Electronic Supplementary Information (ESI): Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen

Y. Xiong,^{*e*} Q. T. Campbell,^{*b*} J. Fanghanel,^{*a*,c} C. K. Badding,^{*d*} H. Wang,^{*e*} N. E. Kirchner-Hall,^{*a*} M. J. Theibault,^{*d*} I. Timrov,^{*e*} J. S. Mondschein,^{*c*} K. Seth,^{*c*} R. R. Katzbaer, ^{*c*} A. Molina Villarino,^{*d*} B. Pamuk,^{*f*} M. E. Penrod,^{*a*} M. M. Khan,^{*a*} T. Rivera,^{*c*} C. Smith,^{*g*} X. Quintana,^{*a*} P. Orbe,^{*a*} C. J. Fennie,^{*f*} S. Asem-Hiablie,^{*h*} J. L. Young,^{*i*} T. G. Deutsch,^{*i*} M. Cococcioni,^{*i*} V. Gopalan,^{*a*} H. D. Abruña,^{*d*} R. E. Schaak,^{*c*} I. Dabo^{*a*}

 ^a Department of Materials Science and Engineering, and Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
 ^b Sandia National Laboratories, Albuquerque, NM, USA
 ^c Department of Chemistry and Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
 ^d Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
 ^e Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

 ^f School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
 ^g Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
 ^h Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, USA
 ⁱ National Renewable Energy Laboratory, Golden, CO, USA
 ^j Department of Physics, University of Pavia, Pavia, Italy

S1. Criteria of the literature survey

The literature survey was performed using the Web of Science database by applying the criteria in Fig. S1. The initial search returned 626 publications, which were then examined individually. Publications focusing exclusively on experimental synthesis and/or characterization were removed from the literature survey. Computational studies with less than 50 candidate materials were also not considered. Using this approach, we identified 202 papers. These articles were read to categorize them into technological areas and determine whether they include validation experiments. The results of the survey are shown in Fig. 1 of the main text.

Figure S1 Criteria for the survey of peer-reviewed publications in high-throughput computational materials science.

S2. Criteria of the computational screening

Figure S2 shows the domains spanned by the candidate materials with the Hubbard *U* correction (Domain A) and without this correction (Domain B). Domain A is delimited by the standard criteria of water splitting: 1.5 < ε_g < 2.5 eV, E_{VB} > 1.2 V vs. SHE, and E_{CB} < 0 V vs. SHE, as discussed in the main text. Domain B is constructed by rescaling the band gap $\varepsilon_g = e(E_{VB} - E_{CB})$ of each point in Domain A by a factor γ while keeping the flatband potential $E_{FB} = (E_{VB} + E_{CB})/2$ constant. Explicitly, the γ -dependent transformation T_{γ} can be written as $(E_{VB}, E_{CB}) \rightarrow (E_{VB} - (1 - \gamma) (E_{VB} - E_{CB})/2, E_{CB} + (1 - \gamma) (E_{VB} - E_{CB})/2)$. Domain B is obtained by merging all the images of Domain A through T_{γ} for γ ranging from 0.5 to 0.8 (corresponding to the typical margin of error of band gaps within DFT). The resulting criteria are 0.75 < ε_g < 2 eV, E_{VB} > 0.575 V vs. SHE, and $E_{CB} < 0.625$ V vs. SHE. These criteria are used in the screening outlined in Fig. 2 of the main text.

Figure S2 Domains spanned by admissible candidates with Hubbard *U* correction (Domain A, orange) and without correction (Domain B, blue).

S3. Calculations of band gap and band edges

The band gaps and band edges computed using DFT and DFT+U are reported in Table S1. The distributions of the U parameters calculated from first principles using linear-response theory are provided in Fig. S3. For comparison, we summarized the band gaps from the Materials Project in Table S2.

Table S1 Band gaps and band edges of the 162 candidate photocatalysts calculated using DFT with the PBE functional and DFT+*U*. The *U* parameters are computed from first principles *via* one-shot calculations within density-functional perturbation theory (DFPT)¹ using the QUANTUM ESPRESSO distribution.^{2,3} "None" indicates that the compound does not contain elements on which the Hubbard correction is applied. Orthogonalized atomic orbitals are selected as projectors on the Hubbard manifold using the Löwdin method. The structures are optimized at the DFT level (*i.e.* without the Hubbard *U* correction). To enable systematic sorting, the elements in the chemical formula are ordered by increasing electronegativity, following the naming convention of the Materials Project (the conventional nomenclature is used in the main text). The space group and the *U* parameters are provided for each compound. Band edges are reported relative to the reversible hydrogen electrode (RHE). The absolute value of the hydrogen electrode potential is of 4.44 V. Calculations that could not go through the computational cycle are marked as "DFT incomplete", "DFPT incomplete" to indicate of an incomplete convergence in computing the DFT ground state, the Hubbard *U* parameters, and the DFT+*U* ground state, respectively. DFT and DFT+*U* data are reported for two Caln₂O₄ phases (the cubic phase and the experimentally observed orthorhombic phase).

	Space group	U parameters (eV)	ε _g (eV)	DFT eE _{CB} (eV)	<i>eE</i> _{VB} (eV)	$\varepsilon_{\rm g}$ (eV)	DFT+U eE_{CB} (eV)	$eE_{\rm VB}$ (eV)
AlCuO ₂	R3m	10.3 (Cu-3 <i>d</i>), 9.2 (O- 2 <i>p</i>)	1.78	0.02	1.81	3.07	-0.62	2.45
$Ba_2Fe_2O_5$	<i>P</i> 2 ₁ / <i>c</i>	×		DFT incomplet	e	×	×	×
$Ba_2In_2S_5$	Pbca	None	2.04	-1.15	0.89	_	—	_
Ba_2PbO_4	I4/mmm	8.9 (O-2 <i>p</i>)	1.30	-0.14	1.16	2.05	-0.51	1.53
$Ba_2SnSe_3F_2$	Pnma	None	1.72	-0.08	1.64	_	_	_
Ba ₃ MnNb ₂ O ₉	₽ <u>3</u> m1	8.1 (Mn-3 <i>d</i>), 3.3 (Nb-4 <i>d</i>), 8.4 (O-2 <i>p</i>)	0.62	0.51	1.13	3.04	-0.70	2.34
$Ba_3Zn_5In_2O_{11} \\$	F43m	×		DFT incomplet	e	\times	×	\times
$Ba_6Mn_5O_{16}$	Стсе	5.2 (Mn-3d), 8.9 (O-2p)	0.75	0.31	1.07	0.78	0.30	1.08
$Ba_6V_4S_{11}O_5$	Pnma	×		DFT incomplet	e	×	×	×
$Ba_8Sb_6S_{17}$	P2/c	×		DFT incomplete	e	×	×	×
$BaAlSi_5N_7O_2$	<i>P</i> 1	×	3.85	-0.68	3.17	Ι	OFPT incomple	te
BaCaFe ₄ O ₈	$P\overline{3}1m$	6.4 (Fe-3d), 8.4 (O-2p)	0.30	0.74	1.04	3.52	-0.87	2.65
BaCu ₂ O ₂	I41/amd	12.7 (Cu-3 <i>d</i>), 8.2 (O-2 <i>p</i>)	1.39	-0.27	1.13	3.22	-1.18	2.04
$BaHfN_2$	P4/nmm	2.7 (Hf-5d), 6.4 (N-2p)	1.33	-0.41	0.92	2.12	-0.81	1.32
BaIn ₂ O ₄	<i>P</i> 2 ₁ / <i>c</i>	10.7 (O-2 <i>p</i>)	1.38	-0.16	1.22	3.09	-1.02	2.07
BaS ₂	C2/c	None	1.55	-0.69	0.87	_	_	_
BaSbSe ₂ F	$P\overline{1}$	None	1.36	0.19	1.55	—	_	_

¹ Timrov, Marzari, Cococcioni, Physical Review B 98, 085127 (2018).

² Giannozzi et al., Journal of Physics: Condensed Matter 21, 395502 (2009).

³ Giannozzi et al., Journal of Physics: Condensed Matter 29, 465901 (2017).

	Space group	U parameters (eV)	ε _g (eV)	DFT eE _{CB} (eV)	<i>eE</i> _{VB} (eV)	ε _g (eV)	DFT+U eE_{CB} (eV)	<i>еЕ</i> vв (eV)
BaSnS ₂	<i>P</i> 2 ₁ / <i>c</i>	None	1.74	-0.84	0.90	_	_	_
$Ca_{12}Al_{14}O_{33}$	C2	9.7 (O-2 <i>p</i>)	2.01	-0.65	1.37	3.73	-1.5	2.23
Ca ₂ CoO ₃	Ст	6.6 (Co-3d), 7.8 (O-2p)	0.00	0.11	0.11	2.70	-1.24	1.46
Ca ₂ FeClO ₃	P4/nmm	8.1 (Fe-3 <i>d</i>), 8.4 (O-2 <i>p</i>)	0.00	0.48	0.48	3.41	-1.22	2.19
Ca ₂ PbO ₄	Pbam	8.5 (O-2 <i>p</i>)	1.50	-0.36	1.14	2.47	-0.85	1.62
Ca ₃ PCl ₃	Pm3m	None	1.85	-0.92	0.93	_	_	_
CaFeClO ₂	C2/m	×		DFT incomplete	2	×	×	×
CaIn ₂ O ₄	Fd3m	8.8 (O-2 <i>p</i>)	2.02	-0.55	1.48	4.30	-1.48	2.62
CaIn ₂ O ₄	Pnma	8.8 (O-2 <i>p</i>)	2.03	-0.55	1.48	4.10	-1.58	2.52
$CaSb_{10}S_6O_{10}$	C2/c	×		DFT incomplete	2	×	×	×
CaTaNO ₂	$Pmc2_1$	3.0 (Ta-5d), 6.4 (N-2p), 8.3 (Ω -2p)	1.67	-0.09	1.58	2.46	-0.48	1.98
CoPb ₂ WO ₆	C2/m	6.0 (Co-3d), 3.4 (W-5d), 8 1 (O-2n)	0.00	0.00 1.48 1.48		DFT+U incomplete		ete
Cr ₃ BO ₆	Pnma	8.2 (O-2 <i>p</i>), 7.5 (Cr-3 <i>d</i>)	0.63	1.01	1.64	4.28	-0.81	3.46
CrPb5O8	P21/c	×		DFT incomplete	2	×	×	×
$Cs_4Ta_2S_{11}$	$Pca2_1$	2.7 (Ta-5d)	1.78	-0.70	1.08	1.90	-0.76	1.14
Cs4Ti3S14	C2/c	5.4 (Ti-3d)	1.31	-0.41	0.90	2.16	-0.83	1.32
$Cs_4Zr_3Se_{14}$	C2/c	2.6 (Zr-4d)	1.54	-0.66	0.88	1.75	-0.76	0.98
CsCuO ₂	Стст	11.3 (Cu-3d), 8.1 (O-2p)	1.04	-0.11	0.94	2.32	-0.74	1.58
CsGeI ₃	R3m	None	1.83	-0.36	1.47	_	_	_
CsLaNb2O7	P4/mmm	×	1.67	0.26	1.93	Ι	OFPT incomple	te
CsMnBr ₃	P6 ₃ /mmc	6.3 (Mn-3d)	1.36	0.01	1.37	3.53	-1.08	2.45
CsMnI ₃	P6 ₃ /mmc	6.2 (Mn-3d)	1.02	-0.17	0.85	2.78	-1.05	1.73
CsSbS ₂	P21/c	None	1.75	-0.81	0.93	_	_	_
Cu_2WS_4	$P\overline{4}2m$	13.5 (Cu-3d), 3.0 (W-5d)	1.66	0.12	1.78	2.06	-0.08	1.98
Cu ₃ SbS ₃	$P2_{1}2_{1}2_{1}$	14.8 (Cu-3 <i>d</i>)	1.06	0.24	1.31	1.89	-0.17	1.72
Cu4Mo5O17	ΡĪ	×		DFT incomplete	2	×	×	×
CuI	P3m1	18.0 (Cu-3d)	1.64	0.24	1.88	2.75	-0.31	2.44
CuP ₂	P21/c	14.6 (Cu-3d)	0.86	0.34	1.20	1.02	0.26	1.28
Fe ₃ BO ₆	Pnma	5.8 (Fe-3d), 8.6 (O-2p)	0.01	1.47	1.49	3.08	-0.06	3.02
FeNi ₂ BO ₅	Pbam	×		DFT incomplete	2	×	×	×

	Space group	U parameters (eV)	ε _g (eV)	DFT eE _{CB} (eV)	<i>eE</i> _{VB} (eV)	ε _g (eV)	DFT+ U eE_{CB} (eV)	<i>eE</i> _{VB} (eV)
Ga ₂ TeSe ₂	I41md	None	1.65	-0.71	0.93	_		_
GaCuI ₄	ΙĪ	16.7 (Cu-3d)	1.67	0.30	1.97	2.43	-0.08	2.35
GaCuO ₂	R3m	10.7 (Cu-3 <i>d</i>), 8.1 (O-2 <i>p</i>)	0.75	0.53	1.28	2.46	-0.33	2.14
GaN	P6 ₃ mc	5.4 (N-2 <i>p</i>)	1.72	-0.47	1.25	2.97	-1.09	1.88
GaS	P6 ₃ /mmc	None	2.05	-1.00	1.05	—	—	—
Ge ₄ Se ₉	$Pca2_1$	None	1.36	0.34	1.70	_	—	—
GeS	Pnma	None	1.24	0.29	1.53	_	_	—
GeSe	Pnma	None	0.89	0.32	1.21	_	_	_
GeSe ₂	<i>P</i> 2 ₁ / <i>c</i>	None	1.47	0.25	1.72	_	_	_
GeTe	R3m	None	0.57	0.30	0.87	_	_	_
In_2O_3	<i>I</i> 2 ₁ 3	9.2 (O-2 <i>p</i>)	0.95	0.37	1.32	3.59	-0.95	2.64
$In_4Bi_2S_9$	$P2_{1}/m$	None	1.74	0.07	1.81	_	_	_
InBr	Стст	None	1.26	-0.22	1.04	_	_	_
InI	Стст	None	1.33	-0.53	0.80	_	_	_
$InSb_2S_4Br$	C2/m	None	1.58	0.26	1.84	_	_	_
InSb ₂ S ₄ Cl	C2/m	None	1.61	0.31	1.92	_	_	_
InSb ₂ Se ₄ Br	ΡĪ	None	1.15	0.33	1.48	_	_	_
K ₂ CoCl ₄	$Pna2_1$	×		DFT incomplet	e	×	×	\times
K ₂ NbCuS ₄	Fddd	1.9 (Nb-4d), 8.8 (Cu-3d)	2.01	-0.98	1.03	2.39	-1.17	1.22
K ₂ TaCuSe ₄	Fddd	1.7 (Ta-5d), 8.9 (Cu-3d)	1.98	-1.07	0.91	2.28	-1.22	1.06
$K_3LaP_2Se_8$	P_1/c	None	1.72	-0.68	1.04	—	—	_
$K_{3}P_{11}$	Pbcn	None	1.93	-0.71	1.22	—	—	
K_3PSe_{16}	Fd–3	None	1.12	0.15	1.26	—	—	—
K_3PSe_4	Pnma	None	1.68	-1.09	0.60	—	—	—
$K_3VP_2O_8$	<i>P</i> 2 ₁ /c	×	0.01	0.93	0.94		DFT incomplet	te
$K_4P_{21}I$	Стст	None	1.30	-0.12	1.18	—	—	
$KBiP_2Se_6$	P21/c	None	1.64	0.27	1.91	—	_	—
KCoO ₂	ΙĀ	6.4 (Co-3d), 8.0 (O-2p)	0.27	0.36	0.63	D	FT+U incompl	ete
KCuO ₂	Стст	11.1 (Cu-3 <i>d</i>), 8.1 (O-2 <i>p</i>)	0.98	0.05	1.03	2.17	-0.54	1.63
KLa ₅ C ₂ Cl ₁₀	P21/c	×		DFT incomplet	e	×	×	×

	Space group	U parameters (eV)	ε _g (eV)	DFT eE _{CB} (eV)	<i>eE</i> _{VB} (eV)	ɛg (eV)	DFT+U eE_{CB} (eV)	<i>eE</i> _{VB} (eV)
KNaZnO ₂	C2/c	×	1.79	-0.88	0.90	DFPT incomplete		te
La ₁₀ Se ₁₄ O	I41/acd	8.3 (O-2 <i>p</i>)	1.59	-0.63	0.96	1.60	-0.64	0.96
$La_4Mo_2O_{11}$	$P4_2/n$	×		DFT incomplet	e	×	×	×
La ₄ Se ₃ O ₄	Amm2	6.3 (O-2 <i>p</i>)	2.01	-0.34	1.67	2.04	-0.36	1.68
La ₆ BN ₃ O ₆	Стст	6.5 (N-2 <i>p</i>), 8.4 (O-2 <i>p</i>)	1.10	0.20	1.29	1.81	-0.16	1.65
LaCuS ₂	<i>P</i> 2 ₁ / <i>c</i>	14.7 (Cu-3 <i>d</i>)	1.20	-0.23	0.97	1.75	-0.50	1.25
LaCuSeO	P4/nmm	15.6 (Cu-3d), 8.3 (O-2p)	1.48	-0.20	1.29	2.44	-0.68	1.76
LaCuSO	P4/nmm	15.5 (Cu-3d), 8.3 (O-2p)	1.70	-0.24	1.46	2.65	-0.71	1.94
LaSO	Стсе	8.3 (O-2 <i>p</i>)	1.56	0.04	1.60	1.57	0.03	1.61
LaTiNO ₂	$I2_{1}2_{1}2_{1}$	5.9 (Ti-3d), 6.4 (N-2p), 8.4 (O-2p)	1.36	0.24	1.60	2.42	-0.28	2.13
Li ₂ MnBr ₄	Cmmm	×	1.86	-0.11	1.75	1	DFT incomplet	e
$Li_3V_2P_3O_{12}\\$	<i>P</i> 2 ₁ / <i>c</i>	×	0.03	1.38	1.42]	DFT incomplet	le
LiCoO ₂	R3m	6.1 (Co-3d), 8.4 (O-2p)	1.11	0.21	1.32	0.01	0.76	0.77
LiCuO	I4/mmm	12.4 (Cu-3 <i>d</i>), 9.0 (O-2 <i>p</i>)	1.49	-0.52	0.97	2.42	-0.98	1.44
LiVO ₂	R3m	3.8 (V-3d), 8.7 (O-2p)	0.01	0.54	0.54	2.26	-0.59	1.67
MgB ₉ N	R3m	6.2 (N-2 <i>p</i>)	1.68	-0.83	0.85	1.96	-0.97	0.99
MgFe ₂ O ₄	Fd3m	×	0.01	1.27	1.28	1	DFT incomplet	te
$MgMoN_2$	P6 ₃ /mmc	6.8 (N-2 <i>p</i>), 3.4 (Mo-4 <i>d</i>)	0.90	0.39	1.29	0.71	0.49	1.20
MgTe ₂	Pa3	None	1.08	-0.15	0.94	_	_	_
$Mn_3V_2O_8$	ΙĀ	8.2 (Mn-3d), 5.9 (V-3d), 8.2 (O-2p)	0.65	0.95	1.6	0.71	0.92	1.63
$MnGa_2S_4$	ΙĀ	6.6 (Mn-3d)	1.25	-0.28	0.96	2.28	-0.8	1.48
MnO	R3m	7.0 (Mn-3d), 8.0 (O-2p)	0.01	0.85	0.86	2.30	-0.29	2.00
Mo_6PbI_{14}	$Pn\overline{3}$	×	1.84	0.27	2.11	1	DFT incomplet	e
MoS_2	R3m	3.7 (Mo-4d)	1.51	0.13	1.64	1.46	0.15	1.62
MoSe ₂	$P\overline{3}m1$	3.8 (Mo-4d)	1.44	-0.02	1.41	1.24	0.07	1.32
$Na_2Sn_2Se_5$	Pbca	None	1.03	-0.28	0.75	_	_	_
Na ₂ TeO ₄	<i>P</i> 2 ₁ / <i>c</i>	8.7 (O-2 <i>p</i>)	1.39	0.32	1.71	3.30	-0.63	2.67
Na ₃ BiO ₄	P2/c	9.6 (O-2 <i>p</i>)	1.04	0.35	1.39	2.21	-0.24	1.98
Na ₃ Fe ₅ O ₉	C2/c	6.3 (Fe-3d), 8.7 (O-2p)	0.00	0.85	0.86	3.57	-0.93	2.64
Na ₃ Mn ₄ Te ₂ O ₁₂	Pnma	8.3 (Mn-3d), 8.6 (O-2p)	0.05	1.10	1.15	DI	T+U incompl	ete

	Space group	U parameters (eV)	$\varepsilon_{\rm g}$ (eV)	DFT eE _{CB} (eV)	<i>eE</i> _{VB} (eV)	ε _g (eV)	DFT+ U eE_{CB} (eV)	<i>eE</i> _{VB} (eV)
Na ₃ WN ₃	Сс	3.3 (W-5d), 6.3 (N-2p)	1.80	-0.80	1.00	2.37	-1.09	1.29
Na ₄ Fe ₂ O ₅	<i>P</i> 2 ₁ / <i>c</i>	6.5 (Fe-3d), 8.6 (O-2p)	0.03	0.27	0.31	3.80	-1.61	2.19
Na4VP2O9	Pbca	×		DFT incomplet	te	×	×	×
Na5CoHO4	Pnma	×		DFT incomplet	te	×	×	×
Na5CuH2O4	Pnma	13.0 (Cu-3d), 10.0 (O-2p)	1.49	-0.41	1.08	3.64	-1.48	2.16
Na5NiO4	Pbca	×	0.53	-0.31	0.22		DFT incomplet	te
NaInO ₂	R∃m	8.5 (Mo-4d)	1.92	-0.67	1.26	4.22	-1.81	2.4
NaMnO ₂	C2/m	4.9 (Mn-3d), 8.3 (O-2p)	1.16	-0.07	1.10	2.60	-0.78	1.81
NaMo ₆ Br ₁₃	$P\overline{1}$	3.7 (Mo-4d)	2.19	0.39	2.57	2.54	0.21	2.75
NaNbO ₂	P6 ₃ /mmc	1.9 (Nb-4d), 9.1 (O-2p)	1.43	-0.11	1.32	2.07	-0.43	1.64
Nb ₃ Sb ₂ Te ₅	I 4 3m	2.9 (Nb-4d)	0.81	0.02	0.84	0.72	0.07	0.79
NbCu ₃ S ₄	P43m	2.9 (Nb-4d), 13 9 (Cu-3d)	1.81	-0.14	1.67	1.97	-0.22	1.75
Pb ₅ S ₂ I ₆	C2/m	None	1.89	0.02	1.91	1.89	0.02	1.91
РЬО	Pbcm	8.1 (O-2 <i>p</i>)	1.81	0.08	1.89	2.83	-0.43	2.40
Rb ₂ MnCl ₄	C2/m	6.7 (Mn-3d)	1.34	0.04	1.39	3.70	-1.14	2.56
Rb2NaMnO4	$P2_{1}/m$	8.2 (Mn-3d), 8.9 (O-2p)	1.23	-0.49	0.74	1.08	-0.42	0.66
Rb4Cu5Cl9	Рс	×		DFT incomplet	te	×	×	×
Rb ₄ P ₂₁ I	Стст	None	1.39	-0.19	1.20	_	_	_
$Rb_4Ta_2S_{11}$	$Pca2_1$	2.7 (Ta-5d)	1.75	-0.61	1.14	D	FT+U incompl	ete
Rb4Ti3S14	C2/c	5.4 (Ti-3d)	1.27	-0.33	0.94	2.11	-0.75	1.36
Rb ₄ Zr ₃ Se ₁₄	C2/c	2.6 (Zr-4d)	1.50	-0.58	0.92	1.67	-0.66	1.01
Rb6Ta4S25	<i>P</i> 1	2.7 (Ta-5d)	1.47	-0.16	1.31	1.47	-0.16	1.31
RbCuO2	Стст	11.2 (Cu-3d), 8 1 (O-2n)	1.03	-0.01	1.01	2.23	-0.61	1.62
Sb_2S_3	Pnma	None	1.31	0.54	1.85	_	_	_
SbPb ₂ S ₂ I ₃	<i>P</i> 2 ₁ / <i>c</i>	None	1.81	0.19	2.00	_	_	_
SiP	$Cmc2_1$	None	1.75	-0.14	1.62	_	_	_
SiP ₂	Pbam	None	1.42	0.17	1.59	_	_	_
SnS	Pnma	None	1.14	0.16	1.30	_	_	_
SnS_2	$P\overline{3}m1$	None	1.53	0.30	1.83	_	_	_
Sr17Ta10S42	<i>P</i> 1	×		DFT incomplet	te	×	×	×

	Space group	U parameters (eV)	ε _g (eV)	DFT eE _{CB} (eV)	<i>eE</i> _{VB} (eV)	ε _g (eV)	DFT+U eE _{CB} (eV)	<i>eE</i> _{VB} (eV)
$Sr_2Fe_2S_2OF_2$	I4/mmm	6.9 (Fe-3d), 8.9 (O-2p)	0.07	0.56	0.63	0.19	0.50	0.69
Sr ₂ FeBrO ₃	P4/nmm	7.4 (Fe-3d), 8.9 (O-2p)	0.04	0.27	0.31	3.17	-1.30	1.87
Sr ₂ FeClO ₃	P4/nmm	7.2 (Fe-3d), 8.9 (O-2p)	0.05	0.32	0.37	3.18	-1.24	1.94
Sr ₂ FeO ₃ F	P4/nmm	7.6 (Fe-3d), 9.0 (O-2p)	0.04	0.49	0.53	3.07	-1.03	2.04
Sr ₂ PbO ₄	Pbam	9.0 (O-2 <i>p</i>)	1.43	-0.46	0.97	2.31	-0.90	1.41
$Sr_2SnSe_3F_2$	Pnma	None	1.45	-0.18	1.27	_	_	_
$Sr_4Mn_3O_{10}$	P222 ₁	7.2 (Mn-3d), 9.0 (O-2p)	0.91	-0.02	0.89	0.69	0.08	0.78
$Sr_6Sb_6S_{17}$	$P2_{1}2_{1}2_{1}$	×		DFT incomplet	te	×	×	×
SrCu ₂ O ₂	I41/amd	12.8 (Cu-3d), 8.3 (O-2p)	1.81	-0.65	1.16	3.11	-1.30	1.81
SrCuSeF	P4/nmm	16.2 (Cu-3 <i>d</i>)	1.15	-0.17	0.98	2.26	-0.73	1.53
SrCuSF	P4/nmm	16.1 (Cu-3 <i>d</i>)	1.45	-0.26	1.20	2.73	-0.89	1.83
SrIn ₂ O ₄	Pnma	8.8 (O-2 <i>p</i>)	1.83	-0.52	1.31	3.93	-1.56	2.36
Te ₂ Mo	P6 ₃ /mmc	3.6 (Mo-4d)	1.01	-0.05	0.96	0.93	0.00	0.92
TiPbO ₃	P4mm	6.3 (Ti-3d), 8.1 (O-2p)	2.08	0.17	2.25	3.45	-0.51	2.94
$V_5Pb_2O_{12}$	P2/c	5.7 (V-3d), 7.8 (O-2p)	0.49	1.11	1.60	2.75	-0.02	2.72
VCu ₃ Se ₄	P43m	5.1 (V-3d), 13.2 (Cu-3d)	0.99	0.06	1.05	1.40	-0.14	1.26
VO	Fm3m	×		DFT incomplet	te	×	×	×
WS_2	P6 ₃ /mmc	3.2 (W-5d)	1.66	0.27	1.93	1.71	0.25	1.96
WSe ₂	P6 ₃ /mmc	3.2 (W-5d)	1.52	0.14	1.67	1.36	0.23	1.59
YCuS ₂	Pnma	15.1 (Cu-3d)	1.63	-0.41	1.23	2.18	-0.68	1.50
ZnCo ₂ O ₄	Fd3m	×		DFT incomplet	te	×	×	×
ZnFe ₂ O ₄	Fd3m	15.3 (Zn-3d), 6.2 (Fe-3d), 8.6 (O-2p)	0.01	1.41	1.43	3.60	-0.38	3.22
ZnGeP ₂	I42d	None	1.27	-0.03	1.24	_	_	_
ZnP_2	P4 ₃ 2 ₁ 2	None	1.50	0.01	1.51	_	_	_
ZnSe	F43m	None	1.47	-0.05	1.42	_	_	—
ZnTe	F 4 3m	None	1.32	-0.16	1.16	_	_	_

Figure S3 Distributions of the Hubbard *U* parameters for the transition-metal, carbon, nitrogen and oxygen elements. The *U* parameters are computed from first principles using DFPT,¹ with orthogonalized atomic orbitals as projectors on the Hubbard manifold. The distributions illustrate the gradual increase in the *U* parameters across the transition-metal series, following electronegativity trends. It is noted that the *U* parameters of Cu present higher values compared to other elements. This observation is due to the fact that the Cu-3*d* electronic shell is closed.⁴ The variance of the *U* parameters is the largest for iron and copper cations. In contrast, the distribution of *U* parameters of the oxygen anion is narrow. In light of this statistical results, we performed a sensitivity analysis of the computed band gap ε_g as a function of the *U* parameter for the cuprous compounds (listed in Table 2 of the main text), finding an average decrease in ε_g of 0.09 eV when reducing *U*(Cu-3*d*) by 1 eV. Cu₂WS₄ and Na₅CuH₂O₄ exhibited the lowest sensitivity (0.03 eV per 1 eV) and highest sensitivity (0.16 eV per 1 eV) to the *U*(Cu-3*d*) parameter, respectively. This assessment suggests that although the *U*(Cu-3*d*) parameters are quite large and widely distributed, they do not translate into unexpectedly strong or unreasonably sensitive Hubbard *U* corrections to the original (DFT) band gaps.

⁴ Yu, Carter, The Journal of Chemical Physics 140, 121105 (2014).

Table S2 Identification number, formation energies, and band gaps from the Materials Project (MP) for the 162 candidate photocatalysts. The formation energies and band gaps are evaluated at the DFT/DFT+*U* level with fixed *U* parameters (DFT+*U*_{MP}) using the VASP (Vienna Ab initio Simulation Package) code.^{5,6} The *U*_{MP} parameters are optimally tuned to reproduce experimental formation enthalpies: 3.3 (V-3*d*), 3.7 (Cr-3*d*), 3.9 (Mn-3*d*), 5.3 (Fe-3*d*), 3.3 (Co-3*d*), 6.2 eV (Ni-3*d*).^{7,8} It is important to note that some of the *U*_{MP} parameters are far from those computed in this work from first principles. This is because *U* depends on numerical and physical parameters, such as the pseudopotentials [GBRV ultrasoft pseudopotentials⁹ are used in this work, while projected augmented-wave (PAW) pseudopotentials rule used in the Materials Project], the localized functions of the Hubbard projectors (orthogonalized atomic orbitals are used in this work while PAW projector functions are used in VASP), and the chemical environments of the elements. Hence, *U* is in general not transferable. The elements in the chemical formula are ordered by increasing electronegativity, following the naming convention of the Materials Project.

	Space group	MP identity number	Formation energy (eV/atom)	$\mathrm{DFT} + U_{\mathrm{MP}}$ ε_{g} (eV)
AlCuO ₂	R3m	3748	-2.42	1.82
Ba ₂ Fe ₂ O ₅	<i>P</i> 2 ₁ / <i>c</i>	1196071	-2.41	1.42
$Ba_2In_2S_5$	Pbca	22841	-1.67	1.99
Ba ₂ PbO ₄	I4/mmm	20098	-2.38	1.22
$Ba_2SnSe_3F_2$	Pnma	17805	-2.26	1.72
Ba3MnNb2O9	P3m1	20921	-3.14	1.77
$Ba_3Zn_5In_2O_{11}$	F 4 3m	560544	-2.19	1.62
$Ba_6Mn_5O_{16}$	Стсе	30895	-2.42	1.30
$Ba_6V_4S_{11}O_5$	Pnma	556461	-2.09	1.91
$Ba_8Sb_6S_{17}$	P2/c	561455	-1.62	1.39
BaAlSi ₅ N ₇ O ₂	<i>P</i> 1	1227994	-1.82	1.51
BaCaFe ₄ O ₈	P31m	18950	-1.43	1.78
BaCu ₂ O ₂	I41/amd	7374	-1.62	1.38
BaHfN ₂	P4/nmm	10322	-1.53	1.25
BaIn ₂ O ₄	<i>P</i> 2 ₁ / <i>c</i>	578629	-2.27	1.67
BaS ₂	C2/c	684	-1.86	1.58
BaSbSe ₂ F	ΡĪ	558946	-1.81	1.33
BaSnS ₂	<i>P</i> 2 ₁ / <i>c</i>	12181	-1.63	1.64
$Ca_{12}Al_{14}O_{33}$	C2	530149	-3.45	1.97
Ca ₂ CoO ₃	Ст	1182074	-2.45	1.75

⁵ Kresse, Furthmüller, Computational Materials Science 6, 15-50 (1996).

⁶ Kresse, Furthmüller, *Physical Review B* 54, 11169 (1996).

⁷ Jain et al., Physical Review B 84, 045115 (2011).

⁸ Wang, Maxisch, Ceder, Physical Review B 73, 195107 (2006).

⁹ Garrity, Bennett, Rabe, Vanderbilt, Computational Materials Science 81, 446-452 (2014).

¹⁰ Kresse, Joubert Physical Review B 59, 1758 (1999).

	Space group	MP identity number	Formation energy (eV/atom)	$\mathrm{DFT} + U_{\mathrm{MP}}$ ε_{g} (eV)
Ca ₂ FeClO ₃	P4/nmm	630511	-2.41	0.99
Ca ₂ PbO ₄	Pbam	21137	-2.56	1.48
Ca ₃ PCl ₃	Pm3m	29342	-2.27	1.84
CaFeClO ₂	C2/m	549711	-2.00	2.00
CaIn ₂ O ₄	Fd∃m	22766	-2.40	1.92
$CaSb_{10}S_6O_{10}$	C2/c	504882	-1.49	1.75
$CaTaNO_2$	$Pmc2_1$	556340	-2.76	1.61
CoPb ₂ WO ₆	C2/m	20069	-1.78	1.78
Cr ₃ BO ₆	Pnma	18551	-2.32	1.60
CrPb ₅ O ₈	<i>P</i> 2 ₁ / <i>c</i>	705034	-1.61	1.88
$Cs_4Ta_2S_{11}$	$Pca2_1$	14578	-1.39	1.81
$Cs_4Ti_3S_{14}$	C2/c	542011	-1.46	1.29
$Cs_4Zr_3Se_{14}$	C2/c	768674	-1.05	1.51
CsCuO ₂	Стст	553310	-1.36	0.94
CsGeI₃	R3m	28377	-0.83	1.59
CsLaNb ₂ O7	P4/mmm	553248	-3.21	1.44
CsMnBr ₃	P6 ₃ /mmc	23048	-0.82	1.29
CsMnI ₃	P6 ₃ /mmc	540609	-0.47	1.02
CsSbS ₂	<i>P</i> 2 ₁ / <i>c</i>	561639	-1.05	1.84
Cu_2WS_4	P42m	8976	-0.84	1.45
Cu ₃ SbS ₃	$P2_{1}2_{1}2_{1}$	17691	-0.48	1.00
CuI	P3m1	570136	-0.15	1.63
CuP ₂	<i>P</i> 2 ₁ / <i>c</i>	927	-0.11	0.86
Fe ₃ BO ₆	Pnma	22774	-1.61	1.79
FeNi ₂ BO ₅	Pbam	21522	-1.76	1.85
Ga ₂ TeSe ₂	I4 ₁ md	28423	-0.51	1.61
GaCuI ₄	ΙĀ	29403	-0.41	1.70
GaCuO ₂	R3m	4280	-1.68	0.98
GaN	P6 ₃ mc	804	-0.67	1.74
GaS	P6 ₃ /mmc	2507	-0.98	1.88

	Space group	MP identity number	Formation energy (eV/atom)	$\mathrm{DFT} + U_{\mathrm{MP}}$ ε_{g} (eV)
Ge ₄ Se ₉	$Pca2_1$	680333	-0.21	1.22
GeI ₄	Pa3	23266	-0.27	2.00
GeS	Pnma	2242	-0.58	1.24
GeSe	Pnma	700	-0.17	0.90
GeSe ₂	<i>P</i> 2 ₁ /c	540625	-0.23	1.44
GeTe	R3m	938	-0.09	0.75
In ₂ O ₃	<i>I</i> 2 ₁ 3	22598	-2.01	0.93
$In_4Bi_2S_9$	$P2_{1}/m$	27195	-0.87	1.63
InBr	Стст	22870	-0.67	1.26
InI	Стст	23202	-0.47	1.34
InSb ₂ S ₄ Br	C2/m	559864	-0.75	1.52
InSb ₂ S ₄ Cl	C2/m	556541	-0.87	1.51
InSb ₂ Se ₄ Br	$P\overline{1}$	570321	-0.41	1.13
K ₂ CoCl ₄	$Pna2_1$	23515	-1.74	0.89
K2NbCuS4	Fddd	9763	-1.38	1.96
K₂TaCuSe₄	Fddd	8972	-0.95	1.98
$K_3LaP_2Se_8$	<i>P</i> ₁ / <i>c</i>	542079	-0.93	1.46
K ₃ P ₁₁	Pbcn	1568	-0.32	1.93
K ₃ PSe ₁₆	Fd–3	29947	-0.34	1.09
K ₃ PSe ₄	Pnma	31313	-0.87	1.83
K ₃ VP ₂ O ₈	<i>P</i> 2 ₁ /c	557046	-2.54	1.98
$K_4P_{21}I$	Стст	31280	-0.30	1.34
KBiP ₂ Se ₆	<i>P</i> 2 ₁ / <i>c</i>	569435	-0.40	1.61
KCoO ₂	ΙĪ	1180771	-1.58	0.99
KCuO ₂	Стст	3982	-1.39	0.86
$KLa_5C_2Cl_{10}$	P21/c	571240	-2.32	1.94
KNaZnO ₂	C2/c	557183	-1.64	1.78
KV ₃ P ₄ O ₁₇	$P2_{1}2_{1}2_{1}$	14929	-2.61	1.16
La ₁₀ Se ₁₄ O	I41/acd	558535	-2.18	1.55
$La_4Mo_2O_{11}$	P42/n	14748	-3.18	1.82

	Space group	MP identity number	Formation energy (eV/atom)	$\mathrm{DFT} + U_{\mathrm{MP}}$ ε_{g} (eV)
$La_4Se_3O_4$	Amm2	4412	-3.13	1.33
La ₆ BN ₃ O ₆	Стст	560824	-3.02	1.10
LaCuS ₂	<i>P</i> 2 ₁ / <i>c</i>	4841	-1.80	1.23
LaCuSeO	P4/nmm	552488	-2.20	1.55
LaCuSO	P4/nmm	6088	-2.40	1.67
LaSO	Стсе	28626	-3.11	1.52
LaTiNO ₂	$I2_{1}2_{1}2_{1}$	1222738	-3.06	1.21
Li_2MnBr_4	Cmmm	28250	-1.23	1.78
$Li_{3}V_{2}P_{3}O_{12} \\$	<i>P</i> 2 ₁ / <i>c</i>	757321	-2.71	1.92
LiCoO ₂	R3m	22526	-1.59	0.66
LiCuO	I4/mmm	5127	-1.44	1.44
LiVO ₂	R3m	19340	-2.50	1.79
MgB ₉ N	R3m	30091	-0.43	1.68
$MgFe_2O_4$	Fd3m	608016	-2.25	1.80
MgMoN ₂	P6 ₃ /mmc	864954	-1.06	0.74
$MgTe_2$	Pa3	2604	-0.58	1.12
$Mn_3V_2O_8\\$	ΙĀ	1221916	-2.28	1.92
$MnGa_2S_4$	ΙĀ	20025	-1.04	1.18
$MnNi_6O_8$	Fm3m	19442	-1.22	1.31
MnO	R3m	19006	-1.99	1.68
Mo_6PbI_{14}	Pn3	569225	-0.44	1.84
MoS_2	R3m	1434	-1.31	1.20
$MoSe_2$	P3m1	1027692	-0.67	1.14
$Na_2Sn_2Se_5$	Pbca	16167	-0.63	1.02
Na_2TeO_4	<i>P</i> 2 ₁ / <i>c</i>	560613	-1.83	1.81
Na_3BiO_4	P2/c	27345	-1.74	0.96
Na ₃ Fe ₅ O ₉	C2/c	540658	-1.34	1.72
$Na_3Mn_4Te_2O_{12}\\$	Pnma	561325	-1.93	1.45
Na_3WN_3	Сс	16839	-0.63	1.77
Na ₄ Fe ₂ O ₅	<i>P</i> 2 ₁ / <i>c</i>	19396	-1.34	1.92

	Space group	MP identity number	Formation energy (eV/atom)	$DFT + U_{MP}$ ε_{g} (eV)
Na ₄ VP ₂ O ₉	Pbca	705037	-2.61	1.76
Na₅CoHO₄	Pnma	774341	-1.49	1.68
Na5CuH2O4	Pnma	757878	-1.49	1.49
Na ₅ NiO ₄	Pbca	21996	-1.39	1.91
NaInO ₂	R3m	5175	-2.00	1.91
NaMnO ₂	C2/m	18957	-2.04	1.26
NaMo ₆ Br ₁₃	$P\overline{1}$	680472	-0.77	2.00
NaNbO ₂	P6 ₃ /mmc	3744	-2.54	1.38
Nb ₃ Sb ₂ Te ₅	I 4 3m	569571	-0.40	0.84
NbCu ₃ S ₄	P43m	5621	-0.93	1.66
$Pb_5S_2I_6$	C2/m	23066	-0.70	1.81
РЬО	Pbcm	672237	-1.48	1.47
Rb ₂ MnCl ₄	C2/m	22978	-1.94	1.29
Rb ₂ NaMnO ₄	$P2_{1}/m$	18873	-1.83	1.81
Rb4Cu5Cl9	Рс	29449	-1.41	1.79
$Rb_4P_{21}I$	Стст	31279	-0.31	1.43
$Rb_4Ti_3S_{14}$	C2/c	542067	-1.45	1.22
Rb ₄ Zr ₃ Se ₁₄	C2/c	542013	-1.03	1.46
Rb ₆ Ta ₄ S ₂₅	<i>P</i> 1	680284	-1.26	1.48
RbCuO ₂	Стст	7467	-1.37	0.91
Sb_2S_3	Pnma	2809	-0.65	1.28
$SbPb_2S_2I_3$	<i>P</i> 2 ₁ / <i>c</i>	578882	-0.66	1.72
SiP	$Cmc2_1$	2798	-0.14	1.74
SiP ₂	Pbam	9996	-0.13	1.42
SnS	Pnma	2231	-0.78	0.91
SnS_2	$P\overline{3}m1$	1170	-0.82	1.56
$Sr_{17}Ta_{10}S_{42}$	<i>P</i> 1	532315	-1.96	1.79
$Sr_2Fe_2S_2OF_2$	I4/mmm	549237	-2.55	1.90
Sr ₂ FeBrO ₃	P4/nmm	556507	-2.56	1.35
Sr ₂ FeClO ₃	P4/nmm	630641	-2.72	1.12

	Space group	MP identity number	Formation energy (eV/atom)	$\mathrm{DFT} + U_{\mathrm{MP}}$ ε_{g} (eV)
Sr ₂ FeO ₃ F	P4/nmm	19293	-2.96	1.20
Sr_2PbO_4	Pbam	20944	-2.48	1.40
$Sr_2SnSe_3F_2$	Pnma	17057	-2.23	1.45
$Sr_4Mn_3O_{10}$	P222 ₁	18998	-2.60	1.30
$Sr_6Sb_6S_{17}$	$P2_{1}2_{1}2_{1}$	16061	-1.43	1.74
SrCu ₂ O ₂	I41/amd	13900	-1.67	1.81
SrCuSeF	P4/nmm	21228	-2.15	1.20
SrCuSF	P4/nmm	12444	-2.35	1.51
SrIn ₂ O ₄	Pnma	540688	-2.37	1.81
Te ₂ Mo	P6 ₃ /mmc	602	-0.27	0.97
TiPbO ₃	P4mm	20459	-2.74	1.82
$V_5Pb_2O_{12}\\$	P2/c	22296	-2.29	1.82
VCu ₃ Se ₄	P43m	21855	-0.49	0.82
VO	Fm3m	19184	-2.09	0.78
WS_2	P6 ₃ /mmc	224	-1.26	1.56
WSe ₂	P6 ₃ /mmc	1821	-0.56	1.45
YCuS ₂	Pnma	10533	-1.70	1.60
ZnCo ₂ O ₄	Fd3m	753489	-1.49	1.94
$ZnFe_2O_4$	Fd3m	19313	-1.89	1.67
ZnGeP ₂	I42d	4524	-0.21	1.17
ZnP_2	P4 ₃ 2 ₁ 2	11025	-0.25	1.46
ZnSe	F 4 3m	1190	-0.72	1.17
ZnTe	F 4 3m	2176	-0.47	1.08

S4. Tauc measurements of band gaps

The band gaps of the synthesized compounds were determined using diffuse reflectance with a UV-visible spectrophotometer, as described in the Materials Characterization section in the main text. The results of the Tauc measurements are summarized in Fig. S2. Most of the samples showed a clear transition in the Tauc plot; however, multiple transitions were found for some of the compounds, most notably for BaCaFe₄O₆, which indicates the presence of mid-gap states, potentially due to defects.

S5. Mott-Schottky measurements of band edges

To determine the band edges of the synthesized materials, Mott–Schottky measurements were performed in an aqueous solution with a sodium phosphate buffer electrolyte at pH 8, and with the room's lights turned off. The measurements were performed for different frequencies over a range of potentials at constant frequency. The flatband potentials were averaged across these different frequencies to obtain the values reported in Table 1 of the main text. The Mott–Schottky plots of the compounds are shown in Fig. S3.

S6. Gas chromatography measurements

Hydrogen evolution tests were carried out using a gas chromatography setup depicted below:

Measurements were performed using a HP 5890 Series II gas chromatograph with a thermal conductivity detector under argon carrier gas. The setup can operate in continuous-flow and accumulation-flow modes. Under continuous flow, the argon supply was controlled by a needle valve and the generated gas was tested continuously by the gas chromatograph. In accumulation mode, the produced gas was stored for a period of time before being transferred to the gas chromatograph by the circulation pump. In this work, hydrogen evolution data were collected in the accumulation mode. The results of the gas chromatography are plotted in Fig. S5. The gas chromatograph was calibrated *via* needle injection of a known volume of gas.

Figure S4 Tauc plots of the synthesized compounds. The band gaps of the materials were determined by linear extrapolation of the Tauc signal. The light absorption coefficient and energy of the incident photon are denoted as α and hv, respectively.

Figure S5 Mott–Schottky analysis of the synthesized compounds. The measurements were performed in an aqueous sodium phosphate buffer solution at pH 8, and under dark conditions. Following the Mott–Schottky equation, the flatband potentials E_{FB} were determined as $E_0 - k_B T/e = E_0 - 0.025$ V where E_0 denotes the intercept of the linearly extrapolated inverse squared capacitance with the horizontal axis, averaged over frequencies.

Figure S6 Gas chromatography measurements of the synthesized compounds for water-splitting applications. Measurements were performed under condition (*i*) with 0.1 M oxalic acid solution and under condition (*ii*) with a volume fraction of 15% of methanol in water, as described in the main text. The retention times are given in fraction of a minute (0.1 minute means 6 seconds). The moderate drifts in the hydrogen baseline are due to slight fluctuations in the pressure of argon in the instrument. The asterisks (*) indicate nitrogen that possibly originates from traces of air remaining in the chamber but was not found to affect hydrogen detection.

S7. Synthesizability

Table S3 Evidence of synthesizability for the 162 candidate compounds, including an illustration of the crystal structure, a synopsis of the synthesis method, and the corresponding literature reference. The elements in the chemical formula are ordered by increasing electronegativity.

	Crystal structure	Synopsis	Reference
AlCuO ₂		$Cu_2O + Al_2O_3 + PbO$ at 900 °C for 48-96 hours	Ref. 1
BaCu ₂ O ₂		BaCuO ₂ (BaCO ₃ + CuO) + Cu at 1023 K for 2 days	Ref. 2
$Ba_2Fe_2O_5$	2.954	$BaCO_3$ + $\alpha\text{-}Fe_2O_3$ at 1373 K for 24 hours under nitrogen	Ref. 3
$Ba_2In_2S_5$		Ba + In + S at 1150-1250 °C in sealed ampoule	Ref. 4
Ba ₂ PbO ₄	***	BaCO ₃ + PbO ₂ at 450 °C for 12 hours, then 950 °C for 12 hours in sealed ampoule, sintered in air for 24 hours at 950 °C	Ref. 5
Ba ₂ SnSe ₃ F ₂		$BaF_2 + BaS + SnSe + Se$ in sealed ampoule at 700 °C for 12 hours	Ref. 6
Ba ₃ MnNb ₂ O ₉		BaCO ₃ + MnO ₂ + Nb ₂ O ₅ at 850 °C for 20 hours, then 1350 °C for 5 days	Ref. 7
$Ba_3Zn_5In_2O_{11}$		BaO + ZnO + In_2O_3 in HNO_3 + KO_2 at 750 °C for 12 days	Ref. 8
Ba ₆ Mn ₅ O ₁₆		$BaCO_3 + MnO_2$ in air at 1250 °C for 3 days and quenched	Ref. 9

	Crystal structure	Synopsis	Reference
$Ba_6V_4S_{11}O_5$		$BaS + V + V_2O_5 + S$ in sealed ampoule at 1198 K for 4 days	Ref. 10
$Ba_8Sb_6S_{17}$		$BaS + Sb_2O_3$ at 1120 K	Ref. 11
BaAlSi ₅ N ₇ O ₂		Ba + Si ₃ N ₄ + AlN heated to 1600 °C for 8 hours	Ref. 12
BaCaFe ₄ O ₈		BaNO ₃ + CaCO ₃ + FeO in air at 1100 $^{\circ}$ C	Ref. 13
BaHfN ₂		Ba_3N_2 (Ba in molten Na at 250 °C, heated to 520 °C under N_2 , then 350 °C for 24 hours under vacuum) + HfN ₂ in Mo foil welded, heated to 1000 °C for 5 days under Ar	Ref. 14
BaIn ₂ O ₄		$BaCO_3 + In_2O_3$ at 840 °C for 12 hours	Ref. 15
BaS ₂		BaS + S in sealed ampoule at 800 $^{\circ}$ C	Ref. 16
BaSbSe ₂ F	● 3 48 91 5 ● 01 95 5 ⁰ ●	$BaF_2 + Ba + Sb_2Se_3 + Se$ at 700 °C in sealed ampoule	Ref. 17
BaSnS ₂		BaS + SnS at 750 °C for 2 weeks	Ref. 18
$Ca_{12}Al_{14}O_{33}$		CaO + Al_2O_3 at 453 K for 1 weeks, 1623 K for 24 hours, then 1623 K for 48 hours	Ref. 19

	Crystal structure	Synopsis	Reference
Ca ₂ CoO ₃		CaCO ₃ + Co ₃ O ₄ ball-milled in IPA and calcined at 900 °C for 17 days	Ref. 20
Ca_2FeClO_3	* 🗶	$CaCl_2 + Fe_2O_3$ in $CaCl_2$ flux at 850 °C for 5 hours in Pt crucible	Ref. 21
Ca ₂ PbO ₄		CaCoO ₃ and PbO in 2:1 ratio at 800 $^\circ C$ for 72 hours	Ref. 22
Ca ₃ PCl ₃		$Ca_{3}P_{2}$ + $CaCl_{2}$ in steel ampoules under Ar at 740 $^{\circ}C$ then 950 $^{\circ}C$	Ref. 23
CaFeClO ₂		$CaCl_2 + Fe_2O_3$ at 800 °C for 6 hours in Pt crucible	Ref. 21
CaIn ₂ O ₄		In_2O_3 + CaO at 1400 °C for 24 hours	Ref. 24
$CaSb_{10}S_6O_{10}$		$CaO + SrCO_3 + Sb_2S_3 + Sb_2O_3$ at 100-650 °C hydrothermally	Ref. 25
CaTaNO ₂		$CaCO_3 + Ta_2O_5$ at 900 °C in ammonia	Ref. 26
CoPb ₂ WO ₆		$PbO + WO_3 + CoO$ in sealed ampoule at 1050 K for 12 hours	Ref. 27
Cr ₃ BO ₆		$Cr_2(SO_4)_3\text{-}6H_2O$ + H_3BO_3 ball-milled and fired at 680 $^\circ\!C$ for 3 days	Ref. 28

	Crystal structure	Synopsis	Reference
CrPb ₅ O ₈		PbO + Pb ₂ O(CrO ₄) (CrO ₃ + PbO + NaOH hydrothermally at 120 °C for 18 h) in air at 900 °C	Ref. 29
$Cs_4Ta_2S_{11}$		Cs_2S_3 (Cs + S in liquid NH3) + Ta + S in sealed ampoule at 773 K for 2 days	Ref. 30
$Cs_4Ti_3S_{14}$		$Ti + S + Cs_2S_3$ flux (Cs + S in NH3) heated to 873 K for 4 days	Ref. 31
$Cs_4Zr_3Se_{14}$		$Zr + Se + Cs_2Se_3$ (Cs+Se in liquid NH ₃)	Ref. 31
CsCuO ₂	•••	CsO_2 + CuO under flowing oxygen at 400 $^\circ C$ for 6 days	Ref. 32
CsGeI ₃		HI + H ₃ PO ₂ + GeI ₄ + CsI (colloidal)	Ref. 33
CsLaNb ₂ O7		$Cs_2CO_3+La_2O_3+Nb_2O_5$ in 4:1:2 ratio at 1273 K in air	Ref. 34
CsMnBr ₃		Can be synthesized colloidally or via thin film fabrication	Ref. 35
CsMnI ₃		MnI_2 (prepared from the elements and purified by sublimation) + CsI at 380 °C for 7 days in sealed ampoule	Ref. 36
CsSbS ₂		Hydrothermal synthesis of Cs_2S and Sb_2S_3	Ref. 37

	Crystal structure	Synopsis	Reference
Cu ₂ WS ₄		Can be synthesized colloidally	Ref. 38
Cu ₃ SbS ₃		Cu_2S + Sb_2S_3 at 853 K in sealed quartz tube	Ref. 39
$Cu_4Mo_5O_{17}$		$Cu_2O + MoO_3$ in sealed ampoule	Ref. 40
CuI		Can be purchased	Ref. 41
CuP ₂		Copper halide + red P + hexadecane via Schlenk technique	Ref. 42
Fe ₃ BO ₆		$Na_3BO_3 + Fe_2O_3$ at 200 °C, then 1200 °C in air for 18 hours then heated in boiling water then treated with HCl	Ref. 43
FeNi ₂ BO ₅		$\rm NiO$ + $\rm Fe_2O_3$ + $\rm B_2O_3$ at 1100 °C for 4 hours	Ref. 44
Ga ₂ TeSe ₂		$Ga_2Se_3 + Ga_2Te_3$ at 800 K for 1 year	Ref. 45
GaCuI₄	*	CuI + GaI ₃ in sealed ampoule at 573 K (slow cooling to room temp at 1 K/hour)	Ref. 46
GaCuO ₂	*340 300000 300	$Na_2CO_3 + Ga_2O_3$ at 900 °C for 20 hours, then mixed with CuCl and fired at 250 °C for 48 hours under vacuum	Ref. 47

	Crystal structure	Synopsis	Reference
GaN		Can be made via thin film fabrication	Ref. 48
GaS		Can be synthesized colloidally or via thin film fabrication	Ref. 49
Ge ₄ Se ₉	A A A A A A A A A A A A A A A A A A A	Ta + Ge + Se + RbCl in sealed ampoule at 1073 K for 96 h	Ref. 50
GeS	TUUT. TUUT.	Can be made via thin film fabrication	Ref. 51
GeSe	TUUT. VELEE	Can be synthesized colloidally	Ref. 49
GeSe ₂	WWW AL	Ge + Se at 1173 K for 48 hours in sealed quartz tube	Ref. 52
GeTe	**** ********	Ge + Te in sealed ampoule at 1000 °C for 24 hours	Ref. 53
In ₂ O ₃		Can be purchased	Ref. 54
$In_4Bi_2S_9$	÷L.	Bi + In + S + I via CVT with temperature gradient of 680-600 $^{\circ}$ C	Ref. 55
InBr	• • • • • • • • • • • • • •	$In + InBr_3$	Ref. 49

	Crystal structure	Synopsis	Reference
InI	• • • • • • • • • • • • • • •	In + I via sublimation with 200 °C to 100 °C gradient	Ref. 49
InSb ₂ S ₄ Br	ACK YOK	In + SbBr ₃ + Sb + S at 450 $^{\circ}$ C in sealed ampoule	Ref. 56
InSb₂S₄Cl	- Jaho atta NOR TOX TOX TOX	In + SbCl ₃ + Sb + S at 450 $^{\circ}$ C in sealed ampoule	Ref. 56
InSb ₂ Se ₄ Br	X int	In + SbBr ₃ + Sb + Se in sealed quartz ampoule	Ref. 56
K ₂ CoCl ₄		KCl + CoCl ₂ melted, annealed in sealed quartz tube at 400 °C for 1 week (phase change after several months)	Ref. 57
K ₂ NbCuS ₄		K_2S_3 + Cu +Nb + S at 623 K for 6 days	Ref. 58
K_2 TaCuSe ₄		K_2Se_5 + Ta + Cu + Se in sealed ampoule at 950 $^\circ C$	Ref. 59
$K_3LaP_2Se_8$	A A V X A	Se + K_2Se_4 + P + La in sealed ampoule at 725 °C for 150 hours	Ref. 60
$K_{3}P_{11}$		K + P in sealed ampoule at 380 °C for 12 h, 470 °C for 86 hours	Ref. 61
K ₃ PSe ₁₆		K_2Se_3 (K + Se in liquid NH ₃) + P_2Se_5 (P + Se in ampoule at 450 °C for 24 hours) + Se + 1 mL acetonitrile heated to 110 °C for 24 hours	Ref. 62

	Crystal structure	Synopsis	Reference
K ₃ PSe ₄		$P + Se + K_2Se_2$ in sealed ampoule at 500 °C for 150 hours	Ref. 63
K ₃ VP ₂ O ₈		$K_2CO_3 + H(NH_4)_2PO_4 + V_2O_5$ at 673 K in air + V in sealed ampoule at 972 K for 1 week	Ref. 64
$K_4P_{21}I$	巖	K + P + I in sealed ampoule at 373 K for 3 days	Ref. 65
KBiP ₂ Se ₆		K_2Se + Bi + P_2Se_5 + Se in sealed quartz tube at 200 $^\circ C$	Ref. 66
KCoO ₂		$\mathrm{K_{2}CO_{3}}$ + $\mathrm{Co_{3}O_{4}}$ at 1133-1203 K in air	Ref. 67
KCuO ₂	*	KO_2 + CuO under flowing oxygen at 400 °C for 6 days	Ref. 32
$KLa_5C_2Cl_{10}$		$LaCl_3 + K + La + C$ in sealed Nb ampoule at 700-900 °C	Ref. 68
KNaZnO ₂		$Na_2ZnO_2 + K_2ZnO_2$ in sealed Ag cylinder under Ar at 500-600 °C for 7-14 days	Ref. 69
$La_{10}Se_{14}O$		La + Se + SeO ₂ + CsCl in sealed ampoule at 800 $^{\circ}$ C for 4 days	Ref. 70
$La_4Mo_2O_{11}$		$La_2O_3 + MoO_3 + Mo$ in sealed Mo crucible at 1980 K for 48 hours	Ref. 71

	Crystal structure	Synopsis	Reference
La ₄ Se ₃ O ₄		La + Se + SeO ₂ in sealed quartz tube heated to 750 °C for 168 hours	Ref. 72
$\rm La_6BN_3O_6$	料石	$Li_3BN_2 + Li_3N + LaOCl at 950 \ ^{\circ}C$	Ref. 73
LaCuS ₂	*	$La_2Cu_2O_5 (La_2O_3 + Cu_2O) + S$	Ref. 74
LaCuSeO	*	$\rm La_2O_3$ + $\rm La_2Se_3$ (La + Se at 300 °C) + Cu + Se at 800 °C	Ref. 75
LaCuSO	**	$La_2O_3 + La_2S_3 + Cu_2S$ at 800 °C	Ref. 75
LaSO		S + K_2 S + La ₂ O ₃ at 923 K under Ar	Ref. 76
LaTiNO ₂		$La_2O_3 + TiO_2$ in air at 1050 °C for 24 hours, 1310 °C in air for 24 hours, ammonia flow at 950 °C for 20 hours	Ref. 77
Li ₂ MnBr ₄		LiBr + MnBr ₂ in sealed quartz ampoule at 1100 $^\circ \! C$	Ref. 78
$Li_3V_2P_3O_{12}\\$		V_2O_5 + LiOH-H ₂ O + NH ₄ H ₂ PO ₄ + C at 800 °C for 24 h	Ref. 79
LiCoO ₂	na - Internet Maria	$CoO + Li_2CO_3$	Ref. 80

	Crystal structure	Synopsis	Reference
LiCuO		Li_2O + Cu_2O at 1073 K for 6 hours in sealed quartz ampoule	Ref. 81
LiVO ₂		Li ₂ CO ₃ + V ₂ O ₅ under Ar/H ₂ at 625 °C for 14 hours, 750 °C for 4 hours	Ref. 82
MgFe ₂ O ₄		MgO + Fe_2O_3 in air at 900 °C	Ref. 83
MgB ₉ N		Mg + B in a BN crucible in a W container at 1873 K under Ar for 1 hours, then under vacuum for 15 minutes at 1023 K	Ref. 84
MgMoN ₂		$NaN_3 + Mo + Mg$ in autoclave at 700 °C for 10 hours	Ref. 85
MgTe ₂		Mg + Te in sealed ampoule at 670 K for 15 hours, 770 K for 15 hours	Ref. 86
$MnGa_2S_4$		Mn + Ga + S in sealed ampoule at 600 $^\circ$ C for 2 days, 900 $^\circ$ C for 2 days and quenched	Ref. 87
$Mn_3V_2O_8$		$MnO + V_2O_5 + MoO_3$ in Pt crucible at 1110 °C for 1 hours	Ref. 88
MnO		Can be purchased	Ref. 89
Mo ₆ PbI ₁₄		$PbI_2 + MoI2$ at 600 °C for 1 week	Ref. 90

	Crystal structure	Synopsis	Reference
MoS ₂	x x x	Can be synthesized colloidally	Ref. 91
MoSe ₂	H H H	Can be synthesized colloidally	Ref. 92
$Na_2Sn_2Se_5$		$Na_2Se + Sn + Se$ at 450 °C in sealed quartz ampoule	Ref. 93
Na2TeO4		NaOH + Te(OH) $_6$ in hydrothermal furnace at 580 °C	Ref. 94
Na_3BiO_4	·举 御 中 南	Na_2O_2 + Bi_2O_3 at 600 °C for 12 hours (or 700 °C for 30h)	Ref. 95
Na ₃ Fe ₅ O ₉		$Na_2CO_3 + Fe_2O_3$ at 1100 °C	Ref. 96
$Na_3Mn_4Te_2O_{12}$		MnO_2 + Te(OH) ₆ in 1 M NaOH in autoclave at 648 K for 5 days	Ref. 97
Na_3WN_3		W_2N (WO ₃ + NH ₃ at 700 °C for 11 hours) + Na under NH ₃ flow at 350 °C, then 500 °C for 8 hours, then 600 °C for 8 then 500 °C for 8 hours	Ref. 98
Na4Fe2O5		$Na_2O_2 + Fe_2O_3$ at 600 °C for 6 days	Ref. 99
Na4VP2O9		$Na_4P_2O_7$ + VO_2 in sealed ampoule at 700 °C for 3 days	Ref. 100

	Crystal structure	Synopsis	Reference
Na5CoHO4		$Na_2O + CdO + NaOH + Co under Ar at 600 °C for 21 days$	Ref. 101
$Na_5CuH_2O_4$		Na_2O (Na + NaOH) + NaOH + Cu ₂ O in Ni/Ag container sealed ampoule at 600 °C for 5 days	Ref. 102
Na ₅ NiO ₄		$Na_2O + NaNiO_2$ at 550 °C for 2 days	Ref. 103
NaInO ₂		$Na_2CO_3 + In_2O_3$ at 1100 °C for 48 hours	Ref. 104
NaMnO ₂		$Na_2CO_3 + MnO$	Ref. 105
$NaMo_6Br_{13}$		$MoBr_2$ + NaBr in sealed ampoule at 700 °C	Ref. 106
NaNbO ₂		$Na_2O + NbO + NbO_2$ at 700 °C for 3 days	Ref. 107
$Nb_3Sb_2Te_5$		Nb + Sb + Te in sealed quartz ampoule at 600 °C for 2 weeks	Ref. 108
NbCu ₃ S ₄		Cu + Nb + S + I via CVT with temperature gradient of 1123-1053 K for 120 hours	Ref. 109
$Pb_5S_2I_6$		Pb + S + I at 600 °C	Ref. 110

	Crystal structure	Synopsis	Reference
РЬО	· · · · · ·	Can be purchased	Ref. 111
Rb ₂ MnCl ₄	鮝	$RbCl + MnCl_2$ in sealed ampoule until molten, then cooled slowly	Ref. 112
Rb ₂ NaMnO ₄		$Na_2O + Rb_2O + Mn + CdO$ in Ag crucibles sealed in ampoule heated to 523 K for 14 days	Ref. 113
Rb ₄ Cu ₅ Cl ₉		RbCl + CuCl at 220 °C, then 160 °C for 96 hours	Ref. 114
$Rb_4P_{21}I$		Rb + P + I in sealed ampoule at 373 K for 3 days	Ref. 115
$Rb_4Ta_2S_{11}$		Rb_2S_3 (Rb + S in liquid NH ₃) + Ta + S in sealed ampoule at 773 K for 6 days	Ref. 30
$Rb_4Ti_3S_{14}$		Ti + S + Rb ₂ S ₃ flux (Rb + S in NH ₃) heated to 873 K for 4 days	Ref. 31
$Rb_4Zr_3Se_{14}$		$Zr + Se + Rb_2Se_3$ (Rb + Se in liquid ammonia) in sealed ampoule at 873 K for 4 days	Ref. 31
$Rb_6Ta_4S_{25}$	X	Rb_2S_3 (Rb + S in liquid ammonia under Ar) + Ta + S in sealed ampoule at 723 K for 5 days	Ref. 116
RbCuO ₂		RbO ₂ + CuO under flowing oxygen at 400 °C for 6 days	Ref. 32

	Crystal structure	Synopsis	Reference
Sb ₂ S ₃		Can be purchased	Ref. 117
$SbPb_2S_2I_3$		PbS + Sb ₂ S ₃ + I in CVT with sealed quartz tube at 600 °C for 12 days	Ref. 118
SiP	Martin and Andrews	Si + P + Sn in 500 °C in sealed ampoule for 36 h, then 1150 °C for 10 hours	Ref. 119
SiP ₂		Si + P in sealed quartz tube at 1200 $^\circ \! \mathrm{C}$	Ref. 120
SnS) 	Can be synthesized colloidally	Ref. 121
SnS_2		Can be synthesized colloidally	Ref. 122
$SrCu_2O_2$		$ m SrO + Cu_2O$ at 800 °C	Ref. 123
$Sr_{17}Ta_{10}S_{42} \\$	3	$SrCO_3$ + Ta_2O_5 + S in sealed ampoule at 700 °C for 48 hours	Ref. 124
$Sr_2Fe_2S_2OF_2$		$SrF_2 + SrO + Fe + S$ in sealed ampoule at 800 °C for 12 hours	Ref. 125
Sr ₂ FeBrO ₃	*	$Fe_2O_3 + SrCO_3 + SrBr_2$ at 850 °C in air for 4 days	Ref. 126

	Crystal structure	Synopsis	Reference
Sr ₂ FeClO ₃	*	$Fe_2O_3 + SrCO_3 + SrCl_2$ at 850 °C in air for 4 days	Ref. 126
Sr₂FeO₃F		SrF_2 + SrO_2 + Fe at 3 GPa and 1300 $^\circ \! C$	Ref. 127
Sr ₂ PbO ₄	X	PbO + $SrCO_3$ at 1073 K in air	Ref. 128
$Sr_2SnSe_3F_2$		$SrF_2 + SrS + SnSe + Se$ in sealed ampoule at 700 °C for 12 hours	Ref. 6
$Sr_4Mn_3O_{10}$		SrO + $Sr(NO_3)_2$ + Mn_2O_3 in sealed ampoule at 1100 $^\circ\!C$ for 12 hours	Ref. 129
$Sr_6Sb_6S_{17}$		Sr + Sb + S in sealed ampoule at 800 $^\circ C$ for 5 days	Ref. 130
SrCuSeF		$SrSe_2 + SrF + Cu_2Se$ in sealed ampoule at 500 °C for 6 hours	Ref. 131
SrCuSF	2	SrF_2 + SrS ($SrSO_4$ under H_2 at 1100 °C for 15 hours) + Cu_2S in sealed ampoule 500 °C for 6 hours	Ref. 131
SrIn ₂ O ₄		Solid state reaction of SrO + In_2O_3 at 1200 °C	Ref. 132
Te ₂ Mo	11 11	Can be synthesized colloidally	Ref. 133

	Crystal structure	Synopsis	Reference
TiPbO ₃		PbO + TiO ₂ at 900 °C	Ref. 134
V ₅ (PbO ₆) ₂		PbV_2O_7 (PbO + V_2O_5 at 600 °C for 5 d in air) + V_2O_3 + V_2O_5 in sealed ampoule at 730 °C for 3 days	Ref. 135
VCu ₃ Se ₄		V + Cu + Se in sealed quartz tube at 600 $^{\circ}$ C for 6 weeks	Ref. 49
VO		$V + V_2O_5$ in vacuum at 1000 °C	Ref. 136
WS ₂)減 (加)	Can be made via thin film fabrication	Ref. 137
WSe ₂	j∎ ¥	Can be synthesized colloidally	Ref. 137
YCuS ₂	-	Y + Cu + S in sealed ampoule at 1420 K for 4 hours	Ref. 138
ZnCo ₂ O ₄	*	$ZnO + Co_2O_3$	Ref. 49
ZnFe ₂ O ₄		ZnO + Fe ₂ O ₃ at 800 °C, also can be made via flux	Ref. 139
ZnGeP ₂	滏	Zn + Ge + P in Bi flux in sealed ampoule	Ref. 140

	Crystal structure	Synopsis	Reference
ZnP ₂		Phosphorus vapor passed over Zn in sealed quartz system	Ref. 141
ZnSe	A CONTRACTOR	Can be synthesized colloidally	Ref. 49
ZnTe		Can be synthesized colloidally	Ref. 142

S8. Analysis of electrochemical stability

The computational Pourbaix diagrams (Fig. S7 and Fig. S8) of the seven tested compounds are evaluated using the pymatgen (Python Materials Genomics) package [143]. The energies of the aqueous ions are corrected to reproduce the experimental dissolution energies of the reference solids as derived by Persson and coworkers [144]. All of the Pourbaix diagrams are generated by setting the ion concentrations to 10^{-6} M at 25 °C. The electrochemical (meta)stability of each target compound is evaluated by computing its free energy difference with respect to the most stable phase in each of the Pourbaix domains [145]. The energy differences for all the synthesized compounds are summarized in the bar chart in Fig. S10 by setting the pH to 1.5 and 7 that corresponds to the two test conditions. The potential is chosen to be the flat-band potential using the geometric mean of Mulliken electronegativity. In addition, preliminary XRD analyses were performed to validate the computationally predicted electrochemical stability (Fig. S9). We found a good correlation between the predicted and experimental data. Most of the compounds exhibit a low 'driving force' for decomposition (<0.5 eV/atom) [144-145]. Expectedly, the synthesized compounds are found to be more stable under neutral electrochemical conditions [condition (*ii*)] compared to acidic testing conditions [condition (*ij*].

Figure S7 Computed Pourbaix diagrams of Ca₂PbO₄, Ba₂PbO₄, NalnO₂, and Srln₂O₄. The heatmap visualizes the electrochemical stability of each compound with respect to the most stable Pourbaix phases. All of the stable Pourbaix domains are labeled.

Figure S8 Computed Pourbaix diagrams of PbTiO₃, ZnFe₂O₄, and Na₃Fe₅O₉. The heatmap visualizes the electrochemical stability of each compound with respect to the most stable Pourbaix phases. All of the stable Pourbaix domains are labeled.

Figure S9 X-ray diffraction of the synthesized compounds before and after testing under photocatalytic conditions. Except for $Na_3Fe_5O_9$ (whose XRD pattern shows a significant background signal, while preserving the main peaks) and Ba_2PbO_4 (which corrodes in humid atmosphere) most candidates show minor changes in the XRD patterns, indicating their potential stabilities in aqueous media.

Figure S10 Predicted wlectrochemical stability energy of the synthesized compounds in aqueous solution under condition (*i*) (pH = 1.5) and condition (*ii*) (pH = 7).

References

- 1. Kohler, Zeitschrift für Kristallographie 165, 313-314 (2010).
- 2. Teske, Mueller-Buschbaum, Organische Chemie 27, 296-301 (1972).
- 3. Zou, Hovmoller, Parras, Gonzalez-Calbet, Vallet-Regi, Grenier, *Acta Crystallographica A* **49**, 27-35 (1993).
- 4. Eisenmann, Hofmann, Allgemeine Chemie 580, 151-159 (1990).
- 5. Weiss, Faivre, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences **248**, 106-108 (1959).
- 6. Kabbour., Cario, Danot, Meerschaut, Inorganic Chemistry 45, 917-922 (2006).
- 7. Liu, Withers, Whichello, Noren, Ting, Brink, Fitz Gerald, *Journal of Solid State Chemistry* **178**, 3389-3395 (2005).
- 8. Scheikowski, Müller-Buschbaum, Zeitschrift für Anorganische und Allgemeine Chemie **619**, 559-562 (1993).
- 9. Boulahya, Parras, González-Calbet, Martinez, Chemistry of Materials 14, 4006-4008 (2002).
- 10. Litteer, Fettinger, Eichhorn, Acta Crystallographica C 53, 163-165 (1997).
- 11. Dörrscheidt, Schaefer, Zeitschrift für Naturforschung B 36, 410-414 (1981).
- 12. Esmaeilzadeh, Grins, Shen, Edén, Thiaux, Chemistry of Materials 16, 2113-2120 (2004).
- 13. Herrmann, Bacmann, Materials Research Bulletin 6, 725-735 (1971).
- 14. Gregory, Barker, Edwards, Slaski, Siddons, Journal of Solid State Chemistry 137, 62-70 (1998).
- 15. Lalla, Müller-Buschbaum, Journal of the Less Common Metals 154, 233-241 (1989).
- 16. Kawada, Yamaoka, Kato, Acta Crystallographica B 31, 2905-2906 (1975).
- 17. Kabbour and Cario, Inorganic Chemistry 45, 2713-2717 (2006).
- 18. Iglesias, Steinfink, Acta Crystallographica B 29, 1480-1483 (1973).
- 19. Boysen, Lerch, Stys, Senyshyn, Acta Crystallographica B 63, 675-682 (2007).
- 20. Miyazaki, Onoda, Oku, Kikuchi, Ishii, Ono, Morii, Kajitani, *Journal of the Physical Society of Japan* **71**, 491-497 (2002).
- 21. Parthe, Hu, Journal of Solid State Chemistry 174, 165-166 (2003).
- 22. Teichert, Müller-Buschbaum, Zeitschrift für Anorganische und Allgemeine Chemie **607**, 128-130 (1992).
- 23. Hadenfeldt, Herdejuergen, Darstellung, Journal of the Less Common Metals 124, 93-103 (1986).
- 24. Cruickshank, Taylor, Glasser, Journal of Inorganic and Nuclear Chemistry 26, 937–941 (1964).
- 25. Nakai, Nagashima, Koto, Morimoto, Acta Crystallographica B 34, 3569-3572 (1978).
- 26. Günther, Hagenmayer, Jansen, Zeitschrift für Anorganische und Allgemeine Chemie **626**, 1519-1525 (2000).
- 27. Baldinozzi, Calvarin, Sciau, Grebille, Suard, Acta Crystallographica B 56, 570-576 (2000).
- 28. Rowsell, Nazar, Journal of Materials Chemistry 11, 3228-3233 (2001).
- 29. Krivovichev, Armbruster, Depmeier, Journal of Solid State Chemistry 177, 1321-1332 (2004).
- 30. Durichen, Bensch, Acta Crystallographica C 54, 706-708 (1998).
- 31. Huang, Ibers, Inorganic Chemistry 40, 2346-2351 (2001).
- 32. Hestermann, Hoppe, Zeitschrift für Anorganische und Allgemeine Chemie 367, 249-260 (1969).
- 33. Stoumpos, Frazer, Clark, Kim, Rhim, Freeman, Ketterson, Jang, Kanatzidis. *Journal of the American Chemical Society* **137**, 6804-6819 (2015).
- 34. Kumada, Kinomura, Sleight, Acta Crystallographica C 52, 1063-1065 (1996).
- 35. Seifert, Dau, Zeitschrift fuer Anorganische und Allgemeine Chemie 391, 302-312 (1972).
- 36. Zandbergen, Journal of Solid State Chemistry 35, 367-375 (1980).
- 37. Kanishcheva, Batog, Mikhailov, Kuznetsov, *Proceedings of the USSR Academy of Sciences* **251**, 603-605 (1980).
- 38. Crossland, Evans, Chemical Communications 18, 2292-2293 (2003).
- 39. Pfitzner, Zeitschrift für Kristallographie Crystalline Materials 213, 228-236 (2010).
- 40. Koop, Müller-Buschbaum, Zeitschrift für Anorganische und Allgemeine Chemie 530, 7-15 (1985).
- 41. Wyckoff, Posnjak, Journal of the American Chemical Society 44, 30-36 (1922).
- 42. Olofsson, Acta Chemica Scandinavica 19, 229-241 (1965).

- 43. White, Miller, Nielsen, Acta Crystallographica 19, 1060-1061 (1965).
- 44. Bluhm, Müller-Buschbaum, Zeitschrift für Anorganische und Allgemeine Chemie 582, 15-20 (1990).
- 45. Bredol, Leute, Physica Status Solidi (A) 107, 7-10 (1988).
- 46. Burnus, Zajonc, Meyer, Zeitschrift für Kristallographie 210, 62-62 (1995).
- 47. Nagatani, Suzuki, Kita, Tanaka, Katsuya, Sakata, Miyoshi, Yamaguchi, Omata, *Inorganic Chemistry* **54**, 1698-1704 (2015).
- 48. Juza, Hahn, Zeitschrift für Anorganische und Allgemeine Chemie 239, 282-287 (1938).
- 49. Wyckoff, Crystal Structures (Second Edition), John Wiley, New York, PP. 85-237 (1963).
- 50. Kwak, J.-E. & Yun, H. (2005). Acta Cryst. C61, i81-i82.
- 51. Zachariasen, Physical Review 40, 917-922 (1932).
- 52. Grzechnik, Mezouar, Stolen, Bakken, Grande, *Journal of Solid State Chemistry* **150**, 121-127 (2000).
- 53. Abrikosov, Danilova-Dobryakova, Inorganic Materials 1, 187-190 (1965).
- 54. Marezio, Acta Crystallographica 20, 723-728 (1966).
- 55. Chapuis, Gnehm, Kraemer, Acta Crystallographica B 28, 3128-3130 (1972).
- 56. Wang, Hwu, Chemistry of Materials 19, 6212-6221 (2007).
- 57. Vermin, Verschoor, Ijdo, Acta Crystallographica B 32, 3325-3328 (1976).
- 58. Bensch, Duerichen, Weidlich, Zeitschrift für Kristallographie 211, 931-931 (1996).
- 59. Lu, Wu, Ibers, European Journal of Solid State and Inorganic Chemistry 30, 101-110 (1993).
- 60. Evenson IV and Dorhout, Inorganic Chemistry 40, 2875-2883 (2001).
- 61. Von Schnering, Kliche, Somer, Ohse, Kempa, Wolf, Meyer, Hoenle, Zeitschrift für Anorganische und Allgemeine Chemie **601**, 13-30 (1991).
- 62. Dickerson, Fisher, Sykora, Albrecht-Schmitt, Cody, Inorganic Chemistry 41, 640-642 (2002).
- 63. Chan, Feng, Hulvey, Dorhout, Zeitschrift für Kristallographie 220, 11 (2005).
- 64. Benhamada, Grandin, Borel, Leclaire, Raveau, *Journal of Solid State Chemistry* **91**, 264-270 (1991).
- 65. Hönle, Schmettow, Peters, Chang, von Schnering, *Zeitschrift für Anorganische und Allgemeine Chemie* **630**, 1858-1862 (2004).
- 66. Breshears, Kanatzidis, Journal of the American Chemical Society 122, 7839-7840 (2000).
- 67. Krasutskaya, Chizhova, Busel', Klyndyuk, Chemistry and Technology of Inorganic Materials and Substances **3**, 35-39 (2013).
- 68. Uhrlandt, Meyer, Zeitschrift für Anorganische und Allgemeine Chemie 620, 1872-1878 (1994).
- 69. Hoppe, Baier, Zeitschrift für Anorganische und Allgemeine Chemie 511, 161-175 (1984).
- 70. Weber, Schurz, Frunder, Kuhn, Schleid, Crystals 2, 1136-1145 (2012).
- 71. Gall, Gougeon, Acta Crystallographica C 48, 1915-1917 (1992).
- 72. Strobel, Choudhury, Dorhout, Lipp, Schleid, Inorganic Chemistry 47, 4936-4944 (2008).
- 73. Jing, Meyer, Zeitschrift für Anorganische und Allgemeine Chemie 628, 1548 (2002).
- 74. Strobel, Lauxmann, Schleid, Anorganische Chemie Organische Chemie 60, 917-923 (2005).
- 75. Ueda, Hosono, Thin Solid Films 411, 115-118 (2002).
- 76. Ostoréro, Leblanc, Acta Crystallographica C 46, 1376-1378 (1990).
- 77. Clarke, Guinot, Michie, Rosseinsky, Calmont, Chemistry of Materials 14, 288-294 (2002).
- 78. Lutz, Cockcroft, Kuske, Schneider, Materials Research Bulletin 25, 451-456 (1990).
- 79. Kee, Yun, Acta Crystallographica E 69, i11-i12 (2013).
- 80. Lin, Li, Gray, Mitchell, Crystal Growth and Design 12, 1232-1238 (2012).
- 81. Fischer, Glaum, Carl, Hoppe, Zeitschrift für Anorganische und Allgemeine Chemie **585**, 75-81 (1990).
- 82. Cardoso, Chamberland, Hewston, Cox, Journal of Solid State Chemistry 72, 234-243 (1988).
- 83. Antao, Hassan, Parise, American Mineralogist 90, 219-228 (2005).
- 84. Mironov, Kazakov, Jun, Karpinski, Acta Crystallographica C 58, i95-i97 (2002).
- 85. Wang, Tang, Zhu, Li, Zhu, Wang, Si, Qian, Journal of Materials Chemistry 22, 14559 (2012).
- 86. Yanagisawa, Tashiro, Anzai, Journal of Inorganic and Nuclear Chemistry 31, 943-946 (1969).
- 87. Rimet, Roques, Buder, Schlenker, Zanchetta, Solid State Communications 37, 693-697 (1981).

- Wang, Liu, Ambrosini, Maignan, Stern, Poeppelmeier, Dravid, Solid State Sciences 2, 99-107 (1998).
- 89. Zhang, Physics and Chemistry of Minerals 26, 644-648 (1999).
- 90. Boeschen, Keller, Zeitschrift für Kristallographie 200, 305-315 (1992).
- 91. Dickinson, Pauling, Journal of the American Chemical Society 45, 1466-1471 (1923).
- 92. Towle, Oberbeck, Stajdohar, Brown, Science 154, 895-896 (1966).
- 93. Klepp, Hainz, Zeitschrift für Anorganische und Allgemeine Chemie 626, 863-866 (2000).
- 94. Daniel, Maurin, Moret, Philippot, Journal of Solid State Chemistry 22, 385-391 (1977).
- 95. Schwedes, Hoppe, Zeitschrift für Anorganische und Allgemeine Chemie 393, 136-148 (1972).
- 96. Gomers, Rooymans, de Graaff, Acta Crystallographica **22**, 766-771 (1967).
- 97. Feger, Kolis, Acta Crystallographica Section C 54, 1055-1057 (1998).
- 98. Jacobs, Niewa, European Journal of Solid State and Inorganic Chemistry 31, 105-113 (1994).
- 99. Brachtel, Hoppe, Zeitschrift für Anorganische und Allgemeine Chemie 446, 97-104 (1978).
- 100. Panin, Shpanchenko, Mironov, Velikodny, Antipov, Hadermann, Tarnopolsky, Yaroslavtsev, Kaul, Geibel, *Chemistry of Materials* **16**, 1048-1055 (2004).
- 101. Amann, Moeller, Zeitschrift für Anorganische und Allgemeine Chemie 628, 1756-1760 (2002).
- 102. Amann, Moeller, Zeitschrift für Anorganische und Allgemeine Chemie 627, 2571-2575 (2001).
- 103. Zentgraf, Hoppe, Zeitschrift für Anorganische und Allgemeine Chemie 462, 61-70 (1980).
- 104. Lekse, Haycock, Lewis, Kauffman, Matranga, *Journal of Materials. Chemistry A* **2**, 9331-9337 (2014).
- 105. Abakumov, Tsirlin, Bakaimi, Van Tendeloo, Lappas, Chemistry of Materials 26, 3306-3315 (2014).
- 106. Wang, Xu, Zheng, Solid State Sciences 5, 573-578 (2003).
- 107. Roth, Meyer, Kaindl, Hu, Zeitschrift für Anorganische und Allgemeine Chemie 619, 1369-1373 (1993).
- 108. Jensen, Kjekshus, Journal of the Less Common Metals 13, 357-359 (1967).
- 109. Kars, Rebbah, Rebbah, Acta Crystallographica Section E 61, i180-i181 (2005).
- 110. Krebs, Anorganische Chemie Organische Chemie 25, 223-224 (1970).
- 111. Dickinson, Friauf, Journal of the American Chemical Society, 46, 2457-2463 (1924).
- 112. Goodyear, Ali, Steigmann, Acta Crystallographica B 33, 2932-2933 (1977).
- 113. Möller, Kerp, Acta Crystallographica Section E 61, i146-i147 (2005).
- 114. Sishen, Geller, Journal of Solid State Chemistry 63, 326-335 (1986).
- 115. Hönle, Peters, Schmettow, Chang, von Schnering, Zeitschrift für Anorganische und Allgemeine Chemie 630, 1858-1862 (2004).
- 116. Stoll, Nather, Jeb, Bensch, Solid State Sciences 2, 563-568 (2000).
- 117. Kyono, Kimata, Matsuhisa, Miyashita, Okamoto, *Physics and Chemistry of Minerals* **29**, 254-260 (2002).
- 118. Doussier, Moelo, Meerschaut, Leone, Evain, Solid State Sciences 9, 792-803 (2007).
- 119. Li, Wang, Zhang, Jia, Yu, Zhu, Tao, CrystEngComm 19, 6986-6991 (2017).
- 120. Chattopadhyay, von Schnering, Studies in Inorganic Chemistry 3, 761-764 (1983).
- 121. Hofmann, Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie **92**, 161-173 (1935).
- 122. Filsø, Eikeland, Zhang, Madsen, Iversen, Dalton Transactions 45, 3798-3805 (2016).
- 123. Teske, Müller-Buschbaum, Zeitschrift für Anorganische und Allgemeine Chemie 379, 113-121 (1970).
- 124. Onoda, Saeki, Yajima, Journal of Solid State Chemistry 105, 354-362 (1993).
- Kabbour, Janod, Corraze, Danot, Lee, Whangbo, Cario, *Journal of the American Chemical Society* 130, 8261-8270 (2008).
- 126. Hector, Hutchings, Weller, Thomas, Needs, Journal of Materials Chemistry 11, 527-532 (2001).
- 127. Tsujimoto, Matsushita, Hayashi, Yamaura, Uchikoshi, *Crystal Growth and Design* 14, 4278-4284 (2014).
- 128. Troemel, Naturwissenschaften 52, 492-493 (1965).
- 129. Floros, Hervieu, van Tendeloo, Michel, Maignan, Raveau, Solid State Sciences 2, 1-9 (1998).
- 130. Choi, Kanatzidis, Inorganic Chemistry 39, 5655-5662 (2000).

- 131. Motomitsu, Yanagi, Kamiya, Hirano, Hosono, *Journal of Solid State Chemistry* **179**, 1668-1673 (2006).
- 132. Sato, Saito, Nishiyama, Inoue, Chemistry Letters 9, 868-869 (2001).
- 133. Sun et al., Angewandte Chemie 128, 2880-2884 (2016).
- 134. Cole, Espenschied, Journal of Physical Chemistry 41, 445-451 (1937).
- 135. Shpanchenko, Chernaya, Abakumov, Hadermann, Antipov, Van Tendeloo, Kaul, Geibel, Sheptyakov, Balagurov, *Zeitschrift für Anorganische und Allgemeine Chemie* **627**, 2143-2150 (2001).
- 136. Schonberg, Nils, Acta Chemica Scandinavica 8, 221-225 (1954).
- 137. Schutte, De Boer, Jellinek, Journal of Solid State Chemistry 70, 207-209 (1987).
- 138. Lauxmann, Schleid, Zeitschrift für Anorganische und Allgemeine Chemie 626, 1608-1612 (2000).
- 139. O'Neill, European Journal of Mineralogy 4, 571-580 (1992).
- 140. Pfister, Acta Crystallographica 11, 221-224 (1958).
- 141. Hegyi, Loebner, Poor, White, Journal of Physics and Chemistry of Solids 24, 333-337 (1963).
- 142. Zachariasen, Norsk Geologisk Tidsskrift 8, 302-306 (1926).
- 143. Ong, Richards, Jain, Hautier, Kocher, Cholia, Gunter, Chevrier, Persson, Ceder, *Comput. Mater. Sci.* **68**, 314-319 (2013)
- 144. Singh, Zhou, Shinde, Suram, Montoya, Winston, Gregoire, Persson. Chem. Mater. 29, 23, 10159-10167 (2017)
- 145. Singh, Montoya, Gregoire, Persson. Nat. Commun. 10. 443 (2019)