Supplementary Material (ESI) for Lab on a Chip This journal is © The Royal Society of Chemistry 2012 Table 1. The statistical analysis result of the digital LAMP | X _{dil} | Observed value | | | Average | STDEV | Expected | Average | STDEV | |------------------|----------------|-----|-----|---------|-------|----------|--------------------------|-------| | | 1 | 2 | 3 | value | | value | value of | | | | | | | | | | - ln (1-f ₀) | | | 0.00001 | 525 | 492 | 468 | 495 | 28.6 | 511 | 0.53 | 0.041 | | 0.000005 | 270 | 282 | 219 | 257 | 33.5 | 291 | 0.24 | 0.035 | | 0.000001 | 64 | 89 | 72 | 75 | 12.8 | 65 | 0.06 | 0.011 | | 0.0000001 | 16 | 12 | 8 | 12 | 4 | 7 | 0.01 | 0.003 | Figure S1. Comparison results of fluorescent intensity before and after LAMP. The average fluorescent intensity before LAMP was 748±100, and the average fluorescent intensity after LAMP was 2064±216; a threshold value (the fluorescent intensity equals to 1500) was used to discriminate against background. ## Supplementary Material (ESI) for Lab on a Chip This journal is © The Royal Society of Chemistry 2012 Figure S2. The real-time PCR amplification plots of the pMD 18-T-HA β –actin DNA. A ten-fold serial dilution of β –actin DNA ranging from 10^8 to 10^0 copies per μ L were prepared to perform the real-time PCR. Each concentration was repeated three times and the amplification was displayed from left to right. Figure S3. The calculation of the DNA template concentration (copies per μL). The real-time PCR measurements were carried out using an ideally prepared standard curve (R²=0.999). For the lowest four dilutions measured, we determined the DNA template concentration (copies per μL) by the regressive equation. A stock solution of c $_0$ = (1.09 \pm 0.18) \times 10 8 copies per μL was obtained.