Electronic Supplementary Information: "Linear Response Properties of Solvated Systems: A Computational Study"

Linda Goletto^T,[†] Sara Gómez,[‡] Josefine H. Andersen,[¶] Henrik Koch,^{*,†,‡} and Tommaso Giovannini^{*,‡}

†Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway

‡Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

¶DTU Chemistry–Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

E-mail: henrik.koch@sns.it; tommaso.giovannini@sns.it

 $^{\top}$ Present address: Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

Dipole moments

Figure S1: Dipole moment cumulative average of PNA-in-DIO as a function of the number of snapshots. Cumulative standard error bars at the 68% confidence interval are also plotted.

Static polarizabilities

Figure S2: Static electronic polarizability cumulative average of PNA-in-DIO as a function of the number of snapshots. Cumulative standard error bars at the 68% confidence interval are also plotted.

Dynamic polarizabilities

Figure S3: Dynamic electronic polarizability (589 nm) cumulative average for the dynamic electronic of PNA-in-DIO as a function of the number of snapshots. Cumulative standard error bars at the 68% confidence interval are also plotted.

Table S1: Calculated linear polarizabilities at different wavelengths λ of PhCN-in-ACN. The experimental values are reproduced from Ref. 1 (1 $\frac{\text{cm}^3}{\text{mol}} = 1 N_A \cdot \text{esu}$, where N_A is the Avogadro constant). ^{*a*} employ the Lorentz local field correction, ^{*b*} employ the Onsager local field correction.

$\nu [\mu m^{-1}]$	Method	$\alpha^{\rm iso}\left[\frac{\rm cm^3}{\rm mol}\right]$	Method	$\alpha^{\rm iso}\left[\frac{\rm cm^3}{\rm mol}\right]$	$\alpha^{\exp}\left[\frac{\mathrm{cm}^3}{\mathrm{mol}}\right]$
0.000	CC2 in vacuo	8.163	CCSD in vacuo	7.832	7.407^a 7.347^b
	CC2/EE	8.201 ± 0.005	CCSD/EE	7.874 ± 0.005	
	CC2/FQ	8.198 ± 0.008	CCSD/FQ	7.874 ± 0.007	
	CC2-in-MLHF-AB/FQ	7.955 ± 0.009	CCSD-in-MLHF-AB/FQ	7.647 ± 0.008	
1.553	CC2 in vacuo	8.465	CCSD in vacuo	8.102	
	CC2/EE	8.511 ± 0.006	CCSD/EE	8.152 ± 0.005	7.757^a 7.678^b
	CC2/FQ	8.508 ± 0.009	CCSD/FQ	8.152 ± 0.008	
	CC2-in-MLHF-AB/FQ	8.237 ± 0.010	CCSD-in-MLHF-AB/FQ	7.900 ± 0.009	
1.696	CC2 in vacuo	8.528	CCSD in vacuo	8.158	
	CC2/EE	8.576 ± 0.006	CCSD/EE	8.210 ± 0.006	7.829^a 7.750^b
	CC2/FQ	8.573 ± 0.009	CCSD/FQ	8.210 ± 0.008	
	CC2-in-MLHF-AB/FQ	8.295 ± 0.010	CCSD-in-MLHF-AB/FQ	7.952 ± 0.009	
1.831	CC2 in vacuo	8.594	CCSD in vacuo	8.216	
	CC2/EE	8.643 ± 0.006	CCSD/EE	8.270 ± 0.006	7 8054
	CC2/FQ	8.640 ± 0.009	CCSD/FQ	8.270 ± 0.008	7.895^{a} 7.811^{b}
	CC2-in-MLHF-AB/FQ	8.357 ± 0.010	CCSD-in-MLHF-AB/FQ	8.007 ± 0.009	
1.966	CC2 in vacuo	8.668	CCSD in vacuo	8.282	
	CC2/EE	8.719 ± 0.006	CCSD/EE	8.338 ± 0.006	7.979^a 7.895^b
	CC2/FQ	8.717 ± 0.009	CCSD/FQ	8.338 ± 0.009	
	CC2-in-MLHF-AB/FQ	8.426 ± 0.010	CCSD-in-MLHF-AB/FQ	8.068 ± 0.010	
2.295	CC2 in vacuo	8.882	CCSD in vacuo	8.471	
	CC2/EE	8.939 ± 0.007	CCSD/EE	8.533 ± 0.006	8.172^a 8.076^b
	CC2/FQ	8.937 ± 0.010	CCSD/FQ	8.534 ± 0.009	
	CC2-in-MLHF-AB/FQ	8.624 ± 0.011	CCSD-in-MLHF-AB/FQ	8.244 ± 0.010	

Table S2: Calculated linear polarizabilities at different wavelengths λ of PhCN-in-THF. The experimental values are reproduced from Ref. 1 (1 $\frac{\text{cm}^3}{\text{mol}} = 1 N_A \cdot \text{esu}$, where N_A is the Avogadro constant). ^{*a*} employ the Lorentz local field correction, ^{*b*} employ the Onsager local field correction.

$\nu [\mu m^{-1}]$	Method	$\alpha^{\rm iso}\left[\frac{\rm cm^3}{\rm mol}\right]$	Method	$\alpha^{\rm iso}\left[\frac{\rm cm^3}{\rm mol}\right]$	$\alpha^{\exp}\left[\frac{\mathrm{cm}^3}{\mathrm{mol}}\right]$
0.000	CC2 in vacuo	8.163	CCSD in vacuo	7.832	
	CC2/EE	8.190 ± 0.005	CCSD/EE	7.862 ± 0.004	7.540^a 7.486^b
	CC2/FQ	8.143 ± 0.007	CCSD/FQ	7.822 ± 0.006	
	CC2-in-MLHF-AB/FQ	8.023 ± 0.012	CCSD-in-MLHF-AB/FQ	7.711 ± 0.011	
1.553	CC2 in vacuo	8.465	CCSD in vacuo	8.102	
	CC2/EE	8.499 ± 0.005	CCSD/EE	8.139 ± 0.005	7 7084
	CC2/FQ	8.445 ± 0.008	$\rm CCSD/FQ$	8.095 ± 0.007	7.700
	CC2-in-MLHF-AB/FQ	8.312 ± 0.014	CCSD-in-MLHF-AB/FQ	7.971 ± 0.012	1.102
1.696	CC2 in vacuo	8.528	CCSD in vacuo	8.158	
	CC2/EE	8.563 ± 0.005	CCSD/EE	8.197 ± 0.005	7.744^{a} 7.738^{b}
	CC2/FQ	8.508 ± 0.008	CCSD/FQ	8.151 ± 0.007	
	CC2-in-MLHF-AB/FQ	8.372 ± 0.014	CCSD-in-MLHF-AB/FQ	8.024 ± 0.013	
1.831	CC2 in vacuo	8.594	CCSD in vacuo	8.216	
	CC2/EE	8.631 ± 0.006	CCSD/EE	8.257 ± 0.005	7 8114
	CC2/FQ	8.574 ± 0.008	$\rm CCSD/FQ$	8.210 ± 0.007	7.799^{b}
	CC2-in-MLHF-AB/FQ	8.435 ± 0.014	CCSD-in-MLHF-AB/FQ	8.080 ± 0.013	
1.966	CC2 in vacuo	8.668	CCSD in vacuo	8.282	
	CC2/EE	8.707 ± 0.006	CCSD/EE	8.324 ± 0.005	7 8654
	CC2/FQ	8.649 ± 0.008	$\rm CCSD/FQ$	8.276 ± 0.007	7.803^{b} 7.853^{b}
	CC2-in-MLHF-AB/FQ	8.506 ± 0.015	CCSD-in-MLHF-AB/FQ	8.144 ± 0.013	
2.295	CC2 in vacuo	8.882	CCSD in vacuo	8.471	
	CC2/EE	8.926 ± 0.006	CCSD/EE	8.519 ± 0.005	8 0614
	CC2/FQ	8.863 ± 0.009	CCSD/FQ	8.467 ± 0.008	0.004 0.06 ^b
	CC2-in-MLHF-AB/FQ	8.711 ± 0.016	CCSD-in-MLHF-AB/FQ	8.325 ± 0.014	8.040°

Figure S4: PhCN-in-ACN snapshot-to-snapshot differences between CC-in-MLHF-AB/FQ, CC/FQ, and CC/EE results for the electronic static polarizability.

Figure S5: PhCN-in-ACN snapshot-to-snapshot differences between CC-in-MLHF-AB/FQ, CC/FQ, and CC/EE results for the electronic dynamic polarizability, with a frequency of $1.553 \,\mu m^{-1}$.

Figure S6: PhCN-in-ACN snapshot-to-snapshot differences between CC-in-MLHF-AB/FQ, CC/FQ, and CC/EE results for the electronic dynamic polarizability, with a frequency of $1.831 \,\mu m^{-1}$.

Figure S7: PhCN-in-ACN snapshot-to-snapshot differences between CC-in-MLHF-AB/FQ, CC/FQ, and CC/EE results for the electronic dynamic polarizability, with a frequency of $1.966 \,\mu m^{-1}$.

Figure S8: PhCN-in-ACN snapshot-to-snapshot differences between CC-in-MLHF-AB/FQ, CC/FQ, and CC/EE results for the electronic dynamic polarizability, with a frequency of $2.295 \,\mu m^{-1}$.

Figure S9: PhCN-in-THF snapshot-to-snapshot differences between CC-in-MLHF-AB/FQ, CC/FQ, and CC/EE results for the electronic static polarizability.

Figure S10: PhCN-in-THF snapshot-to-snapshot differences between CC-in-MLHF-AB/FQ, CC/FQ, and CC/EE results for the electronic dynamic polarizability, with a frequency of $1.553 \,\mu m^{-1}$.

Figure S11: PhCN-in-THF snapshot-to-snapshot differences between CC-in-MLHF-AB/FQ, CC/FQ, and CC/EE results for the electronic dynamic polarizability, with a frequency of $1.831 \,\mu m^{-1}$.

Figure S12: PhCN-in-THF snapshot-to-snapshot differences between CC-in-MLHF-AB/FQ, CC/FQ, and CC/EE results for the electronic dynamic polarizability, with a frequency of $1.966 \,\mu m^{-1}$.

Figure S13: PhCN-in-THF snapshot-to-snapshot differences between CC-in-MLHF-AB/FQ, CC/FQ, and CC/EE results for the electronic dynamic polarizability, with a frequency of $2.295 \,\mu m^{-1}$.

Figure S14: Electronic polarizability cumulative average of PhCN-in-ACN snapshots calculated at different frequencies as a function of the number of snapshots. Cumulative standard error bars at the 68% confidence interval are also plotted.

Figure S15: Electronic polarizability cumulative average of PhCN-in-THF snapshots calculated at different frequencies as a function of the number of snapshots. Cumulative standard error bars at the 68% confidence interval are also plotted.

References

 Alvarado, Y.; Labarca, P.; Cubillán, N.; Karam, A. Solvent effect on the electronic polarizability of benzonitrile. Z. Naturforsch. A 2003, 58, 68–74.