
HexCNN: A Framework for Native Hexagonal

Convolutional Neural Networks

Yunxiang Zhao†, Qiuhong Ke†, Flip Korn‡, Jianzhong Qi†, Rui Zhang †∗

†The University of Melbourne, Australia, ‡Google Research, USA

{yunxiangz@student., qiuhong.ke@, jianzhong.qi@, rui.zhang@ }unimelb.edu.au, flip@google.com

Abstract—Hexagonal CNN models have shown superior per-
formance in applications such as IACT data analysis and aerial
scene classification due to their better rotation symmetry and
reduced anisotropy. In order to realize hexagonal processing,
existing studies mainly use the ZeroOut method to imitate
hexagonal processing, which causes substantial memory and
computation overheads. We address this deficiency with a novel
native hexagonal CNN framework named HexCNN. HexCNN
takes hexagon-shaped input and performs forward and backward
propagation on the original form of the input based on hexagon-
shaped filters, hence avoiding computation and memory over-
heads caused by imitation. For applications with rectangle-shaped
input but require hexagonal processing, HexCNN can be applied
by padding the input into hexagon-shape as preprocessing. In
this case, we show that the time and space efficiency of HexCNN
still outperforms existing hexagonal CNN methods substantially.
Experimental results show that compared with the state-of-
the-art models, which imitate hexagonal processing but using
rectangle-shaped filters, HexCNN reduces the training time by
up to 42.2%. Meanwhile, HexCNN saves the memory space cost
by up to 25% and 41.7% for loading the input and performing
convolution, respectively.

Index Terms—Hexagonal Convolution, Convolutional Neural
Networks, Deep Learning

I. INTRODUCTION

Recent studies show that compared with traditional

rectangle-based CNN models, CNN models with hexagon-

shaped filters achieve better performance in applications such

as Imaging Atmospheric Cherenkov Telescope (IACT) data

analysis [2], [19], [20], [23], Hex move-prediction [27], and

IcdCube data analysis [8]. Applying hexagonal filters in group

CNNs can even surpass the performance of traditional CNN

models with image classification tasks on data sets such as

CIFAR-10 [6], [22], [26].

To realize hexagonal processing, most existing studies apply

rectangle-shaped filters with the ZeroOut method to imitate

hexagonal processing [6], [17], [11]. We refer to these models

as hexagon-imitation models. These models, however, require

a padding strategy as a pre-processing for the input. Fig. 1b

and Fig. 1c illustrate the idea of such padding on the hexagon

and rectangle-shaped input, and resampling is required if the

input is not hexagonal grids such as Fig 1e. The padded area

(dark elements in Fig. 1b and Fig. 1c) is not needed for the

output but is computed as part of the input throughout the

hexagon-imitation models. This is due to the restrictions of

∗Rui Zhang is the corresponding author

Fig. 1: The original inputs (a, e), and the results after pre-processing
using ZeroOut [6] (b, f), Quasi-H [26] (c, g), and HexCNN (d, h).
(a) a hexagonal telescope image of gamma-ray events [18]. (e) a
rectangle-shaped image from CIFAR-10 [13] (best view in color).

existing deep learning frameworks where data is represented

in a rectangular way. After padding the input, the rectangle-

shaped filters in the network can be used to process the input

without having to accommodate the boundary of hexagonal

grids. To achieve hexagonal processing in convolution and

pooling, specific positions of the rectangle-shaped filter are

set to zero to eliminate their influence on the output (e.g.,

the two blue-colored elements with “0” in Fig. 2a). These

zeroed-out elements, however, lead to unnecessary memory

and computation costs in hexagon-imitation models. To sum

up, the limitation of hexagon-imitation models is that the

padding strategy and the ZeroOut manner in convolution and

pooling cause significant memory and computation overhead

for both hexagon and rectangle-shaped input.

In this paper, we introduce a new framework called Hex-

CNN to address this limitation. HexCNN takes hexagon-

shaped input and performs hexagonal forward and backward

propagation on the original form of the input based on

hexagon-shaped filters. We refer to this method as “native

hexagonal processing”. Compared with previous methods, the

proposed native hexagonal processing eliminates the memory

and computation overhead from the padding and ZeroOut

operations. As shown in Fig. 1d, for hexagon-shaped input,

the proposed HexCNN does not perform padding as done

in hexagon-imitation models. The convolution is achieved

using hexagon-shaped filters, which bypasses the unneces-

sary computation of the zeroed-out elements, as shown in

Fig. 2b. Therefore, HexCNN saves memory and computation

costs significantly when loading the input and performing



0

0

(a) (b)

+

(c) (d)

Fig. 2: Hexagonal convolution via (a) ZeroOut [6], (b) HexCNN, (c)
HexagDLy [25], and (d) Quasi-H [26]. Elements in blue denote the
filter (best view in color).

filter related operations such as convolution, pooling, and

backpropagation. For rectangle-shaped input such as images,

HexCNN incurs resampling and padding, and the incurred

unnecessary area has a similar size to those in hexagon-

imitation models, as shown in Fig. 1f, and Fig. 1h. In this

case, HexCNN still has less overhead due to the reduced

space and computation cost on native hexagonal convolution.

We detail the comparison between HexCNN and hexagon-

imitation models on both hexagon and rectangle-shaped input

in Section V. We summarize our contributions as follows:

• We propose a framework for realizing native hexagonal

processing named HexCNN. HexCNN provides native

hexagonal CNN operation algorithms for both forward

and backward propagation to achieve superior time and

space efficiency.

• We propose an algorithm for transforming hexagonal

convolution into matrix multiplication so as to exploit

matrix optimization algorithms for reducing the time

consumption of hexagonal convolution.

• We implement HexCNN on TensorFlow and perform

extensive experiments to evaluate its efficiency. The ex-

perimental results show that HexCNN outperforms the

state-of-the-art models, which imitate hexagonal process-

ing, by reducing up to 42.2% of the training time.

Meanwhile, HexCNN saves the memory cost by up to

25% and 41.7% for loading the input and performing

convolution, respectively. For applications with rectangle-

shaped input but require hexagonal processing, HexCNN

still outperforms existing hexagonal CNN methods by

reducing more than 20% of the training time.

We organize the rest of this paper as follows. We review

related work in Section II and present the fundamentals

of HexCNN in Section III. We describe the algorithm for

transforming hexagonal convolution to matrix multiplication

in Section IV, and report the experimental results in Section V.

We conclude the paper in Section VI.

II. RELATED WORK

In this section, we review studies that imitate hexagonal

processing. Existing hexagon-imitation models only work on

rectangle-shaped input. The rectangle-shaped input can be

hexagonal grids or square grids, as shown in Fig. 2a and

Fig. 2d. We classify existing hexagon-imitation models into

two categories. The first category is for input that is rectangle-

shaped hexagonal grids (Section II-A) and the second category

is for input that is rectangle-shaped square grids (Section II-B).

A. Hexagonal CNN Models on Hexagonal Grids

In order to realize hexagonal processing on hexagonal

grids, the ZeroOut method has been widely used [6], [17].

Young et al. [27] propose a hexagon-imitation model for a

chess game Hex and apply ZeroOut to achieve hexagonal

processing. Ke et al. [11] propose a hexagon-imitation model

for forecasting the ride-sourcing supply and demand, which

splits the input into a hexagonal lattice and then realizes

hexagonal processing by applying the rectangle-shaped filters

together with transform matrices. The concept of transform

matrices is similar to that of ZeroOut. A similar method was

proposed by Jacquemont [9], where the values of specific

positions in the filter are eliminated by a mask matrix. For

convolution, the models above mainly use rectangle-shaped

filters together with ZeroOut methods to achieve hexagonal

processing [12]. We use ZeroOut to represent above models.

Steppa and Holch [25] propose HexagDLy, which im-

plements hexagonal convolution and pooling by combining

multiple rectangle-shaped filters with different dilations and

sizes, as shown in Fig. 2c. HexagDLy does not use the

ZeroOut method during the convolution and achieves better

efficiency along with the increase of filter size due to the

advantage of divide-and-conquer. However, HexagDLy only

supports convolution and pooling.

B. Hexagonal CNN Models on Square Grids

To perform hexagonal CNNs on square grids such as images

and videos [6], [12], [26], it is required to first transform the

input from square grids to hexagonal grids. Resampling and

zero-padding have been widely used for this transformation,

which introduces unnecessary computation and space costs,

as illustrated in Fig. 1f. For convolution, existing work mainly

uses rectangle-shaped filters together with the ZeroOut method

to achieve hexagonal processing [12], as shown in Fig. 2a.

We consider them as ZeroOut, which is the same as that in

Section II-A. The only difference is that the ZeroOut here

takes square grids as the input, and the one in Section II-A

takes hexagonal grids.

Sun et al. [26] propose quasi-hexagonal kernels (Quasi-

H) for different convolution layers. Quasi-H is not hexagonal

processing in the strict sense and can only be considered

as hexagonal processing on deep CNN models with multiple

convolutional layers (each layer has multiple filters). Applying

Quasi-H on rectangle-shaped input for simulating hexagonal

convolution does not incur resampling or unnecessary padding,

as shown in Fig 1g. Applying Quasi-H to hexagon-shaped

input requires resampling and padding for pre-processing,

which the same as ZeroOut, as shown in Fig. 1c.

III. HEXCNN

Existing deep learning frameworks such as TensorFlow,

PyTorch and Caffe are efficient and maintained by open

source developers to keep optimizing their performance [1],

[10], [21], [28]. Instead of implementing HexCNN from

scratch, we have implemented it based on the TensorFlow by

adapting the core libraries and third-party Eigen library of



Inputs ReaderInputsInputs

Shuffel queue

Preprocessing Queue

Re-order

Dist. FS

Periodic
checkpoint

Param
eters

Read params

Apply grads Training

Forward
conv, pooling,

fully connection

Data shard
parallel processing

Backward
weights, bias

HEXAGONAL TENSOR

Fig. 3: The HexCNN dataflow graph inherited from TensorFlow
[1]. HexCNN achieves native hexagonal processing for forward and
backward propagation, and the low-level parallel and data sharding
algorithms, which are marked in red (best view in color).

TensorFlow, so that HexCNN retains the general applicability

of the framework. This way, implementing hexagonal CNN

models of various neural network structures on HexCNN is

similar to implementing rectangular CNN models of various

structures on TensorFlow. Therefore, HexCNN is a framework

for implementing hexagonal CNN models, i.e., CNN models

that directly take hexagonal inputs. The tensor in TensorFlow

is rectangle-shaped, and all the tensor-related steps need to be

rewritten for hexagonal processing. In TensorFlow, the input

is rectangular. For example, an RGB image is represented as

a 3D tensor [height, width, channel], while in HexCNN, the

input is hexagonal, and the corresponding tensor is represented

as [side length, channel]. In this section, we first give an

overview of HexCNN followed by its data representation and

fundamental operations.

A. Overview

Fig. 3 is the schematic dataflow graph of HexCNN, the “Re-

order” operation feeds an input into a hexagon-shaped tensor.

For optimization purposes, TensorFlow performs parallel com-

puting and data sharding, which are highly related to the shape

of the input, filters, and how they are stored in the memory.

HexCNN adapts these algorithms according to the hexagonal

data representation, which is detailed in Section III-B. Hex-

CNN applies hexagon-shaped filters for convolution and pool-

ing during forward-propagation. For backpropagation, Hex-

CNN converts the gradient computation into convolution, and

hence it is also based on hexagonal convolution. We detail the

hexagonal operations in Section III-C.

B. Data Representation and Storage

One of the fundamentals of HexCNN is data representation,

which determines the way to perform hexagonal processing.

HexCNN takes the idea of the Axial coordinate system [5],

[6], and moves the origin to the top-left corner, as shown in

Fig. 4a. Suppose the side length of the hexagon-shaped input

is k. Then the length of the first k rows increases by one for

each row and reduces by one after the kth row.

To reduce the memory and computation costs of hexagonal

processing, HexCNN transforms the hexagon-shaped input

into a column-based vector during the data storage phase.

Compared with hexagon-imitation models, HexCNN does not

(a) Data representation (b) Data storage

Fig. 4: Data representation (a) and storage (b) of HexCNN. HexCNN
is based on 2D Axial coordinate system, and transform the input into
a column major vector for data storage (best view in color).

require unnecessary spaces for storing both the input and con-

volution filters. Thus, it has lower memory and computation

costs. The dashed elements in Fig. 4 illustrates the space that

HexCNN saves for storing the input and filters in comparison

to existing hexagon-imitation models.

In convolution, existing hexagon-imitation models mainly

use ZeroOut to realize hexagonal convolution. This approach,

requires extra space for packing the filter, so as to run on exist-

ing deep learning frameworks, as shown in Fig. 2a. In pooling,

both HexCNN and hexagon-imitation models iteratively go

through the input, and they have the same space complexity.

However, extra computation is required by hexagon-imitation

models due to the padding strategy applied to the input.

C. Foundamental Operations

For rectangle-shaped tensors, each column has the same

number of elements, and hence it is easy to perform CNN

operations such as convolution and pooling. For hexagon-

shaped tensors, different columns have different length and

need to be considered separately. Based on the hexagonal data

representation and storage in Fig. 4, HexCNN modifies the

fundamental operations of CNN, including both forward and

backward propagation algorithms [4], [14], [15].

Forward-propagation: Forward-propagation mainly con-

tains convolution, pooling, and fully connection operations.

After flattening the output of convolution and pooling layers,

the fully connected layer works the same as that for traditional

rectangle-based CNN models. The convolution of HexCNN is

represented as Equation 1,

Ou,v =

v+2·lk−1
∑

j=v

ie
∑

i=is

Ii,j · ki−is,j−v

is =

{

j − lI + 1 + u, j ≥ lI

u, j < lI

ie =

{

is + 2 · lk − 1, j ≥ v + lk

is + lk + (j − v), j < v + lk

(1)

where input I and filter k are two-dimensional tensors in this

example. lk and lI denote the side length of the filter and

the input, respectively. is and ie denote the start and the end

indeces for each column in the sliding window, which are u



and v dependant. is increases with a step length of one after

the first lI columns, and the range for index j increases with a

step length of one for the first lk columns and then decreases

for the onward columns.

For max-pooling and average-pooling, we either pick the

maximum or average the value of all elements within a

sliding window to obtain an output element. Take maxpooling

as example, we iteratively fetch the elements from the red

bounded area (output) in Fig. 4a and obtain the corresponding

sliding window from the input. More formally, the procedure

is represented as:

Ou,v = max
v≤j<v+2·lk−1, is≤i<ie

Ii,j (2)

Backpropagation: In backpropagation, the operations for

dense layers are the same as those for rectangle-based frame-

works. For convolutional and pooling layers, we backpropa-

gate the error and update the weights of each layer.

For back propagating the error in convolutional layers,

HexCNN upsamples the error δc to δ̂c to get the same size

as the input of the current layer I . HexCNN then performs

full convolution on the upsampled δ̂c and the filter k that has

been rotated for 180 degrees. After the full convolution, the

former layer’s error δp is the Hadamard product [7] with the

derivative of the former layer’s activation function σp:

δp = δ̂c ∗ rot180(k)� σ
′p (3)

where function rot180 rotates a matrix by 180 degrees, opera-

tor ∗ denotes the full convolution, and operator � computes the

Hadamard product. For pooling layers, we take max-pooling

as an example to illustrate how HexCNN works. HexCNN

first upsamples δc to δ̂c, and figures out which position in I
corresponds to a specific value in δc (the perceptive field of

δc). HexCNN then transfers the value in δc to that position

in δ̂c, and sets the rest positions in δ̂c as zeros. As shown in

Equation 4, each value in the former layer’s error δpu,v is the

element-wise product of δ̂cu,v and the sum of those values in

δc that come from Iu,v .

δpu,v = δ̂cu,v ·
∑

Iu,v→δi,j

δi,j (4)

where Iu,v → δi,j denotes elements in I that are within the

perceptive filed of δi,j , “·” computes the element-wise product.

For updating the weights, we propose derivative compu-

tation algorithms for native hexagonal processing. HexCNN

computes the partial derivative for both input and filters in

convolutional layers, except the initial input of the network.

The partial derivative of filters is for updating the weights, and

the partial derivative of the input is for updating the weights

of the former layer. (i) The partial derivative for a filter k can

be represented as the convolution between the input I and the

error δ (with the same size as the output O) according to the

chain rule. We assume that “VALID” padding is applied. Then

the partial derivative for the filter k can be represented as:

∂E

∂ku,v
=

v+2·lO−1
∑

j=v

ie
∑

i=is

Ii,j · δi−is,j−v (5)

where is and ie are computed similar to Equation 1. (ii) Com-

Input

Patch	1
Patch	2
Patch	3
Patch	4
Patch	5
Patch	6
Patch	7

Filter	1
Filter	2

Filter	size:	21

Patch	num
ber:	7

Filter	size:	21
Filter	number:	2

Patch	num
ber:	7

Filter	number:	2

37

34 46

31 43 67 79

64 76

73 97

13 37

34 46

31 43 67 79

64 76

73 97

13 37

34 46

31 43 67 79

64 76

73 97

13
Filter Output

+ =

From
	filter	2

From
	filter	1

Left	matrix Right	matrix Result

Fig. 5: Hexagonal convolution to matrix multiplication. The red and
blue color are used for locating differentiating different filters (sliding
windows) only (best view in color).

puting the partial derivative of the input can be transformed

into the full convolution between the error δ (with the same

size of the output O) and the filter k. If the output size

is smaller than the input size, HexCNN pads zeros around

the δ to achieve the same size as the input before the full

convolution. We summarize the procedure as:

∂E

∂Iu,v
=

v+lk
∑

j=v−lk+1

ie
∑

i=is

δi,j · ki−is,j−v+lk−1

is =

{

j − lO + u− lk + 2, j ≥ lO

u− lk + 1, j < lO

ie =

{

is + 2 · lk − 1, j ≥ v

is + 2 · lk + j − v − 1, j < v

(6)

where is and ie are column index i and filter size lk related.

δi,j returns zero when is and ie out of the range of δ and this

is the reason that we pad zeros around δ.

IV. TRANSFORMATION FROM HEXAGONAL CONVOLUTION

TO MATRIX MULTIPLICATION

Existing deep learning frameworks transform convolution

into matrix multiplication to speed up the computation. In

this section, we present how HexCNN transforms hexagonal

convolution into matrix multiplication. HexCNN splits the

input into multiple patches according to the filter size and

stride. Suppose the hexagon-shaped input has a side length

lI and a channel c. The hexagonal convolution filters have a

side length lk, and the stride during convolution is s. HexCNN

computes the number of patches by lp · (lp − 1) + 1, where

lp = (lI − lk)/s+1. Take Fig. 5 as an example, where lI = 5,

c = 3, lk = 2, and s = 3. The value of lp is two, and hence

there are seven patches in the input (the red and blue colors

are used for differentiation only).

To transform the hexagonal convolution into matrix mul-

tiplication, HexCNN first obtains the number of patches ac-

cording to the input shape, the stride, and padding strategy.

It then re-orders the elements in each patch as a vector in

column-major to obtain the left matrix in Fig. 5. For the

right matrix in Fig. 5, the width is the number of filters, and

the height is the filter size. After transforming the input and



filters into the left and right matrices, HexCNN obtains the

convolutional output via matrix multiplication. To speed up the

matrix multiplication, HexCNN then applies the GotoBLAS

library [3] for acceleration.

V. EXPERIMENTS

Hexagon-imitation models have shown better accuracy than

traditional rectangular CNN models on various applications

and data sets [6], [11], [17], [26]. HexCNN has the same

output as hexagon-imitation models, and we focus on the

time and space efficiency of HexCNN in this section. We first

evaluate the time efficiency of HexCNN and then evaluate

the space efficiency. We implement HexCNN by adapting the

third-party Eigen library for the TensorFlow CPU version. We

are unable to test the TensorFlow GPU version because the

GPU version is based on cuDNN, which is a closed source

library (same for Caffe and PyTorch).

Experimental setup: The PC that we used is equipped

with Intel(R) Core(TM) i7-7700 @ 3.60 GHz × 8 with 32GB

memory. We implement two hexagon-imitation models based

on TensorFlow. The first is the widely used ZeroOut [6], and

the second is the Quasi-H [26]. Note that Quasi-H simulates

hexagonal processing on deep CNN models, and it is not

hexagonal processing in the strict sense (see Section II-B for

more details). We consider it as one of the baselines because

it simulates hexagonal processing in certain circumstances.

(a) (b)

Fig. 6: Time cnosumption of HexCNN, ZeroOut and Quasi-H on (a)
shallow and (b) deep hexagonal CNN modes (best view in color).

A. Time Efficiency Evaluation

To evaluate the time efficiency of HexCNN, we compare the

training time of a single batch (batch size as 40) in LeNet-

4 [16], LeNet-5 [16], VGG-13, and VGG-16 [24]. We keep

the structure of these CNN models but perform hexagonal

processing. The synthetic data set that we used contains 2,000

hexagon-shaped input with a channel of three and a side

length of 256 (511×511 for ZeroOut, 511×443 Quasi-H to

keep the equivalent information). We obtain the data set from

MNIST [16] by resizing images into a size of 511×511

followed by resampling them to hexagonal grids. We then crop

them to the size needed.

Fig. 6a shows the time consumption of different methods

on two shallow hexagonal CNN models LeNet-4 and LeNet-

5. HexCNN saves the training time by 38.7% and 39.7%

compared with ZeroOut, respectively. Comparing with Quasi-

H, HexCNN saves the training time by 30.8% and 31.4%,

respectively. For deep hexagonal CNN models VGG-13 and

VGG-16, HexCNN saves the training time by 41.3% and

42.2% compared with ZeroOut, respectively. In comparison

	0

	50

	100

	150

	200

	30 	60 	90 	120

sp
ac

e	
(1

0
3
)

Input	size

HexCNN	(ours)

HexagDLy	[22]

ZeroOut	[6]

Quasi-H	[23]

(a) Space for input.

	0

	15

	30

	45

	60

	30 	60 	90 	120

sp
ac
e	
(1
0
5
)

Input	size

HexCNN	(ours)

HexagDLy	[22]

ZeroOut	[6]

Quasi-H	[23]

(b) Space for convolution.

Fig. 7: The space required by HexCNN, HexagDLy, ZeroOut, and
Quasi-H for (a) loading one input and (b) preparing the corresponding
matrices for convolution (best view in color).

with Quasi-H, HexCNN saves the training time by 32.6%

and 33.2%, respectively. We find that on the same network

structure, the more layers the models have, the more time

that HexCNN saves. This is because the start-up cost is

relatively stable, and the more layers, the more relative time

that HexCNN saves.

B. Space Efficiency Evaluation

We compute the memory consumption of HexCNN, Hex-

agDLy, ZeroOut, and Quasi-H for loading the input and the

matrices for performing convolution to evaluate the space

efficiency of HexCNN. We set the input channel as three, and

the side length x varies from 30 to 120. In convolution, we

set the filter number as one, the side length of hexagon-shaped

filters as two, and keep the stride as one.

When loading the input, (i) ZeroOut method pads the input

into a parallelogram with the side length of 2x − 1 to keep

the equivalent information. Fig. 1b illustrates the input after

padding, where the side length of the parallelogram is twice as

that for the hexagonal input in Fig. 1a. (ii) Quasi-H re-samples

and pads the input into a rectangle with a size of 2x− 1,
√
3x

to keep the equivalent information, as shown in Fig. 1c.

(iii) HexagDLy first rotates the hexagonal array in Cartesian

coordinates to achieve a vertical alignment of neighboring

elements and then aligns horizontally by shifting every second

column upwards by half the distance between neighboring

pixels. HexagDLy does not incur resampling because it takes

hexagonal grids directly, and the input becomes a rectangle-

shaped hexagonal grid with a size of 2x− 1 under the offset

coordinate system. In convolution, ZeroOut and Quasi-H have

a filter size of three to keep the equivalent information as

HexCNN. For HexagDLy, it divides the hexagon-shaped filters

into multiple rectangle-shaped filters with different sizes, as

shown in Fig. 2c. Therefore, the space for filters in HexagDLy

is the same as that for HexCNN.

As shown in Fig. 7, HexCNN saves the space cost sig-

nificantly compared with existing hexagon-imitation models.

With the increase of input size, HexCNN reduces the space

consumption for storing input and performing convolution by

13.8% compared with HexagDLy. Compared with ZeroOut,

HexCNN reduces the space consumption for storing input and

performing convolution by 25% and 41.7%, respectively. Com-

pared with Quasi-H, HexCNN reduces the space consumption

for storing the input and performing convolution by 13.8%

and 32.9%, respectively.



C. HexCNN for Rectangle-Shaped Input

HexCNN achieves superior efficiency for hexagon-shaped

input due to the seamless representation. For rectangle-shaped

input, HexCNN incurs resampling and padding. Fig. 1h shows

the padding cost in HexCNN for square input. Suppose the

side length of a square input is x, the side length of the

corresponding hexagon that exactly covers the square input

is y. Then y has the following restriction: y ≥ d(3x+ 1)/4e,

and the padded area when x is approaching infinity is 0.563x2.

For ZeroOut, the padded area is 0.577x2, as illustrated in

Fig. 1f. Although the extra areas incurred by HexCNN and

ZeroOut are similar, HexCNN still outperforms ZeroOut on

the training time with both shallow and deep CNN models,

because the averaged training time for each element is reduced,

as illustrated in Section V-A. Meanwhile, HexCNN achieves

superior space efficiency in convolution compared with Ze-

roOut, as illustrated in Section V-B.

Quasi-H takes rectangle-shaped input directly without

padding, as shown in Fig. 1g. In convolution, Quasi incurs

unnecessary padding for the filters, so as to apply existing

deep learning frameworks. Although the padded area for the

filters in convolution leads to deficiency, the overall efficiency

of Quasi-H on rectangle-shaped input is still superior to

HexCNN. However, Quasi-H simulates hexagonal processing

on deep CNN models. It is not hexagonal processing in the

strict sense (see Section II-B for more details).

VI. CONCLUSIONS AND FUTURE WORK

We proposed a native hexagonal CNN framework named

HexCNN. HexCNN directly takes hexagon-shaped input and

performs native hexagonal processing for both forward and

backward propagation based on hexagon-shaped filters. It

transforms hexagonal convolution to matrix multiplication to

achieve high time efficiency. Experimental results on com-

plete CNN models show that HexCNN outperforms hexagon-

imitation models by reducing up to 42.2% of the training

time. Meanwhile, HexCNN saves the space by up to 25% for

loading the input, and up to 41.7% for performing convolution.

HexCNN shows great performance from our experimental

results on CPU. In the future, we will implement complete

forward and backward propagation of HexCNN on GPU to

obtain higher applicability of the framework.

REFERENCES

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In OSDI, pages 265–283, 2016.

[2] Martin Erdmann, Jonas Glombitza, and David Walz. A deep learning-
based reconstruction of cosmic ray-induced air showers. Astroparticle

Physics, 97:46–53, 2018.
[3] Kazushige Goto and Robert A Geijn. Anatomy of high-performance

matrix multiplication. ACM TOMS, 34(3):199–223, 2008.
[4] Robert Hecht-Nielsen. Theory of the backpropagation neural network.

In Neural networks for perception, pages 65–93. 1992.
[5] Innchyn Her. Geometric transformations on the hexagonal grid. IEEE

TIP, 4(9):1213–1222, 1995.
[6] Emiel Hoogeboom, Jorn WT Peters, Taco S Cohen, and Max Welling.

Hexaconv. arXiv preprint arXiv:1803.02108, 2018.

[7] Roger A Horn. The hadamard product. In Proc. Symp. Appl. Math,
volume 40, pages 87–169, 1990.

[8] Mirco Huennefeld. Deep learning in physics exemplified by the
reconstruction of muon-neutrino events in icecube. Verhandlungen der

Deutschen Physikalischen Gesellschaft, 2017.

[9] Mikaël Jacquemont, Luca Antiga, Thomas Vuillaume, Giorgia Silvestri,
Alexandre Benoit, Patrick Lambert, and Gilles Maurin. Indexed op-
erations for non-rectangular lattices applied to convolutional neural
networks. 2019.

[10] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. In ACM MM,
pages 675–678, 2014.

[11] Jintao Ke, Hai Yang, Hongyu Zheng, Xiqun Chen, Yitian Jia, Pinghua
Gong, and Jieping Ye. Hexagon-based convolutional neural network for
supply-demand forecasting of ride-sourcing services. IEEE TITS, 2018.

[12] Dermot Kerr, Sonya A Coleman, Thomas Martin McGinnity, Qingxiang
Wu, and Marine Clogenson. A novel approach to robot vision using
a hexagonal grid and spiking neural networks. In IJCNN, pages 1–7,
2012.

[13] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. Technical report, 2009.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In NIPS, pages
1097–1105, 2012.

[15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436, 2015.

[16] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al.
Gradient-based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998.

[17] Junren Luo, Wanpeng Zhang, Jiongming Su, and Fengtao Xiang. Hexag-
onal convolutional neural networks for hexagonal grids. IEEE Access,
7:142738–142749, 2019.

[18] Salvatore Mangano, Carlos Delgado, Marı́a Isabel Bernardos, Miguel
Lallena, Juan José Rodrı́guez Vázquez, CTA Consortium, et al. Ex-
tracting gamma-ray information from images with convolutional neural
network methods on simulated cherenkov telescope array data. In IAPR

Workshop on Artificial Neural Networks in Pattern Recognition, pages
243–254, 2018.

[19] Nikita Moriakov, Ashwin Samudre, Michela Negro, Fabian Gieseke,
Sydney Otten, and Luc Hendriks. Inferring astrophysical x-ray polar-
ization with deep learning. arXiv preprint arXiv:2005.08126, 2020.

[20] D Nieto, A Brill, Q Feng, M Jacquemont, B Kim, T Miener, and
T Vuillaume. Studying deep convolutional neural networks with
hexagonal lattices for imaging atmospheric cherenkov telescope event
reconstruction. arXiv preprint arXiv:1912.09898, 2019.

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. 2017.

[22] Tobias Schlosser, Michael Friedrich, and Danny Kowerko. Hexagonal
image processing in the context of machine learning: Conception of a
biologically inspired hexagonal deep learning framework. arXiv preprint

arXiv:1911.11251, 2019.

[23] Idan Shilon, Manuel Kraus, Matthias Büchele, Kathrin Egberts, Tobias
Fischer, Tim Lukas Holch, Thomas Lohse, Ullrich Schwanke, Constantin
Steppa, and Stefan Funk. Application of deep learning methods to anal-
ysis of imaging atmospheric cherenkov telescopes data. Astroparticle

Physics, 105:44–53, 2019.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[25] Constantin Steppa and Tim L Holch. Hexagdly-processing hexagonally
sampled data with cnns in pytorch. SoftwareX, 9:193–198, 2019.

[26] Zhun Sun, Mete Ozay, and Takayuki Okatani. Design of kernels in
convolutional neural networks for image classification. In ECCV, pages
51–66, 2016.

[27] Kenny Young, Gautham Vasan, and Ryan Hayward. Neurohex: A deep
q-learning hex agent. In Computer Games, pages 3–18. 2016.

[28] Yunxiang Zhao, Jianzhong Qi, and Rui Zhang. Cbhe: Corner-based
building height estimation for complex street scene images. In WWW,
pages 2436–2447, 2019.


	Introduction
	Related Work
	Hexagonal CNN Models on Hexagonal Grids
	Hexagonal CNN Models on Square Grids

	HexCNN
	Overview
	Data Representation and Storage
	Foundamental Operations

	Transformation from Hexagonal Convolution to Matrix Multiplication
	Experiments
	Time Efficiency Evaluation
	Space Efficiency Evaluation
	HexCNN for Rectangle-Shaped Input

	Conclusions and future work
	References

