One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions

Hong Huang,^{*a*} Jing-Jing Lv,^{*a*} Dan-Ling Zhou,^{*a*} Ning Bao,^{*b*} Yue Xu,^{*a*} Ai-Jun Wang,^{*a**} Jiu-Ju Feng^{*a**}

^a College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China

^b School of Public Health, Nantong University, Nantong 226019, China

*Corresponding author: Ai-Jun Wang, *E-mail:* <u>ajwang@zjnu.cn</u>; Jiu-Ju Feng, *E-mail:* <u>jjfeng@zjnu.cn</u>, Tel. /Fax: +86 579 82282269.

Fig. S1 Fluorescence responses of the FNCPs in the presence of 50 μ M Hg²⁺ and excess amount (100 μ M) of 15 different metal ions in phosphate buffer solutions (From 1 to 15, the metal ion is Ca²⁺, Cu²⁺, Ba²⁺, Fe³⁺, Pb²⁺, Zn²⁺, Ag⁺, Fe²⁺, Ni²⁺, Co²⁺, Mg²⁺, Mn²⁺, Cd²⁺, Cr³⁺, and Al³⁺, respectively).

Fig. S2 UV-Vis absorption spectra of the FNCPs in the phosphate buffer solution (25 mM, pH = 7.4) in the presence of various concentration of Hg^{2+} (a to k: 0, 0.010, 0.025, 0.050, 0.100, 0.500, 1.00, 5.00, 10.0, 25.0, and 50.0 μ M).

Fig. S3 Fluorescence responses of the FNCPs at different pH values in the presence of $50 \ \mu M \ Hg^{2+}$.

Fig. S4 Fluorescence responses of the FNCPs in the presence of different mercury salts (A) and sodium salts (B) in phosphate buffer solutions (25 mM, pH = 7.4). The concentrations of all the metal ions are 50 μ M. 1, 2, 3 and 4 correspond to the chloride, nitrate, acetate and perchlorate salts of mercury (A) and sodium (B), respectively.

Table S1 Comparison of the performances of different fluorescent methods for the determination of Hg^{2+} .

Fluorescence methods	Linear range (nM)	LOD (nM)	Ref.
Single-labeled DNA	4-100	4.0	1
BSA-Au NPs	400-43200	80	2
Lysozyme-Ag NPs	1000-15000	600	3
Glutathione-capped CdS	15-12500	4.5	4
CdTe quantum dots	8-2000	2.7	5
Au-NP-CdTe	131-710	9	6
nanocomposite			
FNCPs	10-100 and	3	This work
	1000-50000		

Samples	Spiked amount	Found amount	Recovery (%)
	(nM)	(nM)	
Lake water 1	0	Not detected	
Lake water 2	50	48.7 ± 3.4	97.4 ± 6.8
Lake water 3	100	98.2 ± 2.8	98.2 ± 5.6
Lake water 4	1000	1065.3 ± 91	106.5 ± 9.1

Table S2 Determination of Hg^{2+} in the real water samples by this method.

Reference

- 1 X. Yang, Y. Zhu, P. Liu, L. He, Q. Li, Q. Wang, K. Wang, J. Huang and J. Liu, *Anal. Methods*, 2012, **4**, 895.
- 2 D. Hu, Z. Sheng, P. Gong, P. Zhang and L. Cai, Analyst, 2010, 135, 1411.
- 3 T. Zhou, Y. Huang, Z. Cai, F. Luo, C. J. Yang and X. Chen, *Nanoscale*, 2012, 4, 5312.
- 4 A. N. Liang, L. Wang, H.-Q. Chen, B.-B. Qian, B. Ling and J. Fu, *Talanta*, 2010, **81**, 438.
- 5 J. Duan, L. Song and J. Zhan, *Nano Res.*, 2009, 2, 61.
- 6 B. Paramanik, S. Bhattacharyya and A. Patra, Chem. Eur. J., 2013, 19, 5980.