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Abstract—Topic modeling has become a widely used tool
for document management due to its superior performance.
However, there are few topic models distinguishing the im-
portance of documents on different topics. In this paper, we
investigate how to utilize the importance of documents to
improve topic modeling and propose to incorporate link based
ranking into topic modeling. Specifically, topical pagerank is
used to compute the topic level ranking of documents, which
indicates the importance of documents on different topics. By
retreating the topical ranking of a document as the probability
of the document involved in corresponding topic, a generalized
relation is built between ranking and topic modeling. Based
on the relation, a ranking based topic model RankTopic is
proposed. With RankTopic, a mutual enhancement framework
is established between ranking and topic modeling. Extensive
experiments on paper citation data and Twitter data are
conducted to compare the performance of RankTopic with
that of some state-of-the-art topic models. Experimental re-
sults show that RankTopic performs much better than some
baseline models and is comparable with the state-of-the-art
link combined relational topic model (RTM) in generalization
performance, document clustering and classification by setting
a proper balancing parameter. It is also demonstrated in
both quantitative and qualitative ways that topics detected by
RankTopic are more interpretable than those detected by some
baseline models and still competitive with RTM.
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I. INTRODUCTION

Document network is defined as a collection of documents
that are connected by links. Document networks become
ubiquitous nowadays due to the widespread use of online
databases, such as academic search engines [1]. In general,
documents can have various kinds of textual contents, such
as research papers, web pages or tweets. Documents can also
be connected via a variety of links. For example, papers can
be connected together via citations, web pages can be linked
by hyper-links, and tweets can link to one another according
to the retweet relationship.

Given a document network, topic modeling aims at dis-
covering semantically coherent clusters of correlated words
known as topics. Traditional topic models include PLSA
(Probabilistic Latent Semantic Analysis) [2] and LDA (La-
tent Dirichlet Allocation) [3]. By using topic modeling,
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documents can be modeled as a distribution over topics
instead of that over words. As features of documents,
topics are usually much lower in dimension and much more
interpretable than words.

However, most topic models treat documents as equally
important, while in practical situations documents have
different degrees of importance on different topics, thus
treating them as equally important may inherently hurt the
performance of topic modeling. To quantify the importance
of documents on different topics, topical pagerank [4] can be
used, which is an extension of a well known ranking algo-
rithm pagerank [5]. Although pagerank is initially proposed
for the purpose of ranking web pages, it can be also used
to rank research publications since concepts and entities in
both domains are similar [6]. In this work, we propose to
incorporate link based ranking into topic modeling.

Specifically, topical pagerank is employed to compute the
importance scores of documents over topics, which are then
leveraged to guide the topic modeling process. The proposed
topic model is called ranking based topic model, denoted
as RankTopic for short. Compared to existing topic mod-
els, RankTopic distinguishes the importance of documents
while performing topic modeling. The philosophy behind
the methodology is that the higher ranked documents are
given more weights than the lower ranked ones.

As a motivating example, let’s see a small artificial
network with six documents as Figure 1 shows. The left
side of the figure is the word-document matrix, and the right
side is a fictional link structure among those imaginary docu-
ments. Traditional topic model (i.e. PLSA or LDA) discovers
two topics, which are colored by red and blue respectively.
The two topics can be interpreted as “image segmentation”
and “community detection” from corresponding words in
them. The colored bars beside documents indicate their topic
proportions. Since documents 1 and 5 have no words, both
of them are not labeled by any topics.

However, from the link structure, we have reason to
believe that documents 1 and 5 should have been labeled by
some topics because they are cited by documents with the
two topics. As a link combined topic model, iTopic [7] can
alleviate this issue to some degree. Figure 2(a) illustrates the
topic detection result of iTopic, from which we can see that
documents 1 and 5 are labeled by the two topics but with



word        doc 1 2 3 4 5 6

normalized 0 0 1 1 0 1

cuts 0 0 1 1 0 1

image 0 0 1 1 0 1

segmentation 0 0 1 1 0 1

graph 0 0 1 1 0 1

spectral 0 1 0 0 0 0

clustering 0 1 0 0 0 0

community 0 1 0 0 0 0

detection 0 1 0 0 0 0

network 0 1 0 0 0 0

(a) Documents
 

(b) Link structure

Figure 1. An artificial document network. There are two topics in these
documents, which are colored by red and blue respectively. Documents are
labeled by corresponding colored bars beside them.

 

(a) iTopic
 

(b) RankTopic

Figure 2. The topic proportions of documents output by iTopic and
RankTopic respectively. Higher bars indicate more proportions.

different proportions. Document 1 has more proportions on
red topic than on blue one while document 5 has the same
proportion on them. Notice that document 1 is cited by two
red topics (documents 3 and 4) and one blue (document 2),
while document 5 is cited by one red (document 6) and one
blue (document 2). iTopic treats neighboring documents as
equally important such that the topic proportions of both
documents 1 and 5 are computed as averages of topic
proportions of their neighbors.

However, documents can have various importance on
different topics, so treating them as equally important may
obtain inaccurate topics. RankTopic incorporates the ranking
into topic modeling such that it can well distinguishes
the importance of documents. Figure 2(b) shows the topic
detection result of RankTopic, from which we can see
that document 5 has much more proportions on red topic
than blue one. The underlying reason is that document 6
ranks high on red topic as it is cited by two red topics,
while document 2 ranks low because it is not cited by any
documents. There are more evidence showing that document
5 is more likely about red topic than blue one. In the aspect
of capturing such evidence, RankTopic performs reasonably
better than iTopic and other network regularization based
topic models, such as NetPLSA [8], which motivates our
study on RankTopic.

In the above example, we clearly see that RankTopic can
well incorporate the importance of documents into topic
modeling and addresses the drawbacks of some existing
topic models. We also experimentally demonstrate that
RankTopic outperforms some baseline topic models and is
comparable with one of the sate-of-the-art link combined
topic model RTM (Relational Topic Model) [9] in general-
ization performance, document clustering and classification,

and topic interpretability, which are all validated either
quantitatively or qualitatively in the experimental section.
Compared with existing topic models, RankTopic has the
following distinguished characteristics.

• Existing topic models assume that documents plays
equally important role in topic modeling. In contrast,
RankTopic incorporates the ranking of documents into
topic modeling and benefit from such combination.

• Previous works treat topic modeling and ranking as two
independent issues while RankTopic puts them together
and makes them mutually enhanced in a unified frame-
work.

• RankTopic is flexible since ranking and topic modeling
are orthogonal to each other such that different ranking
and topic modeling methods can be used according to
specific application requirements.

The rest of the paper is organized as follows. Section II
reviews the related works. Section III presents the pre-
liminaries about topic modeling and ranking. We propose
RankTopic model and present parameter learning algorithm
for the proposed model in Section IV. Experimental settings
and results are demonstrated in Section V and we conclude
this paper in Section VI.

II. RELATED WORKS

Topic models have been widely studied in the text min-
ing community due to its solid theoretical foundation and
promising performance. PLSA [2] and LDA [3] are two
well known basic topic models. Since they are proposed,
various kinds of extensions have been proposed by incor-
porating more contextual information, such as time [10],
[11], [12], [13], authorship [14], and links [7], [15], [8],
[16], [9]. [17] combines collaborative filtering and LDA for
recommending scientific publications. The present work also
incorporates links into topic modeling but uses different way
from previous works. Although most earlier link combined
topic models can capture the topical correlations between
linked documents, there are few works leveraging the topical
ranking of documents to guide the topic modeling process.
The most similar work to ours may be the TopicFlow
model [18]. The distinguished features of present work
from TopicFlow lie in the following folds. First, RankTopic
provides a more flexible combination between ranking and
topic modeling while TopicFlow couples flow network and
topic modeling tightly. This feature makes RankTopic more
extendable. Second, RankTopic builds a generalized relation
between ranking and topic modeling rather than a hard
relation like TopicFlow. Third, the topic specific influence
of documents computed by TopicFlow can actually serve as
the topical ranking in RankTopic as an alternative of topical
pagerank adopted by us.

Our work is also tightly related to ranking technology.
The most well known link based ranking algorithms are
PageRank [5] and HITS [19]. Both algorithms are based on



the phenomenon that rich gets richer. Topical ranking [4]
extends the algorithms by calculating a vector of scores
to distinguish the importance of documents on different
topics. [20] proposes random walk with topic nodes and
random walk at topical level to further rank documents over
heterogenous network. RankClus [21], [22] further extends
the method to heterogenous information networks to rank
one kind of node with respect to another. Compared to
RankClus which performs ranking based on hard clustering,
we incorporate ranking into topic modeling which is a
soft clustering. Another difference is that RankClus is a
clustering algorithm based on only links while RankTopic is
a topic modeling algorithm based on both links and texts.

We would like to mention PCL-DC [23], which is a
community detection model by combining links and textual
contents. The node popularity introduced in PCL-DC can
also be regarded as link based ranking. However, PCL-DC
introduces the popularity variable in the link based com-
munity detection model (PCL) but does not directly use it
in the discriminative content (DC) model, while RankTopic
explicitly incorporates ranking into the generative model of
textual contents. Another difference is that PCL-DC is a
discriminative model while RankTopic is a generative one
such that PCL-DC can not generalize to unknown data.

III. PRELIMINARIES

A. Topic Modeling

Topic modeling aims at extracting conceptually coherent
topics shared by a set of documents. In the following, we
describe topic model PLSA [2] upon which RankTopic is
built. We choose the most basic topic model PLSA rather
than the extended one, such as LDA, because we would like
to eliminate the effect of other factors, such as the Dirichlet
prior in LDA.

Given a collection of M documents D, let V denote
the total number of unique words in the vocabulary and
K represent the number of topics, the goal of PLSA is to
maximize the likelihood of the collection of documents with
respect to model parameters Θ and B.

P (D|Θ, B) =
M∏
i=1

V∏
w=1

(
K∑

z=1

θizβzw

)siw

(1)

where Θ = {θ}M×K is the topic distribution of documents,
B = {β}K×V is the word distribution of topics, and siw
represents the times that word w occurs in document i.

After the inference of PLSA, each topic is represented as a
distribution over words in which top probability words form
a semantically coherent concept, and each document can be
represented as a distribution over the discovered topics.

B. Ranking

Pagerank [5] is a well known link based ranking algo-
rithm. The main idea of pagerank is that, the importance
score of a document equals the sum of those propagated
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Figure 3. Mutual enhancement framework for ranking and topic modeling

from its in-link neighbors. However, ranking documents
by a single global importance score may not make much
sense because documents should be ranked sensitive to their
contents. Based on this consideration, topical pagerank [4]
is proposed.

As the input of topical pagerank, each document i is
associated with a topic distribution θi, which can be obtained
via topic modeling methods. Taking the topic distribution of
documents into account, topical pagerank produces a ranking
vector for each document, in which each element represents
the importance score of the document on each topic. Letting
γzi denote the ranking of document i on topic z, topical
pagerank is formally expressed as

γ
(t)
zi = λ

∑
j∈Ii

αγ
(t−1)
zj + (1− α)θjzγ

(t−1)
.j

|Oj |
+ (1− λ)

θiz

M
(2)

where α and λ are parameters that control the process of
prorogating the ranking score, which are both empirically
set to 0.85. γ.j =

∑K
z=1 γzj denotes the global ranking of

document j, Ii is the set of in-link neighbors of document i,
|Oj | denotes the number of out-link neighbors of document
j, and θjz is the topic proportion of document j on topic z
and M is the total number of documents.

The process of topical pagerank is illustrated in Figure 3
excluding the thick line. It can be seen that topical pagerank
first performs topic modeling and then performs ranking
in topic level, thus it regards ranking and topic modeling
separately. It is worthy to point out that the original topical
pagerank [4] method uses supervised learning method based
on predefined categories from Open Directory Project (ODP)
other than topic modeling methods to obtain the topic
distribution of documents.

IV. RANKING BASED TOPIC MODELING

In this section, we incorporate the ranking into topic
modeling and elaborate the proposed ranking based topic
model. Specifically, we first build a relation between ranking
and topic modeling, based on which ranking based topic
model RankTopic is then presented and derived in detail,
following which the learning algorithm of RankTopic is
presented.

A. Relation of Ranking and Topic Modeling

To incorporate the ranking into topic modeling, it is
essential to build the relation between them. However, there



is no closed solution for establishing this relation. Here, we
present a natural way to achieve this end.

Notice that the ranking γzi can be interpreted as the
probability P (i|z) of the node i involved in the topic z by
normalizing the ranking such that

∑M
i=1 P (i|z) = 1, ∀z. By

using the sum and product rules of the Bayesian theorem,
the topic proportion P (z|i) can be expressed in terms of γzi.

θiz = P (z|i) =
P (i|z)p(z)

M∑
i′=1

P (i|z)p(z)
=

γziπz
K∑

z′=1

γz′iπz′

(3)

where πz = P (z) is the prior probability of topic z.
By using the above interpretation, the topic proportion of

a document is decomposed into the multiplication of topical
ranking and the prior distribution of topics. However, there
is still a problem for the above equation. Topical ranking
is computed based on the link structure of the document
network, which inevitably have noise in practical situations.
We observe some self-references in the ACM digital library,
which is usually caused by some error editing behavior.
Inappropriate and incomplete references may also exist.
Therefore, equating between the topical ranking γzi and the
conditional probability P (i|z) also bring much noise into the
topic modeling. One possible solution for this problem is to
detect the noise links and remove them from the document
network. However, spam detection itself is a challenging
issue, which is out of the scope of this paper.

To reduce the effects of noise, we model the degree of our
belief on the ranking instead of removing the noise links.
Specifically, we transform Equation 3 to a more generalized
one by introducing a parameter ξ ranging from 0 to 1 to
indicate our belief on the ranking as follows.

θiz = P (z|i) ∝ ξγziπz+(1−ξ)p(i|z)πz = [ξγzi+(1−ξ)ϕzi]πz (4)

where ϕzi = p(i|z) has the same interpretation as γzi, but
it is a hidden variable rather than an observed one.

In Equation 4, if ξ = 0, the topic proportions are the same
as that in PLSA, and if ξ = 1, the topic proportions are
completely dependent on the topical ranking. Intermediate
values of ξ balance between the above two extreme cases.
The larger the value of ξ, the more information of ranking is
incorporated into the topic modeling. Therefore, Equation 3
is actually a special case of Equation 4 by setting ξ to 1.

B. RankTopic Model

Based on the generalized relation between ranking and
topic proportion, we can replace θ in PLSA with the right
side of Equation 4, which results in the ranking based topic
model RankTopic. Figure 4 shows the graphical representa-
tion of the RankTopic model. Different from the traditional
topic models, the probability p(i|z) of a document i involved
in a topic z is governed by the weighted mixture of topical
ranking γzi, and the hidden variable ϕzi in the RankTopic
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Figure 4. Ranking based topic model

model such that the effects of ranking on topic modeling is
integrated.

In this model, the topical ranking γ of documents is
labeled as observational variable (shaded in Figure 4) since it
can be obtained by the topical pagerank algorithm introduced
in Section III-B, although in an overall view topical ranking
is in fact unknown. By incorporating topical ranking γzi into
the topic modeling, the link information is naturally taken
into account since the topical ranking process is performed
on the link structure.

For RankTopic model, the likelihood of a collection of
documents D with respect to the model parameters is

P (D|γ, π, ϕ, β) =
M∏
i=1

V∏
w=1

(
K∑

z=1

[ξγzi + (1− ξ)ϕzi]πzβzw

)siw

(5)
where the definition of all the notations can be found in

the previous parts of this paper. Next, the maximum likeli-
hood estimation is adopted to derive the model parameters
involved in RankTopic.

C. Derivation of RankTopic
To obtain the (local) maximum of the likelihood in Equa-

tion 5, the expectation maximization (EM) based algorithm
is employed. Detailed derivation of the EM updating rules
is as follows.

The logarithm of the likelihood function is
L = logP (D|γ, π, ϕ, β)

=
M∑
i=1

V∑
w=1

siw log
K∑

z=1

βzw [ξγzi + (1− ξ)ϕzi]πz (6)

In the E-step, the posterior distribution P (z|i, w) of topics
conditioned on each document-word pair (i, w) is computed
by Equation 7.

ψ
(t)
iwz = P (t)(z|i, w) ∝ β

(t)
zw

[
ξγzi + (1− ξ)ϕ

(t)
zi

]
π
(t)
z (7)

Then, the lower bound of L can be derived by using Jensen
inequality twice as following,

L =

M∑
i=1

V∑
w=1

siw log

K∑
z=1

ψ
(t)
iwz

βzw [ξγzi + (1 − ξ)ϕzi]πz

ψ
(t)
iwz

≥
M∑
i=1

V∑
w=1

siw

K∑
z=1

ψ
(t)
iwz log βzw [ξγzi + (1 − ξ)ϕzi]πz

−
M∑
i=1

V∑
w=1

siw

K∑
z=1

ψ
(t)
iwz logψ

(t)
iwz

≥
M∑
i=1

V∑
w=1

siw

K∑
z=1

[ξψ
(t)
iwz log βzwγziπz

+(1 − ξ)ψ
(t)
iwz log βzwϕziπz ] −

M∑
i=1

V∑
w=1

siw

K∑
z=1

ψ
(t)
iwz logψ

(t)
iwz



In the M-step, the lower bound of L is maximized
under the constraints

∑V
w=1 βzw = 1 ,

∑K
z=1 πz = 1 and∑M

i=1 ϕzi = 1. Through introducing Lagrange multipliers,
the constrained maximization problem is converted to the
following one.

max
θ,π

M∑
i=1

V∑
w=1

siw

K∑
z=1

[
ξψ

(t)
iwz log βzwγziπz + (1 − ξ)ψ

(t)
iwz log βzwϕziπz

]

+
K∑

z=1

λz

(
V∑

w=1

βzw − 1

)
+ λ

(
K∑

z=1

πz − 1

)
+

K∑
z=1

λ
′
z

(
M∑
i=1

ϕzi − 1

)

The above maximization problem has a closed form
solution as follows, which gives out the update rules that
monotonically increase L.

β
(t+1)
zw ∝

∑M

i=1
siwψ

(t)
iwz (8)

π
(t+1)
z ∝

∑M

i=1

∑V

w=1
siwψ

(t)
iwz (9)

ϕ
(t+1)
zi ∝

∑V

w=1
siwψ

(t)
iwz (10)

As the parameter updating process converges, the topic
proportion θ can be computed by using Equation 4.

D. The Learning Algorithm of RankTopic

With RankTopic, we can build a mutual enhancement
framework by organizing topic modeling and ranking into
an alternative process illustrated in Figure 3. By introducing
RankTopic as the thick line shows, the sequential framework
from topic modeling to ranking is transformed to a mutual
enhancement framework.

From the implementation view, we provide the matrix
form of the parameter estimation equations. The parame-
ters involved in the overall framework include topic-word
distributions B = {β}K×V , hidden variable Φ = {ϕ}K×N ,
topic prior distributions Π = {π}K , and topical ranking
Γ = {γ}K×N . Let S = {s}N×V denote the document-
word matrix in which siw represents the time word w occurs
in document i. Let L = {l}N×N denote the link structure
among those documents in which lij = 1 represents that
there is a link from document i to document j and lij = 0
represents there is not.

It can be proved that Equation 8, 9, 10 and 2 have the
following four matrix forms respectively.

B = B. ∗
(
Y(S./(YTB))

)
(11)

where Y = (ξΓ+ (1− ξ)Φ)
[
Π · · · Π

]
, and .∗ and ./

represent element wise multiplication and division operation
between two matrices respectively.

Π = diag{Y(S./(YTB))BT} (12)

where diag{·} returns the main diagonal of a matrix.

Φ = Y. ∗
(
B
(
S./(YTB)

)T)
(13)

Algorithm 1: The learning algorithm of RankTopic
Input: A document network L with M documents including totally V unique

words, and the expected number K of topics and parameter ξ.
Output: Topic-word distributions B, Document-topic distributions Θ.
initialization: Perform PLSA to obtain B and Θ;
repeat

repeat
Γ = λ (αΓ + (1 − α)X) L̂ + 1−λ

M ΘT;

Normalize Γ such that ∀z, i,
K∑

z=1

N∑
i=1

γzi = 1;

until Satisfying condition 1;
repeat

B = B. ∗
(
Y(S./(YTB))

)
;

Normalize B such that ∀z,
V∑

w=1
βzw = 1;

Π = diag{Y(S./(YTB))BT};

Normalize Π such that
K∑

z=1
πz = 1;

Φ = Y. ∗
(
B
(
S./(YTB)

)T
)

;

Normalize Φ such that ∀z,
N∑

i=1

ϕzi = 1;

until Satisfying condition 2;
Θ = (ξΓ + (1 − ξ)Φ)

[
Π · · · Π

]
;

until Satisfying condition 3;
return B Θ;

Γ = λ (αΓ + (1− α)X) L̂ +
1− λ

M
ΘT (14)

where X =
(
[ sum(Γ) · · · sum(Γ) ]Θ

)T
, sum(·) re-

turns sums along the columns of a matrix, and L̂ is the
row normalization matrix of link structure L.

According to the mutual enhancement framework and ma-
trix forms of the updating rules presented above, the learning
algorithm of RankTopic is summarized in Algorithm 1. In
the following, we present the three termination conditions
in the algorithm.

Condition 1: This condition is to test whether the topical
ranking Γ converges. We compute the differences between
the topical ranking of the current iteration and the previous
one, and sum these differences over all the cells. If the
difference is lower than a predefined small value (1e-2 in
our experiments), this condition is satisfied.

Condition 2: This condition is to test whether the ranking
based topic modeling process converges. For each iteration,
we compute the log-likelihood of the observed documents
with respect to the current parameters B, Γ, Φ and Π via
Equation 6, and then compute the relative change of the log-
likelihood between two continuous iterations as the fraction
of the difference between the two log-likelihoods to the
average value of them. If the relative change is lower than
a predefined small value (1e-4 in our experiments), this
condition is satisfied.

Condition 3: This condition is to test whether the whole
process archives a (local) optimal solution. For each itera-
tion, we compute the log-likelihood of the ranking-integrated
document matrix with respect to the current parameters B
and Θ. The ranking-integrated document-word matrix is
computed by using topical pagerank on the link structure



and original document-word matrix. The ranking-integrated
document-word matrix is actually an imaginary document-
word matrix which contains the observational information
from both documents and links. The higher the computed
log-likelihood, the better the current solution. If the incre-
mental quantity of the log-likelihood is lower than a prede-
fined threshold (1e-3 in our experiments), this condition is
satisfied.

From a brief analysis, the time complexity of the algo-
rithm turns out to be O(E+N ×V ), which is linear in the
total number of links and words in the observed document
network.

V. EXPERIMENTS

In this section, we conduct experimental studies of Rank-
Topic in various aspects, and compare it with some state-of-
the-art topic models, namely PLSA, LDA, iTopic and RTM
(Relational Topic Model) [9]. The code for both PLSA and
LDA is downloaded from http://lear.inrialpes.fr/∼verbeek/
software.php while that for iTopic is provided by its author.
All the models except RTM are implemented in Matlab,
while the R package for RTM implemented by its author
is used in the following experiments (http://cran.r-project.
org/web/packages/lda/). It is worthy to point out that all
the models except RTM are learned by EM (Expectation
Maximization) based algorithm while RTM is learned by
Gibbs sampling method because the R package for RTM
provides a fast collapsed Gibbs sampler in C language. In
the experiments, we use two genres of data sets, i.e. three
public paper citation data sets and one twitter data set.

ArnetMiner: This is a subset of the Citation-network
V1 (http://www.arnetminer.org/citation) released by Arnet-
Miner [1]. After some preprocessing, there are 6,562 papers
and 8,331 citations left and 8,815 unique words in the
vocabulary.

Citeseer: This data set consists of 3,312 scientific pub-
lications and 4,715 links. The dictionary consists of 3,703
unique words. These publications have been categorized into
7 classes according to their research directions in advance.

Cora: There are 2,708 papers, and 5,429 citations in
this subset of publications. The dictionary consists of 1433
unique words. These publications have been labeled as one
of 6 categories in advance.

Twitter: The twitter data we used is released by [24],
which can be downloaded from http://arnetminer.org/
heterinf. In this data set, users associated with their pub-
lished tweets are regarded as documents and the ‘@’ re-
lationship among users as links. After some preprocessing
like stop word removing, we obtain 814 users in total and
5,316 unique words in the vocabulary. There are 4,206 ‘@’
relationships between those users.

Both Citeseer and Cora data sets used in our experiments
is the same as that used in [23].
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Figure 5. Perplexity results of RankTopic on ArnetMiner and Twitter
data sets by setting some typical values of parameter ξ and K (number of
topics). All these results are average values computed under 10-fold cross
validation.

A. Generalization Performance

In this subsection, we compare RankTopic with sev-
eral baseline topic models in terms of generalization per-
formance. Perplexity [25] is a widely used measure for
evaluating the generalization performance of a probabilis-
tic model. Lower perplexity indicates better generalization
performance.

Given a trained topic model {Θ, B}, the likelihood
P (dtesti |Θ, B) of document dtesti in the test corpus is com-
puted as follows.

P (dtesti |Θ, B) =
V∏

w=1

(
K∑

z=1

θizβzw

)stestiw

where stestiw represents the times that word w occurs in the
i-th testing document. Perplexity is formally defined as as
follows.

Perplexity = exp{−
∑Mtest

i=1 log(P (dtesti

∣∣Θ, B))∑Mtest

i=1 Ntest
i

}

where M test is the number of documents in the test corpus
and N test

i is the number of words in dtesti .
In our experiments, we perform 10-fold cross valida-

tion. Before comparing RankTopic with other topic models,
we first study how the value of parameter ξ affects the
generalization performance of RankTopic. Figure 5 shows
parameter study results for some typical values of ξ on
ArnetMiner and Twitter data. From the results, we observe
the following phenomenons.



Both the results on ArnetMiner and Twitter data sets
consistently show that RankTopic could obtain lower per-
plexity than the special case when ξ equals 0.0, which
actually degenerates to PLSA but with additional termination
condition for outside loop (see condition 3 in section IV-D).
These results show that link based ranking can indeed be
used to improve the generalization performance of basic
topic models. However, we also observe different effects of
ξ on RankTopic’s generalization performance for different
data sets. For ArnetMiner data, the lower the value of ξ,
the better RankTopic’s generalization performance except
for ξ = 0.0. For Twitter data, the best generalization
performance is obtained when ξ = 0.9 and perplexity is less
sensitive to ξ except for the special case of ξ = 0.0. Whether
RankTopic is sensitive to ξ may significantly depends on
the consistency between links and texts and the noises in
them. Nevertheless, we provide a tuning way for adapting
RankTopic into practical senecios.

Figure 6 illustrates the perplexity results of the compared
topic models. Results show that RankTopic with appropri-
ately set ξ performs best among all the compared models,
which indicates its superior generalization performance over
the baseline topic models. The underlying reasons for the re-
sults are analyzed as follows. By introducing Dirichlet prior,
LDA performs better than PLSA when K value increases.
However, the prior adopted by LDA is non-informative.
RankTopic can also be regarded as incorporating prior into
PLSA, but topical ranking is more informative than Dirichlet
prior. Both RTM and iTopic incorporate link structure into
topic modeling. However, iTopic assumes that the neighbors
of a node play equally important role in affecting the topics
of that node, which is usually not the truth in practical docu-
ment networks. The topics detected by RTM are governed by
both link regression process and the document contents, but
RTM does not model the weights of the two parts such that
its generalization performance depends on the accuracy of
links and contents. In contrast, RankTopic provides a turning
weight of the incorporation of ranking such that it is more
flexible than RTM.

B. Document Clustering

Besides the generalization performance, topic models can
also be evaluated by using their application performance.
The most widely used applications of topic models include
document clustering and classification. In this and subse-
quent subsection, we study the performance of RankTopic
on document clustering and classification respectively.

By using topic models, documents can be represented
as topic proportion vectors, upon which document clus-
tering can be performed. Specifically, we adopt k-means
as the clustering algorithm. For a network, normalized cut
(Ncut) [26], modularity (Modu) [27], are two well known
measures for evaluating the clustering results. Lower nor-
malized cut and higher modularity indicates better clustering
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(a) Perplexity Comparison on ArnetMiner
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Figure 6. Perplexity results of RankTopic and some baseline topic models
on ArnetMiner and Twitter data sets by setting various numbers of topics
(K). All these results are averages computed under 10-fold cross validation.
For RankTopic, the results of ξ = 0.1 and ξ = 0.5 are shown for
comparison purpose.
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Figure 7. Clustering performance of RankTopic with some typical values
of ξ on Citeseer data. For Ncut, the lower the better. For both Modu and
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the right one is for both Modu and NMI.

result. When the background label information is known for
documents, normalized mutual information (NMI) [28] can
also be used to evaluate the clustering result. The higher the
NMI, the better the clustering quality. In these experiments,
the number of clusters and topics are set to 6 for the Citeseer
data, 7 for the Cora data, which are suggested by [23], and
10 for twitter data. Since there are no significant clusters
in ArnetMiner data, clustering results on ArnetMiner is not
shown.

We first study the effect of parameter ξ. Figure 7 shows
the results. For both Ncut and Modu, RankTopic with
ξ = 0.9 performs best on Citeseer data. For NMI, RankTopic
with ξ = 0.3 performs best on Citeseer data. Overall,
RankTopic with ξ = 0.5 compromises among the three
evaluation measures. We obtain similar results on Cora and
Twitter data.

We then compare the clustering performance of Rank-



Table I
CLUSTERING PERFORMANCE OF DIFFERENT MODELS ON CITESEER

AND CORA DATA SETS. FOR NCUT, THE LOWER THE BETTER. FOR BOTH
MODU AND NMI, THE HIGHER THE BETTER. FOR RANKTOPIC,
ξ = 0.5. TR REPRESENTS THE TOPICAL RANKING MODEL.

Models
Citeseer Cora Twitter

Ncut Modu NMI Ncut Modu NMI Ncut Modu
PLSA 2.92 0.35 0.14 4.85 0.16 0.11 5.88 0.35
LDA 2.68 0.38 0.21 4.30 0.24 0.19 4.76 0.37
iTopic 2.09 0.48 0.26 4.01 0.29 0.21 4.60 0.45
TR 1.99 0.50 0.17 4.74 0.18 0.14 5.37 0.38
RTM 1.63 0.54 0.31 2.98 0.47 0.32 4.24 0.47
RankTopic 1.60 0.55 0.28 3.01 0.47 0.30 2.77 0.53

(a) iTopic (b) RankTopic

Figure 8. Clustering results of iTopic and RankTopic with ξ = 0.5 on
Citeseer data. The more a matrix looks like a block diagonal matrix, the
better the clustering result summarizes the links.

Topic with the baseline models. Table I reports our exper-
imental results. For the purpose of comparison, results of
RankTopic with ξ = 0.5 are selected to be shown. From
the results, we can see that RankTopic performs better than
PLSA, LDA, iTopic, topical ranking (TR) and is comparable
with RTM. More importantly, RankTopic outperforms both
of its ingredients, i.e. PLSA and topical ranking, which
indicates that combining PLSA and ranking has much better
clustering performance than each of them. Overall, the link
combined topic models have better clustering performance
than link ignored ones. NMI is not shown for Twitter since
there is no background labels for users in that data.

We finally study the clustering results qualitatively in a
visualized way. Since link structure can reflect the clusters
of documents to some degree, the adjacency matrix of
document network is taken for visualization. For example,
clustering results of iTopic and RankTopic on Citeseer data
are illustrated in Figure 8. Again, the clustering result for
RankTopic with ξ = 0.5 is only shown for comparison. The
documents clustered in the same class are arranged to be
adjacent to each other in the visualized matrixes. The more
a matrix looks like a block diagonal matrix, the better the
clustering result summarizes the link structure. The results
of PLSA and LDA look even worse than that for iTopic and
that of RTM looks more or less the same as RankTopic.
The visualization results are consistent with the quantitative
results in Table I.

However, there are large volume of community detec-
tion algorithms, such as spectral clustering [29] and PCL-
DC [23], which aims at partitioning a network into clusters
according to the links only. We do not compare RankTopic
with them because the community detection algorithms
directly perform clustering on links by optimizing measures
like normalized cut and modularity. One drawback of those
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Figure 9. Classification accuracy of RankTopic with some typical values
of ξ on Citeseer data set for different proportions of training data. Accuracy
is defined as the fraction of the correctly classified documents to the total
number of documents. The higher the accuracy, the better the classification
quality.

community detection algorithms is that they can only de-
scribe the community structure of the observational data but
can not generalize the results to unseen data, which actually
can be done by topic modeling methods. In this sense, it
is not fair to compare topic modeling methods with the
community detection algorithms.

C. Document Classification

In the previous subsection, we have validated that topics
detected by RankTopic serves as better features for docu-
ment clustering than some baseline topic models. In this
subsection, we further study the performance of RankTopic
on document classification. We use an open source package,
MATLABArsenal (http://finalfantasyxi.inf.cs.cmu.edu/), to
conduct the following experiments. Specifically, we select
SVM LIGHT with RBF kernel as the classification method,
and set kernel parameter as 0.01 and cost factor as 3. Recall
that label information for publications in Citeseer and Cora
data sets are known in advance, it is natural to choose the
two data sets for classification purpose.

Similarly, we first study the effect of parameter ξ by
empirically setting them to some typical values. Figure 9
shows the results on Citeseer Data. From the results, we
see that RankTopic with ξ = 0.3 perform best in terms
of classification accuracy. Overall, RankTopic performs well
when ξ is at the middle of the range [0,1] and performs bad
when ξ is close or equal to either 0 or 1. We obtain similar
results on Cora data. Based on the results, we also compare
RankTopic with the baseline models. Figure 10 shows the
comparison results. It can be seen that the classification
results built on topic features extracted by RankTopic are
better than all the baseline topic models except RTM on
Citeseer data set. Similar with the clustering results, the
classification performance of RankTopic is comparable with
RTM, which is one of competitive link combined topic
models.

From both the document classification and document
clustering results, we conclude that topics detected by
RankTopic indeed serve as better features for documents
than those detected by some baseline topic models, while
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Figure 10. Classification accuracy of different topic models on Citeseer
and Cora data sets for different proportions of training data. The higher the
accuracy, the better the model. For RankTopic, ξ = 0.3 is only shown. TR
represents topical ranking model.

RankTopic are comparable with one of the state-of-the-
art link combined topic models RTM in both document
clustering and classification. Of course, to achieve the best
performance, parameter ξ should be set properly, empirically
ξ can be set to values close to 0.5.

D. Topic Interpretability

Lastly, we study the topic interpretability of RankTopic.
Topics detected by topic models are represented as a distri-
bution over words in the vocabulary. The detected topics can
be interpreted as high level concepts from their top proba-
bility words. The more easier the topics can be interpreted
as meaningful concepts, the better the detected topics. We
define the degree of how easy a topic can be interpreted as
a semantically meaningful concepts as topic interpretability.

However, the interpreting process of a topic can be rather
complicated, which depends on the domain knowledge and
comprehensive ability of an interpreter. Nevertheless, there
exist some methods that try to evaluate the topic inter-
pretability in a quantitative way. One such method is to use
point-wise mutual information (PMI) [30] between pairs of
words to evaluate the topic coherence. Higher PMI reflects
better topic interpretability. In our experiments, we represent
each topic by using their top 10 words and compute PMI
between those words. The PMI of a topic is computed as
the average PMI of all pairs of top probability words of that
topic.

We first study the effect of parameter ξ on the topic
interpretability of RankTopic. Taking ArnetMiner data as
an example, Figure 11 illustrates the average and median
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Figure 11. The average and median PMI values of topics detected by
RankTopic with different ξ on the ArnetMiner data set. Notice that the
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interpretability.
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PMI values of topics detected by RankTopic with some
typical values of ξ. We see that when ξ is set to relatively
low values, such as 0.1 and 0.3, the topic interpretability
archives the best, while when ξ is set to 0, the topic inter-
pretability becomes worse. The results are consistent with
those of generalization performance, which suggests that
there are correlation between the generalization performance
and topic interpretability of topic models.

To compare the topic interpretability of different topic
models, we also compute the average and median of PMI
values of topics detected by the baseline models. Figure 12
presents the comparison results, from which we can see
that RankTopic performs better than some baseline topic
models and are slightly worse than RTM in terms of topic
interpretability. Besides the quantitative evaluation of topic
interpretability, we also compare the topics detected by
RankTopic and one of the baseline models LDA in a manual
way.

For example, Figure 13 shows one topic detected by LDA
and two topics detected by RankTopic in ArnetMiner data.
The titles for the topics are manually given out according
to the semantic of the top 10 words. Topic 4 detected by
LDA is interpreted as Language by us. However, this topic
is actually a mixture of two concepts. One is programming
language, which is indicated by red words. Another is
natural language, which is indicated by blue words. The
two concepts are well distinguished by RankTopic as two
topics, Topic 3 (Programming) and Topic 10 (Semantic).
From the experiments, we also find out that RankTopic
clearly discriminates topic Architecture detected by LDA as
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Figure 13. Example topics detected by LDA and RankTopic in ArnetMiner
data set.

Computer Architecture and Service Oriented Architecture.
Overall, all the 10 topics detected by RankTopic are easy to
be interpreted to meaningfull research directions from the
top probability words while some topics detected by LDA
are difficult to be interpreted.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose ranking based topic model called
RankTopic for short, which incorporates link based ranking
into topic modeling. To validate the effectiveness of Rank-
Topic, we have studied the performance of RankTopic in
various aspects, including generalization performance, doc-
ument clustering and classification, and topic interpretability
and have compared RankTopic with traditional topic models,
PLSA and LDA, and link combined topic models, iTopic and
RTM. Especially, we have investigated the model on a wide
range of typical balancing parameter values and find out
that RankTopic is sensitive to that parameter and it is indeed
necessary to introduce such parameter to combat link noises.
Extensive experiments show that when setting a proper bal-
ancing parameter ξ RankTopic performs consistently better
than PLSA, LDA and iTopic, and is comparable with RTM
in all the aspects on three public paper citation data sets and
one twitter data set. As future works, we will study how
RankTopic can benefit other applications, such as document
retrieval and recommendation. Furthermore, we will explore
how to use the similar idea of RankTopic to further improve
some extended topic models, such as author-topic model and
dynamic topic model.
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