Electronic Supplementary Information (ESI)

Highly Active and Stable Nickel-Molybdenum Nitride (Ni_2Mo_3N)

Electrocatalyst for Hydrogen Evolution

Sang Heon Park,^{#a} Tae Hwan Jo,^{#a} Min Hee Lee,^b Kenta Kawashima,^c C. Buddie Mullins,^{*c} Hyung-Kyu Lim,^{*a} and Duck Hyun Youn^{*a}

^a Department of Chemical Engineering, Interdisciplinary Program in Advanced Functional Materials and Devices Development, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea.

^b School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.

^c McKetta Department of Chemical Engineering and Department of Chemistry, Center for Electrochemistry, University of Texas at Austin, 1 University Station, C0400 Austin, TX 78712-0231, United States.

#These authors contributed equally to this study.

*Corresponding Author. E-mail: hklim@kangwon.ac.kr (Hyung-Kyu Lim), youndh@kangwon.ac.kr (Duck Hyun Youn), mullins@che.utexas.edu (C. Buddie Mullins)

Fig. S1. SEM-EDS elemental mapping images for pristine Ni foam (scale bar = $300 \ \mu m$).

Fig. S2. HRTEM image of Ni₂Mo₃N/NF.

Fig. S3. a) N_2 adsorption-desorption isotherms and b) pore size distribution plot of Ni_2Mo_3N/NF . N_2 isotherm of pristine Ni foam was added in a) for comparison.

Fig. S4. Electrochemical polarization curves for the prepared catalysts a) including Pt/C/NF and b) including Mo₂N/NF.

Fig. S5. Cyclic voltammograms of a) pristine Ni foam and b) Ni_2Mo_3N/NF at different scan rates in 1 M KOH solution. c) The corresponding current density versus scan rate plots showing C_{dl} values for pristine Ni foam and Ni_2Mo_3N/NF .

Fig. S6. Chronopotentiometry curves of Ni_2Mo_3N/NF at 50 and 100 mA cm⁻² for 10 h.

Fig. S7. XRD patterns of Ni₂Mo₃N/NF fresh and after durability tests.

Fig. S8. SEM images of Ni₂Mo₃N/NF a) before and b) after durability tests.

Fig. S9. EDS elemental mapping images of Ni₂Mo₃N/NF after durability tests (scale bar = $300 \mu m$).

Fig. S10. TEM images of Ni₂Mo₃N/NF after durability tests.

Fig. S11. XPS spectra of Ni₂Mo₃N/NF after durability tests for a) survey, b) Ni 2p, c) Mo 3d, and d) N 1s.

Fig. S12. The atomic structure of stoichiometric surface models which parallel to the (221) surface. Possible nitrogen active sites are indicated with a red arrow, and the numbers in parenthesis denote coordination number counting the N-Mo bonding.

Fig. S13. H-adsorption structures and energies for Ni and Mo sites on the surface of Surf.1 in Figure S12. Light blue, turquoise, blue, and white spheres represent Ni, Mo, N, and H atoms, respectively.

Table S1. Comparison of the HER performance in alkaline media with reported state-of-the-artTMN-based catalysts.

Catalyst	η ₁₀ (mV)	η ₁₀₀ (mV)	Tafel slope (mV dec ⁻¹)	Reference
Ni₂Mo₃N/NF	21.3	123.8	62	This work
V-Ni₂Mo₃N	54	117	42.8	1
V-Ni _{0.2} Mo _{0.8} N	39	178 (200 mA cm ⁻²)	37.7	2
NiMoN-NF700	38	118 (50 mA cm ⁻²)	46	3
FeNi₃N/NG	98 (20 mA cm ⁻²)	186	83.1	4
Co-NiMoN-400 NRs	45		72.2	5
Ni@NCNT/NiMoN-8	15	156 (50 mA cm ⁻²)	68	6
Ni-Mo-N/NG	46.6	159.8	45	7
Ni-Fe-MoN NTs	55	199	109	8
NiMoN-550	89	≒260	79	9
NiMoN	109	≒180	95	10
MoVN	108	≒175	60	11
NSP-Co ₃ FeN _x	23	147	94	12
Co ₂ Ni ₁ N	102.6	≒200 (50 mA cm ⁻²)	60.2	13
Mo ₂ (CN) _{0.5}	80	202	40	14
Co-Mo₂N@NC	47	170	43	15
Mo ₂ N/NC-2	217	≒410	115.7	16
h-MoN@BNCNT	78		46	17
CoN-400/CC	97	≒200	93.9	18
Mo-600	85		54	19
S-2-T5	76	240	47	20

References

1. P. Zhou, X. Lv, Y. Gao, Z. Liang, Y. Liu, Z. Wang, P. Wang, Z. Zheng, Y. Dai and B. Huang, *Electrochim. Acta*, 2020, **337**, 135689.

2. P. Zhou, X. Lv, D. Xing, F. Ma, Y. Liu, Z. Wang, P. Wang, Z. Zheng, Y. Dai and B. Huang, *Appl. Catal. B*, 2020, **263**, 118330.

B. Chang, J. Yang, Y. Shao, L. Zhang, W. Fan, B. Huang, Y. Wu and X. Hao, *ChemSusChem*, 2018, **11**, 3198-3207.

 L. Liu, F. Yan, K. Li, C. Zhu, Y. Xie, X. Zhang and Y. Chen, *J. Mater. Chem. A*, 2019, **7**, 1083-1091.

5. Z. Yin, Y. Sun, Y. Jiang, F. Yan, C. Zhu and Y. Chen, *ACS Appl. Mater. Interfaces*, 2019, **11**, 27751-27759.

Y. Gong, L. Wang, H. Xiong, M. Shao, L. Xu, A. Xie, S. Zhuang, Y. Tang, X. Yang, Y. Chen and
P. Wan, J. Mater. Chem. A, 2019, 7, 13671-13678.

S. Xue, W. Zhang, Q. Zhang, J. Du, H.-M. Cheng and W. Ren, *Carbon*, 2020, **165**, 122-128.
C. Zhu, Z. Yin, W. Lai, Y. Sun, L. Liu, X. Zhang, Y. Chen and S.-L. Chou, *Adv. Energy Mater.*, 2018, **8**, 1802327.

Z. Yin, Y. Sun, C. Zhu, C. Li, X. Zhang and Y. Chen, *J. Mater. Chem. A*, 2017, **5**, 13648-13658.
Y. Zhang, B. Ouyang, J. Xu, S. Chen, R. S. Rawat and H. J. Fan, *Adv. Energy Mater.*, 2016,
6, 1600221.

11. B. Wei, G. Tang, H. Liang, Z. Qi, D. Zhang, W. Hu, H. Shen and Z. Wang, *Electrochem. Commun.*, 2018, **93**, 166-170.

S11

12. Y. Wang, D. Liu, Z. Liu, C. Xie, J. Huo and S. Wang, *Chem. Commun.*, 2016, **52**, 12614-12617.

13. X. Feng, H. Wang, X. Bo and L. Guo, *ACS Appl. Mater. Interfaces*, 2019, **11**, 8018-8024.

14. C. Tang, Q. Hu, F. Li, C. He, X. Chai, C. Zhu, J. Liu, Q. Zhang, B. Zhu and L. Fan, Electrochim. Acta, 2018, **280**, 323-331.

15. X. Lang, M. A. Qadeer, G. Shen, R. Zhang, S. Yang, J. An, L. Pan and J.-J. Zou, *J. Mater. Chem. A*, 2019, **7**, 20579-20583.

16. Y.-J. Song and Z.-Y. Yuan, *Electrochim. Acta*, 2017, **246**, 536-543.

J. Miao, Z. Lang, X. Zhang, W. Kong, O. Peng, Y. Yang, S. Wang, J. Cheng, T. He, A. Amini,
Q. Wu, Z. Zheng, Z. Tang and C. Cheng, *Adv. Funct. Mater.*, 2019, **29**, 1805893.

18. Z. Xue, J. Kang, D. Guo, C. Zhu, C. Li, X. Zhang and Y. Chen, *Electrochim. Acta*, 2018, **273**, 229-238.

Z. Lv, M. Tahir, X. Lang, G. Yuan, L. Pan, X. Zhang and J.-J. Zou, *J. Mater. Chem. A*, 2017,
5, 20932-20937.

20. X. Shi, A. Wu, H. Yan, L. Zhang, C. Tian, L. Wang and H. Fu, *J. Mater. Chem. A*, 2018, **6**, 20100-20109.

S12