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Abstract. Video inpainting aims to restore missing regions of a video
and has many applications such as video editing and object removal.
However, existing methods either suffer from inaccurate short-term con-
text aggregation or rarely explore long-term frame information. In this
work, we present a novel context aggregation network to effectively ex-
ploit both short-term and long-term frame information for video in-
painting. In the encoding stage, we propose boundary-aware short-

term context aggregation, which aligns and aggregates, from neigh-
bor frames, local regions that are closely related to the boundary context
of missing regions into the target frame5. Furthermore, we propose dy-

namic long-term context aggregation to globally refine the feature
map generated in the encoding stage using long-term frame features,
which are dynamically updated throughout the inpainting process. Ex-
periments show that it outperforms state-of-the-art methods with better
inpainting results and fast inpainting speed.

Keywords: Video Inpainting, Context Aggregation

1 Introduction

Video inpainting aims to restore missing regions in a video with plausible con-
tents that are both spatially and temporally coherent [7, 15]. It can benefit a
wide range of practical video applications such as video editing, damage restora-
tion, and undesired object removal. Whilst significant progress has been made
in image inpainting [8, 14, 17, 25, 28, 30, 31], it is challenging to extend image in-
painting methods to solve the video inpainting problem. Directly applying image

5 The target frame refers to the current input frame under inpainting.
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Fig. 1. Comparison with state-of-the-art CPNet [13] and FGNet [27]. The green areas
in the input frames are the missing regions. Best viewed at zoom level 400%.

target frame reference frame optical flow warped frame Ours
Xt Xi Ft→i W (Ft→i, Xi)

Fig. 2. An example of missing regions’ negative effects on flow-warping-based aggrega-
tion. Given a target frame Xt and a reference frame Xi, we get the optical flow Ft→i

between them using a pretrained flow estimator. Then we warp Xi onto Xt and get the
warped frame W (Ft→i, Xi). Heavy distortions can be found in Ft→i and W (Ft→i, Xi)
within the missing regions. Our network alleviates this problem, producing more accu-
rate aggregation.

inpainting methods on individual video frames may lose the inter-frame motion
continuity and content dependency, which causes temporal inconsistencies and
unexpected flickering artifacts.

Traditional video inpainting methods [7, 15, 24] utilize patch-based optimiza-
tion strategies to fill missing regions with sampled patches from known regions.
These methods often suffer from limited effectiveness and vulnerability to com-
plex motions. Recently, deep learning-based video inpainting methods [11, 13, 16,
21] have improved the inpainting performance by a large margin. Most of them
use encoder-decoder structures following a frame-by-frame inpainting pipeline
to borrow information from reference frames6 and perform different types of
context aggregation to restore the target frame.

In spite of the encouraging results, deep learning-based methods still need
to overcome the following limitations. First, they fail to make effective usage
of short-term and long-term reference information in the input video. Studies
[11, 21] restrict the range of reference frames to nearby (short-term) frames of

6 The reference frames refer to other frames from the same video.
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the target frame so as to maintain temporal consistency. When dealing with di-
verse motion patterns in videos (eg., slowly moving views or objects), short-term
frames alone cannot provide sufficient information to restore the target frame.
Other methods [13, 16] often sample a set of fixed frames from the input video
(eg., every 5-th frame) as the reference frames. Although this can exploit some
long-term information, it tends to include irrelevant contexts, reduce temporal
consistency, and increase the computation time. Second, how to achieve accu-
rate context aggregation remains challenging. Since missing regions contain no
visual information, it is difficult to find the most related local regions in reference
frames for accurate context aggregation. For example, a recent method [11] uses
estimated optical flows to warp reference frames onto the target frame and fur-
ther aggregate them together. As shown in Figure 2, the flow information within
the missing region is inaccurate and is distorted. This will cause unexpected ar-
tifacts when using the distorted flow to do warping and context aggregation, and
the distortion artifacts will be propagated and accumulated during the encod-
ing process. While using more fixed reference frames from the input video may
help mitigate the negative effects of missing regions, it inevitably brings more
irrelevant or even noisy information into the target frame, which inadvertently
does more harm than good.

In this paper, we aim to address the challenges above in a principled manner
from the following three aspects: (1) We propose a novel framework for video
inpainting that integrates the advantages of both short-term and long-term ref-
erence frames. Different from existing methods that only conduct context ag-
gregation at the decoding stage, we propose to start context aggregation at the
encoding stage with short-term reference frames. This can help provide more
temporally consistent local contexts. Then, at the decoding stage, we refine the
encoding-generated feature map with a further step of context aggregation on
long-term reference frames. This refinement can deal with more complex motion
patterns. (2) To better exploit short-term information, we propose boundary-

aware short-term context aggregation at the encoding stage. Different from ex-
isting methods, here, we pay more attention to the boundary context of missing
regions. Our intuition is that, in the target frame, the boundary area around
the missing regions is more related to the missing regions than other areas of
the frame. Considering the spatial and motion continuity of videos, if we can
accurately locate and align the boundary context of missing regions with the
corresponding regions in the reference frames, it would improve both the spa-
tial and temporal consistency of the generated contents. This strategy can also
alleviate the impact of missing regions at context aggregation. (3) To better
exploit long-term information, we propose a dynamic long-term context aggrega-

tion at the decoding stage. Since different videos have different motion patterns
(eg., slow moving or back-and-forth moving), they have different contextual de-
pendency between frames. Therefore, it is necessary to eliminate frames that
are largely irrelevant with the target frame. Our dynamic strategy aims for the
effective usage of long-term frame information. Specifically, instead of simply
using fixed reference frames, we propose to dynamically update the long-term
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reference frames used for inpainting, according to similarities of other frames to
the current target frame.

In summary, our main contributions are:

– We propose a novel framework for video inpainting that effectively integrates
context information from both short-term and long-term reference frames.

– We propose a boundary-aware short-term context aggregation to better ex-
ploit the context information from short-term reference frames, by using the
boundary information of the missing regions in the target frames.

– We propose a dynamic long-term context aggregation as a refinement oper-
ation to better exploit the context information from dynamically updated
long-term reference frames.

– We empirically show that our proposed network outperforms the state-of-
the-art methods with better inpainting results and fast inpainting speed.

2 Related Work

2.1 Image Inpainting

Traditional image inpainting methods [1, 2] mostly perform inpainting by finding
pixels or patches outside missing regions or from the entire image database.
These methods often suffer from low generation quality, especially when dealing
with complicated scenes or large missing regions [8, 17].

Deep neural networks have been used to improve inpainting results [8, 14,
17, 19, 25, 28–31]. Pathak et al. [17] introduce the Context Encoder (CE) model
where a convolutional encoder-decoder network is trained with the combination
of an adversarial loss [6] and a reconstruction loss. Iizuka et al. [8] propose to
utilize global and local discriminators to ensure consistency on both entirety and
details. Yu et al. [30] propose the contextual attention module to restore missing
regions with similar patches from undamaged regions in deep feature space.

2.2 Video Inpainting

Apart from spatial consistency in every restored frame, video inpainting also
needs to solve a more challenging problem: how to make use of information
in the whole video frame sequence and maintain temporal consistency between
the restored frames. Traditional video inpainting methods adopt patch-based
strategies. Wexler et al. [24] regard video inpainting as a global optimization
problem by alternating between patch search and reconstruction steps. Newson
et al. [15] extend this and improve the search algorithm by developing a 3D
version of PatchMatch [1]. Huang et al. [7] introduce the optical flow optimization
in spatial patches to enforce temporal consistency. These methods require heavy
computations, which limit their efficiency and practical use.

Recently, several deep learning-based methods have been proposed [3, 11, 13,
16, 21, 27, 32]. These works can be divided into two groups. The first group mainly
relies on short-term reference information when inpainting the target frame.
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For example, VINet [11] uses a recurrent encoder-decoder network to collect
information from adjacent frames via flow-warping-based context aggregation.
Xu et al. [27] propose a multi-stage framework for video inpainting: they first
use a deep flow completion network to restore the flow sequence, then perform
forward and backward pixel propagation using the restored flow sequence, and
finally use a pretrained image inpainting model to refine the results. The second
group uses a fixed set of frames from the entire video as reference information.
Wang et al. [21] propose a two-stage model with a combination of 3D and 2D
CNNs. CPNet [13] conducts context aggregation by predicting affine matrices
and applying affine transformation on fixedly sampled reference frames.

Although these video inpainting methods have shown promising results, they
still suffer from ineffective usage of short-term and long-term frame reference
information, and inaccurate context aggregation as discussed in Section 1.

3 Short-Term and Long-Term Context Aggregation

Network

Given a sequence of continuous frames from a video X := {X1, X2, ..., XT } anno-
tated with binary masksM := {M1,M2, ...,MT }, a video inpainting network out-
puts the restored video Ŷ := {Ŷ1, Ŷ2, ..., ŶT }. The goal is that Ŷ should be spa-
tially and temporally consistent with the ground truth video Y := {Y1, Y2, ..., YT }.

3.1 Network Overview

Our network is built upon a recurrent encoder-decoder architecture and pro-
cesses the input video frame by frame in its temporal order. An overview of
our proposed network is illustrated in Figure 3. Different from existing meth-
ods, we start inpainting (context aggregation) at the encoding stage. Given
current target frame Xt, we choose a group of neighboring frames {Xi} with
i ∈ {t− 6, t− 3, t+ 3, t+ 6}) as the short-term reference frames for Xt. During
encoding, we have two sub-encoders: encoder a for the stream of target frame
and encoder b for the other four streams of reference frames. The encoding pro-
cess contains three feature spatial scales { 1

2 ,
1
4 ,

1
8}. At each encoding scale, we

perform Boundary-aware Short-term Context Aggregation (BSCA) be-
tween feature maps of the target frame and those of the short-term reference
frames, to fill the missing regions in the target feature map. This module can ac-
curately locate and aggregate relevant bounding regions in short-term reference
frames and at the same time avoid distractions caused by missing regions in the
target frame. At the decoding stage, our Dynamic Long-term Context Ag-
gregation (DLCA) module refines the encoding-generated feature map using
dynamically updated long-term features. This module stores long-term frame
features selected from previously restored frames, and updates them according
to their contextual correlation to the current target frame. Intuitively, it only
keeps those long-term frame features that are more contextual relevant to the
current target frame. We also adopt a convolutional LSTM (Conv-LSTM) layer
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Fig. 3. Overview of our proposed network. In the encoding stage, we conduct
Boundary-aware Short-term Context Aggregation (BSCA) (Sec. 3.2) using short-term
frame information from neighbor frames, which is beneficial to context aggregation and
generating temporally consistent contents. In the decoding stage, we propose the Dy-
namic Long-term Context Aggregation (DLCA) (Sec. 3.3), which utilizes dynamically
updated long-term frame information to refine the encoding-generated feature map.
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Fig. 4. Left: Boundary-aware Short-term Context Aggregation (BSCA) module.
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refers to the encoding scale.

to increase temporal consistency as suggested by Lai et al. [12]. Finally, the de-
coder takes the refined latent feature to generate the restored frame Ŷt. Since
the missing regions are now filled with contents, we replace the target frame
Xt by the restored frame Ŷt, which provides more accurate information for the
following iterations.

3.2 Boundary-aware Short-term Context Aggregation

Optic flows between frames have been shown to be essential for alignment with
short-term reference frames. Previous optic-flow-based works [11, 27] conduct
context aggregation by warping the reference frames onto the target frame. How-
ever, missing regions in the target frame become occlusion factors and may lead
to incorrect warping, as we have shown in Figure 2. To alleviate this problem,
we propose to utilize optic flows in a novel way: instead of using optic flows to do
warping, we only use them to locate the corresponding bounding regions in the
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reference frame feature map that match the surrounding context of the missing
regions in the target frame feature map. Here, we define the surrounding context
region as the non-missing pixels that are within a Euclidean distance d (d = 8
in our experiments) to the nearest pixels from the missing regions.

The structure of BSCA is illustrated in the left subfigure of Figure 4. At a
certain encoding scale l ∈ { 1

2 ,
1
4 ,

1
8}, we have the target feature map φla(Xt) from

encoder a and the reference feature maps {φlb(Xi)} from encoder b as input for
boundary-aware context aggregation. We first obtain the bounding region Bt of
the missing region in φla(Xt) and its corresponding bounding regions {Bt→i} in
{φlb(Xi)}. Then, we apply an attention-based aggregation to combine Bt and
{Bt→i} as Baggr. We replace Bt in φla(Xt) with Baggr and obtain the restored
target feature map ψl(Xt) , which, together with the original reference feature
maps {φlb(Xi)}, is passed on to the next encoding scale (see Figure 3). Two
essential operations in this process, i.e., 1) boundary-aware context alignment
and 2) attention-based aggregation, are detailed below.

Boundary-aware Context Alignment. As illustrated in the right subfigure
of Figure 4, the alignment operation takes the target feature map φla(Xt) and a
reference feature map φlb(Xi) as inputs. In φ

l
a(Xt), we denote the missing region

with white color. Then, surrounding region Et in φ
l
a(Xt) is obtained (the yellow

elliptical ring in φla(Xt)). We further obtain the bounding box region of Et and
denote it by Bt. We use a pretrained FlowNet2 [9] to extract the flow information
Ft→i between Xt and Xi, and then we downsample Ft→i to F l

t→i for current
encoding scale l. In F l

t→i, the corresponding flow information of Et is denoted
as F l

t→i(Et), which has the same position with Et. With Et and F l
t→i(Et), we

can locate the corresponding region of Et in φlb(Xi), which is Et→i (the yellow
elliptical ring in φlb(Xi)). We also obtain the bounding box region of Et→i as
Bt→i, and reshape it to the shape of Bt. To ensure the context coherence, we
further refine the reshaped Bt→i using Atrous Spatial Pyramid Pooling (ASPP)
[4]. With the aligned bounding regions Bt and Bt→i, we can alleviate the impact
of missing regions and achieve more accurate context aggregation.

Attention-based Aggregation. Attention-based aggregation can help find
the most relevant features from the reference feature maps, and eliminate irrele-
vant contents, eg., newly appeared backgrounds. We first append Bt into the set
{Bt→i} to get a new set {Bt→i, Bt}, denoted as {B′

j}
5
j=1. Then, we concatenate

the elements in the new set along the channel dimension, and apply convolu-
tional and softmax operations across different channels to obtain the attention
maps {Aj}

5
j=1. Finally, the attention-based aggregation is performed as follows.

Baggr =

5∑

j=1

AjB
′

j , (1)

We replace Bt with the aggregated bounding region Baggr in the target fea-
ture map φla(Xt). The replaced target feature map is processed by an ASPP
module to get the ψl(Xt).
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Fig. 5. The Dynamic Long-term Context Aggregation (DLCA) module.

3.3 Dynamic Long-term Context Aggregation

Fixed sampling long-term reference frames [13, 16] fail to consider the motion
diversity of videos. Thus, they may inevitably bring more irrelevant or even
noisy information. Since different videos have different motion patterns (eg.,
slow moving or back-and-forth moving), it results in different contextual de-
pendency between frames. Therefore, it is necessary that the selected long-term
reference information is contextually relevant to the current target frame. We
use a dynamic strategy for the effective use of long-term reference information.
The structure of this decoding-stage context aggregation module is illustrated in
Figure 5. It refines the feature map generated in the above encoding stage with
1) dynamically updated long-term features and 2) non-local-based aggregation.

Algorithm 1 Update Long-Term Features

Input: previous restored frame Ŷt−r, current target frame Xt, long-term features V
Output: updated V
1: distance = [ ]
2: UXt

= Encoder b(Xt)

3: U
Ŷt−r

= Encoder b(Ŷt−r)

4: d
Ŷt−r

= ‖UXt
− U

Ŷt−r
‖1

5: for Vr in V do

6: dr = ‖UXt
− Vr‖1

7: distance.append(dr)
8: end for

9: dmax,max = get max and index(distance)
10: if d

Ŷt−r
< dmax then

11: V .remove(Vmax)
12: V .append(U

Ŷt−r
)

13: end if

Dynamically Updated Long-Term Features. DLCA stores the features
of the previously restored frames that are most relevant (in feature space) to
the current target frame. Specifically, V := {V1, V2, ..., Vq} stores a set of long-
term feature maps with the length q, which are updated dynamically following
Algorithm 1. At each inpainting iteration, it checks whether the feature map
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of a long-term frame Ŷt−r (r is the parameter that defines how far from the
current target frame to look back) can be incorporated into the V set according
to its L1 distance to target frame Xt in the feature space. Let UXt

and UŶt−r

be the feature maps of Xt and Ŷt−r respectively, if the L1 distance between
UŶt−r

and UXt
is smaller than the maximum distance between a feature map

in the current V set to UXt
, then UŶt−r

will replace the corresponding feature

map (that has the maximum distance) in the V set. Note that these feature
maps can be obtained using our encoder b. We suggest r ≥ 7 to exploit long-
term information (as short-term information from Ŷt−6/t−3 has already been
considered by our BSCA module). At the beginning when t < r, we simply set
r = |t− r| to use all restored frames so far. With this dynamic updating policy,
DLCA can automatically adjust the stored long-term frame features and remove
irrelevant ones, regarding each target frame.
Non-local-based Aggregation. Based on the long-term feature set V , we
follow a typical approach [23] to perform non-local-based context aggregation

between the target feature map ψ
1

8 (Xt) and feature maps stored in V , as shown
in Figure 5. Softmax is applied to obtain the normalized soft attention map over
feature maps in V . The attention map is then utilized as weights to compute an
aggregated feature map from V via weighted summation. Finally, the aggregated
feature map replaces the feature map of missing regions.

3.4 Loss Function

The loss function used for training is:

Ltotal = Lrec + λmreLmre + λperLper + λstyleLstyle, (2)

Here, Lrec, Lmre, Lper, and Lstyle denote reconstruction loss, reconstruction loss
of mask region, perceptual loss, and style loss respectively. The balancing weights
λmre, λper and λstyle are empirically set to 2, 0.01, and 1, respectively.

The reconstruction loss and the reconstruction loss of the mask region are
defined on pixels:

Lrec =

T∑

t

‖Ŷt − Yt‖1. (3)

Lmre =

T∑

t

‖(1−Mt)� (Ŷt − Yt)‖1, (4)

where � is the element-wise multiplication. To further enhance inpainting qual-
ity, we include two additional loss functions: perceptual loss [10] and style loss,

Lper =

T∑

t

S∑

s

‖σs(Ŷt)− σs(Yt)‖1
S

, (5)
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Lstyle =

T∑

t

S∑

s

‖Gσ
s (Ŷt)−Gσ

s (Yt)‖1
S

, (6)

where σs is the s-th layer output of an ImageNet-pretrained VGG-16 [20] net-
work, S is the number of chosen layers (i.e., relu2 2, relu3 3 and relu4 3), and G
denotes the gram matrix multiplication [5].

4 Experiments

We evaluate and compare our model with state-of-the-art models qualitatively
and quantitatively. We also conduct a comprehensive ablation study on our
proposed model.

Table 1. Quantitative comparisons on YouTube-VOS and DAVIS datasets under three
mask settings regarding 3 performance metrics: PSNR (higher is better), SSIM (higher
is better) and VFID (lower is better). The rightmost column shows the average execu-
tion time to inpaint one video. The best results are in bold.

YouTube-VOS

Model
Square mask Irregular mask Object mask

Time (sec.)
PSNR SSIM VFID PSNR SSIM VFID PSNR SSIM VFID

VINet [11] 26.92 0.843 0.103 27.33 0.848 0.082 26.61 0.838 0.118 33.6

CPNet [13] 27.24 0.847 0.087 27.50 0.852 0.051 27.02 0.845 0.087 48.5

FGNet [27] 27.71 0.856 0.082 27.91 0.859 0.056 27.32 0.849 0.083 276.3

Ours 27.76 0.858 0.076 28.12 0.866 0.047 27.45 0.853 0.075 35.4

DAVIS

Model
Square mask Irregular mask Object mask

Time (sec.)
PSNR SSIM VFID PSNR SSIM VFID PSNR SSIM VFID

VINet [11] 27.88 0.863 0.060 28.67 0.874 0.043 27.02 0.850 0.068 19.7

CPNet [13] 27.92 0.862 0.049 28.81 0.876 0.031 27.48 0.855 0.049 28.2

FGNet [27] 28.32 0.870 0.045 29.37 0.880 0.033 28.18 0.864 0.046 194.8

Ours 28.50 0.872 0.038 29.56 0.883 0.027 28.13 0.867 0.042 21.5

Datasets. Following previous works [11, 13], we train and evaluate our model
on YouTube-VOS [26] and DAVIS [18] datasets. For YouTube-VOS, we use the
3471 training videos for training, and the 508 test videos for testing. For DAVIS,
we use the 60 unlabeled videos to fine tune a pretrained model on YouTube-VOS,
and the 90 videos with object mask annotations for testing. All video frames are
resized to 424× 240 , and no pre-processing or post-processing is applied.
Mask Settings. To simulate the diverse and ever-changing real-world scenarios,
we consider the following three mask settings for training and testing.

– Square mask: The same square region for all frames in a video, but has a
random location and a random size ranging from 40 × 40 to 160 × 160 for
different videos.

– Irregular mask: We use the irregular mask dataset [14] that consists of masks
with arbitrary shapes and random locations.
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Fig. 6. Qualitative comparison of our proposed model with baseline models on DAVIS
dataset. Better viewed at zoom level 400%. More video results can be found in supple-
mentary material.

– Object mask: Following [11, 27], we use the foreground object masks in
DAVIS [18] which has continuous motion and realistic appearance. Note
that when quantitatively testing object masks on DAVIS dataset, we shuffle
its video-mask pairs for more reasonable result, as it is a dataset for ob-
ject removal and the ground-truth background (after removal) is unknown
(without shuffling, the original objects will become the ground truth).

Baseline Models. We compare our model with three state-of-the-art video in-
painting models: 1) VINet [11], a recurrent encoder-decoder network with flow-
warping-based context aggregation; 2) CPNet [13], which conducts context ag-
gregation by predicting affine matrices and applying affine transformation on
fixedly sampled reference frames; and 3) FGNet [27], which consists of three
stages: first restores flow between frames, then performs forward and backward
warping with the restored flow, and finally utilizes an image inpainting model
for post-processing.

4.1 Quantitative Results

We consider three metrics for evaluation: 1) Peak Signal-to-Noise Ratio (PSNR,
measures image distortion), 2) Structural Similarity (SSIM, measures structure
similarity) and 3) the video-based Fréchet Inception Distance (VFID, a video
perceptual measure known to match well with human perception) [22]. As shown
in Table 1, our model outperforms all baseline models according to all three
metrics across all three mask settings on both datasets, a clear advantage of
using both short-term and long-term information. In terms of execution time,
our model is comparable to VINet, which has the least average execution time
but worse performance than all other three models. Overall, our model achieves
the best trade-off between performance and execution time on the two test sets.
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4.2 Qualitative Results

To further inspect the visual quality of the inpainted videos, we show, in Figure 6,
three examples of the inpainted frames by our model and the compared baselines.
As can be observed, frames inpainted by our models are generally of much higher
quality than those by VINet or CPNet, and also perceptibly better than the
state-of-the-art model FGNet. For example, in the third example (right two
columns), the car structures generated by VINet are highly distorted. This is
mainly caused by the occlusion effect of mask regions in the target frame, and
its limited exploration of long-term information. CPNet was able to restore the
rough structures of the car with more information from its fixedly sampled long-
term reference frames. However, blurriness or overlapping can still be found
since those fixed-term reference frames also bring in a significant amount of
irrelevant contexts. FGNet in general achieves sharper results than VINet or
CPNet. However, it also generates artifacts in this example. This can be ascribed
to inaccurate flow inpainting in the first stage of FGNet. In contrast, our model
can generate more plausible contents with high spatial and temporal consistency.

4.3 User Study

We also conduct a user study to verify the effectiveness of our proposed network.
We recruited 50 volunteers for this user study. We randomly select 20 videos
from DAVIS test set. For each video, the original video with object mask and
the anonymized results from VINet, CPNet, FGNet and our model are presented
to the volunteers. The volunteers are then asked to rank the four models with 1,
2, 3 and 4 (1 is the best and 4 is the worst) based on the perceptual quality of the
inpainted videos. The result in terms of the percentage of rank scores received
by different models is shown in Figure 7. Our model receives significantly more
votes for rank 1 (the best) than the other three models, which verifies that our
model can indeed generate more plausible results than existing models.

rank 1 rank 2 rank 3 rank 4
0%

20%
40%
60%
80%

100%

p
er
ce
n
ta
g
e

Ours FGNet CPNet VINET

Fig. 7. User study results. For each rank (1 is the best), we collected 1000 votes (20
videos * 50 volunteers) in total. The y-axis indicates, within each rank, the percentage
(out of 1000 notes) of the votes received by different models.



Short-Term and Long-Term Context Aggregation Net for Video Inpainting 13

(a) Input (b) Ours (w/o BSCA) (c) Ours (scale 1

8
) (d) Ours

Fig. 8. Ablation study on BSCA. Better viewed at zoom level 400%.

4.4 Ablation Study

We investigate the effectiveness of the two components of our network: Boundary-
aware Short-term Context Aggregation (BSCA) and Dynamic Long-term Con-
text Aggregation (DLCA). In Table 2, we report all the quantitative results under
different ablation settings on the DAVIS test set with shuffled object masks.
Effectiveness of BSCA. As we described in Sec. 3.2, the purpose of BSCA is
to alleviate the negative effects of missing regions in the target frame. Table 2
compares our full model with its two variants: 1) “w/o BSCA” (the first row in
Table 2), which removes the BSCA module and directly uses the flows to warp
reference feature maps onto the target feature map as [11]. Then it concate-
nates the warped reference features with the target feature map as the input for
attention-based aggregation; 2) “scale 1

8” (the second row in Table 2), which per-
forms the BSCA module only at the 1

8 encoding scale. The performance drop of
these two variants justifies the effectiveness of the BSCA module and the multi-
scale design at the encoding stage. As we further show in Figure 8, the model
without BSCA suffers from inaccurate feature alignment due to the occlusion
effect of missing regions in the flows, thus producing distorted contents. Using
BSCA only at the 1

8 encoding scale apparently improves the results, but is still
affected by the distortions from the previous scales. In contrast, using BSCA at
multiple encoding scales lead to better results with temporally consistent details.

Table 2. Comparisons of different settings on BSCA and DLCA.

BSCA (scale 1

8
) BSCA DLCA (fixed) DLCA PSNR SSIM VFID

27.17 0.847 0.063

27.72 0.859 0.052

27.58 0.858 0.056

27.85 0.862 0.048

28.13 0.867 0.042

Effectiveness of DLCA. We test two other variants of our full model regarding
the DLCA module: 1) “w/o DLCA” (the third row in Table 2), which directly
removes the DLCA module; and 2) “fixed” (the fourth row in Table 2), which
keeps the DLCA module but uses fixedly sampled reference features (rather than
dynamic updated ones) that takes one frame for every five frames out of the entire
input video sequence. Both variants exhibit performance degradation. Although
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(a) Input (b) Ours (c) Ours (d) Ours (e) Ŷt−13 (f) Ŷt−25

(at time t) (w/o DLCA) (Fixed) (not in V ) (in V )

Fig. 9. Ablation study on DLCA. Better viewed at zoom level 400%.

fixedly sampled reference features can help, it is still less effective than using
our dynamically updated long-term features. As shown in Figure 9, the model
without DLCA module (w/o DLCA) fails to recover the background after object
removal due to the lack of long-term frame information. Although the model
with fixedly sampled reference features successfully restores the background,
blurriness and artifacts can be still be found. Figure 9 (e) and Figure 9 (f) further
illustrate the dynamic characteristic of our dynamic updating rule, which can
effectively avoid irrelevant reference frames (eg., Ŷt−13 is not in our long-term
feature set V ) for the current target frame.

Dynamically Updated Long-term Features. We investigate the impact of
different lengths of dynamically updated long-term features V on the inpainting
results. Small lengths of q is insufficient to capture long-term frame information,
resulting in inferior performance. On the contrary, large lengths will include more
irrelevant reference frames, which also leads to degraded performance. The best
result is achieved at length q = 10. For the parameter r (long-term range), we
empirically find that r = 9 works well across different settings.

5 Conclusion

We studied the problem of video inpainting and addressed three limitations
of existing methods: 1) ineffective usage of short-term or long-term reference
frames; 2) inaccurate short-term context aggregation caused by missing regions
in the target frame; and 3) fixed sampling of long-term contextual information.
We therefore proposed a Short-term, and Long-term Context Aggregation Net-
work with two complementary modules for the effective exploitation of both
short-term and long-term information. We have empirically demonstrated the
effectiveness of our proposed approach on benchmark datasets and provided a
comprehensive understanding of each module of our model.
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