Supplementary Material for Chemical Society Reviews This journal is © The Royal Society of Chemistry 2006

Supplementary data

Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect

processes

Carlos A. Martínez-Huitle^{*} and Sergio Ferro

Department of Chemistry, University of Ferrara, via L. Borsari 46, I-44100 Ferrara, Italy

E-mail address: Carlos.Martinez@unimi.it - FAX number: +39 0532 240709

Table S1 Direct anodic oxidation of organic compounds (anode materials listed in alphabetical order)

Table S2 Indirect anodic oxidation of organic compounds (anode materials listed in alphabetical order)

References

Table S1 Direct anodic oxidation of organic compounds (anode materials listed in alphabetical order)

Anode	Pollutant	J, I or E	Efficiency	Removal efficiency	Comments	Metabolites	Ref.
3D carbon	nitroaromatic	500-1000		10-50% COD removal	H ₂ SO ₄ from 50-96%, T=25-40 °C	2-methyl quinoxaline, 2,3- dimethyl	158
Au	waste benzoquinone	A/m^2 10 mA/cm ²		46% (after 48 h)	V=50 ml, [benzoquinone]= 50 ml stock solution, [stock solution]=100 mg/l	quinoxaline, quinoxaline hydroquinone, resorcinol, p- benzoquinone, pyrocatechol, formic, acetic, maleic, succinic, malonic, fumaric, acetic acids	80
Au	penta- chlorophenol						99
BDD	isopropanol	30 mA/cm ²	85%	90%	1 M H ₂ SO ₄ , transport limitations	acetic, oxalic and formic acids	125
BDD	herbicides	I=100-450 mA	ACE=8-12 %	40% (1h), 70-90%(3h)	pH=3, 0.5 M H ₂ SO ₄ , [herbicide]=100mg/l	4-chlorophenol, 4-chloro-o-cresol, maleic and oxalic acids	126
BDD	maleic, formic and oxalic acids	30 mA/cm^2	ICE=0.2-0.8, carboxylic acid- and concentration- depended	90%	H_2SO_4/Na_2SO_4 , pH= 2, T=20 °C	CO ₂	148
BDD	phenol	15-60 mA/cm ²	100-50% (5Ah/l) and >50% (after 5Ah/l)		[phenol]= 350-1500 mg/l, T=25 °C	hydroquinone, benzoquinone, maleic, fumaric and oxalic acids	150
BDD	phenol	5 mA/cm ²	ICE=0.5	90%	HClO ₄ 1 M, T=25 °C, [nhenoll=20 mM]	hydroquinone, benzoquinone, catechol,	130
BDD	phenol	300 A/cm ²	33% CE	90%	HClO ₄ 1 M, T=25 °C, [phenol]=20 mM, pH=2, abarga loading 4.5 Ab/l	hydroquinone, benzoquinone, catechol, maleic, fumaric and oxalic acids	130
BDD	acetic acid	30 mA/cm^2	90%	98%	$1 \text{ M H}_2\text{SO}_4$, T=30 °C	oxalic acid and CO ₂	124
BDD	formic acid	30 mA/cm ²	90%	100%	1 M H ₂ SO ₄ , T=30 °C	CO ₂	124
BDD	oxalic acid	30 mA/cm ²	70%	90%	1 M H ₂ SO ₄ , T=30 °C, transport limitations	CO ₂	124
BDD	polyacrylates	0.1-0.3 A/dm ²	37-100%	99%	HClO ₄ 1 M, T=30-60 °C	hydroquinone, benzoquinone, catechol, maleic, fumaric and oxalic acids	151
BDD	2-naphthol	15-60	ICE=100% (8 Ah/l)	90%	[2-naphthol]= 2-9 mM	polimerization and CO ₂	140

BDD	phenolic compounds	mA/cm^{2} 153-510 mA/cm^{2}		90%	[phenolic comp.]=100-500 mg/l, Re number= 3500-15000	hydroquinone, benzoquinone, maleic, aliphatic acids	120
BDD	chloranilic acid	6.3-50mA/cm ²	GCE=0.7-0.4	90%	H ₂ SO ₄ , T=25-60 °C	hydroquinone, ketomalonic and oxalic acid	12
BDD	multicomponent mixtures (phenol, phenyl- methanol, 1- phenyl-ethanol and m cresol)	100-300 A/m ²	approx. 100%	COD removal 5000 – 300 ppm	Na ₂ CO ₃ 0.1 M supporting electrolyte, pH=7.0 using H ₂ SO ₄ 5% v/v		117
BDD	penta- chlorophenol	E=0.9 V	96% CE	80%	buffer pH=5.5, [penta-chlorophenol]=5.0x10 ⁻⁵ M	2, 3, 4, 5, 6 - pentachloro- 4- pentachloro- phenoxy- 2, 5- cyclohexadienone, p-chloranil hydroquinone	132
BDD	penta- chlorophenol	E=2.0 V	90% CE	86%	buffer pH=5.5, [penta-chlorophenol]=5.0x10 ⁻⁵ M	2, 3, 4, 5, 6 - pentachloro- 4- pentachloro- phenoxy- 2, 5- cyclohexadienone, p-chloranil hydroquinone	132
BDD	penta- chlorophenol	E=3.0 V		95%	buffer pH=5.5, [penta-chlorophenol]=5.0x10 ⁻⁵ M	2, 3, 4, 5, 6 - pentachloro- 4- pentachloro- phenoxy- 2, 5- cyclohexadienone, p-chloranil hydroquinone	132
BDD	benzoic acid	I=1.5 A	ICE=100% initial times	90% COD	0.5 M HClO ₄ , [benzoic acid]=several concentrations	salicylic acid, 2, 5-dihydroxybenzoic acid and hydroquinone	127
BDD	polyhydroxy benzenes	15-60 mA/cm ²	ICE= 100% from 4000-2000 COD concentrations, and decrease ICE from 1800 to 100 COD concentrations	90% COD	T=15-60°C, initial concentration 1.1-36 mmol/l, pH=2 and 12, transport limitations	aliphatic compounds	144
BDD	Kodak [®] 6 first developer	1000 A/m ²		73% COD	initial COD=32500 mg/l, V=30 ml, I=0.31 A, electrolysis time 6.25 h		131
BDD	Kodak [®] E6 color developer	1000 A/m ²		80% COD	initial COD=19050 mg/l, V=30 ml, I=0.31 A, electrolysis time 4 75 h		131
BDD	phenol solution	1000 A/m ²		94% COD	initial COD=3570 mg/l,		131

BDD	hydroquinone solution	500 A/m ²		97% COD	V=60 ml, I=0.31 A, electrolysis time 18 h initial COD=23530 mg/l, V=60 ml, I=0.15 A, electrolysis time 38 h		131
BDD	CN ⁻	360 A/m ²	41% CE	95% [CN-] removal	1 M KOH		135
BDD BDD/ Electro- Fenton	isopropanol herbicides	300 A/cm ² I=100-450 mA	> 95% ACE=8-12 %	< 90% conversion 60% (1h), 80-99% (3h)	[isopropanol]= 0.17 M pH=3, $0.5 \text{ M} \text{ H}_2\text{SO}_4$, [herbicide]= 100 mg/l	CO ₂ 4-chlorophenol, 4-chloro-o-cresol, maleic and oxalic acids	118 126
Carbon anode	cyanide	E=3-5 V	approx. 100% CE	50%, CN removal depending flow of solution	catalyzed by copper, T=19-25 °C		159
Carbon felt	chlorophenols	2.5-17 mA/cm ²	faradic efficiency	80%	elimination of cyclic chlorinated compounds $pH=2.5$	aliphatic acids, consist mainly oxalic acid	67
Ebonex/ PbO ₂	phenol	CV method, -0.5-2.0V vs. NHE	2010		$1 \text{ M H}_2\text{SO}_4$, [phenol]=5 mM	partial destruction of phenol	109
Ebonex®	trichloroethylene	E=2.5-4.3 V	high value, 32%, Ea=2.5 V	10-70% potential- depended	pH=7, [trichloroethylene]= 1 mM, faster reaction kinetics	chlorine-containing products	115
Ebonex®	phenol	CV method, -0.5-2.0V vs. NHE			1 M H ₂ SO ₄ , [phenol]=5 mM	inactive oxidation	109
Glassy carbon	benzoquinone	10 mA/cm ²		100% (10 h)	V=50 ml, [Benzoquinone]= 50 ml sol.stock, [sol. Stock]=100 mg/l, carbon particles degradation	hydroquinone, resorcinol, p- benzoquinone, pyrocatechol, formic, acetic, maleic, succinic, malonic, fumaric, acetic acids	80
Glassy carbon	benzene	E=1.6-2.2 V, approx. 0.1- 2.5 mA		90% of transformation to benzoquinone	0.5 M H ₂ SO ₄ , T=25 °C	p-benzoquinone, hydroquinone, phenol, 1-ethynyl, 4-methyl benzene	157
Glassy carbon	Penta- chlorophenol	<i></i>				polymerization	99
Glassy carbon	phenol	E1.7-2.3 V	5-100%, CE depending on the experimental	50-100%, [phenol]- and temperature- depended. For high potential a low	different experimental parameters: concentrations, temperature and potentials	hydroquinone, benzoquinone, catechol, maleic and oxalic acids	59

			conditions	efficiency is achieved and vice versa			
Granular graphite	phenol	0.03-0.32 A/m ²	70%, CE	70-50% mineralization	%-month stable operation, current- and pH- depended	different organic pollutants	103
$ Ir_{(30\%)} \\ Ti_{(20\%)} \\ Ce_{(50\%)}O_2 $	p-benzoquinone maleic acid	10 mA/cm^2	CE(%)=0.3		[p-benzoquinone]= 5×10^{-4} M, considering one-electron reaction	muconic acid, maleic and oxalic acids	78
$Ir_{(30\%)}$ $Ti_{(70\%)}O_2$	p-benzoquinone maleic acid	10 mA/cm^2	CE(%)=0.3		$[p-benzoquinone]=5x10^{-4} M_{,,}$ considering one-electron reaction	muconic acid, maleic and oxalic acids	78
IrO ₂	chloranilic acid	6.3-50mA/cm ²	GCE=0.1	90%	$H_2SO_4 T = 25-60^{\circ}C$	hydroquinone, ketomalonic and oxalic acid	12
IrO ₂ spray pirolysis	p-benzoquinone maleic acid	10 mA/cm ²	CE(%)=0.55		$[p-benzoquinone]=5x10^{-4} M,$ considering one-electron reaction	muconic acid, maleic and oxalic acids	78
IrO ₂ thermal decomposi tion	p-benzoquinone maleic acid	10 mA/cm ²	CE(%)=0.45		[p-benzoquinone]=5x10 ⁻⁴ M, considering one-electron reaction	muconic acid, maleic and oxalic acids	78
Lead Anode and Packed bed lead particles	aniline	300 A/m ²	15-40%, CE; depending on the experimental conditions	97.5% aniline was oxidized and 72.5% of products was converted in CO_2 after 5 h	[aniline]=5.5x10 ⁻³ M, H ₂ SO ₄ , pH=2, V=400 ml, T=25 °C	benzoquinone, maleic and carbon dioxide	73
Packed bed reactor of PbO ₂ pellets	phenol	I=1.0 A	21% (after 2.5)	phenol removal 72-100%, depending on the experimental conditions	[phenol]=1.4x10 ⁻² M, 1M H ₂ SO ₄ , First Electrochemical oxidation studies, Innovative reactor.	phenol, benzoquinone, maleic acid and CO_2	85
Packed bed reactor of PbO ₂ pellets	phenol	I=2.0 A	16% (after 1.5hrs.)	phenol removal 72-100%, depending on the experimental conditions	[phenol]=1.4x10 ⁻² M, 1M H ₂ SO ₄ , First Electrochemical oxidation studies, Innovative reactor.	phenol, benzoquinone, maleic acid and CO_2	85
Packed bed reactor of	phenol	I=3.0 V	16% (after 1.5hrs.)	phenol removal 72-100%, depending on the experimental conditions	[phenol]=1.4x10 ⁻² M, 1M H ₂ SO ₄ , First Electrochemical oxidation studies, Innovative reactor.	phenol, benzoquinone, maleic acid and CO_2	85

PbO ₂					dissolved oxygen after 1. 5h and		
pellets					considerable $[CO_2]$ achieved		
PbO_2	indoles	I=0.5-500	32%		$0.05 \operatorname{Na_2SO_4}$	polymerization	75
DhO	1 Mathul indal	mA I-0 5 500	0.00/		0.05 No SO	naturnarization	75
P0O ₂	1-Methyl mdol	I=0.5-300 mA	99%		$0.03 \text{ Na}_2 \text{SO}_4$	porymenzation	13
PhO ₂	2-Methyl-indol	I=0.5-500	58%		0.05 Na ₂ SO ₄	polymerization	75
1002	2 11001191 111001	mA	0070		0.00 1.02004	porymonization	10
PbO ₂	3-Methyl-indol	I=0.5-500	27%	90% (60 mA) and	$0.05 \text{ Na}_2 \text{SO}_4$	polymerization	75
	·	mA		99% (100 mÅ)			
PbO ₂	tryptophan	I=0.5-500	37%		$0.05 \operatorname{Na}_2 SO_4$	polymerization	75
		mA					
PbO ₂	Phenol	Potential=		68-100%	$T=65^{\circ}C, 0.2M H_2SO_4$	hydroquinone, benzoquinone	90
		1.4-2.5 V					
PbO_2	glucose	100-900	EOI=30-60%	100%	$1M H_2SO_4$,	9 derivates of glucose	76
		A/m ²			$T=25-57^{\circ}C,$		
					Specific interaction between Pb ⁽¹⁾		
DI O		6.0.50		0.00/	sites and carboxylic groups		10
PbO_2	chloranilic acid	6.3-50	GCE=0.7-0.2	90%	$H_2SO_4, T=25-60^{\circ}C$	hydroquinone, ketomalonic and oxalic	12
DI-O		mA/cm^{-1}	CE(0/)=0		[]		70
PbO_2	p-Benzoquinone/	10 mA/cm	CE(%)=0.6		[p-benzoquinone]=5x10 M	muconic acid, maleic and oxalic acids	/8
PhO	urine waste	E = 1.8 V vc		05%	H SO T=80 °C real matrix	NO NO NO 3 NH $^+$	81
1002	hiomass mixtures	L-1.0 V VS.		3370	$11_{2}50_{4}, 1-80$ C, real matrix	$100_2, 100, 100_2, 1011_4$	04
	biomass mixtures	around (0.2)					
		0.4 mA/cm^2					
Planar	nhenol	$10-100 \text{ A/m}^2$	24 6-63 5% CE	6-17% COD	NaOH as electrolyte	aliphatic compounds. CO ₂ and water	104
graphite	phonor	10 100 14,111	21.0 05.570, 01	0 1170, 000	[phenol]=100 ppm		101
Porous	phenol	2.0 A	48%, CE		different percentages of phenol	different organics	167
Graphite	r				removal according of current		
1					density and residence time		
Pt	phenol	30 mA/cm^2	25% (1.5 h),		pH influence in EOI	maleic, fumaric, oxalic acids	89
	-		EOI=0.13		-	-	
Pt	phenol	Potential=		34-47%	T=65 °C, 0.2 M H ₂ SO ₄	hydroquinone, benzoquinone, maleic, fumaric and oxalic acids	90

Pt	glucose	0.25-1.5 V 100-900	EOI=15-20%	40%	1 M H ₂ SO ₄ ,	9 derivates of glucose	76
	0	A/m^2			T=25-57 °C,	e	
					Specific interaction between Pb ^(IV)		
					sites and carboxylic groups		
Pt	4-Chlorophenol	0.18 A/cm^2		78%	pH decrease 6 to 4	benzoquinone, maleic, malonic, succinic,	91
						oxalic, formic, acetic acids, chloride, 4-	
Dt	nhenol	$50 \text{ m} \text{ / } \text{cm}^2$		50% (after 120 Ah/l)	[nhenol]=2 gr/l	CI-maleic acid, CI-acetic, diCI-acetic	02
11	phenor	JU IIIA/CIII		5070 (and 120 An7)	T=70 °C Na ₂ SO ₄ nH=2		92
Pt	dicamba (3, 6	I=100-450	ACE=0-0.4 (1h)	%TOC removal=21-65	$pH=3, 0.5 M H_2SO_4$	formic, maleic, oxalic acids	88
	dichloro-2	mA		,	r		
	methoxy benzoic						
	acid)						
Pt	urine-waste	8 mA/cm^2		78%	T=60 °C, 72 h	NO_2 , NO, NO_{-2}^{-3} , NH_4^+	84
D.	biomass mixtures	E 1 (0 0 V		000/ : :			1.57
Pt	benzene	E=1.6-2.2 V,		90%, conversion in	$0.5 \text{ M H}_2\text{SO}_4, 1=25^\circ\text{C}$	p-benzoquinone, hydroquinone, phenol,	157
		aprox. $0.1-2.5$		benzoquinone		1-etnynyi, 4-metnyi benzene	
Pt	Penta-	IIIA				nolymerazitation	99
11	chlorophenol					porymerazitation	//
Pt	Phenol	E=0.9-1.2 V	passive film was	different concentrations	$0.09 \text{ M H}_2\text{SO}_4$, pH=1, mechanism	polymeratization reaction, quinone	93
			observed	from 2-500 mM	phenol oxidation, study by FTIR	structures	
					spectroscopy		
Pt	p-cresol	E=0.9 V	passive film was	different concentrations	0.09 M H ₂ SO ₄ , pH=1, mechanism	polymeratization reaction, quinone	93
			observed	from 2-500 mM	phenol oxidation, study by FTIR	structures	
D.	4 1 41 1	EOON	·	1:00	spectroscopy	1 <i>1 1 1</i>	02
Pt	p-terbuthyl	E=0.9 V	passive film was	from 2 500 mM	$0.09 \text{ M H}_2\text{SO}_4$, pH=1, mechanism	polymeratization reaction, quinone	93
	phenoi		observed	110111 2-300 IIIIvi	spectroscopy	siluctures	
Pt	o o' - biphenol	E=0 9 V	passive film was	different concentrations	$0.09 \text{ M H}_2\text{SO}_4 \text{ pH}=1 \text{ mechanism}$	polymeratization reaction quinone	93
11	o, o orphonor	2 0.9 1	observed	from 2-500 mM	phenol oxidation, study by FTIR	structures	25
					spectroscopy		
Pt	phenol	different	short times	identificacion of film:	H_2SO_4 , pH=0-1, study of the	oligomers polymers	165
		potentials		XPS; electrochemistry	electrode passivation		
Pt	phenol	0.15 mA/cm^2		PtOH species at 0.5V	Pt oxide coverage (1.1 mC/cm^2)	hydroquinone, benzoquinone	166

Pt	tannis	E=3 V		40%, COD removal	NaCl 2000mg/l, effect for		87
				alkaline media,, 60-100%	supporting electrolyte, effect of		
				COD removal according	pH, effect of chlorine		
				pH effect,	concentration		
Pt	ammonia	8.5 A/m^2	53% CE	95%	pH=8.2 using phosphate buffer,		94
					poor performance for organics		
Pt	phenol	50 mA/cm^2		100%	Selective oxidation, PtOx is	aromatic intermediates (hydroquinone,	6
					formed during oxidation, pH=2.0,	benzoquinone, catechol). Aliphatic acids	
					T=70°C	(maleic, fumaric, oxalic) and CO_2	
Pt or Ti/Pt	phenol	300 A/m^2		30% TOC	pH=12, [phenol]=1000mg/l,	stop oxidation with maleic and oxalic	106
	1				Na_2SO_4 , competition with oxygen	acids	
					evolution reaction		
Pt/WOx	formic and oxalic	10 mA/cm^2	100% CE	approx. 95%	$[formic] = 8 \times 10^{-4} M$	CO ₂	100
	acids				$[oxalic]=1.0x10^{-3} M, 0.5 M H_2SO_4$		
Pt/WOx	oxalic acid	E=1.385 and	100% CE	approx. 99%	$[oxalic]=10^{-3} M, 0.5 M H_2 SO_4.$	CO_2	101
		1.885 V vs.			Determination of influence of		
		SCE			stirring rate, potential-depended		
					and oxidation rates constant		
PtO ₂	p-benzoquinone/	10 mA/cm^2	CE(%)=0.55		[p-benzoquinone]=5x10 ⁻⁴ M	muconic acid, maleic and oxalic acids	78
-	maleic acid				considering one-electron reaction	,	
pyrolytic	penta-				C	carboxylic acids	99
carbon	chlorophenol					5	
Sn(Sb)	p-benzoquinone/	10 mA/cm^2	CE(%)=0.55		[p-benzoquinone]=5x10 ⁻⁴ M	muconic acid, maleic and oxalic acids	78
Oxide	maleic acid				considering one-electron reaction	,	
					C		
Sn/WOx	formic and oxalic	10 mA/cm^2	100% CE	approx. 95%	$[formic] = 8 \times 10^{-4} M,$	CO_2	100
	acids				$[oxalic]=1.0x10^{-3} M, 0.5 M H_2SO_4$	_	
SnO_2	glucose	100-900	EOI<20%	40%	1 M H ₂ SO ₄ , T=25-57 °C, Specific	9 glucose derivates	76
	-	A/m^2			interaction between Pb ^(IV) sites and		
					carboxylic groups		
SnO_2	phenol	50 mA/cm^2	EOI=30-40%	90%	T=70 °C, pH=12,	maleic, fumaric, oxalic acids	168
_	1				[phenol]=21 mM		
SnSb	oxalic	E=1.385 and	50% CE	approx. 50%	$[oxalic]=10^{-3}$ M, 0.5 M H ₂ SO ₄ .	CO_2	101
		1.885 V vs.			Determination of influence of		
		SCE			stirring rate, potential-depended		

Stainless steel plates	acid orange II	E=20.0 V	100% ACE	99% COD, 87% color removal	and oxidation rates constant granular activated carbon, pH controlled, air flow=0.1 m ³ /h		163
Ta/PbO ₂	phenol	100-200 mA/cm ²	faradic yields from 40-70% (after 20 Ah/l); Mean faradic yields=15% whatever temperature after 100 Ah/l	60 °C=80% 70 °C=80% 90 °C=70%	V=160 cm ³ , T= 60-90 °C	1, 4 benzoquinone, maleic acid, hydroquinone, catechol, glyoxal, fumaric, glyoxalic, formic, oxalic, CO ₂	129
Ti/70TiO ₂ / 30RuO ₂	cyanide	5-70 mA/cm ²	Energy consumption = 2 - 350 KWh/Kg (99%); 2 - 180 KWh/Kg (90%)	90% from 60 to 90 min, 99% from 120 to 180 min	0.1 M NaOH, 0.1 M Na ₂ SO ₄ and 0.1 M Na ₂ CO ₃ , pH=13.5, conductivity=45 mS/cm		164
Ti/BDD	dyes	100 A/m ²	70-90%	80-97% COD	T=30 °C, V=25 ml, initial dyes concentration=1000mg/l, initial pH 4.70-6.7	Some polymeric products in the Monozol T-blue HFG oxidation	153
Ti/BDD	acetic acid	200 A/m ²	64% CE	97% COD (after 5.53 Ah/l)	V=30 ml, Na ₂ SO ₄ (2000 mg/l), T=30 °C	CO ₂	108
Ti/BDD	maleic acid	200 A/m ²	61% CE	96% COD (after 6.43 Ah/l)	V=30 ml, Na ₂ SO ₄ (2000 mg/l), T=30 °C	CO ₂	108
Ti/BDD	phenol	100 A/m ²	78.5% CE	97% COD (after 4.85 Ah/l)	V=30 ml, Na ₂ SO ₄ (2000 mg/l), T=30 °C	CO ₂	108
Ti/BDD	orange II	200 A/m ²	54,9% CE	91% COD (after 6.25 Ah/l)	V=30 ml, Na ₂ SO ₄ (2000 mg/l), T=30 °C	several pollutants	108
Ti/BDD	reactive Red HE-	200 A/m ²	46.9% CE	95% COD (after 6.25 Ah/l)	V=30 ml, Na ₂ SO ₄ (2000 mg/l), T=30 °C	several pollutants	108
Ti/Fe- PbO ₂	benzoquinone	10 mA/cm ²		99% (after 10 h)	V=50 ml, [benzoquinone]= 50 ml stock solution, [stock solution]=100 mg/l, colorless solution	hydroquinone, resorcinol, p- benzoquinone, pyrocatechol, formic, acetic, maleic, succinic, malonic, fumaric, acetic acids	80
Ti/IrO ₂	phenol	<50 mA/cm ²	EOI=0.17	71%	alkaline media (pH>9), T=50 °C, [phenol]=50 mmol/dm ³		81
Ti/IrO ₂	1, 4 benzoquinone	50 mA/cm ²		60%	[benzoquinone]=2 gr/l, T=70 °C, Na ₂ SO ₄ , pH=2	hydroquinone, fumaric, mesoxalic, oxalic, maleic acids	92

Ti/IrO ₂	chlorinated	0.06-5	1.8-54% CE	60-90% COD	oxidation involving hydroxyl	different compounds	82
Ti/IrO ₂	phenois 1, 4-	mA/cm^2 50 mA/cm ²	EOI=0.06	40% COD (after 80 Ah/l)	radicals pH=2.5, H_2SO_4 or NaOH, 150 g/l Na, SO, [hep-roguinone]=14.8 mM	benzoquinone, aliphatic acids (maleic, fumaric, mesovalic, avalic) and CO.	110
Ti/IrO ₂	aliphatic alcohols	$I= 1-5 \text{ kA/m}^2$	30-40% CE	90%	Isopropanol, Ethanol, methanol and propanol alcohols; influence of	CO_2	111
Ti/IrO ₂	phenol	50 mA/cm ²		80%	Selective oxidation, pH=2.0, T=70°C	aromatic intermediates (hydroquinone, benzoquinone, catechol). Aliphatic acids (malaic, fumaric, oxalia) and CO.	6
Ti/IrO ₂ / SnO ₂ -	p-chlorophenol	30 mA/cm ²		95%	pH=2, Na ₂ SO ₄ , H ₂ SO ₄ , T=30 °C	(matche, fumarie, oxarte) and CO ₂	107
Ti/MnO ₂ - RuO ₂	3 dyes (Red 74, Yellow 126, Blue 139)	2 A/dm^2	24%	10% COD, 46% color removal	supporting electrolyte 0.1 M NaCl, T=25 °C	different pollutants	95
Ti/PbO ₂	phenol	50 mA/cm ²	EOI=0.18	71%	alkaline media, pH>9, T=50 °C, [phenol]=50 mmol/dm ³		81
Ti/PbO ₂	benzoquinone	10 mA/cm ²		98% (after 24 h)	Vol=50 ml, [benzoquinone]= 50 ml stock solution, [Stock solution]=	hydroquinone, resorcinol, p- benzoquinone, pyrocatechol, formic, acetic, maleic, succinic, malonic, fumaric,	80
Ti/PbO ₂	phenol	300 A/m ²		40%,TOC	100 mg/l, colorless solution pH=12, [phenol]=1000 mg/l, Na ₂ SO ₄ , competition with oxygen	acetic acids	106
Ti/PbO ₂	benzoic acid	30 mA/cm ²	EOI=0.10	30%	$0.5 \text{ M H}_2\text{SO}_4$, pH=12, Vol=150 ml	different pollutants	97
Ti/PbO ₂	chlorinated phenols	0.06-5 mA/cm ²	2.1-77% CE	60-90% COD		different metabolites	82
Ti/PbO ₂	2-chlorophenol	8-16 mA/cm ²	faradic yields: 50% (8 mA/cm ²), 40% (16 mA/cm ²)	80-90%	V=300 ml, flow=0.3-1.5 cm ³ /s, pH= 3 and 7, [2-chlorophenol]=1000 mg/l	oxalic acid	74

Ti/PbO ₂	2-chlorophenol	80-160 A/m ²	35-40% CE	80-95%	Pb ⁺² formation,		74
Ti/PbO ₂	landfill leachate	50-150 A/m ²	30% COD, 10% NH ⁺⁴ -N	90% COD, 10% NH ⁺⁴ -N	initial COD=1000 mg, T=25 °C characteristics of leachate: pH=8.3, BOD=80 mg/t, COD=1200 mg/l, Total Nitrogen=420 mg N/l Amomonium-N=380 mg N/l Chlorides=1600 mg Cl ⁻ /l,	humic and fulvic acids, halogenated compounds	83
Ti/PdO- Co ₃ O ₄	3 dyes (Red 74, Yellow 126, Blue 139)	2 A/dm ²	58%	25% COD, 48% color removal	supporting electrolyte 0.1 M NaCl, T=25 °C	different pollutants	95
Ti/Pt Ti/Pt	benzoic acid bisphenol A	30 mA/cm ² I=0.3 A	EOI=0.10 30% CE	30% 60% (after 30 h)	$0.5 \text{ M H}_2\text{SO}_4$, pH=12, V=150 ml E _{during process} = 0.8-1.0 V and 3-4 V, [bisphenol A]= 1.0 mM	different pollutants aliphatic acids, tartaric acid, CO_2 and H_2O	97 98
Ti/Pt	2, 4-dihydroxy- benzoic acid	100-300 A/m ²	faradic yield 18%	90% (after 4 Ah/l)	[dihydroxybenzoic acid]= 0.3 Kg/m ³	2, 3, 4 trihydroxy-2, 4, 5 benzoic acid, maleic, glyoxalic and oxalic acids	162
Ti/Pt	tannery wastewater	2-6 A/dm ²	6-26% CE	50%	tannery wastewater: 1) sampled after aerobic treatment, 2) mixed, 3) sampled after passing through a primary settling tank, 4) final effluent	ammonia and other compounds	96
Ti/Pt	3 dyes (Red 74, Yellow 126 Blue 139)	2 A/dm^2	21.40%	9% COD, 40% color removal	supporting electrolyte 0.1M NaCl, T=25°C	different pollutants	95
Ti/Pt/Ir	tannery wastewater	2-6 A/dm ²	6-26% CE	50-80%	tannery wastewater: 1) sampled after aerobic treatment, 2) mixed, 3) sampled after passing through a primary settling tank, 4) final effluent	ammonia and other compounds	96
Ti/Pt-Ir	3 dyes (Red 74, Yellow 126, Blue 139)	2 A/dm^2	100%	50% COD (after 40 min), 90% color removal	supporting electrolyte 0.1 M NaCl, T=25 °C	different pollutants	95
Ti/RhO _x - TiO ₂	3 dyes (Red 74, Yellow 126, Blue 139)	2 A/dm ²	77%	29% COD, 47% color removal	supporting electrolyte 0.1 M NaCl, T=25 °C	different pollutants	95

Ti/Ru	benzoquinone	10 mA/cm^2		97% (after 48 h)	V=50 ml, [benzoquinone]= 50 ml stock solution, [stock solution]= 100 mg/l	hydroquinone, resorcinol, p-benzoquinone, pyrocatechol, formic, acetic, maleic, succinic, malonic, fumaric, acetic acids	80
Ti/RuO ₂	phenol	50 mA/cm^2	EOI=0.14	71%	alkaline media, pH>9, T=50 °C, [phenol]=50 mmol/dm ³		81
Ti/RuO ₂ - TiO ₂	3 dyes (Red 74, Yellow 126, Blue 139)	2 A/dm ²	60-40%	26% COD, 42% color removal	supporting electrolyte 0.1 M NaCl, T=25 °C	different pollutants	95
Ti/Ru-Ti- Sb-SnO ₂	benzoquinone	10 mA/cm ²		99.4% (after 24 h)	V=50 ml, [benzoquinone]= 50 ml stock solution, [stock solution]= 100 mg/l	hydroquinone, resorcinol, p- benzoquinone, pyrocatechol, formic, acetic, maleic, succinic, malonic, fumaric, acetic acids	80
Ti/Sb- SnO ₂	benzoquinone	10 mA/cm^2		100% (after 0.5 h)	V=50 ml, [benzoquinone]= 50 ml stock solution, [stock solution]= 100 mg/l. corrosion	hydroquinone, resorcinol, p-benzoquinone pyrocatechol, formic, acetic, maleic, succinic, malonic, fumaric, acetic acids	80
Ti/SnO ₂	phenol	50 mA/cm ²	EOI=0.58	90%	alkaline media, pH>9, T=50 °C, [phenol]=50 mmol/dm ³	fumaric, maleic, oxalic acids	81
Ti/SnO ₂	1, 4 benzoquinone	50 mA/cm ²		100% (after 50 Ah/l)	[benzoquinone]=2 gr/l, T=70 °C, Na ₂ SO ₄ , pH=2	CO ₂	92
Ti/SnO ₂	benzoic acid	30 mA/cm^2	EOI=0.79	90%	$0.5 \text{ M H}_2\text{SO}_4$, pH=12, V=150 ml	different pollutants	97
Ti/SnO ₂	chlorinated phenols	0.06-5 mA/cm ²	2.8-61% CE	60-90% COD	oxidation involving hydroxyl radicals	different compounds	82
Ti/SnO ₂	2-chlorophenol	8-16 mA/cm ²	faradic yield: 50% (8 mA/cm ²), 35% (16 mA/cm ²)	80-90%	V=300 ml, flow=0.3-1.5 cm ³ /s, pH= 3 and 7, [chlorophenol]=1000 mg/l	oxalic acid	74
Ti/SnO ₂	bisphenol A	I=0.3 A	70% CE	100% (after 5 h)	$E_{during process}$ =0.8-1.0 V and 3-4 V, [bisphenol A]= 1.0 mM	>aliphatic acids, < CO ₂ and H ₂ O	98
Ti/SnO ₂	acid red 14	4.5 mA/cm^2		60% TOC	electrolyte influence, mass transfer and reaction time process	naphthalene and other organic pollutants	161
Ti/SnO ₂	1, 4- benzoquinone	50 mA/cm^2	EOI=0.19	100% COD	pH=2.5, H_2SO_4 or NaOH, 150 g/l Na ₂ SO ₄ , [benzoquinone]=14.8 mM	benzoquinone, aliphatic acids (maleic, fumaric, mesoxalic, oxalic) and CO ₂	110
Ti/SnO2	2-chlorophenol	$80-160 \text{ A/m}^2$	35-40% CE	80-95%	initial COD=1000 mg T=25 °C	oxalic acid	74
Ti/SnO ₂	landfill leachate	50-150 A/m ²	30% COD	90% COD	characteristics of leachate: pH=8.3, BOD=80 mg/l, COD=1200 mg/l, Total	humic and fulvic acids, halogenated compounds	83

					Nitrogen=420 mg N/l		
					amomonium-N=380 mg N/l		
					Chlorides=1600 mg Cl ⁻ /l,		
					Conductivity=12 mS/cm		
Ti/SnO ₂	phenol	CV method,			1 M H ₂ SO ₄ , [phenol]=5 mM		109
		-0.5-2.0 V vs.			Chemisorptions of oxygen and		
		NHE			electrochemical conversion of		
					phenol		
Ti/SnO ₂	phenol	50 mA/cm ²		100%	Combustion of organics, pH=2.0, T=70 °C	Aromatic intermediates (hydroquinone, benzoquinone, catechol). The main products are aliphatic acids (maleic, fumaric, oxalic) but these were oxidized to CO.	6
Ti/SnO	nhenol	300 A/m^2		100% TOC	nH=12 [nhenol]=1000 mg/l		106
Sh ₂ O ₂	phenor	50070/11		100/0100	Na ₂ SO ₄	002	100
Ti/SnO ₂ -	n-chlorophenol	30 mA/cm^2		75%	nH=2 Na ₂ SO ₄ H ₂ SO ₄ T=30 °C	-	107
Sb ₂ O ₅	p emorophenor			1070	pii 2, i u ₂ 004, ii ₂ 004, i 00 0		10,
Ti/SnO ₂ -	3 dyes	2 A/dm^2	61%	23% COD,	supporting electrolyte 0.1 M NaCl,	different pollutants	95
Sb ₂ O ₅	(Red 74, Yellow 126, Blue 139)			45% color removal	$T=25 \circ C$	1	
Ti/SnO2-	acetic acid	200 A/m^2	20.2% CE	30% COD	V=30 ml Na ₂ SO ₄ (2000 mg/l)	various pollutants	108
Sb ₂ O ₅		20011,111	20.270 CE	(after 5.53 Ah/l)	$T=30 \ ^{\circ}C$	various ponaunits	100
Ti/SnO ₂ -	maleic acid	200 A/m^2	35.0% CE	55% COD	$V=30 \text{ ml}, Na_2SO_4 (2000 \text{ mg/l}),$	various pollutants	108
Sb ₂ O ₅				(after 6.43 Ah/l)	T=30 °C	1	
Ti/SnO ₂ -	phenol	100 A/m^2	50.1% CE	64% COD	V=30 ml, Na ₂ SO ₄ (2000 mg/l),	various pollutants	108
Sb_2O_5				(after 4.85 Ah/l)	T=30 °C	-	
Ti/SnO ₂ -	orange II	200 A/m^2	16.4% CE	27% COD	V=30 ml, Na ₂ SO ₄ (2000 mg/l),	various pollutants	108
Sb_2O_5				(after 6.25 Ah/l)	T=30 °C		
Ti/SnO ₂ -	reactive Red HE-	200 A/m^2	11.0% CE	22% COD	V=30 ml, Na ₂ SO ₄ (2000 mg/l),	various pollutants	108
Sb_2O_5	3B			(after 6.25 Ah/l)	T=30 °C		
Ti/TiO ₂ -	cresols	I=0-6 A	25-30% CE	50-60% TOC	V=500 ml, T=30 °C	aliphatic compounds	160
RuO ₂ -IrO ₂							

BDD = Boron Doped Diamond, COD = Chemical Oxygen Demand, V = Volume, T = Temperature, [] =concentration, J = Current density, i = current, E = potential, ICE = Instantaneous current efficiency, ACE = Apparent current efficiency, EOI = Electrochemical oxidation index, CE = current efficiency, GCE = General current efficiency and Percentage (%).

Table S2 Indirect anodic oxidation of organic compounds (anode materials listed in alphabetical order)

Anode	Pollutant	<i>J, i</i> or <i>E</i>	E MA	E MP	RE MA	RE MP	Mediator	Notes	Metabolites	Ref
BDD	chlorophenols	30 mA/cm ²		95% (before 15 h/l)		100% COD	hypochlorite or peroxo- disulphate	Na ₂ SO ₄ 5000 mg/l, T=30-60 °C	oxalic, maleic and fumaric acids, hydro-quinone, benzo-quinone, tri-chloroacetic acid	147
DSA	landfill leachate	7.5 A/dm ²			29% COD, 36.1% ammonium		chlorine/ hypochlorite			217
Graphite	landfill leachate	7.5 A/dm ²			21% COD, 11% ammonium		chlorine/ hypochlorite			217
Graphite	nitrite ion	1.5 V vs Ag/AgCl				60-100% potential- depended	HCIO	1-3 % wt NaCl		218
Pb/PbO ₂	o-chlorotoluene	156-931 A/m ²		43% CE		10-40% conversion	Mn(III)	T=33-60 °C, acid concentration (44-55wt%)		219
Pt	alcohols	10-100 mA/cm ²					NaBr, the formation of [Br [•] or Br ⁺]	synthetic utility	carbonyl compounds	20
Pt	organic waste	6000 mA					Ag(II)	Electrolyte 0.5 M AgNO ₃ /7 M HNO ₃ , 1000 cm ³ , 70 °C, 970- 1030 bar, carrier gas= 200-1800 air		214
Pt	NO _x	5000 mA				97% NO _x to NO ₃	Mn(III) or Co(III)	Electrolyte 0.1 M MnSO ₄ /6 M H ₂ SO ₄ ; 0.1 M CoSO ₄ /3 M H ₂ SO ₄ , 1000 cm ³ , 20 °C, 970-1030 bar		214
Pt	phenol	1mA/cm^2				100% [phenol]	active chlorine	Electrolyte 10 g/l NaCl + 100 mg/l phenol	chlororganic compounds	220
Pt	aniline	E=1.5- 2 1.9 V vs Ag/AgCl	21%	84% Ce(IV) 2-7% Co(III)	1%	3% Ce(IV), 4-20% Co(III)	Ce(IV) and Co(III)	cyclic voltammetry method	benzoquinone, maleic acid	197
Pt foil	pesticides and	0.1-0.4				<99%	Ag(II) and	Electrolyte 0.5 M AgNO ₃ /7 M	CO ₂	8

	industrial wastes	A/m ²					Mn(III) or Co(III)	HNO ₃ , 1000 cm ³ , 70 °C, 970- 1030 bar, carrier gas= 200-1800 air and Electrolyte 0.1 M MnSO ₄ /6 M H ₂ SO ₄ ; 0.1 M CoSO ₄ /3 M H ₂ SO ₄ , 1000 cm ³ , 20 °C, 970-1030 bar		
Stainless steel	nitrite	2.0 A				30%	hypochlorite	pH dependence		221
Ti/ Sn-Pd- Ru-oxide	landfill leachate	7.5 A/dm ²			30.3% COD, 37.6% ammonium.	67.6% COD, 92% ammonium	chlorine/ hypochlorite	at 15 A/dm ² and 7500 mg/l NaCl	chloramines	217
Ti/Pt/Bi- PbO ₂	phenol	100 mA/cm ²	24% (after 24 Ah/l)	26% (after 26Ah/l) [NaCl]=0.1 M, 30% (after 20Ah/l) [NaCl]=0.5 M	79% COD, (after 24 Ah/l)	98% COD (after 24 Ah/l) [NaCl]=0.1 M, 99% COD (after 20 Ah/l) [NaCl]=0.5 M	active chlorine	pH = 12	CHCl ₃	222
Ti/IrO ₂	phenol	0.1 A/cm ²	EOI=0.65	EOI=0.65	25% [phenol]	98%, [phenol]	electrogenerat ed ClO ⁻	selective oxidation, Na ₂ SO ₄ + NaCl	organo- chlorinated compounds and after to volatile chlorinated compounds	24
Ti/PbO ₂	landfill leachate	7.5 A/dm ²			27.4% COD, 33.1% ammonium.		chlorine/ hypochlorite		compounds	217
Ti/PbO ₂	glucose	200- 1200 A/m ²			100% COD (after 20 h)	100% COD (after 20 h)	active chlorine	better [NaCl] = 5 g/l, electrolyte = 1 M Na ₂ SO ₄ + 0.01M NaOH	gluconic acid and carboxylic acids	13
Ti/PbO ₂	phenol	100 mA/cm ²	22% (after 24Ah/l)	26% (after 26 Ah/l), [NaCl]=0.1 M 36% (after 26 Ah/l) [NaCl]=0.5 M	75% COD (after 24 h/L)	98% COD, (after 24 Ah/L), [NaCl]=0.1M; 100% COD, (after 16 Ah/L), [NaCl]=0.5M	active chlorine	pH = 12	CHCl ₃	222
Ti/Pt	o-chlorotoluene	781.25		40-44% CE		10-40%,	Mn(III)	T=33-60 °C, acid concentration		219

T;/D+	aluaasa	A/m^2		60.00% CE	>50∕ COD	conversion	Uumaahlaraua	(44-55wt%)		14
11/FL	glucose	A/m^2		00-90% CE	~3%, COD	100% COD	acid	current density		14
Ti/Pt	glucose	200- 1200 A/m ²			10-20%, COD	100% COD (after 18 h)	active chlorine	Better $[NaCl] = 5 g/l$, electrolyte=1 M Na ₂ SO ₄ + 0.01 M NaOH, J=1200 A/m ²	gluconic acid and carboxylic acids	13
Ti/Pt cylindrical	landfill leachate	E=20-40 V				53% COD	Cl	pH dependence, energy consumption = 4.29 kWh/Kg COD removal		223
Ti/RuO ₂	aniline	E=1.2- 1.3V vs Ag/AgCl	4.71%	74% Ce(IV), 8-19% Co(III)	1.72%	3% Ce(IV) 2% Co(III)	Ce(IV) and Co(III)	cyclic voltammetric method	benzoquinone, maleic acid	197
Ti/SnO ₂	phenol	0.1 A/cm ²	EOI= 0.1	EOI=0.65			electro- generated OH radicals, NaCl does not influence in the efficiency	combustion, Na ₂ SO ₄ + NaCl	carboxylic acids	24
Ti/SnO ₂ -Pt	glucose	200- 1200 A/m ²			10-20% COD	50-90%, COD (after 25 h)	active chlorine	better [NaCl] = 5 g/l, electrolyte=1 M Na ₂ SO ₄ + 0.01 M NaOH	gluconic acid and carboxylic acids	13
Ti/TiRuO ₂	synthetic tannery wastewater	300-600 A/m ²		21.20%		100%, COD (after 36 Ah/l)	active chlorine	[NaCL]=7 g/l, Na ₂ SO ₄ 8 g/l	sulphides, surfactants, tannic acid, ammonium,	224
Ti-Ru-Sn	2-naphthol	75mA/cm^2	EOI = 0.2	EOI =0.3-0.7 [NaCl]- depended	30% COD	50-100% COD	active chlorine	pH= 10, Electrolyte=0.5 N Na ₂ SO ₄ , [2-naphthol]=5 mM, T=25 °C, NaCl= 1-10 g/l	phthalic acid, maleic acid, and other products	25
BDD = Boron Doped Diamond, COD = Chemical Oxygen Demand, $V = Volume$, $T = Temperature$, [] = concentration, $J = Current density$, i										

= current, E = potential, ICE = Instantaneous current efficiency, ACE = Apparent current efficiency, EOI = Electrochemical oxidation index,
 CE = current efficiency, GCE = General current efficiency and Percentage (%).
 EMA = Efficiency Mediator Absence, EMP = Efficiency Mediator Presence, REMA = Removal Efficiency Mediator Absence, REMP =

Removal Efficiency Mediator Presence.

References

- [1] S. E. Manahan, Environmental Chemistry, Boca Raton: Lewis Publishers, USA; 1994 pp. 223-240.
- [2] K. Rajeshwar, J. G. Ibáñez and G. M. Swain, J. Appl. Electrochem., 1994, 24, 1077-1091.
- [3] G. Chen, Sep. Purif. Technol., 2004, **38**, 11-41.
- [4] K. Juttner, U. Galla and H. Schmieder, *Electrochim. Acta.*, 2000, 45, 2575-2594.
- [5] C. A. Martínez-Huitle, S. Ferro and A. De Battisti. *Electrochim. Acta.*, 2004, **49**, 4027-4034.
- [6] Ch. Comninellis, *Electrochem. Acta*, 1994, **39**, 1857-1862.
- [7] B. Marselli, J. Garcia-Gomez, P. A. Michaud, M. A. Rodrigo and Ch. Comninellis. J. Electrochem. Soc. 2003, 150, D79-D83.
- [8] U. Galla, P. Kritzer, J. Bringmann and H. Schmieder, *Chem. Eng. Technol.*, 2000, 23, 230-233.
- [9] G. A. Steward, US Pat., 5 756 874, 1998.
- [10] N. Nelson, *Platinum Metals Rev.*, 2002, **46**, 18-23.
- [11] P. A. Michaud, These No. 2595, EPFL, Switzerland (2002).
- [12] C. A. Martínez-Huitle, M. A. Quiroz, Ch. Comninellis, S. Ferro and A. De Battisti, *Electrochim. Acta*, 2004, 50, 949-956.
- [13] F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi and A. De Battisti, J. Electrochem. Soc., 2000, 147, 592-596.
- [14] F. Bonfatti, A. De Battisti, S. Ferro, G. Lodi and S. Osti, *Electrochim. Acta*, 2000, 46, 305-314.
- [15] C. A. Martínez-Huitle, S. Ferro and A. De Battisti, *Electrochem. Solid-State Lett.*, 2005, 8, D35-D39.
- [16] F. Jacquet, A. Gaset, J. Simonet and G. Lacoste, *Electrochim. Acta*, 1985, **30**, 477-484.

- [17] M.-L. Tsai, W.-L. Lee and T.-C. Chou, J. Chinese Inst. Chem. Eng., 2001, 32, 517-524.
- [18] V. R. Islamgulova, E. N. Shitova, A. P. Tomilov and V. S. Pilyugin, Russ. J. Electrochem., 1999, 35, 899-901.
- [19] H. Li and L.-C. Jiang, *Jingxi Huagong*, 1999, **16**, 27-29.
- [20] T. Inokuchi, S. Matsumoto and S. Torii, J. Org. Chem., 1991, 56, 2416-2421.
- [21] D. Mantzavinos, R. Hellenbrand, A. G. Livingston and I. S. Metcalfe, Appl. Catal. B Env. 1996, 7, 379-396.
- [22] J. Mieluch, A. Sadkowski, J. Wild and P. Zoltowski, Prezm. Chem., 1975, 59, 513-516.
- [23] A. Boscolo Boscoletto, F. Gottardi, L. Milan, P. Pannocchia, V. Tartari, M. Tavan, R. Amadelli, A. De Battisti, A. Barbieri,
 D. Patracchini and G. Battaglin, *J. Appl. Electrochem.*, 1994, 24, 1852-1858.
- [24] Ch. Comninellis and A. Nerini, J. Appl. Electrochem., 1995, 25, 23-28.
- [25] M. Panizza and G. Cerisola, *Electrochim. Acta*, 2003, **48**, 1515-1519.
- [26] A. Savall, *Chimia*, 1995, **49**, 23-27.
- [27] R. Andreozzi, V. Caprio, A. Insola and R. Marotta, *Catalysis Today*. 1999, 53, 51-59.
- [28] O. Legrini, E. Oliveros and A. M. Braun, *Chem. Rev.* 1993, **93**, 671-698.
- [29] P. M. Fedorak and S. E. Hrudey, *Water Res.*, 1984, **18**, 361-367.
- [30] R. Barreiro and J. R. Pratt, *Water Environ. Res.*, 1992, 64, 632-641.
- [31] T. Reemtsma and M. Jekel, *Water Res.*, 1997, **31**, 1035-1046.

- [32] J. Grimm, D. Bessarabov and R. D. Sanderson, *Desalination*, 1998, 115, 285-294.
- [33] J. O'M. Bockris (Ed.), Electrochemistry of cleaner environments, Plenum, New York, 1972.
- [34] D. Pletcher and F. Walsh (Eds.), Industrial Electrochemistry, Chapman and Hall, London, 1990.
- [35] D. Pletcher and N. L. Weinberg, Chem. Eng., 1992, Aug. 98-103, 132-141.
- [36] K. Rajeshwar and J. G. Ibáñez, Fundamentals and Application in Pollution Abatement, Academic Press, San Diego, CA, 1997.
- [37] C. A. C. Sequeira (Ed.), Environmentally oriented electrochemistry, Elsevier, Amsterdam, 1994.
- [38] P. Tatapudi, J. M. Fenton, in: H. Gerischer and C. W. Tobias (Eds.), Advances in electrochemical sciences and engineering, Vol. 4, VCH-Veragsgesellschaft, Weinheim, 1995, 363.
- [39] D. Simonson, Chem. Soc. Rev., 1997, 26, 181-189.
- [40] S. Trasatti, Int. J. Hydrogen Energy, 1995, 20, 835-844.
- [41] A. Kuhn, J. Appl. Chem. Biotech., 1971, 21, 29-64.
- [42] A. Nilsson, A. Ronlan and V. D. Parker, J. C. S. Perkin Trans. 1973, 1, 2337-2345.
- [43] A. Dabrowski, J. Mieluch, A. Sadkaoski, J. Wild and P. Zoltowski, Prezm. Chem., 1975, 54, 653-655.
- [44] L. Papouchado, R. W. Sandford, G. Petrie and R. N. Adams, J Electroanal. Chem. 1975, 65, 275-284.
- [45] R. C. Koile and D. C. Johnson, *Anal. Chem.*, 1979, **51**, 741-744.

- [46] V. Smith de Sucre, M.A. Sc. Thesis, University of British Columbia (1979).
- [47] J. Feng and D. C. Johnson, J. Electrochem. Soc., 1990, 137, 507-510.
- [48] H. Chang and D. C. Johnson, J. Electrochem. Soc., 1990, 137, 2452-2457.
- [49] H. Chang and D. C. Johnson, J. Electrochem. Soc., 1990, 137, 3108-3113.
- [50] J. E. Vitt and D. C. Johnson, J. Electrochem. Soc., 1992, 139, 774-778.
- [51] J. Feng, D. C. Johnson, S. N. Lowery and J. Carey, J. Electrochem. Soc., 1994, 141, 2708-2711.
- [52] S. E. Treimer, J. Feng, M. D. Scholten, D. C. Johnson and A. J. Davenport, J. Electrochem. Soc., 2001, 148, E459-E463.
- [53] Ch. Comninellis and E. Plattner, *Chimia*, 1988, **42**, 250-252.
- [54] N. B. Tahar and A. Savall, J. Electrochem. Soc., 1998, 145, 3427-3434.
- [55] Ch. Comninellis and A. De Battisti, J. Chim. Phys., 1996, 93, 673-679.
- [56] G. Foti, D. Gandini and Ch. Comninellis, Curr. Top. Electrochem., 1997, 5, 71-91.
- [57] O. Simond, V. Schaller and Ch. Comninellis, *Electrochim. Acta*, 1997, 42, 2009-2012.
- [58] G. V. Sleptsov, A. I. Gladikii, E. Y. Sokol and S. P. Novikova, *Elektronnaya Obrabotka Materialov*, 1987, 6, 69-72.
- [59] M. Grattell and D. W. Kirk, *Can. J. Eng.*, 1990, **68**, 997-1003.
- [60] J. Naumczyk, L. Szpyrkowicz and F. Z. Grandi, *Water Sci. Technol.*, 1996, 34, 17-24.
- [61] O. J. Murphy, G. D. Hitchens, L. Kaba and C. E. Verostko, *Water Res.*, 1992, 26, 443-451.

- [62] L. Szpyrkowicz, J. Naumczyk and F. Z. Grandi, *Toxicol. Environ. Chem.*, 1994, 44, 189-202.
- [63] G. Rajalo and T. Petrovskaya, *Environ. Technol.*, 1996, 17, 605-612.
- [64] N. N. Rao, K. M. Somasekhar, S. N. Kaul and L. Szpyrkowicz, J. Chem. Technol. Biotechnol. 2001, 76, 1124-1131.
- [65] J. L. Boudenne, O. Cerclier, J. Galea and E. V. Vlist, Appl. Catal. A: Gen., 1996, 143, 185-202.
- [66] J. L. Boudenne and O. Cerclier, *Water Res.*, 1999, **33**, 494-504.
- [67] A. M. Polcaro and S. Palmas, Ind. Eng. Chem. Res., 1997, 36, 1791-1798.
- [68] J. Manriquez, J. L. Bravo, S. Gutierrez-Granados, S. S. Succar, C. Bied-Charreton, A. A. Ordaz and F. Bedioui, Anal. Chim. Acta, 1999, 378, 159-168.
- [69] C. S. Hofseth and T. W. Chapman, J. Electrochem. Soc., 1999, 146, 199-207.
- [70] V. Smith de Sucre and A. P. Watkinson, *Can. J. Chem. Eng.*, 1981, **59**, 52-59.
- [71] M. Chettiar, M.A. Sc. Thesis, University of British Columbia (1981).
- [72] M. Chettiar and A. P. Watkinson, Can. J. Chem. Eng., 1983, 61, 568-574.
- [73] D. W. Kirk, H. Sharifian and F. R. Foulkes, J. Appl. Electrochem., 1985, 15, 285-292.
- [74] A. M. Polcaro, S. Palmas, F. Renoldi and M. Mascia, J. Appl. Electrochem., 1999, 29, 147-151.
- [75] P. G. Keech and N. J. Bunce, J. Appl. Electrochem., 2003, 33, 79-83.
- [76] F. Bonfatti, S. Ferro, F. Lavezzo, M. Malacarne, G. Lodi and A. De Battisti, J. Electrochem. Soc., 1999, 146, 2175-2179.

- [77] C. A. Martínez-Huitle, S. Ferro and A. De Battisti, J. Appl. Electrochem., 2005, 35, 1087-1093.
- [78] C. Bock and B. MacDougall, J. Electrochem. Soc., 1999, 146, 2925-2932.
- [79] M. A. Quiroz, S. Reyna, C. A. Martínez-Huitle, S. Ferro and A. De Battisti, Appl. Catalysis B, 2005, 59, 259-266.
- [80] L. L. Houk, S. K. Johnson, J. Feng, R. S. Houk and D. C. Johnson, J. Appl. Electrochem., 1998, 28, 1167-1177.
- [81] Ch. Comninellis, Trans. Ichem E. B, 1992, 70, 219-224.
- [82] J. D. Rodgers, W. Jedral and N. J. Bunce, *Environ. Sci. Technol.*, 1999, 33, 1453–1457.
- [83] R. Cossu, A. M. Polcaro, M. C. Lavagnolo, M. Mascia, S. Palmas and F. Renoldi, *Environ. Sci. Technol.*, 1998, **32**, 3570-3573.
- [84] L. Kaba, G. D. Hitchens and J. O'M Bockris, J. Electrochem. Soc., 1990, 137, 1341-1345.
- [85] H. Sharifian and D. W. Kirk, J. Electrochem. Soc., 1986, 133, 921-924.
- [86] T. Shimamune and Y. Nakajima, U.S. Pat., 5 545 306, 1996.
- [87] A. Buso, L. Balbo, M. Giomo, G. Farnia and S. Sandonà, Ind. Eng. Chem. Res., 2000, 39, 494-499.
- [88] E. Brillas, M. A. Baños and J. A. Garrido, *Electrochim. Acta*, 2003, 48, 1697-1705.
- [89] Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem., 1991, 21, 703.
- [90] B. Idbelkas and D. Takky, Ann. Chim. Sci. Mat., 2001, 26, 33-44.
- [91] S. K. Johnson, L. L. Houk, J. Feng, R. S. Houk and D. C. Johnson, *Environ. Sci. Technol.*, 1999, **33**, 2638-2644.

- [92] C. Seignez, C. Pulgarin, P. Péringer and Ch. Comninellis, Swiss Chem., 1992, 14, 25-30.
- [93] M. Grattell and D. W. Kirk, J. Electrochem. Soc., 1992, 139, 2736-2744.
- [94] L. Marincic and F. B. Leitz, J. Appl. Electrochem., 1978, 8, 333-345.
- [95] L. Szpyrkowicz, C. Juzzolino, S. N. Kaul, S. Daniele and M. D. De Faveri, *Ind. Eng. Chem Res.*, 2000, **39**, 3241.
- [96] L. Szpyrkowicz, J. Naumczyk and F. Zillio-Grandi, *Wat. Res.*, 1995, 29, 517.
- [97] S. Stucki, R. Kötz, B. Carcer and W. Suter, J. Appl. Electrochem., 1991, 21, 99-104.
- [98] S. Tanaka, Y. Nakata, T. Kimura, Yustiawati, M. Kawasaki and H. Kuramitz, J. Appl. Electrochem., 2002, 32, 197-201.
- [99] M. Grattrell and B. MacDougall, J. Electrochem. Soc., 1999, 146, 3335.
- [100] C. Bock and B. MacDougall, *Electrochim. Acta*, 2002, **47**, 3361.
- [101] C. Bock, A. Smith and B. MacDougall, *Electrochim. Acta*, 2002, 48, 57.
- [102] C. C. Ho and C. Y. Chan, Water Res., 1986, 20, 1523-1527.
- [103] Y. M. Awad and N. S. Abuzaid, J. Environ. Sci. Health A, 1997, 32, 1393-1414.
- [104] N. Kannan, S. N. Sivadurai, J. L. Berchmans and R. Vijayavalli, J. Environ. Sci. Health, 1995, A30, 2185-2203.
- [105] C. A. Vincent and D. G. C. Weston, J. Electrochem. Soc., 1972, 119, 518-521.
- [106] R. Kötz, S. Stucki and B. Carcer, J. Appl. Electrochem., 1991, 21, 14-20.

- [107] C. L. P. S. Zanta, P. A. Michaud, Ch. Comninellis, A. R. De Andrade and J. F. C. Boodts, J. Appl. Electrochem., 2003, 33, 1211-1215.
- [108] X. Chen, G. Chen, F. Gao and P. L. Yue, *Environ. Sci. Technol.*, 2003, 37, 5021-5026.
- [109] J. Grimm, D. Bessarabov, W. Maier, S. Storck and R.D. Sanderson, Desalination, 1998, 115, 295-302.
- [110] C. Pulgarin, N. Alder, P. Péringer and Ch. Comninellis, Water Res., 1994, 28, 887-893.
- [111] O. Simond and Ch. Comninellis, *Electrochim. Acta.*, 1997, 42, 2013-2018.
- [112] O. Weres and M. R. Hoffmann, US Pat., 5 419 824, 1995.
- [113] J.M. Kesselman, O. Weres, N. S. Lewis and M. R. Hoffmann, J. Phys. Chem. B, 1997, 101, 2637-2643.
- [114] J. R. Smith and F. C. Walsh, J. Appl. Electrochem., 1998, 28, 1021-1033.
- [115] G. Chen, E. A. Betterton and R. G. Arnold, J. Appl. Electrochem. 1999, 29, 961-970.
- [116] A. Kraft, M. Stadelmann and M. Blaschke, J. Hazard. Mater., 2003, 103, 247-261.
- [117] A. Morao, A. Lopes, M. T. Pessoa de Amorim and I. C. Goncalves, *Electrochim. Acta*, 2004, 49, 1587-1595.
- [118] A. Perret, W. Haenni, N. Skinner, X. M. Tang, D. Gandini, Ch. Comninellis, B. Correa and G. Foti, *Diam. Relat. Mater.*, 1999, 8, 820-823.
- [119] A. M. Polcaro, A. Vacca, M. Mascia and S. Palmas, *Electrochim. Acta*, 2005, **50**, 1841-1847.
- [120] A. M. Polcaro, A. Vacca, S. Palmas and M. Mascia, J. Appl. Electrochem., 2003, 33, 885-892.

- [121] A. M. Polcaro, M. Mascia, S. Palmas and A. Vacca, *Electrochim. Acta*, 2004, 49, 649-656.
- [122] B. Boye, P. A. Michaud, B. Marselli, M. M. Dieng, E. Brillas and Ch. Comninellis, *New Diam. Front. C. Tec.*, 2002, 12, 63-72.
- [123] D. Gandini, Ch. Comninellis, A. Perret and W. Haenni, ICHEME Symp. Ser., 1999, 145, 181-190.
- [124] D. Gandini, E. Mahe, P. A. Michaud, W. Haenni, A. Perret and Ch. Comninellis, J. Appl. Electrochem. 2000, 30, 1345-1350.
- [125] D. Gandini, P. A. Michaud, I. Duo, E. Mahe, W. Haenni, A. Perret and Ch. Comninellis, *New Diam. Front. C. Tec.*, 1999, 9, 303-316.
- [126] E. Brillas, B. Boye, I. Sires, J. A. Garrido, R. M. Rodriguez, C. Arias, P.L. Cabot and Ch. Comninellis, *Electrochim. Acta*, 2004, 49, 4487-4496.
- [127] F. Montilla, P. A. Michaud, E. Morallon, J. L. Vazquez and Ch. Comninellis, *Electrochim. Acta*, 2002, 47, 3509-3513.
- [128] G. Lissens, J. Pieters, M. Verhaege, L. Pinoy and W. Verstraete, *Electrochim. Acta*, 2003, 48, 1655-1663.
- [129] I. Troster, M. Fryda, D. Herrmann, L. Schafer, W. Haenni, A. Perret, M. Blaschke, A. Kraft and M. Stadelmann, *Diam. Relat. Mater.* 2002, **11**, 640-645.
- [130] J. Iniesta, P. A. Michaud, M. Panizza, G. Cerisola, A. Aldaz and Ch. Comninellis, *Electrochim. Acta*, 2001, 46, 3573-3578.
- [131] J. J. Carey and J. C. S. Christ, S. N. Lowery, US Pat., 5 399 247, 1995.
- [132] L. Codognoto, S. A. S. Machado and L. A. Avaca, J. Appl. Electrochem., 2003, 33, 951-957.

- [133] L. Gherardini, P. A. Michaud, M. Panizza, Ch. Comninellis and N. Vatistas, J. Electrochem. Soc., 2001, 148, D78-D82.
- [134] L. Ouattara, I. Duo, T. Diaco, A. Ivandini, K. Honda, T. N. Rao, A. Fujishima and Ch. Comminellis, New Diam. Front. C. Tec., 2003, 13, 97-108.
- [135] M. Fryda, D. Hermann, L. Schafer, C. P. Klages A. Perret, W. Haenni, Ch. Comninellis and D. Gandini, *New Diamond Front.* C. Technol., 1999, 9, 229–240.
- [136] M. Panizza and G. Cerisola, *Electrochim. Acta*, 2003, 48, 3491-3497.
- [137] M. Panizza and G. Cerisola, *Electrochim. Acta*, 2004, 49, 3221-3226.
- [138] M. Panizza, M. Delucchi and G. Cerisola, J. Appl. Electrochem., 2005, 35, 357-361.
- [139] M. Panizza, P. A. Michaud, G. Cerisola and Ch. Comninellis, *Electrochem. Commun.*, 2001, **3**, 336-339.
- [140] M. Panizza, P. A. Michaud, G. Cerisola and Ch. Comninellis, J. Electroanal. Chem., 2001, 507, 206-214.
- [141] M. A. Rodrigo, P. A. Michaud, I. Duo, M. Panizza, G. Cerisola and Ch. Comninellis, J. Electrochem. Soc., 2001, 148, D60-D64.
- [142] P. Canizares, C. Saez, J. Lobato and M. A. Rodrigo, *Electrochim. Acta*, 2004, 49, 4641-4650.
- [143] P. Canizares, C. Saez, J. Lobato and M. A. Rodrigo, Ind. Eng. Chem. Res., 2004, 43, 1944-1951.
- [144] P. Canizares, C. Saez, J. Lobato and M. A. Rodrigo, *Ind. Eng. Chem. Res.*, 2004, **43** 6629-6637.
- [145] P. Canizares, F. Martinez, M. Diaz, J. Garcia-Gomez and M. A. Rodrigo, J. Electrochem. Soc., 2002, 149, D118-D124.

- [146] P. Canizares, J. Garcia-Gomez, C. Saez and M. A. Rodrigo, J. Appl. Electrochem., 2003, 33, 917-927.
- [147] P. Canizares, J. Garcia-Gomez, C. Saez and M. A. Rodrigo, J. Appl. Electrochem., 2004, 34, 87-94.
- [148] P. Canizares, J. Garcia-Gomez, J. Lobato and M. A. Rodrigo, Ind. Eng. Chem. Res., 2003, 42, 956-962.
- [149] P. Canizares, J. Garcia-Gomez, J. Lobato and M. A. Rodrigo, Ind. Eng. Chem. Res., 2004, 43, 1915-1922.
- [150] P. Canizares, M. Diaz, J. A. Dominguez, J. Garcia-Gomez and M. A. Rodrigo, Ind. Eng. Chem. Res., 2002, 41, 4187-4194.
- [151] R. Bellagamba, P. A. Michaud, Ch. Comninellis and N. Vatistas, *Electrochem. Commun.*, 2002, 4, 171-176.
- [152] S. Hattori, M. Doi, E. Takahashi, T. Kurosu, M. Nara, S. Nakamatsu, Y. Nishiki, T. Furuta and M. Iida, J. Appl. Electrochem., 2003, 33, 85-91.
- [153] X. Chen, G. Chen and P. L. Yue, *Chem. Eng. Sci.*, 2003, 58, 995-1001.
- [154] F. Beck, W. Kaiser and H. Krohn, *Electrochim. Acta.*, 2000, **45**, 4691-4695.
- [155] P. A. Michaud, E. Mahe, W. Haenni, A. Perret and Ch. Comninellis, *Electrochem. Solid-State Lett.*, 2000, 3, 77-79.
- [156] Ch. Comninellis, P. A. Michaud, W. Haenni, A. Perret and M. Fryda, PCT Pat., WO 01/25508, 2001.
- [157] K.-W. Kim, M. Kuppuswamy and R. F. Savinell, J. Appl. Electrochem., 2000, 30, 543-549.
- [158] N. E. Jiménez Jado, C. Fernández Sánchez and J. R. Ochoa Gómez, J. Appl. Electrochem., 2004, 34, 551-556.
- [159] S. Hofseth and T. W. Chapman, J. Electrochem. Soc., 1999, 146, 199-207.
- [160] D. Rajkumar and K. Palanivelu, *Ind. Eng. Chem. Res.*, 2003, **42**, 1833.

- [161] A. Wang, J. Qu, H. Liu and J. Ge, *Chemosphere*, 2004, 55, 1189-1196.
- [162] R. H. de Lima Leite, P. Cognet, A.-M. Wilhelm and H. Delmas, J. Appl. Electrochem., 2003, 33, 693-701.
- [163] Y. Xiong, P. J. Strunk, H. Xia, X. Zhu and H. T. Karlsson, *Wat. Res.* 2001, **35**, 4226-4230.
- [164] M. R. V. Lanza and R. Bertazzoli, Ind. Eng. Chem. Res., 2002, 41, 22-26.
- [165] M. Grattell and D.W. Kirk, J. Electrochem. Soc., 1993, 140, 903-911.
- [166] M. Grattell and D.W. Kirk, J. Electrochem. Soc., 1993, 140, 1535-1540.
- [167] Y. M. Awad and N. S Abuzaid, Separation and Purification Technology, 2000, 18, 227-236.
- [168] Ch. Comninellis and C. Pulgarin, J. Appl. Electrochem., 1993, 23, 108-112.
- [169] T. D. Kubritskaya, I. V. Drako, V. N. Sorokina and R. V. Drondina, Surf. Eng. Appl. Electrochem., 2000, 6, 62-75.
- [170] M. N. Rabilizirov and A. M. Gol'man, *Khimiya i Tekhnologia Vody*, 1986, **8**, 87-88.
- [171] V. Il'in, V. A. Kolesnikov and Yu. I. Parshina, *Glass Ceram.*, 2002, **59**, 242-244.
- [172] I. A. Zolotukhin, V. A. Vasev and A. L. lukin, Khimiya i Tekhnologia Vody, 1983, 5, 252-255.
- [173] R. Nikolaevsky, M. Monosov, E. Monosov, E. Sharony, and D. Gurevich, US patent n. 5,792,336 (1998).
- [174] N. Djeiranishvili, S. Boutine, and G. E. Meerkop, PCT Int. Appl. n. WO 9,827,013 (1998).
- [175] X. M. Zhan, J. L. Wang, X. H. Wen, and Y. Qian, *Environ. Tech.* 2001, 22, 1105-1111.
- [176] D. Rajkumar, J. G. Kim, and K. Palanivelu, Chem. Eng. & Technol., 2005, 28, 98-105.

- [177] S. H. Lin and C. L. Wu, J. Environ. Sci. Health A, 1997, 32, 2125-2138.
- [178] T. Matsue, M. Fujihira and T. Osal, J. Electrochem. Soc., 1981, 128, 2565-2569.
- [179] E. Brillias, R. M. Bastida and E. Llosa, J. Electrochem. Soc., 1995, 142, 1733-1741.
- [180] E. Brillias, E. Mur and J. Casado, J. Electrochem. Soc., 1996, 143, L49-L53.
- [181] E. Brillias, R. Sauleda and J. Casado, J. Electrochem. Soc., 1997, 144, 2374-2379.
- [182] E. Brillias, R. Sauleda and J. Casado, J. Electrochem. Soc., 1998, 145, 759-765.
- [183] E. Brillias, E. Mur, R. Sauleda, L. Sanchez, F. Peral, X. Domenech and J. Casado, Appl. Catal. B: Environ., 1998, 16, 31-42.
- [184] S. Stucki, H. Baumann, H. J. Christen and R. Kotz, J. Appl. Electrochem., 1987, 17, 773-778.
- [185] W. El-Shal, H. Khordagui, O. El-Sebaie, F. El-Sharkawi and G. H. Sedahmed, Desalination, 1991, 99, 149-157.
- [186] D. Dobos, Electrochemical Data, Elsevier Scientific Publishing Company Amsterdam-Oxford-New York (1975).
- [187] P. Vaudano, E. Plattner, and Ch. Comninellis, *Chimia*, 1995, 49, 12-16.
- [188] J. C. Farmer, F. T. Wang, R. A. Hawley-Fedder, P. R. Lewis, L. J. Summers and L. Foiles, J. Electrochem. Soc., 1992, 139, 654-662.
- [189] J. C. Farmer and F. T. Wang, IChemE Symp. Ser., 1992, 127, 203-214.
- [190] R. G. Hickman, J. C. Farmer and F. T. Wang, American Chem. Soc. Symp. Series, 1993, 518, 430-438.
- [191] F. Bringmann, K. Ebert, U. Galla and H. Schmieder, J. Appl. Electrochem., 1995, 25, 846-851.

- [192] V. Cocheci, C. Radovan, G. A. Ciorba and I. Vlaiciu, *Revue Roumaine de Chimie*, 1995, 40, 615-619.
- [193] A. Paire, D. Espinoux, M. Masson and M. Lecomte, Radiochim. Acta, 1997, 78, 137-143.
- [194] M. Abdel Azzem and E. Steckhan, *Heterocycles*, 1990, **31**, 1959-1965.
- [195] L. W. Gray, R. G. Hickman and J. C. Farmer, Solvent Substitution, Annu. Int. Workshop Solvent Substitution, 1st, (1990) 281-284.
- [196] J. C. Farmer, F. T. Wang, P. R. Lewis and L. J. Summers, J. Electrochem. Soc., 1992, 139, 3025-3029.
- [197] Y. H. Chung and S. M. Park, J. App. Electrochem. 2000, 30, 685-691.
- [198] W. K. Choi, K. W. Lee, Y. M. Kim, B. G. Ahn and W. Z. Oh, J. Nuclear Sci. Technol., 2000, 37, 173-179.
- [199] C. M. Goncea, Revista de Chimie (Bucharest, Romania), 2000, 51, 896-897
- [200] I. S. Vasil'eva, V. L. Kornienko and G. A. Kolyagin, Khimiya v Interesakh Ustoichivogo Razvitiya, 2001, 9, 529-532.
- [201] C. M. Goncea, Revista de Chimie (Bucharest, Romania), 2002, 53, 251-252.
- [202] I.-S. Kim, S.-W. Choi, C.-D. Heo, and S.-C. Park, Kongop Hwahak, 2002, 13, 33-36.
- [203] Z. Sun, X. Hu and D. Zhou, *TheScientificWorldJournal [electronic resource]*, 2002, 2, 48-52.
- [204] C. M. Goncea, Revista de Chimie (Bucharest, Romania), 2003, 54, 963-964.
- [205] C. M. Goncea, Revista de Chimie (Bucharest, Romania), 2003, 54, 643-644.
- [206] S.-C. Park and I.-S. Kim, Kongop Hwahak, 2005, 16, 206-211.

- [207] K. Scott, The IChemE Research Event, 1994, 1, 344-346.
- [208] K. Scott, Electrochem. Soc. Proc., 1994, 94, 51-64.
- [209] S. D. Fleischmann, R. A. Pierce, US-Report WRSC-MS- 91-192, 180th Meeting of The Electrochemical Society, Phoenix Arizona, 1991.
- [210] F. Steele, *Platinum Met. Rev.*, 1990, **34**, 10-14.
- [211] U. Leffrang, K. Ebert, K. Flory, U. Galla and H. Schmieder, *Conf. Separation Sci. Techn.*, Gatlinburg, Tennessee, USA, 24–28 Oct. 1993.
- [212] R. D. Lide, (ed.), CRC Handbook of Chemistry and Physics, CRC Press, 73rd ed., 1992–1993, p. 17–27.
- [213] W. J. Plieth, Encyclopedia of Electrochemistry of the Elements, vol. 8, p. 440.
- [214] J. Bringmann, K. Ebert, U. Galla and H. Schmieder, J. Appl. Electrochem., 1997, 27, 870-872.
- [215] J. Bringmann, K. Ebert, U. Galla and H. Schmieder, J. Appl. Electrochem., 1995, 25 846-851.
- [216] J. Bringmann, K. Ebert, U. Galla, U. Leffrang and H. Schmieder, ASME Heat Transfer Division, 1995, HTD-Vol. 317-2, IMECE 289-297.
- [217] L.-C. Chiang, J.-E. Chang and T.-C. Wen, *Wat. Res.*, 1995, **29**, 671-678.
- [218] C.-C. Sun and T-C. Chou, Ind. Eng. Chem. Res., 1999, 38, 4545-4551.
- [219] A. S. Vaze, S. B. Sawant and V. G. Pangarkar, J. Appl. Electrochem., 1999, 29, 7-10.

- [220] G. A. Bogdanovskii, T. V. Savel'eva and T. S. Saburova, Russian J. Electrochem., 2001, 37, 865-869.
- [221] N. S Abuzaid, Z. Al-Hamouz, A. A. Bukhari and M. H. Essa, Water, Air and Soil Pollution, 1999, 109, 429-442.
- [222] J. Iniesta, J. Gonzalez-Garcia, E. Exposito, V. Montiel and A. Aldaz, Wat. Res., 2001, 35, 3291-3300.
- [223] A. G. Vlyssides, P. K. Karlis and G. Mahnken, J. Appl. Electrochem., 2003, 33, 155.
- [224] M. Panizza and G. Cerisola, Environ. Sci. Technol., 2004, 38, 5470-5474.
- [225] Joint Service Pollution Prevention Opportunity Handbook, the Naval Facilities Engineering Service Center (http://p2library.nfesc.navy.mil/P2_Opportunity_Handbook)
- [226] M. Steensen, "Removal of non biodegradable organics from leachate by chemical oxidation" Proceedings Sardinia 93, Fourth International landfill Symposium, CISA publisher, Cagliari, vol. I, 945-958 (1993).
- [227] http://www.cerox.com
- [228] V. M. Bakhir, S. A. Panicheva and Y. G. Zadorozhni, US Pat., 6 843 895, 2005.
- [229] http://www.vbinstitute.ru/