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Abstract

Deep image inpainting aims to restore damaged
or missing regions in an image with realistic con-
tents. While having a wide range of applications
such as object removal and image recovery, deep
inpainting techniques also have the risk of being
manipulated for image forgery. A promising coun-
termeasure against such forgeries is deep inpaint-
ing detection, which aims to locate the inpainted
regions in an image. In this paper, we make the
first attempt towards universal detection of deep in-
painting, where the detection network can general-
ize well when detecting different deep inpainting
methods. To this end, we first propose a novel data
generation approach to generate a universal train-
ing dataset, which imitates the noise discrepancies
exist in real versus inpainted image contents to train
universal detectors. We then design a Noise-Image
Cross-fusion Network (NIX-Net) to effectively ex-
ploit the discriminative information contained in
both the images and their noise patterns. We empir-
ically show, on multiple benchmark datasets, that
our approach outperforms existing detection meth-
ods by a large margin and generalize well to unseen
deep inpainting techniques. Our universal training
dataset can also significantly boost the generaliz-
ability of existing detection methods.

1 Introduction

Image Inpainting is the process of restoring damaged or miss-
ing regions of a given image based on the information of the
undamaged regions. It has a wide range of real-world appli-
cations such as the restoration of damaged images and the
removal of unwanted objects. So far, plenty of inpainting ap-
proaches have been proposed, among which generative adver-
sarial networks (GANs) [Goodfellow et al., 2014] based deep
inpainting techniques [Pathak et al., 2016; Iizuka et al., 2017;
Yu et al., 2018; Li et al., 2019; Yu et al., 2019; Li et al.,
2020a] have been demonstrated to be the most effective ones.
One distinguished advantage of deep inpainting models is the
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Figure 1: (a) The original image; (b) The inpainted image by the
deep inpainting method in [Yu et al., 2019]; (c) The mask that de-
fines the inpainting region; (d) The detected mask by our approach.

ability to adaptively predict semantic structures and produce
super realistic and fine-detailed textures.

However, like a two-edged sword cuts both ways, deep in-
painting techniques come along with the risk of being manip-
ulated for image forgery. Due to the super realistic inpaint-
ing effects, these techniques can be easily applied to replace
the critical objects in an image with fake contents, and the
tampered image may appear as photo-realistic as real images.
Figure 1 (b) shows one such example crafted from the real
image in Figure 1 (a) by a recent deep inpainting method [Yu
et al., 2019]. Inpainted images can potentially be used to cre-
ate fake news, spread rumors on the internet or even fabricate
false evidences. It is thus imperative to develop detection al-
gorithms to identify whether and more importantly where an
image has been modified by deep inpainting. Specifically,
the goal of deep inpainting detection is to locate the exact
inpainted regions in an image, as shown in Figure 1 (d).

While Li et al. [2019] recently proposed the first method
for deep inpainting detection, its effectiveness is restricted to
the inpainting technique the detector was trained on and does
not generalize well to other inpainting techniques. However,
in real-world scenarios, the exact techniques used to inpaint
the images are often unknown. In this paper, we aim to ad-
dress this generalization limitation and introduce a universal
detector that works well even on unseen deep inpainting tech-
niques.

Our approach is motivated by one important yet so far over-
looked common characteristic of all deep inpainting meth-
ods: the patterns of the noise exists in real and synthesized
contents are different. It has been shown that conventional
image acquisition devices (e.g. camera sensors) leave dis-



(a) Masked image (b) Inpainted image (c) Noise residual

Figure 2: Noise analysis on an inpainted image. (a) The image with
the inpainting mask (the white region); (b) The inpainted image by
the method in [Yu et al., 2019]; (c) The pixel-wise difference be-
tween (b) and a denoised version of (b), i.e., a noise residual pattern.

tinctive noise patterns on each image [Farid, 2009], however,
GAN-generated contents do not have the same type of noise
patterns [Marra et al., 2019]. As shown in Figure 2, given an
inpainted image that contains both the device-captured real
pixels and GAN-generated inpainted pixels, there are obvious
discrepancies between inpainted region and non-inpainted re-
gion in the noise residual (i.e., pixel-wise subtraction between
the inpainted image and its denoised version by a denoising
filter). Motivated by this observation, we propose a universal
deep inpainting detection framework with the following two
important designs. First, we present a novel way of gener-
ating universal dataset for training universal detectors. The
universal training dataset contains: 1) images with synthe-
sized (using a pre-trained autoencoder) contents of arbitrary
shapes at random locations, and 2) the corresponding masks.
It imitates the noise pattern discrepancies between the real
and synthesized contents in a more principled manner, with-
out using any specific deep inpainting methods. Second, we
propose a Noise-Image Cross-fusion Network (NIX-Net) to
effectively exploit the discriminative information contained
in both the images and their noise residuals. After training on
the universal dataset, our NIX-Net can reliably recognize the
regions inpainted by different deep inpainting methods.

In summary, our main contributions are:

• We propose a novel framework for universal deep in-
painting detection, which consists of 1) a new method
of generating universal training data, and 2) a two-
stream multi-scale Noise-Image Cross-fusion detection
Network (NIX-Net).

• We empirically show, on multiple benchmark datasets,
that our proposed approach can consistently outperform
existing detection methods, especially when applied to
detect unseen deep inpainting techniques.

• Our universal training dataset can also improve the gen-
eralizability of existing detection methods, making it an
indispensable part of future detection methods.

2 Related Work

2.1 Deep Image Inpainting

Different from conventional image inpainting approaches,
deep learning based image inpainting (or deep inpainting for
short) trains inpainting networks on large-scale datasets and
can generate more visually plausible details or fill large miss-
ing regions with new contents that never exist in the input
image. By far, the generative adversarial networks (GAN)

[Goodfellow et al., 2014] based inpainting methods are ar-
guably the most powerful methods for deep image inpaint-
ing. These methods all employ a GAN-based training ap-
proach with two sub-networks: an inpainting network and a
discriminative network. The former learns image semantics
and fills the missing regions with predicted contents, whereas
the latter distinguishes whether the image is real or inpainted.
Phatak et al. [2016] proposed the Context-Encoder (CE) for
single image inpainting, which is known as the first GAN-
based image inpainting technique. This technique was later
improved by [Iizuka et al., 2017] using dilated convolution
and global-local adversarial training. Yu et al. [2018] pro-
posed a two-stage inpainting network with a coarse-to-fine
learning strategy. A gated convolution network along with
a learnable dynamic feature selection mechanism (for each
channel and at each spatial location) was proposed in [Yu et
al., 2019] for image inpainting. Li et al. [2020a] devised the
Recurrent Feature Reasoning network which recurrently en-
riches information for the hole region. Despite the diversity
of existing deep inpainting methods, they all share a com-
mon characteristic: the noise patterns in generated contents
are different from those in the real image contents. While this
characteristic has been observed in understanding the artifi-
cial fingerprints of GANs [Marra et al., 2019], it has not been
exploited for deep inpainting detection. In this paper, we will
leverage such a universal characteristic of generated contents
to build universal deep inpainting detectors.

2.2 Inpainting Forensics

Deep inpainting detection falls into the general scope of im-
age forensics, but quite different from the conventional im-
age manipulation detection or deepfake detection. Conven-
tional image manipulation detection deals with traditional im-
age forgery operations such as splicing [Huh et al., 2018] and
copy-move [Wu et al., 2018]. Deepfake (or deep face swap-
ping) is the other type of deep learning forgery techniques
that swaps one person’s face in a video to that of a different
person, which often requires heavy post-processing includ-
ing color transfer and boundary blending [Li et al., 2020b].
Different from conventional image manipulation or deepfake,
deep inpainting takes one image and a mask as inputs and
generates new content for the mask region, based on infor-
mation of the non-mask regions within the same image. In
this paper, we focus on deep image inpainting detection and
the generalizability of the detector to unseen deep inpainting
techniques (not to conventional image manipulation or deep-
fake).

Most of existing inpainting forensic methods are devel-
oped to detect traditional image inpainting techniques. For
example, the detection of traditional diffusion-based inpaint-
ing based on local variance of image Laplacian [Li et al.,
2017], and the detection of traditional patch-based inpainting
via patch similarities computed by zero-connectivity length
[Wu et al., 2008], two-stage suspicious region search [Chang
et al., 2013] or CNN-based encoder-decoder detection net-
works [Zhu et al., 2018]. These methods are generally less
effective on deep inpainting techniques that can synthesize
extremely photo-realistic contents or new objects that never
exist in the original image. Deep inpainting detection is a



Figure 3: The procedure of universal training dataset generation.

Figure 4: The procedure of training the autoencoder G.

fairly new research topic. The high-pass fully convolutional
network by [Li and Huang, 2019] is the only known detection
method for deep inpainting detection. However, training this
detection network requires knowing the deep inpainting tech-
nique to be detected. This tends to limit its generalizability
to unseen deep inpainting methods, as shown in our experi-
ments. In this paper, we focus on developing universal deep
inpainting detectors, which we believe is a crucial step to-
wards more powerful and practical deep inpainting detectors.

3 Problem Formulation and Universal

Training Dataset Generation

3.1 Problem Formulation

Given an image Xi inpainted by a certain deep inpainting
method on regions defined by a binary mask Mi, deep in-
painting detection aims to locate the inpainted regions Mi. A
detection network can be trained to take the inpainted image

Xi as input and output the predicted mask M̂i.

To train the detector, a straightforward approach is to use
inpainted images generated by a deep inpainting method
as the training data [Li and Huang, 2019]. However, this
inpainting-method-aware approach often generalizes poorly
when applied to detect inpainted images generated by un-
seen deep inpainting methods. An empirically analysis can
be found in Section 5.1. In contrast, we propose to generate a
universal training dataset to capture the common characteris-
tics shared by different deep inpainting methods, and train the
detection model on this universal dataset. Such an inpainting-
method-agnostic approach can improve the generalization of
the detection model to unseen deep inpainting methods. Next,
we will introduce our proposed universal training dataset gen-

eration method inspired by the distinctive noise patterns exist
in real versus generated contents.

3.2 Universal Training Dataset Generation

A universal training dataset should consider the common
characteristics of different deep inpainting methods, rather
than relying on the specific artifacts of one particular deep
inpainting method. Motivated by our observation in Figure
2, here we propose to create the universal training dataset by
simulating “inpainted” images from autoencoder reconstruc-
tions, instead of using any existing deep inpainting methods.
The complete generation procedure is illustrated in Figure 3.

For a set of real images I := {I1, I2, ..., In}, the gen-
eration process generates a set of simulated (as it does not
use any real inpainting methods) inpainted images X :=
{X1, X2, ..., Xn} using a pre-trained autoencoder with a set
of random binary masks M := {M1,M2, ...,Mn}. Specifi-
cally, given a real image Ii, we first obtain its reconstructed
version G(Ii) from an autoencoder G. We train the autoen-
coder following a typical GAN [Goodfellow et al., 2014] ap-
proach using the autoencoder as the GAN generator and an
additional classification network as the GAN discriminator.
The overall structure is illustrated in Figure 4. The autoen-
coder is trained to have small reconstruction error, and at the
same time, the reconstructed images should be as realistic as
the real images according to the discriminator. The overall
training loss of this autoencoder is:

L =

n∑

i=1

log(D(Ii) + log(1−D(G(Ii)))
︸ ︷︷ ︸

Ladv

+λ ‖G(Ii)− Ii‖2
︸ ︷︷ ︸

Lrec

(1)
where, Ladv and Lrec are the adversarial and reconstruction
loss respectively, and λ = 0.1 is a trade-off parameter.

After training, the autoencoder G is applied to reconstruct
each real image in I . With the reconstructed images, our next
step is to simulate the inpainting process. Specifically, we
simulate an “inpainted” image Xi by combining Ii and its
reconstruction G(Ii) according to a random mask Mi:

Xi =Mi � Ii + (1−Mi)�G(Ii), (2)

where � is the element-wise multiplication and Mi is a bi-
nary mask with 0 elements indicating the inpainting region
(white region) and 1 elements indicating the non-inpainting
region (black region). In Xi, the “inpainted” region carries
over the noise patterns of the synthesized contents from the
autoencoder, while the rest of the regions preserve the noise
patterns from the real contents. Following this procedure, we
can obtain a set of images with synthesized regions to create
the universal training dataset: UT = {X,M}, with X being
the simulated inpainted images and M being the inpainting
masks.

Our universal dataset UT distinguishes itself from existing
inpainting-method-aware datasets as a general formulation of
real versus generated contents. However, having this dataset
is not enough to train accurate deep inpainting detectors. It
requires an effective learning framework to exploit the dis-
criminative information contained in the dataset, especially
the noise patterns. Next we will introduce our proposed de-
tection network that serves this purpose.



Figure 5: Overview of the proposed Noise-Image Cross-Fusion Network (best viewed in color). Here “upsample 1× 1” and “stride-2 3× 3”
refer to bilinear upsampling followed by a 1× 1 convolution, and 3× 3 convolution with stride 2, respectively.

4 Noise-Image Cross-fusion Network

(NIX-Net)

As shown in Figure 2 (c), the noise residual patterns between
inpainted and non-inpainted regions in an inpainted image are
distinct. Unlike previous works that ignore this important
cue for mask detection, we propose NIX-Net which lever-
ages both the inpainted image Xi and its noise residual Ri to
enhance detection performance. As shown in Figure 5, the
proposed NIX-Net consists of three components: 1) feature
extraction, 2) multi-scale cross fusion, and 3) mask detection.

Feature Extraction. Given an inpainted image Xi, we de-
fine its noise residual as following:

Ri = Xi − d(Xi), (3)

Inspired by recent studies on image forensics using SRM fea-
tures [Zhou et al., 2018], we choose the SRM filter as our
denoising filter d(·). The feature extraction component in-
cludes two parallel feature extraction streams to learn multi-
scale feature maps of the input image and its noise residual,
respectively. Each feature extraction module consists of three
ResNet blocks [He et al., 2016b], resulting in three feature
maps of Xi, namely, φI1(Xi), φI2(Xi) and φI3(Xi). The
numbers of channels in the feature maps are 128, 256 and
512, respectively. Likewise, the three feature maps of Ri are
φN1

(Ri), φN2
(Ri) and φN3

(Ri). Since the last convolution
layer of each ResNet block has a stride of 2 to reduce the spa-
tial scale [He et al., 2016a], the spatial scales of the feature
maps are 1/2, 1/4 and 1/8 of the input spatial size.

Multi-Scale Cross Fusion. The multi-scale cross fusion
component aims to effectively incorporate noise features and
image features in a multi-scale manner. Specifically, both
the noise stream and the image stream are followed by a fu-
sion module. The fusion module takes the three-scale feature

maps as input, and outputs the crossly fused three-scale fea-
ture maps. Each fused feature map is the sum of the three
transformed (upsampled, downsampled or unchanged) input
feature maps. The outputs of fusion module 1 in the image
stream are φFI1(Xi), φ

F
I2
(Xi) and φFI3(Xi), while the out-

puts of fusion module 2 in the noise stream are φFN1
(Ri),

φFN2
(Ri) and φFN3

(Ri). The purpose of this fusion module
is to exchange the information across multi-scale feature rep-
resentations, and produce richer feature representations with
strengthened position sensitivity [Sun et al., 2019]. For each
scale, we concatenate the feature maps of the image stream
and the noise stream along the channel dimension, followed
by a Conv block. The outputs are denoted as ψ1(Xi, Ri),
ψ2(Xi, Ri) and ψ3(Xi, Ri). The Conv block consists of two
3× 3 convolutions, each of which is followed by a batch nor-
malization and a ReLU Layer. Finally, fusion module 3 fur-
ther consolidates the connection between the image and noise
features over different scales, and output three fused feature
maps ψF

1
(Xi, Ri), ψ

F
2
(Xi, Ri) and ψF

3
(Xi, Ri).

Mask Detection. The mask detection module first upsam-
ples the two lower-resolution feature maps ψF

2
(Xi, Ri) and

ψF
3
(Xi, Ri) using bilinear upsampling so that they have the

same resolution as ψF
1
(Xi, Ri). The three feature maps are

then concatenated along the channel dimension, followed
by a Conv block and an upsampling layer which outputs a
w × h × 1 feature map. The feature map is then fed into a
Sigmoid layer for classification, rendering the possibility map
Pi with pixel-wise predictions. Finally, the detected mask

M̂i can be obtained by binarizing Pi according to a threshold
value. In this paper, we set the threshold value as 0.5.

Network Training. We train the entire network end-to-end
using the focal loss [Lin et al., 2017] on the universal training



dataset UT . Note that the network can also be trained on any
other inpainting detection datasets including the inpainting-
method-aware datasets. The use of the focal loss is to mitigate
the effect of class imbalance (the inpainted regions are often
small compared to the entire image). The focal loss Lf is
defined as following:

Lf =
∑n

i (−Mi(1− M̂i)
γ log M̂i − (1−Mi)M̂

γ
i log(1− M̂i)) (4)

where γ is the focusing parameter and is set to 2.

5 Experiments

In this section, we first introduce the experimental settings,
then evaluate the performance of our proposed approach via
extensive experiments and ablation studies.

Inpainting Methods and Datasets. We use three different
deep inpainting techniques including GL [Iizuka et al., 2017],
CA [Yu et al., 2018] and GC [Yu et al., 2019] to generate
inpainted images on two datasets Places2 [Zhou et al., 2017]

and CelebA [Liu et al., 2015]. For each of the two datasets,
we randomly select (without replacement) 50K, 10K and 10K
images to create the training, validation and testing subsets
respectively, following either our universal data generation or
using one of the above three inpainting techniques (GL, CA
and GC). We train the detection models on the training subset
and test their performance on the test subset.

Mask Generation. To simulate more diverse and complex
real-world scenarios, we utilize the irregular mask setting in
[Yu et al., 2019] with arbitrary shapes and random locations
for both training and testing. Besides, object-shape masks are
also adopted for visual comparison, as shown in Figure 6.

Baseline Models. We consider two baseline models: 1)
LDICN [Li and Huang, 2019], a fully convolutional network
designed for deep inpainting detection; and 2) ManTra-Net
[Wu et al., 2019], a state-of-the-art detection model for tradi-
tional image forgery such as splicing.

Performance Metric. We use the Intersection over Union
(IoU) as the performance metric, and report the mean IoU
(mIoU) over the entire test subset of inpainted images.

Training Setting. We train the networks using the Adam
optimizer with initial learning rate 1 × 10−4. An early stop-
ping strategy is also adopted based on the mIoU on the val-
idation dataset: the model with the highest validation mIoU
is saved as the final model. All of our experiments were run
with a Nvidia Tesla V100 GPU.

5.1 Quantitative Performance Evaluation

We have 3 detection networks (LDICN, ManTra-Net and
our NIX-Net) and 2 types of training data including 1) 3
inpainting-method-aware training datasets created using 3 in-
painting methods (GL, CA and GC), and 2) our universal
(UT) training dataset. Here, we first train the detection net-
works on GL/CA/GC then test the performance on the test
sets of all three datasets. Besides, we run our NIX-Net on
a hybrid dataset that combines UT with one out of the 3
inpainting-method-aware datasets. We also train the detec-
tion networks on UT only to test the importance of universal

Model

Training Test mIoU

Data Places2 CelebA

GL UT GL CA GC GL CA GC

LDICN 83.47 66.70 56.24 87.27 67.61 64.16

ManTra-Net 88.76 70.18 64.60 92.53 76.22 70.98

NIX-Net 91.82 80.55 77.63 93.37 84.48 81.24

NIX-Net 92.14 86.09 81.98 93.71 89.63 87.95

CA UT GL CA GC GL CA GC

LDICN 69.53 82.48 57.73 75.85 87.04 68.49

ManTra-Net 76.22 86.08 69.61 81.21 89.40 77.39

NIX-Net 83.57 88.75 76.49 87.93 92.30 83.77

NIX-Net 90.50 89.16 83.80 92.49 92.74 88.36

GC UT GL CA GC GL CA GC

LDICN 70.55 68.16 84.24 77.62 73.81 87.29

ManTra-Net 80.85 74.69 84.90 83.31 81.25 88.46

NIX-Net 84.77 81.03 85.38 90.57 86.44 88.97

NIX-Net 91.48 87.25 85.61 93.11 91.82 90.34

UT GL CA GC GL CA GC

LDICN 82.95 80.79 78.29 85.52 82.98 81.43

ManTra-Net 88.42 83.15 80.52 89.71 86.64 85.38

NIX-Net 91.33 88.46 84.71 93.06 91.59 88.20

Table 1: Quantitative Comparison on Places2 and CelebA datasets.

training data to generalizability. Note that all these experi-
ments are run separately for Places2 and CelebA. The perfor-
mance of the 3 detection networks are summarized in Table 1.

Overall Performance. As shown in Table 1, our NIX-Net
outperforms existing methods by a large margin in all test
scenarios, especially when transferred to detect unseen in-
painting methods. When trained on the hybrid datasets, our
NIX-Net achieved the best overall performance. Next, we
will provide a detailed analysis of these results from two per-
spectives: 1) the effectiveness of different detection networks,
and 2) the importance of universal training data.

Effectiveness of Different Detection Networks. For
LDICN and ManTra-Net, although decent results can be ob-
tained on the known (used for generating training data) in-
painting method, their performance drops drastically on un-
seen inpainting methods. Such a poor generalizability indi-
cates that both models overfit to the artifacts of a particular
inpainting method and fail to consider the common charac-
teristics of different deep inpainting techniques. By contrast,
our NIX-Net demonstrates consistently better generalizabil-
ity, regardless of the inpainting method used for training. This
is largely due to the sufficient (multi-scale and cross fusion)
exploitation of the noise information contained in real versus
inpainted contents. This also indicates that noise patterns are
indeed a reliable cue of detecting inpainted regions.

Importance of Universal Training Data. Revisit Table 1,
we find that, whenever the UT dataset is used in conjunction
with one inpainting-method-aware dataset, the generalization
performance of our NIX-Net can be significantly improved.
Moreover, the UT dataset alone can lead to much better gen-
eralizability of existing methods LDICN and ManTra-Net.
This result verifies, from the data perspective, the importance
of noise modeling for universal deep inpainting detection.
More importantly, such noise modeling like our proposed uni-
versal training dataset generation is much easier than gener-
ating training data using different deep inpainting techniques,



Original Inpainted Mask GT LDICN ManTra-Net Ours Original Inpainted Mask GT LDICN ManTra-Net Ours

Figure 6: Qualitative comparisons on Places2 and CelebA. The original images are inpainted by CA. Mask GT refers to the ground truth of
inpainting mask. LDICN and ManTra-Net are only trained on data generated by GL. Our model is only trained with UT data.

making it more practical for real-world applications. Another
important observation is that NIX-Net trained on UT alone
can achieve a similar level of performance as it was trained
on the hybrid datasets, though combining more training data
does improve the performance.

5.2 Qualitative Performance Evaluation

Here, we provide a qualitative comparison by visualizing the
detected masks. Figure 6 illustrates some of the examples on
Places2 and CelebA for LDICN/ManTra-Net trained only on
data generated by GL and our NIX-Net trained only on UT
data. The ten tested images are all inpainted by CA. By com-
paring the ground truth mask (Mask GT) and the masks pre-
dicted by different detection networks, one can find that our
NIX-Net can produce the most similar masks to the ground
truth. LDICN and ManTra-Net, however, cannot accurately
identify the inpainted regions, especially when they are com-
plex (the three bottom rows). These visual inspections con-
firm the superiority of our proposed universal training data
generation approach and the NIX-Net detection network.

5.3 Ablation Study

Here, we run a set of ablation studies to provide a com-
plete understanding of the two key components of our NIX-
Net network: two-steam (noise+image) feature learning and
multi-scale cross fusion. Table 2 compares the full NIX-Net
detection network with its five variants created by removing
or keeping the noise/image stream or the three fusion mod-
ules. All these networks are trained on the UT dataset gener-
ated from Places2 and tested on test images from Places2 by
GL, CA and GC. It shows that, after removing either the noise
or the image stream, the performance degrades drastically.
This implies that both the image and the noise pattern are
crucial for extracting rich features for detection. The worst

performance is observed when all 3 fusion modules removed,
even though it still has the noise and the image streams. When
adding either fusion module 1 and 2 or fusion module 3 back
into the network, the performance is clearly improved. These
results indicate that the proposed fusion module is essential
for exchanging the information across multi-scale represen-
tations and achieving semantically richer feature fusion.

Ablation of NIX-Net
Test mIoU

GL CA GC

w/o noise stream 88.24 84.11 79.87

w/o image stream 83.67 77.59 74.14

w/o all fusion modules 79.36 76.22 67.84

w/o fusion module 1 and 2 84.72 82.35 77.93

w/o fusion module 3 89.19 85.35 81.44

Full NIX-Net 91.33 88.46 84.71

Table 2: Ablation of NIX-Net for (a) the noise/image stream or (2)
the 3 multi-scale cross fusion modules. Networks are trained on the
UT dataset generated for Places2 and tested on GL/CA/GC test sets.

6 Conclusion

In this work, we have proposed an effective approach for uni-
versal deep inpainting detection. Our approach consists of
two important designs: 1) a novel universal training dataset
generation method and 2) a Noise-Image Cross-fusion (NIX-
Net) detection network. Extensive experiments on two bench-
mark datasets verify the effectiveness of our proposed ap-
proach and its superior generalization ability when applied
to detect unseen deep inpainting methods. Our work not
only provides a powerful universal detection method but also
opens up a new direction for building more advanced univer-
sal deep inpainting detectors.
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