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Abstract

Knowledge bases (KBs) are usually essential for
building practical dialogue systems. Recently we
have seen rapidly growing interest in integrating
knowledge bases into dialogue systems. However,
existing approaches mostly deal with knowledge
bases of a single modality, typically textual infor-
mation. As today’s knowledge bases become abun-
dant with multimodal information such as images,
audios and videos, the limitation of existing ap-
proaches greatly hinders the development of dia-
logue systems. In this paper, we focus on task-
oriented dialogue systems and address this limita-
tion by proposing a novel model that integrate ex-
ternal multimodal KB reasoning with pre-trained
language models. We further enhance the model
via a novel multi-granularity fusion mechanism to
capture multi-grained semantics in the dialogue
history. To validate the effectiveness of the pro-
posed model, we collect a new large-scale (14K) di-
alogue dataset MMDialKB, built upon multimodal
KB. Both automatic and human evaluation results
on MMDialKB demonstrate the superiority of our
proposed framework over strong baselines.

1 Introduction
Incorporating knowledge bases (KBs) into dialogue systems
has attracted increasing attentions over the past few years,
particularly on the development of many end-to-end dialogue
models such as Sequicity [Lei et al., 2018] and GLMP [Wu et
al., 2019]. However, existing approaches can only deal with
knowledge bases of a single modality, typically textual infor-
mation. As today’s knowledge bases become abundant with
multimodal information such as images, audios and videos in
addition to texts, the limitation of existing approaches greatly
hinders the development of dialogue systems. In some sce-
narios, generating dialogue responses requires using knowl-
edge from multiple modalities, and only using single modal-
ity is insufficient. For example in Figure 1, a user is asking
for recommending a suitable restaurant for the anniversary.
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User:      Can you recommend me a restaurant for dinner tonight?
System:   There is an Italian restaurant called frankie and benny.
User:      Good, how is the atmosphere inside it? I’m gonna 

take my wife for our anniversary.
System:   It has a luxury ambiance having spacious dining hall and 

crystal chandeliers on the ceiling.

MultiModal KB

Figure 1: An example from MMDialKB dataset. The red square
denotes the textual entities and the blue square denotes the visual
entities in the multimodal KB. The goal is to generate the system
responses provided the dialogue history and the multimodal KB.

The detailed information about the restaurant like the atmo-
sphere is required in order to make recommendation for the
user. However, this information is not available in the textual
information provided by the knowledge base. The nodes in
the knowledge base that contain the images of the restaurants
are needed to answer questions about the restaurant’s atmo-
sphere. Without the ability to integrate multimodal entities in
the KB, the system will not be able to answer such questions.

However, existing approaches cannot handle multimodal
KBs due to the lack of appropriate mechanism to incorporate
the multimodal information in the KBs. To address this chal-
lenge, in this paper, we focus on task-oriented dialogue sys-
tems and propose to incorporate multimodal KBs into task-
oriented dialogue systems. We focus on two modalities, texts
and images, although our model is straightforwardly general-
izable to more modalities. We develop a novel model called
UniMF, a Unified framework that integrates pre-trained lan-
guage models with external knowledge retrievers, both visual
and textual, to sustain reasoning over multimodal KBs and
further enhanced by a Multi-granularity Fusion mechanism.

In order to train our model, we create a new large-scale
dataset integrated with a multimodal KB called MMDialKB,
short for “Multimodal Dialogues with KBs”. Specifically,



MMDialKB has several distinguished features: 1) Novelty.
To the best of our knowledge, this is the first task-oriented
dialogue dataset that include multimodal KB and collect dia-
logues upon it. 2) High-quality. We have conducted careful
quality control to ensure the consistency and reliability of the
collected dialogue data. Also, all the images in the dataset are
high-quality selected from the mainstream image search en-
gines and checked manually by us. 3) Challenging. To gener-
ate appropriate system responses, the model needs to reason
about the relations between textual concepts appeared in the
dialogue and their image counterparts in the KBs, e.g. ‘it’ in
the user utterance at the 2nd turn of the example in Figure 1.
Also, co-reference resolution across modalities increases its
complexity. These altogether make MMDialKB a challenging
dataset for research and a reliable benchmark for assessment.
We conduct systematical empirical studies over MMDialKB
dataset. Both automatic and human evaluation results demon-
strate the superiority of our proposed framework over strong
baselines.

The contributions of this paper are summarized as follows:

• This is the first attempt to integrate multimodal knowl-
edge bases into end-to-end task-oriented dialogue sys-
tems. This task is challenging since models are required
to reason about the relations between dialogue context
and the various visual and textual entities in KBs.

• We propose a novel framework to solve the above prob-
lem. Specifically, we propose to integrate external
knowledge retrievers with pre-trained language model
to extend its ability to incorporate external multimodal
KBs. We further introduce a multi-granularity fusion
mechanism to capture multi-grained semantics in the di-
alogue history.

• We create the first large-scale dataset for training task-
oriented dialogue systems with multimodal KBs.

• We conduct systematical empirical studies over MMDi-
alKB dataset. Both quantitative and qualitative results
demonstrate the superiority of our proposed framework.

2 Related Work
Task-Oriented dialogue modeling has been one of the most
popular topics over the past few years [Wu et al., 2019;
Huang et al., 2020]. Bordes et al. early explored end-to-
end memory networks [Sukhbaatar et al., 2015] to handle
KBs and shown promising results. To produce more flexible
responses, generative dialogue model is proposed [Zhao et
al., 2017], which formulates the response generation problem
as a translation task and employ the sequence-to-sequence
(Seq2Seq) models to generate responses. Seq2Seq models
have shown to be effective in language modeling but they
struggle to incorporate external KB into responses. To mit-
igate this issue, Eric and Manning has enhanced the Seq2Seq
model by integrating copy mechanism. Madotto et al. and
Wu et al. combines the idea of pointer with memory networks
and obtained improved performance.

On the other spectrum, there are also several attempts to in-
corporate multimodal information into dialogue systems [Wu
et al., 2016]. Specifically, Visual Dialogue [Das et al., 2017]

develops a task where an agent conducts a dialogue with a
human about the visual content based on the given image.
Image-grounded conversations [Mostafazadeh et al., 2017]
proposes to conduct a dialogue over a shared image between
two humans. GuessWhat [De Vries et al., 2017] introduces an
image-grounded game where the goal is to locate the object
by asking a sequence of questions. However, all these tasks
are limited by the lack of external knowledge bases which is
usually important to offer practical information to the users.
Also, they are all intended to perform reasoning with a single
image while MMDialKB is intended to perform visual reason-
ing across multiple images. A closely-related work to ours is
SIMMC [Moon et al., 2020] which mimic the shopping sce-
narios in a virtual reality environment and generate responses
based on co-observed image and the user utterances. How-
ever, our work is different from theirs since we focuses more
on the multimodal KBs which is usually an important infras-
tructure for practical dialogue systems.

3 Approach
Our framework consists of three components: Local Seman-
tics Encoder, Knowledge Retriever, and Response Generator.
Local Semantics Encoder takes the dialogue history as in-
put and encode the conversation history into contextual rep-
resentations based on RoBERTa. To incorporate both the
textual and visual external knowledge, we design Visual-
KnowledgeRetriever and TextualKnowledgeRetriever to per-
form reasoning over both visual and textual entities in the KB.
We further utilize a multi-granularity fusion layer to capture
multi-grained semantics in the dialogue history. Finally, Re-
sponse Generator takes the contextual representations, the ex-
tracted knowledge signals and the multi-grained semantics as
inputs, and generates system response by finetuning over the
pre-trained language model UniLM. Figure 2 illustrates the
overall structure of the proposed framework. Next, we de-
scribe each component in details.

3.1 Local Semantics Encoder
We use the large-scale pre-trained language model RoBERTa
[Liu et al., 2019] to serve as the backbone of our encoder
in order to capture the semantics of the conversation history.
Specifically, it takes the dialogue history as input, and we in-
sert several special tokens at the start and the end of every
turn of the dialogue history to indicate the spans of each in-
dividual dialogue turn. For example, we add <s> at the start
of each turn and add </s> at the end of each turn. In this
way, we can represent each turn of dialogue history by utiliz-
ing the representation of the corresponding <s> token which
captures the aggregated semantics of the word tokens that fol-
lows it. We then concatenate all the individual dialogue turns
together and utilize RoBERTa to encode the concatenated se-
quence. We obtain the local semantic representations for each
dialogue turn eD

1 ,eD
2 ,...,eD

N by extracting the representation of
each <s> token, where N is the total number of turns in the
dialogue history. All these vectorized representations are of d
dimensions (768 for RoBERTa-base). The obtained local se-
mantic vectors are utilized to attend the external knowledge
to incorporate multimodal knowledge into the response gen-
eration process.
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Figure 2: The proposed framework. Left part shows the unified model structure and right part shows the proposed knowledge retrievers.

3.2 Knowledge Retriever Over Multimodal KB
To effectively incorporate the multimodal external knowledge
including both visual and textual knowledge in the external
KB, we introduce two knowledge retrievers – i.e., Visual-
KnowledgeRetriever and TextualKnowledgeRetriever, aimed
to incorporate different modalities into the reasoning process.

To incorporate the visual inputs from the image entities
stored in the external KB, we design a novel module called
VisualKnowledgeRetriever. This module takes a set of im-
ages I = {I1,...,INimage} as inputs and utilize pre-trained ResNet
to transform these images into embedding space using:

eI
i = ResNet(Ii), i = 1, 2, ...,Nimage (1)

where Nimage is the total number of visual entities in the ex-
ternal knowledge. Specifically, we use the activations of the
last convolution layer of ResNet-101 to initialize the repre-
sentation of these visual entities. We then employ a multi-hop
structure to perform visual reasoning over the visual represen-
tations {eI

i}
Nimage
i=1 , which is inspired by the memory networks

[Sukhbaatar et al., 2015]. Existing memory-based architec-
tures are powerful in reasoning due to its multi-hop nature.
However, they struggle to perform reasoning over visual in-
puts such as images. To this end, we propose to extend the
classic memory networks to a more broad setting which aims
to handle multimodal inputs especially images.

Formally, the VisualKnowledgeRetriever contains a set of
trainable layers L = {{C1,W1},...,{CK+1,WK+1}}, where
each layer Lk = {Ck,Wk} is composed of one convolution
layer Ck followed by a linear projection Wk to transform the
initialized visual representations eI into the same space with
the representations of the encoded dialogue history (i.e., eD

1 to
eD
N ). K is the maximum number of reasoning hops. Our best

results are achieved by using K=3 in our experiments.
During inference, the module loops over K hops on an in-

put set of images. At each hop k, we first obtain two sets of
transformed visual representations1 eI,k and eI,k+1 by apply-
ing layers Lk and Lk+1 correspondingly to the original image
embeddings eI:

eI,k
i = Wk(Ck(eI

i)), i = 1, 2, ...,Nimage (2)

1We employ a weight-tying strategy between different hops of
computations inspired by end-to-end memory networks [Sukhbaatar
et al., 2015]

eI,k+1
i = Wk+1(Ck+1(eI

i)), i = 1, 2, ...,Nimage (3)

The first set of the representations eI,k is aimed to compute
the correlations distribution between the query vector and the
visual entities, while the second set of representations is uti-
lized to summarize the important visual information for fur-
ther reasoning. Specifically, we utilize a query vector qk

image

(q0
image = eD

i ) as input, and compute the attentions between
query qk

image and visual representations eI,k using:

pki,image = Softmax((qkimage)
T

eI,k
i )) (4)

We then get the extracted visual information ok
image at hop

k and the updated query for the next hop qk+1
image by combining

the attentions pk
i,image with visual representations eI,k+1 using:

okimage =
∑
i

pki,imageeI,k+1
i , qk+1

image = qkimage + okimage (5)

qK+1
image can be seen as the extracted semantically related

visual information and is used as the inputs for finetuing
UniLM to generate system responses.

To support reasoning over the textual knowledge in KBs,
we present TextualKnowledgeRetriever based on graph neu-
ral networks. This component takes a set of textual entities
V = {v1,...,vNtext} as inputs. Ntext is the total number of tex-
tual entities in the KB. Like VisualKnowledgeRetriever, we
perform multi-hop reasoning over all the textual entities to
extract the contextual relevant textual information. Formally,
we first define a set of embedding layers E = {E1,...,EK+1}
in order to transform all the textual entities into embedding
space. At each hop k, we encode all the textual entities by
applying Ek and get the representation of the i-th textual en-
tity vi using eT,k

i = Ek(vi). We then perform self-attention
between those entities to capture the interrelationship infor-
mation among them. Following this, we update the repre-
sentation of each entity via weighted sum of its first-order
neighbors using the following equations:

eij = ϕ
(
(Q)

T
[eT,k

i , eT,k
j ]
)

(6)

αij =
exp(eij)∑

k∈Ni
exp(eik)

,
(

eT,k
i

)′

=
∑
j∈Ni

αijeT,k
j (7)



where ϕ is LeakyReLU activation function, Q is parametrized
weight vector of the attention mechanism, Ni is the first-order
neighbors of entity i (including i), exp is exponential function.
We then utilize a query vector qktext (q0

text = eD
i ) to attend the

updated textual entities and obtain the attentions using:

pk
i,text = Softmax((qktext)

T
(eT,k

i )
′
)) (8)

We extract the relevant textual knowledge and update the
query for next hop reasoning using:

oktext =
∑
i

pk
i,text(e

T,k+1
i )

′
, qk+1

text = qktext + oktext (9)

We use qK+1
text as the extracted context-aware textual knowl-

edge and use it as another input for UniLM finetuning.

3.3 Multi-Granularity Fusion Layer
Since the overall semantics for every turn of the dialogue his-
tory should not only consider the utterances themselves, but
also include the background knowledge which is related to
the context determined by the utterances. To incorporate such
knowledge into the representations for the dialogue history,
we utilize the local semantic vectors eD

1 ,eD
2 ,...,eD

N as query
vectors to attend both knowledge retrievers.

Specifically, we first use eD
i as the query vector to attend

the VisualKnowledgeRetriever and acquire qK+1
image which rep-

resents the relevant visual knowledge to the context at turn i.
Then eD

i again is utilized to query the TextualKnowledgeRe-
triever and obtain the related textual knowledge qK+1

text . Fi-
nally, we concatenate the local semantic vector eD

i , the related
visual information qK+1

image and the textual information qK+1
text to

get a combined representation Ri for the semantics of the di-
alogue history at turn i.

To encourage richer semantic representations for the dia-
logue history, we further design a cross-turn multi-granularity
fusion layer to aggregate the semantics for the dialogue his-
tory at multiple scales, as dialogue topics usually flow over
time. Formally, we take the set of combined representations
R = {R1,...,RN} as input. We then define M which is a vari-
able size block taking sizes from S = {S1,...,St}, where S is
the set of all valid block sizes and each {Si}ti=1 is a positive
integer. Next, we loop over the t block sizes and utilize them
to split representations R into different semantic blocks with
various sizes. Specifically, for size Si, we first obtain the se-
mantic blocks set BSi

from the input representations R using:

BSi = {{R1, ...,RSi}, ..., {RN−Si+1, ...,RN}} (10)

For each semantic block in BSi
, we utilize average pooling

operation followed by a linear projection W1 to aggregate the
information across turns and obtain the block representations
{FSi

1 ,...,FSi

N−Si+1}, where each {FSi

k }
N−Si+1
k=1 is computed us-

ing:

FSi

k = W1(Pooling(Rk, ...,Rk+Si−1)) (11)
Following the same procedure, we iterate over the t gran-

ularities corresponding to the block sizes taking values in S,

and get the corresponding semantic representations about the
dialogue history at every granularity. The final semantic rep-
resentations for all the granularities are utilized as the inputs
of the response generation module. Intuitively, different utter-
ance blocks can vary in importance to the overall semantics
of the dialogue context. We utilize multi-granularity fusion
scheme to allow capturing multi-scale fine-grained semantics
in the dialogue history at block-level of various sizes, which
enriches the feature representations of the dialogue history.

3.4 Response Generation
To generate the system response conditioned both on the dia-
logue history and the relevant external knowledge, we utilize
the pre-trained language model UniLM [Dong et al., 2019]
and finetune to generate the responses. Specifically, we em-
ploy the sequence-to-sequence mode of the UniLM which is
finetuned to perform language generation tasks conditioned
on the source inputs. Under this mode, all the source in-
puts are allowed to interact with each other and the generated
token at the current timestep can interact with both all the
source inputs and the previously generated tokens by using
masked attention mechanism over transformer layers. In this
way, it encourages sufficient interactions between encoding
and decoding procedures.

We construct the input sequence for UniLM as follows.
Firstly, we concatenate the local semantic vectors eD

1 ,eD
2 ,...,eD

N
with their corresponding visual and textual knowledge sig-
nals followed by linear layer to form the per-turn represen-
tations of the the dialogue history. We then concatenate the
outputs of the multi-granularity fusion layer with the per-turn
representations as the input sequence, and finetune UniLM
over the target responses with cross-entropy losses between
the predicted tokens and the ground-truth tokens.

4 MMDialKB Dataset
To verify the effectiveness of the proposed model, we create
a new large-scale (14K) dialogue dataset called MMDialKB 2

which provides human–human dialogues upon a multimodal
KB in the restaurant domain and is used for empirical studies
in this paper. Next we introduce our data collection procedure
and the dataset statistics in detail.

We first utilize the KB data provided in the MultiWOZ 2.1
dataset to construct the textual part of the multimodal KB. We
then collect images for the textual entities in the knowledge
base from mainstream image search engines, e.g., Google,
Bing. To ensure the quality of the images, we manually check
each one of them and discard those that don’t meet our stan-
dards, e.g. blurred images, images with words and water-
marks. Overall, we have collected 6589 images to build the
KB. Finally, we extend the textual KB by manually matching
the images with the textual entities to obtain a multimodal
KB. We then collect dialogue utterances via AMT. Specif-
ically, we utilize the open-source library ParlAI3 to collect
the dialogue data since it provides several useful functional-
ities (e.g. backend messaging, data storage, pool of workers
maintaining) for conveniently deploying live chats on AMT.

2https://github.com/ruizhang-ai/MMDialKB
3https://github.com/facebookresearch/ParlAI

https://github.com/ruizhang-ai/MMDialKB
https://github.com/facebookresearch/ParlAI


Specifically, we match two workers and ask them to conduct a
dialogue where the user role is instructed to ask questions and
the agent role needs to answer them based on the provided KB
information. See more details about the data collection setup,
interface, and quality control in Appendix E.

4.1 Dataset Statistics
We have conducted data statistics of the collected dataset
and make comparisons with popular datasets such as SMD
and MultiWOZ 2.1. Table 1 has shown the comparison re-
sults. Compared to existing popular datasets such as SMD
and MultiWOZ 2.1, MMDialKB is the only dataset that has
multimodal KB and have dialogues involving visual infor-
mation. Particularly, there are 68% of the dialogue turns re-
lated to the visual entities in the KB while none of the other
two datasets contains such data. Among the 68% dialogue
turns that require visual knowledge, about 59% require only
visual knowledge while about 41% require both visual and
textual knowledge. There is a good mix and balance of dif-
ferent types of questions and they are not significantly biased.
Therefore, the dataset is well suited to verify the proposed
problem. More details about the question and answer distri-
butions and comparisons are included in Appendix F. In total,
MMDialKB contains 14420 dialogues, and we split 10000 for
training, 1420 for validation and 3000 as test.

5 Experiments
5.1 Baselines and Metrics
We compare our model with the following state-of-the-art
models in task-oriented dialogue systems, including: (1)
Mem2Seq [Madotto et al., 2018]: the model takes dialogue
history and textual KB as inputs, and generates system re-
sponses either by selecting an input token or by generating
tokens from vocabulary; (2) GLMP [Wu et al., 2019]: the
model utilizes a global pointer mechanism over textual KB
entities to improve copy accuracy and uses standard GRU
with template-based method to generate system responses;
(3) DF-Net [Qin et al., 2020]: the model uses a shared-
private structure to exploit cross-domain knowledge and fa-
vors transferability across domains; (4) GraphDialog [Yang
et al., 2020]: the framework incorporate graph knowledge
both in dialogue history and the textual KB to improve the
quality of generated responses. We use three common evalu-
ation metrics including BLEU [Papineni et al., 2002], Entity
F1 [Eric et al., 2017] and Perplexity for evaluations.

5.2 Implementation Details
We finetune RoBERTa-base model [Wolf et al., 2019] with
Adam [Kingma and Ba, 2014] optimizer with a learning rate
of 5e-5, batch size of 16, drop out rate of 0.2. We try
1,2,3,4,5,6 for the maximum number of hops K and try all
the combinations selected from sizes [2,3,4] for block sizes S,
and find the best combination is K = 3 and S = [2,3] based on
the validation set results. For the response generation mod-
ule, we finetune UniLM1.2-based-uncased model [Dong et
al., 2019] 20 epochs with a batch size of 16, a learning rate
of 2e-5, and a beam size of 5 for decoding during inference.
We repeat all the experiments 10 times with different random

Metrics SMD MultiWOZ MMDialKB

With KB? X X X
With Multimodal KB? × × X

# turns per dialog 5.25 13.46 4.83
# tokens per turn 8.02 13.13 10.74
# of dialogue turns 12,732 113,556 69,648
# instances in total 3,031 10,438 14,420

Table 1: Statistics for SMD, MultiWOZ and MMDialKB.

seeds and report the average results. The model is trained on
a 8-core server with 64 GB memory and an NVIDIA GeForce
RTX 2080 Ti GPU. All the training can be done in one day.

5.3 Results
Table 2 has shown the results for both baselines and ours on
MMDialKB dataset. We evaluate all the models using differ-
ent combinations of the inputs to ablate the effects of every
type of inputs. For all the baselines, we report the results
using dialogue history with and without textual KBs as in-
puts since they can’t handle multimodal inputs as ours. It
can be seen that our model consistently outperforms all the
baselines under all settings, i.e., only use dialogue history
as inputs and plus textual KB as inputs. Specifically, our
best performing version with K = 3 has achieved an average
about 3% absolute improvement over all the baselines includ-
ing the state-of-the-art. This verifies the effectiveness of our
proposed model. When incorporating the visual knowledge,
the performance gain has become even larger for our model
compared to the baselines. This verifies that the external vi-
sual knowledge actually bring benefits to the model perfor-
mance. Interestingly, we also find that although by adding
textual knowledge or visual knowledge can both be useful
to the model performance, the gain is much more significant
(∼1% vs. ∼3%) when adding visual knowledge than textual
knowledge. This indicates that visual knowledge is more im-
portant to achieve better performance. We also observe that
comparing to purely utilize dialogue history as inputs, adding
external knowledge inputs (e.g., textual knowledge or visual
knowledge) can remarkably improve the performance of both
baseline models and ours. This shows that the effective use
of the external knowledge data is critical to the model perfor-
mance in knowledge-intensive tasks such as ours.

5.4 Ablation Study
Table 3 has shown the ablated results. We have ablated each
component in our model including both knowledge retriev-
ers, multi-granularity fusion layer, RoBERTa encodings and
UniLM finetuning. As we can see from the table, all the indi-
vidual components have notably contributed to the full model
performance. Specifically, when removing both knowledge
retrievers, the performance has decreased significantly (an av-
erage about 2% absolute drop). This confirms the effective-
ness of the knowledge retrievers especially the novel Visual-
KnowledgeRetriever component. After removing the multi-
granularity fusion layer in the encoder, the performance has
dropped remarkably which confirms that by incorporating
multi-granularity semantics we can further improve the sys-
tem performance. When replacing the pre-trained RoBERTa



Dialogue History Dialogue History
+ Textual Knowledge

Dialogue History
+ Textual + Visual Know.

Model BLEU Entity F1 PPL BLEU Entity F1 PPL BLEU Entity F1 PPL

Mem2Seq 50.14 63.25 59.71 52.35 68.04 56.58 - - -
GLMP 62.02 72.13 48.13 64.21 73.90 45.11 - - -
DF-Net 63.63 72.55 47.85 64.44 74.13 44.79 - - -
GraphDialog 64.33 71.85 48.67 65.58 73.56 45.20 - - -

UniMF (K=1) 67.17 76.35 43.48 67.38 76.70 41.88 68.93 78.77 38.57
UniMF (K=3) 67.17∗ 76.35∗ 43.48∗ 68.29∗ 77.49∗ 41.10∗ 69.98∗ 79.83∗ 37.26∗

UniMF (K=6) 67.17 76.35 43.48 66.72 76.13 42.57 68.65 78.94 40.15

Table 2: Main results on the MMDialKB test set. The numbers with * indicates that the improvement of our model over all baselines is
statistically significant with p < 0.05 under t-test.

Model BLEU Entity F1 PPL

UniMF (Full model) 69.98 79.83 37.26
- w/o Textual Know. Retriever 68.64 78.21 39.53
- w/o Visual Know. Retriever 67.81 77.23 41.06
- w/o Multi-Granularity Fusion 68.25 78.54 39.78
- w/o RoBERTa Encodings 66.67 76.43 41.59
- w/o UniLM Finetuning 66.49 76.03 42.14

Table 3: Ablation study on the MMDialKB test set.

Model Fluency Correctness Humanlike

GLMP 4.08 3.81 3.22
DF-Net 4.16 3.96 3.30
GraphDialog 4.13 4.15 3.29
UniMF (Full model) 4.33 4.37 3.68

Human 4.85 4.63 4.59

Table 4: Human evaluation results on randomly selected responses
from MMDialKB test set.

model in the encoder with standard GRU (See Appendix C for
details), the performance has sharply decreased by 3%∼4%
across various metrics. This shows that the general knowl-
edge captured by the pre-training is beneficial to the model
performance. This is also verified by replacing the UniLM
with GRU as the decoder (Details in Appendix C). When
removing UniLM, the model performance has significantly
dropped by about 4% on average across all metrics.

5.5 Case Study
We provide one case study to conduct in-depth analysis
of the model dynamics within our designed knowledge re-
trievers. Specifically, we utilize the last hop attentions in
both knowledge retrievers for investigation. We find that
our model has assigned higher weights for the textual enti-
ties frankie and bennys and Italian in the Textu-
alKnowledgeRetriever during the first turn of the dialogue
in Figure 1. For the follow-up turns, the retriever looks

more on the visual entities which are the dining hall and
parking lot images in the VisualKnowledgeRetriever.
This shows that the knowledge retrievers successfully learn
to retrieve the appropriate textual and visual knowledge from
the external KBs according to the dialogue context. See visu-
alization results in Figure 9 in the appendix.

5.6 Human Evaluations
Following prior work [Qin et al., 2020], we conduct human
evaluations on the generated responses from three aspects:
Fluency, Correctness, and Humanlikeness. Fluency is uti-
lized to measure the fluency of the outputs (e.g., contain rep-
etitions or not). Correctness is used to measure the correct-
ness in terms of dialogue flow, grammar and provided enti-
ties. Humanlikeness is utilized to evaluate the probability of
the generated responses spoken by persons. We compare our
work with previous state-of-the-art models and the original
responses as well. We randomly select 300 different dialogue
samples from the test set and ask human experts to judge the
quality of the responses and score them according to the three
metrics ranging from 1 to 5. The results are shown in Table 4.
We can see that our model has outperformed all the baselines
across all the three metrics, which is consistent with the ob-
servations in automatic evaluations. Details about the scoring
criterions are listed in Appendix D.

6 Conclusion
In this paper, we propose MMDialKB, a new large-scale di-
alogue dataset focusing on multimodal KBs. Different from
existing dialogue datasets with KBs such as SMD and Multi-
WOZ 2.1, MMDialKB features a unique multimodal KB and
high-quality dialogue data collected upon it. To handle multi-
modal KB inputs, we propose a novel framework which inte-
grates pre-trained language models with external multimodal
KB reasoning. To further improve the performance, we intro-
duce a novel multi-granularity fusion mechanism to capture
multi-grained semantics in the dialogue history. Both auto-
matic and human evaluations demonstrates the effectiveness
of the proposed framework. We hope these efforts could facil-
itate new advances towards task-oriented dialogue modeling
with multimodal KBs.
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