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Abstract—DBSCAN is a popular clustering algorithm that can
discover clusters of arbitrary shapes with broad applications.
However, DBSCAN is computationally expensive, as it performs
range queries for all the points to determine their neighbors
and grow the clusters. To address this problem, we propose
a novel approximate density-based clustering algorithm named
DBSVEC. DBSVEC introduces support vectors into density-based
clustering, which allows performing range queries only on a small
subset of points called the core support vectors. This technique
significantly improves the efficiency while retaining high-quality
cluster results. We evaluate the performance of DBSVEC via
extensive experiments on real and synthetic datasets. The results
show that DBSVEC is up to three orders of magnitude faster
than DBSCAN. Compared with the state-of-the-art approximate
density-based clustering methods, DBSVEC is up to two orders
of magnitude faster, and the clustering results of DBSVEC are
more similar to those of DBSCAN.

Index Terms—density-based clustering, support vector expan-
sion, scalable clustering

I. INTRODUCTION

Clustering is a fundamental problem in data mining, and the
density-based clustering algorithm DBSCAN [1] is one of the
most influential techniques due to its capability to find clusters
of arbitrary shapes. It has broad applications in many fields
such as spatial data analysis [2], science of astronomy [3],
and biomedical research [4]. DBSCAN connects contiguous
core points, separated by regions of low point-density, to
form clusters. A core point is a point that has at least
MinPts points around it within an ϵ-radius sphere, where
MinPts and ϵ are user-defined parameters. Although highly
effective, DBSCAN suffers from efficiency issues especially
when dealing with large scale datasets. This is due to the
fact that, when connecting contiguous core points (i.e., cluster
expansion), DBSCAN requires running range queries for each
data point to test whether it satisfies the core point criteria.
It has been shown [5] that even with speedup indexing
techniques such as kd-trees [6] or R-trees [7], the worst-case
time complexity of DBSCAN is still O(n2), where n is the
number of points in a dataset.

Approximate DBSCAN algorithms have drawn significant
attention of the community. Such algorithms speed up DB-
SCAN using approximate range queries such as hierarchical
grid structures [5], [8], [9] and Locality Sensitive Hashing
(LSH) [10], [11]. Grid structures can be used to replace
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(a) DBSCAN on t4.8k (b) DBSVEC on t4.8k
Fig. 1: Clustering quality of DBSVEC

range queries with simple counts over the number of points
in the neighboring grid cells (i.e., grid cells in the query
range). However, the performance of grid-based approximation
algorithms is heavily impacted by data dimensionality d: the
number of grid cells increases rapidly with d. For example, the
ρ-Approximate DBSCAN algorithm [5] is grid-based and has
time complexity of O

(
n( 1ρ )d

)
, which increases exponentially

with d (ρ is a system parameter with small values such as
0.001 by default). The use of LSH [12] can help reduce
data dimensionality by hashing data points from the original
high dimensional space to a much lower dimensional space.
Unfortunately, such data dimensionality reduction causes the
loss of accuracy of the clustering results. Also, a high space
cost may be incurred to maintain the hash table.

We aim to produce the same clustering output as DBSCAN
does, but in a much more efficient way. We propose an
algorithm named Density-Based Support Vector Expansion
Clustering (DBSVEC) to achieve this goal. Figure 1 compares
the clusters produced by DBSVEC and DBSCAN on a public
dataset t4.8k [13] where each color represents a cluster. As
the figure shows, the clusters produced by the two algorithms
are the same. Meanwhile, DBSVEC is 7.7 times faster than
DBSCAN on this dataset.

Our algorithm is based on the key insight that, after an initial
cluster has been identified, we only need to run range queries
for points on the boundary of the current cluster (rather than
every point in the cluster) to expand it. This helps to avoid
unnecessary range queries and hence reduce the running time
substantially.

Specifically, we identify a small number of points around
the boundary of an expanding cluster such that their ϵ-
neighborhood (the set of points within distance ϵ from a point)
together can approximately cover the same set of new points



as those covered by the ϵ-neighborhood of all the points in the
cluster. To identify those boundary points, we exploit Support
Vector Domain Description (SVDD) [14], a technique that
finds a set of support vectors (points) describing a closed
boundary of a set of points. Computing SVDD on the set
of points in an expanding cluster produces support vectors on
the boundary of the cluster. We show that a small constant
number of support vectors are sufficient to cover most of
the ϵ-neighborhood of the expanding cluster. Thus, we can
obtain clusters similar to those of DBSCAN (i.e., ensure high
clustering accuracy) but with much lower computational cost.

Furthermore, we propose three techniques to improve and
speed up the iterative computation of SVDD in DBSVEC, so
that DBSVEC becomes more accurate and efficient. First, we
propose a variant of the SVDD model with an adaptive penalty
weight for each data point. This weight guides the support
vector computation process towards selecting points on the
boundary of an expanding cluster. Performing range queries
on such points helps to obtain more similar clustering results
to those of DBSCAN. Second, we propose an incremental
learning method that enables SVDD to focus on newly added
points rather than retesting the whole set of points in a
cluster. This reduces the computation cost. Third, we present
a kernel parameter value selection strategy to alleviate model
overfitting and hence to avoid generating an excessive number
of support vectors for running range queries on.

In summary, this paper makes the following contributions:
• We propose a highly efficient density-based clustering

algorithm named DBSVEC for very large datasets. This
is the first work that exploits support vectors to reduce
the number of unnecessary range queries in DBSCAN. It
significantly improves the efficiency of DBSCAN while
retaining high clustering accuracy. We also show that,
only under very strict conditions, the clustering result of
DBSVEC may deviates from that of DBSCAN.

• We propose three techniques to enhance SVDD for
both effective and efficient clustering: (i) an adap-
tively weighted SVDD model, which assigns an adaptive
penalty weight to each data point based on its position
and the number of times participating in support vector
computation, and hence improves clustering accuracy;
(ii) an incremental learning method to further improve
the efficiency of our SVDD algorithm, which allows a
linear time complexity for support vector computation;
(iii) a kernel parameter value selection strategy to alle-
viate model overfitting and hence to avoid generating an
excessive number of support vectors.

• We perform an extensive experimental study on both real
and synthetic datasets, which show that DBSVEC is up
to three orders of magnitude faster than DBSCAN. Com-
pared with state-of-the-art approximate density-based
clustering methods, DBSVEC is up to two orders of
magnitude faster, and the clustering results of DBSVEC
are more similar to those of DBSCAN.

II. PRELIMINARIES AND RELATED WORK

We first review density-based clustering, DBSCAN, and
approximate density-based clustering algorithms. Then, we

briefly discuss SVDD, a key component of our proposed
algorithm. The frequently used symbols are listed in Table I.

TABLE I: Frequently Used Symbols
Symbol Description

X A data set
xi A data point

n = |X | The cardinality of X
d The dimensionality of X

MinPts Density threshold
ϵ Radius parameter of clustering

Nϵ (xi ) The ϵ -neighborhood of a point xi
Cl A cluster
S A sub-cluster

ñ ≤ |S | Size of target data
R Sphere radius
a Sphere center
ξi Slack variable

C, ν Penalty factors
αi , βi Lagrange multipliers
Φ Nonlinear function
K Kernel function
σ Kernel RMS width parameter
ωi penalty weight

A. Density-based Clustering

Let X be a set of n points in a d-dimensional space Rd

where xi = (xi1, ..., xid) denotes the ith point and xi j denotes
its coordinate in the jth dimension.

We denote by dist() the Euclidean distance function and
assume two input parameters: radius ϵ ∈ R+ and density
threshold MinPts ∈ N+.

Definition 1 (ϵ − neighborhood): The ϵ-neighborhood of
a point xi , denoted by Nϵ (xi), is the set of all points in a
d-dimensional hypersphere centered at xi with radius ϵ .

Nϵ (xi) = {xj ∈ X|dist(xi,xj) ≤ ϵ}
Nϵ (xi) is “dense” if it covers at least MinPts points in X.

If Nϵ (xi) is dense, then xi is called a core point.
Definition 2 (Core point): A point xi ∈ X is a core point

if Nϵ (xi) contains at least MinPts points in X (including xi
itself), i.e., |Nϵ (xi)| ≥ MinPts.

If a point is not a core point, it is called a non-core point.
If the ϵ-neighborhood of a non-core point xi contains at least
one core point, xi is called a border point; otherwise, xi is
called a noise point.

Definition 3 (Density-reachable): A point xi is said to be
density-reachable from a point xj if there is a sequence of
points x1,x2, . . . ,xt where x1 = xj and xt = xi such that x1,
x2,. . . ,xt−1 are core points and xk+1 ∈ Nϵ (xk) for k ∈ [1,t-1].

Density-reachable is symmetric for two core points xi and
xj . On the other hand, points are not density-reachable from
any non-core points.

Definition 4 (Cluster): A cluster Cl with respect to ϵ and
MinPts is a nonempty subset of X that satisfies:
• (Maximality) If a core point xi ∈ Cl, then all the points

density-reachable from xi also belong to Cl.
• (Connectivity) ∀xi ,xj ∈ Cl, there is a core point xk ∈ Cl

such that both xi and xj are density-reachable from xk .



Algorithm 1 DBSCAN

Input: A finite set of points X = {x1, ...,xn}t in d-dimensional
space Rd with xi = (xi1, ..., xid)t being the ith point; a radius ϵ ;
a density threshold MinPts.

Output: Cluster ID of each point.
1: Cid ←0
2: for each unclassified point xi ∈ X do
3: Nϵ (xi) ←RangQuery(X,xi, ϵ)
4: if |Nϵ (xi)| ≥ MinPts then
5: Cid ←Cid + 1;
6: xi .id ←Cid; S ←Nϵ (xi)
7: for each unclassified point xj ∈ S do
8: Nϵ (xj ) ←RangQuery(X,xj, ϵ)
9: if Nϵ (xj ) ≥ MinPts then

10: S ←Nϵ (xj ) ∪ S
11: if xj does not belong to any cluster then
12: xj .id ←Cid
13: else
14: xi .id ←noise

We study density-based clustering defined as follows.

Problem 1 (Density-based Clustering): Density-based clus-
tering is to find the unique set C of clusters of X.

B. DBSCAN
DBSCAN [1] (Algorithm 1) starts with an arbitrary point

xi and retrieves all points density-reachable from xi (Lines 1
to 2). If xi is a core point, a new cluster is identified (Lines
3 to 6, where xi .id is used to store the cluster ID of xi and
Cid is a unique integer ID for different clusters). DBSCAN
expands this cluster via repeatedly visiting the points in the
cluster and adding their density-reachable neighbors into the
cluster (Lines 7 to 12). The process continues until no new
points can be added to this cluster. Then, a new unvisited
point is selected, from which the above process resumes. If xi
is a non-core point, no points are density-reachable from xi
and DBSCAN moves onto the next arbitrary point that has not
been visited yet (Lines 13 to 14). When all points have been
visited, those points not in any cluster are regarded as noise.

DBSCAN requires O(n2) time [5]. Due to this high time
complexity, many approximate algorithms have been proposed
to improve the performance of DBSCAN.

C. Approximate Density-based Clustering Algorithms
We focus on approximate DBSCAN algorithms. Approx-

imation techniques for other density-based clustering algo-
rithms [15], [16] are less relevant and not discussed further.
Grid-based algorithms. The basic idea of grid-based algo-
rithms is to divide the whole dataset into equal-sized square-
shaped grids [5], [8], [9]. ρ-Approximate DBSCAN [5] is the
state-of-the-art approximate implementation of DBSCAN. It
uses a quadtree-like hierarchical grid with a cell width of
ϵ ρ/
√

d, where ρ is a system parameter to trade accuracy
for efficiency. This grid is used to reduce the computational
complexity of the range queries. Each range query now counts
the number of points in O

(
1 + (1/ρ)d−1) cells. This algorithm

has a linear time with regard to the dataset cardinality n in
low-dimensional spaces (when d ≤ 7). However, the number
of grid cells accessed per range query increases exponentially
with d. Recently, Schubert et al. [17] argue that the original

DBSCAN algorithm with a proper configuration performs
competitively with ρ-Approximate DBSCAN.
Hashing-based algorithms. Wu et al. [10] use Locality Sen-
sitive Hashing (LSH) [12] to search for approximate nearest
neighbor points to form clusters. DBSCAN-LSH [11] uses
LSH for approximate distance computations, which reduces
the number of distance computations for clustering. These al-
gorithms lack formal analysis of the accuracy of the clustering
results and may produce highly inaccurate clusters as shown
in our experimental study (Section V).
Other fast algorithms. FDBSCAN [18] chooses the points
that are far away from the core points to perform range queries,
but it lacks accuracy analysis and experiments. Furthermore,
FDBSCAN does not consider cluster expansion, which causes
unnecessary range queries. NQ-DBSCAN [19] uses a local
neighborhood searching technique for reducing the cost of
distance computations. However, it does not reduce the number
of range queries. P+-tree [20] provides a way to accelerate
nearest neighbor queries in high dimensional space, which
divide the space into subspaces based on clustering so that
the Pyramid technique can be applied in each subspace.

TABLE II: Complexity of Density-based Algorithms
Algorithm DBSCAN

[1]
ρ-Appr
[5]

DBSCAN-LSH
[21]

NQ-DBSCAN
[19]

DBSVEC
(this paper)

Complexity O(n2) O
(
n( 1

ρ )d
)

O(ℓndk/2) O(n2) O(θn)

Table II summarizes the computational complexity of fast
DBSCAN algorithms, where ℓ is the number of iterations, k is
the number of hash functions, and θ ≪ n is analyzed in detail
in Section III-D. Unlike existing techniques which perform
range queries on every data point, our algorithm DBSVEC
introduces support vectors, which avoids unnecessary range
queries with a small sacrifice in the clustering accuracy.
DBSVEC is based on SVDD described below.

D. Support Vector Domain Description
Support Vector Domain Description (SVDD) [14] finds the

minimum hypersphere that encloses all or most of the points
in a dataset. The hypersphere (sphere for short hereafter)
is defined by its radius R and center a. Formally, SVDD
computes the following optimization problem:

min f (R,a, ξi) = R2 + C
n∑
i=1
ξi

s.t. ∥ xi − a ∥2≤ R2 + ξi

ξi ≥ 0, ∀i

(1)

where C is a penalty factor that controls the trade-off between
the two error terms: the volume of the sphere and the number
of data points outside the sphere; ξi is the slack variable
used to represent how far away the i-th point falls outside
the sphere. The two constraints in Eq. 1 can be incorporated
into the optimization function using Lagrange multipliers:

L(R,a,ξ)=R2+C
n∑
i=1
ξi−

n∑
i=1
αi(R2+ξi−∥xi−a∥2)−

n∑
i=1
βiξi

s.t . αi≥0, βi≥0
(2)

where αi and βi are Lagrange multipliers. By computing the
partial derivatives of L in Eq. 2 with respect to R, a and ξi ,



and letting them be 0, we obtain:
∂L
∂R
=0 :

n∑
i=1
αi=1

∂L
∂a
=0 : a=

∑n
i=1αixi∑n
i=1αi

=

n∑
i=1
αixi

∂L
∂ξi
=0 : αi=C−βi

(3)

Substituting Eq. 3 into Eq. 1 results in:

L=
n∑
i=1
αi(xi ·xi)−

n∑
i=1

n∑
j=1
αiαj(xi ·xj)

s.t . 0≤αi≤C,
n∑
i=1
αi=1

(4)

Maximizing Eq. 4 yields the value of αi [14]. Only points
xi with αi> 0 are needed in the description of the sphere, and
these points are called support vectors (SVs), which lie on
the boundary of the sphere. SVs with αi=C, corresponding to
points outside the sphere, are called boundary support vectors
(BSVs). The SVs with 0<αi<C, called normal support vectors
(NSVs), correspond to points on the surface of the sphere.

III. PROPOSED ALGORITHM

We now present our algorithm DBSVEC. We start with the
key idea of DBSVEC in Section III-A, followed by algorithm
details in Section III-B. The algorithm accuracy and costs are
analyzed in Sections III-C and III-D, respectively.

A. Key Idea

Our key idea is that many of the range queries in DBSCAN
for core point tests are unnecessary and can be avoided.

Figure 2 illustrates a typical situation where some range
queries can be safely removed, where the diamonds, triangles
and dots all represent points to be clustered. During a DB-
SCAN run (MinPts=8 and the circles have radius ϵ), suppose
x1 (the dot) is the first point visited. A range query finds
that x1 is a core point, i.e., there are at least 8 (MinPts)
points inside the solid circle centered at x1 (including x1
itself). The points in this circle form the ϵ-neighborhood of
x1. DBSCAN then needs to run 7 range queries on the rest 7
points (denoted by the 7 circles centered at them) to expand
the current cluster formed by this ϵ-neighborhood. However,
many of these range queries overlap with each other and the
sets of points they cover also overlap heavily (for example,
the sets of points covered by the five dotted circles contain
many identical points). A subset of these range queries (i.e.,
the range queries of x2 and x3 as represented by the other
two solid circles) is sufficient to cover all the points enclosed
by all the range queries. Consequently, the rest of the range
queries (the dotted circles) are unnecessary.

We use the concept of sub-cluster to help identify the range
queries necessary. A sub-cluster is a subset of a cluster that
satisfies the connectivity but not the maximality requirement
of a cluster (cf. Definition 4):

ϵ 

x1
x3

x2

Fig. 2: Key idea of DBSVEC (MinPts=8)

Definition 5 (Sub-cluster): A sub-cluster S with respect
to ϵ and MinPts is a nonempty subset of X that satisfies:
∀xi,xj∈S , there is a point xk∈S such that both xi and xj are
density-reachable from xk with respect to ϵ and MinPts.

For example, in Figure 2, the ϵ-neighborhood of x1 is a
sub-cluster since any point is density-reachable from x1. This
is formulated with the following lemma.

Lemma 1: ∀xi∈S : if |Nϵ (xi)|≥MinPts, all points in the
sub-cluster S are density-reachable from xi .

Proof: Consider an arbitrary core point xi∈S and another
point xj∈S . According to Definition 5, both xi and xj are
density-reachable from a point xk . Since xi is a core point, we
conclude that xk is also density-reachable from xi . Therefore,
xj is density-reachable from xi .

The DBSCAN algorithm can be seen as a process of
expanding sub-clusters to form clusters until no more sub-
clusters can be found or expanded.

When a sub-cluster such as the ϵ-neighborhood of x1 in
Figure 2 is expanded, we find a subset of points in the sub-
cluster whose range queries can cover all the points to be
added to the sub-cluster. Such a subset should include those
points near the boundary of the current sub-cluster (e.g., x2
and x3 in Figure 2). To identify such points, we propose to
exploit Support Vector Domain Descriptions (SVDD) [14], a
highly efficient kernel method for identifying boundary points.
SVDD constructs a rough boundary (i.e., a hypersphere) that
encloses the set of points using only a subset of the points near
the boundary, i.e., the support vectors. So, we perform SVDD
on a sub-cluster, and the obtained support vectors are used to
expand the sub-cluster. As will be shown in Section III-C,
performing range queries only on the support vectors can
produce almost the same clusters as those produced from range
queries on all the points. Therefore, the result of DBSVEC is
usually very close to that of DBSCAN.

B. The DBSVEC Algorithm

DBSVEC has four major steps: initialization, support vector
expansion, sub-cluster merging, and noise processing. Next,
we use a running example as shown in Figure 3 to illustrate
these steps. The pseudo-code is presented in Algorithm 2.

Initialization. According to Algorithm 2, DBSVEC scans
the dataset and finds an unvisited point to activate a new sub-
cluster (lines 1 to 3). When a point is visited, if it is not a
core point (line 13), it is added into a list named NoiseList
(line 14) that stores potential noise (line 15), and we proceed
to the next unvisited point. If a point visited is a core point
(line 4), it is used as the seed of a new sub-cluster (line 5).
Such a point is denoted as the blue double circle in Figure 3a.
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(b) SVDD based expansion (c) Merging sub-clusters (d) Final cluster
Fig. 3: DBSVEC running example ( ▶ represents a support vector, ⋆ represents an overlapping point, MinPts=15 )

Algorithm 2 DBSVEC

Input: A finite set of points X={x1,...,xn}t in d-dimensional space
Rd with xi=(xi1,...,xid)t being the ith point; a radius ϵ ; a density
threshold MinPts.

Output: Cluster ID of each point.
1: Cid ←0
2: for each unclassified point xi∈X do
3: Nϵ (xi) ←RangQuery(X,xi,ϵ)
4: if |Nϵ (xi)|≥MinPts then
5: Cid ←Cid+1, initialize newClu
6: for each point xj∈Nϵ (xi) do
7: if xj .id=unclassi f ied or noise then
8: xj .id ←Cid, add xj into newClu
9: else if xj .id,Cid then

10: if |RangQuery(X,xj,ϵ)|≥MinPts then
11: Merge(X,xj .id,Cid)
12: svExpandCluster(X,newClu,ϵ,MinPts,Cid)
13: else
14: xi .id ←noise
15: Add xi into NoiseList L
16: NoiseVerification(L,ϵ,MinPts)

All the points within the ϵ-neighborhood of a seed xi must
be in the same cluster as xi , as formalized in the following
corollary.

Corollary 1: ∀xi ∈X: if |Nϵ (xi)|≥MinPts, all points in
Nϵ (xi) belong to the same cluster as xi .

Proof: Straightforward from Definition 5 and Lemma 1.

Thus, we use the points in the ϵ-neighborhood of the seed
as an initialized sub-cluster S (line 8), as shown by the blue
diamonds surrounded by the dotted circle in Figure 3a.

Support vector expansion. We compute the support vec-
tors for an initialized sub-cluster using SVDD (line 12 of
Algorithm 2). We only keep the core support vectors, i.e.,
support vectors whose ϵ-neighborhood are dense (lines 1 to 6
of Algorithm 3).

Definition 6 (Core support vector): A point xi∈Sj is a core
support vector if:

• in the SVDD model on Sj , the Lagrange multiplier
corresponding to xi , αi>0; and

• Nϵ (xi) covers at least MinPts points

Lemma 2: Given a sub-cluster S , if there is a core support
vector xi∈S , then all the points in Nϵ (xi) and S belong to
the same cluster.

Proof: According to Lemma 1, points in Nϵ (xi) and S
are density-reachable from xi . By connectivity of Definition 4,

Algorithm 3 svExpandCluster

Input: A finite set of points X={x1,...,xn}t in d-dimensional space
Rd with xi=(xi1,...,xid)t being the ith point; a finite set of points
sub-cluster whose points from X; a radius ϵ ; a density threshold
MinPts; current ID Cid.

Output: The expanded sub-cluster.
1: Model ←SVDD(sub-cluster)
2: sv ←Model.SupportVectorSet
3: lastSize ←|sub-cluster|
4: for i ←1 to |sv | do
5: Nϵ (sv[i]) ←RangeQuery(X,sv[i],ϵ)
6: if |Nϵ (sv[i])|≥MinPts then
7: for j ←1 to |Nϵ (sv[i])| do
8: if Nϵ (sv[i])[ j].id=unclassi f ied or noise then
9: Nϵ (sv[i])[ j].id ←Cid

10: Add Nϵ (sv[i])[ j] into sub-cluster
11: else if Nϵ (sv[i])[ j].id,Cid then
12: if |RangeQuery(X,Nϵ (sv[i])[ j],ϵ)|≥MinPts then
13: Merge(X,Nϵ (sv[i])[ j].id,Cid)
14: if |sub−cluster | > lastSize then
15: svExpandCluster(X,sub-cluster,ϵ ,MinPts,Cid)

Nϵ (xi) and S belong to the same cluster.

We repeatedly compute the core support vectors over the
(continuously) expanding sub-cluster using SVDD and add
the points in the ϵ-neighborhood of the core support vectors
to the sub-cluster until no new core support vectors can be
found (lines 7 to 10 of Algorithm 3). If all support vectors are
non-core points or the sub-cluster cannot be expanded further,
we go back to initialization to look for a new sub-cluster.
In Figure 3b, the red triangles represent the support vectors
found, and the red dashed line (a by-product of SVDD) is
the boundary formed by the high-dimensional sphere mapping
back to the original space. We see that SV1, SV3 and SV4
are core support vectors, while SV2 is a non-core support
vector as the number of its surrounding neighbors is less than
MinPts. The sub-cluster is expanded from SV1, SV3 and SV4.
Algorithm 3 summarizes support vector expansion.

Sub-cluster merging (Line 11 of Algorithm 2 and line
13 of Algorithm 3). During initialization and support vector
expansion, a point to be added to the expanding sub-cluster
may have been assigned to another existing sub-cluster, we
call such a point an overlapping point. If an overlapping point
is also a core point, the existing sub-cluster should be merged
with the expanding sub-cluster by Lemma 3.

Lemma 3: Given two sub-clusters Si and Sj , if there is a
core support vector x∈Si ∧ x∈Sj , then all the points in Si

and Sj belong to the same cluster.



Proof: Similar to Lemma 2.
Figure 3 shows an existing sub-cluster denoted by green

squares. In Figure 3c, overlapping points are found (the orange
star) during support vector expansion. After confirming that
an overlapping point is a core point, the blue and the green
sub-clusters are merged (Figure 3d).

Noise verification (Line 16 of Algo. 2). After all the
points are visited (assigned a cluster label or stored as a
potential noise point in NoiseList), we check whether there
are core points in the ϵ-neighborhood Nϵ (NoiseList[i]) of
each potential noise point NoiseList[i]. If there is no core
point, NoiseList[i] is confirmed as a noise point. Otherwise,
NoiseList[i] is assigned to the cluster of its nearest core point.
Note that Nϵ (NoiseList[i]) has been obtained in initialization.

C. Accuracy Analysis

An approximate DBSCAN algorithm is more “accurate” if
its clustering result is more similar to that of DBSCAN [5],
[11], [22]. Specifically, we follow Lulli et al. [22] and use
recall to measure the accuracy of clustering results. This recall
metric is computed as the ratio of point pairs that share the
same cluster in the clustering results of both DBSCAN and
an approximate DBSCAN algorithm to be evaluated. A larger
recall means a higher accuracy. Next, we show that DBSVEC
produces highly accurate results, with the help of the following
symbols.
• CD denotes the set of clusters produced by DBSCAN

with parameters (ϵ , MinPts).
• CS denotes the set of clusters produced by DBSVEC with

parameters (ϵ , MinPts).
We first show that any cluster produced by DBSVEC must

be a subset of some cluster produced by DBSCAN.
Theorem 1 (Necessity Guarantee): Given dataset X and

parameters (ϵ , MinPts), for any cluster ClS∈CS , there is a
cluster ClD∈CD such that ClS⊆ClD .

Proof: Consider an arbitrary core point xi∈ClS . Point xi
must also be a core point in DBSCAN. Based on Lemma 1,
all points in ClS are density-reachable from xi . According to
the maximality condition in Definition 4, if ClD∈CD contains
xi , then ClD contains all the points density-reachable from xi .
Hence, all the points in ClS must also be in ClD .

Meanwhile, the noise points and border points identified by
DBSVEC are also the same as those identified by DBSCAN.

Theorem 2 (Border Point Guarantee): Given dataset X and
parameters (ϵ , MinPts), the border points in any cluster ClS∈
CS are the same as the border points in some cluster ClD∈CD ,
if ClS and ClD have the same core points.

Proof: Let xi be an arbitrary border point in ClD . Ac-
cording to the connectivity condition in Definitions 4, there
exists a core point xj∈ClD from which xi is density-reachable.
In DBSVEC, xi is assigned to the same cluster as xj by
support vector expansion or noise verification. On the other
side, consider an arbitrary border point xi∈ClS . According to
the maximality condition in Definitions 4, there exists xi∈ClD .
Hence, all border points of ClD are the same as those of ClS .

sv2
sv1

ϵ 

Fig. 4: A case of a sub-cluster stopping expansion

Theorem 3 (Noise Point Guarantee): Given dataset X and
parameters (ϵ , MinPts), the noises found by DBSVEC and
DBSCAN are the same.

Proof: Let Clnoise be the set of noise points in DBSCAN.
Since NoiseList in DBSVEC is the set of potential noise, it is
easy to know Clnoise⊆ NoiseList. In the final step of DBSVEC,
noise verification confirms the noises in NoiseList and satisfies
Clnoise=NoiseList.

It is interesting to examine whether a cluster in DBSCAN is
also a subset of some cluster in DBSVEC. Unfortunately, this
does not always hold, because using only the support vectors
to expand the sub-clusters does not guarantee the maximality
of the clusters in DBSVEC.

The implication is that DBSVEC may divide a cluster of
DBSCAN into multiple clusters, but it will not put multiple
clusters of DBSCAN into a single cluster.

Next, we give the conditions under which DBSVEC may
divide a cluster of DBSCAN into multiple clusters. We use
the following symbols to facilitate the discussion.

• ClD denotes a cluster of DBSCAN with parameters (ϵ ,
MinPts).

• S denotes a sub-cluster of DBSVEC with parameters (ϵ ,
MinPts).

• S ⊂ClD , and S does not expand to become ClD .

Condition 1: In the step of support vectors expansion: the
sub-cluster S stops expanding before all the core points in
the cluster ClD are found.

• There is a core point in ClD not yet assigned to S .
• The support vectors obtained by computing SVDD on S

are non-core points, or the ϵ-neighborhood of the core
support vectors do not contain new points not yet in S .

Figure 4 illustrates a case where a sub-cluster stops ex-
panding. The sub-cluster (denoted by squares and triangles) is
located at the bottom-left part of the cluster, and its support
vectors (denotes by triangles) happen to also locate at the
bottom-left part of the cluster. Thus, expanding from these
support vectors does not grow the sub-cluster towards the
full cluster. Note that this case does not necessarily result in
incorrect clustering results because the other points may form
a sub-cluster which expands to merge with this sub-cluster.

Condition 2: In the step of sub-cluster merging: None of
the core points in S is found in the initialization and support
vector expansion steps of any other sub-clusters (i.e., S has
never been merged).



• The ϵ-neighborhood of all the new seeds do not contain
any core points of S .

• The ϵ-neighborhood of all the core support vectors ob-
tained by computing SVDD on the other sub-clusters do
not contain any core points of S .

The above conditions are rarely met at the same time, which
is confirmed by experiments in Section V-B on datasets of
ten different distributions. Therefore, the clustering result of
DBSVEC is very close and often identical to that of DBSCAN.

D. Complexity Analysis

Given a dataset X with n points in a d-dimensional space
and two parameters ϵ∈R+ and MinPts∈N+, let s be the
number of cluster seeds, l be the size of NoiseList, O(ñ) be
the average set size for SVDD computation, m be the number
of sub-cluster mergers, and k be the total number of support
vectors. We analyze the running time of DBSVEC as follows.

Initialization requires at most O(s) range queries to seed the
sub-clusters. In support vector expansion, training an improved
SVDD model using the technique to be detailed in Section IV
needs O(ñ) time. When ñ is larger, the expected number of
times of SVDD training O(n/ñ) is smaller. Hence, all SVDD
training together take O(n) time (see Section IV-D). Querying
whether the support vectors are core points requires O(kn)
time. The number of support vectors ranges from 1 to ñ
(worst-case) in each SVDD training. Based on an optimization
technique in Sections IV-B and IV-C, the total number of
support vectors k is much smaller than the size of the dataset
n, which can be controlled by the parameters penalty factors
ν and kernel width σ. When sub-clusters find overlapping
points, sub-cluster merging needs to perform range queries on
the overlapping points, which take O(mn) time. The last step
noise verification consumes less than O(MinPts·ln) time to
identify true noise from potential noise, where l depends on
the number of noise in the dataset. Overall, DBSVEC requires
O((s+1+k+m+MinPts·l)n)=O(θn) time. As analyzed above,
s, k, m, l are all far smaller than n, i.e., θ≪n. This has also
been validated by extensive experiments (see Section V-C).
Therefore, DBSVEC runs much faster than DBSCAN which
has a time complexity of O(n2). Note that the O(n) factor in
our cost is for performing range queries. Using spatial indices
can further bring down this factor [23].

DBSVEC needs O(n+ñ+MinPts·l) space for storing the
cluster labels, the target data for SVDD computation, and
the NoiseList. This cost is linear to the dataset size n. While
DBSCAN [1] and existing approximate techniques [5], [11]
also have a linear space cost, they need to store and maintain
an extra index which is not needed by DBSVEC.

IV. IMPROVING SVDD FOR DBSVEC

In DBSVEC, support vector expansion is a repeated step
with non-trivial costs. The focus is on how to further opti-
mize this procedure towards higher clustering accuracy and
efficiency. We first reformulate SVDD in Section IV-A and
introduce a penalty weight for each point to guide the support
vector computation process towards selecting points on the
cluster boundary. This helps improve the clustering accuracy.

We further propose an incremental learning technique and
a kernel parameter value selection strategy in Section IV-B,
which help improve the clustering efficiency. We discuss the
trade-off between accuracy and efficiency in Section IV-C and
the costs of proposed techniques in Section IV-D.

A. Improving Accuracy

In the SVDD objective function (Eq. 1), the penalty factor
C is a trade-off parameter controlling how much the slack
variables ξi are penalized, while ξi is used to represent how
far away a point can fall outside of the sphere constructed by
SVDD (the support vectors are located either on or outside the
sphere and hence have larger slack variable values) [24]. In
the original SVDD model, the same penalty factor C is used
for every data point without discrimination [14]. However, this
is not applicable for DBSVEC since in the clustering process,
points newly added to a sub-cluster or far from the center of a
sub-cluster should have smaller penalty factors, to allow larger
slack variable values and hence a higher probability for such
points to be selected as support vectors. The rationale is that
newly expanded data points and those far from the center of
sub-cluster in kernel space are more likely to locate either on
or outside the sub-cluster sphere. We thus should encourage
such points to be used as support vectors.

Based on the observation above, we assign each data point
an individual penalty factor indicating its possibility of being
a support vector. We define the penalty weight of point xi to
be exponential to the number of times that xi has participated
in support vector computation and inversely proportional to
the distance between xi and the center of the sub-cluster in
the kernel space. We first introduce kernel distance function
and memory factors as follows.

The kernel distance function is defined as:

D(x)=





Φ(x)− 1

ñ

ñ∑
i=1
Φ(xi)







2

H
=

1
ñ2

ñ∑
i, j=1

K(xi,xj )+K(x,x)− 2
ñ

ñ∑
i=1

K(xi,x)

(5)
where ñ is the number of target data points, in this case, the
size of the currently expanding sub-cluster; K is the kernel
function where Ki j=K(xi,xj)=Φ(xi)·Φ(xj); Φ is a nonlinear
mapping of the input space into a Hilbert space H . We use
the Gaussian kernel:

K
(
xi,xj

)
=exp

(
−


xi−xj



2

2σ2

)
=Φ(xi)·Φ(xj), σ>0 (6)

where σ is the root mean square (RMS) width parameter of
the kernel function, and we will discuss how to decide its value
in the following subsections. For a given cluster, according to
Eq. 6, K(x,x)≡1 and 1

ñ2
∑ñ

i, j=1Ki, j are constants in Eq. 5.
The memory factor λ is a coefficient greater than 1, which

is used to define the penalty weight:

ωi=λ
ti ©­«1− D(xi)

max
j=1,...,ñ

D(xj)
ª®¬ ∀i=1,2,...,̃n (7)

where ti is the number of times that xi participates in SVDD
training. Since λti increases exponentially with ti , old points
are generally given larger penalty, while points newly added to



the target dataset have smaller penalty. As the penalty weight
ωi is inversely proportional to the kernel distance D(x), data
points far from the target data center can get large slack
variable values and are more likely to become support vectors.

Using penalty weights, the optimization problem becomes:

min
R∈R,a∈H

f (R,a,ξi)=R2+C
ñ∑
i=1
ωiξi

s.t. ∥Φ(xi)−a∥2H≤R2+ξi, ξi≥0 ∀i

(8)

Here we use a nonlinear function Φ(x) (whose inner product
is Gaussian kernel Eq. 6) to obtain a sphere that can bound
the data points tighter [14]. By adding Lagrangian multipliers
αi,βi≥0 for the constraints of Eq. 8, we have

L(R,a,ξ)=−
ñ∑
i=1
αi(R2+ξi−∥Φ(xi)−a∥2H)

−
ñ∑
i=1
βiξi+R2+C

ñ∑
i=1
ωiξi αi≥0, βi≥0

(9)

Letting the derivative of L to zero with respect to R, a, ξi ,
respectively, leads to

ñ∑
i=1
αi=1, a=

ñ∑
i=1
αiΦ(xi), αi=ωiC−βi (10)

Substituting Eq. 10 back into Eq. 9, the dual optimal problem
of Eq. 8 can be rewritten as

max
αi

LD=

ñ∑
i=1
αiK(xi,xi)−

ñ∑
i=1

ñ∑
j=1
αiαjK(xi,xj )

s.t. 0≤αi≤ωiC,
ñ∑
i=1
αi=1

(11)

Here, the difference in the dual formula between Eq. 4 and
Eq. 11 are the upper bounds of the Lagrange multipliers αi and
the use of the kernel function. The upper bounds in Eq. 11
are no longer the same. Instead, they are controlled by the
corresponding penalty weights. Note that, point xi with 0<
αi≤C is a support vector on the boundary around the target
data. Whether a point is within the sphere can be determined
by the following discrimination function:

F (x)=(Φ(x)−a)(Φ(x)−a)T=K(x,x)−2
ñ∑
i=1
αiK(xi,x)

+

ñ∑
i=1

ñ∑
j=1
αiαjK(xi,xj) ≤ R2 (12)

When the distance between a point xi and the sphere center
a is smaller than the radius, xi is within the sphere.

B. Improving Efficiency

Next, we consider improving the time efficiency of SVDD.
1) Incremental Learning: During support vector expansion,

a growing number of data points are involved in SVDD
training until all the data points in the full cluster are identified.
The data points repeatedly used for computing support vectors
contribute little to the SVDD model but take a significant
portion of the computation. To improve the efficiency, we

propose an incremental learning method with a focus on data
points newly added to the target dataset.

We use a learning threshold T to control the number of
times that a point can be used in the target dataset for SVDD
computation. Once a point is added to the target dataset, it is
assigned a counter ti initialized to 0. After SVDD training is
done on the current target dataset, the ti value of each target
data point is increased by 1, and data points with ti>T are
eliminated from the target dataset for SVDD training (over the
expanded sub-cluster). By doing so, the algorithm can learn
support vectors from the newly expanded data and discover
more points to be added into the sub-cluster, rather than re-
discovering the same support vectors used before.

Intuitively, when T is large, more “old” points are retained,
resulting in higher SVDD training time. On the other hand,
if T is set to 0, it is equivalent to computing SVDD using
only data points newly added to the sub-cluster. Experimental
results show that, when the threshold T is in the range of 2
to 4, our incremental learning method can improve algorithm
efficiency with negligible impact on accuracy. As a result, we
use T=3 in our experiments in Section V.

2) Kernel Parameter Value Selection: To find the optimal
boundary description of a sub-cluster, SVDD uses the Gaus-
sian kernel to project data into a high dimensional space by
nonlinear transformation. The kernel parameter σ determines
the degree of nonlinear transformation. Using the Taylor series,
we can expand the Gaussian kernel into infinite dimensions to
observe the effects of σ.

K
(
xi,xj

)
=exp

(
−


xi−xj



2

2σ2

)
(13)

=exp

(
−

x2
i+x2

j

2σ2

) (
1+

1
1!

(xixj

σ2

)
+

1
2!

(xixj

σ2

)2
+

1
3!

(xixj

σ2

)3
+···

)
When σ is smaller, weights 1/(n!σn) on high-dimensional

features decay slowly and hence there is a higher degree
of nonlinear transformation. A higher degree of nonlinearity
leads to a tighter boundary of the target dataset formed by
SVDD, which can better reflect the shape of data. However,
a higher degree of nonlinearity does not necessarily lead to
better support vectors. This is because, under a higher degree
of nonlinearity, SVDD may produce support vectors not at the
boundary of the target dataset (i.e., overfitting [25]). This may
reduce the efficiency of DBSVEC. Thus, our kernel parameter
selection strategy aims to find a lower bound of σ that helps
form the optimal boundary description of a sub-cluster while
it is not too high to trigger the overfitting.

We focus on an extreme scenario of data distribution where
the interior of the dataset is empty [26]. With the same
kernel parameter settings, since there are no data points in
the interior, SVDD tends to regard the interior sparse space as
the outer space of the hypersphere in the kernel space. This
will cause overfitting [14], [25]. Next, we show how to derive
the lower bound value of the kernel parameter to avoid this
false perception on SVDD.

Without loss of generality, we consider a two-dimensional
data space, and it is straightforward to generalize to high-
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dimensional spaces. In the above scenario, the data is dis-
tributed on a sphere given by the following equation.

si=
(

rcos( 2πn (i−1))
rsin( 2πn (i−1))

)
, where i=1,...,n (14)

Note that according to Mercer’s Theorem [27], in the solu-
tion of SVDD, the kernel function is the sum of inner products
(cf. Eq. 11 and Eq. 12). In discrimination functions F (x)
(Eq. 12), both K(x,x) and

∑n
i=1

∑n
j=1αiαjK(xi,xj) are constants

whereas
∑n

i=1αiK(xi,x) determines the distance between point
x and the sphere center a. As the space is symmetric and∑n

i=1αi=1, we can choose αi= 1
n . The solution function is

therefore:

f (x)=1
n

n∑
i=1

K(x,si)=
1
n

n∑
i=1
Φ(x)Φ(si)=

1
n

n∑
i=1

exp
(
− ∥x−si ∥2

2σ2

)
(15)

where f (x) represents the opposite of the distance between
point x and the sphere center in kernel space, and the greater
the value of f (x), the closer x is to the sphere center. When
n goes to infinity, the following solution function:

lim
n→∞

f (x)= 1
2π

∫ 2π

0
exp

(
−1

2

( r
σ

)2




x

r
−
(

cosω
sinω

)



2
)
dω (16)

only depends on the circle radius r and the kernel parameter
σ. Figures 5a and 5b show the plots of f (x) in the original
space and a kernel space (with a smaller σ=0.5r). The function
in the original space forms a “unimodal” shape with a peak
at the origin while in the kernel space, it forms a “crater”
shape with a basin in the center. This means that in the kernel
space, the point closer to the sphere center in the original
space may be regarded as farther away from the sphere center
in the kernel space, i.e., the distance measures are inconsistent.
Consequently, this may lead to the selection of internal points
(rather than boundary points) as support vectors, which may
impact the clustering efficiency.

To obtain appropriate kernel parameter values, we compute
the gradient and second-order partial derivatives of f :

∂ f
∂x1
=

1
nσ2

n−1∑
i=0

(
rcos

(
2πi
n

)
−x1

)
exp

(
− ∥x−si ∥2

2σ2

)
(17)

∂2 f

∂x2
1
=

1
nσ2

n−1∑
i=0

©­­«
(
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(
2πi
n

)
−x1

)2

σ2 −1
ª®®¬exp

(
− ∥x−si ∥2

2σ2

)
(18)

It is known from the necessary and sufficient conditions of
the extreme value that the extreme value of f is obtained at
the origin. Using the symmetry of the space or letting n be

infinite, we obtain:

lim
n→∞

∂2 f
∂x2

1

�����
x=(0,0)

=
1

2πσ2 exp
(
− r2

2σ2

)∫ 2π

0

(
−1+

( r
σ

)2
cos2ω

)
dω

=
1
σ2 exp

(
− r2

2σ2

) (
−1+

(
r
√

2σ

)2
)

(19)

where for σ> r√
2
, the Gaussian kernel function f takes the

global maximum value at the origin, and hence avoids over-
fitting. For σ< r√

2
, function f has a local minimum value at

the origin and a basin shape near the origin. Figure 5c shows
the critical case with σ= r√

2
.

The lower bound ( r√
2
) of the kernel parameter can ensure

that, for data with radius r , using Gaussian kernel functions
can avoid the overfitting of the SVDD model. In our experi-
ments, we use σ= r√

2
, where r is the distance from the center

of the target data to the point farthest from it.

C. Balancing Accuracy and Efficiency

We now consider the penalty factor C, which controls the
trade-off between the volume of the sphere and the accuracy of
data description in SVDD. One-Class Support Vector Machine
(OC-SVM) [28] replaces C with a new parameter ν. Parameter
ν is a reparametrization of C and therefore they are mathemat-
ically equivalent1 (C=1/νñ). Schölkopf and Smola [29] show
that ν∈(0,1) is an upper bound on the fraction of boundary
support vectors (BSVs) and a lower bound on the fraction
of support vectors (SVs). Increasing ν and hence the number
of support vectors will enhance the accuracy but reduce the
efficiency of the algorithm, and vice versa.

As a rule of thumb, the number of support vectors should
increase with the growth of sub-cluster and data dimensional-
ity. We give an empirical choice of penalty factors:

ν=ν∗=
d
√

logMinPts ñ
ñ

, C=
1
νñ

(20)

where d is the dimensionality. According to our experiments,
this adaptive penalty factor can achieve a balance between
accuracy and efficiency. It is worth pointing out that DBSVEC
degenerates to DBSCAN when ν approaches 1.

D. Complexity Analysis

We analyze the costs of our improved SVDD. Let ñ be the
size of target data in SVDD computation. Computing penalty
weights and the kernel parameter values consume O(ñ) time.
Training SVDD needs to solve a quadratic programming (QP)
problem. We exploit the Sequential Minimal Optimization
(SMO) [30] approach to break the large QP problem into a
series of the small QP problems, which results in a linear
time and space complexity O(ñ) to the target dataset size and
dimensionality [28].

In the incremental learning technique, the size of the target
set ñ is usually small with c·MinPts≤ñ≪n, where c is a
constant positively correlated to the learning threshold T

1Radial Basis Function kernel (specifically, a Gaussian RBF kernel) has
the properties that K(xi ,xi )=1 for all xi ∈X. In this case, with C=1/(νñ), the
problems of SVDD and OC-SVM are identical, and both methods learn the
same decisions functions.



TABLE III: Clustering Accuracy over Open Datasets

Method
Dataset (n,d) Seeds

210,7
Map-Jo.
6014,2

Map-Fi.
13467,2

Breast.
669,9

House
34112,3

Miss.
6480,16

Dim32
1024,32

Dim64
1024,64

Data31
3100,2

t4.8k
8000,2

t7.10k
10000,2

DBSVECmin 1.000 1.000 1.000 0.976 1.000 1.000 1.000 1.000 1.000 1.000 0.997

DBSVEC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ρ-Appr 1.000 1.000 0.995 0.846 0.993 1.000 0.887 0.887 0.885 1.000 1.000

DBSCAN-LSH 0.847 0.832 1.000 0.997 0.889 0.831 0.994 1.000 1.000 0.793 0.645

and the neighborhood size |Nϵ (xi)|. When the radius ϵ is
large, O(ñ) will be large, while the number of times to
compute support vectors, O( n

ñ
), will be reduced. Overall, as

our experiments in Section V-C show, the incremental learning
technique helps reduce the running time by up to an order of
magnitude.

V. EXPERIMENTS

In this section, we present an empirical evaluation of the
proposed algorithms. All the experiments are done on a
machine with a 3.1GHz CPU and 16GB memory running
macOS 10.13.2. The algorithms are implemented in C++ and
compiled using Apple LLVM 9.0. Our SVDD implementation
is developed based on lib-svm 2.

A. Baseline Algorithms

We compare DBSVEC with the following algorithms:
• R-DBSCAN: the original DBSCAN algorithm implemen-

tation [1] using an in-memory R-tree [7]. We use the
clustering result of this algorithm as the ground truth for
evaluating the clustering accuracy of DBSVEC.

• kd-DBSCAN: a DBSCAN implementation using an in-
memory kd-tree [6]. This is a popular Python tool-kit3

we have also considered following a previous study [31]
• DBSCAN-LSH: a hashing-based approximate DBSCAN

algorithm [11] using p-stable hashing functions.
• ρ-Approximate: the state-of-the-art DBSCAN approxi-

mation algorithm [5] with a quadtree-like gird.
• NQ-DBSCAN: a recently proposed fast DBSCAN algo-

rithm using local neighborhood searching technique [19]
coded in MATLAB.

• k-MEANS: a popular partitioning-based clustering algo-
rithm [32].

We set the upper limit of the running time to 10 hours. In ρ-
Approximate4, ρ=0.001 as recommended [5]. DBSCAN-LSH
uses eight p-stable hashing functions [11]. In the efficiency
experiments (Section V-C), following [5], if R-DBSCAN or
kd-DBSCAN do not terminate in 10 hours or run out of
memory, no results are reported (Figures 6 and 7).

B. Clustering Accuracy

2D visualization. To demonstrate the effectiveness of DB-
SVEC, we use a 2D dataset t4.8k (with cardinality 8000)
which is a classic benchmark dataset for verifying clustering
quality [13]. We use MinPts=20 and ϵ=8.5. From Figure 1

2https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
3http://scikit-learn.org/stable
4https://sites.google.com/site/junhogan/

TABLE IV: Clustering validation.
“C” stands for compactness (Higher values are preferred),
“S” for separation (Lower values are preferred).

Algorithm Miss. (d=16) Breast. (d=9) Dim64 (d=64)
C S C S C S

DBSVEC 0.424 0.833 0.667 0.687 0.966 0.050
k-MEANS 0.087 2.268 0.597 0.761 0.966 0.050
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Fig. 6: Scalability tests

(Section I), we can see that DBSVEC and DBSCAN produce
equally good clustering results on the dataset.

Statistical results. Next, we examine the accuracy of DB-
SVEC on other open datasets from different domains including
Seeds [33], Dim32 and Dim64 [34], Map-Joensuu and Map-
Finland5, D31 [35], Breast-Cancer [33], Miss-America [36],
House [36], t4.8k and t7.10k [13].

As discussed in Section III-C, we follow Lulli et al. [22] and
use recall to measure clustering accuracy. Note that running
DBSCAN and computing the recall are expensive on larger
datasets [22], thus we use these relatively small datasets.

Table III shows the clustering quality results of approximate
algorithms, where DBSVEC and DBSVECmin represent the
proposed algorithm running with the optimal value (ν∗) and
minimum value (ν=1/ñ) of ν as described in Section IV-C,
respectively. We see that DBSVEC produces perfect recall
for all of the datasets when ν=ν∗. Even when using the
minimum ν value, the recall of DBSVEC is larger than or
equal to those of ρ-Approximate and DBSCAN-LSH for all
the datasets except t7.10k. The results confirm Lemmas 2 and
3 in Section III-C that DBSVEC produce clustering results
very similar to those of DBSCAN.

We also use internal validation metrics Compactness [37]
and Separation [38] to compare the clustering quality of
our algorithm with k-MEANS. From Table IV, we observe
that DBSVEC consistently produces higher quality clustering
results than k-MEANS.

5http://cs.uef.fi/mopsi/data/

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://scikit-learn.org/stable
https://sites.google.com/site/junhogan/
http://cs.uef.fi/mopsi/data/
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C. Computational Efficiency

For the efficiency tests, we use larger datasets as follows.
Synthetic datasets. We use synthetic datasets generated by

a data generator [5]. We set the feature dimension d from 2
to 24, while the dataset cardinality n from 100 thousand to 10
million (defaults are 2 million points and 8 dimensions).

Real-world Datasets. We use three real-world datasets:
• PAMAP2 is a 17-dimensional physical activity monitoring

dataset with 1,050,199 data points [33].
• Sensors is an 11-dimensional dataset with 919,438 data

points each representing the readings of 11 sensors [33].
• Corel-Image is a 32-dimensional dataset with features of

68,040 Corel images [39].
Following previous studies [5], [11], we normalize the data

coordinates to [0,105] in each dimension and use MinPts=100
and ϵ=5000 by default.

1) Effect of Cardinality n: We vary n from 100 thousand to
10 million. We show typical results of the algorithms over 8-
dimensional synthetic data in Figure 6a (note the logarithmic
scale). We see that the running times of R-DBSCAN and kd-
DBSCAN increase drastically with n and quickly exceed the
10-hour limit. In contrast, the running time of DBSVEC only
increases roughly linearly, taking less than 60 seconds for
up to 10 million data points. DBSVEC outperforms ρ-Appr,

DBSCAN-LSH, NQ-DBSCAN and k-MEANS consistently,
and the advantage is up to two orders of magnitude.

2) Effect of Dimensionality d: Next, we vary d from 2 to
24 while the dataset cardinality is fixed at 2 million. Note
that kd-DBSCAN takes too long to execute and is excluded
from the results. ρ-Approximate is fast with low dimensions,
but its performance deteriorates rapidly as d increases. This
is because, as d increases, the tree structure (a quad-tree)
constructed by ρ-Approximate grows exponentially (causing
memory overflow at d = 24). In contrast, DBSVEC shows a
linear growth pattern with d. Although DBSCAN-LSH, NQ-
DBSCAN and k-MEANS are also linear to the number of
dimensions, they are relatively slower. To evaluate DBSVEC
on even higher dimensions, we generate a dataset of 1 million
points with 100 dimensions. Even in this case, DBSVEC
can complete in 2,057 seconds, while other methods cannot
complete in 10 hours, or run out of memory.

3) Effect of Radius ϵ: Figure 7 shows the running time as
the radius ϵ increases from 5,000 to 55,000. The running times
of both R-DBSCAN and kd-DBSCAN increase since both
algorithms rely on range queries, which are more expensive
as the radius grows. The performance of DBSCAN-LSH
degrades rapidly with increasing ϵ because the use of hashing
to compute distance [11]. For ρ-Approximate, ϵ determines the
accuracy of clustering because ρϵ is the minimum granularity
of the grid. Although a larger radius can make ρ-Approximate
faster, it reduces the clustering accuracy considerably. More-
over, in real data sets, the data space is usually large compared
with the cluster radius ϵ , which causes the data space to be
divided into massive grids and leads to a high running time
(see Figure 7d). In comparison, DBSVEC does not have such
limitations and can be better applied to real datasets. The
efficiency of DBSVEC increases with the radius (fewer SVDD
computation is needed). DBSVEC outperforms the baseline
algorithms again in this set of experiments.

4) Effect of Penalty Factor ν: We inspect the effect of
ν on the running time. Figure 8 shows that, as ν increases,
DBSVEC takes longer to run. This is expected since a larger
ν means allowing SVDD to generate more support vectors,
which yields a higher clustering accuracy but also requires a
higher computation cost.

5) Effect of Improving SVDD: We also evaluate the effect of
three improvement techniques proposed for improving SVDD
in DBSVEC. We denote DBSVEC using original SVDD
without adaptive penalty weights as DBSVEC\WF and DB-
SVEC without incremental learning as DBSVEC\IL, respec-
tively. Figure 9a depicts the recall values of DBSVEC\WF,



DBSVEC\IL and DBSVEC on datasets used in Section V-B
for clustering quality tests. The adaptive penalty weights
improve the recall on these datasets by 3 to 8 percentage
points while incremental learning has little impact on accuracy.
Note that computing penalty weights adds little running time,
while the aim of incremental learning is to improve efficiency
without impinging accuracy. We also investigate the impact
of the proposed kernel parameter value selection strategy by
a variant where randomly selected kernel parameter values
within a range of

{
mini, j ,i,j



xi−xj



, maxi, j


xi−xj



} are used,
which is denoted by DBSVEC\OK . Figure 9b shows the
efficiency evaluation of DBSVEC\IL and DBSVEC\OK on
the 8-dimensional synthetic data with 2 million points. It con-
firms that incremental learning and the kernel parameter value
selection strategy help increase the efficiency of DBSVEC.

VI. CONCLUSIONS

We propose DBSVEC, a highly efficient algorithm for
density-based clustering over large-scale and high-dimensional
datasets. DBSVEC uses support vectors to reduce unnecessary
range queries. It only performs range queries on the support
vectors of sub-clusters to achieve almost the same effect as
performing range queries on all the points. Furthermore, we
improve SVDD via an adaptive penalty weight for each point,
an incremental learning method, and a kernel parameter value
selection strategy. These improvements make DBSVEC even
more efficient and accurate. Extensive experiments on both
synthetic and real-world datasets validate the accuracy and
efficiency of DBSVEC, which is up to three orders of magni-
tude faster than DBSCAN. Compared with the state-of-the-art
approximate density-based clustering method, DBSVEC is up
to two orders of magnitude faster, and the clustering results
of DBSVEC are more similar to those of DBSCAN.
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tering using a k-nearest neighbor graph,” TPAMI, vol. 28, no. 11, pp.
1875–1881, 2006.

[35] C.J.Veenman, M.J.T.Reinders, and E.Backer, “A maximum variance
cluster algorithm,” TPAMI, vol. 24, no. 9, pp. 1273–1280, 2002.
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