Electronic Supplementary Information (ESI) Textile Energy Storage in Perspective

Kristy Jost,^{*a,b*} Genevieve Dion^{*a*} and Yury Gogotsi^{*b*}

^a A.J. Drexel Nanomaterials Institute, and the Materials Science and Engineering Department, Drexel University, Philadelphia, PA, USA

^b Shima Seiki Haute Technology Laboratory at the ExCITe Center, Antoinette Westphal College of Media Arts and Design, Drexel University, Philadelphia, PA, USA

Calculations for Tables 1-2

The data reported in tables 1 and 2 represents results for samples with the highest reported mass loading (which as evidenced by **Figure 8**, results in higher capacitance per area) tested as close to 10 mV/s as possible, or the next closest scan rate. If not reported, capacitance per area (per electrode) was found by multiplying the gravimetric capacitance by the mass per electrode, then dividing by 2 for a symmetric device (**Eq. 1-2**). If gravimetric capacitance and capacitance per area were reported but not mass loading, we can divide the device capacitance per area by the gravimetric capacitance per electrode, and further divide by 2, (**Eq. 3**). Lastly, the energy of the device per area can be calculated and converted to capacity per area (mAh/cm²) by multiplying the capacitance by $\frac{1}{2}$ times the voltage, and times 3.6 and divide by the given area (**Eq. 4**).

$$\frac{F}{g} \cdot \frac{g}{cm^2} = \frac{F}{cm^2} = C_{Electrode} = electrode \ capacitance$$
(1)

$$\frac{1}{C_{electrode}} + \frac{1}{C_{electrode}} = \frac{1}{C_{device}} (symmetric \ cell \ only), \qquad \frac{C_{electrode}}{2} = C_{device} = device \ capacitance$$
(2)

$$\frac{\left[\frac{C_{device}}{cm^2} \div \frac{C_{electrode}}{g}\right]}{2} = \frac{g}{cm^2} = mass \ of \ one \ electrode \ per \ cm^2}$$
(3)

$$E = \frac{1}{2}C_{device}V^2 = \frac{1As}{2V}V^2, \ \frac{mAh}{cm^2} = \frac{1As}{2V}V \cdot \frac{3600\ddot{h}}{1000\frac{mA}{A}} \div cm^2$$

$$= capacity \ per \ cm^2 \tag{4}$$

Equations to determine capacitance from experiments:

$$Q = CV$$

$$\frac{(dQ)}{(dV)}$$
(5)

$$C_{CV} = (\overline{dt})^{r} (\overline{dt})^{r}$$
(6)
Where C is capacitance (Farads). V is the voltage, and O is the stored charge, C_{CV} is the capacitance from a cvcl

Where C is capacitance (Farads), V is the voltage, and Q is the stored charge. C_{CV} is the capacitance from a cyclic voltammogram, dQ/dt is the charge accumulated in time, and dV/dt is the sweep rate across the voltage window. Q can be determined by integrating the area under the CV curve.

$$\frac{\frac{l}{dV}}{C_{GC} = \frac{dt}{dt}}$$
(7)

For galvanostatic cyling, i is the applied current (e.g., 10 mA) and dV/dt is the change in voltage over time as the capacitor charges, as well as the slope of the discharge curve.

$$ESR_{GC} = \frac{\Delta V}{l}$$
(8)

Where ΔV is the voltage drop as the capacitor switches from charging to discharging, and *i* is again the applied current.

The ESR from an EIS plot is typically taken from the real impedance (of a nyquist plot) where the curve intersects the X-axis, or the real impedance at 1 kHz.

Device Materials	Fabric	Electrolyte	Mass of active material per electrode area (mg/cm ²)	Device Capacitance per area (mF/cm ²)	Device Capacity per area (mAh/cm²)	Refs.
AC	Cotton and polyester	1M Na ₂ SO ₄	4.00	240.00	0.43	1
AC (from cellulose)	Knitted cotton	$1 M Na_2 SO_4$	5.00	127.00	0.235	2
AC	Knitted CFF	SiWA	12.00	510.00	0.73	3
SWCNTs	Knitted cotton	1M LiPF ₆	8.00	480.00	2.59	4
SWCNTs	Nonwoven cotton	Li ₂ SO ₄ /Na ₂ SO ₄	0.47	16.40	0.0025	5
Graphene paint	Woven cotton	1M KOH	1.08	43.50	0.08	6
Graphene	Ni-coated nylon mesh	1M Na ₂ SO ₄	0.25	44.70	0.055	7
SWCNTs + MnO ₂	Knitted cotton	2M Li ₂ SO ₄	0.24 CNTs, 1.6 MnO ₂	276.00	0.4	4
Graphene + MnO ₂	Nonwoven polyester	0.5 M Na ₂ SO ₄	1.25 MnO ₂	275.00	0.4	8
Graphene/CNT/Fe ₃ O ₄		1M Na ₂ SO ₄	0.00	0.98	0.015	9
Zn2SnO4/MnO ₂	CFF	1M Na ₂ SO ₄	0.90	288.00	0.415	10
MnO ₂	AC	1M Na ₂ SO ₄	+2.4 MnO ₂	292.00	0.5	2
WO ₃ -x@Au@MnO ₂ core-shell nanowires	CFF	0.1 M Na ₂ SO ₄	0.31 MnO ₂	57.00	0.08	11
MnO ₂ /carbon	ZnO NW	PVA-LiCl	0.11 MnO ₂	26.00	0.035	12
(MnO ₂) - zinc (Zn)	Ag-coated knit	PVA-6 M KOH and 0.4 M ZnO	16-18	1.08	1.94	13
$LiFePO_4$ cathode and $Li_4Ti_5O_{10}$ anode	Nonwoven polyester	1M LiPF ₆	168.00	2030.00	27.00	14
$LiFePO_4$ cathode and $Li_4Ti_5O_{10}$ anode	n/a	PVA-LiPF ₆	n/a	n/a	n/a	15

 Table 1. Full Fabric Supercapacitors and batteries from literature and their respective materials, active mass loadings per electrode and device capacitance or capacity per area. CF=carbon fiber, CFF=carbon fiber fabric, NW = nano wires, AC = activated carbon

Device Materials	Base yarn	Electrolyte	(mg/cm)	Device Capacitance per length (mF/cm)	Device Capacity per length (mAh/cm)	Refs.
Copper wire, "metal" sheets	Cu wire	n/a	n/a	0.000001		16
Graphitic pen ink	"Plastic fiber"	Na ₂ SO ₄ or PVA-H ₃ PO ₄	n/a	0.5	0.001	17
Spun graphene nanoribbon		PVA-H ₃ PO ₄	n/a	0.5	0.001	18
Electrolyzed graphene	Graphene	PVA-H ₃ PO ₄	n/a	0.019	0.0005	19
Biscrolled CNTs – PEDOT:PSS	Stainless steel	PVA-H ₃ PO ₄	0.0057	0.5	0.001	20
Airbrushed CNTs	CF	PVA-H ₃ PO ₄	0.4	6.3	0.012	21
KnO NW with MnO2	Kevlar	PVA-H ₃ PO ₄	n/a	0.021	0.0005	22
MnO2	CF	PVA-H ₃ PO ₄	n/a	0.0025		23
PANi NW	CNT	PVA-H ₃ PO ₄	n/a	1.79	0.003	24
PANi-StS	Pt-StS	0.6 M 1-butyl-3- methylimidazolium	n/a	20	0.036	25
Ni-Sn	Cu wire	LiCoO2	n/a	51.3	0.37	26

Table 2. Fiber and Yarn supercapacitors and batteries from literature, including their active materials, active mass loading per electrode and device capacitance or capacity per length. CF=carbon fiber, CFF=carbon fiber fabric, NW=nano wires, StS=stainless steel, PANi = polyaniline

References:

- 1. K. Jost, C. R. Perez, J. K. McDonough, V. Presser, M. Heon, G. Dion and Y. Gogotsi, *Energy and Environmental Science*, 2011, **4**, 5060-5067.
- 2. L. Bao and X. Li, *Adv Mater*, 2012, **24**, 3246-3252.
- 3. K. Jost, D. Stenger, C. R. Perez, J. K. McDonough, K. Lian, Y. Gogotsi and G. Dion, *Energ Environ Sci*, 2013, 6, 2698–2705.
- 4. L. B. Hu, M. Pasta, F. La Mantia, L. F. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han and Y. Cui, *Nano Lett*, 2010, **10**, 708-714.
- 5. M. Pasta, F. La Mantia, L. B. Hu, H. D. Deshazer and Y. Cui, *Nano Research*, 2010, **3**, 452-458.
- 6. W.-w. Liu, X.-b. Yan, J.-w. Lang, C. Peng and Q.-j. Xue, Journal of Materials Chemistry, 2012, 22, 17245-17253.
- 7. X. Li, X. Zang, Z. Li, X. Li, P. Li, P. Sun, X. Lee, R. Zhang, Z. Huang and K. Wang, *Advanced Functional Materials*, 2013, 4862–4869.
- G. H. Yu, L. B. Hu, M. Vosgueritchian, H. L. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui and Z. N. Bao, *Nano* Lett, 2011, 11, 2905-2911.
- 9. H. H. Cheng, Z. L. Dong, C. G. Hu, Y. Zhao, Y. Hu, L. T. Qu, N. Chena and L. M. Dai, *Nanoscale*, 2013, 5, 3428-3434.
- 10. L. H. Bao, J. F. Zang and X. D. Li, *Nano Lett*, 2011, **11**, 1215-1220.
- X. H. Lu, T. Zhai, X. H. Zhang, Y. Q. Shen, L. Y. Yuan, B. Hu, L. Gong, J. Chen, Y. H. Gao, J. Zhou, Y. X. Tong and Z. L. Wang, *Adv Mater*, 2012, 24, 938-944.
- 12. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong and Z. L. Wang, *ACS nano*, 2013, 7, 2617-2626.
- 13. A. M. Gaikwad, A. M. Zamarayeva, J. Rousseau, H. Chu, I. Derin and D. A. Steingart, *Adv Mater*, 2012, 10.1002/adma.201201329.
- 14. L. B. Hu, F. La Mantia, H. Wu, X. Xie, J. McDonough, M. Pasta and Y. Cui, *Adv Energy Mater*, 2011, 1, 1012-1017.
- 15. Y. Liu, S. Gorgutsa, C. Santato and M. Skorobogatiy, Journal of The Electrochemical Society, 2012, 159, A349-A356.
- 16. S. Gorgutsa, J. F. Gu and M. Skorobogatiy, *Smart Materials and Structures*, 2012, 21, 015010.
- 17. Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu and D. Zou, *Adv Mater*, 2012, 24, 5713-5718.
- J. Carretero–González, E. Castillo–Martínez, M. Dias–Lima, M. Acik, D. M. Rogers, J. Sovich, C. S. Haines, X. Lepró, M. Kozlov, A. Zhakidov, Y. Chabal and R. H. Baughman, *Adv Mater*, 2012, 5695-5701.
- 19. Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi and L. Qu, Adv Mater, 2013, 2326–2331.
- 20. J. A. Lee, M. K. Shin, S. H. Kim, H. U. Cho, G. M. Spinks, G. G. Wallace, M. D. Lima, X. Lepro, M. E. Kozlov, R. H. Baughman and S. J. Kim, *Nat Commun*, 2013, **4**, 1970.
- 21. V. T. Le, H. Kim, A. Ghosh, J. Kim, J. Chang, Q. A. Vu, D. T. Pham, J.-H. Lee, S.-W. Kim and Y. H. Lee, ACS nano, 2013.

- 22. J. Bae, M. K. Song, Y. J. Park, J. M. Kim, M. L. Liu and Z. L. Wang, Angewandte Chemie-International Edition, 2011, 50, 1683-1687.
- 23. X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao and J. Zhong, ACS nano, 2012, 6, 9200-9206.
- 24.
- K. Wang, Q. Meng, Y. Zhang, Z. Wei and M. Miao, *Adv Mater*, 2013.
 Y. P. Fu, H. W. Wu, S. Y. Ye, X. Cai, X. Yu, S. C. Hou, H. Kafafy and D. C. Zou, *Energ Environ Sci*, 2013, 6, 805-25. 812.
- Y. H. Kwon, S.-W. Woo, H.-R. Jung, H. K. Yu, K. Kim, B. H. Oh, S. Ahn, S.-Y. Lee, S.-W. Song, J. Cho, H.-C. Shin 26. and J. Y. Kim, Adv Mater, 2012, 24, 5192-5197.