drop grinding) MeOC(=S)N(H)PhNO₂-4 and *trans*-1,2-bis(4-pyridyl)ethene (red trace); isolated single crystals of 2:1 MeOC(=S)N(H)PhNO₂-4 and *trans*-1,2-bis(4-pyridyl)ethene co-crystal (green trace); and calculated pattern from single crystal data for 2:1 MeOC(=S)N(H)PhNO₂-4 and *trans*-1,2-bis(4-pyridyl)ethene co-crystal (blue trace). Summary: The solvent drop grinded bulk material corresponds to structure determined by single crystal X-ray crystallography.

Figure S(8). PXRD patterns for co-crystal (**3**): isolated single crystals of 2:1 EtOC(=S)N(H)Ph and *trans*-1,2-bis(4-pyridyl)ethene co-crystal (black trace); and 2:1 mixture (grinding) of EtOC(=S)N(H)Ph and *trans*-1,2-bis(4-pyridyl)ethene (red trace). Summary: Evidence for co-crystal formation with solvent drop grinding.

Figure S(9). PXRD patterns for co-crystal (**3**): isolated single crystals of 2:1 EtOC(=S)N(H)Ph and *trans*-1,2-bis(4-pyridyl)ethene co-crystal (black trace); and calculated pattern from single crystal data for 2:1 EtOC(=S)N(H)Ph and *trans*-1,2-bis(4-pyridyl)ethene co-crystal (red).

Summary: Bulk material corresponds to structure determined by single crystal X-ray crystallography.

Figure S(10). PXRD patterns for co-crystal (**4**): EtOC(=S)N(H)PhNO₂-4 (black trace); 4,4'-bipyridine (red trace); 2:1 mixture (grinding) of EtOC(=S)N(H)PhNO₂-4 and 4,4'-bipyridine (green trace); and 2:1 mixture (solvent drop grinding) of EtOC(=S)N(H)PhNO₂-4 and 4,4'-bipyridine (blue trace).

Summary: Evidence for co-crystal formation with solvent drop grinding.

Figure S(11). PXRD patterns for co-crystal (4): 2:1 mixture (grinding) of $EtOC(=S)N(H)PhNO_2-4$ and 4,4'-bipyridine $EtOC(=S)N(H)PhNO_2-4$ (black trace); 2:1 mixture (solvent drop grinding) of $EtOC(=S)N(H)PhNO_2$ and 4,4'-bipyridine $EtOC(=S)N(H)PhNO_2-4$ (red trace); isolated single crystals of 2:1 $EtOC(=S)N(H)PhNO_2-4$ and 4,4'-bipyridine co-crystal (green trace); and calculated pattern from single crystal data for 2:1 $EtOC(=S)N(H)PhNO_2-4$ and 4,4'-bipyridine co-crystal (blue trace).

Summary: The bulk material obtained by solvent drop grinding corresponds to structure determined by single crystal X-ray crystallography.

Figure S(12). PXRD patterns for co-crystal (5): isolated single crystals of 2:1 $MeOC(=S)N(H)PhNO_2$ and *trans*-1,2-bis(4-pyridyl)ethene co-crystal (black trace); and calculated pattern from single crystal data for 2:1 $MeOC(=S)N(H)PhNO_2$ and *trans*-1,2-bis(4-pyridyl)ethene co-crystal (red trace).

Summary: Bulk material corresponds to structure determined by single crystal X-ray

crystallography.

Figure S(13). PXRD patterns for co-crystal (5): isolated single crystals of 2:1 $MeOC(=S)N(H)PhNO_2$ and *trans*-1,2-bis(4-pyridyl)ethene co-crystal (black trace) and 2:1 mixture (grinding) of iPrOC(=S)N(H)Ph and *trans*-1,2-bis(4-pyridyl)ethene (red trace).

Summary: The phases are distinct indicating that the new phase formed by grinding is not the same as that deposited as crystals from solution.

