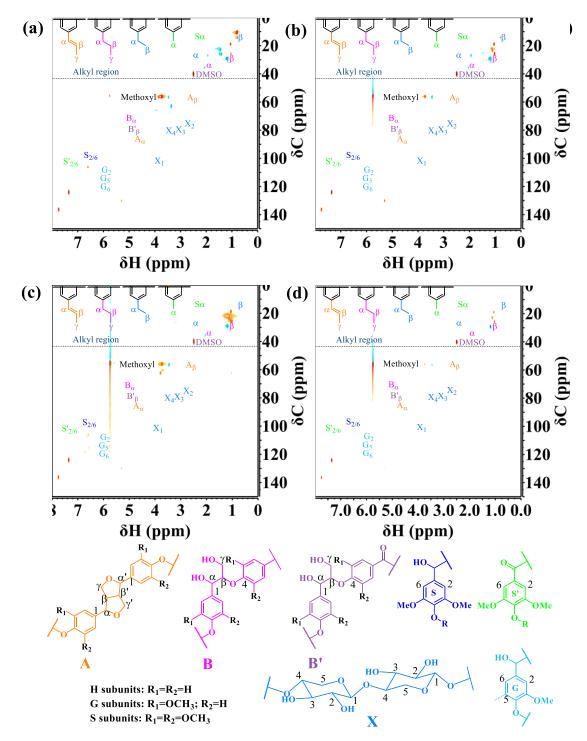

Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information for:


Highly efficient catalytic transfer hydrogenolysis for the conversion of Kraft lignin into bio-oil over heteropoly acids

Haichuan Zhang and Shiyu Fu*

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, PR China

Fig. S1 Double bond equivalent (DBE) vs. carbon number plots for oxygen class compounds in EKL (※) and lignin oil (●), observed with negative-ion ESI.

Fig. S2 (a) EKL oil obtained over H₄PW at 190 °C in iso-propanol; (b) EKL oil obtained over H₄SiW at 190 °C in *n*-propanol; (c) EKL oil obtained over H₄SiW at 170 °C in iso-propanol and (d) PKL oil obtained over H₄PW at 190 °C in iso-propanol.

Table S1 Assignments of the main ¹³C-¹H correlation signals in the HSQC spectra^[1]

Labels	Chemical shift	Assignments
	$\delta_C/\delta_H \ (ppm)$	
A_{α}	85.8/4.65	C_{α} -H _{α} in resinol substructures
A_{β}	54.1/3.07	C_{β} -H $_{\beta}$ in resinol substructures
OCH_3	56.2/3.73	C–H in methoxyls
$B_{\boldsymbol{\alpha}}$	71.5/4.75	$C_{\alpha}\text{-}H_{\alpha}$ in $\beta\text{-}O\text{-}4'$ linked to G units
$B_{\boldsymbol{\alpha}}$	72.2/4.98	$C_{\alpha}\text{-}H_{\alpha}$ in $\beta\text{-}O\text{-}4'$ linked to S units
$\mathrm{B}'eta$	81.9.2/4.77	$C_{\beta}\text{-}H_{\beta}$ in $\beta\text{-}O\text{-}4'$ substructures with a conjugated carbonyl
		or carboxyl group
X_1	102.2/4.29	C ₁ -H ₁ in xylan
X_2	73.1/3.14	C ₂ -H ₂ in xylan
X_3	74.6/3.34	C ₃ -H ₃ in xylan
X_4	75.9/3.58	C ₄ -H ₄ in xylan
S _{2,6}	104.0/6.62,	C _{2,6} -H _{2,6} in syringyl units
	6.86	
	105.3/7.00,	
	7.10	
S'2,6	106.6/7.26	$C_{2,6}$ - $H_{2,6}$ in oxidized ($C\alpha$ = O) syringyl units
	107.7/7.22	
	108.5/7.22	
	109.7/7.15	
G_2	112.9/6.80	C ₂ -H ₂ in guaiacyl units
G_5	115.6/6.74	C ₅ -H ₅ in guaiacyl units
G_6	120.2/6.76	C ₆ -H ₆ in guaiacyl units
	121.0/7.23	

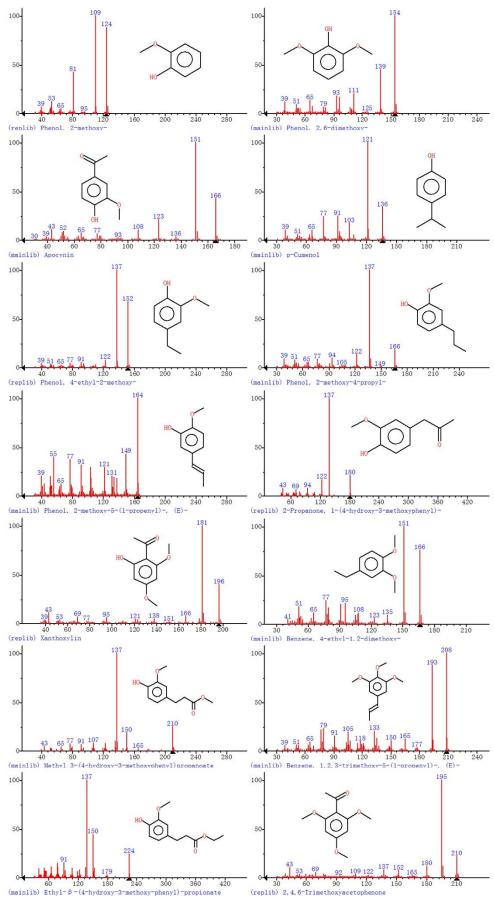


Fig. S3 Mass spectra for the main monomer products from lignin oil

References

[1] a) C. Fernández-Costas, S. Gouveia, M. A. Sanromán, D. Moldes, *Biomass and Bioenergy* **2014**, *63*, 156-166; b) H. Zhang, Y. Bai, B. Yu, X. Liu, F. Chen, *Green Chemistry* **2017**, *19*, 5152-5162.