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Abstract—We introduce the task of webpage briefing (WB)
to provide a summary of a webpage in a hierarchical man-
ner, from the broad topic of the webpage, to finer level key
attributes. A straightforward approach for this task is to train
a machine learning model for generating topics and extracting
key attributes. However, such a model may not perform well on
webpages that are from domains not seen in the training data.
An ideal model should be able to adapt to unseen domains while
preserving knowledge learned from the seen domains. Knowledge
distillation (KD) offers a potential solution, in which a teacher
pre-trained with specific domains can pass the knowledge to a
student, while unseen domains can also be added to increase the
robustness of the models. However, existing works usually assume
the models have no access to seen domains during distillation and
the knowledge on seen domains may be lost. In our setting, we
have access to the generated topics, which contain representative
knowledge of seen domains and can help preserve that knowledge
during distillation. Moreover, a vanilla KD does not pass on the
knowledge about the location patterns of the informative contents
in webpages, which are essential for identifying the topics to be
generated or the key attributes to be extracted. To preserve more
knowledge of seen domains and to better utilize the location
patterns, we propose a Dual Distillation model which consists
of identification distillation (ID) and understanding distillation
(UD); ID distills knowledge on the identification of informative
contents under the guidance of the learned topics of seen domains,
while UD distills knowledge on topic generation or key attribute
extraction. Since topics and key attributes are distilled separately
in two students in Dual Distillation, the inherent correlations
between them are not utilized. To better exploit such correlations,
we propose a Triple Distillation model which consists of a shared
ID and two UDs, one for topic generation and the other for
key attribute extraction. We further propose a joint model
for WB with signal enhancement and exchange among a key
attribute extractor, a topic generator, and an informative section
predictor. Experiments on real-world webpages show that our
models achieve high performances for WB, and validate the
superiority of Dual Distillation and Triple Distillation in their
target settings. Experiments also show that the proposed joint
model outperforms single-task baselines and other joint models.

Index Terms—web mining, text analysis, knowledge distillation

I. INTRODUCTION

The Web grows exponentially and webpage contents are
becoming more complex. This results in an increasing amount
of time spent on browsing webpages. Our reading speed has
become a bottleneck on the amount of information that we
can absorb from the Web. To increase the speed of webpage
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TABLE 1
OUTPUTS OF DIFFERENT TASKS ON THE WEBPAGE IN FIG. 1

Task Task output
> Shopping Website for Books
> Nonfiction Books
Webpage > Basics of Deep Learning
Briefing Project-based guide
(Our task) > Introduction to Deep Learning
Charniak, Eugene
$40.13
Webpage Introduction to Deep Learning by Eugene

Summarization [1]-[4] Charniak Hardcover Book Free Shipping!

Webpage Outline
Summarization [5]

Item Overview, Similar Items, Item Descrip-
tion, Shipping and Payments

An Introduction to Deep Learning is a guide

Text Summarization to writing deep learning programs with the

[6]-[8] widely-used Python language and Tensor-
Flow programming environment.

Keyphrase -

Extraction [9], [10] Book, Deep Learning, Python, Tensorflow

Keyphrase

Generation [11] Shipping, Product, Neural Network

browsing, we propose a new task called webpage briefing
(WB) and novel machine learning algorithms for the task.

WB aims to provide a summary for a webpage in a
hierarchical manner such that we can quickly understand what
the webpage is about and key information in it. Specifically,
at the top level of the hierarchical summary is a broad topic of
the webpage (e.g., a shopping website for books), followed by
high-level key attributes, which may be a more precise topic
or category of the webpage extracted from the webpage (e.g.,
nonfiction books), and then followed by more detailed and
specific key attributes (e.g., Basics of Deep Learning, $40.13).

The output of WB may consist of one or two dozen of
words and can be understood within a few seconds rather than
minutes spent on reading a significant portion of the webpage
to obtain the same information. Moreover, if a user finds the
content irrelevant at a high level of the summary hierarchy, she
can skip the rest. For example, if the webpage topic is sports
news but the user is interested in buying sports wear, she can
skip reading the rest of summary. In practice, the functionality
of WB may be added to web browsers to significantly increase
our webpage browsing speed. Figure 1 shows an example
webpage and the corresponding WB output. Table I shows how
the WB output differs from those of the existing tasks that may
appear related. We will detail the differences in Section II.

A straightforward approach for this task is to train a
machine learning model for generating topics and extracting
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Fig. 1. An example of a webpage'and its WB output (best viewed in color).

key attributes. However, such a model may not perform well
on webpages that are from domains not seen in the training
data. An ideal model for WB should be able to adapt to unseen
domains while preserving knowledge learned from the seen
domains. Knowledge distillation [12] (KD) offers a potential
solution. Recent works [13]-[15] have demonstrated that KD
can pass the knowledge in a teacher pre-trained with specific
domains to a student, while unseen domains can also be added
to increase the robustness of models and reduce over-fitting on
seen domains. A teacher pre-trained with a variety of domains,
and a randomly initialized student are trained together through
KD to give prediction for unseen domains. The student gives
arbitrary predictions at early distillation stage to reduce high-
confidence predictions of the teacher, which are given based on
the knowledge from seen domains. Then the student gradually
updates during the distillation process to learn a feature space
that better adapts to the context and content structure of
webpages from unseen domains.

However, since existing works usually assume the student
does not have access to seen domains, some knowledge may
be lost during the graduate update process of distillation. They
usually fine-tune the student with seen domains afterwards
to recall more knowledge of seen domains or use pseudo
data to help the distillation. In our setting, the topics of
seen domains, which contain representative knowledge of seen
domains, are stored during pre-training. Therefore, we have
access to representative knowledge of seen domains, and can
use them during distillation to help preserve more knowledge.
Moreover, a naive adaptation of KD only guides the student
to learn to generate webpage topics/attributes. It does not pass
on the knowledge of the location patterns of the informative
contents of webpages, which are essential for identifying the

topics to be generated or the key attributes to be extracted.

To preserve more knowledge of seen domains and to utilize
the location patterns of the informative contents of webpage,
we propose a Dual Distillation (Dual-Distill) method, i.e, iden-
tification distillation and understanding distillation. A teacher
is pre-trained on a large amount of labelled webpages with
seen domains. A student is trained through dual distillation
to generate topics or extract key attributes from webpages
that are from unknown domains. The identification distillation
guides the student to mimic the teacher’s intermediate learning
behavior of identifying informative sections under the guide
of known topics learned from seen domains. It matches the
attention distribution on a webpage between the teacher and
the student towards known topics representations. Including
the known topics into the distillation also brings in similarly
distribution between unknown domains and seen domains,
which gives additional signals to preserve the knowledge of
seen domains in the intermediate distillation process. The
understanding distillation guides the student to mimic the
teacher’s behavior of prediction through matching the output
distributions between the teacher and the student.

In Dual-Distill, topics and key attributes are distilled sepa-
rately in two student models, which loses the inherent correla-
tions between the topics and key attributes in the lower level
of the hierarchy. Knowing the topic of a webpage can help
the prediction and extraction of key attributes. For example,
in a book shopping webpage, author, title and price are more
likely to be key attributes, while in a recruitment webpage, key
attributes are more likely to be job, company and salary. Based
on this insight, we may further improve the above method

'Source: https://www.ebay.com/itm/Introduction-to-Deep-Learning-by-
Eugene-Charniak-Hardcover-Book-Free-Shipping-/392213703939



which requires two separate Dual-Distill for topic generation
and key attributes extraction.

To better exploit such inherent correlations between topics
and key attributes in the lower level of the hierarchy, we
further propose a method named Triple Distillation (Tri-
Distill), which has one shared identification distillation and
two understanding distillations. A teacher is pre-trained to
jointly extract attributes and generate topics, and a student
is jointly distilled through triple distillation to generate topics
and extract key attributes. The regularizations between two
understanding distillations and the sharing in identification
distillation better capture the inherent correlations.

Although the teaching (i.e., distillation) methods are im-
portant, the teacher’s knowledge structure (i.e., model archi-
tecture) also influences the student’s performance. We further
propose a Joint WB model (Joint-WB) with signal enhance-
ment and exchange mechanisms as a teacher for the proposed
distillation methods. Joint-WB fully exploits the correlations
between key attributes, topics and informative contents, and
avoid error propagation between them. Joint-WB consists
of three parts: key attribute extractor, topic generator, and
informative section predictor. Informative section predictor
provides signals about the location of informative sections.
Key attribute extractor provides hints about informative words.
Topic generator provide a fluent phrase to describe the broad
topic of the webpage. To better share the learning signals
among them, we add signal enhancement and exchange mech-
anisms during the training of three parts. In the informative
section predictor, we leverage a Markov dependency mecha-
nism to help decide the location of informative sections. In the
key attribute extractor, we propose a section-and-topic dual-
aware mechanism to utilize the task correlations and exchange
the learning signals. In the topic generator, we use a section-
and-key-attributes dual-aware mechanism to strengthen the
correlations between three parst and share the signals.

Our contributions are summarized as follows:

« We propose a novel task called webpage briefing (WB),
which generates a summary of a webpage in a hier-
archical manner, to significantly increase the speed of
browsing and comprehending webpages.

o We propose Dual Distillation (Dual-Distill) and Triple
Distillation (Tri-Distill). Experimental results show the
superiority of Dual-Distill and Tri-Distill in addressing
their targeted problems, and outperform baselines by at
most 8.63% in exact match (EM) for topic generation and
7.03% in F1 for attribute extraction on unseen domains.

o We further propose a Joint WB (Joint-WB) model for the
whole task, which has a joint learning architecture with
signal exchange and enhancement mechanisms. Experi-
mental results show that Joint-WB achieves 95.02% in
EM and 97.30% in F1 on seen domains. It outperforms
single-task baselines and other jointly trained baselines.

II. RELATED WORK

We first summarize studies on tasks related to WB. We then
review two key techniques used in our proposed models, i.e.,

TABLE II
COMPARISON WITH RELATED TASKS
D 0\6‘\\
c:(\c% &qe o \Co
Task W% ™ o e g™
Webpage Briefing (Our task) v v v v
Webpage Summarization [1]-[4] X X X X v
Webpage Outline Summarization [5] v X v /X
Text Summarization [6]—[8] X v X v 7/
Keyphrase Extraction [9], [10] X X v v X
Keyphrase Generation [11] X v v v X

knowledge distillation and joint learning.

A. Related Tasks

There are many studies towards understanding of webpages.
WB has a different goal from existing study as detailed below.

Webpage summarization [1], [2] provides a textual or visual
summary of a webpage. The summary comes from both
internal webpage content and external knowledge about the
webpage, such as text segments from other webpages that
pointing to this webpage [3], or external user posts [4] about
this webpage. Such external knowledge is often not available
in practice. Webpage outline summarization [5] is a variant of
webpage summarization and it uses the hierarchical HTML
headings of a webpage to form a summary. Such an outline
does not provide the information as provided by WB, because
the headings may not reflect the contents of the webpage; they
can be anything the webpage generator produces.

Text summarization [6] provides a short summary that sum-
marizes the general meaning of a document. This task usually
targets on well-formed articles, such as scientific articles [7]
or news articles [8], which are not directly applicable to
webpages. Moreover, it usually returns full and long sentences
rather than a few words as required in WB.

Keyphrase extraction [9], [10] extracts keyphrases in web-
pages to capture their core topics, but it does not consider
words that do not exist in the webpage. Keyphrase genera-
tion [11] can provide keyphrases absent from a webpage .
However, both keyphrase extraction and keyphrase generation
list phrases independently and isolatedly, they cannot form
a piece of fluent natural language or provide the set of key
attributes with a hierarchy. This may influence the understand-
ing for essential meaning of a webpage. For example, the
keyphrases ‘book, online shopping’ can be interpreted as ‘a
book about online shopping’, or ‘a online shopping website
for books’, whose meanings are totally different.

Table II summarizes the (advantageous) characteristics of
different tasks from five aspects: providing hierarchical sum-
maries, providing generative summaries (not just extractions
of words and sentences), providing concise summaries (not
long sentences), providing summaries based on internal con-
tent of webpages (not relying on external knowledge), and
providing summaries with fluent natural language. WB pos-
sesses all the advantageous characteristics whereas previous
tasks have at most three of them.



B. Knowledge Distillation

Knowledge distillation (KD) [12] is originally proposed for
model compression. Recent works show that KD yields a great
success in preserving previously learned knowledge when
learning new knowledge and confessing robustness to pre-
trained models with unseen data [13]-[16]. KD has a teacher-
student architecture, in which a student model is trained
to mimic a pre-trained larger teacher model. In distillation,
knowledge in the teacher model is transferred to the student
by minimizing a loss function. The teacher model’s output
logits from a softmax function usually predict correct classes
with a high probability, while the logits for other classes are
very close to 0. This cannot provide much information beyond
the ground truth when training. [17] proposes a softmax
temperature to tackle this problem. It obtains soft targets
from a teacher model by increasing a parameter for softmax
probabilities. Our Dual-Distill and Tri-Distill follow the idea
of adding a softmax temperature parameter in understanding
distillation, while we further add an identification distillation
to optimize intermediate learning behaviors.

C. Joint Learning

Joint learning refers to a learning paradigm that addresses
multiple learning goals in a single model. It utilizes the
relationship among related tasks and transfer the common
knowledge across different tasks to boost the performance.
This is opposed to single-task learning where individual
models are learned separately, each with a single target.
[18] proposes a joint learning model to learns the character
features and long distance dependencies together through
concatenating signals. Rather than concatenation, which may
bring misleading signals, [19], [20] propose attention-based
joint learning models to perform entity extraction tasks on
academic homepages. Our Joint-WB is also attention-based,
while it integrates the learning signals from more tasks through
dual-aware attentions.

III. PROPOSED MODELS

We present Dual-Distill in Section III-A and Tri-Distill in
Section III-B. We discuss Joint-WB and its signal exchange
and enhancement mechanisms in Section III-C.

Table III lists the frequently used symbols. We use bold
uppercase letters to denote matrices (e.g. R) or sequences (e.g.
C9), lowercase letters to denote scalars (e.g. r) or individual
item in a sequence (e.g. ¢;), and unbolded uppercase letters of
different fonts to denote models (e.g. T) or modules (e.g. P).

Given a webpage D = {w;,wa,...,w; }, where w; is the
[-th token in D, we aim to: 1) extract a set of entities
V = {W;, Wy, ..., W,,} as the key attributes for the web-
page, where W, = {w;, ..., W;1,, } is the m-th key attribute
consisting of a sequence of x,,,; tokens, and 2) generate a
fluent phrase S = {s1, s2,...,8,} as the topic description of
the webpage, where s,, is the n-th token in the phrase.

TABLE III
FREQUENTLY USED SYMBOLS

Symbol | Meaning

T, S \ A teacher model and a student model

Ar,Ag | The attention distribution in the teacher and the student

AS. AS ‘ The shared attention distribution in the teacher and the
™S student

Pr.Ps ‘ The output distribution in the teacher and the student

L L ‘ The identification distillation and the understanding dis-
P> “UP | tillation in Dual-Distill

Lip | The shared identification distillation in Tri-Distill

e L9 The understanding distillation of attribute extraction and
UD>ZUD | topic generation in Tri-Distill

£GP A key attribute extractor, a topic generator and an infor-
> mative section predicator

8} ‘ The section-and-topic dual-aware hidden token represen-
¢ tations

Q" ‘ The integrated hidden topic representations

CZ ‘ The section-dependent hidden token representations

F The section-and-key-attributes dual-aware hidden sen-
g tence representations

EM ‘ The integrated hidden sentence representations

Cg ‘ The section-dependent hidden sentence representations

A. Dual-Distill

An ideal WB model should be able to update its knowledge
for webpages from new domains while preserving existing
knowledge for seen domains, which is challenging. Knowledge
distillation [17] offers a potential solution [14], [16]. However,
a naive adaptation of KD does not pass on the knowledge
of locating the informative contents of webpages. Moreover,
the knowledge of seen domains may lost in distillation. To
address the above issues, we propose a Dual Distillation
(Dual-Distill) method which consists of identification distil-
lation and understanding distillation, where the former distills
knowledge on identifying informative contents under the guide
of representative knowledge of seen domains (i.e., the topics
of seen domains), and the later distills knowledge on topic
generation or key attribute extraction. Fig. 2 (a) and 2 (b)
illustrate the architecture of Dual-Distill.

Dual-Distill has a teacher-student architecture, in which a
teacher model T is pre-trained on a large amount of labelled
webpages D,. covering r topics for attribute extraction or topic
generation, and a student model S is randomly initialised and
trained to mimic the teacher to extract attributes or generate
topics for new webpages D, x, which cover r 4+ k topics
and k is the number of previously unseen topics. S is distilled
through dual distillation, i.e., identification distillation L, , and
understanding distillation L .

Model details. Given pre-trained word embeddings, a new
webpage Dy, is represented as C = {cy, ¢a, ..., ¢}, where
¢; is the word embedding for the i-th token and [ is the total
number of tokens in D,,.,,. The teacher model T encodes C
to a hidden token representation Hf, for attribute extraction, or
hidden sentence representation HY for topic generation using
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Fig. 2. The architectures of Dual-Distill (a&b) and Tri-Distill (c) (best viewed in color).

its encode layers. The student model S encodes C to hidden
token representation HE or hidden sentence representation
H{ using its encode layers. For topic generation, T produces

decoded hidden sentence representation HY. using the decoder
layers in the teacher m0(/1e1; S produces decoded hidden

sentence representation HY using its decoder layers.

The identification distillation L;, aims to guide S to mimic
T’s behavior of identifying informative contents from web-
pages under the guide of pre-defined topics representation R
of seen domains. We achieve this by matching the attention
distributions of a webpage between T and S towards the repre-
sentation R of r pre-defined topics. The attention distributions
also contain information about the similarly distribution be-
tween the webpage and seen domains, which give auxiliary
signals to preserve parts of learned knowledge in T. We
minimise the sum of element-wise L1 difference between the
normalized attention distributions At of T and the normalized
attention distribution Ag of S over r pre-defined topics:

Lip = T _ _As
w0 =2 gy, ~ A

For the key attribute extraction task, the attention distribution
A records the relationship between Hf and the topic phrase
matrix R of the r pre-defined topics, and the attention distri-
bution Ag records the relationship between HS and the topic
phrase matrix R of r pre-defined topics:

At = softmax(HSW 47RT)
As = softmaz(HEW 4sR ")

For the general topic generation task, the attention distribution
A records the relationship between HY. and the topic phrase
matrix R of r pre-defined topics, and the attention distribution

Ag records the relationship between HI and the topic phrase
matrix R of r pre-defined topics:

At = softmax(H%WATRT)
Ag = softmar(HIW 45R.")

where W 4 and W 4 are trainable parameters. The topic
phrase matrix R is the concatenation of r previously seen
topic phrases. Each topic phrase is represented by combining
all the words in a topic phrase. We concatenate the hidden
representations of all the tokens in a topic phrase, which
are learned in the pre-trained tearcher model T. We pass the
concatenated representations through a dense layer with tanh
as a non-linear activation function:

R=R ®RyD.. DR,
R; = tanh((¢; ® ¢} & ... © ¢]")Wr,)

where R; is the representation of the i-th topic phrase repre-
sentation, ¢ € [1,7], Wg, is a trainable parameter, ¢;* is the
n;-th hidden token representation in the i-the topic phrase, and
n; is the length of the i-th topic phrase.

The understanding distillation L, aims to guide S to mimic
T’s behavior of doing prediction. We achieve this by matching
the output distributions between T and S. Specifically, we
minimise the Kullback-Leibler divergence between the output
distribution P of T and the output distribution Pg of S:

P
Lyp = ZPT IOg(?Z)

For the key attribute extraction task, the output distributions
P and Pg are computed using the hidden token representation



HY and HS, respectively, with a softmax temperature ~y [17]:

HW b
Pr = softmaz(—2 LT 0T
Y
HSW b
Ps — softman(— LS 10
Y

For the general topic generation task, the output distributions
Pt and Pgs are computed using the decoded hidden token
representation HY and HI , respectively, with a softmax
temperature ~ [17]:

Hg/W b
Pr = softmaz(—2—FT 40T,
v
HI W b
Ps = softmam(%m)

where Wpr and W pg are trainable parameters.
Then, Dual-Distill is trained by minimising the sum of total
loss L with parameters o and ~:

L=oaL;,+ '72LUD

where 2 is set for L, following [17] since the magnitudes
of gradients produced by L, scale as 1/72.

Although we illustrate Dual-Distill with two levels output
for the WB hierarchy, Dual-Distill can be seen as a general
framework and can be extended to provide more than two
levels of output. Towards more levels of output for the WB
hierarchy, a teacher model T at each level can be pre-trained
and a student model S can be distilled using the Dual-
Distill framework. The time complexity of training Dual-
Distill depends on the choice of teacher and student models.
We use t;, ts to denote the time cost of a single teacher model
and a single student model, b to denote the batch size, n to
denote the sequence length in each batch, r to denote the
number of previously seen topic phrases and g to denote the
length of the generated topic phrase. The time complexity of
training Dual-Distill is O(bx (t;+ts+nr+n)) for key attribute
extraction and O(b X (t; 4+ ts + nr + g)) for topic generation.

B. Tri-Distill

In Dual-Distill, the general topic and key attributes of a web-
page are distilled separately in two student models, which loses
the inherent correlations between key attributes and topics. To
better exploit such inherent correlations, we further propose
a method named Triple Distillation (Tri-Distill), which has
one shared identification distillation and two understanding
distillations, one for attribute extraction and the other for topic
generation. Fig. 2 (c) shows the architecture of Tri-Distill.

Tri-Distill has a similar teacher-student architecture to that
of Dual-Distill. The difference is that, in Tri-Distill, a teacher
model T is pre-trained to jointly extract attributes and generate
topics. A student model S is jointly distilled across the attribute
extraction task and the topic generation task through one
shared identification distillation L3, and two understanding
distillation L¢ , and L{,,. The regularizations between L¢,

UD
and L}, and the sharing in L?  lead to more universal hidden

representations for two tasks, and better utilize the inherent
correlations between two tasks during distillation.

Model details. The two understanding distillations L¢, , and
LY, are computed using the same methods as described in
Dual-Distill for the key attribute extraction task and the general
topic generation task, respectively.

The shared identification distillation L$, is computed based
on the shared attention distributions Ag and Aj:

r, =3 AR A
= g — g 1
= VAT TAsT

where the shared attention distributions Ag and Af are
computed using the same methods as described in Dual-Distill
with shared hidden token representations Hg and H7 obtained
from a shared encoder layer.

Then, Tri-Distill is trained by minimising the sum of total
loss L with parameters A, u, v, and ~:

L= AL, + 7Ly, + vy°L,

Tri-Distill can also be extended to provide more than two
levels of output for the WB hierarchy. Towards more levels
of output for the WB hierarchy, a joint teacher model T,
which jointly generates topics and extracts multiple levels of
attributes, can be pre-trained, and a student model S can be
distilled using the Tri-Distill method to jointly distilled across
the topic generation, and different levels of attribute extraction.
We use 4, ts to denote the time cost of a single teacher model
and a single student model, b to denote the batch size, n to
denote the sequence length in each batch, r to denote the
number of previously seen topic phrases and g to denote the
length of the generated topic phrase. Then the time complexity
of training Tri-Distill is O(b x (t; +ts + nr+n+ g)).

C. Joint-WB

So far we have focused on the teaching (i.e., distillation)
process in KD. Although the teaching methods are important,
the teacher model’s knowledge structure (i.e., model archi-
tecture) also influences the student model’s performance. We
propose Joint-WB as a powerful teacher for the proposed
distillation methods. Joint-WB fully exploits the correlations
between key attributes, topics and informative contents, and
avoid error propagation between them. It consists of three
parts: a key attribute extractor £, a topic generator G, and
an informative section predicator P. Fig. 3 illustrates the
architecture of Joint-WB.

To better capture and share the learning signals between &,
G and P, we further add signal enhancement and exchange
mechanisms during the training of three parts. Specifically,
‘P predicts the location boundaries of informative sections
through a Markov dependency mechanism. £ extracts key
attributes from a webpage using a section-and-topic dual-
aware signal exchange mechanism, and G generates a piece
of fluent text in natural language to summarize the general
topic of the webpage using a section-and-key-attributes dual-
aware signal exchange mechanism.



Document BERTSUM Contextual Emebeddlng Key Attributes Extraction
T R T — N ETTTETTTETTT
| [oLs]| > —> QOO0 i (e__lo .0 .l [e ;
! oo P : @ e (3 ® :
: P P i—>i |®[__{e|__[o®f__| o -
t| sent | —> — .‘ 1 : !
A L i Lo B | ) o) ; .
; —> = 1 00 e ;
: b Lo : ]
' ' ' [ ! Informatlve Section_Prediction Q
' 1 [SEP] | ! | HE T e A A Rl L . c
[ : ; ! E .’ ‘. E ,’ C(l] Cg c?n ' _UE’
5 P : i N |® @ o i 5
_________ Co . |:(> ® o .. ® — 5 0.01,1,0 =
/ v P : (@ |® ® ; o
(o] > < 0@@®]: 88§ N
5 b P : General Topic Generation________________________ g
D] sent | ——> e .. ; .’l d A ch \ S
; L P L (88—~ —8 S
Lmo e e o0 —> (®__|e ox .
[ser] =Y L @@@0)  {[0—0— — |
Fig. 3. The architectures of Joint-WB
Model details. Given a webpage document D = hidden token representations Cg is updated to yield section-
{wl, wi, ., wl, . wp, wy - wihe }, where w) s the i-th  and-topic dual-aware hidden token representations Cg using

token in the j-th sentence, m is the number of sentences, n;
is the length of the j-th sentence, and w? is the j-th [CLS]
symbol inserted to indicate the start of the j-th sentence, which
helps collect latent summarizing features of the sentence [21].
Joint-WB uses BERTSUM [21] to encode D to a sequence of
vectors C = {c, ¢1, ..., 1", oo, €y Gy ooy G}, Where ¢ s
the contextual embedding of the ¢-th token in the j-th sentence,
and c? is the contextual embedding of the j-th sentence. The
contextual embedding of all the sentences in D is denoted as
CO={c,cY,....,8 }.

The key attribute extractor £ converts C to hidden token
representations Cg = {ej,ea,...,e;} using Bi-LSTM [22],
where [ is the total number of tokens and e; is the i-th
hidden token representation. The topic generator G employs
an encoder-decoder framework [23]. It converts C° to hidden
sentence representations Cg {91,92, .-, 9m} using Bi-
LSTM [22] and use LSTM [22] to decode and generate hidden
topic representations Q = {qi, g, ...,q, }» where n’ is the
length of the topic phrase, ¢; is the i-th hidden topic token
representation in the generated topic phrase. The informative
section predictor P converts C° to informative section vectors
C% = {p1,...,pm} by a Markov dependency mechanism, i.e.,
to decide whether the j-th sentence is in an informative section
by looking at the j — 1 and j 4 1 sentences:

)1, sigmoid(c)_ W) + cIWicl ) = 0.5
Pi= 0, sigmoid(c j_lwgcg +00Wp 9,1) <05

where VVp1 and Wﬁ are trainable parameters. p; = 1 means the
sentence is in an informative section and p; = 0 otherwise.
To fully exploit the correlation of attributes, topics and
informative sections, we share the learning signals of £, G and
‘P through signal exchange and enhancement mechanisms. The

an attention A¢ between the section and the topic:
Ce = CeAs

Attention A¢ records the relationship between the integrated
hidden topic representations Q" and the section-dependent
hidden token representations C::

Ag = softmaz(CZWAEQhT)

where W 4 is trainable parameter. Qh is the combination
of all the information in the generated topic phrase. We
concatenate the hidden representations of all the tokens in
Q and pass it through a dense layer with tanh as a non-
linear activation function. C% is the update of Cg, which
contains section information. We concatenate Cg with an
injected section distribution, and pass it through a dense layer
with tanh as a non-linear activation function:

Q" =tanh((1 ® @2 & ... B q,,, )W)
C} = tanh((Ce @ ®¢(p;))Wep)

where W and Wep are trainable parameters. ®¢ is a
function which injects p; into the same dimensions as Cg.
The hidden sentence representation Cg is updated to yield
a section-and-key-attributes dual-aware hidden representation
¢ using an attention Ag between the section and key
attributes through:

Cg = CoAg

Attention Ag records the relationship between the integrated
hidden token representations E and the section-dependent
hidden sentence representations C’g‘:

Ag = softmaz((Cl © EMW 4¢)



where W 4¢ is trainable parameter and ©® is element-wise
multiplication. E contains the informations of key attributes.
We concatenate the hidden token representations in Cg and
pass it through a dense layer with fanh as a non-linear
activation function. Cg is the update of Cg, which contains
section information. We concatenate Cg with an injected
section distribution, and pass it through a dense layer with
tanh as a non-linear activation function:

E" =tanh((e, @ ea @ ... ® e) )W)
Cg = tanh((Cg @ ®¢(p;))Wee)

where Wg and W are trainable parameters. &g is a
function which injects p; into the same dimensions as Cg.

Then, C¢ is fed into a softmax based output layer to get
the output distribution O., Cg is firstly fed into the decoder
layer then a softmax based output layer to produce the output
distribution Oy. Joint-WB is trained to jointly minimise the
total loss L:

L = CrossEntropy(Oe., gt.) + CrossEntropy(Oy, gty)

where gt. and gt, are ground truth and CrossEntropy is a
function that computes cross-entropy loss.

Joint-WB is built on the BERT,,, model. The time com-
plexity of training Joint-WB is impacted by BERT},s.. We
use [ to denote the maximum document length, b to denote the
maximum batch size, ¢, to denote the time cost of BERT},,,. for
each batch, ¢ to denote the number of sentences in a sequence,
d to denote the dimensionality of hidden states. The time
complexity of training Tri-Distill is O(% x (t,+d?+1d+d+1)).
To extend the Joint-WB model to more than two levels of
hierarchy, we can use multiple extractors £ to tackle key
attributes at different levels, combine the signals from different
levels, and share the combined signals with the generator G.
We leave an in-depth study for future work.

IV. EXPERIMENTS

We first describe the experimental setup in Section IV-A.
We evaluate Dual-Distill and Tri-Distill in Section IV-B and
Joint-WB in Section IV-C. In Section IV-E, we inspect the
model sensitivity on synthetic webpages and perform a human
evaluation over the model outputs. Even though the WB results
may be a hierarchy of multiple levels, we run experiments with
two levels because the labelled data is two levels. We leave
experimental study on more levels to future work.

A. Experimental Setup

1) Dataset Construction: We constructed a dataset con-
sisting of around 655K English webpages collected from
312 websites. Among the 655K webpages, 620k webpages
(Djasm) are collected from 305 websites based on the Jasmine
Directory?, which is a web directory organised in topic based
categories. The collected webpages cover 153 topics, and
each topic contains two websites. For each website, 1,500
to 2,000 content-rich webpages are downloaded using the

Zhttps://www.jasminedirectory.com/

structure-driven crawler [24]. Indexing webpages and multi-
media webpages such as video, music and image pages are
not included. Another 30k webpages (Dgwqe) are collected
based on the webpage list provided by the SWDE dataset [25],
which contains labelled key attributes for different content-
rich webpages. These 30k webpages cover seven websites and
seven topics, and 1,500 to 2,200 webpages are downloaded for
each website. Overall, the averaged webpage length is 1731.6
(std=210.3) tokens, and the total vocabulary size is 13M. The
number of attributes in each webpage is four, and the averaged
topic length is three (std=0.74) tokens.

2) Dataset Quality: We randomly select 500 webpages and
ask five volunteers to assign a score of 2 (perfectly suit-
able/correct), 1 (suitable/correct), or 0 (unsuitable/incorrect)
to each webpage to indicate: i) whether the webpage is
content-rich, ii) whether the given topic suitably summarizes
the general idea of the webpage, and iii) whether the given
attributes are correct. All the volunteers have studied English
for at least ten years and are trained on the scoring criteria
for 25 minutes. We compute the inter-annotator agreement
using Cohen’s x measurement. The result shows that the
volunteers have very high agreement (x >0.93) for all three
evaluation aspects. All the webpages are content-rich based
on a majority vote. All the topics suitably summarize the
webpages, among which 92.6% are perfectly suitable. All the
webpages have correctly labelled attributes. This demonstrates
that the trustworthiness of our constructed dataset.

3) Preprocessing: For all the webpages, we use an open-
source automated rendering software’ to render the webpages
and collect visible texts from the webpages. We convert all the
text into lowercase and replace digits with token <digit>. The
text is tokenised with BERT’s WordPieces tokenizer where
each newline character, <digit>, and punctuation is preserved
as a single token. We follow the document representation
method [21] to insert [CLS] tokens at the start of each
sentence. Each document is zero-padded to the same length
of 2,048 and is splitted into four 512 sub-documents because
of the input length limitation of BERT.

4) Evaluation Metrics: We use precision (P), recall (R),
and Fl-score (F1) to evaluate the performance of key at-
tribute extraction. For topic generation, we report both exact
matching (EM) and relaxed matching (RM) performance. In
exact matching, a generated topic is considered correct only
if it exactly matches the ground truth. In relaxed matching, a
generated topic is considered correct if it contains at least one
token of the ground truth. McNemar’s test of p<0.05 is used
to test whether the improvements are statistically significant.

5) Implementation Details: Our proposed Dual-Distill and
Tri-Distill methods with Joint-WB as the teacher are built on
the BERT},.. model and are trained on GTX 1080 GPUs. All
our methods are optimized using an Adam with 51 = 0.9
and 82 = 0.999, an initial learning rate of 0.1 with decay
rate of 0.1, gradient clipping = 0.1, and we use a linear
warm-up strategy with 2,000 warm-up steps. The batch size

3https://www.seleniumhq.org/
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is set to 16 with a sub-document length of 512 for BERT
because of the input length limitation. The batch size is
set to 4 with a document length of 2,048 to preserve the
intra-document relation for general topic generation and key
attribute extraction. All the LSTM hidden states are set to
108 dimensions, and a dropout rate of 0.2 is applied to avoid
overfitting. We use beam search in the inference process, the
size and the depth of which are set to 200 and 4, respectively.
The hyperparameters « is set to 0.1, y is set to 2, A is set to 0.1,
wis set to 1 and v is set to 2.25. All the hyperparameters are
tuned using the same development data. The training is early
stopped once convergence is determined on the development
dataset. Joint-WB takes about 23 hours (9 epochs) to converge.
Dual-Distill takes about 3.5 hours to converge (3 epochs). Tri-
Distill takes about 3.8 hours to converge (3 epochs).

6) Baselines and variants for Joint-WB: i) Single-task
baselines. To evaluate whether joint training of sub-tasks can
help the learning process, we compare Joint-WB with single-
task models:

o *—=Bi-LSTM: we use Bi-LSTM [22] as encoder for key

attribute extraction;

o *—>[Bi-LSTM, LSTM]: we use Bi-LSTM as encoder and
LSTM as decoder for topic generation.

Here, *— represents using different word embedding meth-

ods in single-task models, e.g., GloVe—[Bi-LSTM, LSTM].

We compare both context independent and context depen-
dent word embedding methods in single-task models to evalu-
ate how much improvements are caused by word embeddings:

o GloVe—*: we directly apply context independent word
embeddings learned by GloVe [26];

o BERT—*: we fine-tune BERT [27] to learn context
dependent word embeddings;

e BERTSUM—*: we fine-tune BERTSUM [21] to learn
context dependent word embeddings.

Here, —* represents applying word embedding methods to

different single-task models, e.g., BERT—Bi-LSTM.

We also add different prior knowledge to single-task models
to evaluate whether adding signals about informative sections
and topics can help the learning process:

o +prior section: we add prior knowledge about informa-
tive sections to Bi-LSTM for both tasks following the
concatenation procedure in ATAE-LSTM [28];

e +prior topic: we add prior knowledge about topics
to Bi-LSTM for key attribute extraction following the
concatenation procedure in ATAE-LSTM [28].

ii) Joint variants and baselines. To evaluate the effectiveness
of our joint model and the signal exchange and enhance-
ment mechanisms, we compare Joint-WB with a no signal
exchange method, concat-based signal exchange methods,
attention-based signal exchange methods, and a section
signals enhancement method:

« Naive-Join: we directly train two baseline extractor and

generator together by minimising the total loss;

o Con-Extractor: we concate the hidden token represen-
tation in extractor with the topic representations from a

baseline generator following [18], and jointly train the
extractor and generator by minimising the total loss;

o Ave-Extractor: we concate the hidden token representa-
tion in extractor with the average of topic representations
from a baseline generator following [18], and jointly train
the extractor and generator by minimising the total loss;

o Att-Extractor: we implement a topic-aware extractor
following the implementation of dual-aware hidden to-
ken representation learning in Section III-C without the
section-aware part when computing attention, and jointly
train the topic-aware extractor with a basic generator by
minimising the total loss;

o Att-Extractor+Att-Generator: we implement a key-
attributes-aware generator following the implementation
of dual-aware hidden representation learning in Sec-
tion III-C without the section-aware part when computing
attention, and jointly train topic-aware extractor and key-
attributes-aware generator by minimising the total loss;

o Pip-Extractor+Pip-Generator: we implement a Pip-
Extractor, which has a pipeline architecture of topic-
dependent and section-dependent representations learn-
ing. The topic-dependent representation is get from re-
moving the section-aware part when computing dual-
aware attention and the section-dependent representa-
tion is get from removing the topic-aware part when
computing dual-aware attention. Similarly, we implement
a Pip-Generator. We jointly train Pip-Extractor andPip-
Generator by minimising the total loss.

7) Variants for Dual-Distill and Tri-Distill: i) Distillation
model variants. To evaluate the effectiveness of dual dis-
tillation, we compare Dual-Distill with different distillation
methods. We use Joint-WB as the teacher model in different
variants.

« No Distill: we directly apply a pre-trained model on new
webpages from unknown domains;

e ID only: we remove the understanding distillation in
Dual-Distill and only apply identification distillation.

o« UD only: we remove the identification distillation in
Dual-Distill and only apply understanding distillation.

o Pip-Distill: we implement a pipeline method with two
Dual-Distill, in which we feed the output of the first Dual-
Distilled student for topic generation as a prior knowledge
when Dual-Distilling the second student for attribute
extraction. The generated topic from the first student is
fed to the second following the topic-aware representation
learning in Att-Extractor and Pip-Extractor.

ii) Teacher models variants. To evaluate the applicability
and effectiveness of Dual-Distill and Tri-Distill with different
teacher models, we apply them on both single-task and joint
teacher models. Notice that Dual-Distill only distills one task
when applied on joint teacher models, while Tri-Distill jointly
distills across two tasks when applied on joint teacher models.

« BERT-Single: we apply Dual-Distill on BERTSUM—Bi-
LSTM for attribute extraction, and on BERTSUM—[Bi-
LSTM, LSTM] (cf. Section IV-A6-i) for topic generation;



TABLE IV
RESULTS OF DIFFERENT DISTILLATION METHODS FOR TOPIC
GENERATION.

Methods | Unseen domains | Seen domains | All
| EM RM | EM RM | EM RM
No Distill 86.23 89.10 95.02 97.24 | 90.17 93.23
ID only 94.26 95.82 95.03 97.24 | 9473 97.02
UD only 94.40 95.98 94.85 97.19 | 94.68 96.98
Dual-Distill | 94.86 96.10 9498 97.24 | 9493 97.13
TABLE V

RESULTS OF USING DIFFERENT TEACHER MODELS IN DUAL-DISTILL AND
TRI-DISTILL ON PREVIOUSLY UNSEEN DOMAINS.

Methods | BERT-Single | Naive-Join | Joint-WB

| FIL EM | FI EM | FI  EM
No Distill 4410 7723 | 47.23 81.84 | 51.21  86.23
Dual-Distill | 50.79 85.18 | 53.10 89.27 | 57.28 94.86
Pip-Distill 51.55 - 54.02 - 58.02 -
Tri-Distill - - 54.26 * 58.20 *

Note: We do not expect the results marked with * to be better
because these are not intended for the target sub-task.

« Naive-Join: we apply Dual-Distill and Tri-Distill on
Naive-Join model (cf. Section IV-A6-ii);

« Joint-WB: we apply Dual-Distill and Tri-Distill on Joint-
WB model (cf. Section III-C).

B. Evaluation of Dual-Distill and Tri-Distill

To evaluate Dual-Distill and Tri-Distill, we use webpages
from 140 topics to train the teacher models, and use webpages
from another 20 topics to train the Dual-Distill and Tri-Distill.
The dataset is randomly taken from Dgyge and Djasm following
80%-10%-10% train-develop-test splits, respectively.

Tables IV and V summarize the results. Overall, Dual-
Distill outperforms baseline distillation methods on webpage
from unknown domains, which may contain both previously
seen domains and unseen domains. Applying Dual-Distill and
Tri-Distill with different teacher models on webpages from
previously unseen domains outperforms direct applying trained
teacher models on these webpages. Tri-Distill outperforms the
pipeline of two Dual-Distill for attribute extraction.

1) Effectiveness of Distillation: Table IV reports the results
where we compare our Dual-Distill method with different
distillation methods for topic generation. Overall, the distilled
models outperform direct applying the pre-trained teacher
model (No Distill) on webpages with previous unseen topics
by at most 8.63% in EM and 7.00% in RM. All the distilled
models achieve similar performance as direct applying the pre-
trained model on webpages with previous seen topics. These
results indicate that the distilled models retain the previous
learned information from the pre-trained teacher model, whilst
updating the student model to learn from the new webpages.

Both identification distillation (ID) and understanding distil-
lation (UD) are critical to the performance of dual distillation
on previously unseen domains, i.e., removing either would
result in a drop in performance. UD is more important than
ID for previously unseen domains, i.e., performance drops

TABLE VI
RESULTS OF SINGLE-TASK MODELS FOR ATTRIBUTE EXTRACTION USING
DIFFERENT WORD EMBEDDING AND PRIOR KNOWLEDGE.

Methods | P R F1

No prior topic

GloVe—Bi-LSTM 96.28 83.73  89.57
BERT—Bi-LSTM 95.00 90.12  92.50
BERTSUM~Bi-LSTM 95.02 90.12 9251
BERTSUM—Bi-LSTM + prior section | 95.11 9147  93.25
+ prior topic
GloVe—Bi-LSTM 98.47  89.12  93.56
BERT—Bi-LSTM 98.14 9421 96.14
BERTSUM+—Bi-LSTM 98.17 9423 96.16
BERTSUM—Bi-LSTM + prior section | 98.14 95.62 96.86
Joint-WB (our proposed) | 9842 96.21 97.30

more when UD is removed. Dual-Distill outperforms baseline
methods on webpage from unknown domains, which may
contain both previously seen domains and unseen domains by
at most 4.76% in EM and 3.90% in RM.

2) Applicability of Distillation: Table V reports the results
where we compare the performance on previously unseen
domains using different distillation methods with different
teacher models. Overall, using Dual-Distill with different
teacher models can improve the performance of both tasks.
This may be explained by the dual distillation, which enhances
the student model’s ability of discriminating between webpage
topics to locate similar attributes. Feeding the output of the
topic generation as a prior knowledge to the attribute extraction
in a pipeline manner (Pip-Distill) improves the performance
of attribute extraction in F1 score. This is because distillation
with topic information brings stronger hints about the contents
related to a topic and reduce the wrong extraction of attributes
from irrelevant contents. Tri-Distill further outperforms Pip-
Distill for attribute extraction. This could be explained by the
shared identification distillation, which leads to a more general
attention distribution and better hidden token representations.

The overall performance of attribute extraction is not as
good as the overall topic generation performance. This is
expected as the key attributes are difficult to extract without
any pre-defined attribute types for webpages on different
topics. Tri-Distill achieves 77.49% in EM when using the
naive-join model, and 82.82% in EM when using the Joint-WB
model. The performance of Tri-Distill for topic generation is
not as good as direct applying the teacher model (No Distill)
or Dual-Distill to topic generation only, which is the same as
we expect. This could be explained by the misleading signals
from key attributes during the joint distillation, which drag
down the performance of topic generation.

C. Evaluation of Joint-WB

We compare the performance of Joint-WB with baseline
models on webpages with previously seen domains. We use
data from Dgyge and Djusm following the random 80%-10%-
10% train-develop-test splits. Tables VI, VII, VIII and IX
present the results. Overall, Joint-WB outperforms single-task
baselines and all joint baselines for both tasks.



TABLE VII TABLE VIII
RESULTS OF SINGLE-TASK MODELS FOR TOPIC GENERATION USING RESULTS OF DIFFERENT JOINT MODELS FOR ATTRIBUTE EXTRACTION.
DIFFERENT WORD EMBEDDING AND PRIOR KNOWLEDGE.
Methods P R Fl1
Methods | EM RM No signal
Glove—[Bi-LSTM, LSTM] 85.38  86.86 exchange ‘ Naive-Join ‘ 96.27  93.14  94.68
BERT:+[Bi-LSTM, LSTM] 9154 93.04 Concat-based | Con-Extractor | 9638 9372 9503
BERTSUM[Bi-LSTM, LSTM] 91.63  93.28 signal exchange
BERTSUM[Bi-LSTM, LSTM] + prior section | 92.20  93.81 ’ | Ave-Extractor | 9648 93.69  95.07
Joint-WB (our proposed) | 95.02 97.24 Attention-based | Att-Extractor | 9773  94.02 95.84
signal exchange
. . . . Att-Extractor+Att-Generator | 98.20 95.81 96.99
1) Comparison with Single-task Baselines: Tables VI | . : |
and VII report the performance of single-task models. Over- ~ Section signal | Pip-Extractor+Pip-Generator | 9831 96.07 97.18
. . . enhancement .
all, Joint-WB outperforms the baselines on both attribute | Joint-WB (our proposed) | 9842 96.21  97.30
extraction and topic generation by considerable margins. It
outperforms the best baseline without any prior knowledge by TABLE IX
4.79% in F1 for attribute extraction (Table VI) and by 3.40% in RESULTS OF DIFFERENT JOINT MODELS FOR TOPIC GENERATION.
EM for topic generation (Table VII). This can be explained by Methods EM RM
the joint learning and signal exchange mechanisms used in our No signal ] )
. . . Naive-Join 93.70  95.11
model, which help capture the inherent correlations between exchange
the subtasks, and lead to better hidden representations as well Concat-based | Con-Extractor | 93.71  95.11
as better prediction results. signal exchange | Ave-Extractor | 9371 95.16
. ﬁn}ong the bj'ﬁ‘seh‘ll(e mf’dels’}l as Table ZI Sf}‘;’ws’ fo; lat‘ Attention-based | Att-Extractor | 9382 9520
tribution extraction, knowing the topics of webpages helps i
. .g P . pag .p signal exchange | Att-Extractor+Att-Generator | 94.20  96.31
improve the performance with at least 3.64% in F1 (No prior : -
topic BERT—Bi-LSTM vs. +prior topic BERT—Bi-LSTM). Section signal | Pip-Extractor+Pip-Generator | 9474 96.85
. . .. . . enhancement .
This confirms the intuition that knowing the general topic of | Joint-WB (our proposed) | 95.02  97.24

a webpage can guide locating the key attributes.

The baseline models yield better results when the in-
formative sections of webpages are given as prior knowl-
edge, i.e., BERTSUM—Bi-LSTM + prior section outperforms
BERTSUM~—Bi-LSTM by 0.74% in F1 for attribute extrac-
tion, and BERTSUM—[Bi-LSTM, LSTM] + prior section
outperforms BERTSUM—[Bi-LSTM, LSTM] by 0.57% in
EM for topic generation. This confirms the intuition that
knowing the informative section can provide signals about the
general location of important contents and reduce the influence
of less informative contents.

For both tasks, the BERT based baselines outperform the
GloVe based baselines. The reason is that BERT learns
context-dependent word embeddings, which could better re-
flect the meaning of a word in specific context and lead to
better performance for downstream tasks.

2) Comparison with the Joint Learning Baselines: Ta-
bles VIII and IX report the results where we compare Joint-
WB with other joint models and variants of Joint-WB. Overall,
Joint-WB outperforms the best baseline by 0.12% in F1 for
attribute extraction and by 0.29% in EM for topic generation.
This is because of the signal exchange and enhancement
mechanisms used in our model, which improves model’s
capability to utilize the hints from other sub-tasks.

The concat-based signal exchange methods are slightly
better than Naive-Join for attribute extraction, and are the same
as Naive-Join for topic generation. The slight improvements
are expected since all the words are regarded equally towards
a topic, while actually different words in a webpage should
gain different attention with a given topic. In comparison, the
attention-based signal exchange yield more improvements for

both tasks than concat-based methods, i.e., up to 1.96% in F1
for attribute extraction and 0.49% in EM for topic generation.
Enhancing the signal from the informative section prediction
task using pipeline methods (Pip-Extractor+Pip-Generator)
also contribute to the model performance. The improvement
trend is consistent with the observation on adding prior
knowledge about informative sections to single-task models.
Joint-WB model outperforms the pipeline based models since
dual-aware extractor or generator learn lead to more universal
hidden representations than pipeline extractor or generator.

D. Model Sensitivity

We inspect the content sensitivity of the proposed Joint-WB
model, and the proposed Dual-Distill and Tri-Distill methods
with Joint-WB as the teacher on 300 synthetic webpages. We
concate the content of two real webpages with different topics
into a synthetic webpage. The proportion of content length of
the two real webpages is controlled to 50%-50%, 70%-30%
and 30%-70%. We observe that the Joint-WB model without
any distillation always predicts based on the content appear
first in the synthetic webpage, while the Dual-Distill and Tri-
Distill methods tend to predict based on the content with a
larger portion. This indicates that Joint-WB is more sensitive
to the content position while the Dual-Distill and Tri-Distill
are more sensitive to the content length. In future work, we
plan to explore WB models which provide more hierarchical
summary for webpages with combination contents.

E. Human Evaluation

To complement the automatic evaluation for topic gener-
ation, we also perform a human evaluation on 40 randomly



TABLE X
AVERAGE SCORE OF HUMAN EVALUATION OF DIFFERENT MODELS FOR
TOPIC GENERATION.

Methods ‘ Seen domians  Unseen domians
BERT+—[Bi-LSTM,LSTM] 1.30 0.97
BERTSUM—[Bi-LSTM,LSTM] 1.35 0.99
Naive joint 1.49 1.08
Att-Extractor + Att-Generator 1.60 1.20
Pip-Extractor + Pip-Generator 1.64 1.23
ID only 1.78 1.71
UD only 1.75 1.74
Tri-Distill (our proposed) 1.83 1.81
Full score 2.00 2.00

selected webpages with previous unseen topics, and 40 ran-
domly selected webpages with previous seen topics. We ask
ten volunteers to assign a score of 2 (perfectly suitable),
1 (suitable) or O (unsuitable) to each webpage to indicate
whether the generated topics from different models are suitable
for the webpage. All the volunteers have studied English for
at least ten years and are trained on the scoring criteria with
ten examples for 25 minutes. We compute the inter-annotator
agreement using Cohen’s x measurement. The result shows
that volunteers have high agreement (v >0.83) for generated
topics from different models on different webpages. Table X
shows the average score of the human evaluations, which
is consistent with the results in automatic evaluation. Our
proposed models achieves better scores than different baselines
on webpages with previously unseen domains.

V. CONCLUSION

We proposed the new task of webpage briefing (WB), which
provides a summary of a webpage in a hierarchical manner to
help increase the speed of webpage browsing. We propose
three models for the task, Dual-Distill, Tri-Distill, and Joint-
WB. Dual-Distill consists of identification distillation and
understanding distillation, where the former distills knowledge
on identifying informative contents under the guide of pre-
defined topics, while the later distills knowledge on topic
generation or key attribute extraction. Tri-Distill consists of a
shared identification distillation and two understanding distil-
lations, one for topic generation and the other for key attribute
extraction. Joint-WB has a joint learning architecture with
signal exchange and enhancement mechanisms among a key
attribute extractor, a topic generator, and an informative section
predictor. Experiments using real-world webpages show that
Dual-Distill and Tri-Distill achieves high performance for WB
with 94.86% in EM and 58.20% in F1 on unseen domains.
They outperform baselines in different settings by at most
7.03% in F1 and 8.63% in EM. Experimental results also
show that Joint-WB achieves 97.30% in F1 and 95.02% in
EM on seen domains. It outperforms single-task baselines by
at most 7.73% in F1 and 9.65% in EM, and also outperforms
other jointly trained baselines. Human evaluation validates the
effectiveness of the proposed models.

For future work, we aim to extend the proposed models and
experimental study to more levels of hierarchy. We also plan

to predict attribute names for key attributes (e.g., in Fig. 1, the
attribute name for the key attribute ‘$40.13” is ‘Price’ ).
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