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Abstract
Multi-scale representation learning aims to lever-
age diverse features from different layers of Con-
volutional Neural Networks (CNNs) for boosting
the feature robustness to scale variance. For dense
prediction tasks, two key properties should be sat-
isfied: the high spatial variance across convolu-
tional layers, and the sub-scale granularity inside
a convolutional layer for fine-grained features. To
pursue the two properties, this paper proposes Re-
cursive Hermite Polynomial Networks (RHP-Nets
for short). The proposed RHP-Nets consist of
two major components: 1) a dilated convolution
to maintain the spatial resolution across layers, and
2) a family of Hermite polynomials over a subset
of dilated grids, which recursively constructs sub-
scale representations to avoid the artifacts caused
by naively applying the dilation convolution. The
resultant sub-scale granular features are fused via
trainable Hermite coefficients to form the multi-
resolution representations that can be fed into the
next deeper layer, and thus allowing feature inter-
changing at all levels. Extensive experiments are
conducted to demonstrate the efficacy of our de-
sign, and reveal its superiority over state-of-the-art
alternatives on a variety of image recognition tasks.
Besides, introspective studies are provided to fur-
ther understand the properties of our method.

1 Introduction
Dense prediction tasks, such as object localization [Wang et
al., 2020; Yu et al., 2017] and semantic segmentation, typi-
cally require to describe scale-varied objects with high spatial
variances and fine-grained details. To account for objects that
may appear with different sizes, multi-resolution representa-
tions through CNNs form the basis of a standard solution, due
to the capability of CNNs in representing robust and expres-
sive features in hierarchy. Technically, previous methods in

this direction mainly resort to skip connections [Lin et al.,
2017a; Huang et al., 2017], where features with multi-sized
receptive fields are fused at different depths, and/or multi-
branch feature fusion [Li et al., 2019; Wang et al., 2020;
Szegedy et al., 2016], where the input and output channels
are alternated by dynamic sampling rates, for alleviating scale
variations. However, CNNs are limited in preserving spatial
precision, since a series of pooling or striding layers would
produce coarse, high-level features for deeper layers of the
feature network. Such an architecture can reduce the spatial
resolution of the resulting feature maps, which is hardly re-
gained and non-invertible. This regret poses an obstacle to
dense prediction tasks from achieving higher performance in
complex image understanding. For example, matching two
scenic person shots needs to simultaneously consider multi-
scale matching (due to camera distances), and fine-grained
matching with accurate spatial dimensions (e.g., the hairstyle,
shoes, and jacket patterns).

As a representative solution, dilated convolution is shown
to be effective for tasks that require high-resolution predic-
tions [Wang et al., 2020; Takahashi and Mitsufuji, 2021]. The
dilation factors are set to grow exponentially as deep layers
are stacked, and thereby the network can cover a larger re-
ceptive field. However, applying the dilation convolution in-
curs the prominent aliasing problem [Gong and Poellabauer,
2018; Wang et al., 2018], where the signal over the Nyquist
frequency becomes indistinguishable with lower frequency
after sampling. The dilation convolution with sub-sampling
can give rise to such artifacts in feature maps whose receptive
field is smaller than the dilation factor [Gong and Poellabauer,
2018]. This is especially obvious for the fine-grained fea-
tures with much higher frequency. Thus, an appropriate low-
pass filter for anti-artifacts (e.g., a standard convolution filter
[Wang et al., 2018; Fuchs et al., 2019]) is needed to boost the
accuracy of dense prediction tasks.

In this paper, we develop a novel multi-scale spatial rep-
resentation learning approach to seek accurate and highly ex-
pressive features for dense prediction tasks. We present a net-
work based on dilated convolution coupled with Recursive



Hermite Polynomials (called RHP-Nets) to incorporate the
spatial variance and sub-scale feature granularity. The fam-
ily of Hermite polynomials possesses the recursive property
[Pauwels et al., 1995] of producing sub-scale features with-
out losing the spatial resolution. Specifically, by increasing
the dilation factor at deeper layers, the proposed RHP-Nets
receive larger receptive fields to maintain the spatial resolu-
tion across convolutional layers. To explicit mitigate the ar-
tifacts caused by the dilated convolution, we apply a set of
Hermite polynomials attending to the subset of dilated grids,
and recursively generate sub-scale features with granularity.
This operation resembles the low-passing filter on the fine-
grained features, and also allows the information interchange
amongst representations at all layers. By doing so, the alias-
ing problem is greatly alleviated, and the proposed paradigm
not only preserves the recognizable details but also fuses in-
formation from different scales into the same representation
in an end-to-end manner.

The contributions of this paper are summarized as fol-
lows: 1) We introduce Recursive Hermite Polynomial Net-
works (RHP-Nets) to learn multi-scale spatial representa-
tions, which are demonstrated to be beneficial to dense pre-
diction tasks that require robust and expressive features with
high spatial accuracy; 2) Multi-scale networks are designed
by respecting the spatial variance across layers and exploring
the sub-scale feature granularity within a convolutional layer
to address the undesirable artifacts.

2 Related Work
2.1 Multi-Scale Representation Learning
Existing works in this direction can be roughly categorized
into skip connection based [Lin et al., 2017a; Huang et al.,
2017] and multi-branch feature fusion based [Li et al., 2019;
Wang et al., 2020; Szegedy et al., 2016] methods. The skip
connection structure exploits the inherent design of CNNs to
create short paths between different layers. However, a sim-
ple connectivity of multiple convolutional layers might not be
the optimal way to increase the expressiveness of representa-
tions, as too many layers are required to cover a sufficiently
large input, and training the network is difficult. Multi-branch
fusion is to explicitly model the inter-channel dependencies
between convolutional features. For instance, ScaleNets [Li
et al., 2019] generate multi-scale representations by down-
sampling the input feature maps at different factors while
up-scaling the low-resolution representations to recover the
lost resolution. Nonetheless, these methods commonly cap-
ture multi-scale features in either channel-wise or weighted
summation manners, laying intensive emphasis on architec-
ture engineering. Also, by using a medium sized receptive
field, the above methods reduce the spatial resolution of the
resulting feature maps.

Dilated convolution has been shown effective in many
dense predictions tasks that require high resolutions [Wang
et al., 2020; Chen et al., 2018b; Takahashi and Mitsufuji,
2021]. It is able to generalize the regular convolution through
expanding the kernels with zero insertion. This operation
effectively increases the receptive field, so as to perceive a
larger spatial context without introducing additional parame-

ters. For instance, PConv [Wang et al., 2020] exploits multi-
scale features by manipulating a group of dilated rates to
extract diverse features corresponding to different receptive
fields. Atrous Spatial Pyramid Pooling (ASPP) [Chen et al.,
2018b] sums parallel spatial results for semantic context pool-
ing. The concept of stacking multiple dilated convolutions
(SDC) in parallel and combining each output by concate-
nation is proposed in [Schuster et al., 2019]. However, we
remark that these methods [Wang et al., 2020; Schuster et
al., 2019; Takahashi and Mitsufuji, 2021] simply use con-
volution with different dilation rates to compute the multi-
scale feature descriptor, while the fine-grained features could
be over-smoothed and become indistinguishable after sub-
sampling. This prominent problem is also known as aliasing
[Gong and Poellabauer, 2018], which degrades the perfor-
mance of CNN-based recognition tasks [Wang et al., 2018;
Fuchs et al., 2019]. Inspired by an interesting property of re-
cursivity principle in scale-space [Pauwels et al., 1995], this
paper presents recursive Hermite polynomials to prevent the
occurrence of aliasing in fine-grained features. It implies that
the increasingly blurrier version of an image can be generated
from the intermediate levels of its scaled variant with less fre-
quency reduced. Hence, we formulate a family of Hermite
polynomials to recursively produce sub-scale features within
a convolutional layer.

2.2 Multi-Resolution Modeling
Fusing feature maps in different resolutions from early lay-
ers are important to dense prediction tasks [Long et al., 2015;
Newell et al., 2016]. For example, in Hourglass [Newell et
al., 2016], early down-sampled features are first up-sampled
and combined via skip connections. Another method for
combining feature maps [Sun et al., 2019] attempts to use
stage-wise aggregation, i.e., in each stage, feature maps in
different resolutions are processed by CNNs individually
and then aggregated by a cross-resolution matching with
up/down-sampling at the end of each stage. However, this
stage-wise aggregation only fuses feature maps globally with-
out local feature fusion. In stark contrast, we produce sub-
scale features of different resolutions within a convolutional
layer, which are aggregated via trainable Hermite coeffi-
cients. This allows us to fuse feature maps with multiple reso-
lutions at all layers. The multi-dilated convolution [Takahashi
and Mitsufuji, 2021] can be considered as a multi-resolution
modelling where the dense-connected convolutions operate
different resolutions using dilated factors depending on skip
connections [Huang et al., 2017]. However, such a method
can generate undesirable artifacts in feature maps.

3 Method
In this section, we detail how the proposed Recursive Hermite
Polynomial Networks (RHP-Nets) learn multi-scale spatial
representations. To preserve spatial resolution across deep
layers of CNNs, we use a set of dilated filters with larger
receptive fields to be applied on input features. To enhance
fine-grained features for dense prediction, we address the ar-
tifacts caused by dilated convolutions through a sequence of
Hermite polynomials to recursively produce sub-scale feature



Figure 1: The architecture of a single layer in RHP-Nets. Our
contribution is the Hermite Polynomial Block (HPB) that extracts
contextual features under a subset of dilated grids, and recursively
low-passes them to form the sub-scale output. These sub-scaled re-
sponses are aggregated via Hermite coefficients (i.e., Cn), activated
by a soft-sign function and fed into the next layer.

maps. These feature maps are aggregated via trainable Her-
mite coefficients to interchange local representations at all
levels. In what follows, we describe the dilated convolution to
preserve spatial resolution during the course of convolutions.
Then, we describe how the Hermite polynomials are utilized
to generate sub-scaled granular features without artifacts.

3.1 Dilated Convolution
The alternatives to obtain a larger receptive field could be
larger kernels and dilated convolutions [Yu et al., 2017;
Li et al., 2018]. The drawback of using a larger kernel is
the high computational cost in terms of the increased number
of parameters. To circumvent this problem, dilated convolu-
tion advises an enlarged sampling interval with sparsity. In
this spirit, we can create the network with dilated convolu-
tional layers, each of which suggests an increased dilated rate
to enlarge the receptive field in deeper layers.

To be self-contained, we first define the feature block at a
convolutional layer l by denoting F l ∈ RC×H×W , where
C is the number of channels, H and W are the height
and width. Further denote the convolutional filter as G ∈
RCot×Cin×K×K , where a set of Cot filters with size K ×K
convolve with the input feature, and each filter applies Cin

kernels to match those input channels. The convolutional op-
eration takes the form:

F l+1
c,x,y =

Cin∑
k=1

m∑
i=−m

m∑
j=−m

Gc,k,i,jF
l
k,x+i,y+j . (1)

where m = K−1
2 . F l+1

c,x,y ∈ RCot×H×W is the output feature
in layer l + 1, c = 1, . . . , Cot indexes the output channel, x
and y are indices of spatial positions in a feature map.

It is argued that convolution with a dilation rate d and stride
d amounts to convolving the sub-sampled input by a factor d
without dilation [Chen et al., 2018b; Schuster et al., 2019;
Li et al., 2018]. Thus, dilated convolution with striding-free
produces a d-downsampled response at full spatial coverage.
This critical observation is heavily used by our network de-
sign where we employ the output of convolutions with dif-
ferent dilation rates to produce a multi-scale response with

:input feature

d=2

kernel:3*3;pad=2;stride=1;
dilation=2 (insert 1 zero)

:zeros
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:low pass

(a)                                                    (b)

Figure 2: (a) Dilation convolution can cause artifacts by in-
serting zeros into input features. (b) Hermite polynomials use
low-passing and recursively produce sub-scale features that
can be integrated into the next layer.

spatial resolution preserved. Specifically, given a dilated rate
d, the dilated convolution becomes

F l+1
c,x,y =

Cin∑
k=1

m∑
i=−m

m∑
j=−m

Gc,k,i,jF
l
k,x+di,y+dj . (2)

Apparently, if we define the receptive field of one element
in layer F l+1 as a subset elements in the preceding layer F l,
then it drives the receptive field of each element in F l+1 with
(2l+2−1)×(2l+2−1). However, the standard dilation convo-
lution may introduce the artifacts caused by the aliasing effect
(i.e., insert zeros into input features. Fig.2 (a)). This would
hinder the learning of fine-grained features in dense predic-
tion. For this, we propose to apply Hermite polynomials to
address the artifacts, and enable dense interchange amongst
local representations in each convolution (see Fig.2 (b)).

3.2 Learning Multi-Scale Spatial Features via
Recursive Hermite Polynomials

In dense prediction tasks, many methods preserve the spatial
resolution across convolutional layers by cascading dilated
convolutional layers with different dilation factors. However,
the standard dilated convolution can cause the artifacts which
impedes the fine-grained features for boosting the prediction
accuracy. To alleviate the artifacts, we apply a sequence of re-
cursive Hermite polynomials to low-pass the high frequency
and generate the sub-scale granularity.
Hermite Polynomials Hermite polynomials define a class
of orthogonal polynomials that can be applied in signal
processing [Rasiah et al., 1997], local image matching
[Martens, 2006] and polynomial activations in neural net-
works [Lokhande et al., 2020; Ge et al., 2018]. Mathemat-
ically, the normalized Hermite polynomials can be expressed
as

hn(x) =
(−1)n√

n!
ex

2 dn

dxn
e−x2

, n > 0;h0(x) = 1. (3)

An important property regarding Hermite transformation is
the recursive relationship that can be derived from Eq.(3) as

hn+1(x) = 2xhn(x)− 2nhn−1(x). (4)

We take advantage of this recursive property to resemble the
low-passing filter on fine-grained features so as to produce
sub-scale granularity without artifacts.



Figure 3: The activation maps at different levels of RHP-Nets.
Images are from PRW dataset and CUB dataset. The Hermite
polynomial block is applied from level 4 and onward.

Recursive Hermite Polynomial Networks: RHP-Nets As
shown in Fig.1, the core of RHP-Nets is a Hermite polyno-
mial block (HPB). In a single convolutional layer, HPB at-
tends to dilated features, and forwards to polynomial acti-
vations to low-pass these features. The nature of recursiv-
ity in Hermite polynomials guarantees the reduction on spa-
tial frequency over fine-grained details to combat the aliasing
caused by cross-layer dilation convolutions. Then, a combi-
nation of resultant sub-scale granular features are fused via a
set of trainable Hermite coefficients. Each coefficient corre-
sponds to one order of Hermite polynomials. Mathematically,
the proposed HPB operation is expressed as

F l+1
c,x,y =

Cin∑
k=1

m∑
i=−m

m∑
j=−m

σ[

N∑
n=0

CnHn(Gc,k,i,jF
l
k,x+di,y+dj)],

(5)
where Hn(·) is computed using Eq. (3). Cn stands for the
Hermite coefficient corresponding to the order-n polynomial
Hn, (n = 0, . . . , N ). σ(a) = a

1+|a| represents the soft-sign
function, which plays the role of suppressing the unbounded
activations associated with higher-order polynomials [Glorot
et al., 2011]. Intuitively, a set of Hermite polynomial trans-
formations amounts to steerable filters for extracting fine-
grained features and low-pass them during the scaling. The
recursive relationship between Hermite polynomials can re-
duce the high spatial frequency as the order of polynomials
increases. After the removal of high frequent features, we
propose an aggregation scheme to fuse these sub-scale repre-
sentations. We cast Cn to be trainable parameters such that
features at different orders are pooled for multi-scale repre-
sentations. It also ensures that a set of Hermite polynomials
are recursive on spatial dimensions without losing the spatial
accuracy. Finally, the entire sub-scale features with granular-
ity are aggregated and fed into the next layer .

3.3 Relationship to Existing Methods
At first glance, our method looks similar to PConv [Wang et
al., 2020] and SDC [Schuster et al., 2019] in the sense of us-
ing dilation to preserve the spatial resolution. However, our
method shows clear distinctions in two folds. First, PConv
[Wang et al., 2020] and SDC [Schuster et al., 2019] utilize
a sequence of dilated convolutions to produce a multi-scale
response, which can incur the artifacts caused by the aliasing
problem [Gong and Poellabauer, 2018]. Unfortunately, both
PConv [Wang et al., 2020] and SDC [Schuster et al., 2019]
cannot solve this issue. To circumvent this, in this paper we
employ the Hermite polynomials to recursively produce sub-
scale features within each convolution, during which the same

Figure 4: The localization results of RHP-Nets on the CUB
dataset.

spatially contextual features are sub-sampled to produce the
sub-scale output without artifacts. Second, they stack con-
volutional outputs from each branch, which has limitation
in fusing local features. Instead, we aggregate the sub-scale
granular features via trainable Hermite coefficients, which al-
lows every local information interchange at all layers.

3.4 Instantiation
The proposed RHP-Nets have 7 computational levels in to-
tal, denoted as Ll, l = 1, . . . , 7. The network has residual
connection analogous to ResNet [He et al., 2016] as the ba-
sic module of Conv-BN-ReLU. Each image is resized to be
224× 224× 3, and the output is 112× 112× 32 after level 1.
We remove the max-pooling by replacing it by convolutional
filters. The max-pooling operation leads to high-frequency
activations that can be propagated to higher layers [Yu et al.,
2017]. The max-pooling is only applied in the last level to
produce the output of size 14×14. To improve computational
efficiency, we adopt a transition layer between the last convo-
lution and the fully-connected layer. The transition layer is
composed of a 1× 1 convolution followed by a 2× 2 average
pooling. Finally, a fully-connected layer is added, followed
by a classification task using the soft-max function. The HPB
is plugged into the network, e.g., ResNet [He et al., 2016]
from level 4 to level 7 nested into the 3×3 convolution, where
the dilation rates are set d = {2, 4, 2, 1}, from L4 to L7, re-
spectively. In this way, we achieve the spatial accuracy across
convolutions to benefit dense prediction.

To produce sub-scale granular features without artifacts,
we realize the spatial frequency inside each layer by com-
positing Hermite polynomials into the dilated grids. This
leads to the proposed RHP-Nets by simultaneously achiev-
ing the multi-scale representations with high spatial variance
and the sub-scale features for boosting dense prediction. The
activations on each level are shown in Fig.3. Note that batch
normalization is applied before the Hermite polynomial trans-
formation. We tune the choice of the number of Hermite poly-
nomials N by N ∈ {0, 2, 4, 6, 8} in our ablation study. In all
experiments, we set N = 4 as default.

4 Experiments
4.1 Object Localization
Dataset and Evaluation Metrics We use the Caltech-
UCSD Birds-200-2011 (CUB) [Wah et al., 2010] as the



benchmark dataset. CUB consists of 200 classes with 5,994
training and 5,794 testing images. We adopt the MaxBoxAcc
as the evaluation metric to measure the accuracy between the
predicted box and the ground-truth box [Choe et al., 2020].
Given the ground truth box B, the box accuracy at score map
threshold τ and IoU threshold δ, BoxAcc(τ, δ) is defined as:
BoxAcc(τ, δ) = 1

M

∑
m 1IoU(box(s(X(m)),τ),B(m))≥δ , where

box(s(X(m)), τ)) is the tightest box around the connected
component of the mask {(i, j)|s(X(m)

ij ) ≥ τ}, s(·) is a scor-

ing function thresholding it at τ , and X
(m)
ij denotes a pixel

in an image X ∈ RH×W . Then, the maximal box accuracy
is MaxBoxAcc(δ) := maxτ BoxAcc(τ, δ). We also adopt the
top-1 classification/localization as evaluation metrics.

Implementation Details We train our method in fully-
supervised setting where each image has full supervision ei-
ther in a bounding box or binary mask. We consider a fore-
ground saliency mask predictor [Liu et al., 2010], where each
pixel is trained with the binary cross-entropy loss against
the target mask. The mask is built by labeling pixels in-
side the ground truth boxes as foreground. To demonstrate
the compatibility of our method to different score functions,
we set our network as an architecture for classification, and
combine with different localization methods: CAM [Zhou et
al., 2016], SPG [Zhang et al., 2018b], HaS [Singh and Lee,
2017], ACoL [Zhang et al., 2018a], ADL [Choe and Shim,
2019] and CutMix [Yun et al., 2019]. MaxBoxAcc measures
the performance at a fixed IoU threshold δ = 0.5.

Experimental Results Our localization results are shown
in Fig. 4. We compare our approach with two recent multi-
resolution based methods for dense prediction tasks, i.e.,
Inception-4v [Szegedy et al., 2016] and SDC [Schuster et al.,
2019]. The results in Table 4.1 show that our method achieves
consistently performance gain on three measures in the com-
bination with six object localization methods. Though the
multi-branch method SDC [Schuster et al., 2019] shows its
effectiveness in combining with HaS [Singh and Lee, 2017]
and ACoL [Zhang et al., 2018a], it has ignorance to fine-
grained features which should be explored to boost the pixel-
wise dense prediction on objects.

4.2 Semantic Segmentation
Dataset and Evaluation Metric We use the Cityscapes
dataset [Cordts et al., 2016], which contains 5,000 images
recorded from street scenes in 50 different cities. Each im-
age has high quality pixel-level annotations. The dataset is
annotated with 30 categories, and 19 categories are used for
training and evaluation. The training, validation and test set
contains 2975, 500, and 1525 images, respectively. In our
experiment, the mean of class-wise intersection over union
(mIoU) is reported.

Implementation Details The proposed HPB can be inte-
grated with a CNN by simply injecting the polynomial block
into the series of convolutional layers. To highlight the effect
of Hermite orders, we combine the DenseNet [Huang et al.,
2017] with HPB (called D-HPB), i.e., each resolution recur-
sively passes the Hermite polynomials. Data augmentation

Network Score function MBA Top-1 loc Top-1 cls
CAM 56.7 40.4 61.8

Inception HaS 53.4 55.6 70.9
ACoL 56.2 44.8 56.1

SPG 55.9 44.9 58.8
ADL 58.8 39.2 33.1

CutMix 57.5 48.3 70.2
CAM 63.0 56.1 58.4

SDC HaS 64.6 60.7 74.5
ACoL 66.4 57.8 64.0

SPG 60.4 51.5 37.8
ADL 58.3 41.1 32.7

CutMix 62.8 54.5 32.7

RHP-Nets

CAM 67.1 57.2 69.8
HaS 66.2 60.5 76.1

ACoL 65.1 57.9 78.0
SPG 63.0 60.4 78.8
ADL 60.1 44.0 67.0

CutMix 67.0 60.7 74.2

Table 1: Evaluating localization methods on CUB dataset
w.r.t three metrics: MaxBoxAcc (MBA), Top-1 localization
(loc) and Top-1 classification (cls). Best results are in bold.

Backbone #param. mIoU
D-ResNet-50 49.5M 59.7

D-ResNet-101 68.5M 62.4
D3Net-S 9.7M 65.1
D3Net-L 38.7M 68.1

D-HPB (Ours) 37.2M 70.2
D-HPB-Light (Ours) 9.2M 72.3

Table 2: Segmentation results in complexity and mIoU.

is performed with random horizontal flipping, cropping and
scaling.

Experimental Results Results in Fig. 5 show that our
method achieves superior segmentation performance. Learn-
ing to produce sub-scale features as the multi-resolution rep-
resentations is beneficial to semantic segmentation by lever-
aging both global and fine-grained information. To thor-
oughly study the effect of Hermite orders, we consider a vari-
ant model that is different in using dilation convolution. The
backbones include Dilated-ResNet-50(-101) [Yu et al., 2017]
and D3Net-S(-L) [Takahashi and Mitsufuji, 2021]. Exper-
imental results are reported in Table 4.1. D-HPB-Light is
a light version by using the channel-reduction mechanism
[Huang et al., 2017] to improve the efficiency. Although
D3Net [Takahashi and Mitsufuji, 2021] can address the alias-
ing problem by adjusting the dilation factors, the receptive
fields are enlarged repeatedly, leading to an exponentially
growing receptive field in almost all layers. In contrast,
we design the pluggable polynomial activation as the low-
passing filter which is computational efficient.

4.3 Object Detection on MS COCO
The MS COCO dataset [Lin et al., 2014] has 80 categories,
which contains 115k images for training (train2017), 5k im-
ages for validation (val2017), and 20k images for testing
(test-dev). We train the model on train2017, and report the re-



(a) images (b) ground truth (c) D3Net (d) ours

Figure 5: The segmentation results of Cityscapes.

Figure 6: The study on the orders of Hermite polynomials.
The localization measure on varied number orders of polyno-
mials show that N = 4 is high enough to achieve satisfactory
accuracy.

sults on test-dev. All reported results follow standard COCO-
style Average Precision (AP) metrics.

Implementation Details All experiments are implemented
based on mmdetecton [Chen et al., 2018a]. Following [Lin
et al., 2017a], the shorter sizes of input images are resized
to 800 pixels. For a fair comparison, we re-implement the
following detectors equipped with the backbone ResNet-101-
FPN [Lin et al., 2017a]: RetinaNet [Lin et al., 2017b], Faster-
R-CNN [Ren et al., 2015], Libra-R-CNN [Pang et al., 2019],
Grid-R-CNN [Lu et al., 2019], and Mask-R-CNN [He et al.,
2017]. Another two backbones with dilation convolution are
D-ResNet-50(-101) [Yu et al., 2017] and D3Net-S(-L) [Taka-
hashi and Mitsufuji, 2021]. We also consider a SOTA object
detection method, i.e., DeepLabV3 [Chen et al., 2018b] back-
boned on D-ResNet-50(-101).

Experimental Results Comparison results on MS COCO
are shown in Table 4.3. We have the following observa-
tions: 1) Using the proposed RHP-Nets as the backbone,
contemporary detectors can achieve superior performance.
For example, by replacing FPN with RHP, Mask-R-CNN us-
ing ResNet-101 as backbone (denoted as ResNet-101-RHP)
achieves 46.1 AP, which is 7.5 point higher than Mask-
R-CNN based on ResNet-101-FPN. This clearly shows the
importance of the proposed RHP in object detection. 2)
Comparing with the detectors that are backboned on di-

Figure 7: The heatmaps coupled with statistical values in 9 bins
show that the adjacent layers of RHP-Nets (from level 3 to level
7) maintain the spatial variance. (The higher values in bins, the
stronger spatial correlation). Best viewed in color.

lated CNNs, i.e., D-ResNet-50(-101) and D3Net-S(-L), our
method can still improves the performance. For example,
when using Faster-R-CNN based on DenseNet+RHP, our per-
formance is 46.3 AP, whilst Faster-R-CNN with D3Net-S
achieves 45.3. 3) Comparing with DeepLabV3 [Chen et al.,
2018b] based on D-ResNet-101 [Yu et al., 2017], our method
can effectively address the aliasing problem caused by the
atrous convolution, thus improves the object detection perfor-
mance. For example, Faster-R-CNN [Ren et al., 2015] (back-
boned on ResNet-101+RHP) improves AP by 0.7 in compar-
ing with DeepLabV3 [Chen et al., 2018b].

4.4 Multi-scale Person Matching
Dataset and Evaluation Metrics PRW [Zheng et al.,
2017] is a person search benchmark. The dataset contains
a total of 11,816 video frames and 43,100 person bound-
ing boxes. The training set has 482 different identities from
5,704 raw video frames and the testing set has 2,057 probe
IDs along with a gallery repository of 6,122 images. The res-
olutions of PRW range from 58 × 21 to 777 × 574, which
is a challenging multi-scale matching problem. Hence, this
dataset presents the intrinsic multi-scale challenge. These de-
tected person bounding boxes are determined by employing
the Faster-R-CNN [Ren et al., 2015], due to its excellence
in detecting varying sized objects in unconstrained scenes.
Thereby, it is only necessary to evaluate the performance of
our method and state-of-the-arts (SOTAs) on this task. We
adopt the widely used protocols: Cumulative Matching Char-
acteristic (CMC) and mean Average Precision (mAP).

Implementation Details All person bounding boxes are re-
sized to 256×128 pixels. To have fair comparison with exist-
ing methods ([Lan et al., 2018; Zheng et al., 2017]), we use
both annotated and detected boxes to train the identity match-
ing loss. The learning rate is initialized to be 0.001, and the
warming up skill is applied by reducing the learning rate as
more epochs. Each image is randomly erased with a region
to reduce the over-fitting effect.

Experimental Results We compared our method with sev-
eral SOTA methods in person search: OIM [Xiao et al.,
2017], NPSM [Liu et al., 2017], CWS [Zheng et al., 2017],
Cross-Level Semantic Alignment (CLSA) [Lan et al., 2018],



Method Backbone AP AP50 AP75 APS APM APL

RetinaNet ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2
Faster-R-CNN ResNet-101-FPN 36.3 59.1 42.3 21.8 42.7 50.2
Libra-R-CNN ResNet-101-FPN 40.3 61.3 43.9 22.9 43.1 51.0
Grid-R-CNN ResNet-101-FPN 41.5 60.9 44.5 23.3 44.9 53.1

Mask-R-CNN ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
DeepLabV3 D-ResNet-50 45.2 63.7 47.7 25.4 46.9 55.8
DeepLabV3 D-ResNet-101 45.4 63.8 48.1 26.0 47.0 55.9

Faster-R-CNN D3Net-S 45.3 65.0 49.8 28.7 49.2 57.4
Faster-R-CNN D3Net-L 45.6 65.1 49.8 29.1 49.6 57.3
Faster-R-CNN ResNet-101+RHP 46.1 66.0 51.4 31.7 50.8 58.4
Mask-R-CNN ResNet-101+RHP 45.7 65.2 51.0 31.4 50.6 58.2
Faster-R-CNN DenseNet+RHP 46.3 66.7 51.5 31.4 50.0 57.4
Mask-R-CNN DenseNet+RHP 46.1 65.4 51.4 31.2 50.1 57.3

Table 3: Comparison results with state-of-the-art methods on MS COCO test-dev. Best results are in bold.

Method Rank-1 Rank-5 Rank-10 mAP

Sk
ip

-C
on

ne
ct

io
n OIM 49.9 85.1 89.6 21.3

NPSM 53.1 85.2 87.7 24.2
IDE + CWS 45.5 84.1 89.6 18.3
FPN 53.4 86.4 90.8 31.9
MuDeep 55.7 84.2 87.9 37.9
CLSA 65.0 88.7 88.1 38.7
PPS 72.8 84.6 89.8 48.7

D
ila

tio
n PConv 68.2 82.5 85.0 41.1

CMSNet 70.6 86.7 89.7 42.7
SDC 73.1 86.7 90.4 46.8
RHP-Nets 80.7 91.2 92.7 57.5

Table 4: Comparison results with SOTA methods (%) for
multi-scale person matching on PRW dataset.

MuDeep [Qian et al., 2017], PPS [Shen et al., 2019] and CM-
SNet [Fan et al., 2020]. Besides, we compare with recent
multi-scale learning methods that can be applied into person
search: FPN [Lin et al., 2017a] and PConv [Wang et al.,
2020]. We use the code released by the authors. Compari-
son results on rank-1, -5, -10 and mAP values are reported
in Table 4.4. It can be seen that our method achieves con-
sistent improvement over STOAs in CMC values and mAP.
It also shows that most of skip connection methods align the
features to leverage coarse-to-fine details so as to improve
the person matching. Though these methods help, they lack
explicit mechanisms to fuse diverse information from differ-
ent scales into the same representation. The family of multi-
branch methods, i.e., PConv [Wang et al., 2020] and CM-
SNet [Fan et al., 2020], can combat this problem by aggre-
gating scale characteristics into one convolutional layer. In
stark contrast, our approach constructs spatial polynomials to
encode the fine-grained structure. Therefore, multi-scale spa-
tial representations are helpful in multi-scale person search,
which requires fine-grained details.

4.5 Ablation Study
In this section, we examine the impact of Hermite polynomial
orders and the quality of the learned spatial representations.

The Orders of Hermite Polynomials for Scaling
In this experiment, we empirically determine the number of
Hermite polynomials. To observe the effects of using varied

orders, we use the measure of IoU on localization validation
set of CUB dataset. In Fig. 6, we evaluate the IoU with 70%,
50%, 30% of validation set and calculate the average of the
above values. We observe that setting the polynomial order
to be N = 4 is enough to achieve higher accuracy on local-
ization. Thus, we set N = 4 as default in all our experiments.

How Goodness of Learned Spatial Representations?
In this experiment, we validate the quality of spatial repre-
sentations empirically. To show this quantitatively, we use
the spatial relevance to qualify the degree of spatial variance
across levels. The spatial relevance [Chiu et al., 2013] is de-
fined as S(ϵx, ϵy) =

<I(x,y),I(x+ϵx,y+ϵy)>
<I(x,y),I(x,y)> , where we set the

offsets ϵx and ϵy along the x and y axis, respectively. As
shown in Fig. 7, the spatial statistics in 9 bins across lev-
els of our RHP-Nets show that we preserve the high spatial
resolution entire the network.

5 Conclusion
In this paper, we show the importance of multi-scale spatial
representations with granularity in dense prediction tasks and
propose a novel architecture called RHP-Nets. We present a
network that considers a large context region with high spa-
tial variance across layers, and yet fine-grained feature with
granularity within a convolution to aggregate the multiple res-
olutions. These properties are achieved by applying dilated
convolutions across deep layers of CNNs and a family of Her-
mite polynomials inside a layer to address the artifacts caused
by the standard dilation. Extensive experiments in a variety
of image recognition tasks confirm the effectiveness of the
proposed method.
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